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We consider a subcritical Gaussian multiplicative chaos (GMC) measure
defined on the unit interval [0,1] and prove an exact formula for the frac-
tional moments of the total mass of this measure. Our formula includes the
case where log-singularities (also called insertion points) are added in 0 and
1, the most general case predicted by the Selberg integral. The idea to per-
form this computation is to introduce certain auxiliary functions resembling
holomorphic observables of conformal field theory that will be solutions of
hypergeometric equations. Solving these equations then provides nontrivial
relations that completely determine the moments we wish to compute. We
also include a detailed discussion of the so-called reflection coefficients ap-
pearing in tail expansions of GMC measures and in Liouville theory. Our
theorem provides an exact value for one of these coefficients. Lastly, we men-
tion some additional applications to small deviations for GMC measures, to
the behavior of the maximum of the log-correlated field on the interval and to
random hermitian matrices.

1. Introduction and main result. Starting from a log-correlated field X one can de-
fine the associated Gaussian multiplicative chaos (GMC) measure which has a density with
respect to the Lebesgue measure formally given by the exponential of X. This definition is
formal as X lives in the space of distributions but since the pioneering work of Kahane [15]
in 1985 it is well understood how to give a rigorous probabilistic definition to these GMC
measures by using a limiting procedure. Ever since GMC has been extensively studied in
probability theory and mathematical physics with applications including 3d turbulence, sta-
tistical physics, mathematical finance, random geometry and 2d quantum gravity. See, for
instance, [28] for a review.

Despite the importance of GMC measures in many active fields of research, rigorous com-
putations have remained until very recently completely out of reach. A large number of exact
formulas have been conjectured by the physicists’ trick of analytic continuation from positive
integers to real numbers (see the explanations below) but with no indication of how to rigor-
ously prove such formulas. A decisive step was made in [6] where a connection is uncovered
between GMC measures and the correlation functions of Liouville conformal field theory
(LCFT). By implementing the techniques of conformal field theory (CFT) in a probabilistic
setting one can hope to perform rigorous computations on GMC.

Indeed, in 2017 a proof was given by Kupiainen-Rhodes-Vargas of the celebrated DOZZ
formula [17, 18] first conjectured independently by Dorn and Otto in [7] and by Zamolod-
chikov and Zamolodchikov in [33]. This formula gives the value of the three-point correlation
function of LCFT on the Riemann sphere and it can also be seen as the first rigorous com-
putation of fractional moments of a GMC measure. Very shortly after, the study of LCFT on
the unit disk by the first author led in [27] to the proof of a probability density for the total
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mass of the GMC measure on the unit circle. This result proves the conjecture of Fyodorov
and Bouchaud stated in [10] and it is the first explicit probability density for a GMC measure
obtained in the mathematical literature.

The present paper presents a third case where exact computations are tractable using CFT-
inspired techniques which is the case of GMC on the unit interval [0,1] with X of covariance
written below (1.1). This model was studied by Bacry-Muzy in [2] where they prove existence
of moments and other properties of GMC. Five years after exact formulas for this model
on the interval were conjectured independently by Fyodorov-Le Doussal-Rosso in [11, 12]
and by Ostrovsky in [21, 22]. In [11, 12], the exact formulas are found using an analytic
continuation from integers to real numbers but in his papers Ostrovsky went a step further and
showed that the formulas did correspond to a valid probability distribution. He also performs
the computation of the derivatives of all order in γ of (1.4) at γ = 0 which is referred to as
the intermittency differentiation. However, a crucial analycity argument is missing for this
approach to prove rigorously an exact formula. See [25] for a beautiful review on all the
known results and conjectures for the GMC on the interval (and also for the similar model on
the circle) as well as for many additional references.

The main result of our work is precisely the proof of these conjectures for the GMC mea-
sure on [0,1]. The major input of our paper is the introduction of two auxiliary functions that
will be solutions to hypergeometric equations; see Proposition 1.4. This observation was to
the best of our knowledge unknown to the statistical physics community although an analo-
gous statement was known in the case of the Selberg integral, see [16] and the explanations
of Section 1.1. By studying the solution space of these differential equations we obtain non-
trivial relations on the GMC that allow us to rigorously prove the formulas conjectured by
physicists.

Let us now introduce the framework of our paper. We consider the log-correlated field X

on the interval [0,1] with covariance given for x, y ∈ [0,1] by

(1.1) E
[
X(x)X(y)

]= 2 ln
1

|x − y| .
1

Because of the singularity of its covariance X is not defined pointwise and lives in the space
of distributions. We define the associated GMC measure on the interval [0,1] by the standard
regularization procedure for γ ∈ (0,2),

(1.2) e
γ
2 X(x) dx := lim

δ→0
e

γ
2 Xδ(x)− γ 2

8 E[Xδ(x)2] dx,

where Xδ stands for any reasonable cut-off of X that converges to X as δ goes to 0. The
convergence in (1.2) is in probability with respect to the weak topology of measures, meaning
that for all continuous test functions f : [0,1] �→R the following holds in probability:

(1.3)
∫ 1

0
f (x)e

γ
2 X(x) dx = lim

δ→0

∫ 1

0
f (x)e

γ
2 Xδ(x)− γ 2

8 E[Xδ(x)2] dx.

For an elementary proof of this convergence see [4]. We now introduce the main quantity of
interest of our paper, for γ ∈ (0,2) and for real p, a, b:

(1.4) M(γ,p, a, b) := E

[(∫ 1

0
xa(1 − x)be

γ
2 X(x) dx

)p]
.

This quantity is the moment p of the total mass of our GMC measure with two “insertion
points” in 0 and 1 of weight a and b. The theory of Gaussian multiplicative chaos tells us that

1Our normalization differs from the ln 1|x−y| usually found in the literature.
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these moments are nontrivial, that is, different from 0 and +∞, if and only if

a > −γ 2

4
− 1, b > −γ 2

4
− 1,

p <
4

γ 2 ∧
(

1 + 4

γ 2 (1 + a)

)
∧
(

1 + 4

γ 2 (1 + b)

)
.

(1.5)

The first two conditions are required for the GMC measure to integrate the fractional powers
xa and (1 − x)b. Notice that this condition is weaker than the one we would get with the
Lebesgue measure, a > −1 and b > −1.2 We then have a bound on the moment p, the
first part p < 4

γ 2 is the standard condition for the existence of a moment of GMC without

insertions. The additional condition on p, p < (1 + 4
γ 2 (1 + a)) ∧ (1 + 4

γ 2 (1 + b)), comes
from the presence of the insertions. A proof of the bounds (1.5) can be found in [14, 30].

Now the goal of our paper is simply to prove the following exact formula for M(γ,p, a, b):

THEOREM 1.1. For γ ∈ (0,2) and for p, a, b satisfying (1.5),3 M(γ,p, a, b) is given by

(2π)p�γ
2
( 2
γ (a + 1) − (p − 1)

γ
2 )� γ

2
( 2
γ (b + 1) − (p − 1)

γ
2 )� γ

2
( 2
γ (a + b + 2) − (p − 2)

γ
2 )� γ

2
( 2
γ − p

γ
2 )

(
γ
2 )p

γ 2
4 �(1 − γ 2

4 )p� γ
2
( 2
γ )� γ

2
( 2
γ (a + 1) + γ

2 )� γ
2
( 2
γ (b + 1) + γ

2 )� γ
2
( 2
γ (a + b + 2) − (2p − 2)

γ
2 )

,

where the function �γ
2
(x) is defined for x > 0 and Q = γ

2 + 2
γ

by

(1.6) ln�γ
2
(x) =

∫ ∞
0

dt

t

[
e−xt − e−Qt

2

(1 − e− γ t
2 )(1 − e

− 2t
γ )

− (Q
2 − x)2

2
e−t + x − Q

2

t

]
.

As a corollary by choosing a = b = 0 we obtain the value of the moments of the GMC
measure without insertions.

COROLLARY 1.2. For γ ∈ (0,2) and p < 4
γ 2 ,

E

[(∫ 1

0
e

γ
2 X(x) dx

)p]

= (2π)p( 2
γ
)p

γ 2

4

�(1 − γ 2

4 )p

�γ
2
( 2
γ

− (p − 1)
γ
2 )2�γ

2
( 4
γ

− (p − 2)
γ
2 )�γ

2
( 2
γ

− p
γ
2 )

�γ
2
( 2
γ
)�γ

2
( 2
γ

+ γ
2 )2�γ

2
( 4
γ

− (2p − 2)
γ
2 )

.

Thanks to the computations performed by Ostrovsky [23], we can also state our main result
in the following equivalent way.

COROLLARY 1.3. The following equality in law holds:

(1.7)
∫ 1

0
xa(1 − x)be

γ
2 X(x) dx = 2π2−(3(1+ γ 2

4 )+2(a+b))LYγ X1X2X3,

2Proving Theorem 1.1 for −1 − γ 2

4 < a ≤ −1 will require a lot of technical work as precise estimates on GMC
measures are required to show that Proposition 1.4 holds in this case.

3The result also holds for all complex p such that Re(p) satisfies the bounds (1.5).
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where L, Yγ , X1, X2, X3 are five independent random variables in R+ with the following
laws:

L = exp
(
N
(
0, γ 2 ln 2

))
,

Yγ = 1

�(1 − γ 2

4 )
E(1)−

γ 2

4 ,

X1 = β−1
2,2

(
1,

4

γ 2 ;1 + 4

γ 2 (1 + a),
2(b − a)

γ 2 ,
2(b − a)

γ 2

)
,

X2 = β−1
2,2

(
1,

4

γ 2 ;1 + 2

γ 2 (2 + a + b),
1

2
,

2

γ 2

)
,

X3 = β−1
2,2

(
1,

4

γ 2 ;1 + 4

γ 2 ,
1

2
+ 2

γ 2 (1 + a + b),
1

2
+ 2

γ 2 (1 + a + b)

)
.

Here E(1) is an exponential law of parameter 1 and β2,2 is a special beta law defined in
Appendix B. It satisfies β2,2 ∈ [0,1].

The advantage of this formulation is that it is more transparent than the large formula of
Theorem 1.1. The log-normal law L is a global mode coming from the fact that X is not of
zero average on [0,1], see the discussion of Section 1.3. The random variable Yγ is actually
the law of the total mass of the GMC measure defined on the unit circle—see [27]—and it
will play a crucial role in understanding the small deviations of GMC, see again Section 1.3.
Lastly the generalized beta laws studied in [24] have a complicated definition but take values
in [0,1] just like the standard beta law.

1.1. Strategy of the proof. We start off with the well-known observation that a formula
can be given for M(γ,p, a, b) in the very special case where p ∈ N, a > −1, b > −1 and
p satisfying (1.5). Indeed, in this case the computation reduces to a real integral—the fa-
mous Selberg integral—whose value is known, see for instance [9]. This is because for a
positive integer moment we can write p integrals and exchange them with the expectation
E[·]. More precisely for a, b > −1, p satisfying (1.5) and p ∈ N we have, using any suitable
regularization procedure,

E

[(∫ 1

0
xa(1 − x)be

γ
2 X(x) dx

)p]

= lim
δ→0

E

[(∫ 1

0
xa(1 − x)be

γ
2 Xδ(x)− γ 2

8 E[Xδ(x)2] dx

)p]

= lim
δ→0

∫
[0,1]p

p∏
i=1

xa
i (1 − xi)

bE

[ p∏
i=1

e
γ
2 Xδ(xi)− γ 2

8 E[Xδ(xi)
2]
]

dx1 . . . dxp

(1.8)

=
∫
[0,1]p

p∏
i=1

xa
i (1 − xi)

be
γ 2

4
∑

i<j E[X(xi)X(xj )] dx1 . . . dxp

=
∫
[0,1]p

p∏
i=1

xa
i (1 − xi)

b
∏
i<j

1

|xi − xj | γ 2
2

dx1 . . . dxp

=
p∏

j=1

�(1 + a − (j − 1)
γ 2

4 )�(1 + b − (j − 1)
γ 2

4 )�(1 − j
γ 2

4 )

�(2 + a + b − (p + j − 2)
γ 2

4 )�(1 − γ 2

4 )
.
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The last line is precisely given by the Selberg integral. It is then natural to look for an analytic
continuation of this expression from positive integer p to any real p satisfying (1.5). Notice
that giving the analytic continuation of a such a quantity is a highly nontrivial problem as p

appears both in the argument of the Gamma functions as well as in the number of terms in the
product. To find the right candidate for the analytic continuation we start by writing down the
following relations that we will refer to as the shift equations. They are deduced by simple
algebra from (1.8) again for p ∈ N and under the bounds (1.5),

M(γ,p, a + γ 2

4 , b)

M(γ,p, a, b)

= �(1 + a + γ 2

4 )�(2 + a + b − (2p − 2)
γ 2

4 )

�(1 + a − (p − 1)
γ 2

4 )�(2 + a + b − (p − 2)
γ 2

4 )
,

(1.9)

M(γ,p, a + 1, b)

M(γ,p, a, b)

=
�( 4

γ 2 (1 + a) + 1)�( 4
γ 2 (2 + a + b) − (2p − 2))

�( 4
γ 2 (1 + a) − (p − 1))�( 4

γ 2 (2 + a + b) − (p − 2))
,

(1.10)

and for p ∈ N∗ under the bounds (1.5),

M(γ,p,a, b)

M(γ,p − 1, a, b)

= �(1 + a − (p − 1)
γ 2

4 )�(1 + b − (p − 1)
γ 2

4 )�(1 − p
γ 2

4 )�(2 + a + b − (p − 2)
γ 2

4 )

�(2 + a + b − (2p − 3)
γ 2

4 )�(2 + a + b − (2p − 2)
γ 2

4 )�(1 − γ 2

4 )
.

(1.11)

Of course similar shift equations hold for b but as there is a symmetry M(γ,p, a, b) =
M(γ,p, b, a) we will write everything only for a. The reason why the function �γ

2
(x) intro-

duced in Theorem 1.1 appears is that it verifies the following two relations, for γ ∈ (0,2) and
x > 0,

�γ
2
(x)

�γ
2
(x + γ

2 )
= 1√

2π
�

(
γ x

2

)(
γ

2

)− γ x
2 + 1

2
,(1.12)

�γ
2
(x)

�γ
2
(x + 2

γ
)

= 1√
2π

�

(
2x

γ

)(
γ

2

) 2x
γ

− 1
2
.(1.13)

See Appendix B for more details on �γ
2
(x). Therefore, we can use �γ

2
(x) to construct a

candidate function that will verify all the shift equations (1.9), (1.10), (1.11) not only for
p ∈ N but for any real p satisfying the bounds (1.5). More precisely for any function C(p)

of p (and γ ) the following quantity:

(1.14) C(p)
�γ

2
( 2
γ
(a + 1) − (p − 1)

γ
2 )�γ

2
( 2
γ
(b + 1) − (p − 1)

γ
2 )�γ

2
( 2
γ
(a + b + 2) − (p − 2)

γ
2 )

�γ
2
( 2
γ
(a + 1) + γ

2 )�γ
2
( 2
γ
(b + 1) + γ

2 )�γ
2
( 2
γ
(a + b + 2) − (2p − 2)

γ
2 )

,

is a solution to the shift equations (1.9), (1.10). Notice that for γ 2

4 /∈ Q these two shift equa-
tions completely determine the dependence on a (and on b by symmetry) of M(γ,p, a, b).
Then by a standard continuity argument in γ we will be able to extend the expression (1.14)
to all γ ∈ (0,2). Next, equation (1.11) translates into a constraint on the unknown function
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C(p):

(1.15)
C(p)

C(p − 1)
= √

2π

(
γ

2

)(p−1)
γ 2

4 − 1
2 �(1 − p

γ 2

4 )

�(1 − γ 2

4 )
.

