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Around 2008, Schramm conjectured that the critical probabilities for
Bernoulli bond percolation satisfy the following continuity property: If
(Gn)n≥1 is a sequence of transitive graphs converging locally to a transitive
graph G and lim supn→∞ pc(Gn) < 1, then pc(Gn) → pc(G) as n → ∞.
We verify this conjecture under the additional hypothesis that there is a uni-
form exponential lower bound on the volume growth of the graphs in ques-
tion. The result is new even in the case that the sequence of graphs is uni-
formly nonamenable.

In the unimodular case, this result is obtained as a corollary to the fol-
lowing theorem of independent interest: For every g > 1 and M < ∞, there
exist positive constants C = C(g,M) and δ = δ(g,M) such that if G is a
transitive unimodular graph with degree at most M and growth gr(G) :=
infr≥1 |B(o, r)|1/r ≥ g, then

Ppc

(|Ko| ≥ n
)≤ Cn−δ

for every n ≥ 1, where Ko is the cluster of the root vertex o. The proof of this
inequality makes use of new universal bounds on the probabilities of certain
two-arm events, which hold for every unimodular transitive graph.

1. Introduction. Let G = (V ,E) be an infinite, connected, locally finite graph, and let
ωp ∈ {0,1}E be Bernoulli-p bond percolation on G, that is, the random subgraph of G ob-
tained by either deleting or retaining each edge of G independently at random with retention
probability p ∈ [0,1]. We will be particularly interested in the case that G is transitive, that is,
that for any two vertices u, v ∈ V there is an automorphism of G mapping u to v. Connected
components of ωp are called clusters. The critical probability is defined to be

pc(G) := inf
{
p ∈ [0,1] : ωp has an infinite cluster almost surely

}
.

Many features of percolation at and near pc(G) are expected to depend only on the global,
large-scale properties of G. For example, it has recently been shown that a transitive graph
G has pc(G) < 1 (i.e., percolation on G undergoes a nontrivial phase transition) if and only
if G has superlinear volume growth [13], and it is conjectured that in this case ωpc does not
have any infinite clusters almost surely [8]. Moreover, it is conjectured that various features
of critical percolation on d-dimensional Euclidean lattices are described by universal critical
exponents that depend on the dimension d but not on the choice of d-dimensional lattice. For
detailed background on these questions and the progress that has been made on them, as well
as percolation more generally; see, for example, [17, 21, 26, 36].

In contrast to the predicted universal behaviour of percolation at pc, the value of pc is
highly lattice-dependent and is not determined by the large-scale properties of G. For ex-
ample, the square and triangular lattices have very similar large-scale geometry but have
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pc = 1/2 and pc = 2 sin(π/18) respectively [17], Section 3.1. Around 2008, Oded Schramm
conjectured that, subject to the global condition that pc is not too close to 1, the critical
probability is not merely undetermined by the global geometry of the graph, but is in fact
entirely determined by the local geometry of the graph [7], Conjecture 1.2. This conjecture
has since emerged as a central question in the study of percolation on transitive graphs, and
is the primary subject of this paper.

Let us now state this conjecture formally. A sequence of transitive graphs Gn is said to
converge locally to a transitive graph G if for every r ≥ 1 there exists N < ∞ such that for
every n ≥ N , every vertex vn of Gn, and every vertex v of G, there exists a graph isomor-
phism from the ball of radius r around vn in Gn to the ball of radius r around v in G sending
vn to v. In other words, Gn converges locally to G if the two graphs look the same within
divergently large balls around the root.

CONJECTURE 1.1 (Schramm). Let (Gn)n≥1 be a sequence of transitive graphs converg-
ing locally to a transitive graph G. If lim supn→∞ pc(Gn) < 1, then pc(Gn) → pc(G) as
n → ∞.

It may even be that the condition lim supn→∞ pc(Gn) < 1 can be replaced by the weaker
condition that pc(Gn) < 1 for all n sufficiently large.

In this paper, we verify the conjecture for graph sequences satisfying a uniform exponential
lower bound on their volume growth. The result is new even in the case of uniformly nona-
menable graphs sequences (i.e., for sequences satisfying lim supn→∞ ρ(Gn) < 1), which was
raised as a case of particular interest in [7]. In the unimodular case, our proof also yields a
quantitative estimate on the rate of convergence; see Corollary 5.1 and Remark 5.2.

THEOREM 1.2. Let (Gn)n≥1 be a sequence of transitive graphs converging locally to
a transitive graph G, and suppose that lim infn→∞ gr(Gn) > 1. Then pc(Gn) → pc(G) as
n → ∞.

Here, we define the growth of a transitive graph G to be gr(G) = limr→∞ |B(o, r)|1/r ,
where o is a vertex of G. The existence of this limit follows by submultiplicativity, and
is clearly independent of the choice of o by transitivity. A transitive graph G is said to
have exponential growth if gr(G) > 1. The spectral radius of a graph G is defined to be
ρ(G) = limn→∞ p2n(o, o)1/2n, where p2n(o, o) denotes the probability that a simple random
walk on G started at o is at o again at time 2n. Similarly to above, this limit exists by super-
multiplicativity and does not depend on the choice of root vertex. (This holds even without
transitivity; see [26], Proposition 6.6.) The graph G is said to be nonamenable if ρ(G) < 1
and amenable otherwise. Every transitive nonamenable graph has exponential growth, but the
converse does not hold. (In fact, we have the quantitative bound gr(G) ≥ ρ(G)−2; see [28],
Corollary 5.2.)

We now briefly survey previous work on Conjecture 1.1. Pete [31], Section 14.2, observed
that the lower semicontinuity of pc (i.e., the statement that lim infn→∞ pc(Gn) ≥ pc(G)

whenever the graphs (Gn)n≥1 are transitive and Gn → G locally) can easily be deduced
from the mean-field lower bound on the percolation probability at pc + ε [1, 11, 14].
Thus, to prove Conjecture 1.1 it suffices to establish the upper semicontinuity estimate
lim supn→∞ pc(Gn) ≤ pc(G) under the hypothesis that lim supn→∞ pc(Gn) < 1. An alter-
native proof of lower semicontinuity is given in [14], p. 4. In their seminal paper [20], Grim-
mett and Marstrand studied percolation on slabs of the form Z

k ×[0, n]d−k in Z
d , d ≥ 3, and

proved via a dynamical renormalization argument that

pc

(
Z

k × [0, n]d−k)−−−→
n→∞ pc

(
Z

d)
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whenever 2 ≤ k ≤ d . (Here, Zd and Z
k × [0, n]d−k are equipped with their usual hypercubic

graph structure.) This theorem is of fundamental importance in the study of supercritical
percolation in Z

d for d ≥ 3. Although not an instance of Conjecture 1.1 since the slabs Zk ×
[0, n]d−k are not transitive, the Grimmett–Marstrand theorem does also imply the weaker
statement that

(1) pc

(
Z

k × (Z/nZ)d−k)−−−→
n→∞ pc

(
Z

d)
whenever 2 ≤ k ≤ d , which is a special case of Conjecture 1.1. This result was recently
generalized by Martineau and Tassion [27], who proved Conjecture 1.1 in the special case
that Gn are all Cayley graphs of Abelian groups; In particular, this shows that (1) remains
true with respect to nonstandard choices of generating set. Closer to our setting, Benjamini,
Nachmias and Peres [7] proved that Conjecture 1.1 holds for uniformly nonamenable graph
sequences converging to a tree, while Song, Xiang and Zhu [34] showed that Conjecture
1.1 holds for uniformly nonamenable graph sequences in which every graph satisfies a
certain very strong spherical symmetry property (in both of these settings the hypothesis
lim supn→∞ pc(Gn) < 1 holds automatically since pc ≤ gr−1 ≤ ρ2 [22]). Related questions
of locality for other models such as self-avoiding walk [4, 18, 19] and the random-cluster
model [15] have also been studied.

