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The (d + 1)-dimensional KPZ equation is the canonical model for the
growth of rough d-dimensional random surfaces. A deep mathematical under-
standing of the KPZ equation for d = 1 has been achieved in recent years, and
the case d ≥ 3 has also seen some progress. The most physically relevant case
of d = 2, however, is not very well understood mathematically, largely due to
the renormalization that is required: in the language of renormalization group
analysis, the d = 2 case is neither ultraviolet superrenormalizable like the
d = 1 case nor infrared superrenormalizable like the d ≥ 3 case. Moreover,
unlike in d = 1, the Cole–Hopf transform is not directly usable in d = 2 be-
cause solutions to the multiplicative stochastic heat equation are distributions
rather than functions. In this article, we show the existence of subsequential
scaling limits as ε → 0 of Cole–Hopf solutions of the (2 + 1)-dimensional
KPZ equation with white noise mollified to spatial scale ε and nonlinearity

multiplied by the vanishing factor | log ε|− 1
2 . We also show that the scaling

limits obtained in this way do not coincide with solutions to the linearized
equation, meaning that the nonlinearity has a nonvanishing effect. We thus
propose our scaling limit as a notion of KPZ evolution in 2 + 1 dimensions.

1. Introduction.

1.1. Main results. We are interested in the space-time (2+1)-dimensional KPZ equation
on the torus, formally given by the stochastic PDE

(1.1) ∂th = ν�h + λ

2
|∇h|2 + √

DẆ,

where ν, λ and D are strictly positive parameters and Ẇ denotes a standard space-time white
noise on the two-dimensional torus T2 = R2/Z2. More precisely, we define W to be a cylin-
drical Wiener process on L2(T2) whose covariance operator is the identity, as in [13] or [3],
and then Ẇ is its (distributional) derivative in time. Thus, formally we have

EẆ (t, x)Ẇ
(
t ′, x′)= δ

(
t − t ′

)
δ
(
x − x′).

(Throughout this manuscript, we will assume that all random variables are defined on some
common probability space (�,F,P), and E will denote expectation with respect to P.) We
will use notation of the form ∫ t

0

∫
f (s, y)W(ds dy)

for f integrated against the white noise. Here and throughout, an integral without a specified
domain of integration will denote integration over T2.

This model of interface growth was originally introduced by Kardar, Parisi and Zhang in
[30] and has subsequently been the subject of intense study in the physics and mathematics
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literatures, especially in 1+1 dimensions. See [41] for a review of mathematical results in the
1 + 1-dimensional case, [10] for an analysis of a related discrete model in 2 + 1 dimensions,
[3, 4, 8, 9, 16] for results on the multiplicative stochastic heat equation in 2 + 1 dimensions
with implications for KPZ, and [34] for some recent progress about the (d + 1)-dimensional
equation for d ≥ 3. A more extensive discussion of the literature is given in Section 1.2. We
discuss the paper [8] further in Section 3.

Defining solutions to (1.1) is a well-known challenge in the theory of stochastic PDEs,
because the roughness of the driving noise Ẇ precludes the existence of solutions smooth
enough for the nonlinear term |∇h|2 to have meaning. The usual approach is to proceed by
mollification of the noise Ẇ , in space and sometimes also in time, and then attempting to take
a limit as the mollifier approaches a delta function. Implementing this strategy requires some
form of renormalization—subtracting divergent counterterms and/or modifying the parame-
ters of the equation—in a manner that gives rise to a scaling limit as the mollifier approaches
a delta function.

In this paper, we propose a renormalization scheme for (1.1) in 2+1 dimensions, and show
that subsequential limits of the solutions exist as the mollification is turned off. Moreover, we
show that the limiting solutions are not the same as the the limiting solution to the same
sequence of equations with no nonlinear term, so the nonlinearity has a nonvanishing effect.
In order to state our main theorems, we need to introduce some notation. Let ρ ∈ C∞(R2) be
a positive even function so that

suppρ ⊂
(
−1

2
,

1

2

)2

and ‖ρ‖L1 = 1, and define, for ε ∈ (0,1), ρε(x) = ε−2ρ(ε−1x). Thus ρε descends trivially to
a function in C∞(T2) by periodic extension, which we will identify with ρε . We then define
the mollified white noise as the T2-convolution

(1.2) Wε = ρε ∗ W.

Let h̃ε be a solution of (1.1) with Ẇ replaced by Ẇ ε . As we show in Section 3 below, such a
solution exists because of the spatial smoothness of Wε . Our primary goal is to understand the
behavior of hε as ε → 0. For the (1 + 1)-dimensional KPZ equation, this limiting behavior is
well understood; simply subtracting off a deterministic function of t and ε gives a nontrivial
scaling limit. For the (2 + 1)-dimensional equation, we will show that a nontrivial scaling
limit can be obtained if we renormalize the nonlinearity parameter λ by replacing it with

λ| log ε|− 1
2 . To be precise, let h̃ε solve

(1.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t h̃

ε(t, x) = ν�h̃ε(t, x) + 1

2
λ| log ε|− 1

2
∣∣∇h̃ε(t, x)

∣∣2
+ √

DẆε(t, x) t > 0, x ∈ T2,

h̃ε(0, x) = 0 x ∈ T2,

and then let

hε(t, x) := h̃ε(t, x) − κε(t),(1.4)

where κε(t) := Eh̃ε(t, x) is a deterministic quantity that depends only on t and not on x. We
will say more about κε(t) later.

As noted above, the roughness of the driving noise Ẇ means that we do not expect the lim-
its of hε as ε → 0 to be smooth. In fact, unlike the one-dimensional case, the limits here are
not even functions. Rather, the limits exist in spaces of distributions. We will prove tightness
in certain negative Hölder spaces which we will introduce in Section 4; see Theorem 4.4 in
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that section. Since we do not expect that the regularity, we achieve there is optimal, for now
we state the following simpler corollary. Recall the spaces of distributions

D′(T2)= C∞(T2)∗
and

D′(R>0 × T2)= C∞
c

(
R>0 × T2)∗,

where the asterisks denote the Fréchet space duals. We note in particular in the second defini-
tion that C∞

c (R>0 × T2) means the space of smooth functions supported on a compact subset
of R>0 × T2, so in particular with support bounded away from zero. The following theorem,
which is our first main result, establishes the existence of subsequential scaling limits.

THEOREM 1.1. Let hε be defined as in (1.4) above. There is a θ0 > 0 so that if

(1.5)
λ2D

(2ν)3 ≤ θ0,

then the following hold. For any sequence εn ↓ 0, there is a subsequence εkn and a D′(R>0 ×
T2)-valued random distribution h such that hεkn → h in law as n → ∞. Moreover, for any
sequence εn ↓ 0 and any t > 0, there is a subsequence εkn and a D′(T2)-valued random
distribution ht such that hεkn (t, ·) → ht in law as n → ∞.

REMARK 1.2. Since the space of distributions is not metrizable, the usual Portmanteau
lemma for weak convergence of measures does not apply. The notion of weak convergence
being used in Theorem 1.1 is that of convergence of the expectation of every bounded con-
tinuous functional, and the σ -algebra used to define the notion of random distributions is
the σ -algebra generated by the weak-* topology. However, the convergence actually takes
place in a local Hölder space with negative regularity exponent, which is a Fréchet space. We
postpone the stronger statement (Theorem 4.4) until after we have introduced the necessary
definitions of negative Hölder regularity in Section 4.

REMARK 1.3. The quantity appearing on the left-hand side of (1.5) is called the effective
coupling constant in the physics literature on the renormalization group for the KPZ equation
[7]. It measures how strongly the nonlinearity is coupled to the linear system. In physics
terminology, Theorem 1.1 would be called a weak coupling result.

REMARK 1.4. It is important to understand whether the condition (1.5) is necessary in
the statement of Theorem 1.1. In light of recent results about the (2+1)-dimensional stochas-
tic heat equation with multiplicative noise [8, 9, 16], we believe that there are values of ν, λ

and D for which Theorem 1.1 is not valid (specifically, when the effective coupling constant
is large). Understanding this is at present out of the reach of the technology developed in this
paper.

REMARK 1.5. The two subsequential convergences stated in Theorem 1.1 could be uni-
fied into a single statement if we could show that the convergence holds in some space of
continuous maps from R≥0 into D′(T2), endowed with some topology that is strong enough
to at least render the pointwise evaluation maps continuous. We expect this, but are currently
unable to prove it.

We are at this point unable to show that the subsequential scaling limits are unique. Seeing
no reason for them not to be unique, however, we state the following conjecture.
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CONJECTURE 1.6. Under the condition (1.5), the sequences (hε)ε>0 and (hε(t, ·))ε>0

converge in law as ε → 0.

In order to defend our choice of scaling for the nonlinearity parameter in (1.3) as an in-
teresting notion of the KPZ evolution in 2 + 1 dimensions, we need to show that the limits
we establish in Theorem 1.1 exhibit a nonvanishing effect of the nonlinearity. Indeed, a pri-

ori, we might worry that the coefficient | log ε|− 1
2 is going to zero so quickly with ε that any

subsequential scaling limit h has the same law as a solution of the additive stochastic heat
evolution with the same noise strength and diffusivity, given by taking λ = 0 in (1.1). By this,
we mean the distribution v solving the problem

(1.6)

{
∂tv(t, x) = ν�v(t, x) + √

DẆ(t, x) t > 0, x ∈ T2,

v(0, x) = 0 x ∈ T2.

(Solutions to (1.6) are given by the Green’s function of the heat equation convolved with the
white noise.) In our second theorem, stated below, we prove that this does not happen. The
theorem further shows that the scaling limit is not a constant field, nor is it a constant shift of
the solution of (1.6).

THEOREM 1.7. Take any t > 0. Suppose that hε(t, ·) converges in law to some limit
ht through a subsequence as ε → 0. Let v be a solution of (1.6). Then

∫
ht (x)dx and∫

v(t, x)dx are both nondegenerate random variables with mean zero, but their laws are
different.

Since the nonlinearity has a nontrivial effect when the nonlinearity parameter is scaled

like a multiple of | log ε|− 1
2 , it seems unlikely and unnatural that a nontrivial scaling limit can

be obtained by some other (faster or slower) scaling of the nonlinearity parameter. With this
intuition in mind, we make the following conjecture.

CONJECTURE 1.8. The only way to obtain a nontrivial scaling limit in (1.1) with ν and

D fixed is to scale the nonlinearity parameter λ like a multiple of | log ε|− 1
2 , as we did in

(1.3).

There is some indirect evidence for this conjecture from the existing analysis of the (2+1)-
dimensional stochastic heat equation with multiplicative noise. We discuss this and other
connections with the literature below.

REMARK 1.9. It is possible that more general scalings of the parameters (i.e., with ν

and/or D allowed to vary with ε) could lead to other scaling limits. Numerical simulations
such as [31, 42] suggest that it may also be possible to obtain a function-valued scaling
limit by taking (in what is known in physics as the Family–Vicsek scaling [15]) ν ∼ ε2−z,
λ ∼ ε2−z−α and D ∼ ε2+2α−z for certain particular exponents α and z, which scaling argu-
ments based on Galilean invariance [2] suggest should satisfy α + z = 2. If we assume this,
then we obtain the scaling ν ∼ εα , λ ∼ 1, and D ∼ ε3α . By an analogue of the change of
variables described in Section 2 below, this amounts to considering (1.1) with fixed values of
the parameters, and considering the solution multiplied by εα on a short time scale t ∼ εα .
We do not consider this setting further in this paper.
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1.2. Comparison with the literature. The literature surrounding the KPZ equation has
grown exponentially in the last few years, and keeps growing each day. It is quite impossible
to review (even briefly) all of the developments within one section of a paper. Here, we only
survey the part of the literature that is closest to this paper, and compare our results with the
existing ones.

As mentioned before, our scaling of the nonlinearity parameter is in contrast to the results
of [1, 5, 6, 22, 23, 33] in 1 + 1 dimensions, in which there is a diverging renormalization
constant κε(t) ∼ ε−1t , but the parameters ν, λ, D are all kept fixed as ε → 0. The limit
object is an actual random function, not a distribution. In fact, it is the logarithm of a solution
of the stochastic heat equation (SHE) with multiplicative noise. The main difficulty about
extending this approach to 2 + 1 dimensions is that the solutions of the (2 + 1)-dimensional
SHE with multiplicative noise (which are now fairly well understood, thanks to [3, 4, 8, 9,
16]) are random distributions instead of random functions, and we do not know how to take
logarithms of distributions.

The KPZ equation in the (1 + 1)-dimensional case is, in the mathematician’s language,
locally subcritical [24], or in the physicist’s language, ultraviolet superrenormalizable [34],
meaning that when a parabolic scaling is applied to (1.1), the coefficient in front of the non-
linearity disappears compared to that of the noise and the Laplacian on very small scales.
A similar phenomenon, known as infrared super-renormalizability [34], happens under a dif-
ferent rescaling for the (d + 1)-dimensional KPZ equation when d ≥ 3.

In contrast, the (2 + 1)-dimensional case is critical in that any rescaling leaves the non-
linearity with a nonvanishing coefficient. In physics language, the (2 + 1)-dimensional
KPZ equation is neither ultraviolet nor infrared super-renormalizable. The lack of super-
renormalizability means that the methods of regularity structures [23, 24], paracontrolled
distributions [21] and constructive field theory [34] do not apply to the (2 + 1)-dimensional
KPZ equation. Our results show that it is, however, renormalizable if we reduce the strength
of the nonlinearity logarithmically as the mollification is sent to zero.

