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Probabilistic models of directed polymers in random environment have
received considerable attention in recent years. Much of this attention has
focused on integrable models. In this paper, we introduce some new compu-
tational tools that do not require integrability. We begin by defining a new
kind of abstract limit object, called “partitioned subprobability measure,” to
describe the limits of endpoint distributions of directed polymers. Inspired
by a recent work of Mukherjee and Varadhan on large deviations of the oc-
cupation measure of Brownian motion, we define a suitable topology on the
space of partitioned subprobability measures and prove that this topology is
compact. Then using a variant of the cavity method from the theory of spin
glasses, we show that any limit law of a sequence of endpoint distributions
must satisfy a fixed point equation on this abstract space, and that the limit-
ing free energy of the model can be expressed as the solution of a variational
problem over the set of fixed points. As a first application of the theory, we
prove that in an environment with finite exponential moment, the endpoint
distribution is asymptotically purely atomic if and only if the system is in
the low temperature phase. The analogous result for a heavy-tailed environ-
ment was proved by Vargas in 2007. As a second application, we prove a
subsequential version of the longstanding conjecture that in the low tempera-
ture phase, the endpoint distribution is asymptotically localized in a region of
stochastically bounded diameter. All our results hold in arbitrary dimensions,
and make no use of integrability.
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1. Introduction. The model of directed polymers in random environment was intro-
duced in the physics literature by Huse and Henley [44] to represent the phase boundary
of the Ising model in the presence of random impurities. It was later mathematically refor-
mulated as a model of random walk in random potential by Imbrie and Spencer [45]. Over
the last thirty years, the directed polymer model has played an important role as a source of
many fascinating problems in the probability literature, culminating in the amazing recent
developments in integrable polymer models. However, in spite of the wealth of information
now available for integrable models, our knowledge about the general case is fairly limited,
especially in spatial dimension greater than one. The goal of this paper is to introduce an
abstract theory that allows computations for polymer models that are not integrable. Before
we discuss our approach in detail, let us very briefly communicate the main consequences:

• The probabilistic model of (d + 1)-dimensional directed polymers of length n assigns a
random probability measure to the set of random walk paths of length n in Z

d that start
at the origin. The precise mathematical model is defined in Section 1.1 below. The “end-
point distribution” is the probability distribution of the final vertex reached by the random
walk. Note that this is a random probability measure on Z

d , which we will denote fn.
Understanding the behavior of fn is the main goal of this article. Although a number of
results about fn were known prior to this work (reviewed in Section 1.2), this is the first pa-
per that puts forward a comprehensive theoretical framework for analyzing the asymptotic
properties of fn.

• Like many statistical mechanical models, directed polymers have a low temperature phase
and a high temperature phase. One of the most striking features of directed polymers is
that in the low temperature phase, fn has “atoms” whose weights do not decay to zero as
n → ∞. This is in stark contrast with the endpoint distribution of simple random walk,
where the most likely site has mass of order n−d/2. The precise statement of this well-
known localization phenomenon will be discussed in Section 1.2. One of the main appli-
cations of the abstract machinery developed in this paper is to show that in the low tem-
perature regime, the atoms account for all of the mass—that is, there is no part of the mass
that diffuses out. Such a result was proved earlier for directed polymers in heavy-tailed
environment, and also for a particular (1 + 1)-dimensional integrable model. We prove it
under finite exponential moments, to which previously known techniques do not apply.
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• Our second main application is to show that in the low temperature regime, there is almost
surely a subsequence of positive density along which the endpoint distribution concentrates
mass > 1 − δ on a set of diameter ≤ K(δ), where δ is arbitrary and K(δ) is a deterministic
constant that depends only on δ and some features of the model. In other words, not only
does the mass localize on atoms, but the atoms themselves localize in a set of bounded
diameter. This proves a subsequential version of a longstanding conjecture about the end-
point distribution. Prior to this work, the only case where a similar statement could be
proved was for an integrable model.

• Crucial to each of these results is a new variational formula for the limiting free energy,
given as the infimum of a continuous functional over a certain closed subset K of a compact
space. The high and low temperature phases are then characterized respectively by whether
K is just a single trivial object or instead contains nontrivial elements.

We will now begin a more detailed presentation by defining the model below. This is followed
by a discussion of the known results about polymer models, and then a general overview of
the results proved in this paper and the ideas involved in the proofs.

REMARK. For the sake of presentation and length, some of the more technical proofs
needed for this manuscript are contained in supplementary material, henceforth referred to as
Appendix A and Appendix B [11]. When a proof has been omitted from the present text, a
reference to its location in the appendices will be provided. Alternatively, a complete version
of the manuscript can found at https://arxiv.org/abs/1612.03443.

1.1. The model of directed polymers in random environment. Take any integer d ≥ 1.
The probabilistic model of (d + 1)-dimensional directed polymers in random environment is
defined as follows. We begin with a simple random walk ω = (ωi)i≥0 on Z

d , letting P denote
the law of the walk when started at the origin. Let E denote expectation according to P .

Next, let N := {1,2, . . .} and introduce a collection of i.i.d. random variables (Xu)u∈N×Zd

called the random environment, defined on some probability space (�e,F,P). We will write
E for expectation according to P. In what follows, it will not be problematic to define all ran-
dom variables on the abstract probability space (�e,F,P). Unless stated otherwise, “almost
sure” statements are made with respect to P.

Let β > 0 be a parameter, called the inverse temperature. Let L denote the common law
of the Xu, often called the disorder distribution. We will assume the logarithmic moment
generating function for L satisfies

λ(α) := log E
(
eαXu

)
< ∞ for all α ∈ [−2β,2β].(1.1)

We now have the notation to define the model of (d + 1)-dimensional directed polymers in
random environment. The quenched polymer measure of length n ≥ 0, denoted ρn, is the
Gibbs measure for P with Hamiltonian

Hn(ω) := −
n∑

i=1

Xi,ωi
.

That is,

ρn(dω) = 1

Zn

e−βHn(ω)P (dω),(1.2)

where the normalization constant Zn := E(e−βHn(ω)) is called the quenched partition func-
tion. Explicitly,

Zn = 1

(2d)n

∑
γ

exp

(
β

n∑
i=1

Xi,γ (i)

)
,

https://arxiv.org/abs/1612.03443
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where the sum is over the (2d)n nearest-neighbor paths γ : {0,1, . . . , n} → Z
d of length

|γ | = n, starting at the origin (γ (0) = 0). We can equivalently write

Zn = 1

(2d)n

∑
x∈Zd

Zn(x),

where

Zn(x) := ∑
γ :γ (n)=x

exp

(
β

n∑
i=1

Xi,γ (i)

)

is often referred to as a point-to-point partition function. When d = 1, convention often re-
places Zn by (2d)nZn, which is correspondingly called the point-to-line partition function.
So that the model does not reduce to a simple random walk (which is the case when β = 0),
we assume the Xu are nondegenerate random variables. That is, L is not supported on a single
point.

1.2. An overview of known results about general polymer models. In this section, we will
review the results that are known in arbitrary dimensions, with usually mild assumptions on
the distribution of the environment. Indeed, our paper works in this general setting, and so
these results will be most relevant to the present study. One can find a more detailed review
in the recent notes by Comets [25].

1.2.1. High and low temperature phases. The qualitative behavior of directed polymers
depends on the disorder distribution L, the inverse temperature β , and the traversal dimen-
sion d . Much of this dependence can be observed through the system’s quenched free energy,
given by

Fn := logZn

n
,

where F0 := 0. Like (ρn)n≥0 and (Zn)n≥0, the sequence (Fn)n≥0 is a random process with
respect to the filtration (Fn)n≥0, where

Fn := σ
(
Xi,x : 1 ≤ i ≤ n,x ∈ Z

d).(1.3)

When the randomness of the environment is averaged out, one obtains the averaged quenched
free energy,

E(Fn) = 1

n
E logZn.

In general, this quantity is distinct from the annealed free energy, which is

1

n
log E(Zn) = 1

n
log enλ(β) = λ(β).

Indeed, Jensen’s inequality gives the comparison

E(Fn) < λ(β),(1.4)

where the inequality is strict because Fn is not an almost sure constant, and x �→ logx is
not linear. A superadditivity argument (e.g., see [23], proof of Proposition 1.4) shows that
E(Fn) converges to supn≥0 E(Fn) as n → ∞. It has also been shown in [85] that under hy-
potheses much weaker than (1.1), Fn − E(Fn) tends to 0 almost surely. Therefore, there is a
deterministic limit

p(β) := lim
n→∞ E(Fn) = lim

n→∞Fn a.s.(1.5)

Using the FKG inequality, Comets and Yoshida [33] identified a phase transition:
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THEOREM A ([33], Theorem 3.2). There exists a critical inverse temperature βc =
βc(L, d) ∈ [0,∞] such that

0 ≤ β ≤ βc ⇒ p(β) = λ(β),

β > βc ⇒ p(β) < λ(β).

We refer to the region 0 ≤ β < βc as the “high temperature phase,” while β > βc defines
the “low temperature phase.” Roughly speaking, high temperatures reduce the influence of
the random environment, and so polymer growth resembles a simple random walk, while
at low temperatures the random impurities force a much different behavior. This distinction
has been most frequently made in terms of the endpoint distribution ρn(ωn ∈ ·), which is a
random probability measure on Z

d . For instance, one striking result first proved by Carmona
and Hu [23] (for a Gaussian environment) and then by Comets, Shiga, and Yoshida [28] (in
the general case) is the following: If β > βc, then the polymer endpoint observes so-called
strong localization:

(SL) : ∃c > 0, lim sup
n→∞

max
x∈Zd

ρn(ωn = x) ≥ c a.s.

That is, infinitely often the polymer has “favorite sites” at which its endpoint distribution
concentrates.

1.2.2. Weak and strong disorder regimes. While examining the high and low temperature
regimes is very natural, the mathematical development of directed polymers in random envi-
ronment has often followed an ostensibly different route. Since the work of Bolthausen [14],
analysis of the directed polymer model has frequently focused on the normalized partition
function,

Z̃n := Zne
−nλ(β),

with Z̃0 = Z0 = 1 and λ(β) defined as in (1.1). It is not difficult to check that Z̃n is a positive
martingale adapted to the filtration (Fn)n≥0 defined in (1.3). In particular, E(Z̃n) = 1 for all
n, and the martingale convergence theorem implies that there is an F -measurable random
variable Z̃∞ such that

lim
n→∞ Z̃n = Z̃∞ a.s.(1.6)

Furthermore, we necessarily have Z̃∞ ≥ 0 almost surely, and the event of positivity {Z̃∞ > 0}
is measurable with respect to the tail σ -algebra,

∞⋂
n=1

σ
(
Xi,x : i ≥ n,x ∈ Z

d).
By Kolmogorov’s zero-one law we have either weak or strong disorder,

(WD) : Z̃∞ > 0 a.s., (SD) : Z̃∞ = 0 a.s.

Carmona and Hu [23] and Comets, Shiga, and Yoshida [28] gave the following characteriza-
tion of the two phases. It says that there is strong disorder exactly when the overlap of two
independent polymers has infinite expectation.

THEOREM B ([23], Proposition 5.1 and [28], Theorem 2.1). Strong disorder (SD) is
equivalent to weak localization,

(WL) :
∞∑

n=0

ρ⊗2
n

(
ωn = ω′

n

)= ∞ a.s.,

where ω and ω′ are independent samples from ρn.
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Despite the unfortunate clash of terminology in the above theorem, one should not mistake
weak localization to be associated with weak disorder. The use of “weak” in the first case is
only to distinguish this notion of localization from the other (SL) notion defined before.
Indeed, it is apparent from the inequality

ρ⊗2
n

(
ωn = ω′

n

)≥
(

max
x∈Zd

ρn(ωn = x)
)2

that (SL) ⇒ (WL). In fact, Carmona and Hu [24] proved in a continuous-time model with an
environment of i.i.d. Brownian motions—the parabolic Anderson model—that the converse
is also true: (SL) ⇐ (WL). It is believed that the two notions are equivalent in general.

As with the high and low temperature regimes, there is a phase transition between weak
and strong disorder.

THEOREM C ([33], Theorem 12.1). There exists a critical inverse temperature β̃c =
β̃c(L, d) ∈ [0,∞] such that

0 ≤ β < β̃c ⇒ (WD),

β > β̃c ⇒ (SD).

Determining the behavior of Z̃∞ at β̃c is an open problem. For analogous models on b-
ary trees, it is known from work of Kahane and Peyrière [48] that strong disorder occurs at
β̃c. Interestingly, in dimensions d = 1 and d = 2, there is strong disorder at all finite tem-
peratures (i.e., β̃c = 0), while in higher dimensions weak disorder occurs at sufficiently high
temperatures (β̃c > 0). Precise conditions on λ(β) guaranteeing either behavior can be found
in Theorem 2.3.2 of the review [29]. These conditions are in fact a culmination of results
from [4, 14, 23, 28, 45, 50, 77, 79].

Whereas Theorem B characterizes the disorder regimes in terms of endpoint localization,
one can also attempt to give a characterization based on endpoint diffusion. For instance,
Comets and Yoshida [33] showed, as part of a more general Brownian central limit theorem,
that

(WD) ⇒ lim
n→∞

∫ |ωn|
n1/2 ρn(dω) = 1 a.s.(1.7)

Notice that the scaling |ωn| ∼ n1/2 matches that of simple random walk on Z
d . On the other

hand, it is believed (at least in low dimensions, see [68]) that the polymer endpoint is su-
perdiffusive in strong disorder. Specifically, when d = 1 (for which any β > 0 yields strong
disorder), it is conjectured that

lim
n→∞

∫ |ωn|
n2/3 ρn(dω) = 1 a.s.(1.8)

Apart from the integrable models discussed in Section 1.3, the only result in this direction
is an upper bound due to Piza [68] and is conditional on a curvature assumption. In some
related models on R, both upper and lower bounds are known: n3/5 � |ωn| � n3/4 [12, 31,
32, 58, 67, 87].

A major challenge is to reconcile the notion of high and low temperature with the notion of
weak and strong disorder. The first is more natural from the perspective of statistical physics,
because phase transitions, in the standard sense, are defined in terms of nonanalyticities of
limiting free energies. Since the annealed free energy is typically analytic everywhere, the
transition of the difference λ(β) − p(β) from zero to nonzero denotes the first point of non-
analyticity of the limiting free energy p(β). On the other hand, the more abstract conditions
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of (WD) and (SD) have lead to a wealth of mathematical results. It is conjectured (see [24,
33]) that βc = β̃c, which would mean

0 ≤ β < βc ⇒ (WD) and β > βc ⇒ (SD).

Evidence for this belief includes the result by Comets and Vargas [30] that βc = 0 universally
in d = 1, and the subsequent proof by Lacoin [52] that βc = 0 in d = 2. For d ≥ 3, only the
trivial second implication above is known (i.e., βc ≥ β̃c). Indeed, it is clear from (1.5) and
(1.6) that p(β) < λ(β) ⇒ (SD). Therefore, it has become common to say that in the low
temperature phase, there is very strong disorder,

(VSD) : p(β) < λ(β).

In recent work, Rassoul-Agha, Seppäläinen and Yilmaz [71, 72] expressed p(β) in terms
of several variational formulas. A method for finding minimizers to these formulas was pro-
posed in [40], and it was noted in [72] that they may not admit minimizers when β > βc.
These results suggest the possibility of a more general correspondence between the disorder
regimes and the existence of variational minimizers (see [72], Conjecture 2.13).

When d = 1, a so-called “intermediate” disorder regime was discovered in [3] by scaling
the inverse temperature to 0 as n → ∞, in such a way that features of both weak and strong
disorder are observed in the limit. More specifically, when βn = βn−1/4, the polymer mea-
sure exhibits diffusivity (1.7), and the fluctuations of logZn are order 1 as in weak disorder.
The actual fluctuations, however, are not Gaussian, but rather depend on β and the random
environment, interpolating between Gaussian at β = 0 and Tracy–Widom at β = ∞.

1.2.3. Further versions of localization. Another central task in the theory of directed
polymers is determining if and when weak localization results imply stronger ones. The fol-
lowing analog to Theorem B shows that (VSD) ⇒ (SL), which means the strongest type
of localization occurs throughout the low temperature regime. Therefore, if βc = β̃c, then all
notions of disorder and localization are equivalent, except possibly at the critical temperature.

THEOREM D ([28], Corollary 2.2 and Theorem 2.3(a)). There is very strong disorder
(VSD) if and only if there exists c > 0 such that

lim inf
n→∞

1

n

n−1∑
i=0

ρ⊗2
i

(
ωi = ω′

i

)≥ c a.s.,

or, equivalently, there exists c > 0 such that

lim inf
n→∞

1

n

n−1∑
i=0

max
x∈Zd

ρi(ωi = x) ≥ c a.s.(1.9)

Strong localization (SL) or the stronger property (1.9) captures the tendency of the end-
point distribution to localize mass when β > βc. In this scenario, it is natural to ask whether
the entire mass localizes, or if some positive proportion of the mass remains delocalized. In
[85], Vargas proposed the following definition for complete localization, or as Vargas called
it, asymptotic pure atomicity. We consider the set of “ε-atoms,”

Aε
i := {

x ∈ Z
d : ρi(ωi = x) > ε

}
, i ≥ 0, ε > 0,

and say that the sequence (ρi(ωi ∈ ·))i≥0 is asymptotically purely atomic if for every se-
quence (εi)i≥0 tending to 0 as i → ∞, we have

1

n

n−1∑
i=0

ρi

(
ωi ∈Aεi

i

)→ 1 in probability, as n → ∞.

The following result was obtained in [85].
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THEOREM E ([85], Theorem 3.2 and Corollary 3.3). If λ(β) = ∞, then (ρi(ωi ∈ ·))i≥0
is asymptotically purely atomic.

