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In this paper, we study splittings of a Poisson point process which are
equivariant under a conservative transformation. We show that, if the Carte-
sian powers of this transformation are all ergodic, the only ergodic splitting
is the obvious one, that is, a collection of independent Poisson processes. We
apply this result to the case of a marked Poisson process: under the same
hypothesis, the marks are necessarily independent of the point process and
i.i.d. Under additional assumptions on the transformation, a further applica-
tion is derived, giving a full description of the structure of a random measure
invariant under the action of the transformation.

1. Introduction. Thinning and splitting are classical operations when studying point
processes. Thinning consists in removing points according to some rule, whereas the related
notion of splitting means decomposing the point process as the sum of several other point
processes. It is well known that thinning a Poisson point process by choosing to remove points
according to independent coin tosses yields a new Poisson process of lower (but proportional)
intensity. Moreover, this procedure gives rise to a splitting of the original Poisson process into
a sum of two independent Poisson processes.

In recent years, some new results on thinnings of the Poisson process have emerged. In
particular, it is shown in [2] that it is possible to deterministically choose points from a ho-
mogeneous Poisson point process on R to get another homogeneous Poisson process of lower
intensity. Moreover, it is possible to proceed in a translation equivariant way. This result has
been further refined in [8] by extending it to Rd and replacing translation equivariance by
isometry equivariance. Moreover, the remaining points were also shown to form a homoge-
neous Poisson point process.

The isometry or translation equivariance plays a key role here as Meyerovitch showed in
[14] that it is not possible to deterministically thin a Poisson point process in an equivariant
way with respect to a transformation which is conservative ergodic on the base space (the
translations of Rd yield dissipativity).

In the present paper, we are also interested in thinnings and splittings of Poisson pro-
cesses which are equivariant under some dynamics. The difference with [2, 8] is that we
consider thinnings/splittings which are equivariant with respect to a conservative transforma-
tion. Moreover, contrary to the above-mentioned result of [14], we allow additional random-
ness (yet keeping ergodicity) in the thinning/splitting procedure. We get the following result,
phrased in our terminology where equivariance and homogeneity are expressed through the
concepts of T -point processes and T -splittings (see Section 1.1 for precise definitions): If T is
an infinite measure preserving map with infinite ergodic index (i.e., all its Cartesian products
are ergodic), then any ergodic T -splitting of a Poisson T -point process yields independent
Poisson T -point processes (Theorem 2.6).
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In the second part of the paper, we derive some applications. In Section 3, we show that,
for T with infinite ergodic index, the only way to get an ergodic marked T -point process
out of a Poisson T -point process is to take i.i.d. marks, independent of the underlying pro-
cess (Theorem 3.1). Then we come back to the problem we raised in [9]. In that paper, we
gave conditions on T under which an ergodic T -point process with moments of all orders is
necessarily a cluster-Poisson process (see [3], p. 175), best described as an independent super-
position of shifted Poisson processes (a so-called SuShi). We extend this result in Section 4 to
general random measures (Proposition 4.2 and Theorem 4.3). This more general framework
allows to simplify and improve some disjointness results from [9] in the last section.

1.1. T -Random measures and T -point processes. Let X be a complete separable metric
space and A be its Borel σ -algebra. Define X̃ to be the space of boundedly finite measures
(also called locally finite measures) on (X,A), that is to say measures giving finite mass
to any bounded Borel subset of X. We refer to [12] for the topological properties of X̃.
In particular, X̃ can be turned into a complete separable metric space, that we equip with
its Borel σ -algebra Ã. Convergence of a sequence (ξn) to ξ in X̃ is characterized by the
convergence ∫

f dξn −−−→
n→∞

∫
f dξ

for all continuous function f on X with bounded support.
We denote by X∗ ⊂ X̃ the subspace of simple counting measures, that is, whose elements

are of the form

ξ = ∑
i∈I

δxi
,

where I is at most countable, xi �= xj whenever i �= j , and any bounded subset A ⊂ X con-
tains finitely many points of the family {xi}i . We define A∗ as the restriction of Ã to X∗.

Throughout the paper, we fix a boundedly finite and continuous measure μ on X with
μ(X) = ∞, and an invertible transformation T on X preserving μ. We set

Af := {
A ∈ A,0 < μ(A) < +∞}

.

For any measure ξ on X, we define T∗(ξ) as the pushforward measure of ξ by T : for any
A ∈ A,

T∗(ξ)(A) := ξ
(
T −1A

)
.

In particular, if ξ = ∑
i∈I δxi

, then T∗(ξ) = ∑
i∈I δT (xi).

As we already noticed in [9], the property of bounded finiteness may be lost by the action
of T . Nevertheless, if m is a σ -finite measure on X̃ which is concentrated on

⋂
n∈Z T −n∗ X̃,

it makes sense to consider the T∗-invariance of m. In this case, T∗(ξ) ∈ X̃ for m-almost all
ξ ∈ X̃, and (X̃, Ã,m,T∗) is an invertible measure preserving dynamical system.

The following definition generalizes the notion of T -point process introduced in [9] (which
is formally the same, just replacing X̃ by X∗).

DEFINITION 1.1. A T -random measure is a random variable N defined on some proba-
bility space (�,F ,P) with values in (X̃, Ã) such that:

• for any set A ∈ A, N(A) = 0 P-a-s. whenever μ(A) = 0;
• there exists a measure preserving invertible transformation S on (�,F ,P), such that for

any set A ∈A, N(A) ◦ S = N(T −1A).
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Thus, a T -random measure N implements a factor relationship between the dynamical
systems (�,F ,P, S) and (X̃, Ã,m,T∗), where m is the pushforward measure of P by N .
We say that N is ergodic whenever (X̃, Ã,m,T∗) is ergodic. In particular, N is ergodic as
soon as (�,F ,P, S) is itself ergodic.

The intensity of a T -random measure N is the T -invariant measure on X defined by the
formula A ∈ A 	→ E[N(A)]. It is absolutely continuous with respect to μ and if it is σ -finite,
it is a multiple of μ, by ergodicity of (X,A,μ,T ). In this case, we say that N is integrable.
More generally, the higher order moment measures can be defined as follows.

DEFINITION 1.2. Let n ≥ 1. A T -random measure N on (�,F ,P, S) is said to have
moments of order n if, for all bounded A ∈ A, E[(N(A))n] < +∞. In this case, the formula

MN
n (A1 × · · · × An) := E

[
N(A1) × · · · × N(An)

]
(A1, . . . ,An ∈ A) defines a boundedly finite T ×n-invariant measure MN

n on (Xn,A⊗n) called
the n-order moment measure.

A T -random measure with moments of order 2 is said to be square integrable.

A T -point process is a T -random measure taking values in X∗. In this case, for ω ∈ �,
we identify N(ω) with the corresponding set of points in X. The most important T -point
processes are Poisson point processes; let us recall their definition.

DEFINITION 1.3. A random variable N with values in (X∗,A∗) is a Poisson point pro-
cess of intensity μ if for any k ≥ 1, for any mutually disjoint sets A1, . . . ,Ak ∈ Af , the ran-
dom variables N(A1), . . . ,N(Ak) are independent and Poisson distributed with respective
parameters μ(A1), . . . ,μ(Ak).