The unimodular case of Theorem 1.2 will be deduced as an immediate corollary of the fol-
lowing theorem, which gives quantitative control on the tail of the volume of critical clusters
in transitive graphs of exponential growth and is of independent interest. (The nonunimod-
ular case is handled via a separate argument which invokes the results of [23].) The proof
of this theorem also yields a new proof that critical percolation on any transitive graph of
exponential growth has no infinite clusters. We write Pp for the law of ωp , write Kv for the
cluster of v in ωp , and write E(Kv) for the set of edges that touch Kv , that is, have at least
one endpoint in Kv . (By abuse of notation, we use Kv to denote both the relevant subgraph
of ωp and the set of vertices it contains. The precise meaning should be clear from context.)

THEOREM 1.3. For every g > 1 and M < ∞, there exist constants C = C(g,M) and
δ = δ(g,M) such that for every transitive unimodular graph G with deg(o) ≤ M and gr(G) ≥
g, the bound

(2) Pp

(∣∣E(Ko)
∣∣≥ n
)≤ Cn−δ

holds for every p ≤ pc and n ≥ 1.

REMARK 1.4. In order to apply Theorem 1.3 in the proof of Theorem 1.2, it is very
important that all the constants depend only on the local geometry of the graph (here this
dependence arises only through the degree) and the growth (which is the only aspect of the
global geometry that we are assuming control of).

Let us now discuss how Theorem 1.3 relates to previous results on critical percolation.
It is conjectured that percolation on any transitive graph of exponential growth should have
mean-field behaviour, so that in particular we should have that P(|Ko| ≥ n) � n−1/2 as we
do on trees and on high-dimensional lattices. However, this conjecture is very far away from
being proven, and even for nonamenable transitive graphs it was not previously known that
the volume of the critical cluster satisfied any polynomial tail bound. Even in several of the
special cases in which the conjecture has been proven to hold, the proofs do not give effective
control of the constants that arise and, therefore, cannot be used to prove locality [23, 24].
The one case in which it is known how to prove this conjecture in a sufficiently quantitative
way that locality can be deduced is under perturbative assumptions, that is, that the graph
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is not just nonamenable but either highly nonamenable [30, 32] or of high girth [29]. In
particular, it can be deduced from the techniques of [29, 30] that if Gn → G locally and
lim supn→∞ ρ(Gn) < 1/2 then pc(Gn) → pc(G).

In their seminal paper [6], Benjamini, Lyons, Peres and Schramm proved that critical per-
colation on any nonamenable unimodular transitive graph does not have any infinite clusters
a.s. However, their proof is ineffective in the sense that it cannot be used to establish any
explicit bounds on the tail of the volume of critical clusters. Later, Timár [35] proved that
critical percolation on any nonunimodular transitive graph does not have infinitely many in-
finite clusters a.s., again via an ineffective argument. More recently, we proved that critical
percolation on any transitive graph of exponential growth cannot have a unique infinite clus-
ter [22] a.s., which together with the aforementioned results of [6, 35] implied that critical
percolation on any transitive graph of exponential growth does not have any infinite clusters
a.s. The proof of [22] also established that the quantitative bound

(3) κp(n) := inf
{
τp(u, v) : d(u, v) ≤ n

}≤ gr(G)−n

holds for every p ≤ pc, where τp(u, v) denotes the probability that u and v are connected
in ωp . This bound plays an important role in the proofs of the main theorems of this paper.
However, the rest of the proof given in [22] that all critical clusters are finite is once again
ineffective and does not give any control of the tail of the volume of critical clusters. (The
inequality (3) does directly imply the special case of Theorem 1.2 in which the limit graph G

is amenable. The reader may find it an enlightening exercise to prove this.)
Proof sketch. To prove Theorem 1.3, we develop a general method of converting two-

point function bounds such as (3) into volume-tail bounds such as (2). To do this, we apply
a variation on the uniqueness proof of Aizenman, Kesten and Newman [2] to establish a
universal bound on the probability of the two-arm type event Se,n that the edge e is closed
and that its endpoints are in distinct clusters each of which touches at least n edges and at
least one of which is finite (Corollary 1.7). This bound holds for every unimodular transitive
graph and every p ∈ (0,1], and is discussed in detail in the next subsection. We then apply a
surgery argument using the Harris–FKG inequality and insertion-tolerance to get that

pk[Pp

(∣∣E(Ko)
∣∣≥ n
)2 − κp(k)

]≤ p

1 − p
sup
e∈E

Pp(Se,n)

for every 0 < p < pc and n, k ≥ 1. Theorem 1.3 then follows from (3) and Corollary 1.7 by
direct calculation.

REMARK 1.5. The proof of Theorem 1.3 yields the simple explicit bound

(4) Ppc

(∣∣E(Ko)
∣∣≥ n
)≤ √

2
(

66d

[
1

(1 − pc)n

]1/2)1/2α

≤ 5d1/4

(1 − gr−1)1/8 n−β,

where α = 1 − logpc(G)/ log gr(G) ≥ 2 and β = 1/4(1 + log(d − 1)/ log gr). With further
work, it is possible to use our methods to get an estimate of the form

Ppc

(∣∣E(Ko)
∣∣≥ n
)≤ n−1/(4α−2)+o(1);

see Remark 6.2. It seems that a new idea is required to improve the exponent any further than
this. Since pc ≤ gr−1 for every transitive graph, the best exponent that these bounds can ever
give is 1/6, and in general the exponent we obtain can be much worse than this.
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1.1. The two-ghost inequality. As discussed above, in the unimodular case, a central
input to the proofs of our main theorems is a universal bound on the probabilities of cer-
tain two arm-events that holds for every unimodular transitive graph. We call this bound
the two-ghost inequality. Our proof of this bound was inspired by the work of Aizenman,
Kesten and Newman [2], who used a similar method to prove that percolation on Z

d has at
most one infinite cluster almost surely. See [16] for a simplified exposition of their proof.
Roughly speaking, their proof uses an ingenious summation-exchange argument to rewrite
the probability of a certain two-arm event A in terms of an expectation roughly of the form
E[T −1ZT 1(T < ∞)1(B)], where (Zn)n≥0 is a martingale with bounded, i.i.d. increments,
T is a stopping time, and B is a certain one-arm event for the percolation configuration.
On the event B, the stopping time T must be large, and one can therefore easily bound this
expectation using, for example, Doob’s L2 maximal inequality to obtain that the probability
of the two-arm event is small as desired. (They phrase their argument somewhat differently
than this, using large-deviation estimates rather than martingale techniques, but the core idea
of their proof is as above.)

