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We study the adjacency graph of bubbles, that is, complementary con-
nected components of a SLEκ curve for κ ∈ (4,8), with two such bubbles
considered to be adjacent if their boundaries intersect. We show that this ad-
jacency graph is a.s. connected for κ ∈ (4, κ0], where κ0 ≈ 5.6158 is de-
fined explicitly. This gives a partial answer to a problem posed by Duplantier,
Miller and Sheffield (2014). Our proof in fact yields a stronger connectivity
result for κ ∈ (4, κ0], which says that there is a Markovian way of finding a
path from any fixed bubble to ∞. We also show that there is a (nonexplicit)
κ1 ∈ (κ0,8) such that this stronger condition does not hold for κ ∈ [κ1,8).

Our proofs are based on an encoding of SLEκ in terms of a pair of in-
dependent κ/4-stable processes, which allows us to reduce our problem to a
problem about stable processes. In fact, due to this encoding, our results can
be rephrased as statements about the connectivity of the adjacency graph of
loops when one glues together an independent pair of so-called κ/4-stable
looptrees, as studied, for example, by Curien and Kortchemski (2014).

The above encoding comes from the theory of Liouville quantum gravity
(LQG), but the paper can be read without any knowledge of LQG if one takes
the encoding as a black box.

1. Introduction.

1.1. Overview. Let κ ∈ (4,8) and let η be a chordal Schramm–Loewner evolution
(SLEκ ) curve [41], say from 0 to ∞ in the upper half-plane H. A bubble of η is a connected
component of H \η. We declare that two such bubbles are adjacent if their boundaries have a
nonempty intersection. In this paper, we will study the adjacency graph of SLEκ bubbles for
κ ∈ (4,8). (The analogous graph for κ ∈ (0,4] ∪ [8,∞) is uninteresting since SLEκ has only
two complementary connected components for κ ∈ (0,4] and is space-filling for κ ≥ 8 [40].)

A natural first question to ask about the adjacency graph of bubbles is whether it is con-
nected, that is, whether any two bubbles can be joined by a finite path in the graph. This ques-
tion appears as [16], question 11.2, and is the SLE analogue of a well-known open problem
for Brownian motion, which asks whether the adjacency graph of complementary connected
components of a planar Brownian motion (say, stopped at some fixed time) is connected; see,
for example, [9] or [36], Open Problem (4).

Intuitively, one expects that it is easier for the adjacency graph to be connected when κ is
closer to 4, since for smaller κ the bubbles tend to be larger and the curve itself is “thinner,”
for example, in the sense that it has smaller Hausdorff dimension [2] and a larger set of cut
points [35].

However, due to the fractal nature of the SLEκ curve, it is not clear a priori whether the
adjacency graph should be connected for any value of κ ∈ (4,8), even at a heuristic level. For
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FIG. 1. A SLE6 in a square domain. Simulation by Jason Miller.

instance, the set S of points on the curve which do not lie on the boundary of any bubble has
full Hausdorff dimension: indeed, by SLE duality [15, 33, 34, 46, 47], the dimension of the
boundary of each bubble is equal to the dimension of SLE16/κ , which is strictly less than the
dimension of SLEκ [2]. If S contained a nontrivial connected subset, then no path of bubbles
in the adjacency graph would be able to cross this subset (cf. Corollary 1.2). One could also
worry that there exist pairs of macroscopic bubbles separated by an infinite “cloud” of small
bubbles, so that no finite path of bubbles can join them. Figure 1 shows a simulation of a SLE
curve, which may help the reader to visualize these geometric features.

In this paper, we will give an affirmative answer to the above question for an explicit range
of values of κ . With ψ(x) = �′(x)

�(x)
denoting the digamma function, we have the following.

THEOREM 1.1. For each fixed κ ∈ (4, κ0], the adjacency graph of bubbles of a chordal
SLEκ curve is almost surely connected, where κ0 ≈ 5.6158 is the unique solution of the
equation π cot(πκ/4) + ψ(2 − κ/4) − ψ(1) = 0 on the interval (4,8).

We will prove Theorem 1.1 by proving an stronger condition (Theorem 2.9), which,
roughly speaking, asserts that each bubble of the SLEκ curve is “connected to infinity” via
an infinite path of bubbles in the adjacency graph which are chosen in a Markovian man-
ner with respect to a natural parametrization of SLE that we introduce in Section 2. We also
show that this stronger condition fails for κ sufficiently close to 8 (Theorem 2.10). See Sec-
tion 6 for some heuristic discussion concerning the values of κ for which various connectivity
properties hold.

As alluded to earlier, Theorem 1.1 tells us that for κ ∈ (4, κ0], there cannot be nontrivial
connected subsets of the SLEκ curve which do not intersect the boundary of any bubble.

COROLLARY 1.2. For κ ∈ (4, κ0], the set of points on a chordal SLEκ curve which do
not lie on the boundary of any bubble is almost surely totally disconnected.

PROOF. Let η be a chordal SLEκ curve and let τ1 and τ2 be forward and reverse stopping
times of η, respectively, with τ1 < τ2 almost surely. By the reversibility of SLEκ [32] and the
domain Markov property, the conditional law of η|[τ1,τ2] conditioned on η|[0,τ1]∪[τ2,∞) is that
of a SLEκ curve from η(τ1) to η(τ2) in the appropriate connected component D = D(τ1, τ2)

of H \ η([0, τ1] ∪ [τ2,∞)). Theorem 1.1 applied to this latter SLE curve implies that, almost
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surely, there does not exist a connected subset of η which does not intersect the boundary of
any bubble of η and which disconnects the interior of D, since such a set would disconnect
the adjacency graph of bubbles of η|[τ1,τ2].

We can choose a countable collection T of random pairs of times (τ1, τ2) such that τ1 < τ2
a.s., τ1 (resp., τ2) is a forward (resp., reverse) stopping time for η, and the projection of T
onto its first and second coordinates are each dense (e.g., we could conformally map to D,
parametrize η by Minkowski content [29–31], then let T be the set of pairs of ordered positive
rational times). If X is a connected subset of η with more than one point and we choose
(τ1, τ2) ∈ T such that τ1 (resp., τ2) is sufficiently close to the first (resp., last) time that η hits
X, then X will disconnect the interior of the domain D above. Hence the corollary follows
from a union bound over all (τ1, τ2) ∈ T . �

We also mention the recent related work [1], which studies the two-valued local sets of the
Gaussian free field—a two-parameter family of random sets constructed from collections of
SLE4-type curves. Among other things, the authors determine the parameter values for which
the adjacency graph of complementary connected components of these sets are connected,
using very different techniques from those of the present paper.

1.2. Approach and outline. The key tool in our proof is a pair of independent κ/4-stable
processes (L,R) with only downward jumps, first introduced in [16], Corollary 1.19, which
encode the geometry of the SLEκ curve. The existence of these processes reduces our prob-
lem to analyzing stable processes rather than SLEκ . The particular stable processes we con-
sider are characterized by the Laplace transform E[eλLt ] = E[eλRt ] = eatλκ/4

, ∀t, λ > 0 or
equivalently by the Lévy measure b|x|−κ/41(x≤0) dx for constants a, b > 0 which we do not
make explicit (see Remark 2.2). We refer to [6] for more on stable processes.

We will give the definition of (L,R) in Section 2.2. The definition uses the theory of Liou-
ville quantum gravity (LQG): roughly speaking, Lt (resp., Rt ) for t ≥ 0 gives the LQG length
of the left (resp., right) outer boundary of η([0, t]) minus the LQG length of the interval to the
left (resp., right) of 0 which is disconnected from ∞ by η([0, t]), when η is parametrized by
quantum natural time with respect to a certain GFF-type distribution. The downward jumps
of L and R correspond to times at which η forms bubbles. We will review the aspects of LQG
theory which are necessary to understand the definition in Section 2.1. The reader who is not
familiar with LQG can take the existence of (L,R) as a black box throughout the rest of the
paper.

In Section 2.3, we use the process (L,R) to formulate a condition for the adjacency graph
of SLEκ bubbles which implies connectedness. We will then state Theorems 2.9 and 2.10,
which assert that this stronger condition holds for the range of κ considered in Theorem 1.1,
but fails for κ sufficiently close to 8. The remaining sections of the paper will be devoted to
proving Theorems 2.9 and 2.10.

In Section 3, we explain how to use the Markov and scaling properties of (L,R) to reduce
each of Theorems 2.9 and 2.10 to determining whether the expected logarithm of a certain
quantity defined in terms of (L,R) is positive or negative. The remainder of the paper con-
tains the (somewhat tricky) Lévy process arguments needed to estimate these expectations.
Theorem 2.9 (which implies Theorem 1.1) is proven in Section 4 and Theorem 2.10 is proven
in Section 5. In the proofs, we will use several existing results from the Lévy process litera-
ture, including ones from [8, 10, 11, 14, 37, 38]. However, since we are interested in certain
rather specific times for a pair of independent Lévy processes, we will also need to prove a
number of Lévy process results by hand. See also Remark 4.1.