Such a process always exists, and its distribution μ∗ on X∗ is uniquely determined by the
preceding conditions.

Since T preserves μ, one easily checks that T∗ preserves μ∗. And defining N on the
probability space (X∗,A∗,μ∗) as the identity map provides an example of a T -point process,
the underlying measure-preserving transformation being S = T∗ in this case.

DEFINITION 1.4. The probability-preserving dynamical system (X∗,A∗,μ∗, T∗) is
called the Poisson suspension over the base (X,A,μ,T ).

The basic result (see, e.g., [15]) about Poisson suspensions states that (X∗,A∗,μ∗, T∗) is
ergodic (and then weakly mixing) if and only if there is no T -invariant set in Af . In particular,
this is the case if (X,A,μ,T ) is ergodic and μ infinite.

We also recall the classical isometry formula that will be useful several times in this paper:
for f,g ∈ L1(μ) ∩ L2(μ),

(1)

Eμ∗
[(∫

X
f (x)N(dx) −

∫
X

f (x)μ(dx)

)
×

(∫
X

g(x)N(dx) −
∫
X

g(x)μ(dx)

)]
=

∫
X

f (x)g(x)μ(dx).

REMARK 1.5. The notion of T -random measure with intensity μ can be interpreted
in terms of quasifactors as introduced by Glasner and Meyerovitch. Glasner defined in [7] a
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quasifactor of a probability measure preserving system (X,A,μ,T ) as a probability measure
preserving system (X̃, Ã,m,T∗) where Em[N(A)] = μ(A). (Here, N is the random variable
defined by the identity on X̃, and in the case where μ is a probability measure, m is in fact
concentrated on the subset of probability measures on X.) Meyerovitch in [13] extended this
definition to the case where μ is infinite (but m is still a probability measure). Thus:

• Poisson suspensions appear as natural example of ergodic quasifactors.
• any T -random measure N with intensity μ on (�,F ,P, S) gives rise to the quasifactor

defined by m := N∗(P);
• any quasifactor (X̃, Ã,m,T∗) is associated to the T -random measure N := Id on the prob-

ability space (X̃, Ã,m,T∗).

In Section 4.2.3, we will consider yet another case, namely when m is an infinite measure,
and use the terminology ∞-quasifactor in this case.

1.2. Splittings.

DEFINITION 1.6. Let N be a T -point process defined on the dynamical system
(�,F,P, S). For 1 ≤ k ≤ ∞, a T -splitting of order k of N is a finite or countable family
of T -point processes {Ni}0≤i<k defined on (�,F,P, S) so that N = ∑

0≤i<k Ni .

We use the terminology “T -splitting” in the above definition to insist on the equivariance of
the splitting with respect to the underlying transformation T . In this paper, however, whenever
we deal with T -point processes, the splittings are always assumed to be T -splittings, and we
will omit the “T ” in the sequel.

The splitting is said to be ergodic if the joining generated by {Ni}0≤i<k is ergodic, that is if
the action of S on the factor sigma-algebra generated by {Ni}0≤i<k is ergodic. In the situation
N ′ ≤ N , the usual terminology considers N ′ as a thinning of N , and we get (N ′,N − N ′) as
a splitting of order 2.

A Poisson splitting of order k is a splitting such that {Ni}0≤i<k are independent Poisson
processes. (In this case, N itself has to be a Poisson T -point process.)

As we mentioned in the Introduction, under the assumption of conservativity and ergodic-
ity of T , Meyerovitch [14] proved that, in the canonical space (X∗,A∗,μ∗, T∗) of the Poisson
suspension, there exists no splitting of the canonical Poisson T -point process. But of course
a splitting can exist in a larger probability space (e.g., a product space, in which we can find
two independent Poisson T -point processes).

1.3. Properties of Cartesian powers of T . Let us end the Introduction by saying a few
words about some properties of the Cartesian products of the underlying infinite measure
preserving transformation that we will be dealing with.

It is well known, in the finite measure setting, that a weak mixing transformation has infi-
nite ergodic index (all its Cartesian powers are ergodic). Moreover, if it is not weak mixing
then its Cartesian square is already not ergodic. The situation is therefore pretty clear. In the
infinite measure case, however, the picture is definitely not as simple. It was first observed in
[11] that all intermediate situations may occur: For any k ≥ 1, there is a transformation with
first k Cartesian products ergodic whereas the k + 1 Cartesian product is not. The same au-
thors also give examples of infinite measure preserving transformations with infinite ergodic
index. All these examples fall into the Markov chain category.

Since then, as the zoo of infinite measure preserving transformations developed, various
examples of transformations having infinite ergodic index or not were built (see [1] where



1270 É. JANVRESSE, E. ROY AND T. DE LA RUE

the so-called infinite Chacon transformation—an infinite measure preserving version of the
classical Chacon transformation—is shown to have infinite ergodic index).

In the last part of the paper, we will assume a much stronger property of T , which can
be viewed as a strong version of the Radon minimal self-joinings property introduced by
Danilenko in [4], and roughly saying that the Cartesian powers of the transformation admit
as few invariant measures as possible (see Definition 4.1). An example of a transformation
enjoying this property, the nearly finite Chacon transformation, is described in [10].

2. Splitting of Poisson T -point processes. For each n ≥ 1, we denote by Pn the set of
all partitions of {1, . . . , n}. Given π ∈ Pn, we define a measure on Xn by

mπ(A1 × · · · × An) := ∏
P∈π

μ

(⋂
i∈P

Ai

)
.

For a given n, these measures are T ×n-invariant and mutually singular. The measure corre-
sponding to the trivial partition with a single atom is called the n-diagonal measure, and is
concentrated on Dn := {(x1, . . . , xn) ∈ Xn : x1 = · · · = xn}.

It is well known that the n-order moment measure of the Poisson process of intensity μ

takes the form ∑
π∈Pn

cπmπ

for positive coefficients cπ , π ∈ Pn. Moreover, if N is a Poisson process of intensity αμ,
then the n-order moment measure equals∑

π∈Pn

cπα#πmπ .

In the context of a T -point process, it turns out that the existence for each moment measure
of a decomposition as a linear combination of the measures mπ characterizes Poisson pro-
cesses. This is the object of the following theorem, whose proof is hidden in Theorem 3.2 in
[9]. Although the argument is almost word-for-word the same, we repeat the proof here since
the assumptions are far more general, and it would be cumbersome to explain the differences
without giving all the details.

THEOREM 2.1. Let (X,A,μ,T ) be an infinite measure preserving dynamical system
with no invariant set of positive finite measure. Let N be a T -point process with moments of
all orders defined on (�,F,P, S).

Then N is a Poisson process if and only if N is ergodic and for all n ≥ 1, there exist
nonnegative numbers απ such that

MN
n = ∑

π∈Pn

απmπ .