We see that (1.15) is not enough to fully determine the function C(p). An additional shift
equation that is a priori not predicted by the Selberg integral (1.8) is required. We will indeed
prove that we have

(1.16)
C(p)

C(p − 4
γ 2 )

= f (γ )

(
γ

2

)−p

�

(
4

γ 2 − p

)
,

where f (γ ) is an unknown positive function of γ . Now combining (1.15) and (1.16) com-
pletely determines the function C(p) again up to an unknown constant cγ of γ :

(1.17) C(p) = cγ

(2π)p

�(1 − γ 2

4 )p

(
2

γ

)p
γ 2

4
�γ

2

(
2

γ
− p

γ

2

)
.

This last constant cγ is evaluated by choosing p = 0 and thus we arrive at the function of
Theorem 1.1 giving the expression of M(γ,p, a, b).

Now the major difficulty that must be overcome is to find a way to prove all the shift
equations (1.9), (1.10), (1.11) as well as the additional equation (1.16) for all real values of
p, a, b satisfying (1.5) and not just for positive integer p. To achieve this the key ingredient
of our proof is to introduce the following two auxiliary functions for t ≤ 0:

(1.18) U(t) := E

[(∫ 1

0
(x − t)

γ 2

4 xa(1 − x)be
γ
2 X(x) dx

)p]

and

(1.19) Ũ (t) := E

[(∫ 1

0
(x − t)xa(1 − x)be

γ
2 X(x) dx

)p]
,

and to show using probabilistic techniques that the following holds.

PROPOSITION 1.4. For γ ∈ (0,2), a, b, p satisfying (1.5) and t < 0, U(t) is solution of
the hypergeometric equation

(1.20) t (1 − t)U ′′(t) + (C − (A + B + 1)t
)
U ′(t) − ABU(t) = 0.

The parameters A, B , C are given by

(1.21) A = −pγ 2

4
, B = −(a + b + 1) − (2 − p)

γ 2

4
, C = −a − γ 2

4
.

Similarly, Ũ (t) is solution of the hypergeometric equation but with parameters Ã, B̃ , C̃ given
by

(1.22) Ã = −p, B̃ = − 4

γ 2 (a + b + 2) + p − 1, C̃ = − 4

γ 2 (a + 1).

Let us make a few comments on the meaning of U(t) and Ũ (t). These auxiliary functions
are very similar to the correlation functions of LCFT with a degenerate field insertion—see
[17, 18] for the case of the sphere and [27] for the unit disk—which also obey differential
equations known as the BPZ equations. What is mysterious in our present case is that it is not
clear whether there exists an actual CFT where U(t) and Ũ (t) correspond to correlations with
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degenerate insertions which would explain why the differential equations of Proposition 1.4
hold. Furthermore, if we replace the real t by a complex variable t ∈ C\[0,∞], it is not
hard to see that U(t) is a holomorphic function and Proposition 1.4 will hold if we replace
the ordinary derivative by a complex derivative ∂t . In the conformal bootstrap approach of
CFT initiated by Belavin, Polyakov and Zamolodchikov in [3], a correlation function with a
degenerate insertion can be decomposed into combinations of the structure constants and of
the conformal blocks. A conformal block is a locally holomorphic function and it is always
accompanied by its complex conjugate in the decomposition. What is mysterious with U(t)

and Ũ (t) is that we only see the holomorphic part. At this stage we have no CFT-based
explanation for this observation although a possible path could be to look at boundary LCFT
with multiple boundary cosmological constants; see, for instance, [20]. On the other hand,
let us mention that again in the very special case where p ∈ N, U(t) and Ũ (t) reduce to
Selberg-type integrals and the equations of Proposition 1.4 were known in this case; see [16].

Proposition 1.4 will be established in Section 3 by performing direct computations on U(t)

and Ũ (t). We then write the solutions of the hypergeometric equations in two different bases.
One solution corresponds to a power series expansion in |t | and the other to an expansion in
|t |−1. The change of basis formula (B.3) written in Appendix B given by the theory of hyper-
geometric equations then provides nontrivial relations which are precisely the shift equations
that we wish to prove. This is performed in detail in Section 2 where Proposition 2.1 com-
pletely determines the dependence in a and b of M(γ,p, a, b) and Proposition 2.2 establishes
(1.17). Thus we have proved Theorem 1.1.

1.2. Tail expansion for GMC and the reflection coefficients. Before moving into the proof
of our main result, we provide in this subsection and in the following some applications
of Theorem 1.1. The first application we will consider deals with tail expansions for GMC
measures, in other words the probability for a GMC measure to be large. We choose to include
here a very general discussion about these tail expansions of GMC with an arbitrary insertion
both in one and in two dimensions. For each tail expansion result there will appear a universal
coefficient known as the reflection coefficient.

The first case that was studied is the tail expansion of a GMC in dimension two and a
precise asymptotic was given in [18] in terms of the reflection coefficient R2(α),4 see Propo-
sition 1.6 below.5 Let us mention that it was recently discovered in [31] that R2(α) corre-
sponds to the partition function of the α-quantum sphere introduced by Duplantier, Miller
and Sheffield in [8]. Now our exact formula on the unit interval will allow us to write a
similar tail expansion for GMC in dimension one. Following [8], we use the standard radial
decomposition of the covariance (1.1) of X around the point 0, that is, we write for s ≥ 0

(1.23) X
(
e−s/2)= Bs + Y

(
e−s/2),

where Bs is a standard Brownian motion and Y is an independent Gaussian process that can
be defined on the whole plane with covariance given for x, y ∈ C by

(1.24) E
[
Y(x)Y (y)

]= 2 ln
|x| ∨ |y|
|x − y| .

Motivated by the Williams decomposition of Theorem A.3, we introduce for λ > 0 the
process that will be used in the definitions below:

(1.25) Bλ
s :=

{
B̂s − λs s ≥ 0,

B̄−s + λs s < 0,

4In [18] or [31] this coefficient is actually called R(α) but for the needs of our discussion we introduce the 2 to
indicate the dimension. Furthermore the bar stands for the fact that it is the unit volume coefficient.

5R2(α) is the bulk reflection coefficient in dimension two, a boundary reflection coefficient R
∂
2(α) also exists

but its value remains unknown; see the figure below.
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where (B̂s − λs)s≥0 and (B̄s − λs)s≥0 are two independent Brownian motions with negative
drift conditioned to stay negative. We can now give the definitions of the two coefficients in

dimension one R
∂

1(α) and R1(α) along with the associated GMC measures with insertion
I ∂

1,η(α) and I1,η(α) whose tail behavior will be governed by the corresponding coefficient:

R
∂

1(α) := E

[(
1

2

∫ ∞
−∞

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds

) 2
γ
(Q−α)]

,

R1(α) := E

[(
1

2

∫ ∞
−∞

e
γ
2 B

Q−α
2

s
(
e

γ
2 Y (e−s/2) + e

γ
2 Y (−e−s/2))ds

) 2
γ
(Q−α)]

,

I ∂
1,η(α) :=

∫ η

0
x− γα

2 e
γ
2 X(x) dx,

I1,η(α) :=
∫ v+η

v−η
|x − v|− γα

2 e
γ
2 X(x) dx.

Let us make some comments on these definitions. Here α ∈ (
γ
2 ,Q), Q = γ

2 + 2
γ

, and η

is an arbitrary positive real number chosen small enough. To match the conventions of the
study of LCFT we have written the fractional power x− γα

2 , so in these notations we have
a = −γα

2 . Notice that the difference between I ∂
1,η(α) and I1,η(α) lies in the position of the

insertion. For I ∂
1,η(α) the insertion is placed in 0 (by symmetry we could have placed it in 1).

Our Theorem 1.1 will give us the value of the associated coefficient R
∂

1(α). The other case
corresponds to placing the insertion at a point v inside the interval, v ∈ (0,1), and gives the
quantity I1,η(α). The computation of the associated R1(α) will be done in a future work. We
now claim:

PROPOSITION 1.5. For α ∈ (
γ
2 ,Q) we have the following tail expansion for I ∂

1,η(α) as
u → ∞ and for some ν > 0:

(1.26) P
(
I ∂

1,η(α) > u
)= R

∂

1(α)

u
2
γ

(Q−α)
+ O

(
1

u
2
γ
(Q−α)+ν

)
,

where the value of R
∂

1(α) is given by

(1.27) R
∂

1(α) = (2π)
2
γ
(Q−α)− 1

2 ( 2
γ
)

γ
2 (Q−α)− 1

2

(Q − α)�(1 − γ 2

4 )
2
γ
(Q−α)

�γ
2
(α − γ

2 )

�γ
2
(Q − α)

.

The proof of this proposition is done in Appendix A.4. Notice that we impose the condition
α ∈ (

γ
2 ,Q). This is crucial for the tail behavior of I ∂

1,η(α) (or similarly for I1,η(α)) to be
dominated by the insertion and this is precisely why the asymptotic expansion is independent
of the choice of η. It also explains why the radial decomposition (1.23) is natural as it is well
suited to study X around a particular point. If one is interested in the case where α <

γ
2 (or

simply α = 0), a different argument known as the localization trick is required to obtain the
tail expansion; see [29] for more details. For the sake of completeness, of our discussion we
also recall the tail expansion in dimension two that was obtained in [18]. The normalizations
in this case are slightly different as we do not include a factor 2 in the covariance. We work
with a Gaussian process X̃ defined on the unit disk D with covariance ln 1

|x−y| . Instead of Y

we use Ỹ with covariance:

(1.28) E
[
Ỹ (x)Ỹ (y)

]= ln
|x| ∨ |y|
|x − y| .
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For an insertion placed in z, |z| < 1 we now define

R2(α) := E

[(∫ ∞
−∞

eγBQ−α
s

∫ 2π

0
eγ Ỹ (e−seiθ ) ds

) 2
γ

(Q−α)]
,

I2,η(α) :=
∫
B(z,η)

|x − z|−γαeγ X̃(x) d2x,

and we state the result obtained in [18].

PROPOSITION 1.6 (Kupiainen, Rhodes and Vargas [18]). For α ∈ (
γ
2 ,Q) we have the

following tail expansion for I2,η(α) as u → ∞, and for some ν > 0,

(1.29) P
(
I2,η(α) > u

)= R2(α)

u
2
γ

(Q−α)
+ O

(
1

u
2
γ
(Q−α)+ν

)
,

where the value of R2(α) is given by

(1.30) R2(α) = − γ

2(Q − α)

(π�(
γ 2

4 ))
2
γ
(Q−α)

�(1 − γ 2

4 )
2
γ

(Q−α)

�(−γ
2 (Q − α))

�(
γ
2 (Q − α))�( 2

γ
(Q − α))

.

A similar proposition is also expected for R
∂

2(α), the boundary reflection coefficient in
dimension two, whose expression and computation are left for a future paper. One notices

that R
∂

1(α) has a more convoluted expression than R2(α) as the special function �γ
2

appears
in its expression. Such expressions have already appeared in the study of Liouville theory
for instance in [26] where a general formula for the reflection amplitude is given. We now
summarize the four different cases that we have discussed in Figure 1. For each coefficient
the number 1 or 2 stands for the dimension and the partial ∂ symbol stands for the boundary
cases, no ∂ corresponds to the bulk cases.

1.3. Small deviations for GMC. We now turn to the problem of determining the universal
behavior of the probability for a GMC to be small. Both the exact formulas of Theorem 1.1
and the one proven on the unit circle in [27] will provide crucial insight. For this subsection
only we will use the following shorthand notation:

(1.31) Iγ,a,b :=
∫ 1

0
xa(1 − x)be

γ
2 X(x) dx.

FIG. 1. Four types of reflection coefficients.
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In the following, we will rely extensively on the decomposition

Iγ,a,b = c̃LYγ X1X2X3

coming from Corollary 1.3 with c̃ being a positive constant. First, L is a log-normal law, so
one has P(L ≤ ε) ≤ c1 exp(−c2(ln ε)2) for some c1, c2 > 0. On the other hand, the probability

for Yγ to be small is much smaller since P(Yγ ≤ ε) ≤ exp(−cε
− 4

γ 2 ) for some c > 0. From the
above and since X1,X2,X3 ≥ 1 the probability to be small for Iγ,a,b will be of log-normal
type. By comparison in the case of the total mass of the GMC on the unit circle it was shown
in [27] that it is distributed according to Yγ and so its probability to be small is of order

exp(−cε
− 4

γ 2 ).
Thus it appears that GMC on the unit interval and the unit circle have completely different

small deviations. However, this difference comes from the fact that the log-correlated field on
the circle is of average zero while in the case of the interval there is a nonzero global mode
producing the log-normal variable L. Therefore, on the interval if one subtracts the average
of X with respect to the correct measure (see below), one can remove the log-normal law L

appearing in the decomposition of Corollary 1.3. The probability for the resulting GMC to

be small will then be bounded by exp(−cε
− 4

γ 2 ) for some c > 0 just like for the case of the
circle. We expect this to be the correct universal behavior.

Let us make the above more precise. We start by writing down the decomposition of the
covariance of our field in terms of the Chebyshev polynomials. For all x, y ∈ [0,1] with
x = y, we have

(1.32) −2 ln |x − y| = 4 ln 2 +
+∞∑
n=1

4

n
Tn(2x − 1)Tn(2y − 1).

We recall that the Chebyshev polynomial of order n is the unique polynomial verifying
Tn(cos θ) = cos(nθ). This basis of polynomials is also orthogonal with respect to dot product
given by the integration against 1√

1−x2
dx, that is,

(1.33)
∫ 1

−1
Tn(x)Tm(x)

1√
1 − x2

dx =

⎧⎪⎪⎨
⎪⎪⎩

0 for n = m,

π for n = m = 0,
π

2
for n = m = 0.

From the above our field X(x) can be constructed by the series

(1.34) X(x) = 2
√

ln 2α0 +
+∞∑
n=1

2αn√
n

Tn(2x − 1).

Here (αn)n∈N is a sequence of i.i.d. standard Gaussians. This of course only makes sense if
one integrates both sides against a test function. We now introduce

X := 2

π

∫ 1

0

1√
1 − (2x − 1)2

X(x)dx = 2
√

ln 2α0 and X⊥(x) := X(x) − X.

We easily check that e
γ
2 X law= exp(N (γ 2 ln 2)). The probability to be small for the GMC

associated to X⊥(x) is now given by

(1.35) P

(∫ 1

0
e

γ
2 X⊥(x) dx ≤ ε

)
≤ exp

(−cε
− 4

γ 2
)
.

This result can be easily obtained from Corollary 1.3 by noticing that since we removed
L = exp(N (γ 2 ln 2)) the probability to be small is now governed by Yγ which gives the



882 G. REMY AND T. ZHU

bound written above. The argument we have just described is expected to work for any GMC
in any dimension, a result of this nature can be found in [19].

There is also a direct application of these observations to determining the law of the ran-
dom variable Iγ,a,b. This is linked to how the strategy of the proof of the present paper differs
from the one used in [27] to prove the Fyodorov–Bouchaud formula. In Section 2.2, we first
use the differential equation (1.20) on U(t) to obtain a relation between M(γ,p, a, b) and
M(γ,p − 1, a, b). Thus from this relation and knowing that M(γ,0, a, b) = 1 one can com-
pute recursively all the negative moments of the random variable Iγ,a,b. As it was emphasized
in many papers (see the review [25] by Ostrovsky and references therein), the negative mo-
ments of Iγ,a,b do not determine its law as the growth of the negative moments is too fast.
This is why we must derive a second relation between M(γ,p, a, b) and M(γ,p − 4

γ 2 , a, b)

which gives enough information to complete the proof. By contrast in the case of the total
mass of the GMC on the unit circle the negative moments do capture uniquely the probability
distribution and so the proof of the Fyodorov–Bouchaud formula given in [27] only requires
one shift equation (in a similar fashion one obtains a relation between the moment p and the
moment p − 1 of the total mass of the GMC).