The proof of [2] also yields the following quantitative estimate for percolation on Z
d . Let

e be an edge of Zd and let An be the event that e is closed and that the two endpoints of e

are in distinct clusters each of which has diameter at least n. Then for every p ∈ (0,1) there
exists a constant Cd,p such that

(5) Pp(An) ≤ Cd,p

logn√
n

.

See [10] for a discussion of and improvement to this bound. Although it is possible to adapt
the Aizenman–Kesten–Newman argument to prove uniqueness on any amenable transitive
graph, the bound one obtains on Pp(An) becomes increasingly poor as the isoperimetric
inequalities satisfied by the graph become stronger, and we do not obtain any information
about percolation on nonamenable graphs.

In this paper, we prove a variation on (5) that applies universally to every unimodular
transitive graph, and improves on the bound (5) even in the case of Z

d . Aside from this
universality, the most significant differences between our inequality and (5) are as follows:
First, we work with two-arm events in which at least one of the two clusters is finite, so that in
particular our inequality does not directly imply uniqueness of the infinite cluster as (5) does.
Such a modification is of course necessary in order to obtain an inequality that is valid in the
nonamenable setting. (In fact, it is also possible to prove uniqueness using an extension of our
techniques, and this proof also yields interesting quantitative information about supercritical
percolation on amenable transitive graphs. See Remark 6.1 for a discussion.)

Second, rather than studying the diameter of clusters, we study their volume. This is done
somewhat indirectly by introducing a ghost field as in [1]. This modification allows us to
work directly in infinite volume rather than working in finite volume and taking limits as in
[2], and also leads to stronger results since the volume is an upper bound on the diameter.
In particular, we apply the mass-transport principle to carry out the summation-exchange
argument of [2] directly in infinite volume. This is where the assumption of unimodularity is
required.

We now introduce the ghost field and state the two-ghost inequality. Let G = (V ,E) be a
connected, locally finite graph, and let p ∈ (0,1) and h > 0. Let ωp ∈ {0,1}E be Bernoulli-p
bond percolation on G. Independently of ωp , let Gh ∈ {0,1}E be a random subset of E where
each edge e of E is included in Gh independently at random, with probability 1 − e−h of
being included. (It is more standard to put the ghosts on the vertices, but putting them on
the edges is convenient for the calculations we do here.) Following [1], we call Gh the ghost
field and call an edge green if it is included in Gh. We write Pp,h for the joint law of ωp and
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Gh, and define Te to be the event that e is closed and that the endpoints of e are in distinct
clusters, each of which touches some green edge, and at least one of which is finite.

THEOREM 1.6. Let G be a unimodular transitive graph of degree d . Then

(6) Pp,h(Te) ≤ 33 · d
[

1 − p

p
h

]1/2

for every e ∈ E, p ∈ (0,1] and h > 0.

The bound of Theorem 1.6 can easily be converted into a bound on a two-arm type event
that does not refer to the ghost field. Let Se,n be the event that e is closed and that the
endpoints of e are in distinct clusters, each of which touches at least n edges, and at least one
of which is finite.

COROLLARY 1.7. Let G be a unimodular transitive graph of degree d . Then

(7) Pp(Se,n) ≤ 66 · d
[

1 − p

pn

]1/2

for every e ∈ E, p ∈ (0,1] and n ≥ 1.

REMARK 1.8. The factor of d on the right of (6) and (7) can be replaced by the reciprocal
of the probability that an edge chosen uniformly at random from those incident to o is in the
same orbit under Aut(G) as e, and in particular can be removed entirely on edge-transitive
graphs such as Z

n. Further improvements to and variations on these bound are discussed in
Remark 6.1.

2. Unimodularity and nonunimodularity. We now briefly review the notions of uni-
modularity, nonunimodularity and the mass-transport principle, referring the reader to, for
example, [26], Chapter 8, for further background.

Let G = (V ,E) be a transitive graph, and let Aut(G) be the group of automorphisms of
G. We define the modular function � = �G : V 2 → (0,∞) to be

�(u,v) = |Stabv u|
|Stabu v| ,

where Stabv = {γ ∈ Aut(G) : γ v = v} is the stabilizer of v in Aut(G) and Stabv u = {γ u :
γ ∈ Stabv} is the orbit of u under Stabv . We say that G is unimodular if �(u,v) = 1 for
every u, v ∈ V , and nonunimodular otherwise. Every Cayley graph is unimodular, as is every
amenable transitive graph [33].

Let G be a unimodular transitive graph. The mass-transport principle states that if F :
V 2 → [0,∞] is diagonally-invariant in the sense that F(γ u, γ v) = F(u, v) for every u, v ∈
V , then

(8)
∑
v∈V

F (o, v) =∑
v∈V

F (v, o).

It will be convenient for us to use the following variation on the mass-transport principle.
Given a graph G = (V ,E), write E→ for the set of oriented edges of G, where an oriented
edge e is oriented from its tail e− to its head e+. Let G be a transitive graph, let o be an
arbitrarily chosen root vertex of G, and let η be chosen uniformly at random from the set
of oriented edges of G emanating from o. Then for every F : E→ × E→ → [0,∞] that is



1358 T. HUTCHCROFT

diagonally-invariant in the sense that F(γ e1, γ e2) = F(e1, e2) for every e1, e2 ∈ E→ and
γ ∈ Aut(G), we have that

(9) E

∑
e∈E→

F(η, e) = E

∑
e∈E→

F(e, η),

where the expectation is taken over the random root edge η. This equality is easily seen
to follow by applying (8) to the function F̃ : V 2 → [0,∞] defined by setting F̃ (u, v) =∑

e−
1 =u

∑
e−

2 =v F (e1, e2) for each u, v ∈ V . The equality (9) also holds for signed diagonally-
invariant functions F : E→ × E→ →R satisfying the integrability condition

(10) E

∑
e∈E→

∣∣F(η, e)
∣∣< ∞.

This can be seen by applying (9) separately to the positive and negative parts of F , defined
by F+(e1, e2) = 0 ∨ F(e1, e2) and F−(e1, e2) = 0 ∨ (−F(e1, e2)).

REMARK 2.1. The formulation of the mass-transport principle given in (9) holds more
generally for reversible random rooted graphs. Such a random rooted graph can be obtained
from a unimodular random rooted graph of finite expected degree by biasing by the degree.
See, for example, [3, 12] for background on these notions.

3. Proof of the two-ghost inequality. In this section, we prove Theorem 1.6 and Corol-
lary 1.7. Given a graph G, p ∈ [0,1], and a finite subgraph H of G, we write

hp(H) = p|∂H | − (1 − p)
∣∣E◦(H)

∣∣,
where ∂H denotes the set of (unoriented) edges of G that touch the vertex set of H but are
not included in H , and E◦(H) denotes the set of (unoriented) edges of G that are included in
H . We also write E(H) for the set of (unoriented) edges of G that touch the vertex set of H .