PROOF. Only one direction needs to be detailed.
We can assume that (�,F,P, S) is ergodic. For n = 1, we obtain the intensity of N as a

multiple of μ, say αμ for some α ≥ 0.
We first point out that for each n ≥ 1, the weight of the n-diagonal measure is α (this is

valid for any point process of intensity αμ). Indeed, using a set A ∈ Af , and ((A	
i )1≤i≤p	

)	≥1
a generating sequence of partitions of A, we get

p	∑
i=1

MN
n

(
A	

i × · · · × A	
i

) = E

[ p	∑
i=1

N
(
A	

i

) · · ·N(
A	

i

)]

−−−→
	→∞ E

[
N(A)

] = αμ(A) = αμ(A ∩ · · · ∩ A).
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On the other hand,
p	∑
i=1

MN
n

(
A	

i × · · · × A	
i

) = MN
n

( p	⊔
i=1

A	
i × · · · × A	

i

)

−−−→
	→∞ MN

n (Dn ∩ A × · · · × A).

Therefore, MN
n (Dn ∩ A × · · · × A) = αμ(A ∩ · · · ∩ A). Since the n-diagonal measure is the

only measure mπ charging Dn, this implies as claimed that the weight of the n-diagonal
measure is α.

We now want to prove by induction that, for all n ≥ 1, MN
n is the n-order moment measure

of a Poisson process of intensity αμ. The property is of course satisfied for n = 1. Let us
assume it is satisfied up to some n ≥ 1, and let A1, . . . ,An+1 be sets in Af . Pick a nonempty
subset K � {1, . . . , n + 1}. By the ergodic theorem, we get

(2)

1

	

	∑
k=1

E

[∏
i∈K

N(Ai)

( ∏
i∈Kc

N(Ai) ◦ Sk

)]

−−−→
	→∞ E

[∏
i∈K

N(Ai)

]
E

[ ∏
i∈Kc

N(Ai)

]

= MN
#K

(×
i∈K

Ai

)
MN

(n+1−#K)

( ×
i∈Kc

Ai

)
.

On the other hand,

1

	

	∑
k=1

E

[∏
i∈K

N(Ai)

( ∏
i∈Kc

N(Ai) ◦ Sk

)]

= 1

	

	∑
k=1

MN
n+1

(
T −εk(1)A1 × · · · × T −εk(n+1)An+1

)

= ∑
π∈Pn+1

απ

1

	

	∑
k=1

mπ

(
T −εk(1)A1 × · · · × T −εk(n+1)An+1

)
(3)

where εk(i) := 0 if i ∈ K , and εk(i) := k otherwise. Coming back to the definition of mπ , we
write

mπ

(
T −εk(1)A1 × · · · × T −εk(n+1)An+1

) = ∏
P∈π

μ

(⋂
i∈P

T −εk(i)Ai

)
.

Observe that, if K is a union of atoms of π , we have for any 1 ≤ k ≤ 	,

(4) mπ

(
T −εk(1)A1 × · · · × T −εk(n+1)An+1

) = mπ(A1 × · · · × An+1).

Otherwise, there exists an atom P ∈ π containing indices i ∈ K and j /∈ K , hence with
εk(i) = 0 and εk(j) = k. We get that for some constant C,

mπ

(
T −εk(1)A1 × · · · × T −εk(n+1)An+1

) ≤ Cμ
(
T −kAj ∩ Ai

)
.

But, since there is no T -invariant set of positive finite measure,

1

	

	∑
k=1

μ
(
T −kAj ∩ Ai

) −−−→
	→∞ 0.
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Let PK
n+1 be the set of partitions π ∈ Pn+1 where K is a union of atoms of π . The above

proves that, in the limit as 	 → ∞, the contribution in (3) of all partitions π ∈ Pn+1 \ PK
n+1

vanishes. Thus we get, using (2), (3) and (4),

MN
#K

(×
i∈K

Ai

)
MN

(n+1−#K)

( ×
i∈Kc

Ai

)
= ∑

π∈PK
n+1

απmπ(A1 × · · · × An+1).

Since ∅ �= K � {1, . . . , n + 1}, the decompositions of MN
#K and MN

(n+1−#K) only involve the
coefficients απ , π ∈ P1 ∪ · · · ∪ Pn. Using the mutual singularity of the measures on both
sides of the above equality, we see that all of the coefficients απ , π ∈ PK

n+1, are completely
determined by the coefficients corresponding to partitions in P1 ∪ · · · ∪ Pn. Moreover, the
above argument is valid in particular when N is the Poisson process of intensity αμ. By
letting K run through all strict subsets of {1, . . . , n + 1}, and using the induction hypothesis,
we identify all but one coefficients of the decomposition of MN

n+1 as those of the Poisson
point process of intensity αμ. The only coefficient that cannot be determined by this method
is the one associated to the trivial partition of {1, . . . , n + 1} into a single atom. But this
corresponds to the (n + 1)-diagonal measure, and we already know that this coefficient is α.

We have proved that the moment measures of any order of N are those of a Poisson point
process of intensity αμ. Lemma 3.1 in [9] ensures then that N is a Poisson point process of
intensity αμ. �

Observe that the conclusion of the proof fails if one does not assume the ergodicity of the
point process N : think of a mixture of two Poisson point processes with different intensities.

The action of T ×n on (Xn,A⊗n,mπ) is isomorphic to (X#π ,A⊗#π ,

μ⊗#π , T ×#π). It is therefore ergodic if we assume that T has infinite ergodic index. With
this assumption, we get the following easy consequence for a thinning of Poisson T -point
process.

PROPOSITION 2.2. Assume T has infinite ergodic index. Let N and N ′ be T -point pro-
cesses defined on the system (�,F,P, S) such that N is Poisson of intensity μ and N ′ ≤ N .
If N ′ is ergodic, then it is Poisson of intensity αμ for some 0 ≤ α ≤ 1.

PROOF. If T has infinite ergodic index, all the measures mπ , π ∈ Pn, n ≥ 1, are ergodic
with respect to T ×n, therefore, the formula

∑
π∈Pn

cπmπ is precisely the ergodic decompo-
sition of the moment measure MN

n of the Poisson process N , with respect to T ×n.
Now, as N ′ ≤ N , we get for each n ≥ 1, N ′ ⊗ · · · ⊗ N ′ ≤ N ⊗ · · · ⊗ N , and thus

MN ′
n = E[N ′ ⊗ · · · ⊗ N ′(·)] ≤ E[N ⊗ · · · ⊗ N(·)] = MN

n . We therefore obtain the ergodic
decomposition of MN ′

n in the form

MN ′
n = ∑

π∈Pn

απmπ

for some nonnegative numbers απ . We can now apply the preceding theorem to the ergodic
T -point process N ′ to get the result. �

EXAMPLE 2.3. Let us describe an example where the conclusion of the proposition fails.
Consider the so-called “homogeneous Poisson process,” that is, the classical Poisson process
on the real line with intensity equal to the Lebesgue measure. The base transformation is the
translation T : x 	→ x + 1 (in particular, the Poisson T -point process is ergodic). Now we can
form a thinning N ′ by keeping the points of N that are separated by at least κ > 0 from every
other point. It is easy to see that N ′ is an ergodic T -point process but obviously not a Poisson
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process. Here, the proposition does not apply; not really because T is not ergodic (in fact,
T can be embedded in an ergodic action of R), but because the Cartesian powers fail to be
ergodic (even if we consider the R-action).