Such a logarithmic scaling has a famous precedent in the Nobel prize-winning papers [19,
40], where it was shown that for the renormalization of four-dimensional non-Abelian gauge
theories, the bare coupling constant should vanish logarithmically as the ultraviolet cutoff
is removed (see [37] for a friendly explanation). In that case, as in ours, a naïve dimension
counting argument suggests that the coupling constant should not be scaled at all, but this
is shown to be wrong by renormalization group analysis. This is very similar in spirit to
our results for the (2 + 1)-dimensional KPZ equation. In fact, the scaling is also exactly the
same, namely, if ε is the lattice spacing in a lattice regularized gauge theory, then the coupling

constant should scale like a multiple of | log ε|− 1
2 as ε → 0. The results for gauge theories,

however, have not yet been made mathematically rigorous.
Our mollification of the noise in (1.2) is only spatial, so the noise remains white in time in

our approximation scheme. This mollification scheme has been used in the past when using
the Cole–Hopf transform in 1 + 1 dimensions [5, 23]. On the other hand, it is certainly not
the only physically relevant mollification scheme; for example, one could use a space-time
mollification as [34] does in three space dimensions; see the next paragraph. Because of the
roughness of the problem, there is no reason to expect that different approximation schemes
lead to the same scaling limits. (This is true even in stochastic ordinary differential equations,
in which different approximation schemes can lead to the difference between the Itô and
Stratonovich integrals.) The recent theories of [21, 23, 24, 26, 32] have made substantial
progress toward interpreting solutions of (locally subcritical) singular stochastic PDEs in
such a way that the effect of the choice of the approximation scheme on the scaling limit can
be understood. Since our present work does not even show that the scaling limit is unique for
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our single choice of mollification, we are definitely not yet in a position to understand the
effect of the approximation on the scaling limit in 2 + 1 dimensions.

We note that our situation is similar to the work [34] in dimensions d ≥ 3, which obtained a
scaling limit with λ = ε

d
2 −1 (so also attenuating the nonlinearity as ε → 0, see [20] for further

discussion) and showed that it satisfies an additive stochastic heat equation with a modified
effective diffusivity and noise strength, that is, a different choice of ν and D. However, [34]
considers noise that is mollified in both time and space, so the correct analogy with our white-
in-time case could be that only the noise strength should be modified—this is the situation
for the multiplicative stochastic heat equation in d ≥ 3 [20, 35, 36].

The possibility of a Gaussian scaling limit, as in [34], is not ruled out by our Theorem 2.2.
Indeed, it is quite possible that the scaling limits we obtain in our setting are Gaussian, espe-
cially in view of the Gaussian limits obtained by [8, 9, 16] for the multiplicative stochastic
heat equation in (2 + 1)-dimensions, which we discuss in more detail later.

1.3. Proof strategy. Our proof strategy for Theorem 1.1 is inspired by intuition from
perturbative renormalization, combined with probabilistic techniques. We use the Gaussian
Poincaré inequality, together with the Cole–Hopf transformation, the Feynman–Kac formula,
and recently derived tightness criteria for negative Hölder spaces [17, 18], to conclude that
(hε)ε>0 is a tight family of random distributions if the expected value of a certain intersec-
tion local time under a randomly tilted Wiener measure remains finite as ε → 0. The tilting
involves the nonlinearity parameter λ, the mollification parameter ε, and the white noise Ẇ .
To understand this expected value, it is natural to try to expand it as a power series in λ. This
resembles the expansions commonly occurring in perturbative renormalization. In fact, if ak

is the coefficient of λk , then ak can, in principle, be written using Feynman diagrams, since
we are expanding around λ = 0, which corresponds to a Gaussian measure.

However, understanding these coefficients is likely to be a very complex task, intimately
tied to the complexities of the so far unsolved task of renormalizing the (2 + 1)-dimensional
KPZ equation. Instead, we adopt a different strategy, which can be roughly described as
follows. If fε(λ) is the original function of λ that we are trying to bound, then we first bound
it by a simpler function gε(λ). Then we exhibit a sequence of nonnegative functions {gε,k}k≥0,
with gε,0 = gε , such that they satisfy a hierarchical system of differential inequalities of the
form |g′

ε,k(λ)| ≤ Cgε,k+1(λ), where C is some constant that does not depend on k or ε. An ε-
free bound on fε(λ) is then obtained by manipulating this hierarchical system of inequalities.

Our proof of Theorem 1.7 relies on the observation that
∫

v(t, x)dx depends only on the
spatial averages of the white noise over the entire torus. These spatial averages, having no
spatial fluctuations, and thus not feeling any effect of the nonlinearity, have exactly the same
effect on

∫
hε(t, x)dx as they do on

∫
v(t, x)dx. However, we will show in Section 9 that∫

hε(t, x)dx, in contrast to
∫

v(t, x)dx, also feels effects of higher Fourier modes of the white
noise, to an extent that does not diminish as ε → 0. Calculating and understanding the higher
Fourier modes involves Malliavin calculus and hypercontractivity, along with the inequalities
described in the previous paragraph.

1.4. Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2, we reduce the number of parameters from three to one by a suitable rescaling of the
equation. In Section 3, we introduce the Cole–Hopf transformation and the Feynman–Kac
representation of the solutions to the mollified equation. In Section 4, we introduce negative
Hölder spaces and criteria for tightness of probability measures on such spaces. In Section 5,
we recall some basic facts about Malliavin calculus that we will use. In Section 6, we es-
tablish key derivative formulas that we will use throughout the paper. Section 7, the heart of
the work, proves the convergence of the infinite series mentioned above. We conclude the
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proof of Theorem 1.1 in Section 8. Finally, in Section 9 we prove Theorem 1.7. Several of
our estimates involve somewhat lengthy but straightforward calculations, which we defer to
Section 10 to preserve the flow of the main arguments.

2. Reduction to one parameter. Let h̃ε be a solution to (1.3). Let us rescale h̃ε by
defining a new process

g̃ε(t, x) := λ(2ν)−1h̃ε((2ν)−1t, x
)
.

An easy verification shows that g̃ε satisfies the equation

∂t g̃
ε(t, x) = 1

2
�g̃ε(t, x) + 1

2
| log ε|− 1

2
∣∣∇g̃ε(t, x)

∣∣2
+ λ(2ν)−2

√
DẆε((2ν)−1t, x

)
,

with g̃ε(0, x) = 0. Now let

B(t, x) := (2ν)1/2W
(
(2ν)−1t, x

)
.

Then Ḃ is again a standard space-time white noise. Let Bε := ρε ∗B . Since there is no scaling
in space in the definition of B , it follows that

Bε(t, x) := (2ν)1/2Wε((2ν)−1t, x
)
.

Thus, g̃ε satisfies the equation

∂t g̃
ε(t, x) = 1

2
�g̃ε(t, x) + 1

2
| log ε|− 1

2
∣∣∇g̃ε(t, x)

∣∣2 + √
θḂε(t, x),

where

(2.1) θ := λ2D

(2ν)3 .

Therefore, to study (1.3), it suffices to study the following stochastic PDE, which involves
only one positive parameter θ :

(2.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t h̃

ε
θ (t, x) = 1

2
�h̃ε

θ (t, x) + 1

2
| log ε|− 1

2
∣∣∇h̃ε

θ (t, x)
∣∣2

+ √
θẆ ε(t, x) t > 0, x ∈ T2,

h̃ε
θ (0, x) = 0 x ∈ T2.

Further, we define

(2.3) hε
θ (t, x) = h̃ε

θ (t, x) − κε
θ (t),

where

(2.4) κε
θ (t) = Eh̃ε

θ (t, x).

With the above definitions, the relation (2.1) shows that Theorem 1.1 is equivalent to the
following theorem about hε

θ .

THEOREM 2.1. There is a θ0 > 0 so that if θ ≤ θ0, then the following hold. For any
sequence εn ↓ 0, there is a subsequence εkn and a D′(R>0 × T2)-valued random distribu-
tion hθ such that h

εkn

θ → hθ in law as n → ∞. Moreover, for any sequence εn ↓ 0 and any
t > 0, there is a subsequence εkn and a D′(T2)-valued random distribution ht;θ such that
h

εkn

θ (t, ·) → ht;θ in law as n → ∞.
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We give a formula for κε
θ (t) in Lemma 6.5, and we obtain the first-order asymptotics

(2.5) κε
θ (t) = 1

2
| log ε|− 1

2
θt

ε2 ‖ρ‖2
L2 + O

(| log ε| 1
2
)

as ε → 0 for fixed θ sufficiently small and fixed t in Lemma 7.4. We note that the big-O term
in (2.5) is still diverging as ε → 0; understanding more precise asymptotics of κε

θ (t) remains
an open problem. Next, let vθ be a solution to the stochastic heat equation

(2.6)

⎧⎨⎩∂tvθ (t, x) = 1

2
�vθ(t, x) + √

θẆ (t, x) t > 0, x ∈ T2,

vθ (0, x) = 0 x ∈ T2.

The following theorem is equivalent to Theorem 1.7.

THEOREM 2.2. Take any t > 0. Suppose that hε
θ (t, ·) converges in law to some limit

ht;θ through a subsequence as ε → 0. Let vθ be a solution of (2.6). Then
∫

ht;θ (x)dx and∫
vθ (t, x)dx are both nondegenerate random variables with mean zero, but their laws are

different.

Throughout the rest of the paper, we will work with the processes h̃ε
θ and hε

θ defined
here instead of the processes h̃ε and hε defined earlier. We will prove Theorem 2.1 and
Theorem 2.2 instead of Theorem 1.1 and Theorem 1.7.

3. The Feynman–Kac formula. We construct solutions to the approximating problems
(2.2) by using the Cole–Hopf transform [11, 27] to transform the equation into a multiplica-
tive stochastic heat equation, and then the Feynman–Kac formula to represent the solutions
to the multiplicative stochastic heat equation in terms of the expectation of a functional of a
Brownian motion. This Feynman–Kac representation will then form the basis for our analysis
throughout the paper.

The Cole–Hopf transform of h̃ε
θ is defined as

(3.1) ũε
θ = exp

{| log ε|− 1
2 h̃ε

θ

}
.

Using Itô’s formula, it is easy to verify that this function solves the multiplicative stochastic
heat equation

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ
ε
θ (t, x) = 1

2
�ũε

θ (t, x)

+ 1

2
| log ε|− 1

2
√

θũε
θ (t, x)Ẇ ε(t, x)

+ θ

2
| log ε|−1ε−2‖ρ‖2

L2 ũ
ε
θ (t, x) t > 0, x ∈ T2,

ũε
θ (0, x) = 1 x ∈ T2,

where the last term comes from the Itô correction. Here, we see that the noise has been
attenuated by the same factor | log ε|− 1

2 that multiplied the nonlinearity in the KPZ equation.
The multiplicative stochastic heat equation in 2 + 1 dimensions with this noise strength

has been studied in the paper [8], which showed among many other things that, for θ below a

critical value, | log ε| 1
2 (ũε

θ (t, x) − 1), averaged over a macroscopic scale, converges to a non-
trivial Gaussian random variable (see [8], Theorem 2.17). This is reminiscent of the setting
of Theorem 2.1, except that instead of subtracting 1, we take a logarithm before multiplying

ũε
θ (t, x) by | log ε| 1

2 . Because the limiting random field is a distribution rather than a function,
it is not clear how to relate these results. Also, much earlier, [4] considered a version of (3.2)



1022 S. CHATTERJEE AND A. DUNLAP

with (in our notation) a very specific tuning of θ around the critical value, and showed the
existence of a limit of the covariance structure. See also [8], Remark 2.19, for a more detailed
discussion of [4].

Here and throughout the rest of the paper, let EXt,x denote expectation with respect to a
Brownian motion on the torus, running backwards in time, starting at position x ∈ T2 at time
t ≥ 0. By the generalized Feynman–Kac formula proved in [3], the solution to (3.2) can be
written as

(3.3) ũε
θ (t, x) = EXt,x exp

{
θ

1
2 | log ε|− 1

2

∫ t

0

∫
ρε(X(s) − y

)
W(dy ds)

}
.

The proof of (3.3) given in [3], (3.22), is for the (1+1)-dimensional case on the whole space;
however, no part of their proof is specific to one space dimension, and replacing the white
noise in [3] with a spatially-periodic white noise (which is equivalent to working on the torus)
requires no modification. The computation of (3.3) previously appeared in [8], Remark 2.16;
see also the (d + 1)-dimensional case, d ≥ 3, in [36]. Using (3.1), we thus get the formula

h̃ε
θ (t, x) = | log ε| 1

2 logEXt,x exp
{
θ

1
2 | log ε|− 1

2

×
∫ t

0

∫
ρε(X(s) − y

)
W(dy ds)

}
,

(3.4)

and hence, by (2.3),

(3.5) hε
θ (t, x) = | log ε| 1

2 logEXt,xE ε
t,θ [W,X],

where

E ε
t,θ [W,X] = exp

{
θ

1
2 | log ε|− 1

2

∫ t

0

∫
ρε(X(s) − y

)
W(dy ds)

− | log ε|− 1
2 κε

θ (t)

}
,

and κε
θ (t) is the function defined in (2.4).

The above formulas show that our model is very closely related to the directed polymer
model. Indeed, if the Brownian motion is replaced by a random walk on a lattice and the white
noise by a collection of i.i.d. Gaussian random variables on the lattice, then the expectation in
(3.5) is proportional to the partition function of the directed polymer in 2 + 1 dimensions. In
fact, the analysis performed in this paper could equally well be done in that discrete setting,
with minimal modifications to account for the discretization. See [12, 16] for other recent
results about the (2 + 1)-dimensional directed polymer model.

4. A criterion for tightness. In this section, we introduce the negative Hölder spaces
which we use to state Theorem 4.4, a stronger version of Theorem 2.1. In our proof of The-
orem 4.4, we will use the tightness criterion for random distributions given in [17]. Since
we will be partially working in the parabolic setting, we will use the easy adaptation of their
results to the parabolic scaling. This adaptation was previously stated and used in [18]. Here,
we only state the results that we use in this paper.

Throughout this paper, we will let s = (2,1,1), corresponding to the parabolic scaling of
space-time. We first recall the definition of negative Hölder spaces that we will use. These
spaces are spaces of distributions: unlike functions, they do not take values at points, but yield
values when averaged against test functions. Of course, if a test function is scaled so as to
approach a delta function, the value of a distribution averaged against the test function is liable
to blow up. Unlike the spaces D′ of distributions defined for the statement of Theorem 1.1,
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negative Hölder spaces include information about the quantitative rate of blowup as a test
function is scaled as to approach a delta. See, for example, [17], [24] or [25] for more details
on these spaces.