Let G be a connected, locally finite graph, and let o be a vertex of G. We write Pp,h

and Ep,h for probabilities and expectations taken with respect to the law of the percolation
configuration ωp , the independent ghost field Gh, and the independent choice of a uniformly
random oriented edge η emanating from o.

LEMMA 3.1. Let G be a connected, locally finite, unimodular transitive graph. Then the
inequality

Pp,h(Tη) ≤ 2

p
Ep,h

[ |hp(Ko)|
|E(Ko)| 1

(|Ko| < ∞ and E(Ko) ∩ Gh �= ∅
)]

holds for every p ∈ (0,1] and h > 0.

Note that for each edge e of G, the unoriented edge obtained by forgetting the orientation
of η has probability at least 1/deg(o) to be in the same Aut(G) orbit as e. Thus, Lemma 3.1
immediately implies that if G is unimodular then

(11) Pp,h(Te) ≤ 2 deg(o)

p
Ep,h

[ |hp(Ko)|
|E(Ko)| 1

(|Ko| < ∞ and E(Ko) ∩ Gh �=∅
)]

for every e ∈ E, p ∈ (0,1] and h > 0.

PROOF OF LEMMA 3.1. Let T ′
e be the event that the endpoints of e are in distinct finite

clusters each of which touches Gh, and let Ge be the event that there exists a finite cluster
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touching e and Gh. Observe that for each edge e of G we have the equality

1
(
T ′

e

)= 1
(
ω(e) = 0

) · #{finite clusters touching e and Gh}
− 1
({

ω(e) = 0
}∩ Ge

)
,

and hence

Pp,h

(
T ′

e

)= Ep,h

[
1
(
ω(e) = 0

) · #{finite clusters touching e and Gh}]
− Pp,h

({
ω(e) = 0

}∩ Ge

)
.

(12)

Let Fe be the event that every cluster touching e is finite. Observe that the event Fe ∩ Ge is
independent of the value of ω(e), and consequently that

Pp,h

({
ω(e) = 0

}∩ Fe ∩ Ge

)= 1 − p

p
Pp,h

({
ω(e) = 1

}∩ Fe ∩ Ge

)
.

= 1 − p

p
Pp,h

({
ω(e) = 1

}∩ Ge

)
.

(13)

Combining (12) and (13) yield that

Pp,h

(
T ′

e

)= Ep,h

[
1
(
ω(e) = 0

) · #{finite clusters touching e and Gh}]
− 1 − p

p
Pp,h

({
ω(e) = 1

}∩ Ge

)
(14)

− Pp,h

({
ω(e) = 0

}∩ Ge \ Fe

)
.

Finally, observe that {ω(e) = 0} ∩ Ge \ Fe and T ′
e are disjoint and that the events Te and

T ′
e ∪ ({ω(e) = 0} ∩ Ge \ Fe) coincide up to a null set, so that (14) implies that

Pp,h(Te) = Ep,h

[
1
(
ω(e) = 0

) · #{finite clusters touching e and Gh}]
(15)

− 1 − p

p
Pp,h

({
ω(e) = 1

}∩ Ge

)
.

We will now apply the assumption that G is unimodular. Define a mass-transport function
F : E→ × E→ →R by

F(e1, e2)

= Ep,h

∑⎧⎨
⎩

1(ω(e1) = 0) − 1−p
p

1(ω(e1) = 1)

2|E(K)| : K is a finite cluster of ω

touching e1, e2, and Gh

⎫⎬
⎭ ,

where we write
∑{x(i) : i ∈ I } =∑i∈I x(i). The factor of 2 accounts for the fact that each

edge in E(K) can be oriented in two directions. Note that the multiset of numbers being
summed over has size either 0, 1 or 2. Thus, we easily verify the integrability condition
E
∑

e∈E→ |F(η, e)| ≤ 2[1 + (1 − p)/p] < ∞, and applying the mass-transport principle (9)
we obtain that

Pp,h(Tη) = E

∑
e∈E→

F(η, e) = E

∑
e∈E→

F(e, η)

(16)

= 1

p
Ep,h

∑{ hp(K)

|E(K)| : K is a finite cluster of ω

touching η and Gh

}
,
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where the first equality follows from (15). For each vertex v of G, define Ov to be the event
that Kv is finite and touches Gh. We deduce immediately from (16) that

Pp,h(Tη) ≤ 1

p
Ep,h

∑{ |hp(K)|
|E(K)| : K is a finite cluster of ω

touching η and Gh

}

≤ 1

p
Ep,h

[ |hp(Kη−)|
|E(Kη−)| 1(Oη−) + |hp(Kη+)|

|E(Kη+)| 1(Oη+)

]

= 2

p
Ep,h

[ |hp(Ko)|
|E(Ko)| 1(Oo)

]

as claimed, where we have used transitivity in the final equality. �

PROOF OF THEOREM 1.6. In light of Lemma 3.1 and the estimate (11) that follows from
it, it suffices to prove that for every connected, locally finite graph G and every vertex v of
G, we have that

Ep,h

[ |hp(Kv)|
|E(Kv)| 1

(|Kv| < ∞, E(Kv) ∩ Gh �= ∅
)]

= Ep

[ |hp(Kv)|
|E(Kv)|

(
1 − e−h|E(Kv)|)1(|Kv| < ∞)]≤ 33

2

√
p(1 − p)h.

Consider the following procedure for exploring the cluster of v. Fix a well-ordering � of
the edges of G. At each stage of the exploration, we will have a set of vertices Un, a set of
revealed open edges On and a set of revealed closed edges Cn. We begin by setting U0 = {v}
and C0 = O0 = ∅. Let n ≥ 1. Given what has happened up to and including step n − 1 of
the exploration, we define (Un,On,Cn) as follows: If every edge touching Un−1 is included
in On−1 ∪ Cn−1, we set (Un,On,Cn) = (Un−1,On−1,Cn−1). Otherwise, we take En to be
the �-minimal element of the set of edges that touch Un−1 but are not in On−1 or Cn−1. If
ωp(En) = 1, we set On = On−1 ∪{En}, Cn = Cn−1, and set Un to be the union of Un with the
set of endpoints of En. Otherwise, ωp(En) = 0 and we set On = On−1, Cn = Cn−1 ∪ {En}
and Un = Un−1. Let (Fn)n≥0 be the filtration generated by this exploration process.

Let T be the first time n that every edge touching Un is included in On ∪ Cn, set-
ting T = ∞ if this never occurs. It is easily verified that (UT ,OT ,CT ,T ) is equal to
(Kv,E◦(Kv), ∂Kv, |E(Kv)|). Let (Zn)n≥0 be defined by Z0 = 0 and

Zn =
n∧T∑
i=1

[
(1 − p)1

(
ωp(Ei) = 1

)− p1
(
ωp(Ei) = 0

)]
.

Then we have that Zn = (1 − p)|On| − p|Cn| for every n ≤ T , and consequently that

Ep

[ |hp(Kv)|
|E(Kv)|

(
1 − e−h|E(Kv)|)1(|Kv| < ∞)]

= Ep

[ |ZT |
T

(
1 − e−hT )1(T < ∞)

]
.