Actually, Vargas showed that (ρi−1(ωi ∈ ·))i≥1 is asymptotically purely atomic, with the
set Aε

i replaced by {x ∈ Z
d : ρi−1(ωi = x) > ε}. From observation (1.10), it is not difficult to

check that the two notions are equivalent (a proof can be found in Appendix A.7). One of the
main results of this paper, Theorem 6.3, asserts that the conclusion of Theorem E continues
to hold even if λ(β) is finite, as long as β > βc and (1.1) holds. This is discussed in greater
detail in Section 1.4 below.

1.2.4. A remark about the definition of endpoint distribution. All the results of Sec-
tion 1.2 are normally stated in the literature using the measure ρn−1(ωn ∈ ·), as opposed
to ρn(ωn ∈ ·). The reason is that the former arises naturally out of the martingale analysis for
Z̃n (for instance, see the proof of Theorem 3.3.1 in [29]), but in all cases, the statements are
equivalent when the latter is used instead. This equivalence can be seen by writing

ρn−1(ωn = x) = 1

2d

∑
‖x−y‖1=1

ρn−1(ωn−1 = y),(1.10)

(where ‖ · ‖1 denotes the �1 norm on Z
d ), which implies

1

2d
max
y∈Zd

ρn−1(ωn−1 = y) ≤ max
x∈Zd

ρn−1(ωn = x) ≤ max
y∈Zd

ρn−1(ωn−1 = y).

Similarly, we have

1

2d
ρ⊗2

n−1

(
ωn−1 = ω′

n−1
)≤ ρ⊗2

n−1

(
ωn = ω′

n

)≤ ρ⊗2
n−1

(
ωn−1 = ω′

n−1
)
,

where the first inequality follows from the observation that if ωn−1 = ω′
n−1, then ωn = ω′

n

with probability (2d)−1 under ρn−1. The second inequality is due to Cauchy–Schwarz ap-
plied to (1.10):

ρ⊗2
n−1

(
ωn = ω′

n

)= ∑
x∈Zd

ρn−1(ωn = x)2

≤ ∑
x∈Zd

1

2d

∑
‖x−y‖1=1

ρn−1(ωn−1 = y)2

= ∑
y∈Zd

ρn−1(ωn−1 = y)2 = ρ⊗2
n−1

(
ωn−1 = ω′

n−1
)
.

As ρn(ωn ∈ ·) will be the more natural object for our purposes, we reserve the term “endpoint
distribution” for this measure.

1.3. Related results in integrable models. Until recently, no directed polymer model of-
fered the possibility of exact asymptotic calculations. This was in contrast to the integrable
last passage percolation (LPP) models in 1 + 1 dimensions, for which specific choices of
the passage time distribution (namely geometric or exponential) allow one to use represen-
tation theory to derive exact formulas for the distribution of passage times, which are the
LPP analogs of partition functions. Such was the approach advanced in the seminal work
of Johansson [46], which showed that asymptotic fluctuations of passage times follow the
Tracy–Widom distributions at scale n1/3—GUE for point-to-point passage times, and GOE
for the point-to-line passage time. The connection to Tracy–Widom laws can be seen more



ENDPOINT DISTRIBUTION OF POLYMERS 825

explicitly in a model known as Brownian LPP [63], which also exhibits the n1/3 scaling.
These results place the LPP models within the KPZ universality class (see [19, 34]). For a
review of related works, including results verifying spatial fluctuations at scale n2/3, we refer
the reader to [69] and references therein.

In the zero-temperature limit β → ∞, the polymer measure ρn concentrates on the path
that is most likely given the random environment. When β = ∞, the directed polymer model
is equivalent to LPP. The natural conjecture, therefore, is that directed polymers in strong dis-
order obey the same KPZ scaling relations. In particular, models in 1 + 1 dimensions should
have energy fluctuations of order n1/3, and endpoint fluctuations of order n2/3 (see (1.8)). The
first case permitting exact calculations was the integrable log-gamma model introduced by
Seppäläinen [75], whose breakthrough work proved the conjectured exponents. Subsequent
studies showed that free energy fluctuations were again of Tracy–Widom type [18, 35], gave
a large deviation rate function [42], and computed the limiting value p(β) [41].

Regarding spatial fluctuations, Comets and Nguyen [27] found an explicit limiting end-
point distribution in the equilibrium case of the log-gamma model. More precisely, they
showed that the endpoint distribution, when recentered around the most likely site, converges
in law to a certain random distribution on Z. While the boundary conditions they enforce pre-
vent the correct exponent of 2/3 from appearing, which would mean fluctuations of the aver-
aged quenched distribution occur on the order of n2/3, their result implies that the quenched
endpoint distributions concentrate all their mass in a microscopic region of O(1) diameter
around a single favorite site. In the notation of this paper, if xn = arg maxρn(ωn = ·), then
the result of [27] says

lim
K→∞ lim inf

n→∞ ρn

(‖ωn − xn‖1 ≤ K
)= 1 in probability.(1.11)

This provides an affirmative case of the so-called “favorite region” conjecture, which specu-
lates that in strong disorder, directed polymers on the lattice localize their endpoint to a region
of fixed diameter. We emphasize once more that this is a statement about quenched endpoint
distributions. While little is known on annealed distributions in the general case, there has
been considerable progress for the integrable LPP models. Johansson [47] proved that the
rescaled location of the endpoint converges in distribution to the maximal point of an Airy2
process minus a parabola. More recent work has expressed the density of this limit in terms of
Fredholm determinants [59], or from a different approach, in terms of the Hastings–McLeod
solution to the Painlevé II equation [74]; the two formulas were shown to be equivalent in
[7]. Tail estimates for this density can be found in [20, 70].

For further literature on integrable directed polymers, see [10, 36, 83] and references
therein. We also mention the semidiscrete model introduced by O’Connell and Yor [64],
which is a positive-temperature version of Brownian LPP and has offered another provable
case of n1/3 energy fluctuations [16, 17, 76].

1.4. An overview of results proved in this paper. The endpoint distribution ρn(ωn ∈ ·) of
length-n polymers is a random probability measure on Z

d . The main goal of this paper is to
understand the behavior of this object as n → ∞. The majority of our work is in developing
methods to compute limits of endpoint distributions, or more to the point, of functionals of the
endpoint distribution. While proving the existence of these limits is presently out of reach,
by instead considering empirical averages we are able to establish results in Cesàro form.
Broadly speaking, the construction consists of three components: (i) a compactification of
measures on Z

d ; (ii) a Markov kernel whose invariant measures are the possible limits of the
endpoint distribution; and (iii) a functional that distinguishes those invariant measures with
minimal energy.
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1.4.1. Compactification of measures on Z
d . One key obstacle to studying the endpoint

distribution is that the standard topology of weak convergence of probability measures is
inadequate for understanding its limiting behavior. Even the weaker topology of vague con-
vergence does not provide an adequate description of the localization phenomenon that is of
central interest. In the recent work of Mukherjee and Varadhan [61], this issue was addressed
by exploiting translation invariance inherent in their problem to pass to a certain compactifi-
cation of probability measures on R

d . We have drawn inspiration from their methods, using a
similar construction we will soon describe. Ultimately, this approach is enabled by the “con-
centration compactness” phenomenon. Before we discuss this topic further, let us motivate
the discussion with two elementary examples.

Roughly speaking, the difficulty of using standard weak or vague convergence is that the
endpoint distribution may manifest itself as multiple localized “blobs” that escape to infinity
in different directions as n → ∞. Additionally, some part of the mass may just “diffuse to
zero.” As a first example, consider the following sequence of probability mass functions on
Z:

qn(x) :=

⎧⎪⎪⎨⎪⎪⎩
1/2 if x = n,

1/(2n) if 0 ≤ x < n,

0 else.

This sequence fails to converge weakly, and its vague limit is the zero measure. However,
to understand the true limiting behavior of qn, it seems more appropriate to take the vague
limit after translating the measure by n; that is, taking q̃n(x) := qn(x − n). The limit of the
sequence q̃n is the subprobability measure that puts mass 1/2 at the origin and zero elsewhere,
which gives a better picture of the true limiting behavior of qn.

The situation is more complicated when multiple blobs escape to infinity in different di-
rections. For example, consider the following sequence of probability mass functions on Z:

rn(x) :=

⎧⎪⎪⎨⎪⎪⎩
1/5 if x ∈ {−2n,−n,n,n + 1},
1/(5n) if 0 ≤ x < n,

0 else.

Like qn, the sequence rn also converges vaguely to the subprobability measure of mass zero.
But in this case, no sequence of translates of rn can fully capture its limiting behavior, because
a translate can only capture the mass at one of the three blobs but not all of them simulta-
neously. The only recourse, it seems, is to express the limit not as a single subprobability
measure, but a union of three subprobability measures on three distinct copies of Z. Two of
these will put mass 1/5 at the origin in their respective copies of Z, and the third will put
mass 1/5 at 0 and 1/5 at 1 in its copy of Z. The first two are the vague limits of rn(· + 2n)

and rn(· + n), and the third is the vague limit of rn(· − n). One can view this object jointly
as a subprobability measure of total mass 4/5 on the set {1,2,3} ×Z. Of course, it is not im-
portant which copy of Z gets which part of the measure, nor does it matter if a translation is
applied to the subprobability measure on one of the copies. Thus, the limit object is an equiv-
alence class of subprobability measures on {1,2,3} × Z rather than a single subprobability
measure.

Generalizing the above idea, we can consider equivalence classes of subprobability mea-
sures on N×Z

d . First, define the N-support of a subprobability measure f on N× Z
d to be

the set of all n ∈ N such that f puts nonzero mass on {n} × Z
d . Next, declare two subprob-

ability measures f and g on N × Z
d to be equivalent if there is a bijection σ between their

N-supports and a number xn ∈ Z
d for each n in the N-support of f such that

g
(
σ(n), ·)= f (n, xn + ·).
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It is easy to verify that this is indeed an equivalence relation. The equivalence classes are
called partitioned subprobability measures on Z

d in this paper, and the set of all equivalence
classes is denoted by S . The set S is formally defined and studied in Section 2.1.

We will view probability measures on Z
d (or more precisely, their mass functions) as

elements of S supported on a single copy of Zd . In particular, we have a natural embedding
of endpoint distributions into S . In Section 2.1, we define a metric d on S (not to be confused
with the dimension d). Due to the somewhat complicated nature of the metric, we will not
reproduce the definition in this overview section, but it is constructed to ensure that certain
functionals on S are continuous or at least semicontinuous. In this study, these functionals
are related to either localization or the free energy of the system. One of the first nontrivial
results of this paper is that (S, d) is a compact metric space, in analogy with the construction
in [61]. This is Theorem 2.8 in Section 2.2.

REMARK. A formal comparison between our construction and the one of Mukherjee and
Varadhan [61] is provided in Appendix B.

In summary, the metric d imposes a translation invariance that prevents so-called blobs
from escaping to infinity. Moreover, such escape turns out to be the only obstruction to com-
pactness. This is the fundamental observation of a more general theory known as “concentra-
tion compactness,” which builds on the notion of the concentration functions of probability
measures, defined by Lévy [53]. The idea of using Lévy’s concentration functions for con-
structing compactifications of function spaces was introduced by Parthasarathy, Ranga Rao,
and Varadhan [66], and developed into a powerful tool by Lions [54–57]. It has been applied
broadly in the study of calculus of variations and PDEs. In the language of those settings,
the equivalence relation described above plays the role of a “profile decomposition” (for a
friendly discussion, see [81, 82]).

1.4.2. The update map. In Section 3, we define an “update” map T : S → P(S), where
P(S) is the set of all probability measures on S equipped with the Kantorovich–Rubinstein–
Wasserstein distance W . The map T has the property that if fn(·) := ρn(ωn = ·) is the end-
point mass function of the length-n polymers (considered as an element of S supported on a
single copy of Zd ), then Tf n is the law of fn+1 given Fn (recall the definition (1.3) of Fn).
In fact, it is not difficult to see that (fn)n≥0 is Markovian, and thus T is the Markov kernel
generating this chain. Considerable work is done in Section 8 to show that T is a continuous
map (i.e., has the Feller property). This is the conclusion of Proposition 3.2. The explicit
nature of the metric d is particularly important in the proof of this result. Finally, the map T

lifts to a map T : P(S) → P(S), defined as

T ν(dg) :=
∫

Tf (dg)ν(df ).

The continuity of T implies that T is also continuous.
In Section 4, we study the following random element of P(S):

μn := 1

n

n−1∑
i=0

δfi
.

Here δfi
is the unit point mass at the ith endpoint mass function fi , considered as an element

of S as before. In words, μn is the empirical measure of the endpoint distributions up to
time n. Let

K := {
ν ∈ P(S) : T ν = ν

}
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be the set of fixed points of T : P(S) → P(S). The first main result of Section 4 is Corol-
lary 4.3, which says that

lim
n→∞ inf

ν∈KW(μn, ν) = 0 a.s.(1.12)

This result provides a heuristic connection to (1 + 1)-dimensional integrable models (for
instance, see [10, 36, 75, 83]), which work in part by identifying a disorder distribution and
boundary conditions such that the system is stationary under spatial translations. Loosely
speaking, our approach similarly recovers a stationarity property in the limit, even without
explicit calculations. In this way, our methods replace this key feature of integrable models
with a much weaker, but more general, abstract framework. This is enabled by a topology on
endpoint distributions that is rich enough to capture the desired localization, yet sufficiently
“compressed” to be compact.

1.4.3. The energy functional. Given the convergence (1.12), the next key observation is
that the free energy Fn can be expressed in terms of the empirical measure μn, see (4.7). We
thus define a functional R : P(S) → R so that we may concisely write E(Fn) = ER(μn).
This and Corollary 4.3 lead to the following variational formula for the limiting free energy,
given in Theorem 4.7. For any β such that (1.1) holds,

p(β) = lim
n→∞ E(Fn) = inf

ν∈KR(ν).

The connections between this formula and those of [71, 72] are unclear.
Nevertheless, this computation allows us to improve Corollary 4.3 in an important way to

yield Theorem 4.9, which says that if

M :=
{
ν0 ∈K : R(ν0) = inf

ν∈KR(ν)
}
,

then

lim
n→∞ inf

ν∈MW(μn, ν) = 0 a.s.

In Section 5, we study the minimizing set M. In particular, Theorem 5.2 says that either M
consists of the single element of total mass zero (which happens when 0 ≤ β ≤ βc, where βc
is the critical inverse temperature of Theorem A), or every element of M has total mass one
(which happens when β > βc). This result is similar to the technique of identifying a phase
transition as the critical point at which a recursive distributional equation begins to have a
nontrivial solution; for an account of this method, we refer the reader to the survey of Aldous
and Bandyopadhyay [5] and references therein. This idea is also present in work of Yoshida
[88] on more general linear stochastic evolutions, although there the nontrivial solutions exist
in the high temperature regime rather than the low temperature regime.

From a different perspective, the limit law of the empirical measure can be viewed as an
“order parameter” for the model, whose behavior distinguishes between the high and low
temperature regimes. Such order parameters arise frequently in the study of disordered sys-
tems. A prominent example is the Sherrington–Kirkpatrick (SK) model of spin glasses, where
the limiting distribution of the overlap serves as the order parameter (see Panchenko [65]).
Interestingly, the limiting free energy of the SK model can also be expressed as the solution
of a variational problem involving the order parameter. This is the famous Parisi formula
proved by Talagrand [80]. In this way, the partitioned subprobability measures might be seen
as counterparts to the random overlap structures introduced by Aizenman, Sims and Starr [2],
and the update map as the analog to similar stabilizing maps arising out of the cavity method
for spin glasses and related competing particle systems, that were studied by Aizenman and
Contucci [1], Ruzmaikina and Aizenman [73] and Arguin and Chatterjee [6]. In other ways,
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however, the analogy is quite distant. For instance, the spin glass systems we speak of are
mean-field models lacking any geometry from the lattice. Also, our variational formula relies
on the directed nature of the problem; that is, the random environment refreshes at each time
step, allowing us to exploit Markovian structure.

1.5. Main applications. Theorem 5.2 yields the following concrete application of our
abstract theory of partitioned subprobability measures; it is later stated as Theorem 6.3. Recall
the notation and terminology related to Theorem A and Theorem E.

THEOREM 1.1. Assume (1.1).

(a) If β > βc, then for every sequence (εi)i≥0 tending to 0 as i → ∞,

lim
n→∞

1

n

n−1∑
i=0

ρi

(
ωi ∈Aεi

i

)= 1 a.s.

(b) If 0 ≤ β ≤ βc, then there exists a sequence (εi)i≥0 tending to 0 as i → ∞ such that

lim
n→∞

1

n

n−1∑
i=0

ρi

(
ωi ∈Aεi

i

)= 0 a.s.

This generalizes Theorem E, where an “in probability” version of (a) was proved under
the condition λ(β) = ∞.

In Section 7, we apply our techniques to go further than atomic localization by considering
“geometric localization.” In the low temperature phase, the endpoint distribution can not only
concentrate mass on a few likely sites, but moreover have those sites close together. We make
this phenomenon precise in the following manner. For δ ∈ (0,1) and a nonnegative number
K , let Gδ,K denote the set of probability mass functions on Z

d that assign measure greater
than 1−δ to some subset of Zd having diameter at most K ; see (7.1) for a symbolic definition.
We will say that the sequence (ρi(ωi ∈ ·))i≥0 is geometrically localized with positive density
if for every δ, there is K < ∞ and θ > 0 such that

lim inf
n→∞

1

n

n−1∑
i=0

1{ρi(ωi=·)∈Gδ,K } ≥ θ a.s.,

where 1A denotes the indicator of the event A. That is, there are endpoint distributions with
limiting density at least θ that place mass greater than 1 − δ on a set of bounded diameter.
We will say (ρi(ωi ∈ ·))i≥0 is geometrically localized with full density if for every δ, there is
K < ∞ such that

lim inf
n→∞

1

n

n−1∑
i=0

1{ρi(ωi=·)∈Gδ,K } ≥ 1 − δ a.s.(1.13)

The main result of Section 7 is contained in Theorem 7.3 and says the following.

