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We consider the statistics of the extreme eigenvalues of sparse random
matrices, a class of random matrices that includes the normalized adjacency
matrices of the Erdős–Rényi graph G(N,p). Tracy–Widom fluctuations of
the extreme eigenvalues for p � N−2/3 was proved in (Probab. Theory Re-
lated Fields 171 (2018) 543–616; Comm. Math. Phys. 314 (2012) 587–640).
We prove that there is a crossover in the behavior of the extreme eigenval-
ues at p ∼ N−2/3. In the case that N−7/9 � p � N−2/3, we prove that
the extreme eigenvalues have asymptotically Gaussian fluctuations. Under a
mean zero condition and when p = CN−2/3, we find that the fluctuations
of the extreme eigenvalues are given by a combination of the Gaussian and
the Tracy–Widom distribution. These results show that the eigenvalues at the
edge of the spectrum of sparse Erdős–Rényi graphs are less rigid than those
of random d-regular graphs (Bauerschmidt et al. (2019)) of the same average
degree.

1. Introduction. In this work, we study the statistics of eigenvalues at the edge of the
spectrum of sparse random matrices. A natural example is the adjacency matrix of the Erdős–
Rényi graph G(N,p), which is the random undirected graph on N vertices in which each
edge appears independently with probability p.

Introduced in [30, 33], the Erdős–Rényi graph G(N,p) has numerous applications in
graph theory, network theory, mathematical physics and combinatorics. For further informa-
tion, we refer the reader to the monographs [9, 39]. Many interesting properties of graphs are
revealed by the eigenvalues and eigenvectors of their adjacency matrices. Such phenomena
and the applications have been intensively investigated for over half a century. To mention
some, we refer the readers to the books [11, 13] for a general discussion on spectral graph the-
ory, the survey article [37] for the connection between eigenvalues and expansion properties
of graphs and the articles [14, 15, 49, 50, 52, 54, 57–59] on the applications of eigenvalues
and eigenvectors in various algorithms, that is, combinatorial optimization, spectral partition-
ing and clustering.

The adjacency matrices of Erdős–Rényi graphs have typically pN nonzero entries in each
column and are sparse if p � 1. When p is of constant order, the Erdős–Rényi matrix is
essentially a Wigner matrix (up to a nonzero mean of the matrix entries). When p → 0 as
N → ∞, the law of the matrix entries is highly concentrated at 0, and the Erdős–Rényi
matrix can be viewed as a singular Wigner matrix. The singular nature of this ensemble can
be expressed by the fact that the kth moment of a matrix entry (in the scaling that the bulk of
the eigenvalues lie in an interval of order 1) decays like (k ≥ 2)

N−1(pN)−(k−2)/2.(1.1)

When p � 1, this decay in k is much slower than the N−k/2 case of Wigner matrices, and is
the main source of difficulties in studying sparse ensembles with random matrix methods.
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The class of random matrices whose moments decay like (1.1) were introduced in the
works [17, 20] as a natural generalization of the sparse Erdős–Rényi graph and encompass
many other sparse ensembles. This is the class we study in this work.

The global statistics of the eigenvalues of the Erdős–Rényi graph are well understood. The
empirical eigenvalue distribution converges to the semicircle distribution provided p � 1/N ,
which follows from Wigner’s original proof. It was proven in [62], the spectral norm of
normalized adjacency matrices of Erdős–Rényi graphs converges to 2 if p � log4 N/N . The
sharp estimates were derived in [6, 7]; it was proven that the spectral norm converges to 2 if
and only if p � logN/N . For the global eigenvalue fluctuations, it was proven in [53] that
the linear statistics, after normalizing by p1/2, converge to a Gaussian random variable.

A three-step dynamical approach to the local statistics of random matrices has been devel-
oped in a series of papers [3, 10, 19, 23–29, 42, 43]. This strategy is as follows:

1. Establish a local semicircle law controlling the number of eigenvalues in windows of
size log(N)C/N .

2. Analyze the local ergodicity of Dyson Brownian motion to obtain universality after
adding a small Gaussian noise to the ensemble.

3. A density argument comparing a general matrix to one with a small Gaussian compo-
nent.

This approach has been used to prove the bulk universality of a wide variety of random
matrix ensembles, for example, the sparse random matrices considered here [17, 20, 38] or
random matrices with correlated entries [2, 12, 21, 41]. A different approach which proves
universality for some class of random matrices was developed in [61].

Universality for the edge statistics of Wigner matrices (the statement that the distribution
of the extremal eigenvalues converge to the Tracy–Widon law) was first established by the
moment method [56] under certain symmetry assumptions on the distribution of the matrix el-
ements. The moment method was further developed in [32, 51] and [55]. A different approach
to edge universality for Wigner matrices based on the direct comparison with corresponding
Gaussian ensembles was developed in [29, 60]. Edge universality for sparse ensembles was
proven first in the regime p � N−1/3 in the works [17, 20] and then extended to the regime
p � N−2/3 in [47].

One of the key obstacles in the proof of the edge universality for sparse ensembles is the
lack of an optimal rigidity estimate at the edge of the spectrum, which is an overwhelming
probability a priori bound on the distance of the extremal eigenvalues from the spectral edge.
An important component of the work of [47] is establishing such optimal rigidity estimates
at the edge; furthermore, for sparse ensembles they calculate a deterministic correction to the
usual semicircle spectral edge ±2. This correction is larger than the N−2/3 Tracy–Widom
fluctuations and is therefore necessary for their proof of universality.

In our first main result, we show that a rigidity result can no longer hold on the scale
N−2/3 in the regime N−7/9 � p � N−2/3. We find a contribution to the edge fluctuations of
order (p1/2N)−1 which dominates the usual Tracy–Widom scale N−2/3 for p in this regime;
moreover, we find that these fluctuations are asymptotically Gaussian. Comparing this to
the result of [47], we see a transition in the behavior at p = N−2/3 from the Tracy–Widom
distribution to the Gaussian distribution.

Our proof is based on constructing a higher order self-consistent equation for the Stielt-
jes transform of the empirical eigenvalue distributions. Self-consistent equations have been
widely used in the random matrix theory [1, 34, 36, 48]. The leading order component of
our self-consistent equation corresponds to the semicircle law. In the work [29], Lemma 4.1,
it was noted when computing the higher moment of the trace of the Green’s function, aver-
aging over indices gives rise to a cancellation of fluctuations, which gives the optimal error
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estimates for the self-consistent equation. The “fluctuation averaging lemma” was further
developed in the random band matrices setting [16, 18]. The works [45–47] develop a sys-
tematic approach analyzing the self-consistent equation around the spectrum edge. Higher
order corrections to the self-consistent equations were also constructed in [4, 47]. The works
[5, 31] calculate higher order corrections to the expected density of states for various random
matrix ensembles.

In the current setting, our derivation of a recursive moment estimate for the normalized
trace follows the recent work of [47]. However, we construct an explicit random measure
from carefully chosen observables of the random matrix which approximates the Stieltjes
transform mN of the empirical measure of the random matrix. We prove a rigidity result with
respect to this random measure, and then show that the edge of this measure has asymp-
totic Gaussian fluctuations of a larger order than the rigidity estimate, implying the Gaussian
fluctuations for the edge eigenvalues themselves.

Our second main result concerns sparse random matrices H with centered entries, for ex-
ample, P[Hij = ±1/

√
2Np] = p/2 and P[Hij = 0] = 1 − p. When p = CN−2/3, we find

that the distribution of the extreme eigenvalues converges to an independent sum of a Gaus-
sian and Tracy–Widom random variable. The Gaussian fluctuation we find in both the case
p � N−2/3 and p = CN−2/3 is an expansion in the support of the density of states—the
correction to the smallest eigenvalue is the same as to the largest eigenvalue, but with the
opposite sign. We exhibit this correction as a specific extensive quantity involving the matrix
elements of H . If one subtracts this quantity, one finds the usual Tracy–Widom fluctuations
down to p � N−7/9. For example, we show that the gap λ2 − λ1 is still given asymptotically
by the gap of the GOE, on the usual N−2/3 scale.

In order to exhibit Tracy–Widom fluctuations, we compare sparse ensembles to Gaussian
divisible ensembles, that is, a sparse ensemble with a GOE component. In [47], the local law
allowed for the comparison of sparse ensembles directly to the GOE. When p � N−2/3, it
does not appear possible to compare directly to the GOE and so instead we use a Gaussian
divisible ensemble with a small o(1) GOE component.

Edge universality for such ensembles is established in [44]. This work proves a version
of Dyson’s conjecture on the local ergodicity of Dyson Brownian motion for edge statistics.
That is, for wide classes of initial data, the edge statistics of DBM coincides with the GOE,
and moreover, [44] finds the optimal time to equilibrium t ∼ N−1/3 for sufficiently regular
initial data.

Organization. We define the model and present the main results in the rest of Section 1. In
Section 2, we obtain the optimal edge rigidity estimates in the regime p � N−7/9. It implies
that in the regime N−7/9 � p � N−2/3, the extreme eigenvalues have Gaussian fluctuation.
In Section 3, we recall the results from [44] for edge universality of Gaussian divisible en-
sembles. In Section 4, we analyze the Green’s function to compare a sparse ensemble to a
Gaussian divisible ensemble and establish our results about Tracy–Widom fluctuations.

Conventions. We use C to represent large universal constants, and c small universal con-
stants, which may be different from line by line. Let Y ≥ 0. We write X � Y or Y � X,
if there exists a small exponent c > 0 such that X ≤ N−cY for N ≥ N(c) large enough. We
write X � Y or Y � X if there exists a constant C > 0, such that X ≤ CY . We write X 
 Y

if there exists a constant C > 0 such that Y/C ≤ X ≤ Y/C. We say an event � holds with
overwhelming probability, if for any D > 0, P(�) ≥ 1 − N−D for N ≥ N(D) large enough.

1.1. Sparse random matrices. In this section, we introduce the class of sparse random
matrices that we consider. This class was introduced in [17, 20] and we repeat the discussion
appearing there.
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The Erdős–Rényi graph is the undirected random graph in which each edge appears with
probability p. It is notationally convenient to replace the parameter p with q defined through

p = q2/N.(1.2)

We allow q to depend on N . We denote by A the adjacency matrix of the Erdős–Rényi graph.
The adjacency matrix A is an N × N symmetric matrix whose entries aij above the main
diagonal are independent and distributed according to

aij =
{

1 with probability q2/N,

0 with probability 1 − q2/N.
(1.3)

We extract the mean of each entry and rescale the matrix so that the limiting eigenvalue
distribution is supported on [−2,2]. We introduce the matrix H by

H := A − q2|e〉〈e|
q
√

1 − q2/N
,(1.4)

where e is the unit vector

e = (1, . . . ,1)T /
√

N.(1.5)

It is easy to check that the matrix elements of H have mean zero E[hij ] = 0, variance
E[h2

ij ] = 1/N and satisfy the moment bounds

E
[
hk

ij

] = 1

Nqk−2

[(
1 − q2

N

)−k/2+1((
1 − q2

N

)k−1
+ (−1)k

(
q2

N

)k−1)]

= �(1)

Nqk−2 ,

(1.6)

for k ≥ 2. This motivates the following definition.

DEFINITION 1.1 (Sparse random matrices). We assume that H = (hij ) is an N × N

random matrix whose entries are real and independent up to the symmetry constraint hij =
hji . We further assume that (hij ) have the same moments, satisfying E[hij ] = 0, E[h2

ij ] =
1/N and that for any k ≥ 2, the kth cumulant of hij is given by

(k − 1)!Ck

Nqk−2 ,(1.7)

where q = q(N) is the sparsity parameter, such that 0 < q �
√

N . For Ck , we make the
following assumptions:

(1) |Ck| ≤ Ck for some constant Ck > 0.
(2) C4 ≥ c.

REMARK 1.2. The lower bound, C4 ≥ c, ensures that the scaling by q for the ensemble
H is “correct.” Otherwise, we can always rescale q to make C4 
 1.

We denote the eigenvalues of H by λ1 ≥ λ2 ≥ · · · ≥ λN , and the Green’s function of H by

G(z) := (H − z)−1.

The Stieltjes transform of the empirical eigenvalue distribution is denoted by

mN(z) := 1

N
TrG(z) = 1

N

N∑
i=1

1

λi − z
.
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For N -dependent random (or deterministic) variables A and B , we say B stochastically dom-
inate A, if for any ε > 0 and D > 0, then

(1.8) P
(
A ≥ NεB

) ≤ N−D,

for N ≥ N(ε,D) large enough, and we write A ≺ B or A = O≺(B).
We define the following quantity, which governs the fluctuation of the extreme eigenvalues

X := 1

N

∑
ij

(
h2

ij − 1

N

)
.(1.9)

If H is the normalized adjacency matrix of Erdős–Rényi graphs, X characterizes the fluctu-
ation of the total number of edges. X is of size O≺(

√
Nq). Moreover, by the central limit

theorem, the fluctuations of
√

NqX are asymptotically Gaussian with mean zero and vari-
ance 6C4.

1.2. Main results. We first recall the strong entrywise local semicircle law for sparse
random matrices from [20].

THEOREM 1.3 ([20], Theorem 2.8). Let H be as in Definition 1.1 and q ≥ N e with
arbitrarily small e > 0. Let b > 0 be a large constant. Then uniformly for any z = E + iη
such that −b≤ E ≤ b and 1/N � η ≤ b, we have

max
i,j

∣∣Gij (z) − δijmsc(z)
∣∣ ≺

(
1

q
+

√
Immsc(z)

Nη
+ 1

Nη

)
,(1.10)

where G(z) is the Green’s function of the matrix H , and msc(z) is the Stieltjes transform of
the semicircle distribution.

Our first main results, Theorem 1.4 and Corollary 1.5 concern the behavior of the extremal
eigenvalues of H and A in the regime N1/9 � q � N1/6. Specifically, we prove that the
extremal have Gaussian fluctuations governed by the quantity X as defined in (1.9).

THEOREM 1.4. Let H be as in Definition 1.1 and q ≥ N e with arbitrarily small e > 0.
Let X be as defined in (1.9) and denote the eigenvalues of H by λ1, λ2, . . . , λN . There exists
a deterministic constant L depending on q and the cumulants C2,C3, . . . of hij (as defined in
Proposition 2.5) so that the following holds. Let c > 0 and an integer k ≥ 1 be given. With
overwhelming probability, we have, for 1 ≤ i ≤ k,

|λi − L −X | ≤ N c

(
1

q6 + 1

N2/3

)
(1.11)

and

|λN−i + L +X | ≤ N c

(
1

q6 + 1

N2/3

)
.(1.12)

As an easy corollary of Theorem 1.4, we derive asymptotic Gaussian fluctuations for the
second largest eigenvalue of the Erdős–Rényi graph in the regime N−7/9 � p � N−2/3.