Note, however, that we define the separable versions of these spaces below, which are
slightly different from the more common definitions given in [24, 25]. The difference is that
the separable versions of the spaces are the closure of C∞ in the relevant norm, whereas the
usual definition is simply all distributions for which the norm is finite. In our context, the
distinction is not very material, because the nonseparable spaces embed into the separable
versions with any strictly smaller regularity exponent. However, because we are establishing
a tightness result, we will want to work in separable spaces so that Prokhorov’s theorem
applies.

We recall the definition, for r ∈ Z≥0, of Cr (U) to be the space of r-times differentiable
functions on a space U , with the norm given by the sum of the L∞ norms of the function
and its derivatives up to order r . Now let α < 0, r0 = −�α�. First, we will define the rele-
vant Hölder space for functions on T2, which in our setting will represent the evolution at a
fixed time. Let B(0,1/2) = {x ∈ R2 : |x| < 1/2}. For η : R2 → R with support contained in
B(0,1/2), define

Sλη(x) = λ−2η
(
λ−1x

)
.

Interpret Sλη as a function on T2 by periodization. Let Cα(T2) be the completion of C∞(T2)

under the norm

‖f ‖Cα(T2) = sup
{
λ−α
∫

f (x)Sλη(x − y)dx : 0 < λ < 1,

y ∈ T2, η ∈ Cr0
c

(
B(0,1/2)

)
,‖η‖Cr0 ≤ 1

}
.

Next, let us define the relevant Hölder space with parabolic scaling. Here, let B(0,1/2) =
{(t, x) ∈ R × R2 : |t | + |x| < 1/2}. For η : R × R2 → R with support contained in B(0,1/2),
define

Sλ
s η(x) = λ−4η

(
λ−2t, λ−1x

)
.

As before, Sλ
s η can be interpreted as a function on R × T2 by spatial periodization. Then

define Cα
s (R × T2) to be the completion of C∞

c (R × T2) under the norm

‖f ‖Cα
s (R×T2) = sup

{
λ−α
∫ ∞
−∞

∫
f (t, x)Sλ

s η(t − s, x − y)dx dt :

0 < λ < 1, (s, y) ∈ R × T2,

η ∈ Cr0
c

(
B(0,1/2)

)
,‖η‖Cr0 ≤ 1

}
.

Furthermore, define Cα
s;loc(R>0 × T2) to be the completion of C∞

c (R × T2) under the family

of seminorms indexed by χ ∈ C∞
c (R>0 × T2) (in particular, supported on a compact set that

does not intersect {t = 0}) given by

f �→ ‖χf ‖Cα
s (R×T2).

Now we quote the key result of [17], specialized in two different ways to our setting. In the
following, a random distribution f is called “translation-invariant” if f (· + x0) has the same
law as f (·) for any fixed x0 ∈ T2.
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THEOREM 4.1 (Fixed-time version; [17]). Suppose that p ∈ [1,∞), r ∈ N, and

−r < α < β − 2

p
< β < 0.

Then there exists a function φ ∈ Cr
c ((−1/2,1/2)2) and a finite set � ⊂ Cr

c ((−1/2,1/2)2) so
that the following holds. Let {fm}m≥1 be a family of translation-invariant random elements
of Cr

c (T
2)∗ such that for some constant C < ∞, we have

sup
m≥1

E
∣∣∣∣∫ fm(y)φ(y)dy

∣∣∣∣p ≤ C

and, for all n ≥ 1,

sup
m≥1

sup
ψ∈�

E
∣∣∣∣∫ fm(y)S2−n

ψ(y)dy

∣∣∣∣p ≤ C · 2−npβ.

Then {fm}m≥1 is tight in Cα(T2).

THEOREM 4.2 (In the parabolic scaling; [17, 18]). Suppose that p ∈ [1,∞), r ∈ N, and

−r < α < β − 4

p
< β < 0.

Then there is a function φ ∈ Cr
c ((0,1) × (−1/2,1/2)2) and a finite set � ⊂ Cr

c ((0,1) ×
(−1/2,1/2)2) so that the following holds. Let {fm}m≥1 be a family of space-translation-
invariant random elements of Cr

c (R>0 × T2)∗ so that, for each k ≥ 1, there is a constant
C(k) < ∞ such that

sup
m≥1

sup
t∈[2−2k+1,k]

E
∣∣∣∣∫ ∞

0

∫
fm(s, y)S2−k

s φ(t − s, y)dy ds

∣∣∣∣p ≤ C(k),

and, for all n ≥ k,

sup
m≥1

sup
ψ∈�

sup
t∈[2−2k+1,k]

E
∣∣∣∣∫ ∞

0

∫
fm(s, y)S2−n

s ψ(t − s, y)dy ds

∣∣∣∣p
≤ C(k) · 2−npβ.

Then {fm}m≥1 is tight in Cα
s;loc(R>0 × T2).

There are two differences between Theorem 2.30 of [17] and Theorems 4.1 and 4.2 as we
have stated them. The first is that [17], Theorem 2.30, is stated for the case of subsets of Rd

rather than for the torus. This is no obstacle at all, because we can identify functions on T2

with Z2-periodic functions on R2, and it is easy to check that convergence in Cα
loc of a peri-

odic sequence of distributions on R2 is the same as convergence in Cα of the corresponding
sequence of distributions on T2.

The second difference is that [17], Theorem 2.30, is stated for the case where all of the
coordinates of Rd are scaled uniformly. It is more natural in our space-time setting to use the
parabolic scaling s, since this scaling leaves the Laplacian invariant. As previously observed
in [18], proof of Theorem 3.10 on p. 26, going through the proof of [17], Theorem 2.30, but
using the scaling framework described in [24], Sections 3 and 10, yields Theorem 4.2. (In our
case, this means scaling time by twice the scaling of space in all places in the argument.)

We note that Theorem 4.2, in the language of [17], corresponds to choosing the “spanning
set” {(Kk, k)} with Kk = [2−2k+1, k] × T2. Of course, the upper bound k is quite arbitrary:
any function f (k) satisfying limk→∞ f (k) = ∞ would do. The lower bound, of course, is
required to be greater than 2−2k so that the functions fm are only integrated over positive
values.
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REMARK 4.3. As pointed out in the discussion following [17], Theorem 2.7, the func-
tions φ and ψ ∈ � in Theorems 4.1 and 4.2 can be taken to be products of univariate functions
of each coordinate. (They are the wavelets of [14].) We will use the product structure of the
wavelets to simplify the proof of Theorem 4.4, stated below.

Convergence in local negative Hölder spaces means convergence when integrated against
a test function, locally uniformly in the choice of sufficiently smooth test function up to the
rate of blowup as the test functions are scaled. In particular, the topology of a negative Hölder
space is stronger than the topology of D′, so convergence in a negative Hölder space implies
convergence in D′. Moreover, the spaces Cα(T2) and Cα

s;loc(R>0 ×T2) are both Polish spaces
[17], Remarks 2.4 and 2.20. Thus, in light of Prokhorov’s theorem, the following theorem is
a more quantitative version of Theorem 2.1.

THEOREM 4.4. There is a θ0 > 0 such that if θ ∈ [0, θ0], then for any δ > 0, the family
(hε

θ )ε>0 is a tight family of random distributions in C−2−δ
s;loc (R>0 × T2), and for any t > 0, the

family (hε
θ (t, ·))ε>0 is a tight family of random distributions in C−1−δ(T2).

The limited regularities −2 − δ and −1 − δ in the statement of Theorem 4.4 arise because
we are only able to control the p = 2 case of the bounds required by Theorems 4.1 and 4.2.
We expect that higher moments should be bounded similarly, and thus we make the following
conjecture.

CONJECTURE 4.5. For any δ > 0, the tightness statements in Theorem 4.4 hold in the
spaces C−δ

s;loc(R>0 × T2) and C−δ(T2), respectively.

5. Malliavin calculus. We will use several elementary aspects of the Malliavin calculus
in the proofs of our theorems. In this section, we recall only the facts that we will use. We
refer the reader to Chapter 1 of [39] for an introduction to the Malliavin calculus.

For a random variable Y of the form

Y = f

(∫ t

0

∫
g(u, x)W(dx du)

)
with f : RJ → R smooth and g : [0, t] × T2 → RJ , we recall that the Malliavin derivative of
Y is given by, for s ∈ [0, t] and y ∈ T2,

(5.1) Ds,yY = g(s, y) · ∇f

(∫ t

0

∫
g(u, x)W(dx du)

)
.

(Of course, the Malliavin derivative can be defined for more general random variables, but
for simplicity we specialize to the case we will use.) The Malliavin derivative satisfies the
chain rule

Ds,yh(Y ) = h′(Y )Ds,yY,

and the product rule

Ds,y(YZ) = YDs,yZ + ZDs,yY.

We will use two key facts about Malliavin derivatives in our computations, which we state in
the following two propositions. In each statement, Y is as above.

PROPOSITION 5.1 (Gaussian integration by parts). We have

(5.2) E
(
Y

∫ t

0

∫
ξ(s, y)W(dy ds)

)
= E
(∫ t

0

∫
ξ(s, y)Ds,yY dy ds

)
.
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For the proof, see [39], Lemma 1.2.1.

PROPOSITION 5.2 (Gaussian Poincaré inequality). We have

(5.3) VarY ≤
∫ t

0

∫
E(Ds,yY )2 dy ds.

This was proved in [28]; the statement in our setting was given in [38].

6. Preliminary computations. Having introduced all necessary notation and results
from the literature, we are now ready to begin our proofs. Throughout the rest of the paper,
we will use C to denote arbitrary universal constants, whose values may change from line
to line. Sometimes C′, C1 and C2 will be used for the same purpose. As mentioned before,
any integral without a specified domain of integration will denote integration over T2. Unless
otherwise mentioned, Lp norms will stand for Lp norms over T2. We will assume that ε < 1
throughout, and sometimes even smaller. We will also frequently interchange expectations
and integrals, and will move Malliavin derivatives inside integrals and expectations. Since
the integrations take place over finite measure spaces and the functions under consideration
are smooth in the variables that are differentiated, these manipulations are easily justified.

6.1. Derivatives. In this section, we derive compute several quantities that appear in ex-
pressions for the moments appear in the hypotheses of Theorems 4.1 and 4.2, as well as in
the derivatives of these moments. In Section 7, we will show how to use the derivatives to
control Taylor-like expansions of the moments, while in Section 8, we will show how to use
these bounds to estimate the moments appearing in Theorems 4.1 and 4.2, and thus prove
Theorem 4.4. The reader may at this point wish to flip forward to Lemma 8.1 to see how the
expressions in this subsection appear in the variance bound.

In order to write our statements, we first need to introduce some notation. We define the
tilted probability measure P̂

ε,W,θ
Xt,x according to the Radon–Nikodym derivative

(6.1)
dP̂ε,W,θ

Xt,x

dPXt,x

= E ε
θ,t [W,X]

EXt,xE ε
θ,t [W,X]

and let Êε,W,θ
Xt,x denote expectation with respect to this measure. (Here, PXt,x is the measure

corresponding to EXt,x defined in Section 3.) Note that the Radon–Nikodym derivative (6.1)
is random, as it depends on the noise.

Our derivative computations will involve functions of multiple Brownian paths. If x =
(x1, . . . , xJ ) and X = (X1, . . . ,XJ ), we will frequently use the shorthand notation

PXt,x = P
X

t,x1
1 ,...,X

t,xJ
J

:= P
X

t,x1
1

⊗ · · · ⊗ P
X

t,xJ
J

and

P̂
θ,W,ε
Xt,x = P̂

θ,W,ε

X
t,x1
1 ,...,X

t,xJ
J

:= P̂
θ,W,ε

X
t,x1
1

⊗ · · · ⊗ P̂
θ,W,ε

X
t,xJ
J

.

We also define

� ε
θ,t [W,X] =

J∏
j=1

E ε
θ,t [W,Xj ],

so that

dP̂ε,W,θ
Xt,x

dPXt,x
= � ε

θ,t [W,X]
EXt,x� ε

θ,t [W,X] .
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The product measures defined above will often be used in the following way. Suppose that we
want to evaluate (Ê

ε,W,θ
Xt,x Q(X))2 for some functional Q. Then we will use the representation(

Ê
ε,W,θ
Xt,x Q(X)

)2 = Ê
ε,W,θ

X
t,x
1 ,X

t,x
2

(
Q(X1)Q(X2)

)
,

which conveniently allows exchange of expectations and integrals in many places, which we
would not be able to achieve with the expectation squared.

Next, the intersection time of two paths X1, X2 is defined as

I ε
t [X1,X2] =

∫ t

0
Rε(X1(s) − X2(s)

)
ds,

where Rε is defined by the T2-convolution

Rε = ρε ∗ ρε.

Since ρ is an even function, note that

Rε(0) =
∫

ρε(x)2 dx

=
∫

R2
ε−4ρ

(
ε−1x

)2 dx =
∫

R2
ε−2ρ(y)2 dy.

Thus, for any path X,

(6.2) I ε
t [X,X] = t

ε2 ‖ρ‖2
L2 .

We will have an important use for the above identity later. We now proceed with our derivative
computations. We first note that

∂

∂θ
E ε

θ,t [W,X] =
(

1

2

(
θ | log ε|)− 1

2

∫ t

0

∫
ρε(X(s) − y

)
W(dy ds)

− | log ε|− 1
2
∂κε

θ (t)

∂θ

)
E ε

θ,t [W,X].
(6.3)

We can also compute the Malliavin derivative Ds,y with respect to the white noise. A simple
calculation using (5.1) gives

(6.4) Ds,yE
ε
θ,t [W,X] = θ

1
2 | log ε|− 1

2 ρε(X(s) − y
)
E ε

θ,t [W,X].
The following lemma is a more involved derivative computation. Let X = (X1, . . . ,XJ ),
X̃ = (X̃1, . . . , X̃J ), and x = (x1, . . . , xJ ). Suppose that Q : C([0, t])J → R is measurable.