Section 6 discusses some open problems related to various connectivity properties of the
adjacency graph of SLE bubbles.
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FIG. 2. An illustration of the gluing of two independent κ/4-stable looptrees described in Corollary 1.3. Left:
We begin with a pair (L,R) of independent κ/4-stable processes with only negative jumps. We can choose a large
C > 0 such that the graphs of Lt and C −Rt do not intersect in some time interval of interest (the particular value
of C is unimportant). Middle: For each jump of Lt , we draw a black curve underneath the graph of L with the
same endpoints as those of the jump, and which intersects each horizontal line only once. The particular geometry
of the curves chosen will not affect the topology of the resulting tree. We similarly draw curves corresponding to
jumps of C − Rt . We then identify pairs of points of the square if they lie on the same horizontal (green) segment
that lies below the curve; and similarly for C −Rt . This produces a pair of independent forested wedges of weight
γ 2 − 2. To glue the two forested wedges, we draw vertical (red) segments joining the two graphs, and we connect
points on the two graphs that lie on the same vertical segment or on the same jump segment. Right: The resulting
quotient is a pair of forested wedges with outer boundaries identified. The parts of the forested wedges colored
in blue correspond to running minima of Lt and C − Rt ; or, equivalently, points of Lt and Rt which lie on
horizontal green segments that intersect the rays (−∞,0) and (C,∞) on the y-axis, colored in blue in the middle
figure. If we remove the gray interior regions, we obtain a pair of κ/4-stable looptrees with their outer boundaries
identified. We emphasize that the looptrees shown in the right panel are not exactly the ones produced from the
stable processes in the left and middle panels.

1.3. Looptree interpretation. Due to the encoding discussed in Section 1.2, Theorem 1.1
can be rephrased as a statement about the topological space obtained by gluing together a pair
of so-called κ/4-stable looptrees, as studied, for example, in [13]. We will not directly use
looptrees in our proof, so a reader who only wants to see the proof of our results for SLEκ

can safely skip this subsection.
Stable looptrees are obtained from stable Lévy trees (as defined, e.g., in [18]) by replacing

each branch point (corresponding to the jumps of the Lévy process) by a circle of perimeter
equal to the magnitude of the jump. In the case of κ/2-stable processes, this construction is
equivalent to the construction of the so-called forested wedge of weight γ 2 − 2 (here γ =
4/

√
κ) in [16], Figure 1.15, Line 3, except that in the looptree definition the interiors of the

disks are not included. The definition of looptrees/forested wedges is explained in Figure 2.

COROLLARY 1.3. Let (L,R) be a pair of i.i.d. κ/4-stable processes with only downward
jumps and let G be the topological space obtained by gluing the looptrees T L and T R asso-
ciated with L and R together according to the natural length measure along their boundaries
which arises from the time parametrizations of L and R, as described in Figure 2. If 
1 and 
2
are two loops, each of which belongs to either T L or T R , we declare that they are adjacent if
and only if the corresponding subsets of G (under the quotient map T L �T R → G) intersect.
If κ ∈ (4, κ0], then the adjacency graph of loops is a.s. connected.

PROOF. Let G• be the topological space obtained by filling in each of the loops of G
with a copy of the unit disk. Equivalently, G• can be obtained by replacing each of the loops
of T L and T R with a closed disk, then identifying the resulting trees of disks along their
boundaries as we identified T L and T R to produce G. We note that G is canonically identified
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with a closed subset of G•, namely the image of the boundaries of the trees of disks under
the quotient map. Let η be a SLEκ curve. By a slight abuse of notation, we also denote
the range of η by η. It follows from [16], Corollary 1.19 (see also [16], Figure 1.19) that
there is a homeomorphism H → G• which takes η to G. Here, we use the above mentioned
equivalence between looptrees and forested wedges. Consequently, η, viewed as a topological
space, is homeomorphic to G via a homeomorphism under which boundaries of bubbles of η

correspond to loops of T L or T R . The corollary thus follows from Theorem 1.1. �

2. A κ/4-stable process description of SLEκ for κ ∈ (4,8).

2.1. Liouville quantum gravity definitions. In order to define the pair of κ/4-stable pro-
cesses which encode the geometry of η, we will need some definitions from the theory of
Liouville quantum gravity (LQG). We will not state these definitions precisely here (instead
referring to the cited papers), since the only feature of these definitions which is needed in
the present paper is Theorem 2.1 below.

Let γ := 4/
√

κ ∈ (
√

2,2). If D ⊂ C is an open set and h is a random distribution (gener-
alized function) on D which behaves locally like the Gaussian free field on D (see [33, 34,
42, 43] for more on the GFF) then the γ -LQG surface associated with h is, formally, the ran-
dom Riemannian surface with Riemann metric tensor eγh(z)(dx2 + dy2), where dx2 + dy2

denotes the Euclidean metric tensor. This definition does not make literal sense since h is a
distribution, not a pointwise-defined function, so we cannot exponentiate it. However, cer-
tain objects associated with γ -LQG surfaces can be defined rigorously using regularization
procedures.

For example, Duplantier and Sheffield [17] constructed the volume form associated with
a γ -LQG surface, which is a measure μh that can be defined as the limit of regularized
versions of eγh(z) dz (where dz denotes Lebesgue measure). In a similar vein, one can define
the γ -LQG length measure νh on certain curves in D, including ∂D and SLEκ̂ -type curves
for κ̂ = γ 2 (or equivalently the outer boundaries of SLEκ -type curves, by SLE duality [15,
33, 34, 46, 47]) which are independent from h. The γ -LQG length measure can be defined
in various ways, for example, using semicircle averages of a GFF on a domain with smooth
boundary and then conformally mapping to the complement of a SLEκ̂ curve [17, 44] or
directly as a Gaussian multiplicative chaos measure with respect to the Minkowski content
of the SLE curve [3]. See also [4, 39] for surveys of a more general theory of regularized
measures of this form, which dates back to Kahane [27].

Also relevant for our purposes is the natural γ -LQG parametrization of a SLEκ curve
η sampled independently from h; we call this parametrization quantum natural time.
Parametrizing by quantum natural time is, roughly speaking, the same as parametrizing
by “quantum Minkowski content.” It is the quantum analogue of the so-called natural
parametrization of SLE [30, 31]. The precise definition of quantum natural time can be found
in [16], Definition 6.23.

In this paper, we will always take D = H to be the upper half-plane and h to be the

GFF-type distribution corresponding to the so-called 4
γ

− γ
2 - (equivalently, weight- 3γ 2

2 − 2)
quantum wedge, which is defined precisely in [16], Definition 4.5. Roughly speaking, h is
obtained from h̃− ( 4

γ
− γ

2 ) log | · |, for h̃ a GFF on H with Neumann boundary conditions, by
“zooming in near the origin” and then rescaling so that the γ -LQG mass of D ∩ H remains
of constant order [16], Proposition 4.7(ii).

2.2. Definition of (L,R). Let us now suppose that h is the distribution corresponding
to a 4

γ
− γ

2 -quantum wedge (γ = 4/
√

κ), as above, and our SLEκ curve η is sampled inde-
pendently from h and then parametrized by γ -quantum natural time with respect to h. To
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FIG. 3. The definitions of the processes L and R.

define the processes (L,R), consider for each t > 0 the hull generated by η([0, t]) (i.e., the
closure of the set of points it disconnects from ∞) and let xt and yt denote the infimum and
supremum, respectively, of the set of points where this hull intersects the real line. We define
the left boundary length Lt of η at time t to be the γ -LQG length of the boundary arc of the
hull from η(t) to xt , minus the γ -LQG length of the segment [xt ,0]. Similarly, we define
the right boundary length Rt of η at time t to be the γ -LQG length of the boundary arc of
the hull from η(t) to yt , minus the γ -LQG length of the segment [0, yt ]. See Figure 3 for
an illustration. One can also thing of L (resp., R) as measuring the “net change” of the left
(resp., right) boundary of the unbounded connected component of H \ η([0, t]) between time
0 and time t . The definition of (L,R) is the continuum analogue of the so-called horodistance
process for peeling processes on random planar maps, as studied, for example, in [12, 22].

The following is part of [16], Corollary 1.19, and is the only fact from LQG theory which
we will need in this paper.

THEOREM 2.1. The processes Lt and Rt are i.i.d. totally asymmetric κ
4 -stable Lévy

processes with only negative jumps.

REMARK 2.2. Since scaling the time parametrization of a κ/4-stable Lévy process
gives another κ/4-stable Lévy process, Theorem 2.1 only specifies the law of (L,R) up
to a constant rescaling of time, (Lt ,Rt ) �→ (Lct ,Rct ) for a constant c > 0 (or equivalently
(Lt ,Rt ) �→ c4/κ(Lt ,Rt)). The properties of (L,R) which we will be interested in do not de-
pend on this scaling, so one can make an arbitrary choice of c. In Section 5, we will fix the
scaling in a particularly convenient way.

Theorem 2.1 is quite powerful because the behavior of these two Lévy processes neatly
encode a lot of the geometry of the SLEκ curve η; the following set of examples illustrates
this connection and will be used repeatedly in the proof of our main results. (The equivalences
described in these examples are direct consequences of the theorem.)

EXAMPLE 2.3.

1. The time that a bubble of η is formed corresponds to a downward jump in either Lt

or Rt . For convenience, we call a bubble a left bubble or right bubble if it corresponds to a
downward jump in Lt or Rt , respectively.

2. For x > 0, let ρx > 0 be chosen so that the γ -LQG length of [0, ρx] is x (such an x

exists since the γ -LQG length measure has no atoms). The time at which η disconnects ρx

from ∞—or, equivalently, the time the bubble with ρx on its boundary is formed—is equal
to the first time that the process Rt jumps below −x. Note that this bubble a.s. exists and is
unique since ρx is independent from η, so η a.s. does not hit ρx . The analogous result holds
with L in place of R and with LQG lengths along the negative real axis in place of LQG
lengths along the positive real axis.
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3. If η forms a left bubble at a time τ > 0, then for t ∈ [0, τ ] the point η(t) lies on the
boundary of this bubble if and only if inf{s > t : Ls ≤ Lt } = τ , that is, the time reversed
process Lτ−· attains a running minimum at time τ − t . The analogous result holds for right
bubbles.

Before introducing one last example describing the geometry of η in terms of (L,R), we
recall some definitions from the theory of SLE.