(17)

We will control this expectation using the elementary bound

Ep

[ |ZT |
T

(
1 − e−hT )1(T < ∞)

]
(18)

≤∑
k≥0

1 − e−h2k

2k
Ep

[
max

2k≤n≤2k+1
|Zn|1(2k ≤ T ≤ 2k+1)],
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where we used the fact that (1 − e−hx)/x is a decreasing function of x > 0. The process
(Zn)n≥0 is a martingale with respect to (Fn)n≥1 and by orthogonality of martingale incre-
ments has

EpZ2
n =

n∑
i=1

Ep(Zi − Zi−1)
2 = p(1 − p)

n∑
i=1

Pp(T ≥ i)

= p(1 − p)Ep[T ∧ n] ≤ p(1 − p)n

for every n ≥ 0. Thus, we may apply Doob’s L2 maximal inequality to deduce that

Ep

[
max

2k≤n≤2k+1
Z2

n

]
≤ Ep

[
max

0≤n≤2k+1
Z2

n

]
≤ 4Ep

[
Z2

2k+1

]≤ 8p(1 − p)2k,

and hence by (18) that

Ep

[ |ZT |
T

(
1 − e−hT )1(T < ∞)

]
≤
√

8p(1 − p)
∑
k≥0

1 − e−h2k

2k
2k/2.

Next, we use the bound 1 − e−h2k ≤ h2k when k ≤ �log2(1/h)� and the bound 1 − e−h2k ≤ 1
when k ≥ �log2(1/h)� + 1 to obtain that

Ep

[ |ZT |
T

(
1 − e−hT )1(T < ∞)

]

≤
√

8p(1 − p)

[�log2(1/h)�∑
k=0

h2k/2 + ∑
k≥�log2(1/h)�+1

2−k/2

]

≤ (
√

2 + 1)
√

8p(1 − p)h√
2 − 1

≤ 33

2

√
p(1 − p)h,

where we used the bound (
√

2 + 1)
√

8/(
√

2− 1) = 16.485 . . . ≤ 33/2 to simplify the expres-
sion. In light of (17), the proof is complete. �

PROOF OF COROLLARY 1.7. Let De be the event that e+ and e− are in distinct clusters
at least one of which is finite. By positive association of the Bernoulli process Gh, we have
that

Pp,h(Te) ≥ Ep

[(
1 − e−h|E(Ke− )|)(1 − e−h|E(Ke+ )|)1(De)

]
≥ (1 − e−hn)2Pp

(
De ∩ {∣∣E(Ke−)

∣∣, ∣∣E(Ke+)
∣∣≥ n
})

= (1 − e−hn)2Pp(Se,n).

(Note that the first inequality is not an equality since E(Ke−) ∩ E(Ke+) �= ∅.) Applying
Theorem 1.6, it follows that if we set h = c/n for c > 0 then

Pp(Se,n) ≤ (1 − e−hn)−2Pp,h(Te) ≤ 33c1/2(1 − e−c)−2 deg(o)

[
1 − p

pn

]1/2

for every n ≥ 1 and c > 0. The claim follows since infc>0 c1/2(1 − e−c)−2 = 1.873 . . . ≤ 2.
�
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4. Proof of Theorem 1.3. We now apply Corollary 1.7 and the two-point function bound
(3) to prove Theorem 1.3.

PROOF OF THEOREM 1.3. Let G be a connected, locally finite graph, and let 0 < p <

pc(G). Let u, v be vertices of G, and let γ be a simple path of length k in G starting at u

and ending at v. Let γi denote the ith edge that is traversed by γ . Let ω be Bernoulli bond
percolation on G. For each 0 ≤ i ≤ k, let ωi be obtained from ω by setting

ωi(e) =
{

1, e ∈ {γj : 1 ≤ j ≤ i},
ω(e), e /∈ {γj : 1 ≤ j ≤ i}.

Let An(u, v) be the event that u and v are in distinct clusters of ω each of which touches at
least n edges. For each 1 ≤ i ≤ k, let Bn,i(u, v, γ ) be the event that u and v are in distinct
clusters of ωi−1 each of which touches at least n edges and that u and v are connected in ωi .
Since u, v are clearly connected in ωk and not connected in ω0 on the event An(u, v), and
since the clusters of u and v are larger in ωi than in ω0, we have that

(19) An(u, v) ⊆
k⋃

i=1

Bn,i(u, v, γ ).

Now, for each 1 ≤ i ≤ k and n ≥ 1 let Cn,i(γ ) be the event that the endpoints of γi are
in distinct clusters of ω each of which touches at least n edges. Observe that Cn,i(γ ) ⊇
Bn,i(u, v, γ )∩{ω(γj ) = 1 for every 1 ≤ j ≤ i − 1}. Since these two events are independent,
we deduce that

Pp

(
Cn,i(γ )

)≥ pi−1Pp

(
Bn,i(u, v, γ )

)
,

and hence by (19) that

Pp

(
An(u, v)

)≤ k∑
i=1

p−i+1Pp

(
Cn,i(γ )

)
.

On the other hand, since p < pc we have that Pp(Cn,i(γ )) ≤ supe∈E Pp(Se,n) for every
1 ≤ i ≤ k, and it follows that

(20) pkPp

(
An(u, v)

)≤ k∑
i=1

pk−i+1 sup
e∈E

Pp(Se,n) ≤ p

1 − p
sup
e∈E

Pp(Se,n)

for every 0 < p < pc(G) and every u, v ∈ V with d(u, v) ≤ k.
Now suppose that G is transitive, unimodular and has exponential volume growth. Let

Pp(n) = Pp(|E(Kv)| ≥ n), which does not depend on the choice of v by transitivity, and let
Qp(n) = supe∈E Pp(Se,n). For each u, v ∈ V we have the bound

Pp

(
An(u, v)

)≥ Pp

(|Ku| ≥ n, |Kv| ≥ n
)− τp(u, v) ≥ Pp(n)2 − τp(u, v),

where the second inequality follows by transitivity and the Harris–FKG inequality. Thus, if
we take u, v to be a pair of vertices with d(u, v) ≤ k minimizing τp(u, v) and take γ to be a
geodesic between u and v, we obtain that, by (3),

pk[Pp(n)2 − gr−k]≤ pk[Pp(n)2 − κp(k)
]≤ p

1 − p
Qp(n)

for every 0 < p < pc(G), n ≥ 1 and k ≥ 1. Setting k = �− log 1
2 Pp(n)2

log gr � gives gr−k ≤ 1
2Pp(n)2

and pk ≥ p[1
2Pp(n)2]− logp/ log gr and rearranging we obtain that

(21) Pp(n) ≤ √
2
[

1

1 − p
Qp(n)

]1/2αp
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for every 0 < p < pc(G) and n ≥ 1, where αp = 1 − logp/ log gr. Thus, it follows from (21)
and Corollary 1.7 that

Pp(n) ≤ √
2
(

66d

[
1

(1 − p)n

]1/2)1/2αp

.