LEMMA 6.1. We have the derivative formula

∂

∂θ
Ê

θ,W,ε
Xt,x Q[X]

= 1

2

(
θ | log ε|)− 1

2

∫ t

0

∫ J∑
k=1

Ê
θ,W,ε

Xt,x,X̃t,x

(
Q[X](ρε(Xk(s) − y

)
(6.5)

− ρε(X̃k(s) − y
)))

W(dy ds).
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Moreover, whenever s ∈ [0, t] we have

Ds,y

� ε
θ,t [W,X]

EXt,x� ε
θ,t [W,X]

= θ
1
2 | log ε|− 1

2

J∑
k=1

[
ρε(Xk(s) − y)� ε

θ,t [W,X]
EXt,x� ε

θ,t [W,X](6.6)

− �
ε
θ,t [W,X]EXt,x(ρε(Xk(s) − y)� ε

θ,t [W,X])
(EXt,x� ε

θ,t [W,X])2

]
and

Ds,yÊ
θ,W,ε
Xt,x Q[X]

=
J∑

k=1

θ
1
2 | log ε|− 1

2 Ê
θ,W,ε

Xt,x,X̃t,xQ[X][ρε(Xk(s) − y
)− ρε(X̃k(s) − y

)]
.

(6.7)

LEMMA 6.2. We have
∂

∂θ
EÊθ,W,ε

Xt,x Q[X]

= 1

2
| log ε|−1EÊθ,W,ε

Xt,x,X̃t,x,˜̃Xt,x

[
Q[X]

J∑
k,�=1

(
I ε

t [Xk,X�]1k �=�(6.8)

− 2I ε
t [Xk, X̃�] + (1 + 1k=�)I

ε
t [X̃k,

˜̃X�])
]
.

We defer the proofs of Lemma 6.1 and Lemma 6.2 to Section 10.1.

6.2. Brownian motion intersection estimates. In this section, we state the results about
Brownian motion that we will need to prove our theorems. The Brownian motion estimates
are quite standard, so we defer the proofs to Section 10.2. The underlying probabilistic facts
behind the following lemmas are that a Brownian motion started at the origin in R2 and run
for time t � 1 will spend time on the order log t in a unit ball around the origin, and that a
random walk started at distance

√
t from the origin in R2 and run for t steps will reach the

unit ball around the origin with probability on the order of 1/ log t , but conditional on that
event will again spend on the order of log t steps in the unit ball.

We will use the notation |x|T2 to mean the distance in the torus of x from the origin, that
is,

|x|T2 = min
y∈Z2

|x + y|,

where |x + y| is the usual Euclidean norm of x + y.

LEMMA 6.3. There is an absolute constant C so that if Y ∈ C([0, t],T2) is a determin-
istic path and ε ≤ e−t/2 then we have

EXt,xI ε
t [X,Y ]r ≤ Crr!| log ε|r .

LEMMA 6.4. There is an absolute constant C so that as long as ε ≤ e−t/2, we have

(6.9) E
X

t,x1
1 ,X

t,x2
2

I ε
t [X1,X2]r ≤ Crr!(t + 1 + log |x1 − x2|−2

T2

)| log ε|r−1.
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6.3. The renormalization constant. The following lemma allows us to give a somewhat
more explicit expression for the renormalization constant κε

θ (t) defined in (2.4).

LEMMA 6.5. We have

(6.10) κε
θ (t) = 1

2
| log ε|− 1

2

(
θt

ε2 ‖ρ‖2
L2 −

∫ θ

0
EÊζ,W,ε

Xt,x ,X̃t,xI
ε
t [X, X̃]dζ

)
.

PROOF. We can compute

∂

∂θ
h̃ε

θ (t, x) = 1

2
√

θ

EXt,x [(∫ t
0
∫

ρε(X(s) − y)W(dy ds))E ε
θ,t [W,X]]

EXt,xE ε
θ,t [W,X] .

So, using the Malliavin integration by parts formula (5.2), we have

∂

∂θ
Eh̃ε

θ (t, x)

= 1

2
√

θ
E
∫ t

0

∫
EXt,x

[
ρε(X(s) − y

)
Ds,y

( E ε
θ,t [W,X]

EXt,xE ε
θ,t [W,X]

)]
dy ds.

Thus, by (6.6), we have

∂

∂θ
Eh̃ε

θ (t, x)

= 1

2
| log ε|− 1

2 E
∫ t

0

∫
Ê

θ,W,ε

Xt,x,X̃t,x

(
ρε(X(s) − y

)2
− ρε

(
X(s) − y

)
ρε

(
X̃(s) − y

))
dy ds.

Since ρ is an even function, we have that for any two paths X and X̃,∫ t

0

∫
ρε(X(s) − y

)
ρε(X̃(s) − y

)
dy ds

=
∫ t

0

∫
ρε(X(s) − X̃(s) + z

)
ρε(z)dz ds(6.11)

=
∫ t

0
Rε(X(s) − X̃(s)

)
ds = I ε

t [X, X̃].
Therefore, by (6.2), we get

∂

∂θ
Eh̃ε

θ (t, x) = 1

2
| log ε|− 1

2

[
t

ε2 ‖ρ‖2
L2 − EÊθ,W,ε

Xt,x,X̃t,xI
ε
t [X, X̃]

]
.

Integrating in θ , and observing that h̃ε
0 ≡ 0 by (3.4), we get (6.10). �

7. Taylor expansion bound. Our main technique in this paper is to expand random
variables of the form

EÊθ,W,ε
Xt,x Q[X],

in terms of an infinite Taylor series in θ . (Again, we invite the reader to look ahead to
Lemma 8.1 to see how such functionals arise in our variance bound.) An obstacle to car-
rying out the Taylor expansion is that the right-hand side of (6.8) has on the order of J 2

terms, where as above J is the number of Brownian motions participating in Q. When the
differentiation process is iterated r times, we see that J grows linearly in r , so the number of
terms in the r th derivative will be on the order of (r!)2. On its face, this is too many terms
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for the Taylor series to be controlled. Of course, the terms will have different signs and there
will be cancellations. However, we do not know a way to control the cancellation directly.

Instead, a key step in our approach is the following Proposition 7.1, which uses Young’s in-
equality to “collapse” similar terms to upper-bound the θ -derivative of Gr,Q , the expectation
of a functional, in terms of Gr+1,Q , the expectation of another functional of a similar form.
The key point is that the successive functionals arising in this way use a constant number of
Brownian motions, rather than the linearly-growing number that arises from naive iterated
differentiation as described in the previous paragraph. This means that the number of terms
in the functionals grows only exponentially rather than like the square of the factorial, and
this can be controlled by taking θ sufficiently small in the Taylor series.

The price we pay, of course, is that the functions Gr,Q are not truly successive derivatives
of a function; rather, they are successive upper bounds on each other’s derivatives. As we
show in Lemma 7.2 and Corollary 7.3 below, this still allows us to use a Taylor series-like
construction to get upper bounds on our original quantity of interest. However, the fact that
our technique as it stands does not allow us to obtain lower bounds seems to be a key bottle-
neck impeding further progress. Obtaining more precise control on these Taylor series may
be a fruitful target of future work.

PROPOSITION 7.1. Let X0 = (X0;1, . . . ,X0;J ), X1 = (X1;1, . . . ,X1;J ), X2 = (X2;1, . . . ,
X2;J ) and x = (x1, . . . , xJ ). Define

X = (X0,X1,X2),

x = (x,x,x).

Suppose that

Q : C([0, t])J → R

is a measurable functional. Define for r ≥ 0

(7.1) Fr,Q(θ) =
2∑

α=0

2∑
β=0

J∑
j=1

J∑
k=1

1(α,j) �=(β,k)Fα,j ;β,k;r,Q(θ),

where

(7.2) Fα,j ;β,k;r,Q(θ) = EÊθ,W,ε

Xt,x

(
Q[X0]I ε

t [Xα;j ,Xβ;k]r).
Finally, let

(7.3) Gr,Q(θ) = | log ε|−rFr,Q(θ).

Then there is a constant C(J ), depending only on J , so that

(7.4)
∣∣G′

r,Q(θ)
∣∣≤ C(J )Gr+1,|Q|(θ).

(Here, |Q| is defined by |Q|[X0] = |Q[X0]|.)
PROOF. Let us define

X∗ = (Xt,x, X̃t,x
,
˜̃Xt,x)

,

x∗ = (x,x,x).

Let (α, j) �= (β, k). By Lemma 6.2, we have

2| log ε|F ′
α,j ;β,k;r,Q(θ) =

2∑
α′=0

2∑
β ′=0

J∑
j ′=1

J∑
k′=1

EÊθ,W,ε

Xt,x∗∗
J

α,β,j,k

α′,β ′,j ′,k′ [X∗],(7.5)
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where

J
α,β,j,k

α′,β ′,j ′,k′ [X∗]
= Q[X0]I ε

t [Xα;j ,Xβ;k]r(I ε
t [Xα′;j ′,Xβ ′;k′ ]1(α′,j ′) �=(β ′,k′)

− 2I ε
t [Xα′;j ′, X̃β ′;k′ ] + (1 + 1(α′,j ′)=(β ′,k′))I

ε
t [X̃α′;j ′, ˜̃Xβ ′;k′ ]).

By the triangle inequality and Young’s inequality, we have∣∣J α,β,j,k

α′,β ′,j ′,k′ [X∗]
∣∣≤ 5r

r + 1

∣∣Q[X0]
∣∣I ε

t [Xα;j ,Xβ;k]r+1

+ 1

r + 1

∣∣Q[X0]
∣∣I ε

t [Xα′;j ′,Xβ ′;k′ ]r+11(α′,j ′) �=(β ′,k′)

+ 2

r + 1

∣∣Q[X0]
∣∣I ε

t [Xα′;j ′, X̃β ′;k′ ]r+1

+ 2

r + 1

∣∣Q[X0]
∣∣I ε

t [X̃α′;j ′, ˜̃Xβ ′;k′ ]r+1.

(7.6)

Let f : {0,1,2} → {0,1,2} be an arbitrary function that has the property that f (α) ∈ {1,2} \
{α} for any α. By symmetry, whenever (α′, j ′) �= (β ′, k′),

EÊθ,W,ε

Xt,x∗∗

(∣∣Q[X0]
∣∣I ε

t [Xα′;j ′, X̃β ′;k′ ]r+1)
= EÊθ,W,ε

Xt,x∗∗

(∣∣Q[X0]
∣∣I ε

t [Xα′;j ′,Xf (α′);k′ ]r+1),
and similarly,

EÊθ,W,ε

Xt,x∗∗

(∣∣Q[X0]
∣∣I ε

t [X̃α′;j ′, ˜̃Xβ ′;k′ ]r+1)
= EÊθ,W,ε

Xt,x∗∗

(∣∣Q[X0]
∣∣I ε

t [X1;j ′,X2;k′ ]r+1).
Combining these observations with (7.6), we have

EÊθ,W,ε

Xt,x∗∗
J

α,β,j,k

α′,β ′,j ′,k′ [X∗]

≤ 5r

r + 1
Fα,j ;β,k;r+1,|Q|(θ) + 1(α′,j ′) �=(β ′,k′)

r + 1
Fα′,j ′;β ′,k′;r+1,|Q|(θ)

+ 2

r + 1
Fα′,j ′;f (α′),k′;r+1,|Q|(θ) + 2

r + 1
F1,j ′;2,k′;r+1,|Q|(θ)

≤ 5Fα,j ;β,k;r+1,|Q|(θ) + 1(α′,j ′) �=(β ′,k′)Fα′,j ′;β ′,k′;r+1,|Q|(θ)

+ 2Fα′,j ′;f (α′),k′;r+1,|Q|(θ) + 2F1,j ′;2,k′;r+1,|Q|(θ).

In light of (7.3) and (7.5), this implies (7.4) with C(J ) = CJ 2 for some absolute constant C.
�

LEMMA 7.2. For any K ≥ 0, we have

Gr,Q(θ) ≤
K∑

j=0

(C(J )θ)j

j ! Gr+j,|Q|(0) + (C(J )θ)K+1

(K + 1)! sup
0≤θ ′≤θ

Gr+K+1,|Q|
(
θ ′).

This statement is proved from (7.4) in the same way as Taylor’s theorem from single-
variable calculus, using inequalities instead of equalities, so we omit the details.
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COROLLARY 7.3. For any bounded measurable functional Q and any r ≥ 0,

Gr,Q(θ) ≤
∞∑

j=0

(C(J )θ)j

j ! Gr+j,|Q|(0).

PROOF. Let ‖Q‖∞ be an absolute bound on |Q|. Then we have a trivial bound

Gr,Q(θ) ≤ Fr,Q(θ) ≤ 9J 2‖Q‖∞
(
t‖ρ‖L∞/ε2)r

by the definition (7.1)–(7.2) of Fr,Q , and the observation that∥∥I ε
t

∥∥∞ ≤ t
∥∥Rε
∥∥
L∞ ≤ t

∥∥ρε
∥∥
L1

∥∥ρε
∥∥
L∞ = t‖ρ‖L∞

ε2 .

Combining this with Lemma 7.2, we have that

Gr,Q(θ) ≤
K∑

j=0

(C(J )θ)j

j ! Gr+j,|Q|(0) + (C(J )θ)K+1

(K + 1)! sup
0≤θ ′≤θ

Gr+K+1,|Q|
(
θ ′)

≤
K∑

j=0

(C(J )θ)j

j ! Gr+j,|Q|(0)

+ 9J 2‖Q‖∞
(
t‖ρ‖L∞/ε2)r+K+1 (C(J )θ)K+1

(K + 1)! .

The result follows when we notice that the remainder term goes to 0 as K goes to infinity.
�

We conclude this section with two examples of how we can apply the above bounds in
concert with the results of Section 6.2. First, we compute the first-order asymptotics of the
renormalization constant.

LEMMA 7.4. For fixed θ sufficiently small and fixed t , we have

κε
θ (t) = 1

2
| log ε|− 1

2
θt

ε2 ‖ρ‖2
L2 + O

(| log ε| 1
2
)

as ε ↓ 0.