THEOREM 1.2. Assume (1.1).

(a) If β > βc, then there is geometric localization with positive density. Moreover, the
numbers K and θ are deterministic quantities that depend only on the choice of δ, the disorder
distribution L, the parameter β , and the dimension d .

(b) If 0 ≤ β ≤ βc, then for any K and any δ ∈ (0,1),

lim
n→∞

1

n

n−1∑
i=0

1{ρi(ωi=·)∈Gδ,K } = 0 a.s.
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As mentioned in Section 1.3, the only case where a version of geometric localization has
been proved is an integrable (1 + 1)-dimensional model, for which Comets and Nguyen [27]
proved localization and moreover computed the limit distribution of the endpoint. Similar
results for one-dimensional random walk in random environment were proved by Sinai [78],
Golosov [43] and Gantert, Peres and Shi [39].

The single-copy condition. In addition to the above unconditional results, we also prove
a few conditional statements, which hold under the condition that every ν ∈ M puts all its
mass on those f ∈ S that are supported on a single copy of Zd . We call this the “single-copy
condition.”

One consequence of the single-copy condition is geometric localization with full density,
as defined in equation (1.13). Part (b) of Theorem 7.3 proves this conditional claim. A sec-
ond consequence of the single-copy condition is Proposition 7.4, which gives the following
Cesàro form of (1.11). For each i ≥ 0 and K ≥ 0, let CK

i be the set of all x ∈ Z
d that are

at distance ≤ K from every mode of the endpoint mass function ρi(ωi = ·). Then, assuming
(1.1) and the single-copy condition, Proposition 7.4 asserts that

lim
K→∞ lim inf

n→∞
1

n

n−1∑
i=0

ρi

(
ωi ∈ CK

i

)= 1 a.s.

In view of the result (1.11) of Comets and Nguyen [27], it seems plausible that the single-copy
condition holds for the log-gamma polymer in 1+1 dimensions. Unfortunately, we have been
unable to determine whether or not the single-copy condition holds in general. Furthermore,
we are not aware of any conjectures on what is true in higher dimensions. The results of [9]
suggest that at least for directed polymers on b-ary trees, the single-copy condition does not
hold, and full geometric localization is not valid. This may be related to the fluctuations of
logZn, which are known to be order 1 on the tree (see [38]) but conjectured to be order n1/3

when d = 1.

2. Partitioned subprobability measures. In this section and in the remainder of this
manuscript, we will always assume (1.1). Also, throughout, fi(·) will denote the endpoint
probability mass function ρi(ωi = ·). The goals of this section are to (i) define a space of
functions which contains endpoint distributions (i.e., probability measures on Z

d ) and their
localization limits (subprobability measures on N× Z

d ); (ii) equip said space with a metric;
and (iii) prove that the induced metric topology is compact.

2.1. Definition and properties. Let us restrict our attention to the set of functions

S := {
f :N×Z

d →R : f ≥ 0,‖f ‖ ≤ 1
}
,

where

‖f ‖ := ∑
u∈N×Zd

f (u).(2.1)

Since we regard distant point masses as nearly existing on separate copies of Zd , we consider
differences between elements of N×Z

d in the following nonstandard way:

(n, x) − (m,y) :=
{
x − y if n = m,

∞ else.

It then makes sense to write, for u = (n, x) and v = (m,y) in N×Z
d ,

‖u − v‖1 :=
{‖x − y‖1 if n = m,

∞ else,
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although ‖ · ‖1 is not to be thought of as a norm. If u = (n, x) and y ∈ Z
d , then u ± y will

be understood to mean (n, x ± y). Our main tool for enabling compactness will be certain
injective functions on N × Z

d . Given a set A ⊂ N × Z
d , we call a map φ : A → N × Z

d an
isometry of degree m ≥ 1 if for all u, v ∈ A,

‖u − v‖1 < m or
∥∥φ(u) − φ(v)

∥∥
1 < m

⇒ φ(u) − φ(v) = u − v.
(2.2)

The maximum m for which (2.2) holds is called the maximum degree of φ, denoted by deg(φ).
To say that φ is an isometry of degree 1 simply means φ is injective. If (2.2) holds for
every m ∈ N, then deg(φ) = ∞, meaning φ acts by translations. That is, each copy of Zd

intersecting the domain A is translated and moved to some copy of Z
d in the range, with

no two copies in the domain going to the same copy in the range. Note that an isometry is
necessarily injective and thus has an inverse defined on its image. Because the hypothesis in
(2.2) is symmetric between domain and range, it is clear that deg(φ) = deg(φ−1).

Another useful property of isometries is closure under composition, which is defined in
the next lemma. It is important, especially for the proof below, to note that an isometry is
permitted to have empty domain. That is, there exists the empty isometry φ : ∅ → N × Z

d ,
which is its own inverse and has deg(φ) = ∞.

LEMMA 2.1. Let φ : A → N × Z
d and ψ : B → N × Z

d be isometries. Define A′ :=
{a ∈ A : φ(a) ∈ B}. Then θ : A′ → N × Z

d defined by θ(u) = ψ(φ(u)) is an isometry with
deg(θ) ≥ min(deg(φ),deg(ψ)).

PROOF. Let m := min(deg(φ),deg(ψ)) so that φ and ψ are each isometries of degree m.
For any a1, a2 ∈ A′,

‖a1 − a2‖1 < m ⇒ φ(a1) − φ(a2) = a1 − a2

⇒ ∥∥φ(a1) − φ(a2)
∥∥

1 < m

⇒ ψ
(
φ(a1)

)− ψ
(
φ(a2)

)= φ(a1) − φ(a2) = a1 − a2,

as well as ∥∥θ(a1) − θ(a2)
∥∥

1 < m ⇒ φ(a1) − φ(a2) = ψ
(
φ(a1)

)− ψ
(
φ(a2)

)
⇒ ∥∥φ(a1) − φ(a2)

∥∥
1 < m

⇒ a1 − a2 = φ(a1) − φ(a2)

= ψ
(
φ(a1)

)− ψ
(
φ(a2)

)
.

Indeed, θ is an isometry of degree m. �

A final observation about isometries is that they obey a certain extension property, which
is proved below: By allowing the maximum degree of an isometry to be lowered by at most
2, we can expand its domain by one unit in every direction. If the maximum degree is infinite
(i.e., φ acts by translations), then the extension can be repeated ad infinitum to recover the
translation on all of Zd , for any copy of Zd intersecting the domain.

LEMMA 2.2. Suppose that φ : A →N×Z
d is an isometry of degree m ≥ 3. Then φ can

be extended to an isometry � : B →N×Z
d of degree m − 2, where

B := {
v ∈N×Z

d : ‖u − v‖1 ≤ 1 for some u ∈ A
}⊃ A.
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PROOF. For v ∈ B such that ‖u − v‖1 ≤ 1 with u ∈ A, define

�(v) := φ(u) + (v − u).

If u′ ∈ A also satisfies ‖u′ − v‖1 ≤ 1, then∥∥u − u′∥∥
1 ≤ 2 ⇒ φ(u) − φ

(
u′)= u − u′

⇒ φ(u) + (v − u) = φ
(
u′)+ (

v − u′).
So � is well defined; in particular, �(u) = φ(u) for all u ∈ A. To see that � is an isometry
of degree m − 2, consider any v, v′ ∈ B and take u,u′ ∈ A such that ‖u − v‖1 ≤ 1 and
‖u′ − v′‖1 ≤ 1. If ‖v − v′‖1 < m − 2, then∥∥u − u′∥∥

1 < m ⇒ φ(u) − φ
(
u′)= u − u′

⇒ �(v) − �
(
v′)= φ(u) + (v − u) − φ

(
u′)− (

v′ − u′)
= v − v′.

Alternatively, if ‖�(v) − �(v′)‖1 < m − 2, then∥∥φ(u) − φ
(
u′)∥∥< m ⇒ u − u′ = φ(u) − φ

(
u′)

= �(v) − (v − u) − �
(
v′)+ (

v′ − u′)
⇒ v − v′ = �(v) − �

(
v′).

Indeed, deg(�) ≥ m − 2. �

We can now define the desired metric on functions. Roughly speaking, an isometry allows
for the comparison of the large values of two functions. The size of the isometry’s domain
reflects how many of their large values are similar, while the degree of the isometry captures
how similar their relative positioning is. The metric is constructed in stages.

First, given an isometry φ : A → N × Z
d with finite (for measurability reasons, see

Lemma 2.11) domain A ⊂ N×Z
d and two functions f,g ∈ S, define

dφ(f, g) := 2
∑
u∈A

∣∣f (u) − g
(
φ(u)

)∣∣+ ∑
u/∈A

f (u)2

+ ∑
u/∈φ(A)

g(u)2 + 2−deg(φ).
(2.3)

Next define

d(f, g) := inf
φ

dφ(f, g),

where the infimum is taken over all isometries φ with finite domain. Since deg(φ−1) =
deg(φ), it is easy to see that dφ−1(g, f ) = dφ(f, g), and so the function d is symmetric:

d(f, g) = d(g,f ) for all f,g ∈ S.(2.4)

In fact, d also satisfies the triangle inequality on S.

LEMMA 2.3. For any f,g,h ∈ S,

d(f,h) ≤ d(f, g) + d(g,h).(2.5)
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PROOF. Fix ε > 0, and choose isometries φ : A → N × Z
d and ψ : B → N × Z

d such
that

dφ(f, g) < d(f, g) + ε and dψ(g,h) < d(g,h) + ε.

Define θ : A′ →N×Z
d as in Lemma 2.1. We have

dθ (f,h) = 2
∑
u∈A′

∣∣f (u) − h
(
θ(u)

)∣∣+ ∑
u/∈A′

f (u)2 + ∑
u/∈θ(A′)

h(u)2 + 2−deg(θ).(2.6)

The first sum above can be bounded as∑
u∈A′

∣∣f (u) − h
(
θ(u)

)∣∣≤ ∑
u∈A′

(∣∣f (u) − g
(
φ(u)

)∣∣+ ∣∣g(φ(u)
)− h

(
ψ
(
φ(u)

))∣∣)
= ∑

u∈A′

∣∣f (u) − g
(
φ(u)

)∣∣+ ∑
u∈B∩φ(A)

∣∣g(u) − h
(
ψ(u)

)∣∣.(2.7)

Recall that f , g and h take values in [0,1]. Now, if f (u) < g(v), then one trivially has
f (u)2 ≤ g(v)2 ≤ g(v)2 + 2|f (u) − g(v)|. On the other hand, if f (u) ≥ g(v), then one again
has

f (u)2 − g(v)2 = (
f (u) + g(v)

)(
f (u) − g(v)

)
≤ 2

(
f (u) − g(v)

)
⇒ f (u)2 ≤ 2

∣∣f (u) − g(v)
∣∣+ g(v)2.

As a result, the second sum in (2.6) satisfies∑
u/∈A′

f (u)2 = ∑
u∈A\A′

f (u)2 + ∑
u/∈A

f (u)2

≤ ∑
u∈A\A′

(
2
∣∣f (u) − g

(
φ(u)

)∣∣+ ∣∣g(φ(u)
)∣∣2)+ ∑

u/∈A

f (u)2

≤ 2
∑

u∈A\A′

∣∣f (u) − g
(
φ(u)

)∣∣+ ∑
u/∈B

g(u)2 + ∑
u/∈A

f (u)2.

(2.8)

Similarly, the third sum satisfies∑
u/∈θ(A′)

h(u)2 = ∑
u∈ψ(B)\θ(A′)

h(u)2 + ∑
u/∈ψ(B)

h(u)2

≤ ∑
u∈B\φ(A)

(
2
∣∣h(ψ(u)

)− g(u)
∣∣+ g(u)2)+ ∑

u/∈ψ(B)

h(u)2

≤ 2
∑

u∈B\φ(A)

∣∣g(u) − h
(
ψ(u)

)∣∣+ ∑
u/∈φ(A)

g(u)2 + ∑
u/∈ψ(B)

h(u)2.

(2.9)

Finally, Lemma 2.1 guarantees

deg(θ) ≥ min
(
deg(φ),deg(ψ)

)
⇒ 2−deg(θ) ≤ 2−deg(φ) + 2−deg(ψ).

(2.10)

Using (2.7)–(2.10) in (2.6), we find

d(f,h) ≤ dθ (f,h) ≤ dφ(f, g) + dψ(g,h) < d(f, g) + d(g,h) + 2ε.

As ε is arbitrary, (2.5) follows. �
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From (2.4) and (2.5), we see that d is a pseudometric on S. It does not, however, separate
points. Nevertheless, one can construct a metric space (S, d) by taking the quotient of S with
respect to the equivalence relation

f ≡ g ⇔ d(f, g) = 0.

We shall write without confusion the symbol f for both the equivalence class in S and the
representative chosen from S. When f is evaluated at a particular element u ∈ N × Z

d , an
explicit representative has been chosen. In the sequel, it will be important that certain proper-
ties of elements of S are invariant within the equivalence classes and thus well defined in S .
To identify the equivalence classes, we have the following result.

PROPOSITION 2.4. Two functions f,g ∈ S satisfy d(f, g) = 0 if and only if there is a set
B ⊂ N×Z

d and a map ψ : B →N×Z
d such that:

(i) f (u) = g(ψ(u)) for all u ∈ B ,
(ii) f (u) = 0 for all u /∈ B ,

(iii) g(u) = 0 for all u /∈ ψ(B) and
(iv) ψ(u) − ψ(v) = u − v for all u, v ∈ B .

The proof is purely technical and thus placed in Appendix A.1. A more transparent de-
scription of equivalence under d was given in the introductory Section 1.4. We restate it here
and prove equivalence to the conditions of Proposition 2.4. Recall that the N-support of f ∈ S

is the set

Hf := {
n ∈N : f (n, x) > 0 for some x ∈ Z

d}.
COROLLARY 2.5. Let f,g ∈ S have N-supports denoted by Hf and Hg , respectively.

Then d(f, g) = 0 if and only if there is a bijection σ : Hf → Hg and vectors (xn)n∈Hf
⊂ Z

d

such that

g
(
σ(n), x

)= f (n, x + xn) for all n ∈ Hf ,x ∈ Z
d .(2.11)

PROOF. First assume d(f, g) = 0, and take ψ : B →N×Z
d as in Proposition 2.4 so that

properties (i)–(iv) hold. By repeatedly applying Lemma 2.2, one may assume that the domain
B is a union of copies of Zd ; that is, B = H × Z

d . By property (ii), we can take H = Hf ,
while property (iv) shows first that for every n ∈ Hf , there is σ(n) ∈ N and xn ∈ Z

d satisfying

ψ(n,x) = (
σ(n), x − xn

)
for all x ∈ Z

d,

and second that n �→ σ(n) is injective. Then (i) leads to (2.11), while (iii) guarantees that
σ(Hf ) = Hg . Conversely, assume σ : Hf → Hg and (xn)n∈Hf

satisfy (2.11). Then define
ψ : Hf ×Z

d → Hg ×Z
d by ψ(n,x) := (σ (n), x − xn). Since the domain of ψ is Hf ×Z

d ,
and its range is Hg × Z

d , this map satisfies (ii) and (iii). At the same time, (iv) holds by
construction, and (i) follows from (2.11). �

We can now state a clear geometric condition for a function on S to be well defined on S .
For the functions that will be of interest to us, it will be obvious that the hypotheses of the
following corollary are satisfied.

COROLLARY 2.6. Suppose L is a function on S satisfying the following:

(i) L is invariant under shifts of Z
d : If there are vectors (xn)n∈N in Z

d such that
f (n, x) = g(n, x − xn), then L(f ) = L(g).
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(ii) L is invariant under permutations of N: If there is a bijection σ : N → N such that
f (n, x) = g(σ(n), x), then L(f ) = L(g).

(iii) L is invariant under zero-padding: If there is an increasing sequence (nk)k≥1 in N

such that

f (n, x) =
{
g(k, x) if n = nk,

0 else,

then L(f ) = L(g).

Then L is well defined on S by evaluating at any representative in S.

PROOF. Suppose f,g ∈ S are such that d(f, g) = 0. We wish to show that L(f ) = L(g).
Let Hf and Hg be the N-supports of f and g respectively, and let σ : Hf → Hg be a bijection
satisfying (2.11) with vectors (xn)n∈Hf

. If Hf is finite, then σ can be trivially extended to a
bijection on N, and then invariance properties (i) and (ii) are sufficient to show L(f ) = L(g).
If H is infinite, then we enumerate the sets

Hf = {n1 < n2 < · · · }, Hg = {m1 < m2 < · · · },
and define the functions hf ∈ S by hf (k, x) = f (nk, x) and hg(�, x) = g(m�, x). By (iii), we
have L(f ) = L(hf ) and L(g) = L(hg). Furthermore, σ induces a bijection σ ′ : N→N by

σ : nk �→ m� ⇔ σ ′ : k �→ �.

We now have

hf (k, x) = f (nk, x) = g
(
σ(nk), x − xn

)= hg

(
σ ′(k), x − xn

)
,

so that (i) and (ii) give L(hf ) = L(hg). So L(f ) = L(g) in this case as well. �

In the next lemma, we discuss our first example of a function L satisfying the hypotheses of
Corollary 2.6. This function will be important in defining the “update procedure” of Section 3.

LEMMA 2.7. The map ‖ · ‖ : S → [0,1] defined by (2.1) is lower semicontinuous and
thus measurable.

The proof below of Lemma 2.7 is similar to the arguments for several later results. Since
one encounters in these cases only variations of this proof, we will frequently spare the reader
details and place them in Appendix A.