Since Pp(n) is a continuous function of p for each n ≥ 1 (indeed, it depends on only finitely
many edges and is therefore a polynomial), we may take the limit as p ↑ pc to obtain that

Ppc(n) ≤ √
2
(

66d

[
1

(1 − pc)n

]1/2)1/2αpc ≤ 5d1/4

(1 − gr−1)1/8 n−1/4αpc

≤ 5d1/4

(1 − gr−1)1/8 n−β,

where β = 1/(4 + 4 log(d − 1)/ log gr). We have used that pc ≤ gr−1, and hence that αpc ≥ 2
in the first inequality and similarly that pc ≥ 1/(d − 1), and hence that β ≤ 1/4αpc in the
final inequality. �

5. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. The case in which all
the graphs G and (Gn)n≥1 are unimodular is an immediate consequence of the following
corollary of Theorem 1.3. Given two transitive graphs G1 and G2, we write R(G1,G2) for
the maximal radius R such that whenever o1 is a vertex of G1 and o2 is a vertex of G2, there
exists a graph isomorphism from the ball for radius R around o1 in G1 to the ball of radius R

around o2 in G2 sending o1 to o2.

COROLLARY 5.1. For every M < ∞ and g > 1, there exist positive constants C(M,g)

and δ(M,g) such that for every pair of unimodular transitive graphs G1 and G2 with degrees
at most M and gr(G1),gr(G2) ≥ g, we have that∣∣pc(G1) − pc(G2)

∣∣≤ CR(G1,G2)
−δ.

Our proof will apply the following mean-field lower bound: If G is a connected, locally
finite, transitive graph, o is arbitrarily chosen root vertex of G, and θG(p) denotes the proba-
bility that o is in an infinite cluster of ωp , then

(22) θG(p) ≥ p − pc

p(1 − pc)

for every pc < p ≤ 1. The first inequality of this form was proven under more restrictive
hypotheses by Chayes and Chayes [11], with a more general version proven by Aizenman
and Barsky [1]. The precise inequality (22) was proven by Duminil-Copin and Tassion [14];
it is a little stronger than the earlier results and also has a much simpler proof. (Note that
one can prove locality from Theorem 1.3 without using this bound, but would not then get a
quantitative estimate on the rate of convergence as we do here.)

PROOF. We may assume that R = R(G1,G2) ≥ 1, since the claim is trivial otherwise. In
this case, G1 and G2 must both have the same degree, which we denote by d ≤ M . Suppose
without loss of generality that pc(G1) > pc(G2). Let o1 and o2 be arbitrarily chosen root
vertices of G1 and G2, respectively. Let P

G1
p (n) be the probability that the cluster of o1

touches at least n edges. Observe that we can clearly couple the percolation configurations
on G1 and G2 so that if the cluster of o2 is infinite then the cluster of o1 must have diameter



1364 T. HUTCHCROFT

at least R, and must therefore contain at least R vertices and touch at least �d
2 R� edges. Thus,

by (22) and Theorem 1.3 we have that

p − pc(G2)

p(1 − pc(G2))
≤ θG2(p) ≤ P G1

p

(⌈
d

2
R

⌉)
≤ C′
[

2

dR

]δ

for every pc(G2) ≤ p ≤ 1, where C′ = C′(M,g) and δ(M,g) are the constants from Theo-
rem 1.3. We conclude by setting p = pc(G1) and rearranging. �

REMARK 5.2. Explicitly, we obtain that if p1 = pc(G1) ≥ pc(G2) = p2 then

|p1 − p2| ≤ p1(1 − p2)
√

2
(

66d

[
2

(1 − p1)dR

]1/2)1/2α

≤ 5d1/8p1

(1 − gr(G1)−1)1/8 R−β,

where α = 1 − logp1/ log gr(G1) and β = 1/4(1 + log(d − 1)/ log gr(G1)).

5.1. The nonunimodular case. It remains to treat the case in which some of the graphs
(Gn)n≥1 are nonunimodular. This will be done by applying the results of [23], which give
strong control of percolation on nonunimodular transitive graphs. In order to apply these
results to prove locality, we will need to establish some relevant continuity properties of the
modular function. We begin with some background on stationary random graphs, which we
will then apply to study the local structure of nonunimodular transitive graphs. Essentially,
the purpose of the following discussion will be to give an alternative definition of the modular
function, adapted from [5], that will make its continuity properties more apparent.

Recall that a rooted graph (g, x) is a connected, locally finite graph g together with a
choice of distinguished root vertex x. A graph isomorphism between two rooted graphs is a
rooted graph isomorphism if it preserves the root. Let G• denote the space of isomorphism
classes of rooted graphs. This space carries a natural topology, called the local topology,
which is induced by the metric

dloc
(
(g1, x1), (g2, x2)

)= R
(
(g1, x1), (g2, x2)

)−1
,

where, similarly to above, R is the maximum radius such that the balls of radius R around x1
and x2 in g1 and g2 respectively are isomorphic as rooted graphs. This is exactly the topology
with which our graph limits were taken with respect to in Conjecture 1.1 and Theorem 1.2.
Similarly, we write GR• for the space of rooted graphs (g, x) that are equipped with a labelling
m of their oriented edges by real numbers. (This notation is nonstandard.) The space GR• can
also be equipped with a natural variant of the local topology; see, for example, [3, 12] for
details. We call a random variable taking values in G• or GR• a random rooted graph or
random rooted oriented-edge-labelled graph as appropriate. We also define G•• to be the
space of (isomorphism classes of) doubly-rooted graphs, that is, graphs with a distinguished
ordered pair of root vertices, and define GR•• similarly. Again, these spaces carry natural
variants of the local topology. We will not be too careful distinguishing between (doubly)
rooted graphs and their isomorphism classes; the reader is referred to [3] for a more detailed
treatment of this subtlety.

Let (G,ρ) be a random rooted graph with law μ. We say that (G,ρ) is stationary if it
has the same distribution as (G,X1), where X1 is the endpoint of the random oriented edge
η that is chosen uniformly at random from the set of oriented edges emanating from ρ. In
particular, if G is transitive and o is an arbitrarily chosen root vertex of o then (G,o) is
a stationary random rooted graph. Given a stationary random graph (G,ρ) with law μ, let
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μ→ and μ← denote the laws of the random doubly-rooted graphs (G,ρ,X1) and (G,X1, ρ),
respectively. It is shown in [5] that if G has degrees bounded by M a.s., then the measures μ→
and μ← are absolutely continuous and that their Radon–Nikodym derivative dμ←

dμ→ satisfies

(23) M−1 ≤ dμ←
dμ→

(g, x, y) ≤ M

for μ←-a.e. doubly-rooted graph (g, x, y) ∈ G••. Moreover, it follows from [5], Lemmas 4.1
and 4.2, that for μ-a.e. (g, x) ∈ G•, every n ≥ 1 and every cycle u0 ∼ u1 ∼ · · · ∼ un = u0 in
g, we have that

(24)
n∏

i=0

dμ←
dμ→

(g,ui, ui+1) = 1.