For the proof of the next theorem, we shall need some definitions and the following lemma
which is a particular case of Lemma 2.6 in [9].

DEFINITION 2.4. We say that a T -point process N defined on (�,F ,P, S) is free if for
P-almost all ω, for all k ∈ Z∗, N(ω) ∩ N(Skω) = ∅.

Two T -point processes N1 and N2 defined on (�,F ,P, S) are said to be dissociated if,
for P-almost all ω, for all k ∈ Z, N1(ω) ∩ N2(S

kω) =∅.

Note that if N is a Poisson T -point process, then N is free (Proposition 2.7 in [9]).

LEMMA 2.5. Let N1, . . . ,Nn be n T -point processes defined on the ergodic system
(�,F ,P, S), having moments of all orders. Assume there exist a real number c > 0 and
some π ∈ Pn such that for any sets A1, . . . ,An in Af ,

E
[
N1(A1) · · ·Nn(An)

] ≥ cmπ(A1 × · · · × An).

Then, for any atom P ∈ π , any A ∈ Af ,

P

(
A ∩ ⋂

i∈P

Ni �= ∅

)
> 0.

In particular, for i, j ∈ P , the processes Ni and Nj are not dissociated.

THEOREM 2.6. If T has infinite ergodic index, then any ergodic splitting of a Poisson
T -point process is Poisson.

PROOF. We start with a splitting of order k < ∞ of a Poisson T -point process N defined
on the ergodic dynamical system (�,F ,P, S), that is, we have k T -point process N1, . . . ,Nk

so that N = N1 + · · · + Nk .
From Proposition 2.2, the Nj ’s are Poisson processes with respective intensities α1μ, . . . ,

αkμ such that α1 + · · · + αk = 1.
It remains to show the mutual independence of N1, . . . ,Nk . Let n1, . . . , nk be positive

numbers, n := n1 + · · · + nk , and let {Q1, . . . ,Qk} be the partition of {1, . . . , n} in subsets of
consecutive integers of respective size n1, . . . , nk . For any {Ai}1≤i≤n in Af , set

(5) σ(A1 × · · · × An) := E

[
k∏

j=1

∏
i∈Qj

Nj (Ai)

]
.

This defines a T ×n-invariant measure σ on (Xn,A⊗n), for which, as above, since for all
1 ≤ j ≤ k we have Nj ≤ N , σ ≤ MN

n . Hence σ has at most countably many ergodic compo-
nents, of the form mπ for some π ∈ Pn. Observe that the processes N1, . . . ,Nk are mutually
dissociated as, for all 1 ≤ j ≤ k, Nj ≤ N and N is free. Therefore, by Lemma 2.5, if the mea-
sure mπ appears in the ergodic decomposition of σ , then π refines the partition {Q1, . . . ,Qk}.
Hence, any ergodic component mπ of σ has the form

mπ(A1 × · · · × An) =
k∏

j=1

∏
P∈π,P⊂Qj

μ

(⋂
i∈P

Ai

)
=

k∏
j=1

νj

( ×
i∈Qj

Ai

)
,
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where each νj is a T ×nj -invariant measure. In particular, any ergodic component of σ is
invariant by the transformation (x1, . . . , xn) 	→ (y1, . . . , yn), where yi := T xi if i ∈ Qk , and
yi := xi otherwise. It follows that σ itself is invariant by this transformation, hence the ex-
pression defining σ(A1 × · · · × An) on the right-hand side of (5) is unchanged if we re-
place Nk(Ai) by Nk(T

−1Ai) for all i ∈ Qk simultaneously. Therefore, we can write for any
{Ai}1≤i≤n in Af and any L ≥ 1,

E

[
k∏

j=1

∏
i∈Qj

Nj (Ai)

]
= 1

L

∑
1≤	≤L

E

[(
k−1∏
j=1

∏
i∈Qj

Nj (Ai)

) ∏
i∈Qk

Nk

(
T −	Ai

)]

= E

[(
k−1∏
j=1

∏
i∈Qj

Nj (Ai)

)(
1

L

∑
1≤	≤L

∏
i∈Qk

Nk ◦ S	(Ai)

)]
.

By the ergodic theorem, this converges as L → ∞ to

E

[
k−1∏
j=1

∏
i∈Qj

Nj (Ai)

]
E

[ ∏
i∈Qk

Nk(Ai)

]
.

A straightforward induction on k then yields the equality

E

[
k∏

j=1

∏
i∈Qj

Nj (Ai)

]
=

k∏
j=1

E

[ ∏
i∈Qj

Nj (Ai)

]
,

and this is sufficient to obtain the independence between the Poisson processes.
The case k = ∞ is easily deduced from the finite order case. �

REMARK 2.7. For the conclusion of Theorem 2.6 to hold, it is in fact enough to assume
only that (with the notation of the proof) all but one of the T -point processes Nj are ergodic.
Indeed, we can then apply the proof in any ergodic component of the joining (N1, . . . ,Nk),
and see that in each of these ergodic components we have the same structure of independent
Poisson processes. A posteriori we see that there is only one ergodic component. In particu-
lar, with the assumptions of Proposition 2.2, we get that N ′ and (N − N ′) are independent
Poisson processes, and thus form a Poisson splitting. Moreover, if we remove the assumption
of ergodicity of N ′ in Proposition 2.2, we get that the ergodic components of (N ′,N − N ′)
are necessarily Poisson splittings.

3. Application to marked Poisson point processes. Here, we deal with so-called
marked point processes. Roughly speaking, a marked point process on X with marks in some
measurable space (K,K) is a point process on X whose points carry some information, a
mark, taking values in K . For a T -point process, we require the mark to have the shadowing
property, meaning that it follows the point when the dynamics on the point process is applied.
We thus consider a marked T -point process as a (T × Id)-point process on the bigger space
(X × K,A⊗K) with intensity measure μ̃ that projects on μ.

THEOREM 3.1. Let (X,A,μ,T ) be an infinite measure preserving dynamical system
with infinite ergodic index. Let N be an ergodic (T × Id)-point process on X × K . Assume
that the T -point process N0 : A 	→ N(A × K) is a Poisson point process with intensity μ.
Then N is a Poisson point process with intensity μ ⊗ ρ where ρ is some probability measure
on K .
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REMARK 3.2. It is well known that when a Poisson point process is independently en-
dowed with i.i.d. marks, then the resulting point process on the product space is a Poisson
process whose intensity is the product measure of the original intensity and the distribution
of the marks. The above result means that, for T with infinite ergodic index, the only way to
get an ergodic marked T -point process out of a Poisson T -point process is precisely to take
i.i.d. marks, independent of the underlying process.

PROOF OF THEOREM 3.1. Let us denote by μ̃ the intensity of N on X × K . Let E =⊔
i∈I Ai ×Bi ⊂ X ×K be a finite union of pairwise disjoint product sets of finite μ̃-measure.