COROLLARY 1.5. Let A be the adjacency matrix of the Erdős–Rényi graph G(N,p).
We denote its eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μN . Then for N−7/9 � p � N−2/3, the second
largest eigenvalue of A converges weakly to a Gaussian random variable as N → ∞,

√
N

(
μ2 − √

Np

(
2 + (Np)−1 − 5

4
(Np)−2

))
→ N (0,1).(1.13)

Here, N (0,1) is the standard Gaussian random variable.
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The following theorem concerns Tracy–Widom fluctuations for sparse random matrices
as defined in Definition 1.1. In the case q = cN1/6, the limiting distribution of the extremal
eigenvalues is given by an independent sum of a Tracy–Widom and Gaussian random vari-
able. In the case N1/6 � q � N1/6, we recover the Tracy–Widom fluctuations after subtract-
ing X .

THEOREM 1.6. Let H be as in Definition 1.1 and N1/9 � q ≤ CN1/6. Let X be as
defined in (1.9) and denote the eigenvalues of H by λ1, λ2, . . . , λN . Let F : Rk → R be a
bounded test function with bounded derivatives. There is a universal constant c > 0 so that

EH

[
F(N2/3(λ1 − L −X ), . . . ,N2/3(λk − L −X )

]
= EGOE

[
F

(
N2/3(μ1 − 2), . . . ,N2/3(μk − 2)

)] +O
(
N−c

)
.

(1.14)

The second expectation is with respect to a GOE matrix with eigenvalues μ1,μ2, . . . ,μN . In
the case q = CN1/6, we have

EH

[
F(N2/3(λ1 − L), . . . ,N2/3(λk − L)

]
= EGOE,H [F (

N2/3(μ1 − 2 +X ), . . . ,N2/3(μk − 2 +X )
) +O

(
N−c

)
.

(1.15)

In the second expectation, H is independent of the GOE matrix and its eigenvalues μi . Anal-
ogous results hold for the smallest eigenvalues.

REMARK 1.7. In the regime of Theorem 1.6, that is, N1/9 � q ≤ CN1/6, the leading
fluctuation of λ1 is given by X , which is of order O(1/

√
Nq), and the next order fluctua-

tion is given by the Tracy–Widom fluctuation, which is of order O(1/N2/3). In the sparser
regime, that is, q ≤ CN1/9, we suspect that there will be higher order fluctuations of sizes
O(1/

√
Nq3),O(1/

√
Nq5), . . . , which depend on subgraph counting quantities.

2. Edge rigidity for sparse random matrices. In this section, we prove the following
rigidity estimates for sparse random matrices in the vicinity of the spectral edges. The fol-
lowing proposition states that the Stieltjes transform of the empirical eigenvalue density is
close to the Stieltjes transform of a random measure ρ̃∞, which is explicitly constructed in
Proposition 2.6.

Fix an arbitrarily small constant a and denote the shifted spectral domain

D =
{
z = κ + iη ∈ C+ : |κ| ≤ 1,0 ≤ η ≤ 1,

|κ| + η ≥ Na

(
1

q3N1/2 + 1

q3Nη
+ 1

(Nη)2

)}
.

(2.1)

THEOREM 2.1. Let H be as in Definition 1.1 and q ≥ N e with arbitrarily small e > 0.
Let mN(z) be the Stieltjes transform of its eigenvalue density. There exists a deterministic
constant L (as defined in Proposition 2.5), and an explicit random symmetric measure ρ̃∞
(as defined in Proposition 2.6) with Stieltjes transform m̃∞ such that the following holds:
fix z̃ = L + X + z, where z = κ + iη and X is defined in (1.9), then with overwhelming
probability, uniformly for any z ∈ D, we have:

• If κ ≥ 0, ∣∣mN(z̃) − m̃∞(z̃)
∣∣

≺ 1√|κ| + η

(
1

Nη1/2 + 1

N1/2q3/2 + 1

(Nη)2 + 1

q3Nη

)
.

(2.2)
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• If κ ≤ 0,
∣∣mN(z̃) − m̃∞(z̃)

∣∣ ≺ 1

Nη
+ 1

(Nη)1/2q3/2 .(2.3)

The analogous statement holds for z̃ = −L −X + z.

We postpone the proof of Theorem 2.1 to Sections 2.2, 2.3 and 2.4.

2.1. Proofs of Theorem 1.4 and Corollary 1.5. In this section, we prove Theorem 1.4 and
Corollary 1.5 which follow easily from Theorem 2.1.

PROOF OF THEOREM 1.4. We only prove (1.11), as (1.12) follows from the same ar-
gument. Note that the spectral edge of the random measure ρ̃∞ satisfies (2.20). By fixing a
sufficiently small c > 0 and taking

η = 1

N2/3 , κ ≥ N c

(
1

q6 + 1

N2/3

)
,(2.4)

in (2.2), we get that∣∣mN(z̃)
∣∣ =O

(
η√

κ + η

)

+O≺
(

1√|κ| + η

(
1

Nη1/2 + 1

N1/2q3/2 + 1

(Nη)2 + 1

q3Nη

))

� 1

Nη
,

(2.5)

with overwhelming probability, where we used (2.21). The equation (2.5) implies that there
is no eigenvalue in the interval [L +X + κ − η,L +X + κ + η]. Otherwise, if there was an
eigenvalue, λi in the spectral window [L +X + κ − η,L +X + κ + η], we would have that

Im
[
mN(z̃)

] ≥ 1

N
Im

[
1

λi − (L +X + κ + iη)

]
≥ 1

2Nη
,(2.6)

contradicting (2.5). It follows that with overwhelming probability we have

λ1 − L −X ≤ N c

(
1

q6 + 1

N2/3

)
.(2.7)

For the lower bound, by the same argument as in [22], Lemma B.1, using the Helffer–
Sjöstrand formula, we have that with overwhelming probability

#
{
i : λi ∈ (L +X − κ,∞))

} =
∫ ∞
L+X−κ

ρ∞(x)dx + o
(
κ3/2)

= 2

3π
κ3/2 + o

(
κ3/2)

,

(2.8)

where

κ = N c

(
1

q6 + 1

N2/3

)
.(2.9)

The claim (1.11) follows from (2.7) and (2.8) after taking c > 0 sufficiently small. �

PROOF OF COROLLARY 1.5. Consider the following normalized adjacency matrix:

H := A − q2|e〉〈e|
q

√
1 − q2/N

,(2.10)
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where q = (Np)1/2. We denote the eigenvalues of H by λ1 ≥ λ2 ≥ · · · ≥ λN . It follows from
Theorem 1.4 that for any fixed index i,

√
Nq(λi − L) → N (0,1), L = 2 + 1

q2 − 5

4q4 .(2.11)

By the Cauchy interlacing theorem,√
1 − q2/Nλ2 ≤ μ2 ≤ q

√
1 − q2/Nλ1,(2.12)

and the claim (1.13) follows by combining (2.11) and (2.12). �

2.2. Construction of the higher order self-consistent equation. In this section, we con-
struct the higher order self-consistent equations for sparse random matrices. We also derive
some useful estimates on the equilibrium measure and its Stieltjes transform.

PROPOSITION 2.2. Let H be as in Definition 1.1, q ≥ N e with arbitrarily small e > 0,
and fix a large constant b > 0. Let mN(z) be the Stieltjes transform of the empirical eigen-
value density of H . There exists a polynomial (the higher order self-consistent equation)

P0(z,m) = 1 + zm + Q(m),(2.13)

where

Q(m) = m2 + 1

q2

(
a2m

4 + a3m
6 + · · · ),(2.14)

is an even polynomial (of degree at most O(1/e)) of m with coefficients a2, a3, . . . = O(1)

that depend on q and the cumulants C2,C3, . . . of hij , such that uniformly for any z = E + iη
with −b≤ E ≤ b, 1/N � η ≤ b, we have

E
[
P0

(
z,mN(z)

)] ≺ E[Im[mN(z)]]
Nη

.(2.15)

The proof uses the cumulant expansion to compute the expectations, similar to the deriva-
tion of Stein’s lemma. The cumulant expansion was used in [5, 35, 47] to study the spectrum
of random matrices. We postpone the proof to the end of this section.

REMARK 2.3. The same idea was first used in [4] to derive the higher order self-
consistent equation for the adjacency matrices of d-regular graphs.

REMARK 2.4. The first few terms of P0 are given by

P0(z,m) = 1 + zm + m2 + 6C4

q2 m4 + 120C6

q4 m6 +O
(

1

q6

)
.(2.16)

We recall X as defined in (1.9), which characterizes the fluctuation of the number of edges
if H is the normalized adjacency matrix of the Erdős–Rényi graph. We define the random
polynomial P(z,m) as

P(z,m) = P0(z,m) +Xm2.(2.17)

The solutions m∞(z) of P(z,m∞(z)) = 0 and m̃∞(z) of P(z, m̃∞(z)) = 0 define holo-
morphic functions from the upper half-plane C+ to itself. It turns out that they are Stieltjes
transforms of probability measures ρ∞ and ρ̃∞, respectively. The following lemmas collect
some properties of m∞(z), m̃∞(z) and the measures ρ∞ and ρ̃∞.
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PROPOSITION 2.5. There exists a deterministic algebraic function m∞ : C+ → C+,
which depends on the cumulants C2,C3, . . . of hij , such that the following hold:

1. m∞ is a solution of the polynomial equation, P0(z,m∞(z)) = 0.
2. m∞ is the Stieltjes transform of a deterministic symmetric probability measure ρ∞.

Moreover, suppρ∞ = [−L,L], where L depends on the coefficients of P0, and ρ∞ is strictly
positive on (−L,L) and has square root behavior at the edge.

3. In a neighborhood of the spectrum, that is, [−L,L], we have the following estimate on
the imaginary part of m∞:

Im
[
m∞(E + iη)

] 

{√

κ + η if E ∈ [−L,L],
η/

√
κ + η if E /∈ [−L,L],(2.18)

and ∣∣∂2P0
(
z,m∞(z)

)∣∣ 
 √
κ + η, ∂2

2P0
(
z,m∞(z)

) = 1 +O
(
1/q2)

,(2.19)

where κ = dist(Re[z], {−L,L}).

PROPOSITION 2.6. There exists an algebraic function m̃∞ : C+ → C+, which depends
on the random quantity X as defined in (1.9), such that the following hold:

1. m̃∞ is a solution of the polynomial equation, P(z, m̃∞(z)) = 0.
2. m̃∞ is the Stieltjes transform of a random symmetric probability measure ρ̃∞. More-

over, supp ρ̃∞ = [−L̃, L̃] and ρ∞ is strictly positive on (−L̃, L̃) and has square root behavior
at the edge.

3. L̃ has Gaussian fluctuation, explicitly

L̃ = L +X +O≺
(

1√
Nq3

)
.(2.20)

In a neighborhood of the spectrum, that is, [−L̃, L̃], we have the following estimate on the
imaginary part of m̃∞:

Im
[
m̃∞(E + iη)

] 

{√

κ + η if E ∈ [−L̃, L̃],
η/

√
κ + η if E /∈ [−L̃, L̃],(2.21)

and

(2.22)
∣∣∂2P

(
z, m̃∞(z)

)∣∣ 
 √
κ + η, ∂2

2P
(
z, m̃∞(z)

) = 1 +O
(
1/q2)

,

where κ = dist(Re[z], {−L̃, L̃}).

The proofs of Propositions 2.5 and 2.6 follow the same proof as [47], Lemma 4.1. For
completeness, we sketch the proofs in Appendix B.

Before proving Proposition 2.2, we collect some estimates which will be used repeatedly
in the rest of the paper.

PROPOSITION 2.7. Let H be as in Definition 1.1, q ≥ N e with arbitrarily small e > 0,
and fix a large constant b> 0. Let G(z) be the Green’s function of H and mN(z) the Stieltjes
transform of the eigenvalue density of H . For any indices 1 ≤ i, j ≤ N , we have

hij ≺ 1

q
.(2.23)



EXTREMAL EIGENVALUES OF SPARSE ERDŐS–RÉNYI GRAPHS 925

Uniformly, for any z = E + iη such that −b≤ E ≤ b, 1/N � η ≤ b, we have

∑
k

∣∣Gik(z)Gkj (z)
∣∣ ≺ Im[mN(z)]

η
,(2.24)

∣∣∂ijmN(z)
∣∣ ≺ Im[mN(z)]

Nη
,

1

N

∣∣∂zmN(z)
∣∣ ≺ Im[mN(z)]

Nη
,(2.25)

where ∂ij is the derivative with respect to hij .

PROOF. The bound on hij follows from Markov’s equality. For (2.24), by the Cauchy–
Schwarz inequality and the Ward identity (A.1), we have∣∣∣∣∑

k

GikGkj

∣∣∣∣ ≤ 1

2

∑
k

[|Gkj |2 + |Gik|2]

= Im[Gjj ] + Im[Gii]
2η

≺ Im[mN ]
η

,

(2.26)

where in the last inequality we used (A.3). The estimates in (2.25) follow from (2.24) and the
calculations,

|∂ijmN | = 2 − δij

N

∣∣∣∣∑
k

GikGkj

∣∣∣∣ ≺ Im[mN ]
Nη

(2.27)

and

1

N
|∂zmN | = 1

N2

∣∣∣∣∑
ij

GijGji

∣∣∣∣ ≺ Im[mN ]
Nη

.(2.28)
�

The following proposition allows us to estimate the expectation of certain polynomials of
entries of the Green’s function.

PROPOSITION 2.8. Let H be as in Definition 1.1, q ≥ N e with arbitrarily small e > 0,
and fix a large constant b> 0. Let G(z) be the Green’s function of the matrix H . Let F(G(z))

be a function of the following form:

F
(
G(z)

) =
d∏

k=1

(
1

N

N∑
i=1

G
sk
ii (z)

)
,(2.29)

with fixed exponents s1, s2, . . . , sk . Uniformly, for any z = E + iη such that −b ≤ E ≤ b,
1/N � η ≤ b, we have ∣∣∣∣ 1

N2E

[∑
ij

GijG
r1
ii G

r2
jjF (G)

]∣∣∣∣ ≺ E[Im[mN ]]
Nη

.(2.30)

PROOF. For the sum of diagonal entries, we have the following trivial bound:∣∣∣∣ 1

N2

∑
i=j

GijG
r1
ii G

r2
jjF (G)

∣∣∣∣ ≺ 1

N
.(2.31)

For the off-diagonal terms, we use the following identities:

Gij = Gii

∑
k �=i

hikG
(i)
kj , G

(i)
kj = Gkj − GkiGij

Gii

,(2.32)



926 J. HUANG, B. LANDON AND H.-T. YAU

and the cumulant expansion. We take a large constant l such that q� ≥ N10,

1

N2E

[∑
ij

GijG
r1
ii G

r2
jjF (G)

]

= 1

N2

∑
ijk

E
[
hikG

(i)
kj G

r1+1
ii G

r2
jjF (G)

]

=
�∑

p=1

Cp+1

N3qp−1

∑
ijk

E
[
G

(i)
kj ∂

p
ik

(
G

r1+1
ii G

r2
jjF (G)

)] +O
(

1

N3

)

=
�∑

p=1

Cp+1

N3qp−1

∑
ijk

E
[
Gkj∂

p
ik

(
G

r1+1
ii G

r2
jjF (G)

)] +O≺
(
E[Im[mN ]]

Nη

)
.