Thus, we may define a function �μ(g,u, v) for μ-a.e. (g, x) ∈ G• and every two vertices u,
v of g by

(25) �μ(g,u, v) =
n∏

i=0

dμ←
dμ→

(g,ui, ui+1),

where u = u0 ∼ u1 ∼ · · · ∼ un = v is a path from u to v in g. The equality (24) implies that
the definition of �μ(g,u, v) is independent of the choice of path. We call �μ the modular
function of μ. It follows from [23], Lemma 2.1, that if μ puts all of its mass on a single de-
terministic transitive graph (G,o), then the modular function �μ coincides with the modular
function �G of the transitive graph G, defined in Section 2, in the sense that

�μ(g,u, v) = 1(g isomorphic to G)�G

(
φ(u),φ(v)

)
for μ-a.e. (g, x) and all vertices u, v of g, where φ is some isomorphism g → G. (This is
well defined as a function on G•• since the choice of φ does not affect the value obtained.)

Let (G,ρ) be a stationary random rooted graph with law μ. Then we can define a labelling
of the oriented edges of G by

m(e) = �μ

(
G,e−, e+),

which is well defined for every oriented edge e of G a.s. by [5], Lemma 4.1. Moreover, it is
easily verified that (G,ρ,m) is a stationary random rooted oriented-edge-labelled graph.

PROPOSITION 5.3. Suppose that ((Gn,ρn))n≥1 is a sequence of stationary random
rooted graphs with laws (μn)n≥1 converging in distribution to a stationary random rooted
graph (G,ρ) with law μ, and suppose that there exists a constant M such that all the graphs
(Gn)n≥1 and G have degrees bounded by M almost surely. Let mn and m be the oriented
edge-labellings of Gn and G that are defined in terms of the modular functions of μn and μ

as above. Then (Gn,ρn,mn) converges locally to (G,ρ,m).

PROOF. Let μ̃n be the law of (Gn,ρn,mn) for each n ≥ 1 and let μ̃ be the law of
(G,ρ,m). It follows from (23) and the bounded degree assumption that the sequence of
measures (μ̃n)n≥1 is tight, and since GR• is a Polish space [12], Theorem 2, there exists a
subsequence σ(n) and a measure μ′ such that μσ(n) → μ′ weakly as n → ∞. It suffices to
prove that μ′ = μ̃. Without loss of generality, we may assume that σ(n) = n. Let (G′, ρ′,m′)
a random variable with law μ′. It is clear that (G′, ρ′) has distribution μ. Thus, by (24), (25)
and [5], Lemma 4.1, to complete the proof it suffices to prove that if η′ is chosen uniformly
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from the set of oriented edges of G′ emanating from ρ′ and X′
1 is the other endpoint of η′

then

(26) m′(η′)= dμ←
dμ→
(
G′, ρ′,X′

1
)

almost surely. To this end, let F : G•• → R be continuous and bounded. For each n ≥ 1, let
ηn be chosen uniformly from the set of oriented edges of Gn emanating from ρn, and let X1,n

be its endpoint. Then by definition of the Radon–Nikodym derivative we have that

E
[
F(Gn,X1,n, ρn)

]= E

[
F(Gn,ρn,X1,n)

dμn,←
dμn,→

(Gn,ρn,X1,n)

]

= E
[
F(Gn,ρn,X1,n)mn(ηn)

]
for every n ≥ 1, and taking n → ∞ we obtain that, since (Gn,ρn,mn) converges weakly to
(G′, ρ′,m′),

E
[
F
(
G′,X′

1, ρ
′)]= E

[
F
(
G′, ρ′,X′

1
)
m′(η′)].

Since F was arbitrary this implies (26), completing the proof. �

Now suppose that G is a transitive graph. Then it follows from the definition of the modular
function given in Section 2 that if G has degree d then

�G(u, v) ∈
{
a

b
: a, b ∈ {1,2, . . . , d}

}

for every every pair of neighbouring vertices u, v in G. Since this set is finite, Proposition 5.3
has the following immediate corollary.

COROLLARY 5.4. Let (Gn)n≥1 be a sequence of transitive graphs converging locally to
a transitive graph G and let (on)n≥1 and o be arbitrarily chosen root vertices of (Gn)n≥1 and
G, respectively. Then for every r ≥ 1 there exists N < ∞ such that for every n ≥ N , there
exists an isomorphism φn from the ball of radius r around on in Gn to the ball of radius r

around o in G that sends on to o and satisfies

(27) �Gn(u, v) = �G

(
φn(u),φn(v)

)
for every u, v in the ball of radius r around on in Gn.

Note that this property is not at all obvious from the algebraic definition of � given in Sec-
tion 2. A further immediate corollary is as follows, which implies that the set of unimodular
transitive graphs is both closed and open as a subset of the space of all transitive graphs.

COROLLARY 5.5. Let (Gn)n≥1 be a sequence of transitive graphs converging locally to
a transitive graph G. If Gn is unimodular for infinitely many n, then G is unimodular, while
if Gn is nonunimodular for infinitely many n then G is nonunimodular.

We now combine Corollary 5.4 with the results of [23] to prove the following theorem.

THEOREM 5.6. Let (Gn)n≥1 be a sequence of transitive graphs converging locally to a
nonunimodular transitive graph G. Then pc(Gn) → pc(G) as n → ∞.
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We begin by recalling the relevant results from [23]. Let G be a nonunimodular transitive
graph with modular function �. For each t ∈ R, we define the upper half-space Ht = {v ∈
V : log�(o, v) ≥ t}. For each t ≥ 0, let

Ap(t) = AG
p (t) := Pp(o

H0←→ Ht)

be the probability that o is connected to Ht by an open path using only edges both endpoints of
which are contained in H0. Similarly, for each t ≥ 0 and r ≥ 0 let AG

p (t, r) be the probability
that o is connected to Ht by an open path of length at most r using only edges both endpoints
of which are contained in H0. The proof of [23], Lemma 5.3, yields that Ap(t) satisfies the
super-multiplicative inequality Ap(t +s) ≥ Ap(t)Ap(s) for every t, s ≥ 0. Applying Fekete’s
lemma, it follows that the limit

αp(G) := − lim
t→∞

1

t
logAp(t) = − sup

t≥1

1

t
logAp(t)

is well defined. (We caution the reader not to confuse this use of the letter α with the notation
used in Remarks 1.5 and 5.2.) It follows from [23], Theorem 1.8 and Corollary 5.12, that
αpc(G) = 1 for every transitive nonunimodular graph G, so that in particular

(28) Ap(t) ≤ e−t for every p ≤ pc and t ≥ 0.

(In [23], the more complicated quasi-transitive case is treated; both the proof and the bounds
obtained can be simplified substantially in the transitive case.) Moreover, it follows from [17],
Theorem 2.38, that αp(G) is a strictly decreasing function of p when it is positive.