PROOF OF LEMMA 2.7. It is clear that ‖ ·‖ : S → [0,1] satisfies (i)–(iii) in Corollary 2.6,
and so the map f �→ ‖f ‖ is well defined on S . To prove lower semicontinuity, it suffices to
fix f ∈ S , let ε > 0 be arbitrary, and find δ > 0 sufficiently small that

d(f, g) < δ ⇒ ‖g‖ > ‖f ‖ − ε.

Upon selecting a representative f ∈ S, we can find A ⊂ N × Z
d finite but large enough that∑

u/∈A f (u) < ε
2 . By possibly omitting some elements of A, we may assume that f is strictly

positive on A (if f is the constant zero function, this results in A =∅).
Now take 0 < δ < infu∈A f (u)2, where an infimum over the empty set is ∞. We will

further assume δ < ε. If d(f, g) < δ, then there is a representative g ∈ S and an isometry
φ : C → N × Z

d such that dφ(f, g) < δ. It follows that A ⊂ C, since otherwise we would
have dφ(f, g) ≥ f (u)2 > δ for some u ∈ A \ C. Hence,

‖g‖ ≥ ∑
u∈φ(A)

g(u) ≥ ∑
u∈A

f (u) − ∑
u∈A

∣∣f (u) − g
(
φ(u)

)∣∣+ ∑
u/∈A

f (u) − ∑
u/∈A

f (u)

> ‖f ‖ − dφ(f, g)

2
− ε

2
> ‖f ‖ − δ

2
− ε

2
> ‖f ‖ − ε. �
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2.2. Compactness. We now state the key compactness result for the metric space (S, d).

THEOREM 2.8. Every sequence (fn)n≥1 in (S, d) contains a converging subsequence.
That is, there is f ∈ S and a subsequence (fnk

)k≥1 such that

lim
k→∞d(fnk

, f ) = 0.

A continuum version of this result is Theorem 3.2 of [61]. The proof of Theorem 2.8,
however, strongly uses discreteness of Zd to deal with the explicit metric d . It can be found
in Appendix A.2.

The sequential compactness guaranteed by Theorem 2.8 will be used to establish results in
the following metric space of probability measures. Denote by P(S) the set of Borel proba-
bility measures on S , and equip this space with the Wasserstein metric ([86], Definition 6.1):

W(μ, ν) := inf
π∈�(μ,ν)

∫
S×S

d(f, g)π(df,dg),

where �(μ,ν) denotes the set of probability measures on S×S having μ and ν as marginals.
Note that we may use dual representation of W due to Kantorovich [49] when it is convenient:

W(μ, ν) = sup
ϕ

(∫
S

ϕ(f )μ(df ) −
∫
S

ϕ(f )ν(df )

)
,(2.12)

where the supremum is over 1-Lipschitz functions ϕ : S →R.
Now we recall some general facts on convergence in P(S). It is a standard result (e.g., see

[86], Theorem 6.9) that for measures on a compact metric space, the Wasserstein distance
metrizes the topology of weak convergence. Furthermore, this topology is again compact
([86], Remark 6.19). In the coming sections, we will employ weak convergence to prove
convergence of not only continuous test functions, but also semicontinuous test functions.
Therefore, we will repeatedly apply the Portmanteau lemma, which we record here so that it
can be properly quoted later in the paper.

LEMMA 2.9 (Portmanteau; cf. [13], Theorem 2.1 and [84], Theorem 1.3.4). Given a
function L : S →R, define the map L : P(S) →R by

L(μ) :=
∫
S

L(f )μ(df ).

If L is lower (resp. upper) semicontinuous, then L is lower (resp. upper) semicontinuous.

We conclude this section with some observations that will be needed in later arguments.

LEMMA 2.10. For any f,g ∈ S , d(f, g) ≤ 2.

PROOF. Pick representatives f,g ∈ S and let φ : ∅ → N × Z
d be the empty isometry.

Then

d(f, g) ≤ dφ(f, g) = ∑
u∈N×Zd

f (u)2 + ∑
u∈N×Zd

g(u)2 ≤ 2.
�

The next lemma concerns measure-theoretic properties of the spaces S and S . In particular,
S is considered as a subset of

�1(
N×Z

d)= {
f :N×Z

d →R : ‖f ‖ < ∞}
,

on which there is the standard �1 norm ‖ · ‖ that extends (2.1):

‖f ‖ := ∑
u∈N×Zd

∣∣f (u)
∣∣, f ∈ �1(

N×Z
d).
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LEMMA 2.11. Consider the metric spaces �1(N × Z
d) and S with their Borel σ -

algebras. Then the following statements hold:

(a) S is a closed (in particular, measurable) subset of �1(N × Z
d) and is thus itself a

measurable space with the subspace σ -algebra.
(b) The quotient map ι : S → S that sends f ∈ S to its equivalence class in S is measur-

able.

PROOF. To show S ⊂ �1(N × Z
d) is closed, we express S as the intersection of closed

sets:

S = {
f ∈ �1(

N×Z
d) : ‖f ‖ ≤ 1

}∩
( ⋂

u∈N×Zd

{
f ∈ �1(

N×Z
d) : f (u) ≥ 0

})
.

To next show ι is measurable, it suffices to verify that the inverse image of any open ball is
measurable. For f ∈ S and r > 0, we write

Br(f ) := {
g ∈ S : d(f, g) < r

}
.

Notice that

ι−1(Br(f )
)=⋃

φ

{
g ∈ S : dφ(f, g) < r

}
,

where the union is over isometries with finite domains. The union occurs, therefore, over
a countable set. For each φ, it is clear from (2.3) that dφ(f, ·) is a measurable function on
S, and so each set in the union is measurable. Being a countable union of measurable sets,
ι−1(Br(f )) is measurable. �

3. The update map. Consider the distribution of ωn under ρn. In this section, we iden-
tify said distribution with an element fn ∈ S and define the Markov kernel T that maps fn

to the law of fn+1 when conditioned on the random environment only up to time n. In the
following, the notation u ∼ v is used when u, v ∈ N × Z

d satisfy ‖u − v‖1 = 1. The same
notation will be used for adjacent elements x, y ∈ Z

d .

3.1. Definition of the update map. To make the setup precise, we recall the polymer
measure ρn defined by (1.2) and the endpoint probability mass function fn : Zd → R given
by

fn(x) := ρn(ωn = x) = (2d)−n

Zn

∑
|γ |=n

γ (0)=0,γ (n)=x

exp

(
β

n∑
i=1

Xi,γ (i)

)
,(3.1)

where the sum is over nearest-neighbor paths γ : {0,1, . . . , n} → Z
d of length |γ | = n, start-

ing at the origin and ending at x. Then fn is a [0,1]-valued function on Z
d and random

with respect to (�e,Fn), where the σ -algebra Fn is defined in (1.3). Its value at x gives the
probability that a polymer of length n in the given random environment has x as its endpoint.

When the polymer is extended from length n to length n + 1, the mass function updates to

fn+1(x) = (2d)−(n+1)

Zn+1

∑
y∼x

∑
|γ |=n

γ (0)=0,γ (n)=y

exp

(
β

n∑
i=1

Xi,γ (i) + βXn+1,x

)

= Zn

(2d)Zn+1

∑
y∼x

fn(y)eβXn+1,x =
∑

y∼x fn(y)eβXn+1,x

2d · Zn+1/Zn

,
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where the denominator is a normalizing factor and thus equal to

2d
Zn+1

Zn

= 2d
Zn+1

Zn

∑
x∈Zd

fn+1(x) = ∑
x∈Zd

∑
y∼x

fn(y)eβXn+1,x .(3.2)

Recall that (Xn+1,x)x∈Zd is independent of Fn, while fn is measurable with respect to Fn.
Therefore, the distribution of fn+1(x) given Fn is equal to the distribution of

F(x) :=
∑

y∼x fn(y)eβYx∑
z∈Zd

∑
y∼z fn(y)eβYz

,(3.3)

where (Yz)z∈Zd are i.i.d. random variables distributed according to L and independent of Fn.
Correspondingly, there is an updated free energy,

logZn+1 = logZn + E
[
log

Zn+1

Zn

∣∣∣Fn

]
+ (

logZn+1 − E[logZn+1 | Fn])
= logZn + R(fn) + dn,

where

R(fn) := E
[
log

Zn+1

Zn

∣∣∣Fn

]
= E

[
log

(
1

2d

∑
x∈Zd

∑
y∼x

fn(y)eβYx

) ∣∣∣Fn

]
,(3.4)

and

dn := log
Zn+1

Zn

− R(fn)(3.5)

is a martingale increment. That is, the Doob decomposition of (logZn)n≥0 is

logZn =
n−1∑
i=0

di +
n−1∑
i=0

R(fi),(3.6)

a fact which has been frequently used in the literature (e.g., [23, 24, 28, 29]).
Next, we wish to reinterpret these observations in the space S . For a given f ∈ S , choose a

representative (also called f ) from S. Consider the law of the random variable F ∈ S whose
representative is defined by

F(u) :=
∑

v∼u f (v)eβYu∑
w∈N×Zd

∑
v∼w f (v)eβYw + 2d(1 − ‖f ‖)eλ(β)

, u ∈ N×Z
d,(3.7)

where (Yw)w∈N×Zd are i.i.d. random variables with law L. Notice that (3.7) is a generalization
of (3.3) because in the latter, ‖fn‖ = 1. The additional summand in the denominator of (3.7)
is needed so that F is defined even when f ≡ 0; its precise value is chosen so that (3.2) is
generalized in an averaged form:

E
[ ∑
w∈N×Zd

∑
v∼w

f (v)eβYw + 2d
(
1 − ‖f ‖)eλ(β)

]
= 2d · eλ(β) = 2d · E

(
Zn+1

Zn

)
.

It is thus apparent that the correct extension of (3.4) is to define R : S →R by

R(f ) := E log
(

F̃

2d

)
, F̃ := ∑

u∈N×Zd

∑
v∼u

f (v)eβYu + 2d
(
1 − ‖f ‖)eλ(β),(3.8)

where the expectation is over the Yu.
We must now check that the above definitions do not depend on the representative f ∈ S.
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PROPOSITION 3.1. Suppose f,g ∈ S satisfy d(f, g) = 0. Define F and F̃ as in (3.7) and
(3.8), and similarly define

G(u) :=
∑

v∼u g(v)eβZu

G̃
, G̃ := ∑

w∈N×Zd

∑
v∼w

g(v)eβZw + 2d
(
1 − ‖g‖)eλ(β),

where the Zw are i.i.d. with law L. Then the following statements hold:

(a) The law of F ∈ S is equal to the law of G ∈ S .
(b) The law of F̃ ∈ R is equal to the law of G̃ ∈ R. In particular, R(f ) = R(g).

PROOF. To show the two claims, it suffices to exhibit a coupling of the environments
(Yu)u∈N×Zd and (Zu)u∈N×Zd such that F = G in S and F̃ = G̃ in R. So we let Hf and
Hg denote the N-supports of f and g, respectively, and take σ : Hf → Hg and (xn)n∈Hf

as in Corollary 2.5, so that (2.11) holds. Define ψ : Hf × Z
d → Hg × Z

d by ψ(n,x) :=
(σ (n), x − xn), and let Zu be equal to Yψ−1(u) whenever u ∈ Hg × Z

d . Otherwise, we may
take Zu to be an independent copy of Yu. For u ∈ Hf ×Z

d , we have by (2.11)∑
v∼u

f (v)eβYu = ∑
v∼u

g
(
ψ(v)

)
eβYu = ∑

v∼ψ(u)

g(v)eβZψ(u) .(3.9)

Since f (v) = 0 for all v /∈ Hf ×Z
d , and similarly g(v) = 0 for all v /∈ Hg ×Z

d , we can sum
over all of N×Z

d , and (3.9) gives∑
w∈N×Zd

∑
v∼w

f (v)eβYw = ∑
w∈N×Zd

∑
v∼w

g(v)eβZw .

This identity, together with the fact that ‖f ‖ = ‖g‖ (cf. Lemma 2.7), shows F̃ = G̃ and
thus proves claim (b). When we further consider (3.9), we see that F(u) = G(ψ(u)) for all
u ∈ Hf × Z

d . Hence, dψ(F,G) = 0. Moreover, for any ε > 0, we can find a finite subset
A ⊂ Hf ×Z

d such that ∑
u/∈A

F(u)2 + ∑
u/∈ψ(A)

G(u)2 < ε.

With φ := ψ |A, we thus have d(F,G) ≤ dφ(F,G) < ε. Letting ε tend to 0 gives claim (a).
�

Given Proposition 3.1, we may define Tf ∈ P(S) to be the law of F given f ∈ S . The
next step in our construction is to establish continuity. The seemingly unexciting result below
requires a careful and lengthy proof that deserves a separate Section 8.

PROPOSITION 3.2.

(a) f �→ Tf is a continuous map from (S, d) to (P(S),W).
(b) For any positive integer q , f �→ E(logq F̃ ) is a continuous map from (S, d) to R. In

particular, the case q = 1 implies R(·) is continuous.

The following consequence of part (b) is not new but will be convenient to have recorded
for later use.

COROLLARY 3.3. Recall the martingale increment dn from (3.5). For any positive inte-
ger q , there exists a constant C depending only on L, β , d and q , such that E(d

q
n ) ≤ C for

every n.
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PROOF. If we fix f = fn and take F̃ as in (3.8), then (3.2) tells us

E
[
logq Zn+1

Zn

∣∣∣Fn

]
= E

(
logq F̃

2d

)
.

By the compactness of S and the continuity property of Proposition 3.2(b), the above right-
hand side is bounded by a constant depending only on L, β , d and q . The same is then true
for E(logq Zn+1

Zn
), and thus also for E(d

q
n ). �

To apply f �→ Tf to the functions of interest, namely the endpoint distributions from (3.1),
we must first identify fn with the partitioned subprobability measure having representative

fn(u) =
{
fn(x) if u = (n, x),

0 else,
u ∈ N×Z

d .(3.10)

In review, fn is a function on Z
d that is random with respect to Fn. It is natural (and mea-

surable) to identify fn with a function on N × Z
d that is supported on the nth copy of Zd ;

this is (3.10). Finally, that function—thus far an element of S—is identified with its equiv-
alence class ι(fn) ∈ S , where ι is the quotient map from Lemma 2.11. In accordance with
our previous notation, the symbol fn will henceforth denote the equivalence class in S unless
stated otherwise, while fn(u) will denote the representative defined by (3.10), evaluated at
u ∈N×Z

d . By the discussion preceding (3.3), the law of fn+1 ∈ S given Fn is equal to Tf n.
For this reason, we refer to T as the “update map.”

3.2. Lifting the update map. Thus, far we have only considered the random variable F in
(3.7) for fixed f ∈ S . If f is itself a random element of S drawn from the probability measure
μ ∈ P(S), the resulting total law of F will be written T μ. That is,

T μ(A) =
∫

Tf (A)μ(df ), BorelA ⊂ S.

More generally, for ϕ : S →R,∫
ϕ(g)T μ(dg) =

∫
S

∫
S

ϕ(g)Tf (dg)μ(df ),(3.11)

where the integral is well defined if ϕ is nonnegative, or if∫
S

∫
S

∣∣ϕ(g)
∣∣Tf (dg)μ(df ) < ∞.

We can recover the map T as Tf = T δf , where δf ∈ P(S) is the unit point mass at f .
From Proposition 3.2, one can conclude by standard arguments that μ �→ T μ is (uniformly)
continuous. A proof is included in Appendix A.3.

PROPOSITION 3.4. μ �→ T μ is a continuous map (P(S),W) → (P(S),W).

4. The empirical measure of the endpoint distribution.

4.1. Definition and properties. As discussed in Section 3.1, the law of the endpoint dis-
tribution fn+1 given Fn is equal to Tf n. Now define the empirical probability measure on S
generated by the fi ,

μn := 1

n

n−1∑
i=0

δfi
.(4.1)
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Then μn is a random element of P(S), measurable with respect to Fn. While we will be
interested in the quantity W(μn,T μn), it is easier to replace μn by the shifted empirical
measure,

μ′
n := 1

n

n∑
i=1

δfi
,

since Tf i is the distribution of fi+1 given Fi .
Making use of the dual formulation (2.12) of Wasserstein distance, one has

W
(
μ′

n,T μn

)= sup
ϕ

(∫
ϕ(f )μ′

n(df ) −
∫

ϕ(f )T μn(df )

)

= sup
ϕ

1

n

n−1∑
i=0

(
ϕ(fi+1) − E

[
ϕ(fi+1) | Fi

])
,

where the supremum is taken over all functions ϕ : S →R satisfying∣∣ϕ(f ) − ϕ(g)
∣∣≤ d(f, g) for all f,g ∈ S.(4.2)

Notice, however, that adding a constant to ϕ does not change the value of
∫

ϕ(f )μ′
n(df ) −∫

ϕ(f )T μn(df ), and so the supremum can equivalently be taken over ϕ satisfying ϕ(0) = 0,
where 0 denotes (the equivalence class of) the constant zero function. Let us denote the set
of such functions by

L = {
ϕ : S →R : ∣∣ϕ(f ) − ϕ(g)

∣∣≤ d(f, g) for all f,g ∈ S, ϕ(0) = 0
}
.

Recall that the space of real-valued continuous functions on a compact metric space is
equipped with the uniform norm,

‖ϕ‖∞ := sup
f ∈S

∣∣ϕ(f )
∣∣< ∞.

For ϕ ∈ L, the Lipschitz condition (4.2) and Lemma 2.10 imply ‖ϕ‖∞ ≤ 2. In particular,
L is a uniformly bounded family of continuous functions. Furthermore, since L consists of
Lipschitz functions whose minimal Lipschitz constants are uniformly bounded, it is both
equicontinuous and closed under the topology induced by the uniform norm. By the Arzelà–
Ascoli theorem (see Munkres [62], Theorem 47.1), L is compact in this topology. Having
made this observation, we are now ready to prove the following convergence result.