(2.33)

We consider terms in the Leibniz expansion of ∂
p
ik(G

r1+1
ii G

r2
jjF (G)). If such a term contains

at least one off-diagonal term, then the resulting expression Gkj∂
p
ik(G

r1+1
ii G

r2
jjF (G)) con-

tains at least two off-diagonal terms. We can estimate it using (2.24), which gives an error
O≺(Im[mN ]/Nη). For example, if Aijk is a term in the expansion of ∂

p
ik(G

r1+1
ii G

r2
jjF (G))

that contains the off-diagonal term Gik , then∣∣∣∣ Cp+1

N3qp−1

∑
ijk

E[GkjAijk]
∣∣∣∣ ≺ 1

N3

∑
ijk

E
[|GkjGik|]

≤ 1

N3

∑
ijk

E
[|Gkj |2 + |Gik|2]

≺ E[Im[mN ]]
Nη

.

(2.34)

Thus,

∑
p≥1

Cp+1

N3qp−1

∑
ijk

E
[
Gkj∂

p
ik

(
G

r1+1
ii G

r2
jjF (G)

)]

= ∑
p≥1

(r1 + 1)Cp+1

N3qp−1

∑
ijk

E
[
Gkj

(
∂

p
ikG

r1+1
ii

)
G

r2
jjF (G)

]

+O≺
(
E[Im[mN ]]

Nη

)
.

(2.35)

Note that when derivatives hit the F(G) term they generically contain off-diagonal terms or
are of lower cardinality. If p is an odd number, then (∂

p
ikG

r1+1
ii ) must contain off-diagonal

terms and so we dispense with this case. If p is an even number, then

∂
p
ikG

r1+1
ii = p!

(
p/2 + r1

p/2

)
G

p/2+r1+1
ii G

p/2
kk

+ terms with off-diagonal terms.

(2.36)

For terms in (∂
p
ikG

r1+1
ii ) which contains off-diagonal terms, we can estimate them in the

same way as (2.34), which gives an error O≺(Im[mN ]/Nη). Therefore, by plugging (2.36)
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into (2.35), we get

1

N2E

[∑
ij

GijG
r1
ii G

r2
jjF (G)

]

= ∑
p≥1,2|p

p!Cp+1

N2qp−1

(
p/2 + r1

p/2

)

× ∑
jk

E

[
GkjG

p/2
kk G

r2
jj

(
1

N

∑
i

G
r1+p/2+1
ii

)
F(G)

]

+O≺
(
E[Im[mN ]]

Nη

)
.

(2.37)

The terms on the right-hand side of (2.37) are in the same form as the one on the left-hand
side of (2.37), except that there are some factors of 1/q in front of them. For each term on
the right-hand side of (2.37), we can repeat the procedure above, each time gaining at least
a factor of q−1 for any terms that contain only diagonal Green’s function elements. After
finitely many steps, all the errors are bounded by O≺(N−1), and the claim follows. �

PROOF OF PROPOSITION 2.2. The polynomial P0(z,m) is constructed in a way such that
(2.15) is satisfied. More precisely, we compute the following expectation using the cumulant
expansion:

E[1 + zmN ] = 1

N

∑
ij

E[hijGij ]

= 1

N

∑
ij

�∑
p=1

Cp+1

Nqp−1E
[
∂

p
ijGij

] +O
(

1

q�

)
,

(2.38)

where � is large enough such that q� ≥ N10. For the derivatives of the resolvent entries Gij ,
three kinds of terms might occur: the terms containing more than one (counting multiplicity)
off-diagonal entries, the terms containing one (counting multiplicity) off-diagonal entry, or
the terms containing no off-diagonal entry.

For those terms containing more than one off-diagonal entry, using (2.24), we have the
following trivial bound:∣∣∣∣ 1

N2

∑
ij

E
[
G

r1
ij G

r2
ii G

r3
jj

]∣∣∣∣ ≺ 1

N2

∑
ij

E
[|Gij |2] ≺ E[Im[mN ]]

Nη
.(2.39)

For those terms containing one off-diagonal entry, thanks to Proposition 2.8, we have the
same estimate ∣∣∣∣ 1

N2

∑
ij

E
[
GijG

r1
ii G

r2
jj

]∣∣∣∣ ≺ E[Im[mN ]]
Nη

.(2.40)

Finally, we analyze those terms containing no off-diagonal entry, say G
r1
ii G

r2
jj . If r1, r2 ≤ 1,

then its average can be written in terms of mN , that is,

1

N2

∑
ij

G
r1
ii G

r2
jj = m

r1+r2
N .(2.41)
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Otherwise, we assume r1 ≥ 2. Thanks to the following identities:

G
r1
ii G

r2
jj + zGkkG

r1
ii G

r2
jj =

(∑
m

hkmGkm

)
G

r1
ii G

r2
jj ,

GkkG
r1−1
ii G

r2
jj + zGkkG

r1
ii G

r2
jj =

(∑
m

himGim

)
GkkG

r1−1
ii G

r2
jj ,

(2.42)

by taking difference, we get

E
[
G

r1
ii G

r2
jj

] = E
[
GkkG

r1−1
ii G

r2
jj

] + ∑
m

E
[
hkmGkmG

r1
ii G

r2
jj

]

− ∑
m

E
[
himGimGkkG

r1−1
ii G

r2
jj

]

= E
[
GkkG

r1−1
ii G

r2
jj

] + ∑
m

�∑
p=1

Cp+1

Nqp−1

(
E

[
∂

p
km

(
GkmG

r1
ii G

r2
jj

)]

−E
[
∂

p
im

(
GimGkkG

r1−1
ii G

r2
jj

)]) +O
(

1

q�

)
.

(2.43)

We consider first the leading term in the cumulant expansion p = 2. The crucial point is that
the only terms resulting from the Leibniz expansion of the derivatives which do not contain
at least two off-diagonal entries directly cancel:

= C2

N

(
E

[
∂km

(
GkmG

r1
ii G

r2
jj

)] −E
[
∂im

(
GimGkkG

r1−1
ii G

r2
jj

)])

= C2

N

(
E

[
∂km(Gkm)G

r1
ii G

r2
jj

] −E
[
∂im(Gim)GkkG

r1−1
ii G

r2
jj

])
+ at least two off-diagonal terms

= C2

N

(
E

[
(GiiGmm)GkkG

r1−1
ii G

r2
jj

] −E
[
(GkkGmm)G

r1
ii G

r2
jj

])
+ at least two off-diagonal terms

= terms with at least two off-diagonal terms.

The terms with at least two off-diagonal terms can be bounded as in (2.39). Therefore, aver-
aging over i, j , k, m, we obtained that

1

N2

∑
ij

E
[
G

r1
ii G

r2
jj

] = 1

N3

∑
ijk

E
[
GkkG

r1−1
ii G

r2
jj

]

+ higher order terms

+O≺
(
E[Im[mN(z)]]

Nη

)
,

(2.44)

where those higher order terms refer to terms of size O(q−1). In this way, we introduced
a new resolvent entry Gkk , and the exponent of Gii was reduced by one. By repeating this
process, we can reduce all the exponents to one. The average of the resulting expression can
be written in terms of mN , that is, m

r1+r2
N . We can repeat the above procedure to the higher

order terms, until the error is of order O≺(N−1). In this way, we obtain a polynomial Q(mN)

such that

E[1 + zmN ] = −E
[
Q(mN)

] +O≺
(
E[Im[mN ]]

Nη

)
.(2.45) �
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2.3. Moments of the higher order self-consistent equation. In this section, we compute
higher moments of the self-consistent equation near the spectral edges ±L̃. This gives us a
recursive moment estimate for the Stieltjes transform mN(z). The rigidity estimates follow
from a careful analysis of the recursive moment estimate and an iteration argument.

Note that the polynomial we consider is random and depends on X . We will need to use
the deterministic bounds of the random quantity in (2.21), and so we have to consider the
Stieltjes transform mN at the random spectral argument z̃ = ±(L+X )+ z, where z ∈D. We
recall the shifted spectral domain from (2.1):

D =
{
z = κ + iη ∈ C+ : |κ| ≤ 1,0 ≤ η ≤ 1,

|κ| + η ≥ Na

(
1

q3N1/2 + 1

q3Nη
+ 1

(Nη)2

)}
.

(2.46)

PROPOSITION 2.9. Let H be as in Definition 1.1 and q ≥ N e with arbitrarily small
e > 0. Let mN(z) be the Stieltjes transform of its eigenvalue density. We recall L as defined
in Proposition 2.5, and ρ̃∞ with its Stieltjes transform m̃∞ as defined in Proposition 2.6. Fix
z̃ = L +X + z, where z = κ + iη ∈ D and X is defined in (1.9). We have the estimate

E
[∣∣P(z̃, m̃N(z̃)

∣∣2r ]
≺ max

s1+s2≥1
E

[{(
1

q3 + 1

Nη

)
Im[mN(z̃)]|∂2P(z̃,mN(z̃))|

Nη

}s1/2

×
(

Im[mN(z̃)]
Nη

)s2 ∣∣P (
z̃,mN(z̃)

)∣∣2r−s1−s2

]
.

(2.47)

The analogous statement holds for z̃ = −L −X + z.

Before proving Proposition 2.9, we first derive some estimates of the derivatives of the
polynomial P and the Green’s function G with respect to the matrix entries of H .

PROPOSITION 2.10. Using the same notation as in Proposition 2.9, for the derivatives
of P(z̃,mN(z̃)), we have

∣∣∂p
ijP

(
z̃,mN(z̃)

)∣∣ ≺ ∣∣∂2P
(
z̃,mN(z̃)

)∣∣ Im[mN(z̃)]
Nη

.(2.48)

For the derivatives of Gij (z̃), we have

∂
p
ijGij (z̃) = (

∂
p
ijGij

)
(z̃) +O≺

(
Im[mN(z̃)]

Nη

)
.(2.49)

PROOF. In this proof, we write P = P(z̃,mN(z̃)) and ∂2P = (∂2P)(z̃,mN(z̃)). We recall
Q as defined in (2.14). For the derivative of P ,

∂ijP = ∂ij

(
1 + z̃mN(z̃) + Q

(
mN(z̃)

) +Xm2
N(z̃)

)
= ∂2P∂ij

(
mN(z̃)

) + (∂ij z̃)mN(z̃) + (∂ijX )m2
N(z̃)

= ∂2P(∂ijmN)(z̃) + 2 − δij

N
hij

(
mN(z̃) + m2

N(z̃) + ∂2P∂zmN(z̃)
)

≺ |∂2P | Im[mN(z̃)]
Nη

,

(2.50)
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where we used (2.25). Similarly, for the higher order derivatives of P , we have

∣∣∂p
ijP

(
z̃,mN(z̃)

)∣∣ ≺ |∂2P | Im[mN(z̃)]
Nη

.(2.51)

For the derivative of Gij (z̃), we have

∂ijGij (z̃) = ∂ij (Gij )(z̃) + (∂zGij )(z̃)∂ij z̃

= ∂ij (Gij )(z̃) + 2 − δij

N
hij

∑
k

Gik(z̃)Gkj (z̃)

= ∂ij (Gij )(z̃) +O≺
(

Im[mN(z̃)]
Nη

)
,

(2.52)

where in the last equality we used (2.24). The higher order derivatives of Gij (z̃) can be
estimated in the same way. �

PROOF OF PROPOSITION 2.9. In this proof, we write, for simplicity of notation,
P = P(z̃,mN(z̃)), G = G(z̃), mN = mN(z̃), P ′ = P ′(z̃,mN(z̃)) = ∂2P(z̃,mN(z̃)), ∂

p
ijP =

∂
p
ij (P (z̃,mN(z̃))), ∂

p
ijG = ∂

p
ij (G(z̃)), ∂

p
ijmN = ∂

p
ij (mN(z̃)), D

p
ijG = (∂

p
ijG)(z̃) and D

p
ijmN =

(∂
p
ijmN)(z̃).
The starting point is the following identity:

1 + z̃mN(z̃) = ∑
ij

hijGij (z̃).(2.53)

Using the cumulant expansion, we can write the moment of P(z̃,mN(z̃)) as

E
[∣∣P (

z̃,mN(z̃)
)∣∣2r ] = E

[
QP r−1P̄ r ] +E

[
Xm2

NP r−1P̄ r ]
+ 1

N
E

[∑
ij

hijGij (z̃)P
r−1P̄ r

]

= E
[
QP r−1P̄ r ] +E

[
Xm2

NP r−1P̄ r ]

+ 1

N

∑
ij

�∑
p=1

Cp+1

Nqp−1E
[
∂

p
ij

(
GijP

r−1P̄ r)]

+O
(

1

q�

)
,

(2.54)

where � is large enough such that q� ≥ N10 (say). In the following, we estimate the sum on
the right-hand side of (2.54). For p �= 2,3, we write that

E
[
∂

p
ij

(
GijP

r−1P̄ r)] = E
[
D

p
ij (Gij )P

r−1P̄ r ] + other terms,(2.55)

and show the leading order term cancels with E[QP r−1P̄ r ] from our construction of Q, and
the “other terms” are negligible. For p = 2,3, we write

E
[
∂

p
ij

(
GijP

r−1P̄ r)] = E
[
D

p
ij (Gij )P

r−1P̄ r ]
− pE

[
GiiGjj ∂

p−1
ij

(
P r−1P̄ r)] + other terms,

(2.56)

and the “other terms” are negligible. We will show that the leading order contribution of
the first term on the right-hand side cancels with E[QP r−1P̄ r ], and that of the second term
cancels with the fluctuation term E[Xm2

NP r−1P̄ r ] in (2.54).
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For the first- and second-order terms in (2.54), that is, p = 1,2, we have the following
estimates. Their proofs depend on a careful analysis of the expansion, we postpone them
after the proof of Proposition 2.9.

CLAIM 2.11. The first-order term in (2.54), that is, p = 1, satisfies

1

N2

∑
ij

E
[
∂ij

(
GijP

r−1P̄ r)]

= −E
[
m2

NP r−1P̄ r ]
+O≺

(
E

[
Im[mN ]
(Nη)2

∣∣P ′∣∣|P |2r−2
]

+ max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

(2.57)

CLAIM 2.12. The second-order term in (2.54), that is, p = 2, satisfies

1

N

∑
ij

C3

Nq
E

[
∂2
ij

(
GijP

r−1P̄ r)]

≺ max
s=0,1

E

[(
Im[mN ]

Nη

)s( Im[mN ]|P ′|
(Nη)2

)
|P |2r−2−s

]

+ max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

]
.