PROOF OF THEOREM 5.6. As discussed in the Introduction, the estimate
lim infn→∞ pc(Gn) ≥ pc(G) follows from general considerations (see [14], p. 4 and [31],
Section 14.2), and so it suffices to prove that lim supn→∞ pc(Gn) ≤ pc(G). It follows from
Corollary 5.5 that Gn is nonunimodular for every sufficiently large n, and so we may sup-
pose without loss of generality that Gn is nonunimodular for every n ≥ 1. It follows from
Corollary 5.4 that limn→∞ A

Gn
p (t, r) = AG

p (t, r) for every fixed p ∈ [0,1] and t, r ≥ 0, and
we deduce that

lim sup
n→∞

AGn
p (t) = lim sup

n→∞
sup
r≥1

AGn
p (t, r) ≥ sup

r≥1
lim sup
n→∞

AGn
p (t, r)

= sup
r≥1

AG
p (t, r) = AG

p (t)

for every p ∈ [0,1] and t ≥ 0. Thus, we obtain that

lim inf
n→∞ αp(Gn) = − lim sup

n→∞
sup
t≥1

1

t
logAGn

p (t)

≤ − sup
t≥1

lim sup
n→∞

1

t
logAGn

p (t) ≤ − sup
t≥1

1

t
logAG

p (t) = αp(G).

If p > pc(G), then αp(G) < 1 as discussed above, so that αp(Gn) < 1 for infinitely many n.
Thus, it follows from the results of [23] that p ≥ lim supn→∞ pc(Gn) as required. �

PROOF OF THEOREM 1.2. This is an immediate consequence of Corollaries 5.1, 5.5 and
Theorem 5.6. �
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6. Closing remarks.

REMARK 6.1. Various improvements to the inequalities of Theorem 1.6 and Corol-
lary 1.7 are possible, which we discuss briefly now.

1. The proof of Theorem 1.6 and Corollary 1.7 also applies mutatis mutandis to reversible
random rooted graphs; see, for example, [3, 5, 12] for introductions to this notion. Running
the proof in this setting, we obtain that if (G,ρ) is a reversible random rooted graph and η is
chosen uniformly at random from the set of oriented edges of G emanating from ρ, then

(29) Pp,h(Tη) ≤ 33
[

1 − p

p
h

]1/2
and Pp(Sη,n) ≤ 66

[
1 − p

pn

]1/2

for every p ∈ (0,1], h > 0, and n ≥ 1. Similar results can be deduced for unimodular random
rooted graphs of finite expected degree by applying the usual dictionary to translate between
unimodularity and reversibility; see, for example, [5]. In particular, one can apply these re-
sults to obtain analogues of Theorem 1.6 and Corollary 1.7 for the random cluster model,
which can be viewed as Bernoulli bond percolation in a random environment. We plan to
apply these bounds in forthcoming work.

2. When G is an amenable transitive graph, one can apply a standard exhaustion argument
to remove the condition that the clusters are finite from Theorem 1.6 and Corollary 1.7, so
that we obtain a new proof of uniqueness from our methods that gives better quantitative
control of two-arm events than the classical proofs of [2, 9]. Indeed, since G is amenable
there exists a sequence of a.s. finite reversible random rooted graphs (Gn,ρn)n≥1 that are
subgraphs of G and that almost surely converge to G locally as n → ∞. (To construct such a
sequence, simply take a Følner sequence for G and choose a random root from each Følner set
according to the stationary measure on the set.) Applying (29) to each of the graphs (Gn,ρn)

and then sending n → ∞, one obtains that percolation on G satisfies

(30) Pp,h

(
T ∞

η

)≤ 33
[

1 − p

p
h

]1/2
and Pp

(
S ∞

η,n

)≤ 66
[

1 − p

pn

]1/2

for every p ∈ (0,1], h > 0 and n ≥ 1, where T ∞
e and S ∞

e,n denote the events that e is closed
and that the endpoints of e are in distinct (not necessarily finite) clusters each of which either
touches some green edge or touches at least n edges, respectively. Similar inequalities hold
for invariantly amenable unimodular random rooted graphs of finite expected degree.

Note that is is crucially important that the graphs (Gn)n≥1 are subgraphs of G for this
argument to work. This allows us to couple percolation on each of the graphs (Gn,ρn) with
percolation on (G,ρ) in such a way that the clusters of the endpoints of ρ are distinct in G

if and only if they are distinct in Gn for every n ≥ 1; this property is needed to deduce (30)
when taking limits in (29). Indeed, one can also approximate, say, a 3-regular tree by finite
reversible random graphs, but the argument does not work in this case since the two clusters at
either end of an edge could merge in the finite graphs far away from the edge without merging
in the limiting tree. Of course, we also know that the argument cannot work in this setting
since we have infinitely many infinite clusters on the 3-regular tree when p > pc = 1/2.

3. If one assumes that G is unimodular and that Ppc(|E(Ko)| ≥ n) ≤ C1n
−γ for some

γ < 1/2 and C1 < ∞, then one can improve upon (7) to obtain that

(31) Ppc,h(Te) ≤ C2h
γ+1/2 and Ppc(Se,n) ≤ C2n

−γ−1/2

for some constant C2 and every h > 0 and n ≥ 1. This improves substantially on the bound
that one obtains from the BK inequality, which gives Ppc(Se,n) ≤ C2

1n−2γ . To obtain such
an improved bound, first note that in this case one can bound Epc [T ∧ n] ≤ C3n

1−γ for some
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constant C3 instead of using the trivial bound Epc [T ∧ n] ≤ n. Applying Cauchy–Schwarz,
we obtain that

∑
k≥0

1 − e−h2k

2k
Epc

[
max

0≤n≤2k+1
|Zn|1(T ≥ 2k)]

≤ 2
√

pc(1 − pc)
∑
k≥0

1 − e−h2k

2k
Epc

[
T ∧ 2k+1]1/2Ppc

(
T ≥ 2k)1/2

≤ C4
∑
k≥0

1 − e−h2k

2(1+2γ )k/2

for some constant C4 and every h > 0. The rest of the proof proceeds similar to before.

REMARK 6.2. Applying the bound (31) in place of (7) in the proof of Theorem 1.3,
one can make iterative improvements to the exponent bound that the argument yields. By
applying this iterative procedure an arbitrarily large number of times, one obtains the bound

Ppc

(∣∣E(Ko)
∣∣≥ n
)≤ n−1/(4α−2)+o(1)

that was mentioned in Remark 1.5.

REMARK 6.3. Applying the results of [25] instead of those of [23], we obtain the fol-
lowing locality result for the self-avoiding walk connective constant.

THEOREM 6.4. Let (Gn)n≥1 be a sequence of transitive graphs converging locally to a
nonunimodular transitive graph G. Then μc(Gn) → μc(G) as n → ∞.

PROOF. The exponential rate of decay αw(z) defined in equation (2.4) of [25] plays
the role that αp played in the proof of Theorem 5.6. The equality αw(zc) = 1 follows from
equation (2.9) of [25], and is the direct analogue of the fact that αpc = 1 that we quoted from
[23]. Finally, the fact that αw(z) is strictly decreasing when it is positive is given in [25],
Lemma 2.4. With these facts in hand, the proof proceeds identically to that of Theorem 5.6.
(Again, the use of the letter α in this proof should not be confused with the notation for the
exponents appearing in Remarks 1.5 and 5.2.) �

See [18, 19] for further results regarding locality of the connective constant.
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