DEFINITION 2.4. We say that t ≥ 0 is a local cut time of η, and η(t) a local cut point, if
η([0, t]) ∩ η((t, t + ε]) = ∅ for some ε > 0. We call t a global cut time and η a global cut
point if η([0, t]) ∩ η((t,∞)) = ∅. Since in this paper we will usually want to consider local
rather than global cut points, we will refer to local cut points and local cut times simply as
cut points and cut times, respectively.

LEMMA 2.5. Almost surely, the set of local cut times for η is precisely the set of times
t ≥ 0 for which there exist two connected components (bubbles) b1, b2 of H \ η with η(t) ∈
∂b1 ∩ ∂b2. Furthermore, if ∂b1 ∩ ∂b2 �= ∅, then one of b1 or b2 lies to the left of η and the
other lies to the right of η.

See Figure 4 below for an illustration of the statement of Lemma 2.5. Lemma 2.5 implies
that cut points correspond to edges of the adjacency graph of bubbles. The last statement of
Lemma 2.5 implies that this adjacency graph is bipartite.

PROOF OF LEMMA 2.5. We first argue that a.s. every local cut point is an intersection
point of the boundaries of two bubbles of η. Choose a countable collection T (resp., T ) of
stopping times for η (resp., its time reversal) which is a.s. dense in [0,∞). By reversibility
[34] and the domain Markov property, for any fixed τ ∈ T and τ ∈ T , on the event {τ < τ }
the conditional law of η|[τ,τ ] given η|[0,τ ]∪[τ ,∞) is that of a SLEκ from η(τ) to η(τ) in the
appropriate connected component of H \ η([0, τ ] ∪ [τ ,∞)).

A time t > 0 is a local cut time for η if and only if there exists τ ∈ Q and τ ∈ Q such that
τ < t < τ and t is a global cut time for η|[τ,τ ]. It therefore suffices to show that a.s. every
global cut point of η is an intersection point of the boundaries of two connected components
of H \ η. A global cut point is the same as a point where the left and right outer boundaries of
η intersect. By [33], Theorem 1.4, the left and right outer boundaries ηL and ηR of η can be
described as a pair of flow lines of a GFF on H. Each of ηL and ηR is a simple curve, and ηL

(resp., ηR) does not intersect (0,∞) (resp., (−∞,0)). Consequently, every point of ηL ∩ ηR

FIG. 4. The first two bubbles in the path of bubbles defined in the proof of the first half of Proposition 3.3. The
curve η on the interval [0, τ2] is contained in the regions shaded in gray. The cut point at time σ1 corresponds to
the edge of the adjacency graph connecting the bubbles b1 and b2. The random variables X1 and X2 defined in
(2) give the γ -LQG lengths of the yellow and purple arcs, respectively.
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lies on the boundary of a connected component of H \ ηL whose boundary intersects R and
on the boundary of a connected component of H \ ηR whose boundary intersects R. Each of
these connected components is also a connected component of H \ η.

We remark that the fact that ηL ∩ (0,∞) = ηR ∩ (−∞,0) = ∅ shows that η a.s. does not
have any global cut points in R, so by the domain Markov property η a.s. does not have any
local cut points t with η(t) ∈ η([0, t)). By combining this with reversibility, we see that a.s.
no local cut point of η is a double point.

We now argue that each point on the intersection of two bubbles is a local cut point for η.
We first observe that a.s. no time at which η disconnects a bubble from ∞ is a local cut time
for η. Indeed, each bubble contains a point with rational coordinates and the time at which
η disconnects such a point from ∞ is a stopping time, so a.s. is not a local cut time by the
domain Markov property.

Now consider two bubbles b1, b2 with ∂b1 ∩ ∂b2 �= ∅, and suppose that η finishes tracing
∂b1 before it finishes tracing ∂b2. Let σ be the time at which η finishes tracing ∂b1. Let t ≥ 0
with η(t) ∈ ∂b1 ∩ ∂b2. By the preceding paragraph, t �= σ , so by the definition of σ , after
possibly replacing t with a time t ′ < t with η(t ′) = η(t), we can arrange that t < σ . Since η

does not finish tracing ∂b2 until after time σ , η([0, σ ]) does not disconnect any point of b2
from ∞. Therefore, for any ε ∈ [0, σ − t) we can find paths in H \ η([0, σ − ε]) from each
of the two sides (prime ends) of η(t) to ∞. This shows that η([0, t)) and η([t, σ − ε]) are
disjoint.

Hence t is a local cut time for η.
To obtain the second statement of the lemma, we note that our proof that every local time

point lies on the boundaries of two distinct bubbles shows that in fact any such cut point
lies on the boundaries of two distinct bubbles which lie on opposite sides of η. The second
statement follows from this and the first statement. �

EXAMPLE 2.6. In terms of the left and right boundary processes, cut times are times t for
which there exists ε > 0 such that Ls > Lt and Rs > Rt for each s ∈ (t, t + ε]; and global cut
times are cut times t such that the processes L and R achieve record minima when they first
jump below Lt and Rt , respectively, after time t . The processes L and R also identify the two
bubbles whose boundaries share a given cut point: if t is the cut time, then the two bubbles are
formed at the first times after t that the processes jump below Lt and Rt , respectively. Finally,
we note that, if t is a global cut time, then the union of the two corresponding bubbles b, b′
disconnects the set of bubbles formed before time t from all other bubbles in the adjacency
graph.

2.3. (L,R)-Markovian paths to infinity. We now use this Lévy process description of
SLEκ for κ ∈ (4,8) to define a “Markovian path to infinity” in the adjacency graph of SLE
bubbles.

DEFINITION 2.7. For κ ∈ (4,8), a (L,R)-Markovian path to infinity in the adjacency
graph of bubbles of η is an infinite increasing sequence of stopping times τ1 < τ2 < τ3 < · · ·
for (L,R) such that almost surely:

• τk → ∞,
• η forms a bubble bk at each time τk (equivalently, either L or R has a downward jump at

time τk), and
• bk and bk+1 are connected in the adjacency graph (i.e., ∂bk ∩ ∂bk+1 �= ∅) for each k.

Note that a (L,R)-Markovian path to infinity is a random path defined for almost every
realization of the SLEκ curve.
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The existence of (L,R)-Markovian paths to infinity is a sufficient condition for connec-
tivity of the adjacency graph of bubbles.

LEMMA 2.8. Let κ ∈ (4,8), and suppose that, for every stopping time ζ for (L,R) at
which η forms a bubble almost surely, the adjacency graph of bubbles admits a (L,R)-
Markovian path to infinity with τ1 = ζ . Then the adjacency graph is connected almost surely.

PROOF. The event that the adjacency graph is connected can be expressed as the count-
able union over all pairs of times t1, t2 ∈ Q ∩ [0,∞) and all N ∈ N of the event that b1 and
b2 are joined by a path in the adjacency graph, where for j ∈ {1,2}, bj is the first bubble
formed after time tj that corresponds to a jump of either L or R of magnitude at least 1/N .
Fix such a triple (t1, t2,N), and let ζ1 and ζ2 be the times at which η forms the bubbles b1
and b2, respectively. Since η a.s. has arbitrarily large global cut times (see, e.g., [35], Theo-
rem 1.2), we can a.s. choose a global cut point η(s) with s > ζ1, ζ2. The point η(s) lies on
the boundary of two bubbles b3 and b4 (adjacent to each other) that, as noted in Example 2.6
above, together disconnect the set of bubbles formed up to time s from all other bubbles in
the adjacency graph. Hence, the (L,R)-Markovian paths started at each of ζ1 and ζ2 must
each pass through one of b3 or b4, which yield finite paths from each of b1 and b2 to either
b3 or b4. �

In light of Lemma 2.8, Theorem 1.1 will be an immediate consequence of the following
theorem.

THEOREM 2.9. Suppose κ ∈ (4, κ0], with κ0 ≈ 5.6158 defined as in Theorem 1.1. If ζ

is a stopping time of (L,R) such that η forms a bubble at time ζ almost surely, then the
adjacency graph of bubbles admits a (L,R)-Markovian path to infinity with τ1 = ζ .

The (L,R)-Markovian path appearing in Theorem 2.9 is defined explicitly in the proof of
Proposition 3.3 below. The times τk can be taken to be stopping times for η as well as for
(L,R).

Theorem 2.9 gives a strictly stronger connectivity condition for the adjacency graph of
bubbles than Theorem 1.1. This stronger condition does not hold for all κ ∈ (4,8).

THEOREM 2.10. There exists κ1 ∈ (κ0,8) such that for κ ∈ [κ1,8), the adjacency graph
of bubbles does not admit a (L,R)-Markovian path to infinity (with any choice of starting
time).

Our proof of Theorem 2.10 is based on the fact that a κ/4-stable process converges in
law to Brownian motion as κ increases to 8 (Proposition 5.1), and does not give an explicit
formula for κ1.

3. Reducing to an estimate for a single bubble. To prove Theorems 2.9 and 2.10, we
first reduce the task of proving the existence or nonexistence of an (L,R)-Markovian path
to infinity (Definition 2.7) to computing an expectation involving a single bubble. We first
introduce some notation that we will use repeatedly throughout the paper.

NOTATION 3.1. For a time t > 0, we denote by σ(t) the smallest s ∈ [0, t) such that
Lr ≥ Ls and Rr ≥ Rs for all r ∈ [s, t); or σ(t) = t if no such s exists.