(2.58)

For the third-order term in (2.54), that is, p = 3,

C4

N2q2

∑
ij

E
[
∂3
ij

(
GijP

r−1P̄ r)]

= 3C4

N2q2

∑
ij

E
[
∂ij (Gij )∂

2
ij

(
P r−1P̄ r)] + C4

N2q2

∑
ij

E
[
∂3
ij (Gij )P

r−1P̄ r ]

+O≺
((

1

q3 + 1

Nη

)
max
s≥1

E

[(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

])
,

(2.59)

where we used that maxi �=j |Gij | ≺ 1/q + 1/
√

Nη.
For the higher order terms in (2.54), that is, p ≥ 4,

Cp+1

N2qp−1

∑
ij

E
[
∂

p
ij

(
GijP

r−1P̄ r)]

= Cp+1

N2qp−1

∑
ij

E
[
∂

p
ij (Gij )P

r−1P̄ r ]

+O≺
(

1

q3 max
s≥1

E

[(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

])
.

(2.60)

We combine all the estimates (2.57), (2.58), (2.59) and (2.60) together, and use (2.49)

E
[|P |2r ] = E

[(
Q − m2

N

)
P r−1P̄ r ] + ∑

p≥3

∑
ij

Cp+1

Nqp−1E
[(

D
p
ijGij

)
P r−1P̄ r ]

+
(
E

[
Xm2

NP r−1P̄ r ] − ∑
ij

2C3

N2q
E

[
GiiGjj ∂ij

(
P r−1P̄ r)]
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− 3C4

N2q2

∑
ij

E
[
GiiGjj ∂

2
ij

(
P r−1P̄ r ]))(2.61)

+O≺
((

1

q3 + 1

Nη

)
max
s≥1

E

[(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

]

+ max
s≥1

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

In the following, we show that the second line is negligible, and then Proposition 2.9 will
shortly follow. We will soon see that there is a cancellation between those terms from p = 3
and the random term Xm2

NP r−1P̄ r , which is the reason we use the random polynomial
P(z,m) instead of P0(z,m). We calculate the X term:

E
[
Xm2

NP r−1P̄ r ] = 1

N

∑
ij

E
[
h2

ijm
2
NP r−1P̄ r ] − 1

N2

∑
ij

E
[
m2

NP r−1P̄ r ]

= 1

N

∑
ij

∑
p≥1

Cp+1

Nqp−1E
[
∂

p
ij

(
hijm

2
NP r−1P̄ r)]

− 1

N2

∑
ij

E
[
m2

NP r−1P̄ r ](2.62)

= 1

N

∑
ij

∑
p≥1

Cp+1

Nqp−1E
[
hij ∂

p
ij

(
m2

NP r−1P̄ r)]

+ 1

N

∑
ij

∑
p≥2

pCp+1

Nqp−1E
[
∂ij (hij )∂

p−1
ij

(
m2

NP r−1P̄ r)].
For the first term in (2.62), we use the cumulant expansion again,

∑
ij

∑
p≥1

Cp+1

N2qp−1E
[
hij ∂

p
ij

(
m2

NP r−1P̄ r)]

= ∑
ij

∑
p,p′≥1

Cp+1Cp′+1

N3qp+p′−2
E

[
∂

p+p′
ij

(
m2

NP r−1P̄ r)]

= O≺
(

max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

(2.63)

For the second term in (2.62), we have

∑
ij

∑
p≥2

pCp+1

N2qp−1E
[
∂

p−1
ij

(
m2

NP r−1P̄ r)]

= ∑
ij

∑
p≥2

pCp+1

N2qp−1E
[
m2

N∂
p−1
ij

(
P r−1P̄ r)]

+O≺
(

max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
(2.64)

= ∑
ij

2C3

N2q
E

[
m2

N∂ij

(
P r−1P̄ r)] + ∑

ij

3C4

N2q2E
[
m2

N∂2
ij

(
P r−1P̄ r)]
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+O≺
(

1

q3 max
s≥1

E

[(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

]

+ max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

Therefore, the second line in (2.61) simplifies to

2C3

N2q

∑
ij

E
[(

m2
N − GiiGjj

)
∂ij

(
P r−1P̄ r)]

+ 3C4

N2q2

∑
ij

E
[(

m2
N − GiiGjj

)
∂2
ij

(
P r−1P̄ r)]

+O≺
(

1

q3 max
s≥1

E

[(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

]

+ max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
(2.65)

= 2C3

N2q

∑
ij

E
[(

m2
N − GiiGjj

)
∂ij

(
P r−1P̄ r)]

+O
(

max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])

+O≺
((

1

q3 + 1

Nη

)
max
s≥1

E

[(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

])
,

where we used that |Gii − mN | ≺ 1/q + 1/
√

Nη. For the first term on the right-hand side of
(2.65), notice that

m2
N − GiiGjj = (mN − Gii)mN + (mN − Gjj )mN

− (mN − Gii)(mN − Gjj )

= (mN − Gii)mN + (mN − Gjj )mN +O≺
(

1

q2 + 1

Nη

)
.

(2.66)

Thus the first term in the right-hand side of (2.65) simplifies to

O(1)

N2q

∑
ij

E
[
(mN − Gjj )mN(∂ijP )P r−2P̄ r ]

+ O(1)

N2q

∑
ij

E
[
(mN − Gjj )mN(∂ij P̄ )|P |2r−2]

+ O(1)

N2q

∑
ij

E
[
(mN − Gii)mN(∂ijP )P r−2P̄ r ]

+ O(1)

N2q

∑
ij

E
[
(mN − Gii)mN(∂ij P̄ )|P |2r−2]

+O≺
((

1

q3 + 1

Nη

)
E

[
Im[mN ]|P ′|

Nη
|P |2r−2

])
.

(2.67)
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By symmetry, we only need to estimate the first term in (2.67), as the other terms can be
estimated in the same way. Using (2.50), we have

1

N2q

∑
ij

E
[
(mN − Gjj )mN(∂ijP )P r−2P̄ r ]

= 1

N2q

∑
ij

E
[
(mN − Gjj )mNP ′(DijmN)P r−2P̄ r ](2.68)

+ 1

N2q

∑
ij

2 − δij

N

×E
[
hij (mN − Gjj )mN

(
P ′∂zmN + m2

N + mN

)
P r−2P̄ r ].

We have that DijmN = ∑
k GkiGkj/N . Using the identity Gki = ∑

� �=i hi�G
(i)
�k Gii , we can

write the first term in (2.68) as

1

N3q

∑
ijk

E
[
GkiGkj (mN − Gjj )mNP ′P r−2P̄ r ]

= 1

N3q

∑
ijk

∑
� �=i

E
[
hi�G

(i)
�k GiiGkj (mN − Gjj )mNP ′P r−2P̄ r ]

= ∑
p≥1

Cp+1

N4qp

∑
ijk

∑
� �=i

E
[
G

(i)
�k ∂

p
i�

(
GiiGkj (mN − Gjj )mNP ′P r−2P̄ r)](2.69)

= O(1)

N4q

∑
ijk

∑
� �=i

E
[
G

(i)
�k GiiGkj (mN − Gjj )mNP ′(∂i�P )P r−3P̄ r )

]

+ O(1)

N4q

∑
ijk

∑
� �=i

E
[
G

(i)
�k GiiGkj (mN − Gjj )mNP ′(∂i�P̄ )P r−2P̄ r−1)

]

+O≺
(

max
s≥1

E

[(
1

q3 + 1

Nη

)(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

])
.

For the first term on the right-hand side of (2.69), we have

∣∣∣∣ 1

N4q

∑
ijk

∑
� �=i

G
(i)
�k GiiGkj (mN − Gjj )(∂i�P )

∣∣∣∣
≤ 1

N4q

∑
ij

|Gii |
∣∣∣∣ ∑
� �=i,k

(∂i�P )G
(i)
�k

(
Gkj (mN − Gjj )

)∣∣∣∣

≺ Im[mN ]|P ′|
(Nη)2

√
Im[mN ]

Nη

(
1

q2 + 1

Nη

)
,

(2.70)

where we used that ‖G(i)‖L2→L2 ≤ 1/η, |∂i�P | ≺ Im[mN ]|P ′|/Nη, |mN − Gjj | ≺ 1/q +
1/

√
Nη, and

∑
k |Gkj |2 ≤ Im[mN ]/η. The same estimate holds for the second term on the

right-hand side of (2.69). Combining the above estimates, it follows that the first term in
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(2.68) is bounded by

O≺
(

max
s≥1

E

[(
1

q3 + 1

Nη

)(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

]

+E

[
Im[mN ]|P ′|

(Nη)2

√
Im[mN ]|P ′|

Nη

(
1

q2 + 1

Nη

)
|P |2r−3

])
.

(2.71)

For the second term on right-hand side of (2.68), we use the cumulant expansion again,

1

N2q

∑
ij

2 − δij

N
E

[
hij (mN − Gjj )mN

(
P ′∂zmN + m2

N + mN

)
P r−2P̄ r ]

= ∑
p≥1

Cp+1

N3qp

∑
ij

2 − δij

N

×E
[
∂

p
ij

(
(mN − Gjj )mN

(
P ′∂zmN + m2

N + mN

)
P r−2P̄ r)]

=O≺
(

max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

(2.72)

The estimates (2.61), (2.65), (2.67), (2.68), (2.71) and (2.72) all together lead to the fol-
lowing estimate:

E
[|P |2r ] = E

[(
Q − m2

N

)
P r−1P̄ r ] + ∑

p≥3

∑
ij

Cp+1

Nqp−1E
[(

D
p
ijGij

)
P r−1P̄ r ]

+O≺
(

max
s1+s2≥1

E

[((
1

q3 + 1

Nη

)(
Im[mN ]|P ′|

Nη

))s1/2
(2.73)

×
(

Im[mN ]
Nη

)s2 |P |2r−s1−s2

])
.

We have left the first line in (2.73). This is estimated similarly to Proposition 2.2. More
precisely, we repeat the procedure as in Proposition 2.2, by repeatedly using the cumulant
expansion. Derivatives hitting z̃ give an extra copy of Im[mN ]/Nη (see (2.49)) and so the
resulting term can be bounded by

O≺
(

max
s≥1

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.(2.74)

If the derivative hits P or P̄ , we get a factor of Im[mN ]|P ′|/qNη, and the resulting term can
be bounded by

O≺
(

max
s≥0

E

[
Im[mN ]|P ′|

q3Nη

(
Im[mN ]

Nη

)s

|P |2r−s−2
])

.(2.75)

If the derivative never hits z̃, P , P̄ , these terms will cancel with Q. Proposition 2.9 follows.
�

PROOF OF CLAIM 2.11. We rewrite the left-hand side of (2.57) as

1

N2

∑
ij

E
[
∂ij

(
GijP

r−1P̄ r)] = 1

N2

∑
ij

E
[
∂ij (Gij )P

r−1P̄ r ]

+ 1

N2

∑
ij

E
[
Gij∂ij

(
P r−1P̄ r)].

(2.76)
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For the first term in (2.76), thanks to (2.49),

1

N2

∑
ij

E
[
∂ij (Gij )P

r−1P̄ r ]

= − 1

N2

∑
ij

E
[
GiiGjjP

r−1P̄ r ] − 1

N2

∑
ij

E
[
GijGijP

r−1P̄ r ]

+O≺
(
E

[
Im[mN ]

Nη
|P |2r−1

])

= −E
[
m2

NP r−1P̄ r ] +O≺
(
E

[
Im[mN ]

Nη
|P |2r−1

])
,

(2.77)

where we used (2.24). For the second term in (2.76), we use Proposition 2.10. We write the
second term in (2.76) as follows:

1

N2

∑
ij

E
[
Gij∂ij

(
P r−1P̄ r)]

= O(1)

N2

∑
ij

E
[
Gij (∂ijP )P r−2P̄ r ] + O(1)

N2

∑
ij

E
[
Gij∂ij (P̄ )|P |2r−2]

.

(2.78)

Using (2.50), the first term in (2.78) is

O(1)

N2

∑
ij

E
[
Gij (DijmN)P ′P r−2P̄ r ]

+ O(1)

N3

∑
ij

E
[
(2 − δij )hijGij

(
m2

N + P ′∂zmN + mN

)
P r−2P̄ r ]

= O(1)

N3

∑
p≥1

Cp+1

Nqp−1

× ∑
ij

E
[
(2 − δij )∂

p
ij

(
Gij

(
m2

N + P ′∂zmN + mN

)
P r−2P̄ r)]

+O≺
(
E

[
Im[mN ]
(Nη)2

∣∣P ′∣∣|P |2r−2
])

= O≺
(
E

[
Im[mN ]
(Nη)2

∣∣P ′∣∣|P |2r−2
]

+ max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
,

(2.79)

where in the first term we used

∣∣∣∣ 1

N2

∑
ij

Gij (DijmN)

∣∣∣∣ =
∣∣∣∣ 1

N3 TrG3
∣∣∣∣ ≤ 1

N3 Tr |G|3 ≤ Im[mN ]
(Nη)2 ,(2.80)

and we used (2.51) for the second term. The same estimates hold for the second term in
(2.78). The discussion above together implies the claimed estimate (2.57). �
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PROOF OF CLAIM 2.12. We rewrite the left-hand side of (2.58) as

1

N

∑
ij

C3

Nq
E

[
∂2
ij

(
GijP

r−1P̄ r)]

= 1

N

∑
ij

C3

Nq
E

[
∂2
ij (Gij )P

r−1P̄ r ]

+ 1

N

∑
ij

2C3

Nq
E

[
∂ij (Gij )∂ij

(
P r−1P̄ r)]

+ 1

N

∑
ij

C3

Nq
E

[
Gij∂

2
ij

(
P r−1P̄ r)].

(2.81)

For the first term in (2.81), thanks to Proposition 2.10 and (2.24), we have

1

N

∑
ij

C3

Nq
E

[
∂2
ij (Gij )P

r−1P̄ r ] = 1

N

∑
ij

6C3

Nq
E

[
GijGiiGjjP

r−1P̄ r ]

+O≺
(
E

[
Im[mN ]

Nη
|P |2r−1

])
.

(2.82)

We use the identities Gij = ∑
k �=i GiihikG

(i)
kj , and G

(i)
kj = Gkj − GkiGji/Gii . Then by the

cumulant expansion, we have

1

N2q

∑
ij

E
[
GijGiiGjjP

r−1P̄ r ]

= 1

N2q

∑
ij

E

[∑
k �=i

hikG
(i)
kj G2

iiGjjP
r−1P̄ r

]

= ∑
p≥1

Cp+1

N3qp

∑
ij

E

[∑
k �=i

G
(i)
kj ∂

p
ik

(
G2

iiGjjP
r−1P̄ r)]

= ∑
p≥1

Cp+1

N3qp

∑
ij

E

[∑
k �=i

GkjG
2
iiGjj ∂

p
ik

(
P r−1P̄ r))]

+O≺
(

max
s≥1

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])

= O≺
(

max
s≥1

E

[
1

Nη

(
Im[mN ]|P ′|

Nη

)s

|P |2r−1−s

]

+ max
s≥1

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
,

(2.83)

where we used (2.24) in the third line and that ‖G‖L2→L2 ≤ 1/η, and hence
∣∣∣∣ 1

N2E

[∑
kj

GjjGkj∂
p
ik

(
P r−1P̄ r)]∣∣∣∣

≺ max
s≥1

E

[
1

Nη

(
Im[mN ]|P ′|

Nη

)s

|P |2r−s−1
]
.