PROOF. Let x = (x, x) and fix notation as in Proposition 7.1. We have by Corollary 7.3
that, as long as θ is sufficiently small and ε < e−t/2,

EÊθ,W,ε

X
t,x
0,1,X

t,x
0,2

I ε
t [X0,1,X0,2]

≤
∞∑

�=0

C�θ�

�!| log ε|�
( 2∑

α=0

2∑
β=0

2∑
j=1

2∑
k=1

1(α,j) �=(β,k)

×EXt,x∗∗
(
I ε

t [X0,1,X0,2]I ε
t [Xα,j ,Xβ,k]�)

)

≤ 35
∞∑

�=0

C�θ�

�!| log ε|�EX
t,x
0,1,X

t,x
0,2

I ε
t [X0,1,X0,2]�+1

≤ C′| log ε|,
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where the second inequality is by Young’s inequality and the third is by Lemma 6.3. Then
the statement follows from (6.10). �

The following proposition is used in Section 9. In Section 8, we use a slightly more spe-
cialized, but similar in flavor, application of the bounds in Section 6.2; see Proposition 8.2.

PROPOSITION 7.5. Let X = (X1, . . . ,XJ ) and x = (x1, . . . , xJ ). Let Q be a bounded
measurable functional and define

Q(θ) = EÊθ,W,ε
Xt,x Q[X].

Then there are constants C > 0 and θ0 > 0, depending only on J (and not on ε, θ , Q, x and
t), so that if 0 ≤ θ ≤ θ0 and ε ≤ e−t/2, then

(7.7)
∣∣Q′(θ)

∣∣≤ C
(
EXt,x

∣∣Q[X]∣∣2)1/2
.

PROOF. By Proposition 7.1, we get∣∣Q′(θ)
∣∣≤ C(J )G1,|Q|(θ).

Therefore by Corollary 7.3, with X∗ defined as in the statement of Proposition 7.1 (with
X0 = X), we get

∣∣Q′(θ)
∣∣≤ ∞∑

�=0

(C(J )θ)�

�! G�+1,|Q|(0)

=
∞∑

�=0

C(J )�θ�

�!| log ε|�+1

( 2∑
α=0

2∑
β=0

2∑
j=1

2∑
k=1

1(α,j) �=(β,k)(7.8)

×EXt,x∗∗
(∣∣Q[X0]

∣∣I ε
t [Xα,j ,Xβ,k]�+1)).

By the Cauchy–Schwarz inequality, we get

EXt,x∗∗
(∣∣Q[X0]

∣∣I ε
t [Xα,j ,Xβ,k]�+1)

≤ (EXt,x
∣∣Q[X]∣∣2)1/2(

EXt,x∗∗ I ε
t [Xα,j ,Xβ,k]2(�+1))1/2

.
(7.9)

Now Lemma 6.3 tells us that(
EXt,x∗∗ I ε

t [Xα,j ,Xβ,k]2(�+1))1/2 ≤ C�+1
√(

2(� + 1)
)!| log ε|�+1

≤ (2C)�+1(� + 1)!| log ε|�+1.

(7.10)

Plugging (7.9) and (7.10) into (7.8) gives us

∣∣Q′(θ)
∣∣≤ C1

(
EXt,x

∣∣Q[X]∣∣2)1/2
∞∑

�=0

(C2θ)� ≤ C1

1 − C2

(
EXt,x

∣∣Q[X]∣∣2)1/2
,

as long as θ < C−1
2 , for some constants C1 and C2. This completes the proof of the lemma.

�
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8. Proof of tightness. In this section, we prove Theorem 4.4. The key ingredients will
be the tightness criteria in Theorems 4.1 and 4.2 (which we will apply with p = 2), the
Gaussian Poincaré inequality, our Taylor expansion bound Corollary 7.3, and the Brownian
motion intersection estimates in Section 6.2. First, we compute the variance of our KPZ
solution integrated against a test function.

LEMMA 8.1. If ψ is a bounded measurable function on T2, then we have

Var
(∫

hε
θ (t, x)ψ(x)dx

)
≤ θ

∫ ∫
ψ(x1)ψ(x2)EÊ

θ,W,ε

X
t,x1
1 ,X

t,x2
2

I ε
t [X1,X2]dx1 dx2.

(8.1)

PROOF. By the Gaussian Poincaré inequality (5.3), we have

Var
(∫

hε
θ (t, x)ψ(x)dx

)
≤
∫ t

0

∫
E
(∫ (

Ds,yh
ε
θ (t, x)

)
ψ(x)dx

)2
dy ds.

Now, we have by (5.1) and (6.4), for s ∈ [0, t], that

Ds,yh
ε
θ (t, x) = | log ε| 1

2
EXt,x Ds,yE

ε
θ,t [W,X]

EXt,xE ε
θ,t [W,X]

= θ
1
2
EXt,xρε(X(s) − y)E ε

θ,t [W,X]
EXt,xE ε

θ,t [W,X](8.2)

= θ
1
2 Ê

θ,W,ε
Xt,x ρε(X(s) − y

)
.

Therefore, we have

Var
(∫

hε
θ (t, x)ψ(x)dx

)

≤
∫ t

0

∫
E
(∫

θ
1
2 Ê

θ,W,ε
Xt,x ρε(X(s) − y

)
ψ(x)dx

)2
dy ds

= θ

∫ t

0

∫ ∫
EÊθ,W,ε

X
t,x1
1 ,X

t,x2
2

(
ρε(X1(s) − y

)
ρε(X2(s) − y

))
× ψ(x1)ψ(x2)dx1 dx2 dy ds

= θ

∫ ∫
EÊθ,W,ε

X
t,x1
1 ,X

t,x2
2

I ε
t [X1,X2]ψ(x1)ψ(x2)dx1 dx2,

which is (8.1). �

Now we derive a bound on the terms of the Taylor-like expansion described in the previous
section.

PROPOSITION 8.2. Fix notation as in Proposition 7.1, with J = 2 and

(8.3) Q[X0] = I ε
t [X0;1,X0;2].

We have, if (α, j) �= (β, k) and ε ≤ e−t/2, that

Fα,j ;β,k;r,Q(0) ≤ Cr+1(r + 1)!| log ε|r(t + 1 + log |x1 − x2|−2
T2

)
.
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PROOF. If {(α, j), (β, k)} = {(0,1), (0,2)}, then this is Lemma 6.4. So we assume with-
out loss of generality that (β, k) /∈ {(0,1), (0,2)}, since the case (α, j) /∈ {(0,1), (0,2)} is
similar. Then note that

Fα,j ;β,k;r,Q(0) = EXt,x
(
I ε

t [X0;1,X0;2]I ε
t [Xα;j ,Xβ;k]r)

= EXt,x
[
I ε

t [X0;1,X0;2]EXt,x
(
I ε

t [Xα;j ,Xβ;k]r |X0;1,X0;2,Xα;j
)]

≤ Crr!| log ε|rEXt,xI ε
t [X0;1,X0;2]

≤ Crr!| log ε|r(t + 1 + log |x1 − x2|−2
T2

)
,

where the first inequality follows by Lemma 6.3 and the second inequality by Lemma 6.4.
�

We are now ready to show our tightness result.

PROOF OF THEOREM 4.4. It follows from Proposition 8.2 that, again with the choice of
Q as in (8.3), there is a constant C so that, as long as ε ≤ e−t/2,

Gr,Q(0) ≤ Cr+1(r + 1)!(t + 1 + log |x1 − x2|−2
T2

)
.

Combining this with Corollary 7.3, we have that

EÊθ,W,ε

X
t,x1
1 ,X

t,x2
2

I ε
t [X1,X2] = G0,Q(θ)

≤
∞∑

r=0

(Cθ)r

r! Gr,Q(0)

≤ (t + 1 + log |x1 − x2|−2
T2

) ∞∑
r=0

(
C′θ
)r

≤ θ

1 − C′θ
(
t + 1 + log |x1 − x2|−2

T2

)
,

(8.4)

as long as θ is sufficiently small. Then, using Lemma 8.1 and (8.4), and identifying T2 with
(−1/2,1/2]2 in the third and fourth lines below, we have for any ψ ∈ Cc((−1/2,1/2)2),

E
∣∣∣∣∫ hε

θ (t, x)S2−n

ψ(x)dx

∣∣∣∣2
≤ θ

∫ ∫
S2−n

ψ(x1)S2−n

ψ(x2)EÊ
θ,W,ε

X
t,x1
1 ,X

t,x2
2

I ε
t [X1,X2]dx1 dx2

= 24nθ

∫
R2

∫
R2

ψ
(
2nx1
)
ψ
(
2nx2
)
EÊθ,W,ε

X
t,x1
1 ,X

t,x2
2

I ε
t [X1,X2]dx1 dx2

≤ θ2

1 − C′θ

∫
R2

∫
R2

ψ(x1)ψ(x2)

× (t + 1 + 2n log 2 + log |x1 − x2|−2
T2

)
dx1 dx2

≤ θ2

1 − C′θ
‖ψ‖2

L∞
(
t + 1 + 2n log 2 +

∫ ∫
log |x1 − x2|−2

T2 dx1 dx2

)
,

(8.5)

which proves that {hε
θ (t, ·)}ε>0 is tight in C−1−δ(T2) for any δ > 0, by Theorem 4.1 (with

p = 2, β < 0 arbitrary, and α < β − 1 arbitrary). Next, for any ψ ∈ Cc((−1/2,1/2)2), φ ∈
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Cc(R>0), n ≥ k ≥ 1, t > 2−2k , and ξ(t, x) = φ(t)ψ(x), the Cauchy–Schwarz inequality gives

E
∣∣∣∣∫ ∞

0

∫
hε

θ (s, x)S2−n

s ξ(t − s, x)dx ds

∣∣∣∣2
≤ 28n

(∫ ∞
0

∣∣φ(22n(t − s)
)∣∣ds

)

×
∫ ∞

0

∣∣φ(22n(t − s)
)∣∣E∣∣∣∣∫

R2
hε

θ (s, x)ψ
(
2nx
)

dx

∣∣∣∣2 ds

where, as before, we identified T2 with (−1/2,1/2]2 in the last line. Now,∫ ∞
0

∣∣φ(22n(t − s)
)∣∣ds ≤ 2−2n‖φ‖L1 .

On the other hand, by (8.5),

E
∣∣∣∣∫

R2
hε

θ (s, x)ψ
(
2nx
)

dx

∣∣∣∣2
≤ 2−4nθ2

1 − C′θ
‖ψ‖2

L∞
(
s + 1 + n log 2 +

∫ ∫
log |x1 − x2|−2

T2 dx1 dx2

)
.

Thus, ∫ ∞
0

∣∣φ(22n(t − s)
)∣∣E∣∣∣∣∫

R2
hε

θ (s, x)ψ
(
2nx
)

dx

∣∣∣∣2 ds

≤ 2−4nθ2

1 − C′θ
‖ψ‖2

L∞
∫ ∞

0

∣∣φ(22n(t − s)
)∣∣(s + 1 + 2n log 2

+
∫ ∫

log |x1 − x2|−2
T2 dx1 dx2

)
ds.

But since φ ∈ Cc(R>0),∫ ∞
0

∣∣φ(22n(t − s)
)∣∣s ds = 2−2n

∫ 22nt

0

∣∣φ(u)
∣∣(t − 2−2nu

)
du

≤ 2−2nC(φ)t,

where C(φ) depends only on φ. Similarly,∫ ∞
0

∣∣φ(22n(t − s)
)∣∣ds ≤ 2−2nC(φ).

Combining these observations, we see that

E
∣∣∣∣∫ ∞

0

∫
hε

θ (s, x)S2−n

s ξ(t − s, x)dx ds

∣∣∣∣2
≤ θ2

1 − C′θ
C(φ,ψ)

(
t + 1 + 2n log 2

+
∫ ∫

log |x1 − x2|−2
T2 dx1 dx2

)
,

where C(φ,ψ) depends only on φ and ψ . In light of Theorem 4.2 (with p = 2, β < 0
arbitrary and α < β − 2 arbitrary) and Remark 4.3, this shows that {hε

θ }ε>0 is tight in
C−2−δ
s;loc (R>0 × T2) for any δ > 0. �
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9. Nonvanishing effect of the nonlinearity. In this section, we prove Theorem 2.2: that
the zeroth Fourier mode of our limiting KPZ solution has a different law than the zeroth
Fourier mode of the additive stochastic heat equation with the same noise strength. To do this,
we notice that the zeroth Fourier mode of the solution to the ASHE only sees contributions
from the zeroth Fourier mode of the white noise, since the Fourier transform diagonalizes the
Laplacian. Because the KPZ nonlinearity depends only on the derivative of the solution, and
thus does not see the zeroth Fourier mode, so the contributions from the zeroth Fourier mode
of the noise to the zeroth Fourier mode of the solution are the same for the KPZ solution
as they are for the ASHE solution. On the other hand, as we will show in this section, the
KPZ nonlinearity does make contributions from higher Fourier modes of the white noise to
the zeroth Fourier mode of the solution. These extra contributions are what distinguishes the
KPZ solution from the ASHE solution.

In Lemma 9.1 below, we will formalize the idea that the added nonlinear contributions to
the zeroth Fourier mode from higher Fourier modes of the noise will distinguish the KPZ
solution from the ASHE solution. In the remainder of this section, we will show that these
contributions exist for positive ε and do not vanish as ε → 0. In passing to the limit, the
elementary Lemma 9.3 below will play an important role.

For ξ ∈ L2([0, t] × T2;C), define

(9.1) Wt [ξ ] =
∫ t

0

∫
ξ(s, x)W(dx ds).

We note that Wt [ξ ] is a Gaussian random variable, that Wt [ξ ] = Wt [ξ ], and that

(9.2) EWt [ξ ]Wt [η] =
∫ t

0

∫
ξ(s, x)η(s, x)dx ds.

Therefore, if {ξα}α is an orthonormal set in L2([0, t]×T2;C), then {Wt [ξα]}α is an orthonor-
mal set in L2(�,F,P;C). Moreover, if {ξα}α is an orthonormal set in L2([0, t] × T2;C)

which also satisfies

(9.3)
∫ t

0

∫
ξα(s, x)ξβ(s, x)dx ds = δα,β,

then {Wt [ξα]}α is a collection of independent complex Gaussian random variables. (Note
that the difference between (9.3) and orthogonality in L2([0, t] × T2;C) is that no complex
conjugate is taken in (9.3).)

Recall the function vθ solving the additive stochastic heat equation (2.6). We consider the
spatial Fourier transform at 0,

v̂θ (t,0) =
∫

vθ (t, x)dx.