We observe that if σ(t) < t , then σ(t) is a cut time for η by Example 2.6, so lies on the
boundary of two distinct bubbles formed by η by Lemma 2.5.
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REMARK 3.2. Example 2.6 shows that σ(t) can equivalently be defined as the smallest
s ∈ [0, t) for which η([0, s))∩η([s, t)) = ∅ and η([s, t))∩R=∅. For a fixed time t , the left
and right outer boundaries of η([0, t]) are SLE16/κ -type curves which a.s. intersect each other
in every neighborhood of their common starting point: see, for example, [34]. Consequently,
the description of σ(t) in terms of η shows that a.s. σ(t) < t . We will not need this fact
in our proof, however. One can similarly see from SLE considerations that a.s. σ(τ) < τ if
τ is the first time that R jumps below a specified level, equivalently, the first time that η

disconnects a certain point of (0,∞) from ∞ (here is is important that we use [0, t) instead
of [0, t] in the definition of σ(t), since otherwise we would get σ(τ) = τ ). As a consequence
of Theorem 3.6 below, we will obtain a direct proof is this fact which does not use SLE, at
least in the case when κ ∈ (4, κ1].

PROPOSITION 3.3. Let κ ∈ (4,8) and let η and (L,R) be as above. Let τ be the first
time that R jumps below −1 and let σ = σ(τ) (see Notation 3.1). Equivalently (as noted
in Example 2.3), let τ be the first time that η absorbs the point on the positive real axis at
γ -LQG length 1 from the origin, and let σ be the time of the first cut point of η|[0,τ ] which
lies on the boundary of a bubble of η formed after time τ . If

E log(Lτ − Lσ ) ≥ 0,

then for each stopping time ζ for (L,R) at which η forms a bubble almost surely, there is an
(L,R)-Markovian path to infinity with τ1 = ζ .

Conversely, let M denote the set of times in [0, τ ] at which L achieves a record minimum,
and suppose that

(1) E log
(

sup
t∈M

(Lt − Lσ(t))
)

< 0.

Then the adjacency graph of bubbles of η does not admit a (L,R)-Markovian path to infinity.

REMARK 3.4. It should be possible to estimate the values of κ for which each of the
conditions of Proposition 3.3 holds by simulating stable processes numerically. However,
the times σ(t) of Notation 3.1 are not continuous functionals of (L,R) with respect to the
Skorohod topology. We expect that these times still converge for suitable approximations
of (L,R) (see [21], Section 1.5, for related discussion concerning the analogous times for
correlated Brownian motions), but the rate of convergence is likely rather slow, which may
complicate attempts at simulations.

PROOF OF PROPOSITION 3.3. First, suppose that E log(Lτ − Lσ ) > 0 and suppose we
are given a stopping time ζ for (L,R) at which η a.s. forms a bubble. We will construct
a sequence of stopping times ζ = τ1 < τ2 < τ3 < · · · of (L,R) that constitute a (L,R)-
Markovian path to infinity. We set τ1 = ζ . We then define the times τk for k ≥ 2 inductively
as follows. Suppose that we have defined the time τk , and that η forms a bubble bk at time τk ;
then we set σk = σ(τk) and

τk+1 :=
{

inf{s > τk : Rs < Rσk
} if bk is a left bubble,

inf{s > τk : Ls < Lσk
} if bk is a right bubble.

Equivalently, by Examples 2.3 and 2.6, σk is the time of the first cut point of η|[0,τk] on the
boundary of bk which also lies on the boundary of a bubble formed after bk , and we choose
the next bubble bk+1 to be the bubble (other than bk) which has η(σk) on its boundary. See
Figure 4.



CONNECTIVITY OF THE ADJACENCY GRAPH OF SLEκ BUBBLES 1505

By definition, η forms a bubble at each time τk , and the bubbles formed at times τk and
τk+1 are adjacent for each k. So, to prove τ1 < τ2 < τ3 < · · · is an (L,R)-Markovian path to
infinity, we just need to check that τk → ∞ almost surely as k → ∞. Set

(2) Xk :=
{
Rτk

− Rσk
if bk is a left bubble,

Lτk
− Lσk

if bk is a right bubble.

If bk is a right bubble, then by definition τk+1 is the first time after τk that L − Lτk

jumps below −Xk . The same is true if bk is a left bubble with L replaced by R.
Hence Xk+1/Xk is obtained from the process X−1

k (Lτk+· − Lτk
,Rτk+· − Rτk

) in the
same manner that Lτ − Lσ is obtained from (L,R), except possibly with the roles of
L and R interchanged. By the strong Markov property, the κ/4-stable scaling prop-
erty of L and R, and the symmetry between L and R, the random variables Xk+1/Xk

for k ∈ N are i.i.d., with the same law as Lτ − Lσ . If E log(Lτ − Lσ ) > 0, then
the strong law of large numbers implies that a.s. lim supk→∞

∑k
j=1 log(Xj+1/Xj ) = ∞

and, therefore, lim supk→∞ Xk = ∞. If E log(Lτ − Lσ ) = 0, we again get that a.s.
lim supk→∞

∑k
j=1 log(Xj+1/Xj ) = ∞ as follows. By the Hewitt–Savage zero-one law,

the random variable lim supk→∞
∑k

j=1 log(Xj+1/Xj ) is a.s. equal to a deterministic con-

stant c ∈ [−∞,∞]. Since a.s. lim supk→∞
∑k

j=1 log(Xj+1/Xj ) = c, we get that a.s.
c− log(X2/X1) = c. Therefore, c ∈ {−∞,∞}. By the Chung–Fuchs theorem (see, e.g., [19],
Theorem 4.2.7), a.s. there are infinitely many k ∈ N for which

∑k
j=1 log(Xj+1/Xj ) > 0, so

we must have c = ∞. Since maxs∈[0,t](|Ls | + |Rs |) < ∞ for each t > 0, this implies that a.s.
τk → ∞ as k → ∞ provided E log(Lτ − Lσ ) ≥ 0.

Conversely, suppose that (1) holds. Let τ1 < τ2 < τ3 < · · · be a sequence of stopping times
of (L,R) with η = τ1, such that η a.s. forms a bubble bk at each time τk , and bk and bk+1 are
connected in the adjacency graph for each k.

We claim that τk almost surely does not tend to infinity as k → ∞. To prove this claim,
we first set σk = σ(τk) and define Xk as in (2). For each k ∈ N, τk+1 is a stopping time
greater than τk such that, at time τk+1, the curve η a.s. forms a bubble whose boundary
shares a cut point with bk . By Example 2.3, we can characterize τk+1 in terms of (L,R)

as follows: if bk is a right bubble, then at time τk+1, Lt a.s. jumps below −x for some
random x ∈ [Lσk

,Lτk
] for the first time after τk (in the special case that x = Lσk

almost
surely, the bubble bk+1 is the bubble with the cut point η(σk) on its boundary). Equivalently,
the process t �→ Lt − Lτk

defined for t > τk achieves a record minimum at t = τk+1, and
mint∈[0,τk+1)(Lt − Lτk

) ≥ −Xk . The same is true if k is a left bubble with L replaced by R.
We deduce from the scaling and Markov properties of L and R that Xk+1/Xk is stochastically
dominated by supt∈M(Lt − Lσ(t)). Since (1) holds, the strong law of large numbers implies
that a.s. limk→∞

∑k
j=1 log(Xj+1/Xj ) = −∞ and, therefore, that limk→∞ Xk = 0.

Now, unlike in the first part of the proof, we cannot immediately conclude that τk almost
surely does not tend to infinity as k → ∞. The statement Xk

a.s.→ 0 says that some measure of
boundary length of the bubbles bk is tending to zero; we want to deduce from this that the
path of bubbles must remain in some compact subset of H.

To see this, we observe that Example 2.6 implies that on the event that τk → ∞, it must be
the case that for each global cut point t of η with t ≥ τ1, the sequence of bubbles {bk}k∈N must
include one of the bubble with η(t) on its boundary. By Lemma 3.5 below, we can choose a
subsequence of bubbles bkn such that the corresponding random variables Xkn are uniformly
bounded from below. Since Xkn → 0 almost surely, we deduce that τk almost surely does not
tend to infinity, as desired. �

We now state and prove Lemma 3.5, the missing ingredient we needed to prove Proposi-
tion 3.3.
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LEMMA 3.5. Let η be a SLEκ curve for κ ∈ (4,8). There is a deterministic constant
C > 0 such that a.s. there are infinitely many global cut points of η such that, if τl and τr are
the times η forms the left and right bubbles whose boundaries share this cut point, then

(3) (Rτl
− Rσ(τl)) ∧ (Lτr − Lσ(τr )) ≥ C.

PROOF. We define times

r1 < s1 < t1 < r2 < s2 < t2 < r3 < · · ·
inductively as follows. Set r0 = s0 = t0 = 0. Inductively, let rk be the first time t > tk−1 such
that R attains a running minimum at t and Lt − mins∈[0,t] Ls ≥ 1.1 Let sk the first global cut
time of η after time rk ; such a cut time exists a.s. since η a.s. has arbitrarily large global cut
times (see, e.g., [35], Theorem 1.2). Finally, let

tk = inf{t > sk : Lt < Lsk } ∨ inf{t > sk : Rt < Rsk },
that is, tk is the larger of the two times at which η forms a bubble whose boundary contains
the cut point η(tk).

Using Example 2.6, each rk and each tk is a stopping time for (L,R). By Example 2.3, the
random variable of (3) associated to the cut point sk is a.s. determined by (L,R)|[0,tk].