(2.84)
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For the second term in (2.81), using (2.49), it is given by

−∑
ij

2C3

N2q
E

[
GiiGjj ∂ij

(
P r−1P̄ r)] +O≺

(
E

[(
Im[mN ]

Nη

)2
|P |2r−2

])
.(2.85)

For the last term in (2.81), it is given by

O(1)

N2q

∑
ij

E
[
Gij

(
∂2
ijP

)
P r−2P̄ r )

] + O(1)

N2q

∑
ij

E
[
Gij (∂ijP )2P r−3P̄ r )

]

+ O(1)

N2q

∑
ij

E
[
Gij

(
∂2
ij P̄

)2
P r−1P̄ r−2)

]
(2.86)

+ O(1)

N2q

∑
ij

E
[
Gij

(
∂2
ij P̄

)|P |2r−2]

+ O(1)

N2q

∑
ij

E
[
Gij (∂ijP )(∂ij P̄ )P r−2P̄ r−1]

.

We estimate the first and second terms; the other terms can be estimated in the same way.
Using (2.50), (2.51) and (2.25), we can write the first term in (2.86) as

1

N2q

∑
ij

E
[
Gij∂ij

(
P ′DijmN + (2 − δij )hij

× (
m2

N + mN + P ′∂zmN

)
/N

)
P r−2P̄ r ]

= 1

N2q

∑
ij

E
[
Gij

(
P ′(D2

ijmN + 2Dij∂zmN∂ij z̃
) + P ′′(DijmN)2

+ (2 − δij )
(
m2

N + mN + P ′∂zmN

)
/N

)
P r−2P̄ r ]

+O≺
(
E

[((
Im[mN ]

Nη

)2
+ Im[mN ]|P ′|

(Nη)2

)
|P |2r−2

])
.

(2.87)

We estimate the first term on the right-hand side of (2.87) in two parts. For the first part,

∣∣∣∣ 1

N2q

∑
ij

GijP
′(D2

ijmN

)∣∣∣∣
≤ O(1)|P ′|

N3q

∣∣∣∣∑
ijk

Gij (GkjGiiGjk + GkiGjiGjk)

∣∣∣∣
≤ O(1)|P ′|

N3q

∣∣∣∣∑
ij

GiiGij

∑
k

G2
kj

∣∣∣∣
+ O(1)|P ′|

N3q

∑
ijk

∣∣G2
ij

∣∣∑
k

|GkiGjk|

≺ Im[mN ]|P ′|
q(Nη)2 ,

(2.88)
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where we used that ‖G‖L2→L2 ≤ 1/η, and (2.24). For the second part, we have

1

N2q

∣∣∣∣∑
ij

GijP
′Dij∂zmN∂ij z̃

∣∣∣∣ ≤ O(1)

N4q

∣∣∣∣∑
ij

P ′Gij

(
G3)

ij (2 − δij )hij

∣∣∣∣
≺ |P ′|

N4q2

∑
ij

∣∣(G3)
ij

∣∣ ≺ Im[mN ]|P ′|
(Nη)2 .

(2.89)

For the second term on the right-hand side of (2.87), we have∣∣∣∣ 1

N2q

∑
ij

GijDijmNDijmN

∣∣∣∣ ≤ 1

N3q

∑
i

∣∣∣∣∑
jk

(GijDijmN)Gjk(Gki)

∣∣∣∣
≺ (Im[mN ])2

q(Nη)3 ,

(2.90)

where we used that ‖G‖L2→L2 ≤ 1/η,
∑

i |Gki |2 ≺ Im[mN ]/η, and
∑

i |GijDij × mN |2 ≺
(Im[mN ])3/Nη2. For the last term in (2.87), since ‖G‖L2→L2 ≤ 1/η, we have∣∣∣∣ 1

N2

∑
ij

Gij

∣∣∣∣ ≤ 1

Nη
.(2.91)

It follows that the first term in (2.86) can be bounded by

O≺
(
E

[((
Im[mN ]

Nη

)2
+ Im[mN ]|P ′|

(Nη)2

)
|P |2r−2

])
.(2.92)

The second term in (2.86) can be rewritten as

1

N2q

∑
ij

E
[
Gij (∂ijP )2P r−3P̄ r )

]

+ 1

N2q

∑
ij

E
[
Gij

(
P ′DijmN

)(
P ′DijmN

)
P r−3P̄ r )

]
(2.93)

= 1

N2q

∑
ij

2 − δij

N
E

[
hijGij

(
P ′∂zmN + m2

N + mN

)

× (
P ′DijmN + ∂ijP

)
P r−3P̄ r )

]
.

For the first term in (2.93), we use the estimate (2.90), and it follows that∣∣∣∣ 1

N2q

∑
ij

E
[
Gij

(
P ′DijmN

)(
P ′DijmN

)
P r−3P̄ r )

]∣∣∣∣
(2.94)

≺ E

[
Im[mN ]

Nη

(
Im[mN ]|P ′|

(Nη)2

)
|P |2r−3

]
.

For the second term in (2.93), we again use the cumulant expansion and find that it is given
by

Cp+1

N3qp−1

∑
p≥1

∑
ij

2 − δij

N
E

[
∂

p
ij

(
Gij

× (
P ′∂zmN + m2

N + mN

)(
P ′DijmN + ∂ijP

)
P r−3P̄ r))]

=O≺
(

max
s≥3

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

(2.95)
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It follows that the second term in (2.86) is bounded by

O≺
(
E

[
Im[mN ]

Nη

(
Im[mN ]|P ′|

(Nη)2

)
|P |2r−3

]

+ max
s≥3

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

(2.96)

By combining the estimates (2.92) and (2.96), the last term in (2.81) can be bounded by

O≺
(

max
s=0,1

E

[(
Im[mN ]

Nη

)s( Im[mN ]|P ′|
(Nη)2

)
|P |2r−2−s

]

+ max
s≥2

E

[(
Im[mN ]

Nη

)s

|P |2r−s

])
.

(2.97)

The discussion above implies the claimed estimate (2.58). �

2.4. Proof of Theorem 2.1. We only analyze the behavior of the Stieltjes transform mN

in the region close to the right edge L̃. The analysis for mN in the region close to the left edge
can be done in the same way. Recall the shifted spectral domain D from (2.1). The following
stability lemma is a variation of the usual stability lemma, for example, [8], Lemma 4.5.

LEMMA 2.13. Let H be as in Definition 1.1 and q ≥ N e with arbitrarily small e > 0.
There exists a constant ε > 0 such that the following holds. Suppose that δ : D → R is a
function so that ∣∣P (

L +X + z,mN(L +X + z)
)∣∣ ≤ δ(z).(2.98)

Suppose that N−2 ≤ δ(z) ≤ ε for z ∈D, that δ is Lipschitz continuous with Lipschitz constant
N and moreover that for each fixed κ the function η �→ δ(κ + iη) is nonincreasing for η > 0.
Then

∣∣mN(L +X + z) − m̃∞(L +X + z)
∣∣ = O

(
δ(z)√|κ| + η + δ(z)

)
,(2.99)

where the implicit constant is independent of z and N .

PROOF. We abbreviate z̃ = L + X + z. From (2.22), we have |∂2P(z̃, m̃∞(z̃))| 
√|κ| + η, and ∂2
2P(z̃, m̃∞(z̃)) = 1 +O(1/q2). By a Taylor expansion, we have

−P
(
z̃,mN(z̃)

) + ∂2P
(
z̃, m̃∞(z̃)

)(
mN(z̃) − m̃∞(z̃)

)
+ (

1 + o(1)
)(

mN(z̃) − m̃∞(z̃)
)2 = 0.

(2.100)

We abbreviate R(z̃) := P(z̃,mN(z̃)). There exists a(z̃) 
 √|κ| + η and b(z̃) 
 1, such that

R(z̃) = a(z̃)
(
mN(z̃) − m̃∞(z̃)

) + b(z̃)
(
mN(z̃) − m̃∞(z̃)

)2
.(2.101)

With (2.101) in hand, Lemma 2.13 follows by a continuity argument essentially the same as
[8], Lemma 4.5. �

Before proving Theorem 2.1, we first prove a weaker estimate of the Stieltjes transform
mN(z̃).
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PROPOSITION 2.14. Let H be as in Definition 1.1 and q ≥ N e with arbitrarily small
e > 0. Let mN(z) be the Stieltjes transform of its eigenvalue density, and m̃∞(z) as defined in
Proposition 2.6. Uniformly, for any z = κ + iη ∈D as defined in (2.46), letting z̃ = L+X +z,
we have ∣∣mN(z̃) − m̃∞(z̃)

∣∣ ≺ √|κ| + η.(2.102)

PROOF. For |κ| + η � 1/q3
√

N , and κ ≤ 1, by Proposition 2.6, we have

Im
[
m̃∞(z̃)

] 
 �(z) :=
{√|κ| + η κ ≤ 0,

η/
√|κ| + η κ ≥ 0

(2.103)

and ∣∣∂2P
(
z̃, m̃∞(z̃)

)∣∣ 
 √|κ| + η.(2.104)

We denote

N(z) := ∣∣mN(L +X + z) − m̃∞(L +X + z)
∣∣.(2.105)

Then we have

Im
[
mN(z̃)

]
� �(z) + N(z),(2.106)

and by Proposition 2.6

∂2P
(
z̃,mN(z̃)

) = ∂2P
(
z̃, m̃∞(z̃)

) +O
(∣∣mN(z̃) − m̃∞(z̃)

∣∣)
= O

(√|κ| + η + N(z)
)
.

(2.107)

By Hölder’s inequality, we obtain from Proposition 2.9,

E
[∣∣P (

z̃,mN(z̃)
)∣∣2r ] ≺ 1

(Nη)r

(
1

q3 + 1

Nη

)r

E
[
N(z)2r

+ (|κ| + η
)r/2(

�(z)r + N(z)r
)]

.

(2.108)

With overwhelming probability, we have the following Taylor expansion:

P
(
z̃,mN(z̃)

) = P
(
z̃, m̃∞(z̃)

) + ∂2P
(
z̃, m̃∞(z̃)

)(
mN(z̃) − m̃∞(z̃)

)
+ ∂2

2P(z̃, m̃∞(z̃)) + o(1)

2

(
mN(z̃) − m̃∞(z̃)

)2

= ∂2P
(
z̃, m̃∞(z̃)

)(
mN(z̃) − m̃∞(z̃)

)
+ (

1 + o(1)
)(

mN(z̃) − m̃∞(z̃)
)2

,

(2.109)

where we used that ∂2
2P(z̃, m̃∞(z̃)) = 2+O(1/q2) and N(z) � 1 with overwhelming prob-

ability. Rearranging the last equation and using the definition of N(z), we have arrived at

N(z)2 � N(z)
√|κ| + η + ∣∣P (

z̃,mN(z̃)
)∣∣,(2.110)

and thus

E
[
N(z)4r ] � (|κ| + η

)r
E

[
N(z)2r ] +E

[∣∣P (
z̃,mN(z̃)

)∣∣2r ]
.(2.111)

We replace E[|P(z̃,mN(z̃))|2r ] in (2.111) by (2.108). Moreover, on the domain D, we have
the estimates Nη

√|κ| + η � 1 and Nη(|κ| + η)q3 � 1, and so,

E
[
N(z)4r ] ≺ (|κ| + η

)2r
,(2.112)

and by Markov’s inequality we get N(z) ≺ √|κ| + η. �
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PROOF OF THEOREM 2.1. We assume that there exists some deterministic control pa-
rameter (z) such that the prior estimate holds

(2.113)
∣∣mN(L +X + z) − m̃∞(L +X + z)

∣∣ ≺ (z) �
√|κ| + η.

Since �(z) �
√|κ| + η and (z) ≺ √|κ| + η, (2.108) simplifies to

(2.114)
∣∣P (

z̃,mN(z̃)
)∣∣ ≺

(
1

q3/2
√

Nη
+ 1

Nη

)((
(z) + �(z)

)√|κ| + η
)1/2

.

If κ ≥ 0, then �(z) = η/
√|κ| + η, and (2.114) simplifies to

∣∣P (
z̃,mN(z̃)

)∣∣ ≺ 1

Nη1/2 + 1

N1/2q3/2 + (|κ| + η)1/41/2

Nη

+ (|κ| + η)1/41/2

q3/2(Nη)1/2 .

(2.115)

Thanks to Lemma 2.13, by taking δ(z) the right-hand side of (2.115) times N c, we have

∣∣mN(z̃) − m̃∞(z̃)
∣∣ ≺ 1√|κ| + η

(
1

Nη1/2 + 1

N1/2q3/2

+ (|κ| + η)1/41/2

Nη
+ (|κ| + η)1/41/2

q3/2(Nη)1/2

)
.

(2.116)

By iterating (2.116), we get∣∣mN(z̃) − m̃∞(z̃)
∣∣

≺ 1√|κ| + η

(
1

Nη1/2 + 1

N1/2q3/2 + 1

(Nη)2 + 1

q3Nη

)
.

(2.117)

This completes the proof of (2.2).
If κ ≤ 0, then �(z) = √|κ| + η and (z) ≺ √|κ| + η, (2.114) simplifies to

∣∣P(z̃,mN(z̃)
∣∣ ≺ (|κ| + η)1/2

Nη
+ (|κ| + η)1/2

(Nη)1/2q3/2 .(2.118)

It follows from Lemma 2.13, by taking δ(z) the right-hand side of (2.118) times N c, we have

∣∣mN(z̃) − m̃∞(z̃)
∣∣ ≺ 1

Nη
+ 1

(Nη)1/2q3/2 .(2.119)

This completes the proof of (2.3). �

3. Edge statistics of H(t). Let H be as in Definition 1.1. In this section, we assume that
q � N1/9, and consider the ensemble

(3.1) H(t) := e−t/2H + (
1 − e−t )1/2

W,

where H(0) = H and W is an independent GOE matrix. The random matrix H(t) also sat-
isfies the properties of Definition 1.1. Thanks to Propositions 2.5 and 2.6, we can construct a
random probability measure for H(t), which is supported on [−L̃t , L̃t ], where

L̃t = Lt +Xt +O≺
(

1√
Nq3

)
, Xt = 1

N

∑
ij

(
h2

ij (t) − 1

N

)
.(3.2)
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We take t � N−1/3 as

(3.3) t = Nd

N1/3 ,

for a 0 < d< 1/3 to be determined. We denote A to be the set of sparse random matrices H ,
such that (2.2) and (2.3) hold at edges ±L̃:

A := {
H : (2.2) and (2.3) hold around edges ±(L +X )

}
.(3.4)

By Theorem 2.1, we know that the event A holds with probability P(A) ≥ 1 − N−D for
any D ≥ 0. We denote the empirical eigenvalue distribution of H by μH . We denote the
eigenvalues of H(t) as λ1(t), λ2(t), . . . , λN(t).