Let (B̃j )j∈J be the finite partition of K into nonempty subsets generated by the sets Bi . For
each j ∈ J , denote by Ij the subset of i ∈ I such that B̃j ⊂ Bi , then observe that the sets Ai ,
i ∈ Ij are pairwise disjoint. Therefore, E can be also written as the disjoint union

E = ⊔
j∈J

⊔
i∈Ij

Ai × B̃j ,

and this refines the original partition of E into product sets Ai ×Bi . Since the ergodic T -point
processes N

B̃j
:= N(· × B̃j ), j ∈ J , form an ergodic splitting of N0, we get by Theorem 2.6

that they are independent Poisson T -point processes. Since for each j ∈ J the sets Ai , i ∈ Ij ,
are pairwise disjoint, the random variables N(Ai × B̃j ), j ∈ J , i ∈ Ij are independent Pois-
son random variables. Finally, the random variables N(Ai × Bi), i ∈ I are also independent
Poisson random variables. This is enough to prove that N is a Poisson point process.

To get the intensity, observe that, for each B ∈ K, N(· × B) is a thinning of N0 whose
intensity is μ. By ergodicity of (X,A,μ,T ), there exists 0 ≤ ρ(B) ≤ 1 such that ρ(B)μ

is the intensity of N(· × B). It is now clear that the map B 	→ ρ(B) defines a probability
measure on (K,K). Finally, μ̃ = μ ⊗ ρ. �

4. Extended SuShis: From simple point processes to general random measures. In
this section, we aim to extend the “rigidity” result obtained in [9] for simple point processes
to general random measures. The hypothesis on (X,A,μ,T ) will be the same as in [9] but
rephrased with the notation introduced earlier.

DEFINITION 4.1. We say that the infinite measure preserving system (X,A,μ,T ) has
the (P) property if, for each n ≥ 1 the following is true: whenever σ is a boundedly finite,
T ×n-invariant measure on Xn, with marginals absolutely continuous with respect to μ, then
σ is conservative, and its ergodic components are all of the form (T k1 × · · · × T kn)∗mπ for
some π ∈ Pn and integers k1, . . . , kn.

Note that the (P) property implies in particular that T has infinite ergodic index (other-
wise the ergodic components of some product measure μ⊗n would not satisfy the required
assumption).

Let X̃c ⊂ X̃ and X̃d ⊂ X̃ be respectively the spaces of continuous and discrete boundedly
finite measures on (X,A).

If N is an integrable T -random measure, we can write N as Nc + Nd where Nc ∈ X̃c

and Nd ∈ X̃d (both Nc and Nd can be obtained deterministically from N ). Of course Nc and
Nd are still integrable T -random measures whose respective intensities are multiples of μ

(by ergodicity of T ). Thanks to this decomposition, we can study separately the case of a.s.
continuous T -random measures, and the case of a.s. discrete T -random measures, which will
be the objects of the two following sections.
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4.1. The continuous case.

PROPOSITION 4.2. Assume that T has the (P) property.
If N is a square integrable T -random measure defined on some ergodic system (�,F ,

P, S), whose realizations are a.s. continuous, then there exists α ≥ 0 such that N is constant
and a.s. equal to αμ.

If the realizations are a.s. absolutely continuous with respect to μ, no hypothesis on mo-
ments are required to get the same conclusion, although we might have α = +∞.

PROOF. First, assume N is square integrable. We know that its intensity is of the form
αμ for some α ≥ 0, and the moment measure of order two, defined on A⊗A by

MN
2 (A × B) := E

[
N(A)N(B)

] = E
[
N ⊗ N(A × B)

]
is boundedly finite. This measure is T × T -invariant, and its marginals are absolutely contin-
uous with respect to μ. Moreover, as N is a.s. continuous, N ⊗ N gives zero measure to the
graphs of T k , for all k ∈ Z. Thanks to property (P), MN

2 = βμ⊗μ for some β ≥ 0. Applying
the ergodic theorem, we get for all A ∈ Af ,

1

n

n∑
k=1

E
[
N(A)N(A) ◦ Sk] −−−→

n→∞ E
[
N(A)

]2 = α2μ(A)2.

On the other hand,

1

n

n∑
k=1

E
[
N(A)N(A) ◦ Sk] = 1

n

n∑
k=1

MN
2

(
A × T −kA

) = 1

n

n∑
k=1

βμ(A)μ
(
T −kA

)
,

which by invariance of μ is equal to βμ(A)2. Therefore, β = α2 and

E
[(

N(A) − αμ(A)
)2] = MN

2 (A × A) − α2μ(A)2 = 0,

which implies the result.
If we assume that the realizations are a.s. absolutely continuous, then we can write for all

set A ∈ A,

N(ω)(A) =
∫
A

f (ω,x)μ(dx).

We can therefore define Nn by

Nn(ω)(A) =
∫
A
(f ∧ n)(ω, x)μ(dx).

Nn is still a continuous ergodic T -random measure but is now square integrable. From the
first part of the proof, Nn = αnμ a.s. Since Nn increases to N , we get N = αμ a.s. where α

is the increasing limit of αn. �

4.2. The discrete case. We consider the set of sequences

	+
1 (Z) :=

{
(ak)k∈Z : ∀k ∈ Z, ak ≥ 0 and

∑
k∈Z

ak < ∞
}
.

The 	1 norm turns 	+
1 (Z) into a complete separable metric space. The goal of this section is

to obtain the following result.
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THEOREM 4.3. Assume T has the (P) property. Let N be a nonzero T -random measure
with moments of all orders defined on some ergodic system (�,F,P, S) and whose realiza-
tions are almost-surely discrete. Then there exists a probability distribution κ on 	+

1 (Z) and
a positive number c such that N is distributed as

A 	→
∫
X×	+

1 (Z)

∑
k∈Z

ak1A

(
T kx

)
N

(
dx, d{ak}k∈Z

)
where N is a Poisson point process on X × 	+

1 (Z) with intensity cμ ⊗ κ .

This result says that N has a cluster form which can be obtained in the following way: start
from a Poisson point process of intensity cμ, then replace independently each point x output
by this Poisson point process with a random measure (the cluster) of the form∑

k∈Z
akδT kx

where {ak}k∈Z is chosen according to κ .
In the following, replacing if necessary μ by the intensity of N which is of the form αμ

for some α > 0 by ergodicity of T , we assume that the intensity of N is μ.

4.2.1. Removing points with small weights. Consider N as in the statement of Theo-
rem 4.3. For ε > 0, we define Nε from N by removing points with weights less than ε. We
also define Nε,1 as the simple point process obtained from Nε with all weights set to 1. We
have for all A ∈ Af ,

Nε,1(A) ≤ 1

ε
Nε(A) ≤ 1

ε
N(A),

therefore, Nε and Nε,1 are both T -random measures with moments of all orders.
According to Proposition 2.1 in [9], any square-integrable T -point process almost surely

gives finite measure to any T -orbit. In particular, Nε,1 almost surely belongs to the subset
X̃d,f ⊂ X̃d of measures ν satisfying the following property:

∀x ∈ X #
{
n ∈ Z : ν(

T nx
)
> 0

}
< ∞.