But the negative moments of Iγ,a,b do not determine its law only because of the log-normal
law L in the decomposition of Corollary 1.3. By using Corollary 1.3 and by independence of

X⊥(x) and X one can factor out e
γ
2 X law= L and the computation of the negative moments is

now sufficient to uniquely determine the distribution. Thus the negative moments of a GMC
measure always determine its law if one removes the global Gaussian coming from the av-
erage of the field with respect to an appropriate measure. From this observation the relation
between M(γ,p, a, b) and M(γ,p − 4

γ 2 , a, b) could be omitted in the proof of Theorem 1.1.
Nonetheless if one only computes the negative moments it is not clear that the analytic con-
tinuation given by the �γ functions does correspond to the fractional moments of a random
variable, this fact has been checked by Ostrovsky in [22]. Thus in order to keep the proof of
our theorem self-contained, we choose to keep both shift equations.

1.4. Other applications. Similarly as in [27], we will write the applications of our Theo-
rem 1.1 to the behavior of the maximum of X and to random matrix theory. We refer to [27]
for more detailed explanations and for additional references on these problems.

Characterizing the behavior of the maximum of X requires us to compute the law of the
total mass of the derivative martingale,

M ′ = −1

2

∫ 1

0
X(x)eX(x) dx

:= −1

2
lim
δ→0

∫ 1

0

(
Xδ(x) −E

[
Xδ(x)2])eXδ(x)− 1

2E[Xδ(x)2] dx,

which following [1] can be characterized by the convergence in law:

(1.36) 2M ′ = lim
γ→2

1

2 − γ

∫ 1

0
e

γ
2 X(x) dx.

Therefore, from our Theorem 1.1, we can easily compute the moments of this quantity,

E
[(

2M ′)p]= (2π)p
�1(1 − p)�1(2 − p)2�1(4 − p)

�1(2)2�1(4 − 2p)

= G(4 − 2p)

G(1 − p)G(2 − p)2G(4 − p)
,
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where G(x) is the so-called Barnes G function; see Appendix B for more details. Just like in
Corollary 1.3 an explicit description of the resulting law has been found in [24],

(1.37) 2M ′ law= π

32
L̃X̃1X̃2X̃3,

where L̃, X̃1, X̃2, X̃3 are four independent random variables on R+ with the following laws:

L̃ = exp
(
N (0,4 ln 2)

)
,

X̃1 = 1

y2 e−1/y, y > 0,

X̃2 = β−1
2,2

(
1,1;2,

1

2
,

1

2

)
,

X̃3 = 2

y3 dy, y > 1.

Then for a suitable regularization Xδ of X the following convergence holds in law:

max
x∈[0,1]Xδ(x) − 2 ln

1

δ
+ 3

2
ln ln

1

δ

→
δ→0

G1 + lnM ′ + c

= G1 + G2 +N (0,4 ln 2) + ln X̃2 + ln X̃3 + c.

All the random variables appearing above are independent, G1 and G2 are two independent
Gumbel laws, and c is a nonuniversal real constant that depends on the regularization proce-

dure. We have also used the fact that ln X̃1
law= G2.

Lastly, we briefly mention that in the case of the interval it is also possible to see the
GMC measure as the limit of the characteristic polynomial of random Hermitian matrices,
the connection in this case was established in [5]. The main result of [5] is that for suitable
random Hermitian matrices HN , the quantity

|det(HN − x)|γ
E|det(HN − x)|γ dx

converges in law to the GMC measure on the unit interval [0,1].6 Therefore, the same appli-
cations as the ones given in [27] hold and in particular one can conjecture that the following
convergence in law holds:

max
x∈[0,1] ln

∣∣det(HN − x)
∣∣− lnN + 3

4
ln lnN

→
N→∞ G1 + G2 +N (0,4 ln 2) + ln X̃2 + ln X̃3 + c.

This conjecture first appeared in [13] although it was written on [−1,1] instead of [0,1].
2. The shift equations on a and p. To prove Theorem 1.1 we proceed in two steps. We

first completely determine the dependence of M(γ,p, a, b) on the parameters a and b, see
the result of Proposition 2.1 just below. We are then left with an unknown function C(p) of
p (and γ ) and give its value in Proposition 2.2. Throughout this section, we extensively use
the fact that U(t) and Ũ (t) are solutions of the hypergeometric equations of Proposition 1.4
proven in Section 3.

6Actually, in [5] the limiting GMC measure is defined on [−1,1], but of course by a change of variable we can
write everything on [0,1].
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2.1. The shifts in a. The goal of this subsection is to prove the shift equations (1.9),
(1.10) on a and b to completely determine the dependence of M(γ,p, a, b) on these two
parameters. By symmetry, we will write everything only for a. We will thus prove that:

PROPOSITION 2.1. For γ ∈ (0,2) and a, b, p satisfying the bounds (1.5), M(γ,p, a, b)

is given by the expression

(2.1) C(p)
�γ

2
( 2
γ
(a + 1) − (p − 1)

γ
2 )�γ

2
( 2
γ
(b + 1) − (p − 1)

γ
2 )�γ

2
( 2
γ
(a + b + 2) − (p − 2)

γ
2 )

�γ
2
( 2
γ
(a + 1) + γ

2 )�γ
2
( 2
γ
(b + 1) + γ

2 )�γ
2
( 2
γ
(a + b + 2) − (2p − 2)

γ
2 )

,

where C(p) is the function that contains the remaining dependence on p (and γ ). It will be
computed in Section 2.2.

� The +γ 2

4 shift equation.
Here we start with the first auxiliary function, for γ ∈ (0,2) and a, b, p satisfying (1.5):

(2.2) U(t) = E

[(∫ 1

0
(x − t)

γ 2

4 xa(1 − x)be
γ
2 X(x) dx

)p]
.

From the result of Proposition 1.4, U(t) is solution to a hypergeometric equation. As ex-
plained in Appendix B we can write the solutions of this hypergeometric equation for
t ∈ (−∞,0) in two different bases, one corresponding to an expansion in powers of |t | and
one to an expansion in power of |t |−1. Since the solution space is a two-dimensional real vec-
tor space, each basis will be parametrized by two real constants. Let C1, C2 and D1, D2 stand
for these constants. The theory of hypergeometric equations then gives an explicit change of
basis formula (B.3) linking C1, C2 and D1, D2. Thus we can write, when A − B and C are
not integers,

U(t) = C1F(A,B,C, t)(2.3)

+ C2|t |1−CF(1 + A − C,1 + B − C,2 − C, t)

= D1|t |−AF
(
A,1 + A − C,1 + A − B, t−1)(2.4)

+ D2|t |−BF
(
B,1 + B − C,1 + B − A, t−1),

where F is the hypergeometric function. We recall that the parameters A, B , C are given by

(2.5) A = −pγ 2

4
, B = −(a + b + 1) − (2 − p)

γ 2

4
, C = −a − γ 2

4
.

The values of A, B , C left out corresponding to A − B or C being integers will be recovered
at the level of the shift equation (2.11) by continuity. The idea is now to identify the constants
C1, C2, D1, D2 by performing asymptotic expansions on U(t). Two of the above constants
are easily obtained by evaluating U(t) in t = 0 and by taking the limit t → −∞:

C1 = M

(
γ,p, a + γ 2

4
, b

)
,(2.6)

D1 = M(γ,p, a, b).(2.7)

By performing a more detailed asymptotic expansion in t → −∞, we claim that

(2.8) D2 = 0.

We sketch a short proof. For t < −2 (arbitrary) and x ∈ [0,1],
(x − t)

γ 2

4 − |t | γ 2

4 ≤ c|t | γ 2

4 −1,
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for some constant c > 0. By interpolating, for t < −2,

∣∣U(t) − D1|t |pγ 2

4
∣∣

=
∣∣∣∣E
[(∫ 1

0

(
u(x − t)

γ 2

4 + (1 − u)|t | γ 2

4
)
xa(1 − x)be

γ
2 X(x) dx

)p] ∣∣∣∣
u=1

−E

[(∫ 1

0

(
u(x − t)

γ 2

4 + (1 − u)|t | γ 2

4
)
xa(1 − x)be

γ
2 X(x) dx

)p] ∣∣∣∣
u=0

∣∣∣∣
≤ |p|

∫ 1

0
dx1

(
(x1 − t)

γ 2

4 − |t | γ 2

4
)
xa

1 (1 − x1)
b

×
(
E

[(∫ 1

0

(x − t)
γ 2

4 xa(1 − x)b

|x1 − x| γ 2
2

e
γ
2 X(x) dx

)p−1]

+E

[(∫ 1

0

|t | γ 2

4 xa(1 − x)b

|x1 − x| γ 2
2

e
γ
2 X(x) dx

)p−1])

≤ c′|t |pγ 2

4 −1M(γ,p, a, b) =
t→−∞ O

(|t |pγ 2

4 −1),
where in both steps we have used the Girsanov theorem (see Appendix A.1) and c′ > 0 is
some constant. However, by using the bound (1.5) over p,

(2.9) (−A) − (−B) = −
(
a + b + 1 + (2 − 2p)

γ 2

4

)
< 1.

This implies that D2 = 0. We then use the following identity coming from the theory of
hypergeometric functions (B.3):

(2.10) C1 = �(1 − C)�(A − B + 1)

�(A − C + 1)�(1 − B)
D1.

This leads to the first shift equation (1.9):

(2.11)
M(γ,p, a + γ 2

4 , b)

M(γ,p, a, b)
= �(1 + a + γ 2

4 )�(2 + a + b − (2p − 2)
γ 2

4 )

�(1 + a − (p − 1)
γ 2

4 )�(2 + a + b − (p − 2)
γ 2

4 )
.

� The +1 shift equation.
We now write everything with the second auxiliary function, for γ ∈ (0,2) and a, b, p

satisfying (1.5):

(2.12) Ũ (t) = E

[(∫ 1

0
(x − t)xa(1 − x)be

γ
2 X(x) dx

)p]
.

Again we write the solutions of the hypergeometric equation around t = 0− and t = −∞,
when C̃ and Ã − B̃ are not integers,

Ũ (t) = C̃1F(Ã, B̃, C̃, t)(2.13)

+ C̃2|t |1−C̃F (1 + Ã − C̃,1 + B̃ − C̃,2 − C̃, t)

= D̃1|t |−ÃF
(
Ã,1 + Ã − C̃,1 + Ã − B̃, t−1)(2.14)

+ D̃2|t |−B̃F
(
B̃,1 + B̃ − C̃,1 + B̃ − Ã, t−1).
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As before, we have introduced four real constants C̃1, C̃2, D̃1, D̃2 and Ã, B̃ , C̃ are given by

(2.15) Ã = −p, B̃ = − 4

γ 2 (a + b + 2) + p − 1, C̃ = − 4

γ 2 (a + 1).

Two of our constants are again easily obtained,

C̃1 = M(γ,p, a + 1, b),(2.16)

D̃1 = M(γ,p, a, b),(2.17)

and we can proceed as previously to obtain

(2.18) D̃2 = 0.

The relation between C̃1 and D̃1 (B.3) then leads to the shift equation (1.10):

(2.19)

M(γ,p, a + 1, b)

M(γ,p, a, b)

=
�( 4

γ 2 (1 + a) + 1)�( 4
γ 2 (2 + a + b) − (2p − 2))

�( 4
γ 2 (1 + a) − (p − 1))�( 4

γ 2 (2 + a + b) − (p − 2))
.

Therefore, for γ 2

4 /∈ Q, (2.11) and (2.19) prove the formula of Proposition 2.1. The result for
the other values of γ follows from the well-known fact that γ �→ M(γ,p, a, b) is a continu-
ous function.

2.2. The shifts in p. We now tackle the problem of determining two shift equations on
p, (1.15) and (1.16), to completely determine the function C(p) of Proposition 2.1. We will
work only with U(t). The idea is to perform a computation at the next order in the expressions
of the previous subsection. This will give the desired result.

PROPOSITION 2.2. For γ ∈ (0,2) and p < 4
γ 2 ,

(2.20) C(p) = (2π)p

�(1 − γ 2

4 )p

(
2

γ

)p
γ 2

4 �γ
2
( 2
γ

− p
γ
2 )

�γ
2
( 2
γ
)

.

� The +1 shift equation.
Since we have completely determined the dependence of M on a, b by equation (2.1) we

are free to choose a and b as we wish. To find the next order in t → 0−, the most natural idea

is to take a such that 0 < 1 − C = 1 + a + γ 2

4 < 1, and then it suffices to study the equivalent
of U(t) − U(0) when t → 0−. For technical reasons this only gives the expression of C2
when γ <

√
2. To obtain C2 for all γ ∈ (0,2), we will need to go one order further in the

asymptotic expansion and we make the choice 0 < a < 1 − γ 2

4 and b = 0. In this case, we
have p < 4

γ 2 , 1 < 1 − C < 2. We perform a Taylor expansion around t = 0−,

U(t) = U(0) + tU ′(0) + t2
∫ 1

0
U ′′(tu)(1 − u)du,

with

U ′′(tu)

(�)= −pγ 2

4

∫ 1

0
dx1(x1 − tu)

γ 2

4 −1xa
1

a

x1
E

[(∫ 1

0

(x − tu)
γ 2

4 xa

|x − x1| γ 2
2

e
γ
2 X(x) dx

)p−1]
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= −pγ 2a

4
|tu|−1+a+ γ 2

4

∫ − 1
tu

0
dy(y + 1)

γ 2

4 −1ya−1

×E

[(∫ 1

0

(x − tu)
γ 2

4 xa

|x + tuy| γ 2
2

e
γ
2 X(x) dx

)p−1]
.

(�) comes from multiple applications of the Girsanov theorem (see Appendix A.1) and sym-
metrization tricks. One may refer to (3.5) where we calculate rigorously the derivatives of
U(t). Next we have the following bound for y ∈ [0,− 1

tu
], u ∈ [0,1], and t ∈ [−1,0]:

E

[(∫ 1

0

(x − tu)
γ 2

4 xa

|x + tuy| γ 2
2

e
γ
2 X(x) dx

)p−1]

≤ sup
x1∈[0,1]

{
E

[(∫ 1

0

xa+ γ 2

4

|x − x1| γ 2
2

e
γ
2 X(x) dx

)p−1]

+E

[(∫ 1

0

(x + 1)
γ 2

4 xa

|x − x1| γ 2
2

e
γ
2 X(x) dx

)p−1]}

< ∞.

Then we get by dominant convergence that

U ′′(tu)
t→0−∼ −pγ 2a

4
|tu|−1+a+ γ 2

4

∫ ∞
0

dy(y + 1)
γ 2

4 −1

× ya−1M

(
γ,p − 1, a − γ 2

4
,0
)
,

and again by dominant convergence

U(t) − U(0) − tU ′(0)

= −pγ 2a

4

�(a + γ 2

4 )

�(2 + a + γ 2

4 )
|t |1+a+ γ 2

4

∫ ∞
0

dy (y + 1)
γ 2

4 −1ya−1

× M

(
γ,p − 1, a − γ 2

4
,0
)

+ o
(|t |1+a+ γ 2

4
)
.

The value of the integral above is given by (B.11). We arrive at the expression for C2:

(2.21) C2 = p
�(a + 1)�(−a − γ 2

4 − 1)

�(−γ 2

4 )
M

(
γ,p − 1, a − γ 2

4
,0
)
.

The theory of hypergeometric equations (B.3) gives this time the relation

(2.22) C2 = �(C − 1)�(A − B + 1)

�(A)�(C − B)
D1.