PROPOSITION 4.1. As n → ∞, W(μ′
n,T μn) → 0 almost surely.

We will use the following well-known fact.

LEMMA 4.2 (Burkholder–Davis–Gundy Inequality, see [22], Theorem 1.1). Let (Mn)n≥0
be a martingale, and write

Mn =
n∑

i=0

di, d0 = M0, di = Mi − Mi−1 for i ≥ 1.

Let M∗
n := sup0≤i≤n Mn. Then for any q ≥ 1, there are positive constants cq and Cq such that

cqE

[(
n∑

i=0

d2
i

)q/2]
≤ E

[(
M∗

n

)q]≤ CqE

[(
n∑

i=0

d2
i

)q/2]
for all n ≥ 0.
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PROOF OF PROPOSITION 4.1. We have

W
(
μ′

n,T μn

)= sup
ϕ∈L

1

n

n−1∑
i=0

(
ϕ(fi+1) − E

[
ϕ(fi+1) | Fi

])
.

Notice that for any fixed ϕ ∈ L,

Mn(ϕ) :=
n−1∑
i=0

(
ϕ(fi+1) − E

[
ϕ(fi+1) | Fi

])
defines a martingale (Mn(ϕ))n≥0 adapted to the filtration (Fn)n≥0. By Lemma 4.2, there is a
constant C = C(ϕ) such that

E
[
Mn(ϕ)4]≤ E

[
M∗

n(ϕ)4]
≤ CE

[(
n−1∑
i=0

(
ϕ(fi+1) − E

[
ϕ(fi+1) | Fi

])2)2]
≤ 16Cn2,

where the final inequality follows from (4.2) and Lemma 2.10. A Markov bound now gives

∞∑
n=0

P
( |Mn(ϕ)|

n
> n−1/5

)
=

∞∑
n=0

P
(
Mn(ϕ)4 > n16/5)

≤
∞∑

n=0

n−16/5E
[
Mn(ϕ)4]

≤
∞∑

n=0

16Cn−6/5 < ∞.

By Borel–Cantelli, we may conclude

lim
n→∞

|Mn(ϕ)|
n

= 0 a.s.(4.3)

As discussed above, L is compact in the uniform norm topology. In particular, it is separable.
Let ϕ1, ϕ2, . . . be a countable, dense subset of L. Because of (4.3), we can say that with
probability one,

lim
n→∞

Mn(ϕj )

n
= 0 for all j ≥ 1.(4.4)

Assume that this almost sure event occurs. Again from (4.2) and Lemma 2.10, we know

∥∥ϕ − ϕ′∥∥∞ < ε ⇒
∣∣∣∣Mn(ϕ)

n
− Mn(ϕ

′)
n

∣∣∣∣< 2ε,

meaning (Mn(·)/n)n≥0 is an equicontinuous sequence of functions on the compact metric
space L. The assumption (4.4) says that this family converges pointwise to 0 on a dense
subset. The Arzelà–Ascoli theorem forces this convergence to be uniform. That is, for any
ε > 0, there is N large enough that

n ≥ N ⇒ W
(
μ′

n,T μn

)= sup
ϕ∈L

Mn(ϕ)

n
< ε.

We conclude that W(μ′
n,T μn) tends to 0 as n → ∞. As this holds given the almost sure

event (4.4), we are done. �
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4.2. Convergence to fixed points of the update map. Proposition 4.1 suggests that for
large n, the empirical measure will be close to the set of fixed points of T :

K := {
ν ∈ P(S) : T ν = ν

}
.(4.5)

For U ⊂P(S), we will denote distance to U by

W(μ,U) := inf
ν∈UW(μ, ν), μ ∈ P(S).

COROLLARY 4.3. As n → ∞, W(μn,K) → 0 almost surely.

PROOF. Recall that 0 is the element of S whose unique representative in S is the con-
stant zero function. Notice that T δ0 = δ0 so that K is nonempty. Next observe that from
Lemma 2.10, we have the trivial bound W(μn,μ

′
n) ≤ 2/n, and so Proposition 4.1 imme-

diately implies W(μn,T μn) → 0 almost surely. On this almost sure event, it follows that
W(μn,K) → 0, since otherwise there would exist a subsequence μnk

remaining a fixed pos-
itive distance away from K. By compactness, we could assume μnk

converges to some μ, but
then continuity of T would force W(μ,T μ) = 0; that is, μnk

converges to an element of K,
which is a contradiction. �

Now that the set K is seen to contain all possible limits of the empirical measure, we should
like to have some description of its elements. One suggestive fact proved below is that any
measure in K places all its mass on those elements of S with norm 0 or 1. This observation
will be crucial in proving our characterization of the low temperature phase in Section 5.

PROPOSITION 4.4. If ν ∈ K, then

ν
({

f ∈ S : 0 < ‖f ‖ < 1
})= 0.

PROOF. First take f ∈ S to be nonrandom. Then Tf is the law of the random function

F(u) =
∑

v∼u f (v)eβYu∑
w∈N×Zd

∑
v∼w f (v)eβYw + 2d(1 − ‖f ‖)eλ(β)

.

If ‖f ‖ = 0 or ‖f ‖ = 1, then ‖F‖ = ‖f ‖. If instead 0 < ‖f ‖ < 1, then ‖F‖ is random and
still satisfies 0 < ‖F‖ < 1. By summing over u ∈N×Z

d , we have

E
(‖F‖)= E

[ ∑
u∈N×Zd

∑
v∼u f (v)eβYu∑

u∈N×Zd

∑
v∼u f (v)eβYu + 2d(1 − ‖f ‖)eλ(β)

]
.

Upon observing that for any constant C > 0, the mapping t �→ t
t+C

is strictly concave, we
deduce from Jensen’s inequality that

E
(‖F‖)≤ E[∑u∈N×Zd

∑
v∼u f (v)eβYu]

E[∑u∈N×Zd

∑
v∼u f (v)eβYu] + 2d(1 − ‖f ‖)eλ(β)

= 2d‖f ‖ · eλ(β)

2d · eλ(β)
= ‖f ‖,

where equality holds if and only if
∑

u∈N×Zd

∑
v∼u f (v)eβYu is an almost sure constant. Since

the disorder distribution L is not a point mass, this is not the case.
Now let ν ∈P(S), and take f ∈ S to be random with law ν. If ν assigns positive measure

to the set {f ∈ S : 0 < ‖f ‖ < 1}, then the above argument gives∫
‖g‖T ν(dg) =

∫∫
‖F‖Tf (dF)ν(df ) <

∫
‖f ‖ν(df ).

But when ν ∈ K so that T ν = ν, the first and last expressions above are equal. We conclude
that any ν ∈ K must assign mass 0 to the set {f ∈ S : 0 < ‖f ‖ < 1}. �
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4.3. Variational formula for the free energy. In order to connect the results of Section 4.2
to the temperature conditions of Theorems 1.1 and 1.2, we will need to relate the free energy
Fn = 1

n
logZn to the abstract objects we have introduced. Recall the Doob decomposition

from (3.4)–(3.6):

logZn = Mn + An where Mn =
n−1∑
i=0

di,An =
n−1∑
i=0

R(fi).

If we lift the functional R : S →R of (3.8) to R : P(S) →R by defining

R(μ) :=
∫

R(f )μ(df ), μ ∈ P(S),(4.6)

then we can conveniently rewrite the above decomposition as

Fn = logZn

n
= Mn

n
+R(μn),(4.7)

where μn is the empirical measure from (4.1). Our next result, which says the mean-zero
martingale (Mn)n≥0 has a vanishing contribution in the above expression, is merely a rein-
terpretation of arguments appearing in earlier works (e.g., [23, 24, 28, 29]).

PROPOSITION 4.5. As n → ∞, |Fn −R(μn)| → 0 almost surely.

PROOF. By Corollary 3.3, we have E(d4
i ) ≤ C1 for some constant C1 independent of i.

From Lemma 4.2, we deduce that

E
(
M4

n

)≤ C2E

[(
n−1∑
i=0

d2
i

)2]
≤ C2

n−1∑
i=0

n−1∑
j=0

√
E
(
d4
i

)
E
(
d4
j

)≤ Cn2,

where the constant C = C1C2 is independent of n. It follows that E[(n−1Mn)
4] ≤ Cn−2. As

in the proof of Proposition 4.1, an argument using Markov’s inequality and Borel–Cantelli
shows

lim
n→∞

∣∣Fn −R(μn)
∣∣= lim

n→∞
|Mn|

n
= 0 a.s. �

Given the convergence of μn to the set K, one should expect E(Fn) = ER(μn) to become
close to R(ν) for some ν ∈ K. One difficulty is that μn does not converge to a particular
ν ∈ K, but rather becomes arbitrarily close to the set K. Nevertheless, we can instead consider
the subset

M =
{
ν0 ∈ K : R(ν0) = inf

ν∈KR(ν)
}
,(4.8)

and show convergence to M. By Proposition 3.2(b) and Lemma 2.9, R is continuous. There-
fore, since K is compact (being a closed subset of a compact metric space), the set M is
nonempty. Moreover, M is a closed subset of the compact space K, and so M is compact.
The first step in proving the desired convergence is the following consequence of Corol-
lary 4.3.

PROPOSITION 4.6. Let K be defined by (4.5). Let R : P(S) → R be defined by (4.6).
Then

lim inf
n→∞ Fn ≥ inf

ν∈KR(ν) a.s.(4.9)

In particular,

lim inf
n→∞ E(Fn) ≥ inf

ν∈KR(ν).(4.10)
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PROOF. R is continuous on the compact metric space (P(S),W), and thus uniformly
continuous. Therefore, a simple argument using Corollary 4.3 gives

lim inf
n→∞ R(μn) ≥ inf

ν∈KR(ν) a.s.(4.11)

Since R is bounded, we may apply Fatou’s lemma to obtain

lim inf
n→∞ ER(μn) ≥ E

[
lim inf
n→∞ R(μn)

]
≥ inf

ν∈KR(ν).(4.12)

Now (4.9) follows from (4.11) and Proposition 4.5, and (4.10) follows from (4.12) and the
fact that E(Fn) = ER(μn). �

Following Proposition 4.6, we naturally ask if there is a matching upper bound. The next
result answers this question in the affirmative. To state the full theorem, we need to denote one
element of S in particular. Notice that for f ∈ S satisfying f (u) = 1 for some u ∈ N × Z

d ,
Proposition 2.4 implies d(f, g) = 0 for g ∈ S if and only if g(v) = 1 for some v ∈ N × Z

d .
We can thus define the element 1 ∈ S whose representatives in S are the norm-1 functions
supported on a single point.

THEOREM 4.7. Let K be defined by (4.5). Let R : P(S) →R be defined by (4.6). Then

lim sup
n→∞

E(Fn) ≤ inf
ν∈KR(ν),

and so

lim
n→∞Fn = inf

ν∈KR(ν) a.s.(4.13)

The minimum value is equal to

inf
ν∈KR(ν) = lim

n→∞
1

n

n−1∑
i=0

R
(
T iδ1

)
.(4.14)

The key ingredient in the proof of Theorem 4.7 is the following lemma. When ‖f0‖ =
1, the result can be regarded as Jensen’s inequality applied to a weighted sum of partition
functions, each one corresponding to a different starting vertex chosen at random according
to f0.

LEMMA 4.8. For any f0 ∈ S and n ≥ 1,

n−1∑
i=0

R
(
T iδf0

)≥ E logZn,

where δf0 ∈ P(S) is the unit mass at f0. Equality holds if and only if f0 = 1.

PROOF. If f0 = 0, then R(T iδ0) = R(δ0) = λ(β), and so the desired inequality is imme-
diate from (1.4). So we may assume f0 �= 0. Fix a representative f0 ∈ S. Let (Y

(i)
u )u∈N×Zd ,

1 ≤ i ≤ n, be independent collections of i.i.d. random variables with law L. For 1 ≤ i ≤ n−1,
inductively define fi ∈ S to have representative

fi(u) =
∑

v∼u fi−1(v)eβY
(i)
u∑

w∈N×Zd

∑
v∼w fi−1(v)eβY

(i)
w + 2d(1 − ‖fi−1‖)eλ(β)

,
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so that the law of fi is equal to T applied to the law of fi−1. By induction, then, the law of
fi is T iδf0 . By definitions (4.6) and (3.8),

R
(
T iδf0

)= E log F̃i − log 2d,

where

F̃i := ∑
ui+1∈N×Zd

∑
ui∼ui+1

fi(ui)e
βY

(i+1)
ui+1 + 2d

(
1 − ‖fi‖)eλ(β),

and the expectation is over both fi and the Y (i+1) variables. Repeatedly rewriting fi in terms
of fi−1 leads to the identity

F̃0F̃1 · · · F̃n−1

= ∑
un∈N×Zd

∑
u0∼u1∼···∼un

f0(u0)e
β
∑n

i=1 Y
(i)
ui + (2d)n

(
1 − ‖f0‖)enλ(β)

= ∑
u0∈N×Zd

f0(u0)

‖f0‖
[
‖f0‖

∑
un∼···∼u0

eβ
∑n

i=1 Y
(i)
ui + (2d)n

(
1 − ‖f0‖)E(Zn)

]
.

Using the concavity of the log function in three consecutive steps, we deduce

log F̃0F̃1 · · · F̃n−1

≥∑
u0

f0(u0)

‖f0‖ log
[
‖f0‖

∑
un∼···∼u0

eβ
∑n

i=1 Y
(i)
ui + (2d)n

(
1 − ‖f0‖)E(Zn)

]

≥∑
u0

f0(u0)

‖f0‖
[
‖f0‖ log

∑
un∼···∼u0

eβ
∑n

i=1 Y
(i)
ui + (

1 − ‖f0‖) log
(
(2d)nE(Zn)

)]

≥∑
u0

f0(u0)

‖f0‖
[
‖f0‖ log

∑
un∼···∼u0

eβ
∑n

i=1 Y
(i)
ui + (

1 − ‖f0‖)E log
(
(2d)nZn

)]
,

where equality holds throughout if and only if f0(u0) = 1 for some u0 ∈ N × Z
d . Since

the random variable
∑

un∼···∼u0
exp(β

∑n
i=1 Y

(i)
ui ) is equal in law to (2d)nZn for any fixed

u0 ∈N×Z
d , taking expectation yields

E log F̃0F̃1 · · · F̃n−1

≥∑
u0

f0(u0)

‖f0‖
(‖f0‖E log

(
(2d)nZn

)+ (
1 − ‖f0‖)E log

(
(2d)nZn

))
= E log

(
(2d)nZn

)
.

It follows that

n−1∑
i=0

R
(
T iδf0

)=
n−1∑
i=0

(E log F̃i − log 2d)

= E log(F̃0F̃1 · · · F̃n−1) − log(2d)n ≥ E logZn,

with equality if and only if f0 = 1. �
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PROOF OF THEOREM 4.7. Consider any ν ∈ K. Using the fact that T ν = ν and
Lemma 4.8, we have

R(ν) = 1

n

n−1∑
i=0

R
(
T iν

)=
∫ 1

n

n−1∑
i=0

R
(
T iδf

)
ν(df )

≥
∫ 1

n
E logZnν(df ) = E(Fn).

We note that linearity of T and Fubini’s theorem (3.11) have been applied, which is permis-
sible since Proposition 3.2(b) shows that R is continuous on S and hence bounded.

As the above estimate holds for every ν ∈ K and every n, we have

lim sup
n→∞

E(Fn) ≤ inf
ν∈KR(ν).(4.15)

It now follows from (4.10) and (4.15) that

lim
n→∞ E(Fn) = inf

ν∈KR(ν).(4.16)

Then (1.5) improves (4.16) to (4.13). Finally, equation (4.14) follows from the final statement
in Lemma 4.8. �

We now turn to strengthening Corollary 4.3 by proving convergence not only to K, but to
the smaller set M, defined in (4.8).

THEOREM 4.9. As n → ∞, W(μn,M) → 0 almost surely.

PROOF. As n → ∞, W(μn,K) → 0 almost surely (by Corollary 4.3), and R(μn) con-
verges almost surely to infν∈KR(ν) (by Proposition 4.5 and Theorem 4.7). Therefore, by
continuity of R and compactness of P(S), we have W(μn,Kδ) → 0 almost surely, where δ

is any positive number, and

Kδ :=
{
ν0 ∈ K : R(ν0) < inf

ν∈KR(ν) + δ
}
.

Now, given any ε > 0, we can choose δ such that supν∈Kδ
W(ν,M) < ε. (Indeed, if

this were not the case, then one could find a sequence (νk)k≥1 in K such that R(νk) ↘
infν∈KR(ν) as k → ∞, but W(νk,M) ≥ ε for all k. Since K is compact, we may pass
to a subsequence and assume νk converges to some ν0 ∈ K. In particular, W(ν0,M) ≥ ε.
But the continuity of R implies R(ν0) = infν∈KR(ν), meaning ν ∈ M, a contradiction.) As
W(μn,Kδ) → 0 almost surely and ε > 0 is arbitrary, we are done. �

5. Limits of empirical measures. In the first part of this section, we give a characteri-
zation of the low temperature regime in terms of the fixed points of the update map T . This
is stated as Theorem 5.2(b). We know from Theorem 4.9 that those fixed points minimizing
the energy functional R constitute the possible limits of the empirical measure μn, and so
this characterization will allow us to study the Cesàro asymptotics of endpoint distributions.

In Section 5.2, we make this connection more concrete by outlining the general steps
by which the theory developed in the previous three sections can be used to prove statements
about directed polymers. Indeed, the strategy described will be employed in Sections 6 and 7.
But to provide a more brief, instructional example in the present section, we give a new proof
of Theorem D, which offered a first characterization of the low temperature phase. Once
appropriate definitions are made, only a short argument is needed to prove the statement.
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5.1. Characterizing high and low temperature phases. Recall that 0 is the element of S
whose unique representative in S is the constant zero function, and 1 is the element of S
whose representatives in S are the norm-1 functions supported on a single point.