In this section, we prove the following theorem, which states that the fluctuations of ex-
treme eigenvalues of H(t) are given by a combination of the Tracy–Widom distribution and
the Gaussian distribution.

THEOREM 3.1. Let H be as in Definition 1.1 with q � N1/9. Let H(t) be as in (3.1),
with eigenvalues denoted by λ1(t), λ2(t), . . . , λN(t), and t = N−1/3+d. Let k ≥ 1 and F :
R

k → R be a bounded test function with bounded derivatives. There is a universal constant
c > 0 depending on d, so that for any H ∈ A as defined in (3.4) we have

EW

[
F(N2/3(

λ1(t) − Lt −X
)
, . . . ,N2/3(

λk(t) − Lt −X
)|H ]

= EGOE[F (
N2/3(μ1 − 2), . . . ,N2/3(μk − 2)

) +O
(
N−c

)
,

(3.5)

where the expectation on the right-hand side is with respect to a GOE matrix with eigenvalues
denoted by μi . Moreover, one can also put the X on the right-hand side of (3.5),

EH,W

[
F(N2/3(

λ1(t) − Lt

)
, . . . ,N2/3(

λk(t) − Lt

)]
= EH,GOE

[
F

(
N2/3(μ1 − 2 +X ), . . . ,N2/3(μk − 2 +X )

)] +O
(
N−c

)
,

(3.6)

where expectation on the right-hand is with respect to a GOE matrix with eigenvalues μi ,
and a sparse random matrix H (note that on the right-hand side, H is independent of the
GOE and only enters the expectation through X ).

Take η∗ = N−2/3+d/2, and z̃ = L + X + z, where z = κ + iη. For any H ∈ A, from the
defining relations of A, that is, (2.2) and (2.3), we have∣∣mN(z̃) − m̃∞(z̃)

∣∣ � η√
κ + η

,(3.7)

for 0 ≤ κ ≤ 1 and η∗ ≤ η ≤ b, and∣∣mN(z̃) − m̃∞(z̃)
∣∣ � √|κ| + η,(3.8)

for −1 ≤ κ ≤ 0 and η∗ ≤ η ≤ b. Hence, combining with estimates (2.21), we get

Im
[
mN(z̃)

] 
 Im
[
m̃∞(z̃)

]
, η∗ ≤ η ≤ b, |κ| ≤ 1,(3.9)

for H ∈ A. Moreover, in the regime q � N−1/9, (2.2) also implies (1.11) such that
λ1(0) − L̃ ≤ N−2/3+d/2. Hence, H is η∗-regular in the sense of [44], Definition 2.1, and
the result of [44], Theorem 2.2, applies for t = N−1/3+d as above. This result gives the lim-
iting distribution of the extreme eigenvalues of Ht . The result involves scaling parameters
coming from the free convolution, which we must now define.

We denote ρsc(x) the semicircle law which is the limit eigenvalue density of a Gaussian
orthogonal ensemble W . The semicircle law at time t , that is, the limit eigenvalue density
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of (1 − e−t )1/2W , is given by (1 − e−t )−1/2ρsc((1 − e−t )−1/2x)dx. We denote the free con-
volution of the empirical eigenvalue density of e−t/2H , with the semicircle law at time t by
m̂t,fc, and the free convolution of e−t/2ρ̃∞(et/2x) (as defined in Proposition 2.6) by m̃t,fc.
They satisfy the functional equations

(3.10) m̃t,fc(z) =
∫

ρ̃∞(x)dx

e−t/2x − ξ̃ (z)
, m̂t,fc(z) =

∫ dμH(x)

e−t/2x − ξ̂ (z)
,

where

(3.11) ξ̃ (z) := z + (
1 − e−t )m̃t,fc(z), ξ̂ (z) := z + (

1 − e−t )m̂t,fc(z).

For t = N−1/3+d, these measures have densities which are supported on a single interval,
with square root behavior at the edges. The edges are defined as follows. Let ξ̃+ and ξ̂+ be
the largest real solutions to

1 = (
1 − e−t ) ∫

ρ̃∞(x)dx

(e−t/2x − ξ̃+)2
,

1 = (
1 − e−t ) ∫ dμH(x)

(e−t/2x − ξ̂+)2
.

(3.12)

Then the edges Ẽ+ and Ê+ of the free convolution with Stieltjes transforms m̃t,fc(z) and
m̂t,fc(z) are defined by ξ̃+ = ξ̃ (Ẽ+), ξ̂+ = ξ̂ (Ê+), respectively. We introduce the scaling
parameters γ̂0 and γ̃0 as follows:

γ̃0 :=
(
−(

1 − e−t )3
∫

ρ̃∞(x)dx

(e−t/2 − ξ̃+)3

)−1/3
,

γ̂0 :=
(
−(

1 − e−t )3
∫ dμH(x)

(e−t/2 − ξ̂+)3

)−1/3
.

(3.13)

The main result of [44], Theorem 2.2, states that for any η∗-regular H , and smooth test
function F : Rk �→ R, there exists a universal constant c > 0 depending only on d > 0 as
above, such that

EW

[
F

(
N2/3γ̂0

(
λ1(t) − Ê+

)
, . . . ,N2/3γ̂0

(
λk(t) − Ê+

))|H ]
= EGOE

[
F

(
N2/3(μ1 − 2), . . . ,N2/3(μk − 2)

)] +O
(
N−c

)
,

(3.14)

where the expectation on the right-hand side is with respect to a Gaussian orthogonal en-
semble with largest few eigenvalues μ1,μ2, . . . ,μk . The parameters γ̂0 and Ê+ depend on
H . The following two propositions show that they are close to γ̃0 and Ẽ+, which we can
calculate explicitly. The proofs are deferred to Appendix C.

PROPOSITION 3.2. Under the assumptions of Theorem 3.1, we have

(3.15) et/2ξ̂+ − L̃ 
 t2, et/2ξ̃+ − L̃ 
 t2,

and the estimate

(3.16) |ξ̂+ − ξ̃+| ≺ t2
(

1

N1/2q3/2t2 + 1

Nt3

)
.

For the edges of the free convolution law, we have

(3.17) |Ê+ − Ẽ+| ≺ 1

N1/2q3/2 + 1

Nt
.
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For the scaling parameter, we have

|γ̂0 − γ̃0| = (
1 − e−t )3e3t/2

∣∣∣∣
∫ dμH(x)

(x − et/2ξ̂+)3
−

∫
ρ̃∞(x)dx

(x − et/2ξ̃+)3

∣∣∣∣
≺ 1

Nt3 + 1

N1/2q3/2t2 .

(3.18)

PROPOSITION 3.3. Under the assumptions of Theorem 3.1, there exists a universal con-
stant c > 0, such that

Ẽ+ = 2 +X + 6C4

q2 (1 − 2t) + 120C6

q4 − 81C2
4

q4 +O≺
(
N−2/3−c

)
= Lt +X +O≺

(
N−2/3−c

)
= L̃t +O≺

(
N−2/3−c

)
(3.19)

and

(3.20) γ̃0 = 1 +O≺
(
N−c

)
.

Thanks to Propositions 3.2 and 3.3, we can replace γ̂0 and Ê+ in (3.14) by Lt +X and 1
respectively, which gives an error of size O(N−c). Thus, we have

EW

[
F

(
N2/3(

λ1(t) − Lt −X
)
, . . . ,N2/3(

λk(t) − Lt −X
))|H ]

= EGOE
[
F

(
N2/3(μ1 − 2), . . . ,N2/3(μk − 2)

)] +O
(
N−c

)
.

(3.21)

This completes the proof of (3.5).
In (3.5), we can take F(x) = F1(x +N2/3X ) for any smooth function F1, as the estimates

only depend on ‖F ′‖∞ and ‖F‖∞. Taking expectation over H , we then see that

EH,W

[
F(N2/3(

λ1(t) − Lt

)
, . . . ,N2/3(

λk(t) − Lt

)]
= EH,GOE

[
F

(
N2/3(μ1 − 2 +X ), . . . ,N2/3(μk − 2 +X )

)]
+O

(
N−c

)
.

(3.22)

This yields Theorem 3.1.

4. Comparison: Proof of Theorem 1.6. We recall H(t) from (3.1). For simplicity of
notation, in this section we denote the Stieltjes transform of the eigenvalue density of H(t)

as mt(z), and the Stieltjes transform of the eigenvalue density of H as m(z). In this section,
we prove the following theorem, which states that for t = N−1/3+d, the rescaled extreme
eigenvalues of H and H(t) have the same distribution.

THEOREM 4.1. Let H be as in Definition 1.1 with q � N1/9. Let H(t) be as in (3.1),
with eigenvalues denoted by λ1(t), λ2(t), . . . , λN(t), and t = N−1/3+d with d > 0 sufficiently
small. Fix k ≥ 1 and numbers s1, s2, . . . , sk , there is a universal constant c > 0 so that

PH

(
N2/3(

λi(0) − L −X
) ≥ si,1 ≤ i ≤ k

)
= PH(t)

(
N2/3(

λi(t) − Lt −Xt

) ≥ si,1 ≤ i ≤ k
) +O

(
N−c

)
,

(4.1)

where Lt , Xt are as defined in (3.2). In the special case, q = CN1/6, we have

PH

(
N2/3(

λi(0) − L
) ≥ si,1 ≤ i ≤ k

)
= PH(t)

(
N2/3(

λi(t) − Lt

) ≥ si,1 ≤ i ≤ k
) +O

(
N−c

)
.

(4.2)

The analogous statement holds for the smallest eigenvalues.
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Theorem 1.6 follows from combining Theorem 3.1 and Theorem 4.1.

PROOF OF THEOREM 1.6. The result (1.14) follows from combining (3.5) and (4.1). The
result (1.15) follows from combining (3.6) and (4.2). �

Before proving Theorem 4.1, we need to introduce some notation. For any E, we define

Nt (E) := ∣∣{i : λi(t) ≥ Lt +X + E
}∣∣,(4.3)

and we write N0(E) as N (E). We fix c > 0, and take � = N−2/3−c/3 and η = N−2/3−c. Then
with overwhelming probability, from (1.11), we know that λ1(t) ≤ Lt + Xt + N−2/3+c. We
define:

χE(x) = 1[E,N−2/3+c](x − Lt −Xt ),

θη(x) := η

π(x2 + η2)
= 1

π
Im

1

x + iη
.

(4.4)

From the same argument as in [40], Lemma 2.7, we get that

(4.5) Tr(χE+� ∗ θη)
(
H(t)

) − N−c/9 ≤ Nt (E) ≤ Tr(χE−� ∗ θη)
(
H(t)

) + N−c/9,

hold with overwhelming probability. Let Ki : R �→ [0,1] be a monotonic smooth function
satisfying,

Ki(x) =
{

0 x ≤ i − 2/3,

1 x ≥ i − 1/3.
(4.6)

We have that 1Nt (E)≥i = Ki(Nt (E)), and since Ki is monotonically increasing, and so

Ki

(
Tr(χE+� ∗ θη)

(
H(t)

)) +O
(
N−c/9)

≤ 1Nt (E)≥i

≤ Ki

(
Tr(χE−� ∗ θη)

(
H(t)

)) +O
(
N−c/9)

.

(4.7)

In this way, we can express the locations of eigenvalues in terms of the integrals of the
Stieltjes transform of the empirical eigenvalue densities. We have

EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+c

siN
−2/3+�

mt (L̃t + y + iη)

]
dy

)]
+O

(
N−c/9)

≤ PH(t)

(
N2/3(

λi(t) − Lt −X
) ≥ si,1 ≤ i ≤ k

) = E

[
k∏

i=1

1Nt (siN
−2/3)≥i

]

≤ EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+c

siN
−2/3−�

mt(L̃t + y + iη)

]
dy

)]
+O

(
N−c/9)

.

(4.8)

For the product of the functions of Stieltjes transform, we have the following comparison
theorem.

PROPOSITION 4.2. Let H be as in Definition 1.1, with q � N1/9. We fix c > 0,
E1,E2, . . . ,Ek = O(N−2/3), η = N−2/3+c and F : Rk �→ R a bounded test function with
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bounded derivatives. For t � 1, we have

EH

[
F

({
Im

[
N

∫ N−2/3+c

Ei

m(L̃ + y + iη)

]}k

i=1

)]

= EH(t)

[{
F

(
Im

[
N

∫ N−2/3+c

Ei

mt(L̃t + y + iη)

]}k

i=1

)]

+O
(
N6c

(
N2/3t

q3 + N1/3t

q
+ t1/2N1/6

q

))
.

(4.9)

In the special case, q = CN1/6, we have

EH

[
F

({
Im

[
N

∫ N−2/3+c

Ei

m(L + y + iη)

]}k

i=1

)]

= EH(t)

[{
F

(
Im

[
N

∫ N−2/3+c

Ei

mt(Lt + y + iη)

]}k

i=1

)]

+O
(
N6c

(
N2/3t

q3 + N1/3t

q
+ t1/2N1/6

q

))
.

(4.10)

PROOF OF THEOREM 4.1. Since q � N1/9 and t = N−1/3+d, we can take c and d small,
and then the error terms in (4.9) and (4.10) are of order O(N−c). By combining (4.8) and
(4.9), we get

PH(t)

(
N2/3(

λi(t) − Lt −X
) ≥ si + 2N2/3�,1 ≤ i ≤ k

) +O
(
N−c/9)

≤ EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+c

siN
−2/3+�

mt(L̃t + y + iη)

]
dy

)]
+O

(
N−c/9)

≤ PH

(
N2/3(

λi(0) − L −X
) ≥ si,1 ≤ i ≤ k

)
(4.11)

≤ EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+c

siN
−2/3−�

mt(L̃t + y + iη)

]
dy

)]
+O

(
N−c/9)

≤ PH(t)

(
N2/3(

λi(t) − Lt −X
) ≥ si − 2N2/3�,1 ≤ i ≤ k

) +O
(
N−c/9)

.

Since N2/3� = N−c/3 � 1, (4.1) follows. For (4.2), analogous to (4.8), we have

EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+c

siN
−2/3+�

mt(Lt + y + iη)

]
dy

)]
+O

(
N−c/9)

≤ PH(t)

(
N2/3(

λi(t) − Lt

) ≥ si,1 ≤ i ≤ k
)

(4.12)

≤ EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+c

siN
−2/3−�

mt (Lt + y + iη)

]
dy

)]
+O

(
N−c/9)

.

Hence (4.2) follows from combining (4.12) and (4.10). �

PROOF OF PROPOSITION 4.2. For simplicity of notation, we only prove the case k = 1.
The general case can be proved in the same way. Let

Xt = Im
[
N

∫ N−2/3+c

E
mt(L̃t + y + iη)dy

]
.(4.13)
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We prove that

∣∣E[
F(Xt)

] −E
[
F(X0)

]∣∣ �N6c
(

N2/3t

q3 + N1/3t

q
+ t1/2N1/6

q

)
.(4.14)

Similar to [47], Proposition 7.2,

d

dt
E

[
F(Xt)

]

= E

[
F ′(Xt)

dXt

dt

]

= E

[
F ′(Xt) Im

∫ N−2/3+c

E

(∑
ijk

ḣjk(t)
∂Gii

∂Hjk

+ (L̇t + Ẋt )
∑
ij

G2
ij

)
dy

]
,

(4.15)

where by definition

ḣjk(t) = −1

2
e−t/2hjk + e−t

2
√

1 − e−t
wjk,

Ẋ (t) = 2

N

∑
ij

hij (t)ḣij (t).