By identifying the above two expressions of C2, we get

M

(
γ,p − 1, a − γ 2

4
,0
)

= �(1 + a − (p − 1)
γ 2

4 )�(2 + a − (p − 2)
γ 2

4 )

�(1 + a)�(2 + a − (2p − 3)
γ 2

4 )
M(γ,p, a,0).
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By using the shift equation (2.11) on a, we can drop the −γ 2

4 after a in the expression

M(γ,p − 1, a − γ 2

4 ,0) and we obtain for 0 < a < 1 − γ 2

4 and b = 0,

M(γ,p, a,0)

M(γ,p − 1, a,0)

= �(1 − pγ 2

4 )

�(1 − γ 2

4 )

�(1 + a − (p − 1)
γ 2

4 )�(1 − (p − 1)
γ 2

4 )�(2 + a − (p − 2)
γ 2

4 )

�(2 + a − (2p − 3)
γ 2

4 )�(2 + a − (2p − 2)
γ 2

4 )
.

Combined with (2.1), this leads to a first relation on our constant C(p), for p < 4
γ 2 ,

(2.23)
C(p)

C(p − 1)
= √

2π

(
γ

2

)(p−1)
γ 2

4 − 1
2 �(1 − p

γ 2

4 )

�(1 − γ 2

4 )
.

Reversely, (2.23) and (2.1) show that for all a, b, p satisfying the bounds (1.5):
M(γ,p,a, b)

M(γ,p − 1, a, b)

= �(1 − pγ 2

4 )

�(1 − γ 2

4 )

�(1 + a − (p − 1)
γ 2

4 )�(1 + b − (p − 1)
γ 2

4 )�(2 + a + b − (p − 2)
γ 2

4 )

�(2 + a + b − (2p − 3)
γ 2

4 )�(2 + a + b − (2p − 2)
γ 2

4 )
.

(2.24)

� The + 4
γ 2 shift equation.

Since the relation (2.23) is not enough to completely determine the function C(p), we seek
another relation on C(p) that is not predicted by the Selberg integral. The techniques of this
subsection are a little more involved, they lead to a relation between C(p) and C(p − 4

γ 2 ).

Again we can pick a and b as we wish so we choose b = 0 and −1 − γ 2

4 < a < −1 − γ 2

4 + a0
where a0 > 0 is a constant introduced in Lemma A.9 of Appendix A.3. The asymptotic in
t → 0− of the following quantity is then given by Lemma A.9:

E

[(∫ 1

0
(x − t)

γ 2

4 xae
γ
2 X(x) dx

)p]
−E

[(∫ 1

0
xa+ γ 2

4 e
γ
2 X(x) dx

)p]

= g(γ, a)
�(−p + 1 + 4

γ 2 (a + 1))

�(−p)
|t |1+a+ γ 2

4

× M

(
γ,p − 1 − 4

γ 2 (a + 1),−2 − a − γ 2

4
,0
)

+ o
(|t |1+a+ γ 2

4
)
,

where g(γ, a) is a real function that only depends on γ and a. Comparing with the expansion
(2.3), we have

C2 = g(γ, a)
�(−p + 1 + 4

γ 2 (a + 1))

�(−p)

× M

(
γ,p − 1 − 4

γ 2 (a + 1),−2 − a − γ 2

4
,0
)
.

(2.25)

With the identity (B.3) coming from hypergeometric equations,

C2 = �(C − 1)�(A − B + 1)

�(A)�(C − B)
D1

= �(−1 − a − γ 2

4 )�(2 + a − (2p − 2)
γ 2

4 )

�(−p
γ 2

4 )�(1 − (p − 1)
γ 2

4 )
M(γ,p, a,0).
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Comparing the above two expressions of C2 yields

g(γ, a)

= M(γ,p, a,0)

M(γ,p − 1 − 4
γ 2 (a + 1),−2 − a − γ 2

4 ,0)
(2.26)

× �(−p)�(−1 − a − γ 2

4 )�(2 + a − (2p − 2)
γ 2

4 )

�(−p + 1 + 4
γ 2 (a + 1))�(−p

γ 2

4 )�(1 − (p − 1)
γ 2

4 )
.

A crucial remark is that from (2.1) and analycity of the function �γ , M(γ,p, a, b) is analytic
in a, b. Thus the right-hand side of (2.26) is analytic in a. We can then do analytic continu-
ation simultaneously for both sides in the above equation. This shows that the expression of

the right-hand side does not depend on p not only for −1 − γ 2

4 < a < −1 − γ 2

4 + a0 but for

all appropriate a where the expression is well defined, that is, −1 − γ 2

4 < a < −1.
In the following computations f (γ ) stands for a real function depending only on γ and

we will use the abuse of notation that it could be a different function of γ every time it
appears. Consider the case where 4

k+1 < γ 2 < 4
k

for a k ∈ N∗. For this range of γ we make

the special choice a = − (k+1)γ 2

4 and thus the bounds −1 − γ 2

4 < a < −1 on a are satisfied.

In the previous paragraph, we have shown that for a = − (k+1)γ 2

4

(2.27)

M(γ,p,− (k+1)γ 2

4 ,0)

M(γ,p − 4
γ 2 + k,

kγ 2

4 − 2,0)

= f (γ )
�( 4

γ 2 − k − p)�(−p
γ 2

4 )�(1 − (p − 1)
γ 2

4 )

�(−p)�(
kγ 2

4 − 1)�(2 − (2p + k − 1)
γ 2

4 )
.

By the shift equations (2.11) and (2.19),

M(γ,p − 4
γ 2 + k,

kγ 2

4 − 2,0)

M(γ,p − 4
γ 2 + k,− (k+1)γ 2

4 ,0)

= f (γ )

1∏
j=0

�(j 4
γ 2 + 1 − p)�((1 + j) 4

γ 2 + 2 − p)

�((2 + j) 4
γ 2 − k + 2 − 2p)

×
2k∏
i=0

�(4 − (2p + 3k − i − 1)
γ 2

4 )

�(2 − (p + 2k − i)
γ 2

4 )�(3 − (p + 2k − i − 1)
γ 2

4 )
.

Then by (2.24),

M(γ,p − 4
γ 2 + k,− (k+1)γ 2

4 ,0)

M(γ,p − 4
γ 2 ,− (k+1)γ 2

4 ,0)

= f (γ )

k−1∏
i=0

�(2 − (p + k + i + 1)
γ 2

4 )�(2 − (p + i)
γ 2

4 )�(2 − (p + 1 + i)
γ 2

4 )�(3 − (p + k + i)
γ 2

4 )

�(4 − (2p + k + 2i)
γ 2

4 )�(4 − (2p + k + 2i + 1)
γ 2

4 )
,
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and the product of the above two equations gives

M(γ,p − 4
γ 2 + k,

kγ 2

4 − 2,0)

M(γ,p − 4
γ 2 ,− (k+1)γ 2

4 ,0)

= f (γ )
�(4 − (2p + k − 1)

γ 2

4 )

�(3 − (p − 1)
γ 2

4 )�(3 − p
γ 2

4 )
∏k−2

i=0 (2 − (p + 1 + i)
γ 2

4 )

×
1∏

j=0

�(j 4
γ 2 + 1 − p)�((1 + j) 4

γ 2 + 2 − p)

�((2 + j) 4
γ 2 − k + 2 − 2p)

.

Combining this relation with the previous shift equations (2.27),

M(γ,p,− (k+1)γ 2

4 ,0)

M(γ,p − 4
γ 2 ,− (k+1)γ 2

4 ,0)

= f (γ )
�( 4

γ 2 − k − p)�(−p
γ 2

4 )�(1 − (p − 1)
γ 2

4 )�(4 − (2p + k − 1)
γ 2

4 )

�(−p)�(
kγ 2

4 − 1)�(2 − (2p + k − 1)
γ 2

4 )�(3 − (p − 1)
γ 2

4 )

×
�(1 − p)�( 4

γ 2 + 1 − p)�( 4
γ 2 + 2 − p)�( 8

γ 2 + 2 − p)

�(3 − p
γ 2

4 )
∏k−2

i=0 (2 − (p + 1 + i)
γ 2

4 )�( 8
γ 2 − k + 2 − 2p)�( 12

γ 2 − k + 2 − 2p)

= f (γ )
�(−p

γ 2

4 )�(1 − (p − 1)
γ 2

4 )�(4 − (2p + k − 1)
γ 2

4 )�(1 − p)

�(3 − p
γ 2

4 )�(3 − (p − 1)
γ 2

4 )�(2 − (2p + k − 1)
γ 2

4 )�(−p)

×
�( 8

γ 2 + 2 − p)�( 4
γ 2 + 2 − p)�( 4

γ 2 − k − p)�( 4
γ 2 + 1 − p)∏k−2

i=0 ( 8
γ 2 − (p + 1 + i))�( 12

γ 2 − k + 2 − 2p)�( 8
γ 2 − k + 2 − 2p)

= f (γ )�

(
4

γ 2 − p

)�( 4
γ 2 − k − p)�( 4

γ 2 + 1 − p)�( 8
γ 2 − k + 1 − p)

�( 12
γ 2 − k + 1 − 2p)�( 8

γ 2 − k + 1 − 2p)
.

By (2.1), the same ratio of M can also be written as

M(γ,p,− (k+1)γ 2

4 ,0)

M(γ,p − 4
γ 2 ,− (k+1)γ 2

4 ,0)

= C(p)

C(p − 4
γ 2 )

f (γ )

(
γ

2

)p

×
�( 4

γ 2 − k − p)�( 4
γ 2 + 1 − p)�( 8

γ 2 − k + 1 − p)

�( 12
γ 2 − k + 1 − 2p)�( 8

γ 2 − k + 1 − 2p)
,

thus we obtain, for 4
k+1 < γ 2 < 4

k
,

(2.28)
C(p)

C(p − 4
γ 2 )

= f (γ )

(
γ

2

)−p

�

(
4

γ 2 − p

)
.
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This proves the second shift equation (1.16) on C(p). Then, for every fixed γ such that
4
γ 2 /∈ Q, both shift equations (2.23) and (2.28) completely determine the value C(p) up to a
constant cγ of γ . To see this, take another continuous function C(p) that satisfies both shift
equations (2.23) and (2.28). Then the ratio R(p) := C(p)

C(p)
is a 1-periodic and 4

γ 2 -periodic

continuous function. Combining this with the fact that 4
γ 2 /∈ Q implies that the ratio R(p) is

constant and C(p) is determined up to a constant cγ of γ by the two shift equations on p.
The constant cγ is then evaluated by choosing p = 0 and by using the known value

M(γ,0, a, b) = 1. Thus we arrive at the formula of Proposition 2.2. Finally, by the conti-
nuity of γ → M(γ,p, a, b), we can extend the formula to the values of γ that were left out.
This completes the proof of Proposition 2.2.

3. Proof of the differential equations. We now move to the proof of Proposition 1.4. In
order to show that U(t) and Ũ (t) satisfy these differential equations we will need to introduce
a regularization procedure. We will work with two small parameters δ > 0 and ε > 0 which
will be sent to 0 at the appropriate places in the proof. The first parameter δ controls the
cut-off procedure used to smooth X. A convenient smoothing procedure can be written by
seeing X as the restriction of the centered Gaussian field defined on the disk D+ (1

2 ,0), that
is, the unit disk centered in (1

2 ,0). X still has a covariance given by

(3.1) E
[
X(x)X(y)

]= 2 ln
1

|x − y| .
Then for any smooth function θ ∈ C∞([0,∞),R+) with support in [0,1] and satisfying∫∞

0 θ = 1
π

, we write θδ := 1
δ2 θ(

|·|2
δ2 ) and define the regularized field Xδ := X ∗ θδ . Similarly

we introduce

(3.2)
1

(x)δ
:=
∫
C

∫
C

1

x + y1 + y2
θδ(y1)θδ(y2) d2y1 d2y2.

This quantity will appear when we take the derivative of E[Xδ(x)Xδ(y)]. Now since we have
the singularities xa and (1 − x)b that appear in U(t) and Ũ (t), we will also need to restrict
the integration from [0,1] to the smaller interval [ε,1 − ε] for some small ε that will be sent
to 0. Finally, we introduce some more compact notation for various expressions that depend
on both δ and ε:

Gδ(x, y) := E
[
Xδ(x)Xδ(y)

]
,

D(x; t) := (x − t)
γ 2

4 xa(1 − x)b,

Uε,δ(t) := E

[(∫ 1−ε

ε
D(x; t)e γ

2 Xδ(x) dx

)p]
,

V
(1)
ε,δ (x1; t) := E

[(∫ 1−ε

ε
D(x; t)e γ

2 Xδ(x)+ γ 2

4 Gδ(x,x1) dx

)p−1]
,

V
(2)
ε,δ (x1, x2; t) := E

[(∫ 1−ε

ε
D(x; t)e γ

2 Xδ(x)+ γ 2

4 (Gδ(x,x1)+Gδ(x,x2)) dx

)p−2]
,

E0,ε,δ(t) := D(ε; t)V (1)
ε,δ (ε; t),

E1,ε,δ(t) := D(1 − ε; t)V (1)
ε,δ (1 − ε; t).

The terms V
(1)
ε,δ and V

(2)
ε,δ will appear when we compute respectively, the first and second order

derivatives of Uε,δ . The terms E0,ε,δ and E1,ε,δ are the boundary terms of the integration by
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parts performed below. We will also use Uε(t), V
(1)
ε (x1; t), V

(2)
ε (x1, x2; t), E0,ε(t), E1,ε(t)

for the limit of the above quantities as δ goes to 0.

PROOF. First, we prove the equation for U(t). We recall the definition

(3.3) U(t) = E

[(∫ 1

0
(x − t)

γ 2

4 xa(1 − x)be
γ
2 X(x) dx

)p]
,

and we calculate the derivatives with the help of the Girsanov theorem of Appendix A.1:

U ′
ε,δ(t) = p

∫ 1−ε

ε
dx1 ∂tD(x1; t)V (1)

ε,δ (x1; t)

= −p

∫ 1−ε

ε
dx1 ∂x1

(
(x1 − t)

γ 2

4
)
xa

1 (1 − x1)
bV

(1)
ε,δ (x1; t)

= −p

(
E1,ε,δ(t) − E0,ε,δ(t)

−
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε,δ (x1; t)
(

a

x1
− b

1 − x1

)

−
∫ 1−ε

ε
dx1 D(x1; t)∂x1V

(1)
ε,δ (x1; t)

)
.

We claim that the last term in the sum equals zero. Indeed,∫ 1−ε

ε
dx1 D(x1; t)∂x1V

(1)
ε,δ (x1; t)

= (p − 1)
γ 2

2

∫ 1−ε

ε

∫ 1−ε

ε
dx1 dx2

D(x1; t)D(x2; t)
(x2 − x1)δ

e
γ 2

4 Gδ(x2,x1)V
(2)
ε,δ (x1, x2; t)

= 0 by symmetry.

Thus, by sending δ to 0,

U ′
ε(t) = −p

(
E1,ε(t) − E0,ε(t)

−
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

a

x1
− b

1 − x1

))
.

(3.4)

In the same spirit, we calculate

U ′′
ε,δ(t) = pγ 2

4

[
−
∫ 1−ε

ε
dx1 ∂t

(
D(x1; t)
(x1 − t)

)
V

(1)
ε,δ (x1; t)

+ (p − 1)γ 2

4

∫ 1−ε

ε
dx1

∫ 1−ε

ε
dx2

D(x1; t)D(x2; t)
(x1 − t)(x2 − t)

× e
γ 2

4 Gδ(x2,x1)V
(2)
ε,δ (x1, x2; t)

]
.