Taking the Fourier transform of (2.6) and evaluating at 0, we see that v̂θ (t,0) solves the
stochastic differential equation

(9.4) dv̂θ (t,0) = √
θ dWt [1],

and so

v̂θ (t,0) = √
θWt [1].

Now define

W̃t = Wt − Wt [1].
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Here, of course, Wt denotes the cylindrical Wiener process at time t . Analogously to (9.1),
define

W̃t [ξ ] = Wt [ξ ] −
∫ t

0

∫
ξ(s, y)dy dWs[1].

Now we have, using (9.2), that

EW̃t [ξ ]Ws[1] = E
(
Wt [ξ ] −

∫ t

0

∫
ξ(s, y)dy dWt [1]

)
Ws[1] = 0,

for all ξ , so W̃ and {Wt [1]}t≥0 are independent. Also, note that Wt [1] is constant in space, so
mollifying it has no effect. Thus,

(9.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t h̃

ε
θ (t, x) = 1

2
�h̃ε

θ (t, x) + 1

2
| log ε|− 1

2
∣∣∇h̃ε

θ (t, x)
∣∣2

+ √
θẆt [1] + √

θ ˙̃Wε
(t, x) t > 0, x ∈ T2,

h̃ε
θ (0, x) = 0 x ∈ T2.

Now we define a function

(9.6) f̃ ε
θ (t, x) = h̃ε

θ (t, x) − v̂θ (t,0),

so by (9.4) and (9.5), f̃ ε
θ (t, x) solves the SPDE⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t f̃
ε
θ (t, x) = 1

2
�f̃ ε

θ (t, x) + 1

2
| log ε|− 1

2
∣∣∇f̃ ε

θ (t, x)
∣∣2

+ √
θ ˙̃Wε

(t, x) t > 0, x ∈ T2,

f̃ ε
θ (0, x) = 0 x ∈ T2.

Combining (9.6) with (3.4), we can derive the expression

f̃ ε
θ (t, x) = | log ε| 1

2 logEXt,x exp
{
θ

1
2 | log ε|− 1

2

×
∫ t

0

∫
ρε(X(s) − y

)
W̃ (dy ds)

}
.

(9.7)

Since W̃ and {Wt [1]}t are independent processes, we can conclude from (9.4) and (9.7) that
f̃ ε

θ and v̂θ (·,0) are independent. Now define

f ε
θ (t, x) = f̃ ε

θ (t, x) − κε
θ (t),

so that

(9.8) hε
θ (t, x) = f ε

θ (t, x) + v̂θ (t,0)

and f ε
θ and v̂θ (·,0) are independent. Moreover, since

(9.9) Ehε
θ (t, x) = Ev̂θ (t,0) = 0,

we have Ef ε
θ (t, x) = 0 as well.

Our primary goal in this section is to show that there is no sequence εn ↓ 0 so that∫
h

εn

θ (t, x)dx converges in distribution to v̂θ (t,0). Without loss of generality, we will work
with t = 1 throughout. The proof for general t is similar. We begin with the following reduc-
tion.
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LEMMA 9.1. If ∫
h

εn

θ (1, x)dx → v̂θ (1,0)

in law, then ∫
f

εn

θ (1, x)dx → 0

in probability.

PROOF. We first note that, by (8.5), we have that {∫ hε
θ (1, x)dx}ε>0 is uniformly

bounded in L2, so by (9.8) and the fact that v̂θ (1,0) is Gaussian, {∫ f ε
θ (1, x)dx}ε>0 is uni-

formly bounded in L2 as well. Therefore,{(∫
hε

θ (1, x)dx,

∫
f ε

θ (1, x)dx, v̂θ (1,0)

)}
ε>0

converges in law along subsequences. Now suppose that there is a sequence εn ↓ 0 so that

(9.10)
∫

h
εn

θ (1, x)dx → v̂θ (1,0)

in law. Possibly replacing (εn) by a subsequence, we can assume that(∫
h

εn

θ (1, x)dx,

∫
f

εn

θ (1, x)dx, v̂θ (1,0)

)
→ (

H,F, v̂θ (1,0)
)

in law for some random variables H and F . Since
∫

f
εn

θ (1, x)dx and v̂θ (1,0) are independent
for each εn, we must also have that F and v̂θ (1,0) are independent. But by (9.8), we must
have H = F + v̂θ (1,0), so by (9.10) we must have that v̂θ (1,0) is equal in distribution to F +
v̂θ (1,0). This means that the characteristic function of F must be equal to 1 on the support of
the characteristic function of v̂θ (1,0), which is all of R since v̂θ (1,0) is Gaussian. Thus, the
characteristic function of F must be identically 1, and so F must be deterministically equal
to 0. Therefore,

∫
f

εn

θ (1, x)dx converges in law to the point mass at 0, and hence converges
in probability to 0. �

Therefore, to prove Theorem 2.2 it is sufficient to prove the following theorem.

THEOREM 9.2. There is no sequence εn ↓ 0 so that
∫

f
εn

θ (1, x)dx → 0 in probability.
Moreover, there is no sequence εn ↓ 0 so that

∫
h

εn

θ (1, x)dx → 0 in probability.

(We also have to show that subsequential limits of
∫

f ε
θ (1, x)dx and

∫
hε

θ (1, x)dx have
mean zero. But this is easy because these random variables have mean zero and are uniformly
bounded in L2 by (8.5) and (9.8).)

We will prove Theorem 9.2 at the end of this section. Our strategy will be to show that
the projection of f ε

θ onto the second Wiener chaos has L2 norm which is not going to 0 with
ε. (See, e.g., [29] for background on the Wiener chaos decomposition.) To show that this is
sufficient, we will need the following lemma.

LEMMA 9.3. Suppose that {An}, {Bn} are sequences of random variables defined on the
same probability space and assume that the following conditions hold:

(1) EAn = EAnBn = 0 for each n.
(2) There is a constant c > 0 so that EA2

n ≥ c for each n.
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(3) There is a constant C > 0 and a constant p > 2 so that E|An|p and EB2
n are bounded

by C for each n.

Then An + Bn cannot converge in probability to 0.

This lemma is an exercise in elementary probability theory. For completeness, we include
its proof in Section 10.3. Now we begin the proof of Theorem 9.2 in earnest. We start by
writing an expression for the coefficients of the relevant elements of the second Wiener chaos
in the decomposition of

∫
f ε

θ (1, x)dx. Define, for k ∈ Z2, � ∈ {0, . . . , |k|2 − 1}, s ∈ [0,1],
y ∈ T2,

ek,�(s, y) = exp
{
2π i(�s + k · y)

}
.

In the following, let X = (X1,X2) and 0 = (0,0) where 0 = (0,0) ∈ T2. Let ρ̂ be the Fourier
transform of ρ (considered as a function from R2 into R). For a path X, let

Sk,�[X] =
∫ 1

0
ek,�

(
s,X(s)

)
ds.

Define

(9.11) Ak,�[X] =
∫ (∣∣Sk,�[X1 + x]∣∣2 − Sk,�[X1 + x]Sk,�[X2 + x])dx.

Lastly, let

(9.12) aε
θ;k,� = E

[(
W1[ek,�]W1[ek,�] − 1

) ∫
f ε

θ (1, x)dx

]
.

LEMMA 9.4. If k �= 0, then

(9.13) aε
θ;k,� = θ

∣∣ρ̂(εk)
∣∣2| log ε|− 1

2 EÊθ,W,ε

X1,0 Ak,�[X].

PROOF. We first note that since k �= 0,
∫

ek,�(t, x)dx = ∫ ek,�(t, x)dx = 0 for all t . This
implies that the random variables W1[ek,�] and v̂θ (1,0) are independent (recall the discussion
surrounding (9.3)) and, therefore, W1[ek,�]W1[ek,�]−1 and v̂θ (1,0) are independent. By (9.8)
and (9.9), this means that

aε
θ;k,� = E

[(
W1[ek,�]W1[ek,�] − 1

) ∫
hε

θ (1, x)dx

]
= E
[
W1[ek,�]W1[ek,�]

∫
hε

θ (1, x)dx

]

= E
[(∫ 1

0

∫
ek,�(s, y)W(dy ds)

)(
W1[ek,�]

∫
hε

θ (1, x)dx

)]
.

By the Gaussian integration by parts formula (5.2), this gives

aε
θ;k,� = E

[∫ 1

0

∫
ek,�(s, y)Ds,y

(
W1[ek,�]

∫
hε

θ (1, x)dx

)
dy ds

]
.

By the product rule for the Malliavin derivative and (5.1),

Ds,y

(
W1[ek,�]

∫
hε

θ (1, x)dx

)
= (Ds,yW1[ek,�]) ∫ hε

θ (1, x)dx + W1[ek,�]
∫

Ds,yh
ε
θ (1, x)dx

= ek,�(s, y)

∫
hε

θ (1, x)dx + W1[ek,�]
∫

Ds,yh
ε
θ (1, x)dx.
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Therefore, again applying (9.9), we get

aε
θ;k,� = E

(
W1[ek,�]

∫ 1

0

∫ ∫
ek,�(s, y)Ds,yh

ε
θ (1, x)dx dy ds

)
.

By the formula (8.2) for Ds,yh
ε
θ (1, x), this shows that

aε
θ;k,� = θ

1
2 E
[
W1[ek,�]

∫
Ê

θ,W,ε

X1,x

(∫ 1

0

∫
ρε(X(s) − y

)
ek,�(s, y)dy ds

)
dx

]
.

Since ρε is an even function,∫ 1

0

∫
ρε(X(s) − y

)
ek,�(s, y)dy ds

=
∫ 1

0

∫
ρε(X(s) − y

)
e2π i(�s+k·(y−X(s)))e2π ik·X(s) dy ds

=
∫ 1

0
e2π i(�s+k·X(s))

(∫
ρε(X(s) − y

)
e2π ik·(y−X(s)) dy

)
ds(9.14)

=
∫ 1

0
e2π i(�s+k·X(s))

(∫
ρε(z)e2π ik·z dz

)
ds

= ρ̂ε(k)Sk,�[X] = ρ̂(εk)Sk,�[X].
Combining all of the above, we get

aε
θ;k,� = θ

1
2 ρ̂(εk)E

(
W1[ek,�]

∫
Ê

θ,W,ε

X1,x Sk,�[X]dx

)
.

Now we can integrate by parts again, and use (6.7) and (9.14), to obtain

aε
θ;k,� = θ

1
2 ρ̂(εk)E

[∫ 1

0

∫
ek,�(s, y)

(∫
Ds,yÊ

θ,W,ε

X1,x Sk,�[X]dx

)
dy ds

]

= θρ̂(εk)| log ε|− 1
2 E
[∫ 1

0

∫
ek,�(s, y)

(∫
Ê

θ,W,ε

X1,x ,X̃1,xSk,�[X]

× (ρε(X(s) − y
)− ρε(X̃(s) − y

))
dx

)
dy ds

]
= θρ̂(εk)| log ε|− 1

2 E
[∫

Ê
θ,W,ε

X1,x ,X̃1,xSk,�[X](Sk,�[X] − Sk,�[X̃])dx

]
,

which is (9.13). �

Now define

(9.15) ãε
θ;k,� = | log ε|− 1

2
∣∣ρ̂(εk)

∣∣2EÊθ,W,ε

X1,x Ak,�[X],
so that

(9.16) aε
θ;k,� = θãε

θ;k,�.

We want to lower-bound aε
θ;k,�, which we will achieve by lower bounding ãε

0;k,� and upper
bounding the derivative of ãε

θ;k,� with respect to θ . Our tool for the latter purpose will be
Proposition 7.5. Thus we first need to prove some estimates on the quantities involved in
(9.15) with θ = 0, and on the terms involved in (7.7) with the choice Q = A ε

k,�.
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LEMMA 9.5. Define

(9.17) Mk,�;2p := EX1,0

∫ ∣∣Sk,�[X + x]∣∣2p dx.

Then for any integer p ≥ 1 there is a constant Cp such that for any � and any k �= 0,

(9.18) Mk,�;2p ≤ Cp|k|−2p.

Moreover, there is an absolute constant c > 0 such that if k �= 0 and |�| ≤ |k|2, then

(9.19) Mk,�;2 ≥ c|k|−2.

We will only use (9.18) in the case p = 2. Since the right-hand side of (9.17) can be eval-
uated explicitly (although perhaps only a computer algebra system would have the patience),
we present a slightly long but ultimately straightforward computational proof of Lemma 9.5
in Section 10.2. On the other hand, it is easy to interpret the order of magnitude of the fluctu-
ations of Sk,�[X] probabilistically. The integral in the definition of Sk,�[X] sums the values
of a sinusoid with frequency |k| at the position of a Brownian motion, and it takes the Brown-
ian motion time |k|2 to move a distance |k|, so the integral is effectively averaging |k|−2 i.i.d.
random variables. Hence the fluctuations of Sk,�[X] are on the order |k|−1.

LEMMA 9.6. For any x ∈ T2, any k �= 0 and any �,

(9.20)
∣∣EX1,0Sk,�[X]∣∣≤ 2|k|−2.

PROOF. Suppose that B is a Brownian motion on R2 started from the origin at time t

and flowing backwards in time. Let X be the projection of B on to the torus T2, so that X is a
Brownian motion on the torus. Then for any s ≤ t , X(s) − B(s) ∈ Z2 and, therefore, for any
s ≤ t and any k ∈ Z2, e2π ik·X(s) = e2π ik·B(s). We will use this fact in this proof and also later.
One immediate consequence is that

(9.21) E
(
e2π ik·X(s))= E

(
e2π ik·B(s))= e−2π2|k|2s .

Using this, we compute

EX1,0

∫ 1

0
ek,�

(
s,X(s) + x

)
ds

=
∫ 1

0
EX1,0 exp

{
2π i
(
�s + k · X(s) + k · x)}ds

=
∫ 1

0
exp
{
2π i(�s + k · x) − 2π2|k|2s}ds

= e2π ik·x 1 − e2π i�−2π |k|2s

−2π i� + 2π2|k|2 .