LEMMA 5.1. The function R : S → R from (3.8) achieves a unique minimum R(1) =
E logZ1, and a unique maximum R(0) = λ(β).

PROOF. The first statement is immediate from Lemma 4.8 by taking n = 1. The second
statement follows from the Jensen inequality R(f ) ≤ log E(F̃ ) − log 2d = λ(β), where F̃ is
defined in (3.8). Moreover, the inequality is strict whenever f �= 0, since then F̃ is not an
almost sure constant. �

Now we characterize the high and low temperature regimes by the elements of K and
M, defined by (4.5) and (4.8), respectively. Notice that δ0 is always an element of K; the
temperature regime is determined by whether it is also an element of M.

THEOREM 5.2. Assume (1.1). The following statements hold:

(a) If 0 ≤ β ≤ βc, then K = M = {δ0}.
(b) If β > βc, then ν({f ∈ S : ‖f ‖ = 1}) = 1 for every ν ∈ M, and so T has more than

one fixed point.

PROOF. Since the hypotheses of (a) and (b) are complementary, it suffices to prove their
converses. We always have T δ0 = δ0. If K contains no other elements of P(S), then M =
{δ0} and Theorem 4.7 shows

p(β) = lim
n→∞ E(Fn) = R(δ0) = R(0) = λ(β).

That is, 0 ≤ β ≤ βc when K = M = {δ0}.
If instead there exists ν ∈ K distinct from δ0, then Proposition 4.4 implies that ν assigns

positive mass to the set

U := {
f ∈ S : ‖f ‖ = 1

}
,

which is measurable by Lemma 2.7. Moreover, Proposition 4.4 guarantees ν({0}) = 1−ν(U),
and Lemma 5.1 shows R(f ) < R(0) for all f ∈ U . It follows that

lim
n→∞ E(Fn) ≤R(ν) =

∫
R(f )ν(df ) < R(0).

In this case we have p(β) < λ(β), meaning β > βc. Furthermore, we can consider the prob-
ability measure

νU (A) := ν(A∩ U)

ν(U)
, BorelA ⊂ S.

Notice that U and S \ U are both closed under T :

f ∈ U ⇒ Tf (U) = 1,

f /∈ U ⇒ Tf (U) = 0.

Indeed, this observation was made in the proof of Proposition 4.4. Therefore, T ν = ν implies
νU is also an element of K. If ν(U) < 1, then νU satisfies

R(νU ) = 1

ν(U)

∫
U

R(f )ν(df ) =
∫
U

R(f )ν(df ) + 1 − ν(U)

ν(U)

∫
U

R(f )ν(df )

<

∫
U

R(f )ν(df ) + (
1 − ν(U)

)
R(0) =R(ν).

It follows that ν ∈ M only if ν(U) = 1. �
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5.2. An illustrative application. To demonstrate how the abstract setup can be employed
to prove results on directed polymers, we will use it to prove Theorem D, which is restated
here.

THEOREM 5.3. Assume (1.1). Then the following statements hold:

(a) If 0 ≤ β ≤ βc, then

lim
n→∞

1

n

n−1∑
i=0

max
x∈Zd

fi(x) = 0 a.s.

(b) If β > βc, then there exists c > 0 such that

lim inf
n→∞

1

n

n−1∑
i=0

max
x∈Zd

fi(x) ≥ c a.s.(5.1)

The first step is to define the functional(s) relevant to the problem. At first, definitions are
made on the space S. For instance, from (5.1) we are motivated to define max : S → [0,1] by

max(f ) := max
u∈N×Zd

f (u).

By appealing to Corollary 2.6, we see that the functional is well defined on the quotient
space S . This should be true in order for the abstract machinery to be applicable. Notice that
when fi is seen as an element of S ,

1

n

n−1∑
i=0

max
x∈Zd

fi(x) =
∫

max(f )μn(df ).(5.2)

The second step is to prove a continuity condition so that Portmanteau (Lemma 2.9) may be
applied. Therefore, it is important to understand the topology induced by the metric d . Both
here and in later sections, this step is the most technical part of the process, but is generally
straightforward and follows a similar proof strategy.

LEMMA 5.4. The function max : S → [0,1] given by

max(f ) := max
u∈N×Zd

f (u)

is continuous and thus measurable.

PROOF. Let f ∈ S be given, and fix a representative in S. Choose u ∈ N× Z
d such that

f (u) = maxv∈N×Zd f (v). If f (u) = 0, then f is identically zero, and

d(f, g) < δ ⇒ ∃φ : A →N×Z
d,

∑
v∈A

g
(
φ(v)

)+ ∑
v /∈φ(A)

g(v)2 < δ

⇒ max
v∈N×Zd

g(v) < max{δ,√δ}.

Otherwise, for any δ ∈ (0, f (u)2), we have

d(f, g) < δ ⇒ ∃φ : A →N×Z
d, dφ(f, g) < δ < f (u)2

⇒ u ∈ A and
∣∣f (v) − g

(
φ(v)

)∣∣< δ for all v ∈ A,

and g(v)2 < δ for all v /∈ φ(A)

⇒
∣∣∣ max
v∈N×Zd

g(v) − max
v∈N×Zd

f (v)
∣∣∣< max{δ,√δ}.

From these two cases, we conclude that f �→ maxf is continuous on S . �
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After the appropriate functionals have been defined, their limiting behavior (in a Cesàro
sense) can be determined by applying Theorem 5.2. Consequently, the next step in our pro-
gram is to study how the functionals of interest behave according to the elements of M. This
will depend on the value of β . For instance, in the high temperature phase, M consists of
only the point mass δ0 at the zero function 0, and so trivially we have

0 ≤ β ≤ βc ⇒
∫

max(f )ν(df ) = max(0) = 0 for all ν ∈ M.(5.3)

On the other hand, in the low temperature phase, every ν ∈ M is supported on those f ∈ S
with ‖f ‖ = 1. So clearly

β > βc ⇒
∫

max(f )ν(df ) > 0 for all ν ∈ M.

Furthermore, because of Lemma 2.9, Lemma 5.4 shows ν �→ ∫
max(f )ν(df ) is continuous

on the compact set M, and so we actually have

β > βc ⇒
∫

max(f )ν(df ) ≥ c for all ν ∈ M,(5.4)

for some c > 0. Now we are poised to prove the desired result. The final step is to interpret the
above observations in terms of the directed polymer model, via the almost sure convergence
to M that is stated in Theorem 4.9. It is useful to remember that S and P(S) are compact
spaces.

PROOF OF THEOREM 5.3. By the (uniform) continuity of the map

μ �→
∫

max(f )μ(df )

on the compact space P(S), we can find for any ε > 0 some δ > 0 such that

W(μ,M) < δ ⇒ inf
ν∈M

∫
max(f )ν(df ) − ε

≤
∫

max(f )μ(df ) ≤ sup
ν∈M

∫
max(f )ν(df ) + ε.

Thus Theorem 4.9 implies that almost surely,

inf
ν∈M

∫
max(f )ν(df ) ≤ lim inf

n→∞

∫
max(f )μn(df )

≤ lim sup
n→∞

∫
max(f )μn(df ) ≤ sup

ν∈M

∫
max(f )ν(df ).

When 0 ≤ β ≤ βc, (5.3) says that the infimum and supremum appearing above are both equal
to 0, and so

lim
n→∞

∫
max(f )μn(df ) = 0 a.s.(5.5)

When β > βc, (5.4) shows that the infimum is bounded below by c > 0, in which case we
have

lim inf
n→∞

∫
max(f )μn(df ) ≥ c a.s.(5.6)

Recalling (5.2), we see that (5.5) and (5.6) are exactly what we wanted to show. �
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6. Asymptotic pure atomicity. Following the approach outlined in Section 5.2, we will
prove that directed polymers are asymptotically purely atomic if and only if the parameter β

falls in the low temperature regime. We say that the sequence of endpoint probability mass
functions (fi)i≥0 is asymptotically purely atomic if for every sequence (εi)i≥0 tending to 0
as i → ∞, we have

lim
n→∞

1

n

n−1∑
i=0

ρi

(
ωi ∈ Aεi

i

)= 1 a.s.,

where

Aε
i := {

x ∈ Z
d : fi(x) > ε

}
, i ≥ 0, ε > 0.

In [85], Vargas defines asymptotic pure atomicity by the same convergence condition, but
in probability rather than almost surely. A priori, the definition considered here is a stronger
one, but since (6.1) implies the negation of the “in probability” definition, Theorem 6.3 shows
the two definitions are equivalent given (1.1).

We begin by making the necessary definitions in the abstract setting.

6.1. Definitions of relevant functionals. Observe that the quantity of interest, ρi(ωi ∈
Aε

i ), is a function of the mass function fi . Specifically,

ρi

(
ωi ∈Aε

i

)= ∑
x∈Zd :fi(x)>ε

fi(x).

We are thus motivated to define ‖ · ‖ε : S → [0,1] by

‖f ‖ε := ∑
u∈N×Zd :f (u)>ε

f (u).

For any ε ∈ (0,1), the map f �→ ‖f ‖ε satisfies (i)–(iii) of Corollary 2.6 and thus induces a
well-defined function on S . To establish asymptotic pure atomicity, it will be important that
this function is lower semicontinuous, a fact we prove in the lemma below. Another useful
functional will be I ε : S → {0,1} given by

I ε(f ) =
⎧⎨⎩1 if max

u∈N×Zd
f (u) ≥ ε,

0 else.

Once more, it is clear that I ε satisfies the hypotheses of Corollary 2.6, and so it is well defined
on S .

LEMMA 6.1. For any ε ∈ (0,1), the following statements hold:

(a) The map ‖ · ‖ε : S → [0,1] is lower semicontinuous and thus measurable.
(b) The map I ε : S → {0,1} is upper semicontinuous and thus measurable.

PROOF. The proof of (a) is similar to that of Lemma 2.7; see Appendix A.4. For claim
(b) we need only to consider the case when (fn)n≥1 is a sequence in S satisfying I ε(fn) = 1
for infinitely many n, and d(fn, f ) → 0 as n → ∞. We must show I ε(f ) = 1. By passing to
a subsequence, we may assume I ε(fn) = 1 for all n. That is, max(fn) ≥ ε for all n, and so
Lemma 5.4 forces max(f ) ≥ ε, meaning I ε(f ) = 1. �
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6.2. Proof of asymptotic pure atomicity at low temperature. First, we simplify the prob-
lem by providing a sufficient condition for asymptotic pure atomicity. The statement below
can be easily verified by the reader.

LEMMA 6.2. If for every c < 1, there is ε > 0 such that

lim inf
n→∞

1

n

n−1∑
i=0

ρi

(
ωi ∈ Aε

i

)
> c a.s.,

then (fi)i≥0 is asymptotically purely atomic.

We are now ready to prove Theorem 1.1. For the convenience of the reader, we will restate
the result here before giving the proof.

THEOREM 6.3. Assume (1.1). Then the following statements hold:

(a) If β > βc, then (fi)i≥0 is asymptotically purely atomic.
(b) If 0 ≤ β ≤ βc, then there is a sequence (εi)i≥0 tending to 0 as i → ∞, such that

lim
n→∞

1

n

n−1∑
i=0

ρi

(
ωi ∈Aεi

i

)= 0 a.s.(6.1)

While the functionals ‖ · ‖ε and Iε(·) are not continuous, their semicontinuity will be
sufficient to make a limiting argument, thanks to the following generalization of Dini’s first
theorem.

LEMMA 6.4. Let (X , τ ) be a compact metric space. If (Fn)n≥1 is a nondecreasing se-
quence of lower semicontinuous functions X → R converging pointwise to an upper semi-
continuous function F , then the convergence is uniform.

PROOF. Let Gn := F − Fn so that Gn ↘ 0 pointwise on X , and Gn is upper semicon-
tinuous. For given ε > 0, consider the set

Un := {
x ∈ X : Gn(x) < ε

}
,

which is open because Gn is upper semicontinuous. Since Gn(x) → 0 for every x ∈ X , we
have

⋃
n Un = X . By compactness of X , there is a finite list n1 < n2 < · · · < nk such that⋃k

j=1 Unj
= X . But the monotonicity assumption guarantees Un is an ascending sequence.

Hence, X =⋃k
j=1 Unj

= Unk
= Un for all n ≥ nk , meaning

n ≥ nk ⇒ Un = X
⇒ ∣∣F(x) − Fn(x)

∣∣= F(x) − Fn(x) < ε for all x ∈ X .

That is, Fn ↗ F uniformly on X . �

PROOF OF THEOREM 6.3. We first prove (a). For ε > 0, define ‖ · ‖ε on P(S) by

‖ν‖ε :=
∫

‖f ‖εν(df ) =
∫ ∑

u:f (u)>ε

f (u)ν(df ).

In light of Lemma 2.9, Lemma 6.1(a) implies ‖ · ‖ε : P(S) → R is lower semicontinuous.
For any f ∈ S such that ‖f ‖ = 1, we have ‖f ‖ε ↗ 1 as ε → 0. In particular, under the
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assumption that β > βc, Theorem 5.2(b) and monotone convergence imply that for any ν ∈
M,

‖ν‖ε ↗ 1 as ε → 0.

Since M is compact, Lemma 6.4 strengthens this pointwise convergence to uniform conver-
gence. That is, for any c < 1, there is ε > 0 such that ‖ν‖ε > c for all ν ∈ M. Furthermore,
by compactness of P(S) and lower semicontinuity of ‖ · ‖ε , we can find δ > 0 such that for
any μ ∈ P(S),

W(μ,M) < δ ⇒ ‖μ‖ε > c.

Now Theorem 4.9 implies

lim inf
n→∞

1

n

n−1∑
i=0

ρi

(
ωi ∈ Aε

i

)= lim inf
n→∞ ‖μn‖ε ≥ c a.s.

We have thus verified the hypothesis of Lemma 6.2, and so (fi)i≥0 is asymptotically purely
atomic.

For (b), we assume 0 ≤ β ≤ βc. For ε > 0, define Iε : P(S) →R by

Iε(ν) :=
∫

I ε(f )ν(df ) =
∫

1{max
u∈N×Zd f (u)≥ε}ν(df ).

Considering Lemma 2.9, we see from Lemma 6.1(b) that Iε is an upper semicontinuous map.
By Theorem 5.2 and Theorem 4.9, W(μn, δ0) → 0 almost surely as n → ∞, and so

lim sup
n→∞

Iε(μn) ≤ Iε(δ0) = I ε(0) = 0 a.s. for any ε > 0.

In particular, for any j ∈ N,

lim
N→∞ P

( ∞⋂
n=N

{
Iε(μn) < 2−j })= 1.

Now let (κj )j≥1 be any decreasing sequence tending to 0 as j → ∞. Set M0 := 0. By taking
complements in the above display, we can inductively choose Mj > Mj−1 such that

P

( ∞⋃
n=Mj

{
Iκj+1(μn) ≥ 2−(j+1)})< 2−(j+1), j ≥ 1.(6.2)

Define εi := κj when Mj−1 ≤ i ≤ Mj − 1. For M�−1 ≤ n ≤ M� and any k < �, the mono-
tonicity of κj gives

1

n

n−1∑
i=0

I εi
(fi) = 1

n

[
Mk−1∑
i=0

I εi
(fi) +

�−1∑
j=k+1

Mj−1∑
i=Mj−1

I κj
(fi) +

n−1∑
i=M�−1

I κ�
(fi)

]

≤ 1

n

[
Mk−1∑
i=0

I κk
(fi) +

�∑
j=k+1

n−1∑
i=0

I κj
(fi)

]

≤
�∑

j=k

1

n

n−1∑
i=0

I κj
(fi) =

�∑
j=k

Iκj
(μn),
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where we have identified fi with an element of S (this identification is measurable by
Lemma 2.11; cf. the discussion following Corollary 3.3). Writing a more general inequal-
ity, we can say that for all n ≥ Mk ,

1

n

n−1∑
i=0

I εi
(fi) ≤ ∑

j≥k:n≥Mj−1

Iκj
(μn).

It follows from a union bound and (6.2) that

P

( ∞⋃
n=Mk

{
1

n

n−1∑
i=0

I εi
(fi) ≥ ∑

j≥k

2−j

})

≤ P

( ∞⋃
n=Mk−1

⋃
j≥k:n≥Mj−1

{
Iκj

(μn) ≥ 2−j })

= P

(⋃
j≥k

∞⋃
n=Mj−1

{
Iκj

(μn) ≥ 2−j })

≤ ∑
j≥k

P

( ∞⋃
n=Mj−1

{
Iκj

(μn) ≥ 2−j })<
∑
j≥k

2−j = 2−k+1.

By Borel–Cantelli, the following is true with probability one: For only finitely many k is

1

n

n−1∑
i=0

I εi
(fi) ≥ 2−k+1 for some n ≥ Mk.

This implies

lim
n→∞

1

n

n−1∑
i=0

I εi
(fi) = 0 a.s.(6.3)

Finally, note that ρi(ωi ∈ Aε
i ) is nonzero only when Aε

i is nonempty, in which case I ε(fi) =
1. Hence

ρi

(
ωi ∈ Aε

i

)≤ I ε(fi) for any i ≥ 0, ε > 0,

and so (6.1) follows from (6.3). �

7. Geometric localization. Recall the following definition from Section 1.4. We say that
the sequence (fi)i≥0 exhibits geometric localization with positive density if for every δ > 0,
there is K < ∞ and θ > 0 such that

lim inf
n→∞

1

n

n−1∑
i=0

1{fi∈Gδ,K } ≥ θ a.s.,

where

Gδ,K :=
{
f : Zd → [0,1]

∣∣∣ ‖f ‖ = 1,∃D ⊂ Z
d such that

diam(D) ≤ K and
∑
x∈D

f (x) > 1 − δ

}(7.1)

and

diam(D) := sup
{‖x − y‖1 : x, y ∈ D

}
.
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If K can always be chosen so that θ ≥ 1 − δ, then the sequence is “geometrically localized
with full density.” The main goal of this section is to establish that under (1.1), there is positive
density geometric localization if and only if β > βc.