An integration by parts gives

−
∫ 1−ε

ε
dx1∂t

(
D(x1; t)
(x1 − t)

)
V

(1)
ε,δ (x1; t)

=
∫ 1−ε

ε
dx1∂x1

(
(x1 − t)

γ 2

4

x1 − t

)
xa

1 (1 − x1)
bV

(1)
ε,δ (x1; t)
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= 1

1 − t − ε
E1,ε,δ(t) + 1

t − ε
E0,ε,δ(t)

−
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε,δ (x1; t) 1

x1 − t

(
a

x1
− b

1 − x1

)

− (p − 1)γ 2

2

∫ 1−ε

ε
dx1

∫ 1−ε

ε
dx2

D(x1; t)D(x2; t)
(x1 − t)(x2 − x1)δ

× e
γ 2

4 Gδ(x2,x1)V
(2)
ε,δ (x1, x2; t).

By symmetry of the expression under the exchange of x1 and x2,

(p − 1)γ 2

2

∫ 1−ε

ε
dx1

∫ 1−ε

ε
dx2

D(x1; t)D(x2; t)
(x1 − t)(x2 − x1)δ

× e
γ 2

4 Gδ(x2,x1)V
(2)
ε,δ (x1, x2; t)

= (p − 1)γ 2

4

∫ 1−ε

ε
dx1

∫ 1−ε

ε
dx2 D(x1; t)D(x2; t)e γ 2

4 Gδ(x2,x1)

×
(

1

(x1 − t)(x2 − x1)δ
+ 1

(x2 − t)(x1 − x2)δ

)
V

(2)
ε,δ (x1, x2; t)

= (p − 1)γ 2

4

∫ 1−ε

ε
dx1

∫ 1−ε

ε
dx2

D(x1; t)D(x2; t)
(x1 − t)(x2 − t)

x2 − x1

(x2 − x1)δ

× e
γ 2

4 Gδ(x2,x1)V
(2)
ε,δ (x1, x2; t).

Since x2−x1
(x2−x1)δ

≤ c for some constant c > 0 independent of δ, by sending δ to 0,

U ′′
ε (t) = pγ 2

4

(
1

1 − t − ε
E1,ε(t) + 1

t − ε
E0,ε(t)

(3.5)

−
∫ 1−ε

ε
dx1D(x1; t)V (1)

ε (x1; t) 1

x1 − t

(
a

x1
− b

1 − x1

))
.

A further calculation shows that

∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t) 1

x1 − t

(
a

x1
− b

1 − x1

)

=
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

a

t

(
1

x1 − t
− 1

x1

)

− b

1 − t

(
1

x1 − t
+ 1

1 − x1

))

= −
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

a

tx1
+ b

(1 − t)(1 − x1)

)

− 4

pγ 2

(
a

t
− b

1 − t

)
U ′

ε(t),
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and as a consequence,

U ′′
ε (t) = pγ 2

4

(
1

1 − t − ε
E1,ε(t − ε) + 1

t
E0,ε(t)

+
∫ 1−ε

ε
dx1D(x1; t)V (1)

ε (x1; t)
(

a

tx1
+ b

(1 − t)(1 − x1)

))

+
(

a

t
− b

1 − t

)
U ′

ε(t).

(3.6)

We can also write Uε,δ(t) in a similar form by doing an integration by parts:

(1 − t − ε)E1,ε,δ(t) + (t − ε)E0,ε,δ(t)

−
∫ 1−ε

ε
dx1D(x1; t)V (1)

ε,δ (x1; t)(x1 − t)

(
a

x1
− b

1 − x1

)

=
(

1 + γ 2

4

)∫ 1−ε

ε
dx1D(x1; t)V (1)

ε,δ (x1; t)

+ (p − 1)
γ 2

2

∫ 1−ε

ε

∫ 1−ε

ε
dx1 dx2D(x1; t)D(x2; t)e γ 2

4 Gδ(x2,x1)

× x1 − t

(x2 − x1)δ
V

(2)
ε,δ (x1, x2; t)

=
(

1 + γ 2

4

)∫ 1−ε

ε
dx1D(x1; t)V (1)

ε,δ (x1; t)

− (p − 1)
γ 2

4

∫ 1−ε

ε
dx1

∫ 1−ε

ε
dx2D(x1; t)D(x2; t)e γ 2

4 Gδ(x2,x1)

× x2 − x1

(x2 − x1)δ
V

(2)
ε,δ (x1, x2; t).

By sending δ to 0 and by applying the Girsanov theorem of Appendix A.1, we obtain

−(B + a + b)Uε(t)

= (1 − t − ε)E1,ε(t) + (t − ε)E0,ε(t)

−
∫ 1−ε

ε
dx1D(x1; t)V (1)

ε (x1; t)(x1 − t)

(
a

x1
− b

1 − x1

)
,

where we recall that B = −(a + b + 1) − (2 − p)
γ 2

4 . We also note that

∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)(x1 − t)

(
a

x1
− b

1 − x1

)

= (a + b)Uε,δ(t) −
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

at

x1
+ b(1 − t)

1 − x1

)
,

and hence,

−BUε(t) = (1 − t − ε)E1,ε(t) + (t − ε)E0,ε(t)

+
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

at

x1
+ b(1 − t)

1 − x1

)
.

(3.7)
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Combining this with the expressions for U ′
ε and U ′′

ε , equations (3.4) and (3.6),

U ′
ε(t) = −p

(
E1,ε(t) − E0,ε(t)

−
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

a

x1
− b

1 − x1

))
,

U ′′
ε (t) = pγ 2

4

(
1

1 − t − ε
E1,ε(t) + 1

t − ε
E0,ε(t)

+
∫ 1−ε

ε
dx1 D(x1; t)V (1)

ε (x1; t)
(

a

tx1
+ b

(1 − t)(1 − x1)

))

+
(

a

t
− b

1 − t

)
U ′

ε(t),

we finally arrive at

t (1 − t)U ′′
ε (t) + (C − (A + B + 1)t

)
U ′

ε(t) − ABUε(t)

= ε(1 − ε)
pγ 2

4

(
1

1 − t − ε
E1,ε(t) + 1

t − ε
E0,ε(t)

)
.

(3.8)

From this expression we see that the last thing we need to check is that as ε goes to zero,
the right-hand side of the above expression converges to 0 in a suitable sense. Indeed we
will prove that, for t in a fixed compact set K ⊆ (−∞,0), εE1,ε(t) and εE0,ε(t) converge
uniformly to 0 for a well-chosen sequence of ε. Let us consider εE0,ε(t) as εE1,ε(t) can be
treated in a similar fashion:

εE0,ε(t) = (ε − t)
γ 2

4 εa+1(1 − ε)bE

[(∫ 1−ε

ε

(x − t)
γ 2

4 xa(1 − x)b

|x − ε| γ 2
2

e
γ
2 X(x) dx

)p−1]
.

In the following, we will discuss three disjoint cases based on the value of a. They are a >

−1 + γ 2

4 , −1 < a ≤ −1 + γ 2

4 , and −1 − γ 2

4 < a ≤ −1.

(i) a > −1 + γ 2

4 .
This is the simplest case as we have for ε sufficiently small and for some c0 > 0,

εE0,ε(t) ≤ c0ε
a+1(1 − ε)bE

[(∫ 1

0

xa(1 − x)b

|x − ε| γ 2
2

e
γ
2 X(x) dx

)p−1]

ε→0∼ c0ε
a+1M

(
γ,p, a − γ 2

2
, b

)
,

which converges to 0 as ε → 0 uniformly over t ∈ K .

(ii) −1 < a ≤ −1 + γ 2

4 .
In this case we have p − 1 < 1 and εa+1 −→

ε→0
0. If p − 1 ≤ 0,

E

[(∫ 1−ε

ε

(x − t)
γ 2

4 xa(1 − x)b

|x − ε| γ 2
2

e
γ
2 X(x) dx

)p−1]

is uniformly bounded thus it is immediate to obtain the convergence to 0. Hence it suffices to
consider the case 0 < p − 1 < 1. We choose εN = 1

2N . Using the subadditivity of the function
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x �→ xp−1, we have for some c0, c
′ > 0 independent of K ,

εNE0,εN
(t) ≤c0ε

a+1
N E

[(∫ 1
2

εN

xa

|x − εN | γ 2
2

e
γ
2 X(x) dx

)p−1]
+ c′εa+1

N

≤c0ε
a+1
N

N−1∑
n=1

E

[(∫ εn

εn+1

xa

|x − εn+1| γ 2
2

e
γ
2 X(x) dx

)p−1]
+ c′εa+1

N .

Then by the scaling property of GMC,

E

[(∫ εn

εn+1

xa

|x − εn+1| γ 2
2

e
γ
2 X(x) dx

)p−1]

= 2
γ 2

4 (p−1)(p−2)−(a− γ 2

2 +1)(p−1)E

[(∫ εn−1

εn

ua

|u − εn| γ 2
2

e
γ
2 X(u) du

)p−1]

= 2
γ 2

4 p2−(
γ 2

4 +a+1)p+a+1E

[(∫ εn−1

εn

ua

|u − εn| γ 2
2

e
γ
2 X(u) du

)p−1]
.

We can deduce that

εNE0,εN
(t) ≤ c12−N(a+1)2(N−1)(

γ 2

4 p2−(
γ 2

4 +a+1)p+a+1)

×E

[(∫ 1
2

1
4

xa

|x − 1
4 | γ 2

2

e
γ
2 X(x) dx

)p−1]
+ c′εa+1

N

≤ c2N(
γ 2

4 p− γ 2

4 −a−1)p + c′εa+1
N

N→∞−→ 0,

for some constants c1, c, c
′ > 0. The convergence holds since p > 0 and γ 2

4 p− γ 2

4 −a−1 < 0
(this inequality comes from (1.5)), and it holds uniformly over t in K .

(iii) −1 − γ 2

4 < a ≤ −1.
In this case p − 1 < 0 so we are always dealing with negative moments. This implies that

for t in K , we can bound εE0,ε(t) by,

εE0,ε(t) ≤ c0ε
a+1E

[(∫ 1
2

ε
xa− γ 2

2 e
γ
2 X(x) dx

)p−1]
,

simply by restricting the integral over [ε,1 − ε] to [ε,1/2]. An estimation of the resulting
GMC moment is given by Lemma A.4 in Appendix A.2. For ε sufficiently small, there exists
a constant c > 0 such that

E

[(∫ 1
2

ε
xa− γ 2

2 e
γ
2 X(x) dx

)p−1]

≤

⎧⎪⎪⎨
⎪⎪⎩

cε
(
γ
4 − 1

γ
(a+1))2

1 + a + γ 2

4
− pγ 2

2
> 0,

cε(p−1)(1+a− γ 2

4 )− (p−1)2γ 2

4 1 + a + γ 2

4
− pγ 2

2
≤ 0.

This suffices to show the convergence to 0 of εE0,ε(t).
Indeed, in the first case, a basic inequality shows that (

γ
4 − 1

γ
(a + 1))2 ≥ −(a + 1) with

equality when −(a + 1) = γ 2

4 . Since the condition cannot be satisfied, we have the strict
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inequality. In the second case where 1 + a + γ 2

4 − pγ 2

2 ≤ 0, we can easily show that under

this condition together with the bound (1.5) for p, (p−1)(1+a− γ 2

4 )− (p−1)2γ 2

4 > −(a+1).
Hence in both cases, εE0,ε(t)−→0, where the convergence is again uniform over t in K .

Combining the cases (i), (ii) and (iii), we have proven the differential equation (1.20) in the
weak sense (in the sense of distributions). Since it is a hypoelliptic equation (the dominant
operator is a Laplacian) with analytic coefficients, U(t) is analytic and the equation holds in
the strong sense.

Let us now briefly mention the case of Ũ (t). In a similar manner, we calculate

−B̃Ũ (t) = 4

γ 2

(
(1 − t − ε)Ẽ1,ε(t) + (t − ε)Ẽ0,ε(t)

+
∫ 1−ε

ε
dx1 D̃(x1; t)Ṽ (1)

ε (x1; t)
(

at

x1
+ b(1 − t)

1 − x1

))
,

Ũ ′
ε(t) = −p

(
Ẽ1,ε(t) − Ẽ0,ε(t)

−
∫ 1−ε

ε
dx1 D̃(x1; t)Ṽ (1)

ε (x1; t)
(

a

x1
− b

1 − x1

))
,

Ũ ′′
ε (t) = 4p

γ 2

(
1

1 − t − ε
Ẽ1,ε(t) + 1

t − ε
Ẽ0,ε(t)

+
∫ 1−ε

ε
dx1 D̃(x1; t)Ṽ (1)

ε (x1; t)
(

a

tx1
+ b

(1 − t)(1 − x1)

))

+ 4

γ 2

(
a

t
− b

1 − t

)
Ũ ′

ε(t),

where D̃(x; t) := (x − t)xa(1 − x)b and where Ṽ
(1)
ε (x1; t), Ẽ0,ε(t), Ẽ1,ε(t) are defined as

functions of D̃(x; t), the same as their definitions without the tilde. We verify easily that

t (1 − t)Ũ ′′
ε (t) + (C̃ − (Ã + B̃ + 1)t

)
Ũ ′

ε(t) − ÃB̃Ũε(t)

= ε(1 − ε)
pγ 2

4

(
1

1 − t − ε
Ẽ1,ε(t) + 1

t − ε
Ẽ0,ε(t)

)
,

(3.9)

and the right-hand side of the above expression converges again to zero uniformly for t in
any compact set of (−∞,0), which finishes the proof of the Proposition 1.4. �

One may wonder if other differential equations can be obtained for similar observables. If
instead of U(t) and Ũ (t), one introduces the more general function

(3.10) t → E

[(∫ 1

0
(x − t)χxa(1 − x)be

γ
2 X(x) dx

)p]

for some arbitrary real number χ , then this function will be solution to a second order differ-

ential equation if and only if χ = γ 2

4 or χ = 1 (except for some special cases where “nontriv-
ial” relations hold for instance for p = 0). This fact can be obtained by similar computations
as the ones performed above. On the other hand, conformal field theory predicts that dif-
ferential equations of any order are expected to be verified by suitable observables although
it is not clear to us at this stage what information can be extracted from these higher order
differential equations.
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APPENDIX A: PROOF OF THE LEMMAS ON GMC

A.1. Reminder on some useful theorems. We recall some theorems in probability that
we will use without further justification. In the following, D is a compact subset of Rd .

THEOREM A.1 (Girsanov theorem). Let (Z(x))x∈D be a continuous centered Gaussian
process and Z a Gaussian variable which belongs to the L2 closure of the vector space
spanned by (Z(x))x∈D . Let F be a real continuous bounded function from C(D,R) to R.
Then we have the following identity:

(A.1) E
[
eZ−E[Z2]

2 F
((

Z(x)
)
x∈D

)]= E
[
F
((

Z(x) +E
[
Z(x)Z

])
x∈D

)]
.

When applied to our case, although the log-correlated field X is not a continuous Gaussian
process, we can still make the arguments rigorous by using a regularization procedure. Let us
illustrate the idea by a simple example that is used in Section 3. We introduce three cut-off
parameters, δ to smooth the log-correlated field X, ε to avoid the singularities in 0 and 1, and
A > 0 to apply (A.1) to a bounded functional F . Hence, the following computation:

E

[(∫ 1

0
xa(1 − x)be

γ
2 X(x) dx

)p]

= lim
ε→0

lim
δ→0

lim
A→+∞

∫ 1−ε

ε
dx1x

a
1 (1 − x1)

bE

[
1‖Xδ‖∞≤Ae

γ
2 Xδ(x1)− γ 2

8 E[Xδ(x1)
2]

×
(∫ 1−ε

ε
xa(1 − x)be

γ
2 Xδ(x)− γ 2

8 E[Xδ(x)2] dx

)p−1]

(A.1)= lim
ε→0

lim
δ→0

lim
A→+∞

∫ 1−ε

ε
dx1x

a
1 (1 − x1)

bE

[
1‖Xδ‖∞≤A

×
(∫ 1−ε

ε
xa(1 − x)be

γ
2 Xδ(x)+ γ 2

4 E[Xδ(x)Xδ(x1)]− γ 2

8 E[Xδ(x)2] dx

)p−1]

=
∫ 1

0
dx1 xa

1 (1 − x1)
bE

[(∫ 1

0

xa(1 − x)b

|x1 − x| γ 2
2

e
γ
2 X(x) dx

)p−1]
.