Of course, Nε ∈ X̃d,f almost surely as well.
We construct an injective map � from X̃d,f to (X × 	+

1 (Z))∗. For ν ∈ X̃d,f , �(ν) is the
simple counting measures supported on the following collection of points in X × 	+

1 (Z):
we select in each orbit seen by ν the first element x in the orbit with maximal weight, and
consider the point (x, (ν(T nx))n∈Z). In other words, a point (x, (βn)n∈Z) belongs to �(ν) if
and only if:

• β0 > βn for each n < 0;
• β0 ≥ βn for each n ≥ 0;
• ν({T nx}) = βn for each n ∈ Z.

Observe that we can recover ν from �(ν) by the formula

(6) ν(A) =
∫
X×	+

1 (Z)

∑
k∈N

βk1A

(
T kx

)
�(ν)

(
dx, d{βk}k∈N

)
.

Now, �(Nε) is P-a.s. well-defined as a (T × Id)-point process on X × 	+
1 (Z). Its projec-

tion on the first coordinate (�(Nε))0 := �(Nε)(· × 	+
1 (Z)) is a T -point process on X with

moments of all orders (since �(Nε)(· × 	+
1 (Z)) ≤ Nε,1(·)). By construction, this T -point

process is free since we have selected one point in each orbit seen by Nε .
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Theorem 3.2 in [9] states that, under the (P) property, any free T -point process with mo-
ments of all orders defined on an ergodic system is Poisson. Thus we get that (�(Nε))0
is a Poisson process. Then by Theorem 3.1, we obtain that �(Nε) is a Poisson process on
(X × 	+

1 (Z)). Applying (6), we almost surely have

Nε(A) =
∫
X×RZ+

∑
k∈N

αk1A

(
T kx

)
�(Nε)

(
dx, d{αk}k∈N

)
,

and thus we get the theorem for Nε , for any ε > 0.
To get the result for N , we need to take advantage of the infinite divisibility character of

Nε , that N will inherit in the limit. We therefore have to recall some general results about
infinite divisibility.

4.2.2. Infinitely divisible random measures. The notion of infinite divisibility can be de-
fined on any measurable semigroup although we only give it in the context we are interested
in.

DEFINITION 4.4. let (Z,Z) be complete separable metric space. A probability distri-
bution σ on (Z̃, Z̃) is infinitely divisible (ID) if, for any k ∈ N, there exists a probability
distribution σk such that

σ = σk � · · · � σk︸ ︷︷ ︸
k times

,

where � is the convolution of measures induced by the addition on Z̃. By extension, we say
that a random measure on Z is ID if its distribution is.

The first examples of ID random measures are Poisson measures. Their ID character comes
directly from the well-known fact that the sum of two independent Poisson processes on the
same space with intensities μ1 and μ2 is again a Poisson process, but with intensity μ1 +μ2.

We recall the fundamental representation result that can be found in [12], Theorem 3.20.

THEOREM 4.5. A probability measure m on X̃ is ID if and only if there exist a measure
γ ∈ X̃ and a σ -finite measure ρ on X̃ \ {0} satisfying, for all bounded B ⊂ X∫

X̃

(
ξ(B) ∧ 1

)
dρ(ξ) < ∞,

such that m is the distribution of the following random measure:

γ +
∫
X̃

ξ(·) dω(ξ),

where ω is a random element of (X̃)∗ chosen according to the Poisson measure ρ∗ on X̃ with
intensity ρ.

The measures γ and ρ are uniquely determined by m, and ρ is called the Lévy measure
of m.

Here, we summarize useful properties about the case we are interested in.

PROPOSITION 4.6. Let (X,A,μ,T ) be a conservative ergodic infinite measure preserv-
ing system, and let m be the distribution of an ergodic square integrable ID random measure
with intensity μ, and whose realizations are almost surely discrete. Assume that m corre-
sponds to (γ, ρ) as in Theorem 4.5, then:
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• γ = 0,
• ρ is T∗-invariant and supported by X̃d ,
• ∫

X̃ ξ(A)ρ(dξ) = μ(A) for all A ∈ Af ,
• ∫

X̃ ξ(A)2ρ(dξ) = ∫
X̃(ξ(A) − μ(A))2m(dξ) for all A ∈ Af ,

• (X̃, Ã, ρ, T∗) has no T∗-invariant sets of finite, nonzero measure.

PROOF. If m corresponds to (γ, ρ), then (T∗)∗(m) is ID, too, and corresponds to
(T∗(γ ), (T∗)∗(ρ)). Therefore, if m is T∗-invariant then γ is T -invariant and ρ is T∗-invariant.
For all A ∈Af ,

μ(A) =
∫
X̃

ξ(A)m(dξ)

= γ (A) +
∫
X̃∗

∫
X̃

ξ(A)ω(dξ)ρ∗(dω)

= γ (A) +
∫
X̃

ξ(A)ρ(dξ).

In particular, γ � μ, and by ergodicity of μ, γ is some multiple of μ. But then m could not
be the distribution of a point process as it would possess a continuous part, unless γ vanishes.
From the Poisson construction, we also get that ρ is supported on X̃d .

Next, the second formula is an application of the isometry formula (1).
The last fact should come as no surprise for anyone familiar with ergodic properties of ID

systems; however, there is no available proof for this particular case. We give one here:
Assume (X̃, Ã,m,T∗) is ergodic and (X̃, Ã, ρ, T∗) possesses a T∗-invariant set K with

ρ(K) < ∞. Let ((X̃)∗, (Ã)∗, ρ∗, (T∗)∗) be the Poisson suspension over (X̃, Ã, ρ, T∗). The
map

ω 	→
∫
X̃

ξ(·)ω(dξ)

is a factor map between the suspension and the ergodic system (X̃, Ã,m,T∗). Moreover, we
have another factor in the suspension, generated by the stationary process

ω 	→ {
(T∗)k∗(ω)(K)

}
k∈Z.

But as K is T∗-invariant, (T∗)k∗(ω)(K) = ω(K) for all k ∈ Z, therefore, (T∗)∗ acts as the
identity on this factor. By disjointness between the identity map and any ergodic map [5], we
obtain that these two factors are independent inside the Poisson suspension. In particular, for
any A ∈ Af , ω 	→ ∫

X̃ ξ(A)ω(dξ) and ω 	→ ω(K) are independent. It follows that∫
(X̃)∗

(∫
X̃

ξ(A)ω(dξ) − μ(A)

)(
ω(K) − ρ(K)

)
ρ∗(dω) = 0.

By the isometry formula (1), we get∫
X̃

ξ(A)1K(ξ)ρ(dξ) = 0.

By monotone convergence, we can replace A by X in the preceding integral and, as ξ(X) > 0
ρ-a.e., we get that 1K = 0 ρ-a.e., that is, ρ(K) = 0. �

Now, let us explain how N inherits the ID character of Nε in the limit. We have Nε � N ,
thus we can introduce the random density gε := dNε

dN
. Almost surely, gε increases to 1 as
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ε → 0. Let f be a bounded continuous function on X with bounded support. Then by the
dominated convergence theorem,∫

X
f dNε =

∫
X

fgε dN −−→
ε→0

∫
X

f dN a.s.