We claim that the sequence {sk − rk}k∈N stochastically dominates an i.i.d. sequence of ran-
dom variables. If we can prove this claim, then the lemma will follow directly from applying
Kolmorogorv’s 0–1 law. To show why this claim is true, we first recall how we defined global
cut times in terms of (L,R) in Example 2.6. In our setting, since rk is a stopping time, we can
similarly characterize the conditional distribution of sk − rk given L|[0,rk]: the law of sk − rk
is equal to the law of the first global cut time of (L,R) such that the record minimum that L

achieves at the first time η hits (−∞,0] after this global cut time is ≤ Lrk − mins∈[0,rk] Ls .
Since Lrk − mins∈[0,rk] Ls ≥ 1, we deduce by the scaling property of (L,R) that the random
variable of (3) associated to the cut point sk stochastically dominates an a.s. positive random
variable defined independently of k, namely, the random variable (3) associated to the first
global cut time of (L,R) such that the record minimum that L achieves after this global cut
time is ≤ −1. This proves our claim, and hence the lemma. �

Proposition 3.3 implies that, to prove Theorems 2.9 and 2.10, it is enough to prove the
following estimates for a single bubble of a SLEκ curve:

THEOREM 3.6. Fix κ ∈ (4, κ0], where κ0 ≈ 5.6158 is defined as in Theorem 1.1. Let τ

be the first time that R jumps below −1 and σ = σ(τ). Then E log(Lτ − Lσ ) ≥ 0.

THEOREM 3.7. There exists κ1 ∈ (κ0,8) such that for κ ∈ [κ1,8), the following is true.
Let M denote the set of times ≤ τ at which L achieves a record minimum. Then

E log
(

sup
t∈M

(Lt − Lσ(t))
)

< 0.

The next section is devoted to proving Theorem 3.6; we will prove Theorem 3.7 in Sec-
tion 5.

1It is not hard to see that such a time always exists: Since the running minimum process of R is a subordinator
(Lemma VIII.1 on page 218 of [6]), we can find infinitely many disjoint time intervals that are uniformly large
(by the regenerative property of subordinators) and whose endpoints are times at which R attains running minima.
The restrictions of L to these time intervals are conditionally independent given R, so the 0–1 law implies that,
on at least one of these time intervals, the value of L at the right endpoint of the interval will exceed its minimum
on that interval by at least one.
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FIG. 5. The times ξ , σ and τ , defined in terms of η (left) and in terms of (L,R) (middle and right). Theorem 3.6
asserts the the γ -LQG length of the yellow boundary arc—or, equivalently, the size of the increment in L colored
yellow in the middle graph—has nonnegative log expectation. The first step of our proof of Theorem 3.6 shows
that this quantity stochastically dominates the γ -LQG length of the blue boundary arc—or, equivalently, the size
of the increment in R colored blue in the right graph.

4. Proof of Theorem 3.6. In this section, we prove Theorem 3.6. In terms of η, the time
τ in the theorem statement is the first time that η absorbs the point ρ1 on the positive real axis
at γ -LQG length 1 from the origin, and σ is the first cut point incident to both the bubble
formed at time τ and some bubble formed at a later time. In our proof of Theorem 3.6, we
will also refer to the time ξ at which the process R achieves its minimum on [0, τ ]—or,
equivalently, the last time η hits the positive real axis before time τ . Figure 5 illustrates the
definitions of the three times ξ , σ and τ in terms of both η and the pair of processes (L,R).

Our proof of Theorem 3.6 consists of three main steps.

1. Showing that Lτ − Lσ stochastically dominates Rτ− − Rσ . Since the definition of σ

is tied closely to that of τ , which depends on R but not on L, it is technically easier to
study the random variable Rτ− − Rσ instead of Lτ − Lσ . So, we begin by showing that
Lτ − Lσ stochastically dominates Rτ− − Rσ (Proposition 4.2), which reduces the task of
proving Theorem 3.6 to showing that E log(Rτ− − Rσ ) ≥ 0.

2. Characterizing the law of (L,R) run backwards from τ to ξ . Since σ is most easily
described in terms of the time-reversed processes L(τ−t)− and R(τ−t)− , we next determine
the joint law of these time-reversed processes. Proposition 4.7 asserts that if we run L and
R backward from time τ until the time ξ at which R reaches its minimum on [0, τ ), then
conditional on {Rτ− − Rξ = r}, the law of this pair of time-reversed processes is the same
(up to a vertical translation) as that of (−L,−R) run until −R hits the level −r . It follows
(Corollary 4.8) that the regular conditional distribution of Rτ− −Rσ given {Rτ− −Rξ = r} is
equal to the law of the value of R at the time θr of the last simultaneous running supremum of
(L,R) before R hits the level r . By the scaling property of stable processes, this implies that
the expectation of log(Rτ− − Rσ ) is equal to the sums of the expectations of log(Rτ− − Rξ)

and log(Rθ1) (equation (13) below).
3. Computing the expectations of log(Rτ− − Rξ) and log(Rθ1). By the previous step, to

prove Theorem 3.6, it is enough to show that the sum of the expectations of log(Rτ− − Rξ)

and log(Rθ1) is positive. The first term is easy to handle: we derive the law of Rτ− − Rξ

directly from a result in [14]. To analyze the law of log(Rθ1), we use the fact from [16] that
the law of (L,R) is equal to a time reparametrization of a pair (L̃, R̃) of correlated Brownian
motions to express the law of Rθ1 as that of R̃θ̃1

, where θ̃1 is the last simultaneous running

supremum of (L̃, R̃) before R̃ hits the level r . It follows from results in [20] and [24] that the
set of running suprema of a planar Brownian motion has the law of the range of a subordinator
whose index we can compute explicitly; hence, we can deduce the law of Rθ1 from the arcsine
law for subordinators [7].

The next three subsections of the paper are devoted to the proofs of these three main steps.
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REMARK 4.1. A key difficultly in our proof of Theorem 3.6 is that, because τ is a hitting
time of R and not L, the value Rσ is much easier to handle than Lσ . This is because the time
σ is more naturally analyzed in terms of (L,R) run backwards from the time τ , and the
results in the Lévy process literature give a nice description of (L,R) run backwards until
the running minimum time ξ of R on [0, τ ]. (On this interval, L run backward is just an
ordinary Lévy process, and R run backward is the so-called pre-minimum process of a Lévy
process conditioned to stay positive, whose law is just that of a Lévy process killed when
it reaches a certain random level.) The nature of this result allows us to apply an arcsine
law for subordinators to explicitly characterize the law of Rτ− − Rσ , but not the law of of
Lτ − Lσ , which is the quantity we really care about. Thus, we need to transfer our analysis
of Rτ− − Rσ in Steps 2 and 3 to a result for Lτ − Lσ by comparing the laws of L and R on
[σ, τ ] using a crude approximation argument (Lemma 4.5 below). The existing literature on
Lévy processes is not really helpful here because the time σ is neither a stopping time nor a
measurable function of a single Lévy process.

4.1. Showing that Lτ − Lσ stochastically dominates Rτ− − Rσ . We now begin with the
first step of the proof, which is summarized in the following proposition.

PROPOSITION 4.2. The random variable Lτ − Lσ stochastically dominates Rτ− − Rσ ,
that is,

E
(
g(Lτ − Lσ )

) ≥ E
(
g(Rτ− − Rσ )

)
for all nondecreasing functions g.

To prove Proposition 4.2, we want to characterize the regular conditional distributions of
L and R on [σ, τ ] given that τ − σ = t and Rσ + 1 = r . Intuitively, we should get (up to
vertical translation) a pair of Lévy processes started at zero and conditioned to stay positive
until time t , with the second process jumping below −r at time t . In the proof that follows,
we will precisely define this laws of these two processes, and show that the law of the second
process is equal to the law of the first process weighted by a decreasing function of its value
at time t (Lemma 4.5). By a general probability result (Lemma 4.6), this property implies
that the first process dominates the second, which is exactly the result we want to prove.

Though this heuristic is quite simple, rigorously justifying it requires some technical work;
see Remark 4.1 above. Before delving into the proofs of Lemmas 4.5 and 4.6, which will
together imply Proposition 4.2, we introduce some definitions and results from the literature
that we will use in the proofs of these two lemmas.

First, we will use a discrete approximation of (L,R), so we recall the following conse-
quence of the stable functional central limit theorem. Let {Xj }j∈N be an i.i.d. sequence of
centered random variables with laws supported on {1} ∪ {−m : m ∈ N} such that

(4) P(X1 = 1) = 1 − c0 and P(X1 ≤ −m) = c1m
−κ/4 for m ∈ N,

where the constants c0, c1 > 0 are chosen so that EX1 = 0, and let Sn = ∑n
i=1 Xi be the

associated heavy-tailed random walk. Then, for some constant C > 0 (recall Remark 2.2),
the rescaled walk

(5) W
(n)
t := Cn−4/κS�nt�

converges in distribution to L in the space of càdlàg functions D([0,∞),R) with respect to
the Skorohod topology (see, e.g., [25]).

Second, to analyze stochastic processes restricted to bounded intervals as random variables
with values in D([0,∞),R), we introduce the following convention: if X : [0,∞) → R is a
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càdlàg stochastic process and a < b are positive real numbers, then we define the process X

on the interval [a, b) as the process Y : [0,∞) → R with Yt = Xt+a for t ∈ [0, b − a) and
Yt = 0 for t ≥ b − a. Similarly, we define the process X on the interval [a, b] as the process
Y : [0,∞) →R with Yt = Xt+a for t ∈ [0, b − a] and Yt = Xb for t ≥ b − a.

Third, our proof of Lemma 4.5 below uses two approximation procedures: the discrete
approximations of Lévy processes by random walks given by (5), and an approximation of
the condition that the processes stay positive by a condition that they stay above −ε. To take
the necessary limits of the associated regular condition distributions, we will repeatedly use
the following elementary lemma.

LEMMA 4.3. Let (Xn,Yn) be a sequence of pairs of random variables taking values
in a product of separable metric spaces �X × �Y and let (X,Y ) be another such pair of
random variables such that (Xn,Yn) → (X,Y ) in law. Suppose further that there is a family
of probability measures {Py : y ∈ �Y } on �X , indexed by �Y , such that for each bounded
continuous function f : �X →R,

(6)
(
E

[
f (Xn) | Yn

]
, Yn

) → (
EPY

(f ), Y
)

in law.