7.1. Definitions of relevant functionals. To employ the theory of partitioned subproba-
bility measures, we make a few definitions. For f ∈ S, let Hf denote N-support of f :

Hf := {
n ∈N : f (n, x) > 0 for some x ∈ Z

d}.
The first functional of interest is the size of the N-support of f ,

N(f ) := |Hf |,
which we call the support number of f . Second, for f ∈ S and δ ∈ (0,1), it is natural in
studying geometric localization to consider the quantity

Wδ(f ) := inf
{

diam(D) : D ⊂ Z
d,
∑
x∈D

f (n, x) > 1 − δ for some n ∈ N

}
.

In words, Wδ(f ) is the smallest K such that a region of diameter K in N × Z
d has f -mass

strictly greater than 1 − δ. Here we follow the convention that the infimum of an empty set
is infinity, meaning Wδ(f ) = ∞ whenever there is no one copy of Zd on which f has mass
greater than 1 − δ. We will write

Vδ,K := {
f ∈ S : Wδ(f ) ≤ K

}
,

so that we can naturally identify Gδ,K in S by

Gδ,K = Vδ,K ∩ {
f ∈ S : N(f ) = 1,‖f ‖ = 1

}
.(7.2)

Next define qn : S → [0,1] by

qn(f ) := ∑
x∈Zd

f (n, x),

and let

m(f ) := max
n∈N qn(f ).

Finally, it will also be useful to analyze the function

Q(f ) := ∑
n∈N

qn(f )

1 − qn(f )
,

where 1/0 = ∞. Observe that Q(f ) = ∞ if and only if N(f ) = 1 and ‖f ‖ = 1.
It is easy to see from Corollary 2.6 that N , Wδ , m and Q are well defined on S . The

fact that N : S → N ∪ {0,∞} is measurable is surprisingly nontrivial. The proof, however,
is peripheral to our present focus, and so we defer this argument to Appendix A.5. A more
central part of our methods is the semicontinuity of relevant functionals, which is the content
of the next lemma.

LEMMA 7.1. The following statements hold:

(a) For any δ ∈ (0,1), Wδ : S → N ∪ {0,∞} is upper semicontinuous and thus measur-
able.

(b) m : S → [0,1] is lower semicontinuous and thus measurable.
(c) Q : S → [0,∞] is lower semicontinuous and thus measurable.



856 E. BATES AND S. CHATTERJEE

These continuity properties can be understood intuitively. For instance, (a) is simply a
consequence of the fact that if a measure on Z

d places mass greater than 1 − δ on a compact
set K , then any sufficiently similar measure (in the weak or vague topologies) must do the
same. On the other hand, (b) and (c) come from the observation that a converging sequence
of partitioned subprobability measures can divide mass on one copy of Zd between several
copies in the limit when large parts of the mass are drifting away from each other. But the
reverse is not true, because vertices in distinct copies of Zd are considered infinitely far apart.
The proofs that make these ideas precise are tedious and thus postponed to Appendix A.6.
They are similar in spirit the proof of Lemma 2.7 but substantially more involved.

An observation that will be useful is that at low temperature, the functional Q must have
infinite expectation according to any element of M.

LEMMA 7.2. Assume β > βc. Then for any ν ∈ M,∫
Q(f )ν(df ) = ∞.

PROOF. Consider any ν ∈ M. By Theorem 5.2, the assumption of β > βc implies ν({f ∈
S : ‖f ‖ = 1}) = 1. Suppose toward a contradiction that ν ∈ M satisfies∫

Q(f )ν(df ) < ∞.(7.3)

It must then be the case that ν({f ∈ S : N(f ) = 1}) = 0, since Q(f ) = ∞ whenever N(f ) =
1 and ‖f ‖ = 1. Let f ∈ S be random with law ν. By the previous observation, 1 −qn(f ) > 0
for all n ∈ N with ν-probability 1. Consider an environment (Yu)u∈N×Zd of i.i.d. random
variables with law L, that is independent of f . When viewed as an element of S , the law of
the function

F(u) :=
∑

v∼u f (v)eβYu∑
w∈N×Zd

∑
v∼w f (v)eβYw

, u ∈N×Z
d,

is T ν = ν. Observe that because ‖F‖ = 1,

Q(F) = ∑
n∈N

qn(F )

1 − qn(F )
= ∑

n∈N

∑
x∈Zd F (n, x)∑

k �=n

∑
x∈Zd F (k, x)

= ∑
n∈N

∑
x∈Zd

∑
y∼x f (n, y)eβYn,x∑

k �=n

∑
x∈Zd

∑
y∼x f (k, y)eβYk,x

.

Conditioned on f , the numerator and denominator of∑
x∈Zd

∑
y∼x f (n, y)eβYn,x∑

k �=n

∑
x∈Zd

∑
y∼x f (k, y)eβYk,x

are independent. Hence,

E
[
Q(F) | f ]= ∑

n∈N
E
[ ∑

x∈Zd

∑
y∼x f (n, y)eβYn,x∑

k �=n

∑
x∈Zd

∑
y∼x f (k, y)eβYk,x

∣∣∣ f ]

= ∑
n∈N

E
[∑
x∈Zd

∑
y∼x

f (n, y)eβYn,x

∣∣∣ f ]

· E
[

1∑
k �=n

∑
x∈Zd

∑
y∼x f (k, y)eβYk,x

∣∣∣ f ]
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>
∑
n∈N

E[∑x∈Zd

∑
y∼x f (n, y)eβYn,x | f ]

E[∑k �=n

∑
x∈Zd

∑
y∼x f (k, y)eβYk,x | f ]

= ∑
n∈N

2d · eλ(β) · qn(f )

2d · eλ(β)(1 − qn(f ))
= Q(f ),

where the strict inequality is due to the strict convexity of t �→ 1/t on (0,∞) and the nonde-
generacy of L. But now (7.3) allows us to write∫

Q(f )ν(df ) =
∫∫

Q(F)Tf (dF)ν(df )

=
∫

E
[
Q(F) | f ]ν(df ) >

∫
Q(f )ν(df ),

yielding the desired contradiction. �

7.2. Proof of geometric localization with positive density. We can now prove the main
theorem of Section 7. This theorem, which encompasses Theorem 1.2, shows that positive
density geometric localization is equivalent to β > βc. It also proves that the single-copy
condition (stated as (7.4) below) implies full density geometric localization.

THEOREM 7.3. Assume (1.1). Let fi(·) := ρi(ωi = ·). Then the following statements
hold:

(a) If β > βc, then (fi)i≥0 is geometrically localized with positive density. Moreover, the
quantities K and θ in the definition of positive density geometric localization are determin-
istic, and depend only on the choice of δ, as well as L, β and d .

(b) If β > βc and

ν(U1) = ν
({

f ∈ S : N(f ) = 1
})= 1 for all ν ∈ M,(7.4)

then (fi)i≥0 is geometrically localized with full density.
(c) If 0 ≤ β ≤ βc, then for any δ ∈ (0,1) and any K ,

lim
n→∞

1

n

n−1∑
i=0

1{fi∈Gδ,K } = 0 a.s.(7.5)

PROOF. Fix δ ∈ (0,1) throughout. Recall that

Vδ,K = {
f ∈ S : Wδ(f ) ≤ K

}= {
f ∈ S : Wδ(f ) < K + 1

}
,

which is open by the upper semicontinuity of Wδ . For (a) and (b), we assume β > βc. Given
δ > 0, define the set

Uδ := {
f ∈ S : m(f ) > 1 − δ

}=
∞⋃

K=0

Vδ,K.

For (b) only, note the following consequence of Theorem 5.2(b):

(7.4) ⇒ ν(Uδ) = 1 for all ν ∈ M.

Otherwise, we refer to Lemma 7.2 which tells us that for any ν ∈ M,∫
Q(f )ν(df ) = ∞.
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It follows that ν(Uδ) > 0, since otherwise the ν-essential supremum of m(f ) would be strictly
less than 1, forcing the ν-essential supremum of Q(f ) to be finite. By Lemma 7.1(b), Uδ is
an open set. Consequently, the map μ �→ μ(Uδ) is lower semicontinuous on P(S). Since a
lower semicontinuous function on a compact set attains its minimum value, we must have

� := inf
ν∈Mν(Uδ) > 0.

For any f ∈ Uδ , the quantity Wδ(f ) is finite. Therefore, for any ν ∈ M,

ν(Vδ,K) ∧ � ↗ ν(Uδ) ∧ � = � as K ↗ ∞.

Since ν �→ ν(Vδ,K) ∧ � is lower semicontinuous, Lemma 6.4 upgrades this convergence to
be uniform on the compact set M. That is, for any θ < �, we can find K large enough that
ν(Vδ,K) > θ for every ν ∈M. Furthermore, by compactness of P(S) there exists ξ > 0 such
that

W(μ,M) < ξ ⇒ μ(Vδ,K) > θ.

We may now conclude from Theorem 4.9 and (7.2) that

θ ≤ lim inf
n→∞ μn(Vδ,K) = lim inf

n→∞
1

n

n−1∑
i=0

1{fi∈Vδ,K }

= lim inf
n→∞

1

n

n−1∑
i=0

1{fi∈Gδ,K } a.s.,

which completes the proof of (a) and (b).
For claim (c), suppose 0 ≤ β ≤ βc so that Theorem 5.2 gives M = {δ0}. Fix K > 0. Recall

from the proof of Theorem 5.3 that in this high temperature case,

lim
n→∞

∫
max(f )μn(df ) = lim

n→∞
1

n

n−1∑
i=0

max
x∈Zd

fi(x) = 0 a.s.(7.6)

Notice that if ε > 0 is sufficiently small that

D ⊂ Z
d, diam(D) ≤ K ⇒ ε|D| < 1 − δ,(7.7)

then

1

n

n−1∑
i=0

max
x∈Zd

fi(x) < ε2 ⇒ 1

n

n−1∑
i=0

1{fi∈Gδ,K } < ε.(7.8)

Indeed, the hypothesis in (7.8) implies there are fewer than εn numbers i between 0 and n−1
such that maxx∈Zd fi(x) ≥ ε, and (7.7) implies all the remaining i must satisfy fi /∈ Gδ,K .
Therefore, (7.8) is true, and so (7.6) implies (7.5). �

7.3. Localization in a favorite region. In this final section, we prove that single-copy
condition (7.4) implies localization in a “favorite region” of size O(1). Recall that the mode
of a probability mass function is a location where the function attains its maximum. For any
n ≥ 0 and K ≥ 0, let CK

n be the set of all x ∈ Z
d that are within �1 distance K from every

mode of the random probability mass function fn. Note that CK
n is a set with diameter at most

2K . The following theorem establishes localization of the endpoint in CK
n , if the single-copy

condition holds.
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PROPOSITION 7.4. Assume (1.1) and (7.4). Then

lim
K→∞ lim inf

n→∞
1

n

n−1∑
i=0

ρi

(
ωi ∈ CK

i

)= 1 a.s.(7.9)

PROOF. For the sake of completeness, we first verify that ρi(ωi ∈ CK
i ) is a measurable

function (with respect to Fi). For any Borel set B ⊂ R, the event {ρi(ωi ∈ CK
i ) ∈ B} can be

expressed as⋃
A⊂Z

d

|A|≤(2d)i

[(⋂
x∈A

{
fi(x) = max

y∈Zd
fi(y)

})
∩
{ ∑

y∈Zd :‖x−y‖1≤K∀x∈A

fi(y) ∈ B

}]
.

It is clear that the above display is a measurable event, and so ρi(ωi ∈ CK
i ) is measurable.

Assume (7.4), so that (fi)i≥0 is geometrically localized with full density. (In particular, by
Theorem 7.3(c), we must have β > βc.) As in the proof of Theorem 6.3(a), the assumption
β > βc ensures that the conclusion of Lemma 6.2 holds. Consequently, given any θ < 1, we
can choose ε ∈ (0,1 − θ) such that

lim inf
n→∞

1

n

n−1∑
i=0

1{Aε
i is nonempty} > θ a.s.

And by geometric localization with full density, there is K such that

lim inf
n→∞

1

n

n−1∑
i=0

1{fi∈Gε,K } > θ a.s.

Therefore, there almost surely exists some N satisfying

n ≥ N ⇒ 1

n

n−1∑
i=0

1{Aε
i is nonempty} > θ and

1

n

n−1∑
i=0

1{fi∈Gε,K } > θ.

So for n ≥ N , there are at least (2θ − 1)n numbers i between 0 and n − 1 for which both
of the following statements are true: First, fi(x) > ε for some (and thus any) mode x ∈ Z

d

of fi . Second, ρi(ωi ∈ Di) > 1 − ε for some Di ⊂ Z
d with diam(Di) ≤ K . For such i, all

modes must belong to Di , which implies Di ⊂ CK
i . In particular,

ρi

(
ωi ∈ CK

i

)≥ ρi(ωi ∈ Di) > 1 − ε > θ,

and so

n ≥ N ⇒ 1

n

n−1∑
i=0

ρi

(
ωi ∈ CK

i

)
> θ(2θ − 1).

As ρi(ωi ∈ CL
i ) ≥ ρi(ωi ∈ CK

i ) for L ≥ K , we in fact have

lim
K→∞ lim inf

n→∞
1

n

n−1∑
i=0

ρi

(
ωi ∈ CK

i

)≥ θ(2θ − 1) a.s.

As θ < 1 is arbitrary, we can take a countable sequence θk → 1 to conclude (7.9). �
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8. Proof of Proposition 3.2. Since (S, d) is a compact metric space, uniform continuity
of f �→ Tf and f �→ E(logq F̃ ) will be implied by continuity. So it suffices to prove continu-
ity at a fixed f ∈ S . Given ε > 0, choose κ1 > 0 small enough that(

(2d)−1κ1 + d−1/2
√

2κ1
)√

eλ(2β)eλ(−2β) <
ε

8
.(8.1)

Next choose κ2 > 0 small enough that all of the following statements are true:

κ2e
λ(2β)eλ(−2β) <

ε

4
,(8.2a)

(4d + 1)κ2 < κ1,(8.2b)

2d
√

κ2 < κ1.(8.2c)

Given a representative f ∈ S, we may take A ⊂ N×Z
d to be finite but large enough that∑

u/∈A

f (u) < κ2.(8.3)

By possibly omitting some elements of A, we may assume f (u) > 0 for all u ∈ A, and then
take δ > 0 small enough that

f (u)2 > δ for all u ∈ A.(8.4)

Considering (8.2), we may choose δ so that all of the following statements are also true:

(δ + κ2)e
λ(2β)eλ(−2β) <

ε

4
,(8.5a)

(4d + 1)(δ + κ2) < κ1,(8.5b)

2d
√

δ + κ2 < κ1.(8.5c)

In addition, we will assume

(2d)2|A|√δ < κ2,(8.5d)

and finally

δ < min
(

ε

16
,2−3

)
.(8.5e)

Now suppose g ∈ S satisfies d(f, g) < δ. We will show W(Tf ,Tg) < ε.
Given a representative g ∈ S, we can choose an isometry ψ : C → N × Z

d such that
dψ(f, g) < δ. From (8.4), we deduce that A ⊂ C, since otherwise dψ(f, g) ≥ f (u)2 > δ for
some u ∈ A \ C. Let φ be the restriction of ψ to A. It follows that∑

v∈A

∣∣f (v) − g
(
φ(v)

)∣∣≤ ∑
v∈C

∣∣f (v) − g
(
ψ(v)

)∣∣< δ.(8.6)

Since dψ(f, g) < δ < 2−3, we necessarily have deg(φ) ≥ deg(ψ) ≥ 4. Let � : B → N × Z
d

be defined as in Lemma 2.2 so that deg(�) ≥ 2. Now take (Yu)u∈Zd to be i.i.d. random
variables with shared law L. Define Zu := Y�−1(u) if u ∈ �(B); otherwise let Zu be an
independent copy of Yu. Define F,G ∈ S as in Proposition 3.1 so that the laws of F and G

are Tf and Tg, respectively, and we may consider the coupling (F,G) to determine an upper
bound on W(Tf ,Tg). That is, W(Tf ,Tg) ≤ E[d(F,G)] ≤ E[d�(F,G)].
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To simplify notation, we will write

f̃ (u) = ∑
v∼u

f (v)eβYu, F̃ = ∑
u∈N×Zd

f̃ (u) + 2d
(
1 − ‖f ‖)eλ(β),

g̃(u) = ∑
v∼u

g(v)eβZu, G̃ = ∑
u∈N×Zd

g̃(u) + 2d
(
1 − ‖g‖)eλ(β)

so that F(u) = f̃ (u)/F̃ and G(u) = g̃(u)/G̃. For any u ∈ B ,

f̃ (u) − g̃
(
�(u)

)= ∑
v∼u

f (v)eβYu − ∑
v∼�(u)

g(v)eβZ�(u)

= eβYu

(∑
v∼u

f (v) − ∑
v∼�(u)

g(v)

)
.

(8.7)

Since deg(�) ≥ 2, the two sets

Ru := {v : v ∼ u, v ∈ A} and R′
u := {

v : v ∼ �(u), v ∈ φ(A)
}

satisfy φ(Ru) = R′
u. Indeed, if v ∈ Ru, then �(u) − φ(v) = �(u) − �(v) = u − v, and

so φ(v) belongs to R′
u. Conversely, if φ(v) = �(v) ∈ R′

u, then u − v = �(u) − �(v) =
�(u) − φ(v), and so v belongs to Ru. We also define

Su := {v : v ∼ u, v /∈ A} and S′
u := {

v : v ∼ �(u), v /∈ ψ(C)
}
,

and finally

T ′
u := {

v : v ∼ �(u), v ∈ ψ(C \ A)
}
.