The next theorem is a comparison result due to Kahane [15]:

THEOREM A.2 (Convexity inequality). Let (Z1(x))x∈D , (Z2(x))x∈D be two continuous
centered Gaussian processes such that for all x, y ∈ D:

E
[
Z1(x)Z1(y)

]≤ E
[
Z2(x)Z2(y)

]
.

Then for all convex function (resp. concave) F with at most polynomial growth at infinity,
and σ a positive finite measure over D,

E

[
F

(∫
D

eZ1(x)− 1
2E[Z1(x)2]σ(dx)

)]
(A.2)

≤ (resp. ≥)E

[
F

(∫
D

eZ2(x)− 1
2E[Z2(x)2]σ(dx)

)]
.

To apply this theorem to log-correlated fields, one needs again to use a regularization
procedure. Finally, we provide the Williams decomposition theorem; see, for instance, [32].
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THEOREM A.3. Let (Bs −vs)s≥0 be a Brownian motion with negative drift, that is, v > 0
and let M = sups≥0(Bs − vs). Then conditionally on M the law of the path (Bs − vs)s≥0 is
given by the joining of two independent paths:

(1) A Brownian motion (B1
s + vs)0≤s≤τM

with positive drift v run until its hitting time τM

of M .
(2) (M + B2

t − vt)t≥0 where (B2
t − vt)t≥0 is a Brownian motion with negative drift con-

ditioned to stay negative.

Moreover, one has the following time reversal property for all C > 0 (where τC denotes
the hitting time of C):

(A.3)
(
B1

τC−s + v(τC − s) − C
)
0≤s≤τC

law= (B̃s − vs)0≤s≤L−C
,

where (B̃s −vs)s≥0 is a Brownian motion with drift −v conditioned to stay negative and L−C

is the last time (B̃s − vs)s≥0 hits −C.

A.2. An estimate on GMC. We now move on to the proof of some technical lemmas
required in the previous sections. Lemma A.4 written below will be used in Section 3 to show
that the boundary terms obtained in the derivation of the differential equations converge to 0.
Just like in Section 1.2 for s ≥ 0, we write X(e−s/2) = Bs + Y(e−s/2) where Bs is a standard
Brownian motion and Y is an independent centered Gaussian field on C with covariance:

(A.4) E
[
Y(x)Y (y)

]= 2 ln
|x| ∨ |y|
|x − y| .

Denote the GMC measure associated to Y(e−s/2) by μY (ds) := e
γ
2 Y (e−s/2) ds. The goal of

this subsection is to prove the following lemma.

LEMMA A.4. For q > 0, a < −1 − γ 2

4 , and a fixed constant A > 0, there exists ε1 < A

sufficiently small such that, for all ε ≤ ε1,

E

[(∫ A

ε
xae

γ
2 X(x) dx

)−q]

≤

⎧⎪⎪⎨
⎪⎪⎩

cε
(
γ
4 + 1

γ
(a+1))2

, 1 + a + γ 2

4
+ qγ 2

2
> 0,

cε−q(1+a+ γ 2

4 )− q2γ 2

4 , 1 + a + γ 2

4
+ qγ 2

2
≤ 0,

(A.5)

where c > 0 is a constant that depends on A, γ , a and q .

By using the decomposition described above, we can transform this lemma into another
equivalent form,

E

[(∫ A

ε
xae

γ
2 X(x) dx

)−q]
= 2qE

[(∫ −2 ln ε

−2 lnA
e

γ
2 (Bs−s(

γ
4 + 1

γ
(a+1)))

μY (ds)

)−q]

= 2qE

[(∫ −2 ln ε

−2 lnA
e

γ
2 (Bs+αs)μY (ds)

)−q]
,

where again (Bs)s≥0 is a standard Brownian motion independent from Y , and α = −γ
4 −

1
γ
(a + 1). Therefore, lemma A.4 is equivalent to the following lemma.
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LEMMA A.5. For q > 0, α > 0, a fixed constant r0, there exists r1 > r0 sufficiently large
such that, for all r ≥ r1,

(A.6) E

[(∫ r

r0

e
γ
2 (Bs+αs)μY (ds)

)−q]
≤
⎧⎪⎨
⎪⎩

ce− α2
2 r , α − qγ

2
< 0,

ce(
q2γ 2

8 − qγα
2 )r , α − qγ

2
≥ 0,

where c > 0 is a constant that depends on r0, γ , α and q .

A similar result for 2d GMC has been proved in [17] (Proposition 5.1). A slight difference
is that in [17] the power q depends on a.

We start by proving three intermediate results. We denote ys = Bs + αs, and we introduce
for β ≥ 1 the stopping time Tβ = inf{s ≥ 0, ys = β − 1}. Recall the density of Tβ for β > 1,
u > 0:

(A.7) P
(
Tβ ∈ (u,u + du)

)= β − 1√
2πu3/2

e− (β−1−αu)2

2u du.

LEMMA A.6. For α,A > 0, we have

(A.8) P
(
sup
s≤t

ys ≤ A
)

≤ eαA− α2t
2 .

PROOF. We know the density of sups≤t ys :

P
(
sup
s≤t

ys ≤ A
)

= P(TA+1 ≥ t) = A√
2π

∫ ∞
t

e− (A−αs)2
2s

s3/2 ds

≤ AeαA− α2t
2√

2π

∫ ∞
0

e−A2
2s

s3/2 ds = eαA− α2t
2 . �

LEMMA A.7. We set for t > 0

(A.9) I (t) =
∫ t+1

t
e

γ
2 (ys−yt )μY (ds).

For q > 0, we have the following inequality:

(A.10) E
[
I (t)−q |yt+1 − yt

]≤ c1
(
e− γ

2 q(yt+1−yt ) + 1
)

a.s.,

where c1 depends on γ , q .

PROOF. Conditioning on yt+1 − yt = y, (Bs − Bt)t≤s≤t+1 has the law of a Brownian
bridge between 0 and y − α. Hence it has the law of (B ′

s − sB ′
1 + s(y − α))0≤s≤1, where B ′

is an independent Brownian motion. We have

E
[
I (t)−q |yt+1 − yt = y

]= E

[(∫ 1

0
e

γ
2 (B ′

s−sB ′
1+sy)μY (ds)

)−q]
.

Notice that e
γ
2 sy ≥ e

γ
2 y ∧ 1, and a classic result on the moments of Gaussian multiplicative

chaos shows that

E
[(

μY

([0,1]))−q]
< ∞,
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thus

E

[(∫ 1

0
e

γ
2 (B ′

s−sB ′
1)μY ( ds)

)−q]
≤ E

[
e− qγ

2 inf0≤s≤1(B
′
s−sB ′

1)
]
E
[(

μY

([0,1]))−q]
=: c1 < ∞.

We can now derive that

E
[
I (t)−q |yt+1 − yt = y

]≤ c1
(
e− γ

2 qy ∨ 1
)≤ c1

(
e− γ

2 qy + 1
)

a.s. �

LEMMA A.8. Define for β > 1, α > 0, q > 0 and r ≥ 2:

(A.11) Jr,β := E

[1{sups∈[0,r] ys∈[β−1,β]}
(
∫ r

0 e
γ
2 ysμY (ds))q

]
.

Then there exists c2 > 0 depending on γ , α, q such that

(A.12) Jr,β ≤ c2e
− α2

2 re(α− qγ
2 )β .

PROOF.

Jr,β ≤ e− qγ (β−1)
2 E

[
1{Tβ≤r−1}

1{sups∈[0,r] ys∈[β−1,β]}
I (Tβ)q

]

+E

[
1{Tβ>r−1}

1{sups∈[0,r] ys∈[β−1,β]}
e

qγyr−1
2 I (r − 1)q

]
=: A + B.

We first bound A. By using the strong Markov property of (ys)s≥0 with respect to FTβ+1,

A ≤ e− qγ (β−1)
2 E

[
1{Tβ+1≤r}I (Tβ)−q1{sups∈[Tβ+1,r] ys−yTβ+1≤β−yTβ+1}

]
= e− qγ (β−1)

2 E
[
1{Tβ+1≤r}I (Tβ)−qE[1{sups∈[0,r−Tβ−1] y′

s≤β−yTβ+1}|FTβ+1]]
= e− qγ (β−1)

2 E
[
1{Tβ+1≤r}E

[
I (Tβ)−q |FTβ , β − yTβ+1

]
×E[1{sups∈[0,r−Tβ−1] y′

s≤β−yTβ+1}|FTβ , β − yTβ+1]].
By Lemma A.7,

E
[
I (Tβ)−q |FTβ , β − yTβ+1

]≤ c1
(
e
− γ

2 q(yTβ+1−β) + 1
)

a.s.

By Lemma A.6,

E[1{sups∈[0,r−Tβ−1] y′
s≤β−yTβ+1}|FTβ , β − yTβ+1] ≤ e

α(β−yTβ+1)− α2(r−Tβ−1)

2 a.s.

Therefore,

A ≤ c1e
− qγ (β−1)

2 E
[
1{Tβ+1≤r}

(
e
− γ

2 q(yTβ+1−β) + 1
)
e
α(β−yTβ+1)− α2(r−Tβ−1)

2
]
.

Conditioning on FTβ , yTβ+1 − β has the law of N + α where N ∼ N (0,1). Hence,

A ≤ c1e
− qγ (β−1)

2 E
[(

e− γ
2 q(N+α) + 1

)
e−α(N+α)]E[1{Tβ+1≤r}e− α2(r−Tβ−1)

2
]

= c1e
− qγ (β−1)

2
(
e− α2

2 + γ 2q2

8 + e− α2
2
)
E
[
1{Tβ+1≤r}e− α2(r−Tβ−1)

2
]

≤ c1e
− qγ (β−1)

2
(
e

γ 2q2

8 + 1
)
e− α2r

2 E
[
1{Tβ≤r−1}e

α2Tβ
2
]
.
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We calculate with the density of Tβ

E
[
1{Tβ≤r−1}e

α2Tβ
2
]= ∫ r−1

0

β − 1√
2πu3/2

e− (β−1−αu)2

2u e
α2u

2 du

= eα(β−1)

√
2

π

∫ ∞
β−1√
r−1

e− x2
2 dx

≤ eα(β−1).

Combining the elements above we get

(A.13) A ≤ c′
1e

− α2r
2 e(α− qγ

2 )β,

for some constant c′
1 > 0 of γ , α and q . We proceed similarly for B , using again the Markov

property:

B = E

[
1{Tβ>r−1}

1{sups∈[r−1,r](ys−yr−1)∈[β−1−yr−1,β−yr−1]}
e

qγyr−1
2 I (r − 1)q

]

≤ E

[
1{Tβ>r−1}

1

e
qγ
2 (β−1−sups∈[r−1,r](ys−yr−1))I (r − 1)q

]

= e− qγ
2 (β−1)P(Tβ > r − 1)E

[
e

qγ
2 sups∈[r−1,r](ys−yr−1)I (r − 1)−q].

We show that the expectation term can be easily bounded: let us denote (y′
s)s an independent

process which has the same law as (ys)s ,

E
[
e

qγ
2 sups∈[r−1,r](ys−yr−1)I (r − 1)−q]

≤ E
[
eqγ sups∈[0,1] y′

s
] 1

2E
[
I (r − 1)−2q] 1

2

≤ c
1
2
1 E
[
eqγ sups∈[0,1] y′

s
] 1

2 ·E[e−γ qy′
1 + 1

] 1
2 ,

where in the last inequality we have used Lemma A.7. We see that this whole expression is a
constant that depends on γ , α and q .

Now it suffices to compute

P(Tβ > r − 1) =
∫ ∞
r−1

β − 1√
2πu3/2

e− (β−1−αu)2

2u du

≤ β − 1√
2π

eα(β−1)− α2(r−1)
2

∫ ∞
r−1

u−3/2e− (β−1)2

2u du

≤ eα(β−1)− α2(r−1)
2 .

Hence,

(A.14) B ≤ c′′
1e− α2r

2 e(α− qγ
2 )β .

Equations (A.13) and (A.14) together finish the proof of the lemma. �

Now we can prove the main lemma.

PROOF OF LEMMA A.5. Define for n ≥ 1

(A.15) Mn =
{

sup
s∈[r0,r]

(ys − yr0) ∈ [n − 1, n]
}
.
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We can write

E

[(∫ r

r0

e
γ
2 ysμY (ds)

)−q]
= e(

q2γ 2

8 − qγα
2 )r0

∑
n≥1

E

[
1Mn

(∫ r

r0

e
γ
2 (ys−yr0 )μY (ds)

)−q]

= e(
q2γ 2

8 − qγα
2 )r0

∑
n≥1

Jr−r0,n,

and by Lemma A.8 when r − r0 ≥ 2,

Jr−r0,n ≤ c2e
− α2r

2 e(α− qγ
2 )n.

In the case where α − qγ
2 < 0, it is then straightforward that there exists c depending on r0,

γ , α, q such that

E

[(∫ r

r0

e
γ
2 ysμY (ds)

)−q]
≤ ce− α2r

2 .

The other case where α − qγ
2 ≥ 0 is actually very direct to prove, since we then have:

E

[(∫ r

r0

e
γ
2 ysμY (ds)

)−q]
≤ E

[
e− qγ

2 yr−1
]
E
[
I (r − 1)−q]≤ ce(

q2γ 2

8 − qγα
2 )r .

In the last inequality we have used the fact that yr−1 = Br−1 +α(r−1) and that E[I (r −1)−q]
is a constant independent of r that we can absorb in c. Notice this argument actually works
whenever α > 0. This finishes the proof of Lemma A.4. �

A.3. Fusion estimation and the reflection coefficient. In this subsection, we will prove
the asymptotic expansion result that is used in Section 2.2 to obtain the shift equation (1.16)
on p with a shift 4

γ 2 . In this expansion will appear the reflection coefficient introduced in
Section 1.2 which will also be discussed in the next subsection. Here we will thus show:

LEMMA A.9. For −1 − γ 2

4 < a < −1 − γ 2

4 + a0 with a0 > 0 a constant chosen small
enough, p < 1 + 4

γ 2 (a + 1), as t → 0−,

U(t) = M

(
γ,p, a + γ 2

4
,0
)

+ g(γ, a)
�(−p + 1 + 4

γ 2 (a + 1))

�(−p)
|t |1+a+ γ 2

4

× M

(
γ,p − 1 − 4

γ 2 (a + 1),−2 − a − γ 2

4
,0
)

+ o
(|t |1+a+ γ 2

4
)
,

(A.16)

where g(γ, a) is defined as

(A.17)

g(γ, a) = −�

(
− 4

γ 2 (a + 1)

)

×E

[(
1

2

∫ ∞
−∞

e
γ
2 B

γ
4 + 1

γ (a+1)

s μY (ds)

)1+ 4
γ 2 (a+1)]

.

The process B
γ
4 + 1

γ
(a+1) is defined by (1.25) and μY (ds) = e

γ
2 Y (e−s/2) ds is the notation intro-

duced in Section A.2.
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Notice that in the expression of g(γ, a) we recognize the reflection coefficient R
∂

1(−2a
γ

)

of Section 1.2. We emphasize that we only need the result for a in a small open set, it is not
necessary to obtain an explicit value for a0.