Then PY is the regular conditional law of X given Y .

PROOF. Let g : �Y → R be a bounded continuous function. Then for each bounded
continuous function f : �X →R,

E
[
f (X)g(Y )

] = lim
n→∞E

[
f (Xn)g(Yn)

] (
since (Xn,Yn) → (X,Y ) in law

)
= lim

n→∞E
[
E

[
f (Xn) | Yn

]
g(Yn)

]
= E

[
EPY

(f )g(Y )
]

(by (6)).

By the functional monotone class theorem, this implies that E[F(X,Y )] = E[EPY
(F (·, Y ))]

for every bounded Borel-measurable function F on �X × �Y . Thus the statement of the
lemma holds. �

Lemma 4.3 and its proof are essentially identical to those of [21], Lemma 5.10, except
that the statement of [21], Lemma 5.10, is not quite correct since it only requires E[f (Xn) |
Yn] → EPY

(f ) in law instead of (6) (all of the uses of the lemma in [21], however, are in
situations where (6) is satisfied). We thank an anonymous referee for pointing out this error.

Finally, in order to take the ε → 0 limit of the processes conditioned to stay above −ε,
we will need to know that the law of a Lévy process on [0, t) started at ε and conditioned to
stay positive on [0, t) converges to a limit (in the Skorohod topology) as ε → 0. This is the
content of the following lemma, which appears as Lemma 4 in [11].

LEMMA 4.4. The law of a Lévy process on [0, t) started at ε and conditioned to stay
positive on [0, t) converges to a limit L+

·|t (in the Skorohod topology) as ε → 0; we call this
limiting process the meander with length t .

We can now characterize precisely regular conditional distributions of L and R on [σ, τ ]
given that τ − σ = t and Rσ + 1 = r .

LEMMA 4.5. The regular conditional distributions of Lσ+· − Lσ and Rσ+· − Rσ on
[0, τ −σ) given {τ −σ = t}∩ {Rσ +1 = r} are given, respectively, by the law of the meander
L+

·|t and the law of the meander L+
·|t weighted by

(7)
(L+

t−|t + r)−κ/4

E((L+
t−|t + r)−κ/4)

.
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PROOF. Let L(n) and R(n) be independent copies of the rescaled walk W(n) of (5). Also,
for fixed r, ε > 0, let L(n,r,ε) and R(n,r,ε) be obtained from the independent processes L(n) +ε

and R(n) +ε by conditioning both processes to stay positive until the first time τ (n,r,ε) that the
process R(n,r,ε) hits the level −r . We define the processes L(r,ε) and R(r,ε) and the stopping
time τ (r,ε) analogously with (L,R) in place of (L(n),R(n)). Since we are conditioning on a
positive probability event,

(8)
(
L(n,r,ε),R(n,r,ε), τ (n,r,ε)) L−→ (

L(r,ε),R(r,ε), τ (r,ε)).
By the choice of step distribution in (4) and Bayes’ rule,

(I) the regular conditional distribution of L(n,r,ε) on the interval [0, τ (n,r,ε) − 1/n) given
{τ (n,r,ε) = t}, weighted by

(9)
(
L

(n,r,ε)
t−1/n + r

)−κ/4
/E

((
L

(n,r,ε)
t−1/n + r

)−κ/4)
equals, for a.e. t (a.e. taken w.r.t. the law of τ (n,r,ε)),

(II) the regular conditional distribution of R(n,r,ε) on the interval [0, τ (n,r,ε) − 1/n) given
{τ (n,r,ε) = t}.
To prove the lemma, we would like to use this equality in distribution and take the limit as
n → ∞ and ε → 0. The n → ∞ limit is fairly straightforward. Consider the family {μt : t ∈
R} of probability measures on D([0,∞),R) with μt defined as the distribution of a Lévy
process started at ε and conditioned to stay positive until time t . It is easy to see that the joint
law of (L(n,r,ε),R(n,r,ε), τ (n,r,ε)) and the conditional law of L(n,r,ε) given τ (n,r,ε) tends to
(L(r,ε),R(r,ε), τ (r,ε),μτ(r,ε)). Thus, the joint law of τ (n,r,ε) and the conditional law of L(n,r,ε)

given τ (n,r,ε) weighted by (9) tends to μτ(r,ε) weighted by

(10)
(
L

(r,ε)

τ (r,ε)− + r
)−κ/4

/E
((

L
(r,ε)

τ (r,ε)− + r
)−κ/4)

.

Hence, by (8) and Lemma 4.3, (I) converges to

(III) the regular conditional distribution of L(r,ε) on the interval [0, τ (r,ε)) given {τ (r,ε) =
t}, weighted by

(11)
(
L

(r,ε)

t− + r
)−κ/4

/E
((

L
(r,ε)

t− + r
)−κ/4)

.

This implies that (III) also equals, for a.e. t , the weak limit of (II) as n → ∞. Hence,

(IV) the regular conditional distribution of R(r,ε) on the interval [0, τ (r,ε)) given {τ (r,ε) =
t}
exists and is equal in law to (III).

Next, we would like to take ε → 0. By Lemma 4.4, the regular conditional distribution of
L(r,ε) on [0, τ (r,ε)) given {τ (r,ε) = t} given by μt converges weakly as ε → 0 to the meander
L+

·|t with length t . By the equality of the laws (III) and (IV), Lemma 4.4 also implies that (IV)
converges weakly as ε → 0. Taking ε → 0 in (III) and (IV), we deduce that

(V) the law of L+
·|t , weighted by (7)

is equal to

(VI) the weak limit of (IV) as ε → 0.

So, to prove the lemma, it is enough to prove the following claim.
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CLAIM. The regular conditional distributions of Lσ+· − Lσ and Rσ+· − Rσ on [σ, τ)

given {τ − σ = t} ∩ {Rσ + 1 = r} are given, respectively, by the law of L+
·|t and (VI) with

r = 1 + Rσ .

Fix s, δ > 0. For (L,R) ∈ D([0, s + δ],R2), the regular conditional distribution of
(Lσ+δ+· −Lσ+δ,Rσ+δ+· −Rσ+δ) given that σ = s and (L,R)|[0,σ+δ] = (L,R) (when these
conditions are compatible) is the law of a pair of independent Lévy processes conditioned to
stay above Ls − Ls+δ and Rs − Rs+δ , respectively, until the first time the second process
jumps below −1 −Rs+δ . Hence, considering the processes L and R separately, we have the
following.

• The regular conditional distribution of Lσ+δ+· − Lσ+δ given {σ = s}, {τ = w}, and
{(L,R)|[0,σ+δ] = (L,R)} (when these conditions are compatible) is that of a Lévy process
started from 0 and conditioned to stay above Ls −Ls+δ until time w− s − δ. By Lévy scal-
ing, scaling the time parameter of this process by w−s

w−s−δ
and space by ( w−s

w−s−δ
)4/κ yields

the law of a Lévy process conditioned to stay above (Ls − Ls+δ)(
w−s

w−s−δ
)4/κ until time

w − s. By Lemma 4.4, this regular conditional law converges a.s. as δ → 0 (weakly, w.r.t.
the Skorokhod topology) to the law of a Lévy meander L+

·|w−s with length w − s. Obvi-
ously, (L,R)|[0,σ+δ] → (L,R)|[0,σ ] and Lσ+δ+· − Lσ+δ → Lσ+· − Lσ a.s. w.r.t. the Sko-
rokhod topology. By sending δ → 0 and applying Lemma 4.3, we deduce that the regular
conditional distribution of Lσ+· −Lσ given {σ = s}, {τ = w}, and {(L,R)|[0,σ ] = (L,R)}
is the law of the Lévy meander L+

·|w−s .
• The regular conditional distribution of Rσ+δ+· − Rσ+δ given {σ = s}, {τ = w}, and

{(L,R)|[0,σ+δ] = (L,R)} (when these conditions are compatible) is that of a Lévy process
conditioned to stay above Rs −Rs+δ until jumping below −1−Rs+δ at time w−s−δ. By
Lévy scaling, scaling the time parameter of this process by w−s

w−s−δ
and space by ( w−s

w−s−δ
)4/κ

yields the law of a Lévy process conditioned to stay above (Rs −Rs+δ)(
w−s

w−s−δ
)4/κ until

jumping below (−1 −Rs+δ)(
w−s

w−s−δ
)4/κ at time w − s.

Vertically translating by Rs+δ −Rs yields exactly (IV) with ε, r and t given by (Rs+δ −
Rs)(

w−s
w−s−δ

)4/κ , (1 +Rs)(
w−s

w−s−δ
)4/κ , and w − s, respectively.

Taking δ → 0 and applying Lemmas 4.3 and 4.4, we deduce that the regular conditional
distribution of Rσ+· − Rσ on [0,w − s) given (L,R)|[0,s], {σ = s}, and {τ = w} is given
by (VI) with r and t replaced by 1 + Rσ and w − s, respectively.

This proves the claim, and hence the lemma. �

The result of Proposition 4.2 is now a simple application of the following elementary
probability fact, originally due to Harris [23].

LEMMA 4.6 ([23]). Let X be a real-valued random variable, let f : R → R be a nonin-
creasing function with Ef (X) = 1, and let g :R →R be a nondecreasing function. Then

(12) E
(
f (X)g(X)

) ≤ Eg(X).