(4.16)

By a large deviation estimate, we have |Ẋt | ≺ 1/(t1/2N1/2q) and

E

[
F ′(Xt) Im

∫ N−2/3+c

E
Ẋt

∑
ij

G2
ij dx

]
≺ N1/6

t1/2q
.(4.17)

By the cumulant expansion formula, we get

(4.18) −∑
ijk

E
[
ḣjk(t)F

′(Xt)GijGki

] = ∑
p≥2

e−(p+1)tCp

2Nqp−1 E
[
∂

p
jk

(
F ′(Xt)GijGki

)]
.

We notice that

L̇t = ∓12C4

q2 +O
(

1

q4

)
.(4.19)

Thus, (4.14) follows from the following proposition. The proof of (4.10) follows from the
same argument as above, with replacing L̃t by Lt . �

PROPOSITION 4.3. Under the assumptions of Proposition 4.2, for any p ≥ 2, let

Jp := e−(p+1)tCp+1

2Nqp−1 E
[
∂

p
jk

(
F ′(Xt)GijGki

)]
.(4.20)

Then, with overwhelming probability J2 =O(N1+5c/q),

J3 = ±12C4

q2

∑
ij

E
[
F ′(Xt)G

2
ij

] +O
(

N4/3+2c

q3 + N1+5c

q2

)
(4.21)

and for any p ≥ 4, Jp =O(N4/3+2c/q3).
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PROOF. Let z̃t = L̃t + y + iη. We have

∣∣∂p
ij z̃t

∣∣ � 1

N
,

∣∣∂p
ij m̃t (z̃t )

∣∣ � Im[m̃t (z̃t )]
Nη

�
√

y + η

Nη
�N−2/3+3c/2, p ≥ 1

(4.22)

and

(4.23)
1

N3

∑
ijk

∣∣∂p
jk

(
Gij (z̃t )Gki(z̃t )

)∣∣ � Im[m̃t (z̃t )]
Nη

�N−2/3+3c/2, p ≥ 0,

with overwhelming probability. Therefore, we have that

∣∣∂p
jkXt

∣∣ =
∣∣∣∣Im

[
N

∫ N−2/3+c

E
∂

p
jkm̃t (L̃t + y + iη)dy

]∣∣∣∣
�N−1/3+5c/2, p ≥ 1

(4.24)

with overwhelming probability. For any monomial of Green’s function with at least three
off-diagonal terms, for example,

1

N

∑
ijk

∣∣G2
ijGjkGki

∣∣, 1

N

∑
ijk

∣∣G2
ijGjk

∣∣, 1

N

∑
ijk

|GijGjkGki |,

1

N

∑
ijk

∣∣G2
ijG

2
jk

∣∣, 1

N

∑
ijk

∣∣G2
ijG

3
jk

∣∣, 1

N

∑
ijk

∣∣GijGikG
3
jk

∣∣(4.25)

are of order O(N1+3c) with overwhelming probability.
For any p ≥ 4, using (4.23) and (4.24), we have the following bound:

Jp = O(1)

Nq3

∑
ijk

E
[
∂

p
jk

(
F ′(Xt)GijGki

)]
� N4/3+2c

q3 ,(4.26)

with overwhelming probability.
For p = 2, with overwhelming probability, we have

J2 = O(1)

Nq

∑
ijk

E
[
∂2
jk

(
F ′(Xt)GijGki

)]

= O(1)

Nq
E

[
F ′(Xt)∂

2
jk(GijGki)

] +O
(

N1+5c

q

)

= O(1)

Nq

∑
ijk

E
[
F ′(Xt)GijGkiGjjGkk

] + 1

q

{
terms in (4.25)

}

+O
(

N1+5c

q

)

= O(1)

Nq

∑
ijk

E
[
F ′(Xt)GijGkiGjjGkk

] +O
(

N1+5c

q

)
.

(4.27)
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For the first term, we use the identity Gij = ∑
� �=j Gjjhj�G

(j)
�i , and the cumulant expansion

O(1)

Nq

∑
ijk

E
[
F ′(Xt)GijGkiGjjGkk

]

= O(1)

Nq

∑
ijk,� �=j

E
[
F ′(Xt)Gjjhj�G

(j)
�i GkiGjjGkk

]

= ∑
p≥1

O(1)

N2qp

∑
ijk,� �=i

E
[
G

(j)
�i ∂

p
j�

(
F ′(Xt)GjjGkiGjjGkk

)]

= O
(

N1+5c

q

)
,

(4.28)

where in the last estimate we used (4.23), (4.24) and (4.25).
For p = 3, we have

J3 = e−4tC4

2Nq2

∑
ijk

E
[
F ′(Xt)∂

3
jk(GijGki)

] +O
(

N1+5c

q2

)

= −12e−4tC4

Nq2

∑
ijk

E
[
F ′(Xt)GikGjjGkkGjjGki)

]

+ 1

q2

{
terms in (4.25)

} +O
(

N1+5c

q2

)
(4.29)

= −12e−4tC4

Nq2

∑
ijk

E
[
F ′(Xt)GikGjjGkkGjjGki)

] +O
(

N1+5c

q2

)

= 12e−4tC4

q2

∑
ik

E
[
F ′(Xt)GikGki)

] +O
(

N4/3+2c

q3 + N1+5c

q2

)

= 12C4

q2

∑
ik

E
[
F ′(Xt)GikGki)

] +O
(

N4/3+2c

q3 + N1+5c

q2

)
,

where in the second to last line we used that Gjj = m̃t (z̃) + O≺(1/q + 1/Nη) = −1 +
O≺(1/q), and (4.23). This completes the proof of Proposition 4.3. �

APPENDIX A: WARD IDENTITY

Let H be a symmetric matrix, with Green’s function G, then for any z = E + iη with
η > 0, we have the following Ward identity:∑

j

∣∣Gij (z)
∣∣2 = Im[Gii(z)]

η
.(A.1)

The following follows from local semicircle estimates for sparse random matrices and the
eigenvector delocalization.

PROPOSITION A.1. Let H be as in Definition 1.1 and fix a large constant b > 0. Then
uniformly for any z = E + iη such that −b≤ E ≤ b and 1/N � η ≤ b, we have

max
ij

|Gij | =O(1),(A.2)



EXTREMAL EIGENVALUES OF SPARSE ERDŐS–RÉNYI GRAPHS 951

with overwhelming probability and

max
i

Im
[
Gii(z)

] ≺ Im
[
mN(z)

]
,(A.3)

where G is the Green’s function of the matrix H .

APPENDIX B: PROPERTIES OF THE EQUILIBRIUM MEASURES

The proof of Propositions 2.5 and 2.6 follow similar to [47], Lemma 4.1. We first prove
Proposition 2.5.

PROOF OF PROPOSITION 2.5. We introduce the following domains of the complex
plane:

Dz := {E + iη : −2 ≤ E ≤ 2,0 ≤ η ≤ 2},
Dw := {

w ∈C : |w| < 3
}
.

(B.1)

Let

R(w) := − 1

w
− w − 1

q2

(
a2w

3 + a3w
5 + · · · ).(B.2)

By definition, P0(z,w) = 0 if and only if z = R(w). We first check that R(w) has exactly
two critical points on Dw . The derivatives of R(w) are given by

R′(w) = 1

w2 − 1 − 1

q2

(
3a2w

2 + 5a3w
4 + · · · ),

R′′(w) = − 2

w3 − 1

q2

(
6a2w + 20a3w

3 + · · · ).
(B.3)

For q large enough, R′′(w) < 0 on (0,3) and R′′(w) > 0 on (−3,0). Therefore, R′(w) is
monotonically decreasing on (0,3), and monotonically increasing on (−3,0). Furthermore,
for C large enough, we have R′(1 − C/q2) > 0 and R′(1 + C/q2) < 0. R′(w) is an even
function and so R′(w) = 0 has two solutions on (−3,3), which we denote by ±τ . Note
that τ ∈ (1 − C/q2,1 + C/q2). We let L = R(−τ), and so −L = R(τ). We have that L =
2+O(1/q2). Next we show that R(w) does not have other critical points on Dw . The equation
R′(w) = 0 is equivalent to

1 − w2 − 1

q2

(
3a2w

4 + 5a3w
6 + · · · ) = 0.(B.4)

On the boundary of Dw , we have

∣∣1 − w2∣∣ ≥ 8 � 1

q2

∣∣3a2w
4 + 5a3w

6 + · · · ∣∣.(B.5)

Hence, by Rouché’s theorem, the equation (B.4) has the same number of roots as the quadratic
equation 1 − w2 = 0 on Dw . Since 1 − w2 = 0 has two solutions on Dw , we find that R(w)

has exactly two critical points, that is, ±τ on Dw .
We next show that for any z ∈ Dz, P0(z,w) has exactly two (counting multiplicity) solu-

tions on Dw . On the boundary of Dw , we have

(B.6)
∣∣w2 + zw + 1

∣∣ ≥ |w|2 − |z||w| − 1 ≥ 2 � 1

q2

∣∣a2w
4 + a3w

6 + · · · ∣∣.
Hence, by Rouché’s theorem, the equation P0(z,w) = 0 has the same number of roots as the
quadratic equation 1+zw+w2 = 0 on Dw . Since 1+zw+w2 = 0 has two solutions on Dw ,
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FIG. 1. m∞ is a biholomorphic map from the upper half-plane to the region bounded by the curve � and the
interval [−τ, τ ], where the boundary [−L,L] is mapped to the curve �, [−∞,−L] is mapped to [0, τ ], and
[L,∞] is mapped to [−τ,0].

we find that P0(z,w) = 0 has exactly solutions (counting multiplicity) on Dw . In particular,
for any z ∈ (−L,L), P(z,w) = 0 has two solutions w(z) ∈ C+ and w̄(z) ∈ C−, and w(z)

forms a curve on C+, joining −τ and τ , which we denote by �.
Then we show that R(w) is biholomorphic from the region D� , bounded by the curve �

and the interval [−L,L] to the upper half-plane, as in Figure 1. By definition (B.2), R(w) is
holomorphic on D� , and continuously extends to the boundary except at w = 0. In a small
neighborhood of 0, the imaginary part of R(w) satisfies

Im
[
R(w)

] = Im[w]
(

1

|w|2 − 1
)

+O
(

Im[w]
q2

)
> 0.(B.7)

Hence, by maximum principle, we have Im[R(w)] > 0 on w ∈ D� , that is, R(w) maps D�

to the upper half-plane. If we view R(w) as a map to the compactified complex plane, that
is, C ∪ {∞}, then R(0) = ∞. Moreover, it extends to an orientation preserving bijection
between the boundary of D� and the boundary of C+, where the boundary curve � is mapped
to [−L,L], [0, τ ] is mapped to [−∞,−L], and [−τ,0] is mapped to [L,∞]. For any z ∈ C+,
the number of solutions to z = R(w) is given by

(B.8)
1

2π i

∫
∂D�

R′(w)

R(w) − z
dw = 1

2π i

∫
∂C+∪{∞}

1

ξ − z
dξ = 1.

It follows R(w) is a biholomorphic map from D� to the upper half-plane. We take m∞ to be
the inverse of R(w).

Finally, we check the properties of m∞(z). The function m∞(z) is a holomorphic map
from the upper half-plane C+ to D� , satisfying P0(z,m∞(z)) = 0. Let ρ∞ be the measure
obtained by Stieltjes inversion of m∞(z). To show that ρ∞ is a probability measure, it suf-
fices to check that limy→∞ iym∞(iy) = −1. Since m∞(z) is bounded, one can check that
limz→∞ m∞(z) = 0. Thus,

0 = lim
y→∞P0

(
z,m∞(iy)

) = lim
y→∞

(
1 + iym∞(iy)

)
,(B.9)

which implies that limy→∞ iym∞(iy) = −1, and ρ∞ is a probability measure. Moreover,

lim
η→0

Im
[
m∞(E + iη)

] = 0,(B.10)

for E /∈ [−L,L]. Hence, ρ∞ is a measure supported on [−L,L].
In the following, we study the behaviors of m∞ and ρ∞ at the edges ±L. Let z = R(w).

In a small neighborhood of the critical point −τ , we have the expansion,

z = R(−τ) + R′(−τ)(w + τ) + R′′(−τ)

2
(w + τ)2(

1 + E(w)
)

= L + R′′(−τ)

2
(w + τ)2(

1 + E(w)
)
,

(B.11)



EXTREMAL EIGENVALUES OF SPARSE ERDŐS–RÉNYI GRAPHS 953

where the error term satisfies Re[E(w)] = O(|w + τ |) and Im[E[w]] = O(Im[w]). Since
R′′(−τ) > 0, we find that in a small neighborhood of −τ ,(

2

R′′(−τ)

)1/2√
z − L = (w + τ)

(
1 + E(w)

)1/2
,(B.12)

where we choose the branch of the square root so that
√

z − L ∈ C
+. By taking imaginary

part on both sides of (B.12), and noting that Im[(1 + E(w))1/2] = O(Im[w]), we get

Im[√z − L] 
 Im[w](1 +O(w + τ)
)
.(B.13)

In a small neighborhood of −τ , or equivalently, in a small neighborhood of L, we get

(B.14) Im
[
m∞(z)

] = Im[w] 
 Im[√z − L] 

{√

κ + η if Re[z] ≤ L,

η/
√

κ + η if Re[z] ≥ L,

where κ = |Re[z] − z|. In particular, by the Stieltjes inversion formula, ρ∞ has square root
behavior at edge L. For the derivative of P0(z,m∞(z)), by the chain rule, we have

(B.15) 0 = ∂zP0
(
z,m∞(z)

) = m∞(z) + ∂zm∞(z)∂2P0
(
z,m∞(z)

)
.

Since m∞(z) has square root behavior at L, we have |∂zm∞(z)| 
 |z − L|−1/2, and

∣∣∂2P0
(
z,m∞(z)

)∣∣ = |m∞(z)|
|∂zm∞(z)| 
 √|z − L|.(B.16)

We can apply the same argument and get the same estimates of the behaviors of m∞ and ρ∞
in a small neighborhood of −L. This completes the proof of Proposition 2.5. �

PROOF OF PROPOSITION 2.6. We only prove the estimate (2.20). The rest of Proposi-
tion 2.6 follows from the same argument as in Proposition 2.5. Similar to the proof of Propo-
sition 2.5, we define R̃(w), τ̃ and L̃ = R̃(−τ̃ ). Moreover, we have R̃(w) = R(w) −Xw. By
a perturbation argument, we get

(B.17) τ̃ = τ + X
R′′(τ )

+O≺
(

1

Nq2

)
, L̃ = L +X τ +O≺

(
1

Nq2

)
.