REMARK A.10. From the conditions on a and p in the lemma, we have −2 − a − γ 2

4 >

−1 − γ 2

4 and p − 1 − 4
γ 2 (a + 1) < 0, thus the bounds (1.5) are satisfied and M(γ,p − 1 −

4
γ 2 (a + 1),−2 − a − γ 2

4 ,0) is well defined. We also want to mention that a similar result

holds for Ũ (t) and the proof is almost the same.

PROOF OF LEMMA A.9. We adapt the arguments in [18] for the proof of this lemma. We
introduce the notation

(A.18) KI(t) :=
∫
I
(x − t)

γ 2

4 xae
γ
2 X(x) dx

for a borel set I ⊆ [0,1]. Recall that we work with −1 − γ 2

4 < a < −1 − γ 2

4 + a0 with a0

small, hence p < 1 + 4
γ 2 (a + 1) < 1. We want to study the asymptotic of

(A.19) E
[
K[0,1](t)p

]−E
[
K[0,1](0)p

]=: T1 + T2,

where we defined

T1 := E
[
K[|t |,1](t)p

]−E
[
K[0,1](0)p

]
,

T2 := E
[
K[0,1](t)p

]−E
[
K[|t |,1](t)p

]
.

(A.20)

♦ First, we consider T1. The goal is to show that T1 = o(|t |1+a+ γ 2

4 ). By interpolation,

|T1| ≤ |p|
∫ 1

0
duE

[∣∣K[|t |,1](t) − K[0,1](0)
∣∣(uK[|t |,1](t)

+ (1 − u)K[0,1](0)
)p−1]

≤ |p|E[∣∣K[|t |,1](t) − K[0,1](0)
∣∣K[|t |,1](0)p−1]≤ |p|(A1 + A2),

(A.21)

where

A1 = E
[∣∣K[|t |,1](t) − K[|t |,1](0)

∣∣K[|t |,1](0)p−1]
and

A2 = E
[∣∣K[|t |,1](0) − K[0,1](0)

∣∣K[|t |,1](0)p−1].
We start by estimating A1. Using the subadditivity of the function x �→ x

γ 2

4 ,

A1 = E
[∣∣K[|t |,1](t) − K[|t |,1](0)

∣∣K[|t |,1](0)p−1]

≤ |t | γ 2

4

∫ 1

|t |
dx1x

a
1E

[(∫ 1

|t |
xa+ γ 2

4

|x − x1| γ 2
2

e
γ
2 X(x) dx

)p−1]

≤ |t | γ 2

4

∫ t0

|t |
dx1x

a
1E

[(∫ 1

x1

xa− γ 2

4 e
γ
2 X(x) dx

)p−1]
+ c|t | γ 2

4 ,

where t0 is a constant in (0,1) to be fixed. Note that in this subsection we will use c > 0 to
denote a positive constant with the abuse of notation that it can be a different constant every



THE DISTRIBUTION OF GMC ON THE INTERVAL 905

time it appears. Here we now need to apply lemma A.4. We check that the bounds of (1.5) on

p imply that 1 + a + (1 − p)
γ 2

2 > 0. Therefore, we are in the first case of Lemma A.4 which
implies there exists ε1 > 0 such that, for all x1 < ε1,

(A.22) E

[(∫ 1

x1

xa− γ 2

4 e
γ
2 X(x) dx

)p−1]
≤ cx

1
γ 2 (a+1)2

1 .

Taking t0 = ε1 we obtain

A1 ≤ c|t | γ 2

4

∫ ε1

|t |
dx1x

a+ 1
γ 2 (a+1)2

1 + c|t | γ 2

4

≤ c|t |1+ γ 2

4 +a+ 1
γ 2 (a+1)2

+ c|t | γ 2

4 = o
(|t |1+a+ γ 2

4
)
.

(A.23)

On the other hand,

A2 = E
[
K[0,|t |](0)K[|t |,1](0)p−1](A.24)

=
∫ |t |

0
dx1x

a+ γ 2

4
1 E

[(∫ 1

|t |
xa+ γ 2

4

|x − x1| γ 2
2

e
γ
2 X(x) dx

)p−1]

≤
∫ |t |

0
dx1x

a+ γ 2

4
1 E

[(∫ 1

|t |
xa− γ 2

4 e
γ
2 X(x) dx

)p−1]

(A.22)≤ c|t |1+a+ γ 2

4 + 1
γ 2 (a+1)2

= o
(|t |1+a+ γ 2

4
)
.(A.25)

Hence, we have shown that T1 = o(|t |1+a+ γ 2

4 ).
♦ Now we focus on T2. The goal is to restrict K to the complementary of [|t |1+h, |t |],

with h > 0 a constant to be fixed, and then on the two parts the GMC’s are weakly correlated.
The same computation as (A.21) together with the technique we used for T1 show that for |t |
sufficiently small

E
[
K[0,1](t)p

]−E
[
K[|t |1+h,|t |]c (t)p

]≤ |p|E[K[|t |1+h,|t |](t)K[|t |,1](0)p−1]

≤ c|t | γ 2

4

∫ |t |
|t |1+h

dx1x
a+ 1

γ 2 (a+1)2

1

≤ c|t |
γ 2

4 +(1+h)(1+a+ 1
γ 2 (a+1)2)

.

By taking h < − 1+a
1+a+γ 2 , we have

(A.26)
γ 2

4
+ (1 + h)

(
1 + a + 1

γ 2 (a + 1)2
)

> 1 + a + γ 2

4
,

hence

(A.27) E
[
K[0,1](t)p

]−E
[
K[|t |1+h,|t |]c (t)p

]= o
(|t |1+a+ γ 2

4
)
.

This means that it suffices to evaluate E[K[|t |1+h,|t |]c (t)p] − E[K[|t |,1](t)p]. We will use the
radial decomposition of X with the notation introduced in the first paragraph of Section A.2,

K1(t) := K[|t |,1](t)

= 1

2

∫ 2 ln 1
|t |

0

(
e−s/2 − t

) γ 2

4 e
γ
2 (Bs−s(

γ
4 + 1

γ
(a+1)))

μY (ds),
(A.28)
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K2(t) := K[0,|t |1+h](t)

= 1

2

∫ ∞
2(1+h) ln 1

|t |

(
e−s/2 − t

) γ 2

4 e
γ
2 (Bs−s(

γ
4 + 1

γ
(a+1)))

μY (ds).
(A.29)

From (A.4), we deduce that for s ≤ 2 ln 1
|t | and s′ ≥ 2(1 + h) ln 1

|t | ,

(A.30) 0 ≤ E
[
Y
(
e−s/2)Y (e−s′/2)]= ln

1

|1 − e−(s′−s)/2| ≤ 2|t |h,

where we used the inequality ln 1
1−x

≤ 2x for x ∈ [0, 1
2 ]. Define the processes

P
(
e−s/2) := Y

(
e−s/2)1{s≤2 ln 1

|t | } + Y
(
e−s/2)1{s≥2(1+h) ln 1

|t | },

P̃
(
e−s/2) := Y

(
e−s/2)1{s≤2 ln 1

|t | } + Ỹ
(
e−s/2)1{s≥2(1+h) ln 1

|t | },

where Ỹ is a Gaussian field independent from everything and has the same law as Y . Then
we have the inequality over the covariance:

E
[
P̃
(
e−s/2)P̃ (e−s′/2)]≤ E

[
P
(
e−s/2)P (e−s′/2)]

≤ E
[
P̃
(
e−s/2)P̃ (e−s′/2)]+ 2|t |h.

(A.31)

The function x �→ xp is convex when p ≤ 0 and concave when 0 < p < 1. We will only work
with the case p ≤ 0 since the case 0 < p < 1 can be treated in the same way. By applying
Kahane’s inequality of Theorem A.2,

E
[(

K1(t) + K̃2(t)
)p]≤ E

[(
K1(t) + K2(t)

)p]
≤ e

γ 2

4 (p2−p)|t |hE
[(

K1(t) + K̃2(t)
)p]

,

(A.32)

where K̃2(t) := 1
2

∫∞
2(1+h) ln 1

|t |
(e−s/2 − t)

γ 2

4 e
γ
2 (Bs−s(

γ
4 + 1

γ
(a+1)))

μ
Ỹ
(ds). By the Markov prop-

erty of Brownian motion and stationarity of μ
Ỹ

, we have

K̃2(t) := 1

2
|t |(1+h)(1+a+ γ 2

4 )+ γ 2

4 e
γ
2 B2(1+h) ln(1/|t |)

×
∫ ∞

0

(|t |he−s/2 + 1
) γ 2

4 e
γ
2 (B̃s−s(

γ
4 + 1

γ
(a+1)))

μ
Ỹ
(ds),

(A.33)

with B̃ an independent Brownian motion. We denote

σt := |t |(1+h)(1+a+ γ 2

4 )+ γ 2

4 e
γ
2 B2(1+h) ln(1/|t |) ,

V := 1

2

∫ ∞
0

e
γ
2 (B̃s−s(

γ
4 + 1

γ
(a+1)))

μ
Ỹ
(ds),

(A.34)

then

E
[(

K1(t) + (1 + |t |h) γ 2

4 σtV
)p]≤ E

[(
K1(t) + K2(t)

)p]
≤ e

γ 2

4 (p2−p)|t |hE
[(

K1(t) + σtV
)p]

.

(A.35)

By the Williams path decomposition of Theorem A.3 we can write

(A.36) V = e
γ
2 M 1

2

∫ ∞
−LM

e
γ
2 B

λ
s μ

Ỹ
(ds),
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where λ = γ
4 + 1

γ
(a + 1), M = sups≥0(B̃s − λs) and LM is the last time (Bλ−s)s≥0 hits −M .

Recall that the law of M is known, for v ≥ 1,

(A.37) P
(
e

γ
2 M > v

)= 1

v
4λ
γ

.

For simplicity, we introduce the notation

(A.38) ρA(λ) := 1

2

∫ ∞
−LA

e
γ
2 B

λ
s μ

Ỹ
(ds), ρ(λ) := 1

2

∫ ∞
−∞

e
γ
2 B

λ
s μ

Ỹ
(ds).

Now we discuss the lower and upper bound separately.
♦ Lower bound: Since we work with p ≤ 0,

E
[(

K1(t) + K2(t)
)p]−E

[
K1(t)

p]
≥ E

[(
K1(t) + (1 + |t |h) γ 2

4 σte
γ
2 Mρ(λ)

)p]−E
[
K1(t)

p]
= 4λ

γ
E

[∫ ∞
1

dv

v
4λ
γ

+1

((
K1(t) + (1 + |t |h) γ 2

4 σtρ(λ)v
)p − K1(t)

p)]

= 4λ

γ
E

[∫ ∞
(1+|t |h)

γ 2
4 σt ρ(λ)

K1(t)

× du

u
4λ
γ

+1

(
(u + 1)p − 1

)((
1 + |t |h) γ 2

4 σtρ(λ)
) 4λ

γ K1(t)
p− 4λ

γ

]

(B.10)≥ 4λ

γ

�(−p + 4λ
γ

)�(−4λ
γ

)

�(−p)
E
[((

1 + |t |h) γ 2

4 σtρ(λ)
) 4λ

γ K1(t)
p− 4λ

γ
]
.

By the Girsanov theorem,

E
[((

1 + |t |h) γ 2

4 σtρ(λ)
) 4λ

γ K1(t)
p− 4λ

γ
]

= (|t |(1 + |t |h))1+a+ γ 2

4 E
[
ρ(λ)

4λ
γ
]

(A.39)

×E

[(
1

2

∫ 2 ln 1
|t |

0

(
e−s/2 − t

) γ 2

4 e
γ
2 (Bs+s(

γ
4 + 1

γ
(a+1)))

μY (ds)

)p− 4λ
γ
]

∼
t→0−

|t |1+a+ γ 2

4 E
[
ρ(λ)

4λ
γ
]
M

(
γ,p − 1 − 4

γ 2 (a + 1),−2 − a − γ 2

4
,0
)
.(A.40)

This completes the proof for lower bound.
♦ Upper bound: we start with an inequality:

E
[
(
(
K1(t) + K2(t)

)p]−E
[
K1(t)

p]
≤ E

[(
K1(t) + σtV

)p]−E
[
K1(t)

p]+ (e γ 2

4 (p2−p)|t |h − 1
)
E
[
K1(0)p

]
(A.41)

= E
[(

K1(t) + σtV
)p]−E

[
K1(t)

p]+ O
(|t |h).(A.42)

To get rid of the big O term, we will need an h such that

(A.43) h > 1 + a + γ 2

4
.

Together with the condition (A.26), we have

(A.44) 1 + a + γ 2

4
< h < − 1 + a

1 + a + γ 2 .
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There exists such an h when a is sufficiently close to −1 − γ 2

4 .
For A > 0 fixed, since p ≤ 0 we have

E
[(

K1(t) + σtV
)p − K1(t)

p]
≤ E

[((
K1(t) + σtV

)p − K1(t)
p)1{M>A}

]
≤ E

[((
K1(t) + σte

γ
2 MρA(λ)

)p − K1(t)
p)1{M>A}

]
(A.37)= 4λ

γ
E

[∫ ∞
eγA/2σt ρA(λ)

K1(t)

du

u
4λ
γ

+1

(
(u + 1)p − 1

)(
σtρA(λ)

) 4λ
γ K1(t)

p− 4λ
γ

]

Girsanov= 4λ

γ
|t |1+a+ γ 2

4 E

[∫ ∞
eγA/2σ̂t ρA(λ)

K̂1(t)

du

u
4λ
γ

+1

(
(u + 1)p − 1

)
ρA(λ)

4λ
γ K̂1(t)

p− 4λ
γ

]
,

where

K̂1(t) = E

[(
1

2

∫ 2 ln 1
|t |

0

(
e−s/2 − t

) γ 2

4 e
γ
2 (Bs+s(

γ
4 + 1

γ
(a+1)))

μY (ds)

)p− 4λ
γ
]

t→0−∼ M

(
γ,p − 1 − 4

γ 2 (a + 1),−2 − a − γ 2

4
,0
)
,

and for a < −1 − hγ 2

4(1+h)
,

σ̂t = |t |−(1+h)(1+a+ γ 2

4 )+ γ 2

4 e
γ
2 B2(1+h) ln(1/|t |) t→0−−→ 0 a.s.

Hence E[(K1(t) + σtV )p − K1(t)
p] is smaller than a term equivalent to

4λ

γ

�(−p + 4λ
γ

)�(−4λ
γ

)

�(−p)
|t |1+a+ γ 2

4 E
[
ρA(λ)

4λ
γ
]

× M

(
γ,p − 1 − 4

γ 2 (a + 1),−2 − a − γ 2

4
,0
)
.

We can conclude by sending A to ∞. �

A.4. Computation of the reflection coefficient. The goal of this subsection is to prove
the tail expansion result for GMC given by Proposition 1.5. In the first step, we give a proof

of the tail expansion (1.26) where the coefficient R
∂

1 is expressed in terms of the processes Y

and Bα
s as defined in the Section 1.2. The proof is almost the same as in [18]. In the second

step we provide the exact value (1.27) for R
∂

1 by using Theorem 1.1. Before proving the
proposition, we provide a useful lemma. The proof can be found in [18] (see Lemma 2.8).

LEMMA A.11. Let α ∈ (
γ
2 ,Q) with Q = γ

2 + 2
γ

, then for p < 4
γ 2 and all nontrivial

interval I ⊆ R,

(A.45) E

[(
1

2

∫
I
e

γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds

)p]
< ∞.