To deduce Proposition 4.2 from Lemma 4.6, we observe that Lemma 4.5 implies that
for nondecreasing g, the expectations of g(Rτ− − Rσ ) and g(Lτ− − Lσ ) with respect to
the regular conditional probability given {τ − σ = t} ∩ {Rσ + 1 = r} are equal to the left-
and right-hand sides of (12), respectively, with X = L+

·|t and f (x) = C(x + r)−κ/4 for C =
E((L+

t−|t + r)−κ/4).
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4.2. Characterizing the law of (L,R) run backwards from τ to ξ . Recall that ξ is the time
at which R attains its minimum on [0, τ ), equivalently the time of the last running minimum
of R before time τ . The result of Proposition 4.2 reduces the task of proving of Proposi-
tion 3.6 from showing that E log(Lτ − Lσ ) > 0 to showing that E log(Rτ− − Rσ ) > 0. The
latter is a more tractable quantity since the definition σ is, in some sense, more closely tied
to the process R. To analyze this random variable, we first apply the following proposition,
which follows immediately from known results in the Lévy process literature.

PROPOSITION 4.7. The regular conditional joint distribution of the processes {Lτ− −
L(τ−t)−}t∈[0,τ−ξ ] and {Rτ− − R(τ−t)−}t∈[0,τ−ξ ] given {Rτ− − Rξ = r} is equal to the law of
(L,R) stopped at the first time the process R hits level r .

PROOF. [8], Theorem 2, identifies the regular conditional distribution of {1 +
R(τ−t)−}t∈[0,τ ) given {1 + Rτ− = x} as that of a κ/4-stable Levy process with only posi-
tive jumps started at x and conditioned to stay positive, run until the last exit time of this
process from [0,1]. By [10], Theorem 5 (along with the remark just before Proposition 2 in
that paper), the regular conditional distribution of the latter process run until the (a.s. unique)
time at which it attains its minimal value, conditioned on its minimal value being equal to
y < x, is that of a κ/4-stable Levy process with only positive jumps started at x and run
until the first time when it hits y. Hence, the regular conditional law of {1 +R(τ−t)−}t∈[0,τ−ξ ]
given {1 + Rτ− = x} ∩ {1 + Rξ = y} is the same as the law of x − R run until the first time
when it hits y. This implies that the regular conditional law of {Rτ− − R(τ−t)−}t∈[0,τ ) given
{1 + Rτ− = x} ∩ {1 + Rξ = x − r} is the same as the law of R run until the first time when it
hits r . Averaging over the possible values of x and using that L is independent from R and
our conditioning depends only on R now gives the statement of the lemma. �

Proposition 4.7 immediately implies the following corollary.

COROLLARY 4.8. The regular conditional distribution of Rτ− −Rσ given {Rτ− −Rξ =
r} is equal to the law of the value of R at the time θr of the last simultaneous running supre-

mum of (L,R) before R hits the level r . In particular, since Rθr

d= rRθ1 by scaling,

(13) E log(Rτ− − Rσ ) = E log(Rτ− − Rξ) +E log(Rθ1).

4.3. Computing the expectations of log(Rτ− − Rξ) and log(Rθ1). To complete the proof
of Theorem 3.6, we compute the right-hand side of (13) and show it is nonnegative for κ ∈
(4, κ0]. We treat the two terms separately.

LEMMA 4.9. One has E log(Rτ− − Rξ) = π cot(πκ/4).

PROOF. The law of log(Rτ− − Rξ) is given explicitly in the literature: [14], Example 7,
gives the explicit joint density2

P(−1 − Rτ ∈ du,Rτ− + 1 ∈ dv,Rξ + 1 ∈ dy)

= κ

4

(
1 − κ

4

)
sin (πκ/4)

π

(1 − y)κ/4−2

(v + u)κ/4+1 dudv dy
(14)

2Note that we are applying the formula in [14] to the process −R, and setting x = 1. The positivity parameter ρ

associated to −R that appears in the formula in [14] is defined as P(−R1 ≥ 0). Since −R is a κ/4-stable process
with only positive jumps, ρ = 1 − 4/κ (page 218 of [6]). As a result, the power of the v − y term in the density
equals zero, and so that term vanishes from the expression.



CONNECTIVITY OF THE ADJACENCY GRAPH OF SLEκ BUBBLES 1513

for u > 0, y ∈ [0,1], and v ≥ y. Substituting v = y + w and integrating out u gives

P(Rτ− − Rξ ∈ dw,Rξ + 1 ∈ dy) =
(

1 − κ

4

)
sin (πκ/4)

π

(1 − y)κ/4−2

(y + w)κ/4 dw dy.

This last density has antiderivative sin (πκ/4)
π

(1−y)κ/4−1(w+y)1−κ/4

1+w
with respect to the y variable,

so

(15) P(Rτ− − Rξ ∈ dw) = −sin (πκ/4)

π

w1−κ/4

1 + w
dw.

Therefore, using the well-known identities for the Beta function B(p,q) (see, e.g., Sec-
tion 15.02 of [26])

(16) B(p,q) = �(p)�(q)

�(p + q)
=

∫ 1

0
xp−1(1 − x)q−1 dx, p, q > 0,

and

(17) B(p,1 − p) = π

sin(pπ)
, 0 < p < 1,

we get

E log(Rτ− − Rξ)

= −sin (πκ/4)

π

∫ ∞
0

log(w)
w1−κ/4

1 + w
dw

= sin (πκ/4)

π

∂

∂β

(∫ ∞
0

w1−β

1 + w
dw

)∣∣∣∣
β=κ/4

= sin (πκ/4)

π

∂

∂β

(∫ 1

0
(1 − v)1−βvβ−2 dv

)∣∣∣∣
β=κ/4

v = (1 + w)−1

= sin (πκ/4)

π

∂

∂β

(
B(2 − β,β − 1)

)∣∣∣∣
β=κ/4

by (16)

= − sin (πκ/4)
∂

∂β

(
1

sin(πβ)

)∣∣∣∣
β=κ/4

by (17)

= π cot(πκ/4).

(18)

�

We now turn to analyzing the second term in (13).

LEMMA 4.10. One has E logRθ1 = ψ(2−κ/4)−ψ(1), where ψ(x) = �′(x)
�(x)

denotes the
digamma function (as in Theorem 1.1).

We will first compute the law of Rθ1 .

LEMMA 4.11. The law of Rθ1 is given by the generalized arcsine distribution,

(19) P(Rθ1 ∈ dx) = sinπ(2 − κ/4)

π
x1−κ/4(1 − x)κ/4−2 dx.

PROOF. We will deduce the lemma from the arsine law for a certain stable subordinator.
Recall that θ1 is defined as the time of the last simultaneous running supremum of (L,R)

before R hits the level r . The simultaneous running suprema of (L,R) are easier to analyze
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by expressing the law as (L,R) in terms of a pair of correlated Brownian motions with a
particular subordination.

Suppose that (L̃, R̃) is a planar Brownian motion with var(L̃1) = var(R̃1) = 1
2 − p

2 and
cov(L̃1, R̃1) = p

2 , where p = − cos(4π/κ)/(1 − cos(4π/κ)). For times 0 < s < t , if L̃r > L̃s

and R̃r > R̃s for all r ∈ (s, t], then we say that s is an ancestor of t . A time t that does not
have an ancestor is called ancestor-free. The set of ancestor-free times is an uncountable set
and has zero Lebesgue measure by [45], Lemma 1.

Using standard Brownian motion techniques, it is shown in [16], Proposition 10.3, that we
can define a nondecreasing càdlàg process 
t which is adapted to the filtration of (L̃t , R̃t )

and which measures the local time for (L̃t , R̃t ) at the ancestor-free times. Moreover, if Tu =
inf{t ≥ 0 : 
t > u} is the right-continuous inverse of 
t , then the range of u �→ Tu is the set of
ancestor free times and the pair (L̃Tu, R̃Tu) has the same joint law as the pair of κ/4-stable
processes −(L,R) (which have only upward jumps), modulo a deterministic scaling factor
(see Remark 2.2).

In particular, the random variable Rθ1 has the same law as −R̃θ̃1
, where θ̃1 is the time

of the last simultaneous running infimum of the correlated planar Brownian motion (L̃, R̃)

before R̃ hits the level −1.
The set of values of −R̃ at the simultaneous running infima of (L̃, R̃) is clearly regener-

ative; by scale invariance, it has the law of a stable subordinator. We claim that the index of
this subordinator is 2 − κ/4. Once this is established, the arcsine law for subordinators [7],

Proposition 3.1, shows that the law of −R̃θ̃1

L= Rθ1 is given by the right side of (19), which
concludes the proof.

To determine the index of the above subordinator, it is enough to compute the a.s. Haus-
dorff dimension of its range. First, we recall the following definition.

DEFINITION 4.12. A π/2-cone time of an R2-valued process (X,Y ) is a time t for
which, for some choice of ε > 0, we have Xs > Xt and Ys > Yt for all s ∈ (t − ε, t). The
largest such interval (t − ε, t) is called a π/2-cone interval of (X,Y ).