Let also h be a bounded continuous function on R. Again by the dominated convergence
theorem, we get

E

[
h

(∫
X

f dNε

)]
−−→
ε→0

E

[
h

(∫
X

f dN

)]
.

By [12], Theorem 4.11, this characterizes the weak convergence of the distribution of Nε to
the distribution of N . Using [12], Lemma 4.24, we can conclude that N is ID as a limit of ID
random measures.

N is thus square integrable and ID, hence admits a Lévy measure ρ which is a σ -finite
measure on X̃d , and is T∗-invariant. By ergodicity of N , the system (X̃, Ã, ρ, T∗) enjoys all
the properties stated in Proposition 4.6.

When T has the (P) property, this system has a very simple structure that we fully describe
below.

4.2.3. Infinite quasifactors. We start by extending the notion of quasifactor of Glasner
and Meyerovitch to the case of an infinite measure on X̃.

DEFINITION 4.7. An ∞-quasifactor of (X,A,μ,T ) is a dynamical system (X̃, Ã,

ρ, T∗) where ρ is an infinite, σ -finite, T∗-invariant measure and

∀A ∈Af

∫
X̃

ξ(A)ρ(dξ) = μ(A).

The ∞-quasifactor (X̃, Ã, ρ, T∗) is said to be square integrable if

∀A ∈ Af

∫
X̃

(
ξ(A)

)2
ρ(dξ) < ∞.

As a simple example of ∞-quasifactor, we can consider the infinite measure preserving
system (X∗, ρ, T∗), where ρ is the pushforward of μ by x 	→ δx . It is actually the Lévy
measure of the Poisson point process of intensity μ. More generally, from Proposition 4.6,
any ergodic infinitely divisible and square integrable T -random measure with intensity μ

gives rise to a square integrable ∞-quasifactor through its Lévy measure.
Let us first consider the case of a simple ∞-quasifactor, that is, a measure ρ concentrated

on the set X∗ of simple counting measures on X.

PROPOSITION 4.8. If T has the (P) property and (X∗,A∗, ρ, T∗) is a simple square
integrable ∞-quasifactor without T∗-invariant set of nonzero finite ρ-measure, then ρ-a.e.
ξ ∈ X∗ is concentrated on a finite subset of a single T -orbit.

PROOF. As (X∗,A∗, ρ, T∗) is square integrable, the formula

m(A × B) :=
∫
X∗

ξ(A)ξ(B)ρ(dξ)

defines a boundedly finite T × T -invariant measure on X × X. Thanks to property (P), it can
be written as

m = α∞μ ⊗ μ + ∑
k∈Z

αk�k,
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where �k is the measure supported on the graph of T k defined by �k(A × B) := μ(A ∩
T −kB). Observe that, as there is no T∗-invariant set of nonzero finite ρ-measure,

1

n

n∑
	=1

m
(
A × T −	B

) = 1

n

n∑
	=1

∫
X∗

ξ(A)T 	∗ ξ(B)ρ(dξ) → 0.

However,

1

n

n∑
	=1

α∞μ ⊗ μ
(
A × T −	B

) = α∞μ ⊗ μ(A × B),

therefore, α∞ = 0.
This means that m is concentrated on the graphs of the maps T k , k ∈ Z, therefore, for ρ-

a.e. ξ ∈ X∗ the product ξ ⊗ ξ is concentrated on these graphs. It follows that ρ-a.e. ξ ∈ X∗ is
concentrated on a single T -orbit. It remains to verify that ρ is almost surely concentrated on
a finite number of points in this orbit. For this, we observe that Proposition 2.1 in [9] (whose
statement is recalled in Section 4.2.1) can be generalized to the case of an infinite measure
ρ on X∗. Indeed, the Palm measures of ρ are probability measures since

∫
X∗ ξ(A)ρ(dξ) =

μ(A) < +∞. Since ρ has moments of order 2, the proposition yields that ρ-a.e. ξ ∈ X∗ is
concentrated on a finite subset of a single T -orbit. �

PROPOSITION 4.9. If T has the (P) property and if (X̃d, Ã, ρ, T∗) is a square integrable
∞-quasifactor without T∗-invariant set of nonzero finite ρ-measure, then there exists c > 0
and a factor map ϕ from (X̃d, Ã, ρ, T∗) to (X,A, cμ,T ) and some T∗-invariant maps ξ 	→
ak(ξ) ≥ 0, k ∈ Z, such that

ξ = ∑
k∈Z

ak(ξ)δT kϕ(ξ).

PROOF. First, observe that {0} is a T∗-invariant set. It cannot have infinite ρ-measure
because ρ is σ -finite, hence ρ({0}) = 0 from the hypotheses.

Let ξ ∈ X̃d and set ξ|ε , ε > 0 to be ξ where we have forgotten points with weights less
than ε and set the other weights to be 1. Then ξ 	→ ξ|ε is a factor map and ξ|ε turns out to
induce on X̃d \ {ξ|ε = {0}} a simple square integrable ∞-quasifactor without T∗-invariant set
of nonzero finite measure. Therefore, by Proposition 4.8, ξ|ε has a finite number of points on
its support, which all lie on a single T -orbit.

It follows that all the points of the support of ξ are ρ-a.s. on a single T -orbit, and only a
finite number of them have a weight greater than any fixed positive constant. We can therefore
see that the map ϕ : ξ 	→ ϕ(ξ) where ϕ(ξ) is the point of the support with the highest weight
and the lowest place in the orbit is well-defined. It satisfies

ϕ(T∗ξ) = T ϕ(ξ).

Now with this “origin” ϕ(ξ), we can define maps ξ 	→ ak(ξ) ≥ 0 so that

ξ := ∑
k∈Z

ak(ξ)δT kϕ(ξ).

We have

T∗ξ = ∑
k∈Z

ak(ξ)δT k+1ϕ(ξ) = ∑
k∈Z

ak(ξ)δT kϕ(T∗ξ)

in the one hand, and on the other hand,

T∗ξ := ∑
k∈Z

ak(T∗ξ)δT kϕ(T∗ξ).

Therefore, the maps ak are T∗-invariant.
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We have for all A

μ(A) =
∫
X̃d

ξ(A)ρ(dξ)

= ∑
k∈Z

∫
X̃d

ak(ξ)δT kϕ(ξ)(A)ρ(dξ)

= ∑
k∈Z

∫
X̃d

ak

(
T k∗ ξ

)
δϕ(T k∗ (ξ))(A)ρ(dξ) by T∗-invariance of ak

= ∑
k∈Z

∫
X̃d

δϕ(ξ)(A)ak(ξ)ρ(dξ) by T∗-invariance of ρ.

Let us define for each k ∈ Z the measure ρk by dρk

dρ
:= ak . Then we get

μ(A) = ∑
k∈Z

ϕ∗ρk(A),

and in particular ϕ∗ρ0 � μ. But, as a0 > 0 ρ-a.e., ρ0 ∼ ρ and we also have ϕ∗ρ � μ. By
ergodicity, ϕ∗ρ = cμ for some c > 0.