Since the absolute value of the numerator is clearly bounded by 2, and |a + ib| ≥ |a| for any
a, b ∈ R, this proves (9.20). �

LEMMA 9.7. There is a θ2 > 0 and constants c, k0 > 0 so that, if 0 ≤ θ ≤ θ2, |k| ≥ k0
and � ≤ |k|2, then

(9.22) aε
θ;k,� ≥ cθ | log ε|− 1

2
∣∣ρ̂(εk)

∣∣2|k|−2.
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PROOF. By the mean value theorem, we have

ãε
θ;k,� ≥ ãε

0;k,� − θ max
θ ′∈[0,θ ]

∣∣∣∣ ∂

∂θ
ãε
θ;k,�

∣∣∣∣.
Now,

EX1,0Ak,�[X]
=
∫

EX1,0
(∣∣Sk,�[X1 + x]∣∣2 − Sk,�[X1 + x]Sk,�[X2 + x])dx

= Mk,�;2 −
∫ (

EX1,0Sk,�[X])2 dx.

Therefore, it follows from (9.19) and (9.20) that there is some k0 > 0 and some c > 0 so that,
as long as |k| ≥ k0 and � ≤ |k|2, we have

EX1,0Ak,�[X] ≥ c|k|−2.

Thus (recalling (9.15)), we have that

ãε
0;k,� ≥ c| log ε|− 1

2
∣∣ρ̂(εk)

∣∣2|k|−2.

Moreover, we can use the Cauchy–Schwarz inequality on (9.11) and then apply (9.18) to
write

EX1,0Ak,�[X]2 ≤ 4EX1,0

∫ ∣∣Sk,�[X1 + x]∣∣4 dx ≤ C|k|−4.

This means that, by (7.7), we have, as long as θ < θ0 (where θ0 is as in Proposition 7.5),

max
θ ′∈[0,θ ]

∣∣∣∣ ∂

∂θ
ãε
θ;k,�

∣∣∣∣≤ C| log ε|− 1
2
∣∣ρ̂(εk)

∣∣2(EXt,xAk,�[X]2)1/2

≤ C| log ε|− 1
2
∣∣ρ̂(εk)

∣∣2|k|−2.

Therefore, we have

ãε
θ;k,� ≥ (c − Cθ)| log ε|− 1

2 |k|−2∣∣ρ̂(εk)
∣∣2.

So as long as θ < c
2C

, we have

ãε
θ;k,� ≥ c

2
| log ε|− 1

2
∣∣ρ̂(εk)

∣∣2|k|−2,

which implies (9.22) in light of (9.16). �

PROOF OF THEOREM 9.2. Define

Z2+ = {k = (k1, k2) ∈ Z2 : k1 > 0 or (k1 = 0 and k2 > 0)
}
,

so that if k �= k′ ∈ Z2+ then k /∈ {k′,−k′}, and so∫ 1

0

∫
ek,�(t, x)ek′,�′(t, x)dx dt = 0

and ∫ 1

0

∫
ek,�(t, x)ek′,�′(t, x)dx dt =

∫ 1

0

∫
ek,�(t, x)e−k′,−�′(t, x)dx dt = 0.
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By the discussion surrounding (9.3), this means that the random variables {W1[ek,�] : k ∈
Z2+, � ∈ N} are independent. Therefore, the set{

W1[ek,�]W1[ek,�] − 1
}
k∈Z2+,�∈N

is an L2-orthogonal collection of complex random variables. It is easy to verify that these
variables have L2 norm 1 and, therefore, this set is actually orthonormal. Let k0 be as in
Lemma 9.7, and define

Aε
θ = ∑

k∈Z2+|k|≥k0

|k|2−1∑
�=0

aε
θ;k,�

(
W1[ek,�]W1[ek,�] − 1

)
,

Bε
θ =
∫

f ε
θ (1, x)dx − Aε

θ

(9.23)

and

Eε
θ =
∫

hε
θ (1, x)dx − Aε

θ .

Then, by the orthonormality of {W1[ek,�]W1[ek,�] − 1}, along with (9.22), we have

E
[(

Aε
θ

)2]= ∑
k∈Z2+|k|≥k0

|k|2−1∑
�=0

(
aε
θ;k,�

)2

≥ c
∑

k∈Z2+|k|≥k0

|k|2−1∑
�=0

| log ε|−1θ2|k|−4∣∣ρ̂(εk)
∣∣4

= cθ2| log ε|−1
∑

k∈Z2+|k|≥k0

|k|−2∣∣ρ̂(εk)
∣∣4.

Now, there is a δ > 0 so that |ρ̂(ξ)|4 ≥ |ρ̂(0)|4/2 whenever |ξ | ≤ δ, so we have, as long as
ε < δ

2k0
,

E
(
Aε

θ

)2 ≥ cθ2| log ε|−1
∑

k∈Z2+
k0≤|k|≤δ/ε

|k|−2∣∣ρ̂(εk)
∣∣4

≥ cθ2| log ε|−1 |ρ̂(0)|4
2

∑
k∈Z2+

k0≤|k|≤δ/ε

|k|−2 ≥ c′θ2

for some constant c′ > 0 depending on ρ. Directly from (9.23), we have have EAε
θ = 0.

Furthermore, it is easy to see by (9.9) and (9.12) that Aε
θ is an orthogonal projection of∫

f ε
θ (1, x)dx and also of

∫
hε

θ (1, x)dx on to the L2-subspace spanned by{
W1[ek,�]W1[ek,�] − 1 : k ∈ Z2+, |k| ≥ k0,0 ≤ � ≤ |k|2 − 1

}
.

Thus, we have

EAε
θB

ε
θ = EAε

θE
ε
θ = 0.
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Recall that Aε
θ is a sum of squares of Gaussian random variables, minus their expectation

(i.e., it is a homogeneous element of the second Wiener chaos). A well-known fact about the
sums of squares of Gaussian random variables (which is a special case of Gaussian hypercon-
tractivity; see, e.g., [29], Theorem 3.50) is that their higher central moments are all controlled
by their variance. More precisely, for any p > 2, there is a Cp < ∞ so that(

E
∣∣Aε

θ

∣∣p)1/p ≤ Cp

(
E
∣∣Aε

θ

∣∣2)1/2

≤ Cp

[
E
(∫

f ε
θ (1, x)dx

)2]1/2

≤ Cp

[
E
(∫

hε
θ (1, x)dx

)2]1/2
≤ CCp,

where the last inequality is by (8.5). Also by (8.5), we have that

E
∣∣Bε

θ

∣∣2 ≤ E
(∫

f ε
θ (1, x)dx

)2
≤ E
(∫

hε
θ (1, x)dx

)2
≤ C,

and that

E
∣∣Eε

θ

∣∣2 ≤ E
(∫

hε
θ (1, x)dx

)2
≤ C.

Therefore, the hypotheses of Lemma 9.3 are satisfied with A = Aε
θ , B = Bε

θ and also with
A = Aε

θ , B = Eε
θ . Thus, neither

∫
f ε

θ (1, x)dx nor
∫

hε
θ (1, x)dx can converge to 0 in proba-

bility along any subsequence. �

10. Technical proofs. In this section, we prove the technical lemmas which have been
stated without proof earlier.

10.1. Derivative computations. Here, we give the proofs of the lemmas from Section 6.

PROOF OF LEMMA 6.1. First, we prove (6.5). For simplicity of notation, we will use the
following abbreviations throughout this proof:

E= EXt,x, Ê= Ê
θ,W,ε

Xt,x,X̃t,x, � [W,X] = � ε
θ,t [W,X].

(We will sometimes use Ê on an expression in which only X appears, in which case it will be
the same as if we had defined Ê= Ê

θ,W,ε
Xt,x .) Let

R[W,X] = 1

2

(
θ | log ε|)− 1

2

J∑
k=1

∫ t

0

∫
ρε(Xk(s) − y

)
W(dy ds).

It is an immediate consequence of (6.3) that

∂

∂θ
� [W,X] =

(
R[W,X] − J

∂κε
θ

∂θ
(t)

)
� [W,X].(10.1)

We then compute, using (10.1),

∂

∂θ
E
(
Q[X]� [W,X])= E

[
Q[X]

(
R[W,X] − J

∂κε
θ

∂θ
(t)

)
� [W,X]

]
.

This shows that
∂
∂θ
E(Q[X]� [W,X])

E� [W,X] = Ê

[
Q[X]

(
R[W,X] − J

∂κε
θ

∂θ
(t)

)]
.
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Thus,

∂

∂θ
ÊQ[X] =

∂
∂θ
E(Q[X]� [W,X])

E� [W,X] − E(Q[X]� [W,X])
E� [W,X]

∂
∂θ
E(� [W,X])
E� [W,X]

= Ê

[
Q[X]

(
R[W,X] − J

∂κε
θ

∂θ
(t)

)]
− Ê
(
Q[X])Ê(R[W,X] − J

∂κε
θ

∂θ
(t)

)
= Ê
[
Q[X](R[W,X] − R[W, X̃])].

This completes the proof of (6.5). The proof of (6.6) is similar. Using (6.4), we compute

Ds,y� [W,X] = θ
1
2 | log ε|− 1

2

J∑
k=1

Q[X]ρε(Xk(s) − y
)� [W,X].

The quotient rule then gives us

Ds,y

� [W,X]
E� [W,X] = θ

1
2 | log ε|− 1

2

J∑
k=1

ρε(Xk(s) − y)� [W,X]
E� [W,X]

− θ
1
2 | log ε|− 1

2

J∑
k=1

� [W,X]E(ρε(Xk(s) − y)� [W,X])
(E� [W,X])2 ,

which is equation (6.6). Multiplying (6.6) by Q[X] and taking the expectation yields (6.7).
�

PROOF OF LEMMA 6.2. Define

Hk,s,y[X] = ρε(Xk(s) − y
)
.

Let X∗ = (X, X̃,
˜̃X) and x∗ = (x,x,x). As in the proof of Lemma 6.1, we abbreviate for the

sake of convenience

Ê = Ê
θ,W,ε

Xt,x∗∗
,

which, again as in the proof of Lemma 6.1, reduces to Ê = Ê
θ,W,ε
Xt,x in contexts in which only

X appears. Using Lemma 6.1, we get

∂

∂θ
EÊQ[X] = 1

2

(
θ | log ε|)− 1

2 E

[∫ t

0

∫ J∑
k=1

Ê
(
Q[X](Hk,s,y[X]

− Hk,s,y[X̃]))W(dy ds)

]

= 1

2

(
θ | log ε|)− 1

2EXt,xQ[X]E
[ � ε

θ,t [W,X]
EXt,x� ε

θ,t [W,X]
∫ t

0

∫ J∑
k=1

(
Hk,s,y[X]

− Hk,s,y[X̃])W(dy ds)

]
.

By the Gaussian integration by parts formula (5.2), the above expression equals

E

[∫ t

0

∫ J∑
k=1

Ds,yÊ
(
Q[X](Hk,s,y[X] − Hk,s,y[X̃]))dy ds

]
.
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It is not difficult to see by (6.7) and symmetry considerations that

Ds,yÊ
(
Q[X](H ε

k,s,y[X] − H ε
k,s,y[X̃]))

= θ
1
2 | log ε|− 1

2

J∑
�=1

Ê
(
Q[X]Ak,�(s, y)

)
,

where

Ak,�(s, y) = (Hk,s,y[X] − Hk,s,y[X̃])(H�,s,y[X] − H�,s,y[˜̃X])
+ (Hk,s,y[X] − Hk,s,y[X̃])(H�,s,y[X̃] − H�,s,y[˜̃X]).

By (6.11), we get∫ t

0

∫
Ak,�(s, y)dy ds

= I ε
t [Xk,X�] − I ε

t [X̃k,X�] − I ε
t [Xk,

˜̃X�] + I ε
t [X̃k,

˜̃X�]
+ I ε

t [Xk, X̃�] − I ε
t [X̃k, X̃�] − I ε

t [Xk,
˜̃X�] + I ε

t [X̃k,
˜̃X�].

By symmetry,

E
(
Q[X]I ε

t [Xk, X̃�])= E
(
Q[X]I ε

t [Xk,
˜̃X�]).

With this simplification, we get

E
(
Q[X]

∫ t

0

∫
Ak,�(s, y)dy ds

)
= E
(
Q[X](I ε

t [Xk,X�] − I ε
t [Xk, X̃�] − I ε

t [X̃k,X�]
− I ε

t [X̃k, X̃�] + 2I ε
t [X̃k,

˜̃X�])).
Since I ε

t is symmetric in its arguments, this shows that

J∑
k,�=1

E
(
Q[X]

∫ t

0

∫
Ak,�(s, y)dy ds

)

=
J∑

k,�=1

E
(
Q[X](I ε

t [Xk,X�] − 2I ε
t [Xk, X̃�]

− I ε
t [X̃k, X̃�] + 2I ε

t [X̃k,
˜̃X�])).

If k = �, then (6.2) implies that I ε
t [Xk,X�] = I ε

t [X̃k, X̃�]. On the other hand, if k �= �, then

E
(
Q[X]I ε

t [X̃k, X̃�])= E
(
Q[X]I ε

t [X̃k,
˜̃X�]).

This shows that
J∑

k,�=1

E
(
Q[X]

∫ t

0

∫
Ak,�(s, y)dy ds

)

=
J∑

k,�=1

E
(
Q[X](I ε

t [Xk,X�]1k �=� − 2I ε
t [Xk, X̃�] + (1 + 1k=�)I

ε
t [X̃k,

˜̃X�])).
The proof is now easily completed by combining the above calculations. �
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10.2. Brownian motion computations. We need two preliminary lemmas.

LEMMA 10.1. Let

pt(x) = 1

2πt

∑
z∈Z2

e−|x+z|2
2t

be the periodic heat kernel. Then there is a constant C so that

pt(x) ≤ C
(
1 + t−1)e− 1

2t
|x|2

T2 .

PROOF. Without loss of generality, we may assume that |x|T2 = |x|. It is then sufficient
to show that ∑

z∈Z2\{0}
e−|x+z|2

2t
−log t

is bounded by a constant independent of t and x. For t ≥ c, the result is trivial, so we may
assume that t < c for some constant c to be chosen later. We note that since |x| = |x|T2 , for
all z ∈ Z2 \ {0} we have that |z + x| ≥ 1/2, and so

|x + z|2
2t

+ log t ≥ |x + z|2
t

≥ 1

c
|x + z|2

for t sufficiently small. (Choose c small enough so that this holds.) Then the result follows
from the fact that ∑

z∈Z2\{0}
e− 1

c
|x+z|2 < ∞,

which is a simple exercise. �

LEMMA 10.2. There is an absolute constant C such that for any z ∈ T2 and any ε < 1/4,∣∣∣∣∫ Rε(w) log |w − z|−2
T2 dw

∣∣∣∣≤ C
(
1 + log |z|−2

T2

)
.