The set R of times of the simultaneous running infima of (L̃, R̃) is precisely the set of
π/2-cone times of (L̃, R̃) with the property that 0 is contained in the corresponding cone
interval. Thus, [20], Theorem 1 (applied to a linear transformation of (L̃, R̃) chosen so that
the coordinates are independent) implies that the Hausdorff dimension of R is 1−κ/8 almost
surely. On the other hand, R̃(R) = S−1(R), where for r ≥ 0, Sr := inf{t > 0 : R̃t = −r}.
Since S is a 1/2-stable subordinator, [24], Theorem 4.1, implies that dim(R(R)) = 2 dimR =
2 − κ/4. Hence the set of values of −R̃ at the simultaneous running infima of (L̃, R̃) is an
index 2 − κ/4 subordinator. �

PROOF OF LEMMA 4.10. Using Lemma 4.11, we compute

E logRθ1 = 1

B(2 − κ/4, κ/4 − 1)

∫ 1

0
logx · x1−κ/4(1 − x)κ/4−2 dx by (17)

= 1

B(2 − κ/4, κ/4 − 1)

∫ 1

0

∂

∂β

(
xβ−1(1 − x)κ/4−2)∣∣

β=2−κ/4 dx

= 1

B(2 − κ/4, κ/4 − 1)

∂B(β, κ/4 − 1)

∂β

∣∣∣∣
β=2−κ/4

by (16)

(20)

= ∂ logB(β, κ/4 − 1)

∂β

∣∣∣∣
β=2−κ/4
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= ∂ log�(β)

∂β

∣∣∣∣
β=2−κ/4

− ∂ log�(β + κ/4 − 1)

∂β

∣∣∣∣
β=2−κ/4

by (16)

= ψ(2 − κ/4) − ψ(1). �

PROOF OF THEOREM 3.6. Plugging Lemmas 4.9 and 4.10 into (13) gives

E log(Rτ− − Rσ ) = E log(Rτ− − Rξ) +E log(Rθ1)

= π cot(πκ/4) + ψ(2 − κ/4) − ψ(1).

The latter is a monotonically decreasing function of κ , and equals zero for κ ≈ 5.6158. Com-
bining this with Proposition 4.2 proves Theorem 3.6. �

5. Proof of Theorem 3.7. To prove Theorem 3.7, we first characterize the limiting law
of L in the Skorohod topology as κ tends to 8.3 To do this, we first need to specify the exact
law of L. Recall from Remark 2.2 that we have thus far only specified the law of L up to a
multiplicative constant. Since changing this constant does not change the law of the random
variable log(supt∈M(Lt −Lσ(t))), we may assume without loss of generality that L is chosen
to have characteristic function

(21) EeiλLt = et(iλ)κ/4 = exp
(
t |λ|κ/4

[
cos

πκ

8
+ i sgn(λ) sin

πκ

8

])
,

so that

(22) EeλLt = etλκ/4

for λ ≥ 0 [5]. For this choice of L, we have the following convergence result.

PROPOSITION 5.1. The process L defined by (21) converges to
√

2B in the Skorohod
topology, where B is a standard Brownian motion.

PROOF. By the expression (21) for the characteristic function of Lt , one has Lt → √
2Bt

in law for each fixed t ≥ 0. The proposition therefore follows from a standard convergence
criterion for Lévy processes; see, for example, [28], Theorem 13.17 or Exercise 14.3. �

Proposition 5.1 allows us to show that supt∈M(Lt −Lσ(t)) converges to zero in distribution
as κ → 8, since the intervals [σ(t), t] are all degenerate in the κ → 8 limit by well-known
properties of Brownian motion. Formally, we have the following corollary.

COROLLARY 5.2. The random variable

max
t∈M

(
t − σ(t)

)
converges to zero in law as κ → ∞.

PROOF. By Proposition 5.1, the law of (L,R) converges as κ → 8 to (
√

2B1,
√

2B2),
where B1 and B2 are independent standard Brownian motions. By Skorohod’s representation
theorem, we can represent the distributions of (L,R) for κ ∈ (4,8) on the same probability
space so that this convergence occurs almost surely. Since a linear Brownian motion a.s.
enters (−∞,−1) immediately after hitting −1, we see that τ converges to a limit almost

3The random variables considered in this section (such as L, R, and τ ) are all defined for each κ ; however, to
avoid clutter, we will not indicate this dependence on κ in our notation.
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surely as κ → 8. Thus, if we assume for contradiction that maxt∈M(t − σ(t)) does not tend
to zero as κ → 8, we can choose a subsequence κn tending to 8 and, for each n, an element
tn in the set M corresponding to κ = κn, such that the intervals [σ(tn), tn] converge to an
interval [a, b] with a < b as n → ∞. By the almost sure convergence of the processes L

in the Skorohod topology, the continuity of the limiting process (
√

2B1,
√

2B2), and the
definition of σ(tn) (Notation 3.1) the interval [a, b] is a π

2 -cone interval for (
√

2B1,
√

2B2)

(Definition 4.12), which is a contradiction since an uncorrelated planar Brownian motion a.s.
does not have any π

2 -cone times [45], Theorem 1. �

Proposition 5.1 together with Corollary 5.2 implies that supt∈M(Lt − Lσ(t)) converges to
zero in distribution as κ → 8. Hence, for each fixed K > 0,

log
(

sup
t∈M

(Lt − Lσ(t))
)

∨ (−K) → −K

in distribution as κ → 8. So, to prove that the expectation of log(supt∈M(Lt − Lσ(t))) is
negative for κ sufficiently close to 8, it suffices to check the following uniform integrability
result.

LEMMA 5.3. For each fixed K > 0 and κ ′ ∈ (4,8), the set of random variables
maxs∈[0,τ ] log |Ls | ∨ (−K) for κ ∈ [κ ′,8) is uniformly integrable.

PROOF. To prove uniform integrability, it suffices to show that the expectation of

ϕ
(∣∣∣ max

s∈[0,τ ] log |Ls | ∨ (−K)
∣∣∣)

is bounded uniformly in κ ∈ [κ ′,8), where ϕ(x) = eqx for some q > 0. Proving this, in turn,
reduces to showing that the expectation of

max
s∈[0,τ ] |Ls |q

is bounded uniformly in κ ∈ [κ ′,8) for some q > 0. We will prove such a bound using mo-
ment bounds on L1 and τ .

First, simplifying equation (8.26) on page 292 of [37] for α = κ/4, β = −1 and X =
− cos(πκ/4)L1 yields4

E
(|L1|r) = �(1 − 4r

κ
)

�(1 − r)

(
− cos

(
πκ

8

))−r+4r/κ

.

The latter is bounded uniformly in κ ∈ [κ ′,8) for each fixed r < κ ′/4. As for τ , [38] derives
the following series representation for the density fτ of τ :

fτ (t) = 1

πt2−4/κ

∞∑
n=1

[
(−1)n−1 sin(4π/κ)

�(n − 4/κ)

�(nκ/4 − 1)

1

tn−1

− sin
(

4nπ

κ

)
�(1 + 4n/κ)

n!
1

t4(n+1)/κ−1

]
∀t > 0.

4The random variable X has characteristic function given by equation (8.8) on page 281 of [37] with c = 1;
comparing this characteristic function with that of L1 yields the correct scaling X = − cos(πκ/4)L1.
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Therefore, for t ≥ 1 and κ ∈ [κ ′,8),∣∣fτ (t)
∣∣ ≤ 1

πt2−4/κ

∞∑
n=1

[
�(n − 4/κ)

�(nκ/4 − 1)
+ �(1 + 4n/κ)

n!
]

≤ 1

πt2−4/κ

∞∑
n=1

[
(n − 1)!

�nκ ′/4 − 2�! + �4n/κ ′�!)
n!

]
≤ Cκ ′

t2−4/κ
.

Hence, for any choice of 0 < q < κ ′/4 − 1, the quantity E(τ 4q/κ) is bounded uniformly in
κ ∈ [κ ′,8). Thus, fixing 0 < q < κ ′/4 − 1 and 1 < r < κ ′/4, we have

E
(

max
s∈[0,τ ] |Ls |q

)
= E

(
τ 4q/κ)

E
(

max
s∈[0,1] |Ls |q

)
by scaling (since τ , L are independent)

= E
(
τ 4q/κ)

E
(

max
s∈[0,1] |Ls |r

)q/r

= E
(
τ 4q/κ)( r

1 − r

)q(
E

(|L1|r))q/r by Doob’s inequality

which is bounded uniformly in κ ∈ [κ ′,8). This completes the proof. �

6. Open problems. Consider the following three properties the adjacency graph of bub-
bles of the SLEκ curves η:

(I) The graph is a.s. connected, that is, there a.s. exists a finite path joining any pair of
bubbles.

(II) Almost surely, there exists a path of bubbles from any fixed bubble to ∞ which are
formed at increasing times (i.e., the path hits the bubbles in the order in which they are formed
by the curve and only finitely many bubbles in the path intersect any given compact subset of
H).

(III) There exists a (L,R)-Markovian path started at any stopping time ζ for (L,R) at
which η forms a bubble (Definition 2.7).

Property (III) is clearly stronger than (II); the proof of Lemma 2.8 in fact shows that (II) is
stronger than (I). In Theorem 2.9, we showed that (III) (and hence also (II) and (I)) hold for
κ ∈ (4, κ0], and in Theorem 2.10 we showed that (III) fails for κ sufficiently close to 8.

It is of interest to determine the exact set of values of κ ∈ (4,8) for which each of the
above three properties hold. As mentioned in the Introduction, our intuition suggests that it is
easier for the adjacency graph to be connected when κ is closer to 4. This means that for each
of the above three properties, there should exist a critical κ∗ ∈ [κ0,8] for which the property
holds for κ ∈ (4, κ∗) but fails for κ ∈ (κ∗,8).

For property (III), one might guess that κ∗ = 6, since this is the only “special” value of
κ in the range (κ0,8) and our proof of Theorem 2.9, which gives κ0 ≈ 5.6158, seems to be
reasonably close to optimal. But, we would not be surprised if this does not turn out to be
true. It would be somewhat odd if there exists values of κ for which (II) holds but (III) fails,
since this would mean that there exist paths to infinity in the adjacency graph but that such
paths cannot be found in a Markovian way. Hence κ∗ = 6 might also be a reasonable guess
for the critical value for property (II). For condition (I), we are not sure if κ∗ = 8 (i.e., the
graph is connected for all κ) or if κ∗ < 8; we would not be surprised either way. Our results
indicate that it might be difficult to prove connectedness for κ close to 8 (if this is indeed true)
since one would have to find a way of producing paths which is not Markovian with respect
to (L,R).
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