This lemma tells us that the additional term e
γ
2 B

Q−α
2

s behaves nicely and the bound on p is
the same as in the case of GMC moments.
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PROOF OF PROPOSITION 1.5. Using the decomposition X(e−s/2) = Bs + Y(e−s/2) we
have

I ∂
1,η(α) =

∫ η

0
x− γα

2 e
γ
2 X(x) dx = 1

2

∫ ∞
−2 lnη

e
γ
2 (Bs−s(

γ
4 + 1

γ
− α

2 ))
e

γ
2 Y (e−s/2) ds

Theorem A.3= e
γ
2 M 1

2

∫ ∞
−2 lnη−LM

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds,

where M = sups≥0(Bs − Q−α
2 s) and LM is the last time (B

Q−α
2−s )s≥0 hits −M . The law of M

is given by

(A.46) P
(
e

γ
2 M > v

)= 1

v
2(Q−α)

γ

(v ≥ 1).

We denote

ρA

(
Q − α

2

)
= 1

2

∫ ∞
−LA

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds,

ρ

(
Q − α

2

)
= 1

2

∫ ∞
−∞

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds,

and study the upper and lower bounds for P(I ∂
1,η(α) > u).

♦ Upper bound:

P
(
I ∂

1,η(α) > u
)≤ P

(
e

γ
2 Mρ

(
Q − α

2

)
> u

)
≤ E[ρ(Q−α

2 )
2(Q−α)

γ ]
u

2(Q−α)
γ

= R
∂

1(α)

u
2
γ

(Q−α)
.

♦ Lower bound: we first show that the tail behavior is concentrated at x = 0 and that the
value of η does not matter. Consider h, ε > 0 sufficiently small,

P
(
I ∂

1,1(α) > u + u1−h)− P
(
I ∂

1,η(α) > u
)

≤ P

(∫ 1

η
x− γα

2 e
γ
2 X(x) dx > u1−h

)
(A.47)

≤ E[(∫ 1
η x− γα

2 e
γ
2 X(x) dx)

4
γ 2 −ε]

u
(1−h)( 4

γ 2 −ε)
= Ou→∞

(
1

u
2(Q−α)

γ
+ν

)
,

where ν > 0 can be any constant that satisfies ν ≤ (1 − h)( 4
γ 2 − ε) − 2(Q−α)

γ 2 . Thus it suffices

to study the tail behavior of I ∂
1,1(α). Take A = 2ν

γ
lnu,

P
(
I ∂

1,1(α) > u
)

≥ P

(
e

γ
2 MρA

(
Q − α

2

)
> u,M > A

)

= P

(
e

γ
2 M > max

{
u

ρA(Q−α
2 )

, e
γ
2 A

})

= E

[
min

{
ρA(Q−α

2 )

u
,

1

uν

} 2(Q−α)
γ
]

≥ u
− 2(Q−α)

γ

(
E

[
ρA

(
Q − α

2

) 2(Q−α)
γ
]

−E

[
ρA

(
Q − α

2

) 2(Q−α)
γ

1
ρA(

Q−α
2 )>u1−ν

])
.
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Take h′ > 1 a constant such that h′ 2(Q−α)
γ

< 4
γ 2 , by Hölder’s inequality and Markov’s in-

equality,

E

[
ρA

(
Q − α

2

) 2(Q−α)
γ

1
ρA(

Q−α
2 )>u1−ν

]

≤ E

[
ρA

(
Q − α

2

)h′ 2(Q−α)
γ
] 1

h′
P

(
ρA

(
Q − α

2

) 2(Q−α)
γ

> u1−ν

) h′−1
h′

≤ E

[
ρA

(
Q − α

2

)h′ 2(Q−α)
γ
]
u−(1−ν)(h′−1) = O

(
u−(1−ν)(h′−1)).

We impose additionally that ν satisfies ν < (1 − ν)(h′ − 1), then

(A.48) P
(
I ∂

1,1(α) > u
)≥ u

− 2(Q−α)
γ E

[
ρA

(
Q − α

2

) 2(Q−α)
γ
]

+ O
(
u

− 2(Q−α)
γ

−ν)
.

We claim that for u > 1 and for some c > 0,

(A.49) E

[
ρ

(
Q − α

2

) 2(Q−α)
γ
]

−E

[
ρA

(
Q − α

2

) 2(Q−α)
γ
]

≤ cu−ν.

This shows that

(A.50) P
(
I ∂

1,1(α) > u
)= R

∂

1(α)

u
2(Q−α)

γ

+ O

(
1

u
2(Q−α)

γ
+ν

)
.

By applying the tail result to (A.47) we deduce

(A.51) P
(
I ∂

1,η(α) > u
)= R

∂

1(α)

u
2(Q−α)

γ

+ O

(
1

u
2(Q−α)

γ
+min(ν,h)

)
,

which finishes the proof for the first part. For the second part let ε > 0, the value of R
∂

1(α) is
then determined by the following limit, with p = 2(Q−α)

γ
:

(A.52) lim
ε→0

εE
[
I ∂

1,1(α)p−ε]= pR
∂

1(α).

With our Theorem 1.1, we can compute this limit and get

pR
∂

1(α)

= (2π)p( 2
γ
)p

γ 2

4 �γ
2
( 2
γ

− p
γ
2 )�γ

2
( 2
γ

− (p − 1)
γ
2 )�γ

2
( 4
γ

− α − (p − 2)
γ
2 )

�(1 − γ 2

4 )p�γ
2
( 2
γ
)�γ

2
( 2
γ

− α + γ
2 )�γ

2
( 2
γ

+ γ
2 )�γ

2
( 4
γ

− α − (2p − 2)
γ
2 )

× lim
ε→0

ε�γ
2

(
γ ε

2

)

= (2π)p( 2
γ
)p

γ 2

4 �γ
2
(α − γ

2 )

�(1 − γ 2

4 )p�γ
2
( 2
γ
)�γ

2
(Q − α)

1√
2π

(
γ

2

)− 1
2
�γ

2

(
2

γ

)

= 1√
γπ

(2π)
2
γ
(Q−α)

( 2
γ
)

γ
2 (Q−α)

�(1 − γ 2

4 )
2
γ

(Q−α)

�γ
2
(α − γ

2 )

�γ
2
(Q − α)

.
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It remains to show (A.49). By (A.3) of the Williams decomposition theorem of Appendix A.1,

the process B̂
Q−α

2
s defined for s ≤ 0 by

B̂
Q−α

2
s = B

Q−α
2

s−L 2ν
γ lnu

+ 2ν

γ
lnu

is independent from everything and has the same law as (B
Q−α

2
s )s≤0. We can then write

(A.53) ρ

(
Q − α

2

)
= A1 + u−νA2,

where

A1 = 1

2

∫ ∞
−L 2ν

γ lnu

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds,

A2 = 1

2

∫ 0

−∞
e

γ
2 B̂

Q−α
2

s e
γ
2 Y (e−s/2) ds.

(A.54)

By interpolation (see (A.21), e.g.),

E
[(

A1 + u−νA2
) 2(Q−α)

γ − A
2(Q−α)

γ

1

]

≤ 2(Q − α)

γ
u−νE

[
A2 max

{
ρ

(
Q − α

2

) 2(Q−α)
γ

−1
,A

2(Q−α)
γ

−1

1

}]
.

If 2(Q−α)
γ

≤ 1,

E
[(

A1 + u−νA2
) 2(Q−α)

γ − A
2(Q−α)

γ

1

]≤ u−νE
[
A2A

2(Q−α)
γ

−1

1

]
Hölder≤ u−νE

[
A

p
2

]1/p
E
[
A

p
p−1 (

2(Q−α)
γ

−1)

1

](p−1)/p
< cu−ν,

where 1 < p < 4
γ 2 to ensure that E[Ap

2 ] is finite, and we know that

A1 ≥ 1

2

∫ ∞
0

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2) ds

has negative moments. On the other hand, if 2(Q−α)
γ

> 1, then

E
[(

A1 + u−νA2
) 2(Q−α)

γ − A
2(Q−α)

γ

1

]

≤ 2(Q − α)

γ
u−νE

[
ρ

(
Q − α

2

) 2(Q−α)
γ
]

< cu−ν.

This last upper bound comes from the fact that the moment of ρ(Q−α
2 ) is finite thanks to

Lemma A.11 and since 2(Q−α)
γ

< 4
γ 2 . �

APPENDIX B: SPECIAL FUNCTIONS

Lastly, we include here a detailed discussion on hypergeometric functions and on the spe-
cial functions �γ

2
and G that we have used in our paper. First, let us discuss the theory of
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hypergeometric equations and the so-called connection formulas between the different bases
of their solutions. For A > 0 let �(A) = ∫∞

0 tA−1e−t dt denote the standard Gamma func-
tion and let (A)n := �(A+n)

�(A)
. For A, B , C, and x real numbers we define the hypergeometric

function F by

(B.1) F(A,B,C,x) :=
∞∑

n=0

(A)n(B)n

n!(C)n
xn.

This function can be used to solve the following hypergeometric equation:

(B.2)
(
t (1 − t)

d2

dt2 + (C − (A + B + 1)t
) d

dt
− AB

)
U(t) = 0.

For our purposes we will always work with the parameter t ∈ (−∞,0) and we can give the
following two bases of solutions, under the assumption that C and A − B are not integers,

U(t) = C1F(A,B,C, t)

+ C2|t |1−CF(1 + A − C,1 + B − C,2 − C, t)

= D1|t |−AF
(
A,1 + A − C,1 + A − B, t−1)

+ D2|t |−BF
(
B,1 + B − C,1 + B − A, t−1),

where the first expression is an expansion in power of |t | and the second is an expansion
in powers of |t |−1. For each basis, we have two real constants that parametrize the solution
space, C1, C2 and D1, D2. We thus expect to have an explicit change of basis formula that will
give a link between C1, C2 and D1, D2. This is precisely what gives the so-called connection
formulas:

(B.3)
(
C1
C2

)
=

⎛
⎜⎜⎜⎝

�(1 − C)�(A − B + 1)

�(A − C + 1)�(1 − B)

�(1 − C)�(B − A + 1)

�(B − C + 1)�(1 − A)

�(C − 1)�(A − B + 1)

�(A)�(C − B)

�(C − 1)�(B − A + 1)

�(B)�(C − A)

⎞
⎟⎟⎟⎠
(
D1
D2

)
.

This relation comes from the theory of hypergeometric equations and we will extensively
use it to deduce our shift equations. We will apply it for both hypergeometric equations of
Proposition 1.4.

We will now provide some explanations on the function �γ
2
(x) that we have introduced as

well as its connection with the so-called Barnes G function. Our function �γ
2
(x) is equal to

the function �b(x) defined in the Appendix of [20] with b = γ
2 . 7 For all γ ∈ (0,2) and for

x > 0, �γ
2
(x) is defined by the integral formula written in Theorem 1.1,

(B.4) ln�γ
2
(x) =

∫ ∞
0

dt

t

[
e−xt − e−Qt

2

(1 − e− γ t
2 )(1 − e

− 2t
γ )

− (Q
2 − x)2

2
e−t + x − Q

2

t

]
,

7In [25] Ostrovsky uses a slightly different special function �2(x|τ ), the relation with our �γ
2
(x) is

�γ
2
(x) =

(
2

γ

) 1
2 (x− Q

2 )2 �2( 2x
γ |τ )

�2(
Q
γ |τ )

.
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where we have Q = γ
2 + 2

γ
. Since the function �γ

2
(x) is continuous it is completely deter-

mined by the following two shift equations:

�γ
2
(x)

�γ
2
(x + γ

2 )
= 1√

2π
�

(
γ x

2

)(
γ

2

)− γ x
2 + 1

2
,(B.5)

�γ
2
(x)

�γ
2
(x + 2

γ
)

= 1√
2π

�

(
2x

γ

)(
γ

2

) 2x
γ

− 1
2
,(B.6)

and by its value in Q
2 , �γ

2
(Q

2 ) = 1. We mention that �γ
2
(x) is an analytic function of x. In the

case where γ = 2 the function �γ
2
(x) reduces to

(B.7) �1(x) = (2π)
x
2 − 1

2 G(x)−1,

where G(x) is the so-called Barnes G function. This function is useful when we study the
limit γ → 2 in Section 1.4. Finally in our Corollary 1.3, we have used a special β2,2 distribu-
tion defined in [25]. Here we recall the definition.

DEFINITION B.1 (Existence theorem). The distribution − lnβ2,2(a1, a2;b0, b1, b2) is in-
finitely divisible on [0,∞) and has the Lévy–Khintchine decomposition for Re(p) > −b0:

E
[
exp
(
p lnβ2,2(a1, a2;b0, b1, b2)

)]
= exp

(∫ ∞
0

(
e−pt − 1

)
e−b0t

(1 − e−b1t )(1 − e−b2t )

(1 − e−a1t )(1 − e−a2t )

dt

t

)
.

(B.8)

Furthermore, the distribution lnβ2,2(a1, a2;b0, b1, b2) is absolutely continuous with respect
to the Lebesgue measure.

We only work with the case (a1, a2) = (1, 4
γ 2 ). Then β2,2(1, 4

γ 2 ;b0, b1, b2) depends on 4
parameters γ , b0, b1, b2 and its real moments p > −b0 are given by the formula

E

[
β2,2

(
1,

4

γ 2 ;b0, b1, b2

)p]

= �γ
2
(
γ
2 (p + b0))�γ

2
(
γ
2 (b0 + b1))�γ

2
(
γ
2 (b0 + b2))�γ

2
(
γ
2 (p + b0 + b1 + b2))

�γ
2
(
γ
2 b0)�γ

2
(
γ
2 (p + b0 + b1))�γ

2
(
γ
2 (p + b0 + b2))�γ

2
(
γ
2 (b0 + b1 + b2))

.

(B.9)

Of course we have γ ∈ (0,2) and the real numbers p, b0, b1, b2 must be chosen so that the
arguments of all the �γ

2
are positive. We conclude this section with a few computations that

we need that also involve hypergeometric functions.

LEMMA B.2. For p < 0 and −1 < a < 0 or for 0 < p < 1 and −1 < a < −p we have
the identity

(B.10)
∫ ∞

0

(
(u + 1)p − 1

)
ua−1 du = �(a)�(−a − p)

�(−p)
.

PROOF. Denote by (x)n := x(x + 1) . . . (x + n − 1)∫ ∞
0

(
(u + 1)p − 1

)
ua−1 du

=
∞∑

n=0

(−1)n

n! (−p)n
1

n + a
−

∞∑
n=0

(−1)n

n! (−p)n
1

a + p − n
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= 1

a

∞∑
n=0

(−1)n

n!
(−p)n(a)n

(a + 1)n
− 1

a + p

∞∑
n=0

(−1)n

n!
(−p)n(−a − p)n

(−a − p + 1)n

= 1

a
F(−p,a, a + 1,−1) − 1

a + p
F(−p,−a − p,−a − p + 1,−1)

= �(a)�(−a − p)

�(−p)
,

where in the last line we used the formula, for suitable a, b ∈ R,

b̄F (ā + b̄, ā, ā + 1,−1) + āF (ā + b̄, b̄, b̄ + 1,−1) = �(ā + 1)�(b̄ + 1)

�(ā + b̄)
. �

LEMMA B.3. For 0 < a < 1 − γ 2

4 we have

(B.11)
γ 2

4

∫ ∞
0

(y + 1)
γ 2

4 −1ya−1 dy =
(
a + γ 2

4

)
�(a)�(−a − γ 2

4 )

�(−γ 2

4 )
.

PROOF. By the previous lemma,

∫ ∞
0

(
(y + z)

γ 2

4 − 1
)
ya−1 dy = za+ γ 2

4
�(a)�(−a − γ 2

4 )

�(−γ 2

4 )
.

We take the derivative in z in the above equation and evaluate it at z = 1 to get

γ 2

4

∫ ∞
0

(y + 1)
γ 2

4 −1ya−1 dy =
(
a + γ 2

4

)
�(a)�(−a − γ 2

4 )

�(−γ 2

4 )
.

�
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