PROOF. Consider Rε as a function on R2, by identifying T2 with (−1/2,1/2)2 and defin-
ing Rε to be zero outside this square. When ε < 1/4, it is not difficult to see that Rε(x) = 0
for all |x| >

√
2ε. Also, there is an absolute constant c such that any w with |w| <

√
2/4

satisfies |w − z|T2 ≥ c|w − z| for all z ∈ T2. Thus, when ε < 1/4, it suffices to show that

(10.2)
∫

R2
Rε(w) log |w − z|−2 dw ≤ C

(
1 + log |z|−2).

First, suppose that |z| ≤ 4ε. In this situation, if |w − z| > 6ε, then |w| > 2ε and hence
Rε(w) = 0. Thus,∫

Rε(w) log |w − z|−2 dw ≤ ∥∥Rε
∥∥
L∞
∫
{|w−z|≤6ε}

log |w − z|−2 dw

≤ Cε−2
∫
{|w|≤6ε}

log |w|−2 dw

= Cε−2
∫ 6ε

0
(−2r log r)dr

≤ C log ε−1 ≤ C
(
1 + log |z|−2).

(10.3)
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On the other hand, suppose that |z| > 4ε. In this situation, if |w − z| ≤ |z|/2, then |w| ≥
|z| − |w − z| ≥ |z|/2 > 2ε, and hence R(w) = 0. Thus,∫

Rε(w) log |w − z|−2 dw ≤
∫

Rε(w) log
(|z|/2

)−2 dw

≤ C
(
1 + log |z|−2).(10.4)

The two bounds (10.3) and (10.4) together imply (10.2). �

PROOF OF LEMMA 6.3. Define the integration domain

�r(t) = {(s1, . . . , sr ) : 0 ≤ s1 ≤ · · · ≤ sr ≤ t
}

and put Z = X − Y . Note that

EXt,xI ε
t [X,Y ]r

= EXt,x

[∫
[0,t]r

r∏
i=1

Rε(Z(si)
)

ds1 · · · dsr

]

= r!
∫
�r(t)

EXt,x

(
r∏

i=1

Rε(Z(si)
)

ds1 · · · dsr

)

= r!
∫
�r(t)

EXt,x

(
r∏

i=1

Rε(X(si) − X(si+1) + X(si+1) − Y(si)
))

ds1 · · · dsr ,

where we set sr+1 = t . Recalling that X is a Brownian motion running backward in time, and
the independent increments property of Brownian motion, it is easy to show by backward
induction that the last integral is bounded by

∫
�r(t)

max
z1,...,zr∈T2

r∏
i=1

EXt,x

[
Rε(X(si) − X(si+1) + zi

)]
ds1 · · · dsr .

In the following, we will use the notation a ∧ b and a ∨ b to denote the minimum and maxi-
mum of a and b, respectively. By Lemma 10.1,

EXt,x

[
Rε(X(si) − X(si+1) + z

)]
=
∫

Rε(w + z)psi+1−si (w)dw

≤ (∥∥Rε
∥∥
L1‖psi+1−si‖L∞

)∧ (∥∥Rε
∥∥
L∞‖psi+1−si‖L1

)
≤ C

(
1 + 1

si − si−1

)
∧ (∥∥ρε

∥∥
L1

∥∥ρε
∥∥
L∞
)

≤ C

((si − si−1) ∧ 1) ∨ ε2 .

(10.5)

Thus there is a constant C so that, if we define the integration domain

�r(t) = {(s1, . . . , sr ) ∈ Rr≥0 : s1 + · · · + sr ≤ t
}
,
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then

EXt,xI ε
t [X,Y ]r ≤ Crr!

∫
�r(t)

r∏
i=1

1

((si − si−1) ∧ 1) ∨ ε2 ds1 · · · dsr

= Crr!
∫
�r(t)

r∏
i=1

1

(ui ∧ 1) ∨ ε2 du1 · · · dur

≤ Crr!
(∫ t

0

1

(u ∧ 1) ∨ ε2 du

)r

≤ Crr!(t + log ε−2)r .

(10.6)

The statement of the lemma follows by the assumption that log ε−2 ≥ t . �

PROOF OF LEMMA 6.4. We first prove (6.9) for r = 1. In this case, we have using
Lemma 10.1,

E
X

t,x1
1 ,X

t,x2
2

(∫ t

0
Rε(X1(s) − X2(s)

)
ds

)
=
∫ t

0

∫
Rε(w)p2(t−s)

(
w − (x1 − x2)

)
dw ds

≤ C

∫
Rε(w)

∫ t

0

(
1 + 1

2(t − s)

)
e− 1

4(t−s)
|w−(x1−x2)|2T2 ds dw.

Applying a change of variable to the inner integral, and noting that ‖Rε‖L1 = ‖ρε‖2
L1 =

‖ρ‖2
L1 does not depend on ε, we see that the above quantity is bounded by

C

(
t +
∫

Rε(w)

∫ t |w−(x1−x2)|−2
T2

0

1

2s
e− 1

4s ds dw

)

≤ C

(
t +
∫

Rε(w)

∫ (t+1)|w−(x1−x2)|−2
T2

0

1

2s
e− 1

4s ds dw

)
≤ C

(
t + log(t + 1) +

∫
Rε(w) log

∣∣w − (x1 − x2)
∣∣−2
T2 dw

)
≤ C

(
t + 1 +

∫
Rε(w) log

∣∣w − (x1 − x2)
∣∣−2
T2 dw

)
.

Thus, by Lemma 10.2,

(10.7) E
X

t,x1
1 ,X

t,x2
2

(∫ t

0
Rε(X1(s) − X2(s)

)
ds

)
≤ C
(
t + 1 + log |x1 − x2|−2

T2

)
.

Now we can estimate the general case. Let Z = X1 − X2 and abbreviate E = E
X

t,x1
1 ,X

t,x2
2

.

Then

E

(∫ t

0
Rε(Z(s)

)
ds

)r

=
∫
[0,t]r

E

[
r∏

i=1

Rε(Z(si)
)]

ds1 · · · dsr

= r!
∫
�r(t)

E

[
r∏

i=1

Rε(Z(si) − Z(si+1) + Z(si+1)
)]

ds1 · · · dsr ,
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where, as before, we use the convention sr+1 = t . By the independent increments property of
Brownian paths (flowing backward in time) and the bounds (10.5), (10.6) and (10.7), the last
integral is bounded by∫

�r(t)
max

z1,...,zr−1∈T2

zr=x1−x2

r∏
i=1

E
[
Rε(Z(si) − Z(si+1) + zi

)]
ds1 · · · dsr

≤ Cr
∫
�r(t)

(
t + 1 + log |x1 − x2|−2

T2

)
×

r−1∏
i=1

((
(si − si−1) ∧ 1

)∨ ε2)−1 ds1 · · · dsr

≤ Cr(t + 1 + log |x1 − x2|−2
T2

)(
t + log ε−2)r−1

.

The assumption that t ≤ log ε−2 completes the argument. �

PROOF OF LEMMA 9.5. Let �2p = �2p(1), where �2p(1) is defined as in the proof of
Lemma 6.3 above. Similarly, let �2p = �2p(1). Let Z1, . . . ,Zm be i.i.d. standard Gaussian
random variables, and let

Q2p =
{
α ∈ {−1,1}2p :

2p∑
j=1

αj = 0

}
.

Using (9.21), we can expand and integrate Mk,�;2p as

Mk,�;2p = (2p)!EX1,0

[∫ ∫
�2p

∑
α∈Q2p

2p∏
n=1

exp
{
2παni

(
�sn

+ k · X(sn) + 2πk · x)}ds1 · · · ds2p dx

]

= (2p)!
∫
�2p

∑
α∈Q2p

E
2p∏

n=1

exp

{
2παni

(
�sn

+ |k|
n∑

m=1

√
sm − sm−1Zm

)}
ds1 · · · ds2p.

(10.8)

Put tm = sm − sm−1. Then the expectation in (10.8) is

E
2p∏

n=1

exp

{
2παni

(
�sn + |k|

n∑
m=1

√
tmZm

)}

= exp

{
2π i�

2p∑
m=1

α̃mtm

} 2p∏
m=1

E exp
{
2π i|k|α̃m

√
tmZm

}

= exp

{
2π

2p∑
m=1

(
i�α̃m − π |k|2α̃2

m

)
tm

}
,

(10.9)
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where we use the notation α̃m =∑2p
n=m αn. Substituting (10.9) into (10.8), we have

Mk,�;2p = (2p)!
∫
�2p

∑
α∈Q2p

exp

{
2π

2p∑
m=1

(
i�α̃m − π |k|2α̃2

m

)

× (sm − sm−1)

}
ds1 · · · ds2p(10.10)

= (2p)!
∫
�2p

∑
α∈Q2p

exp

{
2π

2p∑
m=1

(
i�α̃m − π |k|2α̃2

m

)
tm

}
dt1 · · · dt2p.

Now define a modified integration domain

B(α) =
2p×

m=1
Bm(α),

where

Bm(α) =
{[0,1] α̃m = 0,

[0,∞) otherwise.

Noting that �2p ⊂ B(α) for each α, we estimate

|Mk,�;2p| ≤ (2p)! ∑
α∈Q2p

∫
B(α)

exp

{
−2π2|k|2

2p∑
m=1

α̃2
mtm

}
dt1 · · · dt2p

= (2p)! ∑
α∈Q2p

∏
m:α̃m �=0

1

2π2α̃2
m|k|2 .

Since |α̃m − α̃m−1| = 1 for each m, we must have that |{m : α̃m = 0}| ≤ p. Moreover, each
α̃m is an integer. Therefore, we get

|Mk,�;2p| ≤ (2p)!|Q2p|(2π2|k|2)−p = (2p)!
(

2p

p

)(
2π2|k|2)−p

,

which proves (9.18). Now we prove (9.19). By (10.10) applied when p = 1, we have (noting
that Q2 has only two elements),

M2 = 2
∫
�2

(
exp
{
2π
(
i� − π |k|2)t2}

+ exp
{
2π
(−i� − π |k|2)t2})dt1 dt2

= 2
∫ 1

0
(1 − t)

(
exp
{
2π
(
i� − π |k|2)t}

+ exp
{
2π
(−i� − π |k|2)t})dt.

(10.11)

Now note that ∫ 1

0

(
exp
{
2π
(
i� − π |k|2)t}+ exp

{
2π
(−i� − π |k|2)t})dt

= 1

2π

(
1 − e−i�−π |k|2

i� + π |k|2 + 1 − ei�−π |k|2

−i� + π |k|2
)

(10.12)

= |k|2
�2 + π2|k|4 − 1

2π

(
e−i�

i� + π |k|2 + ei�

−i� + π |k|2
)
e−π |k|2 .
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We further have∣∣∣∣∫ 1

0
t exp

{
2π
(±i� − π |k|2)t}dt

∣∣∣∣≤ ∫ ∞
0

t exp
{−2π2|k|2t}dt

= 1

4π4|k|4 .

(10.13)

Combining (10.11), (10.12) and (10.13), and recalling that M2 ≥ 0, we get

M2 = |M2|

≥ |k|2
�2 + π2|k|4 −

∣∣∣∣ 1

2π

(
e−i�

i� + π |k|2 + ei�

−i� + π |k|2
)
e−π |k|2

∣∣∣∣− 1

4π4|k|4

≥ |k|2
�2 + π2|k|4 − e−π |k|2 − 1

4π4|k|4 .

Since |�| ≤ |k|2, this proves (9.19). �

10.3. Proof of Lemma 9.3. Suppose for the sake of contradiction that An +Bn converges
in probability to 0. Then for each δ, η > 0 we have an n so that

P
(|An + Bn| ≥ η

)
< δ.

Note that

0 = EAnBn

= EAnBn1
{|An + Bn| < η

}+ EAnBn1
{|An + Bn| ≥ η

}
.

(10.14)

Now choose

α = 1

1/p + 1/2
, β = α

α − 1
, r = p

α
, q = 2

α
,

so that (α,β, r, q) ∈ (1,∞), 1/α+1/β = 1/r +1/q = 1, rα = p, and qα = 2. By the Hölder
and Young inequalities, we then have∣∣EAnBn1

{|An + Bn| ≥ η
}∣∣ ≤ δ1/β(E|An|α|Bn|α)1/α

≤ δ1/β

(
E|An|rα

r
+ E|Bn|qα

q

)1/α

= δ1/β

(
E|An|p

r
+ E|Bn|2

q

)1/α

≤ δ1/βC1/α.

Thus, by (10.14), we get

(10.15)
∣∣EAnBn1

{|An + Bn| < η
}∣∣≤ δ1/βC1/α.

On the other hand, we have∣∣EAnBn1
{|An + Bn| < η

}∣∣
≥ ∣∣E(−A2

n1
{|An + Bn| < η

})∣∣− ∣∣EAn(An + Bn)1
{|An + Bn| < η

}∣∣
≥ E
(
A2

n

)− E
(
A2

n1
{|An + Bn| ≥ η

})− ηE|An|.
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By Hölder’s inequality,

E
(
A2

n1
{|An + Bn| ≥ η

})≤ (E|An|p)2/p(P(|An + Bn| ≥ η
))(p−2)/p

≤ C2/pδ(p−2)/p.

Also, E|An| ≤ C1/p . Combining the last three displays, we get∣∣EAnBn1
{|An + Bn| < η

}∣∣≥ E
(
A2

n

)− C2/pδ(p−2)/p − ηC1/p.(10.16)

But, combining (10.15) and (10.16), we get

δ1/βC1/α ≥ c − C2/pδ(p−2)/p − ηC1/p,

which is absurd once we choose η and δ sufficiently small. (Note that we can do this since α

and β depend only on p and not on η or δ.)
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