Therefore, ϕ induces a factor map between (X̃d, Ã, ρ, T∗) and (X,A, cμ,T ). �

COROLLARY 4.10. Assume that T has the (P) property. Let (X̃d, Ã, ρ, T∗) be an infinite
measure-preserving square integrable ∞-quasifactor without T∗-invariant set of nonzero fi-
nite ρ-measure. Then there exists a probability measure κ on RZ+ such that (X̃d, Ã, ρ, T∗) is
isomorphic to (X ×RZ+,A⊗B⊗Z,μ ⊗ (cκ), T × Id) (where c is given in Proposition 4.9).

Moreover, we have
1

c
=

∫
RZ+

(∑
k∈Z

ak

)
κ
(
d{ak}k∈Z

)
.

In particular, {ak}k∈Z ∈ 	+
1 (Z) κ-a.s.

PROOF. Define � from X̃d to X ×RZ+ by

�(ξ) := (
ϕ(ξ),

(
ak(ξ)

)
k∈Z

)
.

Then T × Id preserves m := �∗ρ and � is an isomorphism between (X̃d, Ã, ρ, T∗) and
(X × RZ+,A ⊗ B⊗Z,m,T × Id). Since the σ -algebra generated by ϕ(ξ) is σ -finite by the
preceding proposition, we can disintegrate m with respect to the first coordinate: we get a
family (κx)x∈X of probability measures on RZ+, such that

m(A × B) =
∫
A

κx(B)c dμ(x),

where c is given in the preceding proposition. By invariance of m under T × Id, we get
κx = κT x for μ-almost every x, and by ergodicity of T we conclude that there exists κ such
that κx = κ μ-almost everywhere. This yields m = μ ⊗ (cκ).

Now, for each A ∈Af , we have

μ(A) =
∫
X̃d

ξ(A)ρ(dξ)

= c

∫
RZ+

(∫
X

∑
k∈Z

ak1A

(
T kx

)
μ(dx)

)
κ
(
d{ak}k∈Z

)
= cμ(A)

∫
RZ+

(∑
k∈Z

ak

)
κ
(
d{ak}k∈Z

)
.

�
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4.2.4. End of the proof of Theorem 4.3. We come back to the end of the proof of the
main theorem of this section. Recall that under the assumptions of this theorem, we were
left with the following situation: N is a T -random measure with moments of all orders, and
we showed it is infinitely divisible. Hence the conclusion follows from the next proposi-
tion.

PROPOSITION 4.11. Assume that T has the (P) property. Let N be a square integrable
ID T -random measure defined on some ergodic system (�,F,P, S) whose realizations are
almost surely discrete. Then there exists a probability distribution κ on (	+

1 (Z),B⊗Z) and
c > 0 such that N is distributed as

A 	→
∫
X×	+

1 (Z)

∑
k∈Z

ak1A

(
T kx

)
N

(
dx, d{ak}k∈Z

)
where N is a Poisson point process on X × 	+

1 (Z) with intensity cμ ⊗ κ .

PROOF. By Theorem 4.5 and Proposition 4.6, the ID square integrable T -random mea-
sure N can be described by its Lévy measure ρ. The latter is nothing else than a square
integrable ∞-quasifactor, whose structure is completely given in Corollary 4.10: the mea-
sure space (X̃d, ρ) is isomorphic to (X × 	+

1 (Z), cμ ⊗ κ). In this context, the representation
of N as an integral with respect to a Poisson random measure takes the more concrete form
explicited in the statement of the proposition. �

REMARK 4.12. Note that the assumption that N has moments of all orders has only
been used to obtain the ID character of the random measure. Once this is established, square
integrability of N is sufficient to conclude. We do not know if square integrability alone
implies the conclusion of Theorem 4.3.

5. Improved disjointness results. This last, short section deals with joinings and dis-
jointness. The notion of joinings in ergodic theory is the dynamical counterpart of couplings
in probability theory. It is particularly relevant for the classification of dynamical systems as
we do below. For the reader unfamiliar with this notion, we refer to the seminal paper [5] and
the book [6], that present modern ergodic theory through joinings and disjointness.

In [9], we obtained a series of disjointness results for Poisson suspensions over transforma-
tions satisfying the (P) property with the additional assumption that the base transformation
should have a measurable law of large numbers, which is a very particular property. We were
already convinced that this assumption was not necessary. The results proved in the present
paper allow to get rid of it.

The following proposition is an example of how the simplification occurs.

PROPOSITION 5.1. Assume T has the (P) property. If an ergodic probability preserv-
ing system (�,F,P, S) is not disjoint from (X∗,A∗,μ∗, T∗), then it possesses (X∗,A∗,
(αμ)∗, T∗) as a factor for some α > 0.

PROOF. Consider a nontrivial joining λ of (�,F,P, S) with the Poisson suspension
(X∗,A∗,μ∗, T∗), and denote by � : L2(μ∗) → L2(P) the associated Markov operator. De-
note by N the canonical Poisson T -point process defined on (X∗,A∗,μ∗, T∗). By positivity
of � , the map A ∈Af 	→ �(N(A)) extends to a T -random measure on (�,F,P, S). Indeed,
for A ∈ Af we have

�
(
N

(
T −1(A)

)) = �
(
N(A) ◦ T∗

)
= �

(
UT∗N(A)

)
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= US�
(
N(A)

)
= �

(
N(A)

) ◦ S,

and EP[�(N(A))] = Eμ∗[N(A)] = μ(A).
Moreover, this T -random measure has moments of all orders, as for any A ∈ Af and any

n ≥ 1, since � can be interpreted as a conditional expectation, we have

EP

[
(�

(
N(A)

)n] ≤ EP

[
�

(
N(A)n

)] = Eμ∗
[
N(A)n

]
< ∞.

From Proposition 4.2, there exists 0 ≤ c ≤ 1 and a T -random measure M of intensity μ

defined on (�,F,P), supported on discrete measures, such that

�
(
N(·)) = cμ + (1 − c)M

If c = 1, then for all A ∈ Af , �(N(A) − μ(A)) = 0, which means that � vanishes on the
first chaos. Let �∗ : L2(P) → L2(μ∗) be the adjoint Markov operator, we get that �∗� is a
Markov operator on L2(μ∗) that vanishes on the first chaos. It can be written as an integral
of indecomposable operators

�∗� =
∫
W

�wρ(dw),

where (W,W, ρ) is an auxiliary probability space. Now the proof follows the same lines as
Proposition 4.11 in [9]. We get that �∗� is the projection on constants and this implies in
turn that the initial joining is trivial, hence a contradiction.

Therefore, c < 1. We deduce that M is a factor of (�,F,P, S), and much as in Sec-
tion 4.2.1, we obtain a further factor which is a Poisson point process of intensity αμ for
some α > 0. (In Section 4.2.1, we got such a factor by considering (�(Nε))0.) �

In particular, following the same proofs as in Theorems 5.10 and 5.14 in [9], we obtain the
same conclusions without needing the assumption of measurable law of large numbers.

THEOREM 5.2. If T has the (P) property, then (X∗,A∗,μ∗, T∗) is disjoint from any rank
one transformation and any Gaussian dynamical system.
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