We thus have ∣∣∣∣∑
v∼u

f (v) − ∑
v∼�(u)

g(v)

∣∣∣∣≤ ∑
v∈Ru

∣∣f (v) − g
(
φ(v)

)∣∣+ ∑
v∈Su

f (v)

+ ∑
v∈S′

u

g(v) + ∑
v∈T ′

u

g(v).

(8.8)

When summed over u ∈ B , each of the four terms on the right-hand side of (8.8) can be
separately bounded from above. We do so in the next paragraph.

Any v ∈ N×Z
d is the neighbor of at most 2d elements of B . Consequently, the inclusion

Ru ⊂ A and the assumption (8.6) together imply∑
u∈B

∑
v∈Ru

∣∣f (v) − g
(
φ(v)

)∣∣≤ 2d · δ.(8.9)

Next, Su ⊂ Ac and (8.3) imply ∑
u∈B

∑
v∈Su

f (v) ≤ 2d · κ2.(8.10)

Since |B| ≤ 2d|A|, the inclusion S′
u ⊂ ψ(C)c and (8.5d) imply∑

u∈B

∑
v∈S′

u

g(v) ≤ (2d)2|A| sup
v /∈ψ(C)

g(v) ≤ (2d)2|A|
√ ∑

v /∈ψ(C)

g(v)2

≤ (2d)2|A|
√

dψ(f, g) < (2d)2|A|√δ < κ2.

(8.11)



862 E. BATES AND S. CHATTERJEE

Finally, one more application of (8.3) gives∑
u∈B

∑
v∈T ′

u

g(v) ≤ ∑
u∈B

∑
v∈T ′

u

(∣∣f (ψ−1(v)
)− g(v)

∣∣+ f
(
ψ−1(v)

))
≤ 2d

∑
u∈C\A

∣∣f (u) − g
(
ψ(u)

)∣∣+ 2d
∑
u/∈A

f (u)

< 2d
(
dψ(f, g) + κ2

)
< 2d(δ + κ2).

(8.12)

Having established (8.8)–(8.12) and assumed (8.5b), we have shown∑
u∈B

∣∣∣∣∑
v∼u

f (v) − ∑
v∼�(u)

g(v)

∣∣∣∣< (4d + 1)(δ + κ2) < κ1.(8.13)

This inequality will be pivotal in obtaining an upper bound on E[d�(F,G)].
Four other inequalities stated below will also be useful, namely (8.14), (8.17), (8.18) and

(8.19). Let us now prove each of them. First, for any u /∈ B , an application of Cauchy–
Schwarz gives

∑
u/∈B

f̃ (u)2 = ∑
u/∈B

(∑
v∼u

f (v)eβYu

)2
≤ ∑

u/∈B

2d · e2βYu
∑
v∼u

f (v)2.

Notice that if u /∈ B , and v ∼ u, then v /∈ A. It follows that

E
[∑
u/∈B

f̃ (u)2
]

≤ 2d · eλ(2β)
∑
u/∈B

∑
v∼u

f (v)2

≤ (2d)2 · eλ(2β)
∑
v /∈A

f (v)2

≤ (2d)2 · eλ(2β)
∑
v /∈A

f (v) < κ2(2d)2eλ(2β),

(8.14)

where we have used (8.3) in the last inequality. Since deg(�) ≥ 2, the same reasoning as
above gives

E
[ ∑
u/∈�(B)

g̃(u)2
]

≤ (2d)2eλ(2β)
∑

v /∈φ(A)

g(v)2,(8.15)

and we can bound the last sum by again applying (8.3):∑
v /∈φ(A)

g(v)2 ≤ ∑
v∈ψ(C\A)

g(v) + ∑
v /∈ψ(C)

g(v)2

≤ ∑
v∈C\A

(∣∣f (v) − g
(
ψ(v)

)∣∣+ f (v)
)+ ∑

v /∈ψ(C)

g(v)2

≤ ∑
v∈C

∣∣f (v) − g
(
ψ(v)

)∣∣+ ∑
v /∈ψ(C)

g(v)2 + ∑
v /∈A

f (v)

< dψ(f, g) + κ2 < δ + κ2.

(8.16)

In light of (8.16), now (8.15) becomes

E
[ ∑
u/∈�(B)

g̃(u)2
]

< (δ + κ2)(2d)2eλ(2β).(8.17)
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The third and fourth inequalities to show consider the quantities F̃ and G̃. Suppose q ∈
(−∞,0] ∪ [1,∞]. Since ∑

u∈N×Zd

∑
v∼u

f (v) + 2d
(
1 − ‖f ‖)= 2d,

Jensen’s inequality applied to the convex function t �→ tq gives

E
(
F̃ q)≤ (2d)qE

[
1

2d

∑
u∈N×Zd

∑
v∼u

f (v)eqβYu + (
1 − ‖f ‖)eqλ(β)

]

= (2d)q
(‖f ‖eλ(qβ) + (

1 − ‖f ‖)eqλ(β))≤ (2d)qeλ(qβ).

(8.18)

By the same argument with g in place of f , we obtain the fourth desired inequality:

E
(
G̃q)≤ (2d)qeλ(qβ).(8.19)

We will only use (8.18) and (8.19) when |q| ≤ 2, in accordance with our assumption (1.1).
We now turn in earnest to bounding E[d�(F,G)], which is the sum of four expectations

corresponding to the four summands in definition (2.3). Seeking an estimate on the first sum-
mand, we observe that for u ∈ B ,∣∣F(u) − G

(
�(u)

)∣∣= ∣∣∣∣ f̃ (u)

F̃
− g̃(�(u))

G̃

∣∣∣∣
≤
∣∣∣∣ f̃ (u)

F̃
− g̃(�(u))

F̃

∣∣∣∣+ ∣∣∣∣ g̃(�(u))

F̃
− g̃(�(u))

G̃

∣∣∣∣
= |f̃ (u) − g̃(�(u))|

F̃
+ g̃(�(u))

G̃
·
∣∣∣∣G̃
F̃

− 1
∣∣∣∣.

(8.20)

Summing over B and taking expectation, we have for the first term in (8.20)

E
∑
u∈B

|f̃ (u) − g̃(�(u))|
F̃

= ∑
u∈B

E
[ |f̃ (u) − g̃(�(u))|

F̃

]

≤ ∑
u∈B

√
E
(∣∣f̃ (u) − g̃

(
�(u)

)∣∣2)E(F̃−2
)

≤ (2d)−1
∑
u∈B

√
eλ(2β)eλ(−2β)

∣∣∣∣∑
v∼u

f (v) − ∑
v∼�(u)

g(v)

∣∣∣∣
< (2d)−1κ1

√
eλ(2β)eλ(−2β),

(8.21)

where we have applied Cauchy–Schwarz to obtain the first inequality, (8.7) and (8.18) to
obtain the second, and (8.13) for the third. Meanwhile, the second term in (8.20) satisfies

E
[∑
u∈B

g̃(�(u))

G̃
·
∣∣∣∣G̃
F̃

− 1
∣∣∣∣]≤ E

∣∣∣∣G̃
F̃

− 1
∣∣∣∣= E

∣∣∣∣G̃ − F̃

F̃

∣∣∣∣
≤
√

E
(
F̃−2

)
E
(|G̃ − F̃ |2)

≤ (2d)−1
√

eλ(−2β)E
(|G̃ − F̃ |2),

(8.22)

where we have again applied (8.18). Notice that

F̃ − 2d · eλ(β) = ∑
u∈N×Zd

f̃ (u) − 2d · eλ(β)‖f ‖
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= ∑
u∈N×Zd

∑
v∼u

f (v)eβYu − ∑
u∈N×Zd

∑
v∼u

f (v)eλ(β)

= ∑
u∈N×Zd

∑
v∼u

f (v)
[
eβYu − eλ(β)]

= ∑
u∈B

∑
v∼u

f (v)
[
eβYu − eλ(β)]+ ∑

u/∈B

∑
v∼u

f (v)
[
eβYu − eλ(β)],

and similarly

G̃ − 2d · eλ(β)

= ∑
u∈�(B)

∑
v∼u

g(v)
[
eβZu − eλ(β)]+ ∑

u/∈�(B)

∑
v∼u

g(v)
[
eβZu − eλ(β)]

= ∑
u∈B

∑
v∼�(u)

g(v)
[
eβYu − eλ(β)]+ ∑

u/∈�(B)

∑
v∼u

g(v)
[
eβZu − eλ(β)].

Hence,

F̃ − G̃ = ∑
u∈B

(∑
v∼u

f (v) − ∑
v∼�(u)

g(v)

)[
eβYu − eλ(β)]

+ ∑
u/∈B

∑
v∼u

f (v)
[
eβYu − eλ(β)]− ∑

u/∈�(B)

∑
v∼u

g(v)
[
eβZu − eλ(β)].

We thus consider the following i.i.d. random variables:

Zu := eβYu − eλ(β), u ∈ B,

Z′
u := eβYu − eλ(β), u /∈ B,

Z′′
u := eβZu − eλ(β), u /∈ �(B).

Furthermore, their coefficients

αu := ∑
v∼u

f (v) − ∑
v∼�(u)

g(v), u ∈ B,

α′
u := ∑

v∼u

f (v), u /∈ B,

α′′
u := −∑

v∼u

g(v), u /∈ �(B)

satisfy

|αu| < κ1 by (8.13),∣∣α′
u

∣∣= α′
u ≤ ∑

v /∈A

f (v) < κ2 < κ1 by (8.3) and (8.2b),

∣∣α′′
u

∣∣= −α′′
u ≤ 2d sup

v /∈φ(A)

g(v) ≤ 2d
√

δ + κ2 < κ1 by (8.16) and (8.5c).

Since ‖f ‖,‖g‖ ≤ 1, one also has∑
u∈B

|αu| +
∑
u/∈B

α′
u − ∑

u/∈�(B)

α′′
u ≤ (1 + 1) · 2d + 2d + 2d = 8d.
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Therefore,

E
[|F̃ − G̃|2]= E

[(∑
u∈B

αuZu + ∑
u/∈B

α′
uZ

′
u + ∑

u/∈�(B)

α′′
uZ′′

u

)2]

=
(∑

u∈B

α2
u + ∑

u/∈B

(
α′

u

)2 + ∑
u/∈�(B)

(
α′′

u

)2)(
eλ(2β) − e2λ(β))

≤ κ1

(∑
u∈B

|αu| +
∑
u/∈B

α′
u − ∑

u/∈�(B)

α′′
u

)(
eλ(2β) − e2λ(β))

≤ κ1 · 8d · eλ(2β).

Upon using the above display in (8.22), we obtain

E
[∑
u∈B

g̃(�(u))

G̃
·
∣∣∣∣G̃
F̃

− 1
∣∣∣∣]≤ E

∣∣∣∣G̃
F̃

− 1
∣∣∣∣≤ d−1/2

√
2κ1eλ(2β)eλ(−2β).(8.23)

Then applying (8.21) and (8.23) with (8.20), we find

E
[∑
u∈B

∣∣F(u) − G
(
�(u)

)∣∣]≤ (
(2d)−1κ1 + d−1/2

√
2κ1

)√
eλ(2β)eλ(−2β).

Now (8.1) gives us control on the first summand in E[d�(F,G)]:

E
[
2
∑
u∈B

∣∣F(u) − G
(
�(u)

)∣∣]<
ε

4
.(8.24)

From what we have argued, the second and third summands in E[d�(F,G)] are not difficult
to bound. Notice that for any u ∈ N × Z

d , the random variables f̃ (u), g̃(u), F̃ and G̃ are
nondecreasing functions of Yu or Zu. Therefore, we can use the FKG inequality. For the
second summand, we apply FKG, then (8.14) and (8.18), and finally (8.2a):

E
∑
u/∈B

F(u)2 ≤ E
[∑
u/∈B

f̃ (u)2
]
E
(
F̃−2)< κ2e

λ(2β)eλ(−2β) <
ε

4
.(8.25)

For the third summand, we appeal to FKG, then to (8.17) and (8.19), and finally to (8.5a):

E
∑

u/∈�(B)

G(u)2 ≤ E
[ ∑
u/∈�(B)

g̃(u)2
]
E
(
G̃−2)

< (δ + κ2)e
λ(2β)eλ(−2β) <

ε

4
.

(8.26)

The fourth and final summand in E[d�(F,G)] depends on the maximum degree of the isom-
etry �. From (8.5e) we know dψ(f, g) < δ < ε/16, and so 2−deg(ψ) < ε/16. Since φ is a
restriction of ψ , we have deg(φ) ≥ deg(ψ). And by Lemma 2.2, deg(�) ≥ deg(φ) − 2. As a
result,

2−deg(�) ≤ 2−deg(φ)+2 ≤ 4 · 2−deg(ψ) <
ε

4
.(8.27)

Summing the left-hand sides of (8.24)–(8.27), we reach the desired conclusion for part (a):

W(Tf ,Tg) ≤ E
[
d�(F,G)

]
< ε.
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For part (b), we assume q is a positive integer. By several applications of Cauchy–Schwarz,
we have∣∣E(logq F̃

)− E
(
logq G̃

)∣∣≤ E
∣∣logq F̃ − logq G̃

∣∣
= E

∣∣∣∣∣
(

log
F̃

G̃

) q−1∑
i=0

(
logq−1−i F̃

)(
logi G̃

)∣∣∣∣∣
≤
√

E log2 F̃

G̃

√√√√√E

[(q−1∑
i=0

(
logq−1−i F̃

)(
logi G̃

))2]

≤
√

E log2 F̃

G̃

√√√√√q

q−1∑
i=0

√
E
(
log4(q−1−i) F̃

)
E
(
log4i G̃

)
.

(8.28)

Now, by the inequality log2 x ≤ 2(|x − 1| + |x−1 − 1|) for x > 0, we have

E log2 F̃

G̃
≤ 2

(
E
∣∣∣∣ F̃
G̃

− 1
∣∣∣∣+ E

∣∣∣∣G̃
F̃

− 1
∣∣∣∣).

From (8.23) and (8.1), we know E| G̃
F̃

− 1| < ε/8. A parallel analysis—exchange E(F̃−2)

and E(G̃−2) in the second expression of (8.22), and then apply (8.19) instead of (8.18)—also
gives E| F̃

G̃
− 1| < ε/8. On the other hand, for each integer i ≥ 0, there exists a large enough

constant Ci so that log4i x ≤ Ci(x + x−1) for all x > 0. Therefore, we can appeal to (8.18)
and (8.19) with q = ±1 in order to upper bound the second square root in the final expression
of (8.28). In summary,

∣∣E(logq F̃
)− E

(
logq G̃

)∣∣≤ C

√
ε

2
,

where C is a constant that depends only on L, β , d and q . The continuity of the map f �→
E(logq F̃ ) is now clear.

9. Open problems. Given the subsequent applications [15, 51] of Mukherjee and Varad-
han’s construction in [61] and of a variant construction in [60], as well as the success of the
concentration compactness phenomenon in general, we are optimistic that the ideas presented
in this study can fuel future work. In fact, after the preprint release of this manuscript, our
“cavity approach” inspired similar works by Bröker and Mukherjee for the stochastic heat
equation and Gaussian multiplicative chaos [21], and by Bakhtin and Seo [8] for directed
polymers with a continuous-space reference walk.

Below we mention some remaining questions concerning the methods of this manuscript.
For a broader discussion of open problems on directed polymers, we refer the reader to Sec-
tion 12.9 of [37].

1. For the (1 + 1)-dimensional log-gamma model, localization occurs around a single fa-
vorite region [27]. Does this hold more generally, specifically in the low temperature regime?
We showed via Theorem 7.3(b) and Proposition 7.4 that the answer is yes if the single-copy
condition holds. Nevertheless, it is challenging to rule out the possibility that the endpoint
distribution maintains an unbounded number of favorite sites, so that some ν ∈ M may put
mass on partitioned subprobability measures supported on infinitely many copies of Zd . Such
behavior has been observed for other types of Gibbs measures [9, 26].
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2. The set M defined by (4.8) is closed and convex in P(S). By Theorem 5.2, M is a
singleton at high temperature. Is the same true in the low temperature phase? If true, this
would imply that the empirical measure converges to a deterministic limit, instead of the
subsequential convergence that is established in this paper. If false, can one describe the
extreme points of M?

3. Does the endpoint distribution converge in law? In other words, can we go beyond the
Cesàro averages and prove limiting results for the actual endpoint distribution? Note that if
this is true, then the limiting law must be an element of M.

4. Can the methods of this paper be extended to understand the distinction between (SD)

and (VSD)? Such an extension may lead to the resolution of some longstanding questions
in this area, such as the following. (a) For d ≥ 3, do the critical values βc and β̃c coincide?
This is known to be the case for d = 1 [30] and for d = 2 [52]. If the answer is no, then there
would exist critical strong disorder, in which (SD) holds but not (VSD). (b) For d ≥ 3, is
there strong disorder at inverse temperature β̃c? For analogous models on self-similar trees,
the answer is yes [48].
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SUPPLEMENTARY MATERIAL

Appendix A: Remaining technical details (DOI: 10.1214/19-AOP1376SUPPA; .pdf).
This appendix contains the proofs of Proposition 2.4, Theorem 2.8, Proposition 3.4,
Lemma 6.1(a), measurability of the support number, Lemma 7.1, and the equivalence of
two notions of asymptotic pure atomicity.

Appendix B: Comparison to the Mukherjee–Varadhan topology (DOI: 10.1214/19-
AOP1376SUPPB; .pdf). This appendix proves that the topology introduced by Mukherjee
and Varadhan [61], when adapted to the discrete setting, is equivalent to the one constructed
in this manuscript.
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