Moreover, since τ = 1 +O(1/q2). The claim follows. �

APPENDIX C: FREE CONVOLUTION CALCULATIONS

In this appendix, we consider H as in Definition 1.1, with q � N1/9. We will calculate
various free convolution quantities. We let

(C.1) t := Nd

N1/3 .

We recall the construction of L, L̃, ρ̃∞(x) and m̃∞(z) from Propositions 2.5 and 2.6. We use
the definitions of Section 3.

LEMMA C.1. For all E 
 t2 and k ≥ 1, we have∣∣∣∣
∫ 1

(x − (L̃ + E))k
dμH(x) −

∫ 1

(x − (L̃ + E))k
ρ̃∞(x)dx

∣∣∣∣
≺ 1

t2(k−1)

(
1

Nt2 + 1

N1/2tq3/2

)
.

(C.2)
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PROOF. Let χ(y) be a smooth cut-off function such that χ(y) = 1 for |y| ≤ t2 and
χ(y) = 0 for |y| ≥ 2t2, such that |χ ′(y)| ≤ Ct−2. Let f (x) be a cut-off function so that
f (x) = 1 for x ≤ L̃ + E/3 and f (x) = 0 for x ≥ L̃ + 2E/3. We choose f (x) so that the
derivatives obey |f (k)(x)| ≤ Ct−2k . Since by (1.11) with overwhelming probability all the
eigenvalues of H are less than L̃ + N−2/3+ε for any ε > 0, we can consider instead the test
function

(C.3) g(x) := f (x)
1

(x − (L̃ + E))k
.

Let

(C.4) S(x + iy) := mN(x + iy) − m̃∞(x + iy).

Define η∗ := N−2/3+ε for ε > 0, with ε < d/4, so that η∗ < t2. Note that for y ≥ η∗ we have
by Theorem 2.1 that

(C.5)
∣∣S(x + iy)

∣∣ ≺ 1

Ny
+ 1

(Ny)1/2q3/2 =: �(y),

for q ≥ N1/9 regardless of whether x ≥ L̃ or x ≤ L̃. By the Helffer–Sjöstrand formula,∣∣∣∣
∫

g(x)dμH0(x) −
∫

g(x)ρ̃∞(x)dx

∣∣∣∣
≤

∣∣∣∣
∫

g′′(x)χ(y)y Im
[
S(x + iy)

]
dx dy

∣∣∣∣
+

∫ ∣∣g(x)χ ′(y) Im
[
S(x + iy)

]∣∣ dx dy

+
∫ ∣∣g′(x)χ ′(y)y Re

[
S(x + iy)

]∣∣ dx dy.

(C.6)

For the second two terms, note that∫ ∣∣g(x)
∣∣ dx ≤ C log(N)

t2k−2 ,

∫ ∣∣g′(x)
∣∣ dx ≤ C

t2k
,

∫ ∣∣g′′(x)
∣∣ dx ≤ C

t2k+2 ,

(C.7)

and that the y integral is only over t2 < |y| < 2t2. So,∫ ∣∣g(x)χ ′(y) Im
[
S(x + iy)

]∣∣ dx dy

+
∫ ∣∣g′(x)χ ′(y)y Re

[
S(x + iy)

]∣∣ dx dy ≺ �(t2)

t2k−2 .

(C.8)

For the last term, we first use the fact that y → y Im[mN ] is increasing to bound the |y| ≤ η∗
integral by ∣∣∣∣

∫
|y|≤η∗

g′′(x)χ(y)y Im
[
S(x + iy)

]
dx dy

∣∣∣∣
≤ 2

∫
y≤η∗

∣∣g′′(x)
∣∣η∗ Im

[
m̃∞(x + iη∗)

]
dx dy

+
∫
y≤η∗

∣∣g′′(x)
∣∣η∗

∣∣S(x + iη∗)
∣∣ dx dy.

(C.9)
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The second term is bounded by

(C.10)
∫
y≤η∗

∣∣g′′(x)
∣∣η∗

∣∣S(x + iη∗)
∣∣ dx dy ≺ �(η∗)η2∗

t2k+2 � �(t2)

t2k−2 ,

where we used η∗ ≤ t2. We now estimate the first term of (C.9). Using (2.21), we find∫
y≤η∗

∣∣g′′(x)
∣∣η∗ Im

[
m(x + iη∗)

]
dx dy

�
∫
x<0

∣∣g′′(x + L̃)
∣∣η2∗

√
η∗ + |x|dx

+
∫
x≥0

∣∣g′′(x + L̃)
∣∣ η3∗√

η∗ + x
dx.

(C.11)

We note that |g′′(x + L̃)| � C|x − E|−(k+2)1x≤2E/3. The second integral is bounded by

∫
x≥0

∣∣g′′(x + L̃)
∣∣ η3∗√

η∗ + x
dx ≤

∫
0<x<η∗

∣∣g′′(x + L̃)
∣∣ η3∗√

η∗ + x
dx

+
∫
x≥η∗

∣∣g′′(x + L̃)
∣∣ η3∗√

x
dx

� η3.5∗
t2k+4 +

∫
x≥η∗

∣∣g′′(x + L̃)
∣∣ η3∗√

x
dx.

(C.12)

The last term is bounded by∫
x≥η∗

∣∣g′′(x + L̃)
∣∣ η3∗√

x
dx �

∫
η∗≤x<E/3

1

|x − E|k+2

η3∗√
x

dx

+
∫
E/3<x<2E/3

1

t4|x − E|k
η3∗√
x

dx

� η3∗
t2k+3 .

(C.13)

For the other term on the right-hand side of (C.11), similarly we get

(C.14)
∫
x<0

∣∣g′′(x + L̃)
∣∣η2∗

√
η∗ + |x|dx � η2.5∗

t2k+2 + η2∗
t2k+1 .

In summary, we have the estimate∣∣∣∣
∫
y≤η∗

g′′(x)χ(y)y Im
[
S(x + iy)

]
dx dy

∣∣∣∣ ≺ �(t2)

t2k−2 + 1

t2k−2

η2∗
t3

≺ �(t2)

t2k−2 ,

(C.15)

where we used that η2∗/t3 = N2ε/(N4/3t3) ≤ 1/(Nt2) by our choice of ε above. Finally,∫
y>η∗

|g′′(x)yχ(y) Im
[
S(x + iy)

]
dx dy

� 1

t2k+2

∫
|y|≤2t2

y�(y)dy � �(t2)

t2k−2 ,

(C.16)
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where we used the fact that the support of χ is in |y| ≤ 2t2. Putting together our estimates
yields the claim. �

PROOF OF LEMMA 3.2. From the square root behavior of m̃∞ we easily conclude that
et/2ξ̃+ − L̃ 
 t2. Then, using (C.2) we conclude the same for ξ̂+. By taking difference of the
defining equations (3.12) for ξ̃+ and ξ̂+, we get∫ dμH(x)

(x − et/2ξ̂+)2
−

∫
ρ̃∞(x)dx

(x − et/2ξ̂+)2

=
∫ (

1

(x − et/2ξ̃+)2
− 1

(x − et/2ξ̂+)2

)
ρ̃∞(x)dx.

(C.17)

We calculate the right-hand side∫ (
1

(x − et/2ξ̃+)2
− 1

(x − et/2ξ̂+)2

)
ρ̃∞(x)dx

=
∫ et/2(ξ̃+ − ξ̂+))(2x − et/2ξ̃+ − et/2ξ̂+)

(x − et/2ξ̃+)2(x − et/2ξ̂+)2
ρ̃∞(x)dx

= et/2(ξ̃+ − ξ̂+)

∫ 1

(x − et/2ξ̂+)(x − et/2ξ̃+)2

+ 1

(x − et/2ξ̃+)(x − et/2ξ̂+)2
ρ̃∞(x)dx.

(C.18)

Since both et/2ξ̂+ − L̃ 
 et/2ξ̃+ − L̃ 
 t2, we see that the integrand is negative, and moreover,
by the square root behavior of ρ̃∞,∣∣∣∣

∫ 1

(x − et/2ξ̂+)(x − et/2ξ̃+)2
+ 1

(x − et/2ξ̃+)2(x − et/2ξ̂+)
ρ̃∞(x)dx

∣∣∣∣

 1

t3 .

(C.19)

We immediately conclude (3.16) from this and the estimate (C.2) for the left-hand side of
(C.17). Next, we estimate

(C.20) |Ê+ − Ẽ+| ≤ |ξ̂+ − ξ̃+| + Ct
∣∣m̃∞

(
et/2ξ̃+

) − mN

(
et/2ξ̂+

)∣∣.
The latter quantity we estimate by∣∣m̃∞

(
et/2ξ̃+

) − mN

(
et/2ξ̂+

)∣∣ ≤ ∣∣m̃∞
(
et/2ξ̃+

) − m̃∞
(
et/2ξ̂+

)∣∣
+ ∣∣m̃∞

(
et/2ξ̂+

) − mN

(
et/2ξ̂+

)∣∣
≺ t

(
1

N1/2t2q3/2 + 1

Nt3

)
,

(C.21)

where we used (C.2). Hence, we have proven (3.17). Finally, the estimate (3.18) is an easy
consequence of (3.16) and (C.2). �

LEMMA C.2. Let the polynomial of a self-consistent equation be given by

0 = 1 + zm + m2 + a

q2 m4 + b

q4 m6 +Xm2 + P1(m),(C.22)
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where P1(m) is a polynomial in m of size O(q−6), and constants a, b = O(1), and m be the
Stieltjes transform of a probability measure, supported on [−L̃, L̃], with

L̃ = 2 + a

q2 + b

q4 − 9a2

4q4 +X +O
(
Xq−2 +X 2 + q−6)

.(C.23)

For any z in a small neighborhood of L̃, m(z) is given by

(C.24) m(z) = −τ +
(

2

F ′′(−τ)

)1/2
(z − L̃)1/2 +O

(|z − L̃|),
where

(C.25) τ = 1 − 3a

q2 − 5b

q4 + 18a2

q4 −X +O
(
Xq−2 +X 2 + q−6)

.

PROOF. We have the polynomial

(C.26) 0 = 1 + zm + (1 +X )m2 + a

q2 m4 + b

q4 m6 + P1(m).

Solving for z,

(C.27) z = − 1

m
− m − a

q2 m3 − b

q4 m5 −Xm − P2(m) := F(m),

where P2(m) = P1(m)/m is another polynomial of size O(q−6). There is a unique positive
solution to F ′(−τ) = 0. We record the expressions

(C.28) F ′(m) = 1

m2 − 1 − 3a

q2 m2 − 5b

q4 m4 −X − P ′
2(m)

and

(C.29) F ′′(m) = − 2

m3 − 6a

q2 m − 20b

q4 m3 − P ′′
2 (m).

We first find

(C.30) τ 2 = 1 −X − 3a

q2 − 5b

q4 + 18a2

q4 +O
(
Xq−2 +X 2 + q−6)

,

and subsequently, we can expand to obtain

(C.31) τ = 1 − 3a

2q2 − 5b

2q4 + 63a2

8q4 − X
2

+O
(
Xq−2 +X 2 + q−6)

.

Substituting this in F(−τ), we get

(C.32) L̃ = 2 + a

q2 + b

q4 − 9a2

4q4 +X +O
(
Xq−2 +X 2 + q−6)

.

We see that

(C.33) F ′′(−τ) = 2 +O
(
q−2)

.

We expand

(C.34) z = L̃ + F ′′(−τ)

2
(m − τ)2 +O

(|m − τ |3)
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and invert

m(z) = −τ +
(

2

F ′′(−τ)

)1/2
(z − L̃)1/2 +O

(|z − L̃|).(C.35) �

PROOF OF LEMMA 3.3. In the following proof, we write m = m̃∞, ξ = ξ̃+ and E+ =
Ẽ+. Recall from (2.16), m satisfies a self-consistent equation,

0 = 1 + zm + m2 + 6C4

q2 m4 + 120C6

q4 m6 +Xtm
2 +O

(
q−6)

.(C.36)

Then by Lemma C.2, we have

L̃ = 2 + 6C4

q2 + 120C6

q4 − 81C2
4

q4 +X +O
(
Xq−2 +X 2 + q−6)

.(C.37)

In the following, we first compute E+ = ξ − (1 − e−t )et/2m(et/2ξ). For ξ (as defined in
(3.12)), by Lemma C.2 and (C.33), we have

e−t

1 − e−t
= m′(et/2ξ

) = 1

(4 +O(q−2))1/2

1√
et/2ξ − L̃

+O(1).(C.38)

We can solve for ξ and get

(C.39) et/2ξ = L̃ + 1

4

(
et − 1

)2 +O
(
t3 + t2q−2)

.

Using Lemma 2.16, we compute

m
(
et/2ξ

) = −1 + 18C4

q2 + (
1 +O

(
q−2))1/2(

et/2ξ − L̃
)1/2 +O

(
t2)

= −1 + 9C4

q2 + et − 1

2
+O

(
t2 + q−4)

.

(C.40)

Hence,

E+ = e−t/2L̃ + e−t/2(et − 1)2

4
− (

1 − e−t )et/2
(
−1 + 9C4

q2 + et − 1

2

)

+O
(
t3 + tq−4 + t2q−2)

= 2 + 6(1 − 2t)C4

q2 + 120C6

q2 − 81C2
4

q4 +X
(C.41)

+O
(
Xq−2 +X 2 + q−6 + tX + t3 + tq−4 + t2q−2)

= 2 + 6(1 − 2t)C4

q2 + 120C6

q2 − 81C2
4

q4 +X

+O≺
(
t2q−2 + tq−4 + q−6 + tN−1/2q−1 + N−1/2q−3 + t1/2N−1)

,

where we used that X ≺ N−1/2q−1.
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The kth cumulant of the entries of H(t) (as defined in (3.1)) is 1/N when k = 2, and

(k − 1)!e−tn/2Ck

Nqk−2 ,(C.42)

for k ≥ 3. The self-consistent equation for H(t) is given by

(C.43) 0 = 1 + zmt + m2
t + 6e−2tC4

q2 m4
t + 120e−3tC6

q4 m6
t +Xtm

2
t +O

(
q−6)

.

By Lemma C.2, we have

L̃t = 2 + 6e−2tCt

q2 + 120e−3tC6

q4 − 81e−4tC4

q4 +Xt

+O
(
Xt q

−2 +X 2
t + q−6)

.

(C.44)

We note that

(C.45) Xt = X +O≺
(
tN−1/2q−1 + t1/2N−1) = O≺

(
N−1/2q−1)

,

and rewrite (C.44) as

L̃t = 2 + 6C4

q2 (1 − 2t) + 120C6

q4 − 81C2
4

q4 +X

+O≺
(
t2q−2 + tq−4 + q−6 + tN−1/2q−1

+ N−1/2q−3 + t1/2N−1)
.

(C.46)

Lemma 3.3 follows from comparing (C.41) and (C.46), and recalling q � N1/9. �
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