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THE MAXIMUM OF THE FOUR-DIMENSIONAL MEMBRANE MODEL
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We show that the centred maximum of the four-dimensional membrane
model on a box of sidelength N converges in distribution. To do so, we use
a criterion of Ding, Roy and Zeitouni (Ann. Probab. 45 (2017) 3886–3928)
and prove sharp estimates for the Green’s function of the discrete Bilaplacian.
These estimates are the main contribution of this work and might also be of
independent interest. To derive them, we use estimates for the approximation
quality of finite difference schemes as well as results for the Green’s function
of the continuous Bilaplacian.

1. Introduction.

1.1. The membrane model. A stochastic interface model on a finite subset A of the d-
dimensional lattice Zd is a probability distribution on height functions ϕ : A → R. The most
prominent example of such an interface model is probably the gradient model, also called
the discrete Gaussian free field. We define it as the centred Gaussian measure on functions
{ψv : v ∈ A} that are zero outside A given by

P∇
A(dψ) = 1

Z∇
A

exp
(
−1

2

∑
v∈Zd

|∇1ψv|2
) ∏

v∈A

dψv

∏
v∈Zd\A

δ0(dψv),

where ∇1ψv := (D1
i ψv)

d
i=1 := (ψv+ei

−ψv)
d
i=1 is the discrete gradient, the vector of discrete

forward derivatives. The focus of this work, however, will be on a slightly different model, the
so-called membrane model. This is the centred Gaussian measure on functions {ψv : v ∈ A}
that are zero outside A given by

P�
A(dψ) = 1

Z�
A

exp
(
−1

2

∑
v∈Zd

|�1ψv|2
) ∏

v∈A

dψv

∏
v∈Zd\A

δ0(dψv),

where �1ψv := ∑d
i=1 ψv+ei

− 2ψv + ψv−ei
is the discrete Laplacian.

We caution the reader that there are different normalizations of the gradient and membrane
model in the literature. Our definitions are most natural from a PDE point of view. They yield
fields that are by a factor of 1√

2d
in the case of the gradient model, or 1

2d in the case of
the membrane model smaller than the fields as defined in [4] and [21], respectively. In the
following, when quoting results from these and other works, we will transform them to our
scaling.

We will mostly consider these fields on a box VN := [0,N]d ∩Zd of sidelength N . We will
denote by (ψ∇

N,v)v∈VN
and (ψ�

N,v)v∈VN
random variables distributed according to P∇

A and P�
A ,

respectively, where A = VN .
A general heuristic is that the d-dimensional membrane model behaves like the d

2 -
dimensional gradient model. In particular, the critical dimension (where covariances de-
cay logarithmically) is d = 2 for the gradient and d = 4 for the membrane model. One
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interesting question about these models is how their maximums M∇
N = maxv∈VN

ψ∇
N,v and

M�
N = maxv∈VN

ψ�
N,v behave as N tends to infinity. The answer depends very much on the

dimension. In the supercritical case (d ≥ 3 for the gradient model, d ≥ 5 for the membrane
model) the correlations decay rapidly. Using Stein’s method, it was shown in [12, 13] that
M∇

N behaves as if the (ψ∇
N,v)v∈VN

were independent, that is,

√
2d logN√

g∇
d

(
M∇

N −
√

2dg∇
d logN +

√
g∇

d (log(d logN) + log 4π)√
8d logN

)
converges in distribution to a Gumbel random variable, where vN is a lattice point closest
to the centre of [0,N]d and g∇

d = limN→∞ Var(ψ∇
N,vN

); and that the analogous statement

holds true for M�
N . In the subcritical cases (d = 1 for the gradient model, 1 ≤ d ≤ 3 for

the membrane model) we have that
M∇

N

N
2−d

2
and

M�
N

N
4−d

2
converge in distribution, which follows

from the fact that the whole rescaled field converges weakly in C0. This is classical for the
gradient model, and for the membrane model it was shown for d = 1 in [10] and recently for
2 ≤ d ≤ 3 in [15]. The most interesting and most subtle case is the critical one (d = 2 for
the gradient model, d = 4 for the membrane model). For the gradient model, in a series of
papers [4, 5, 7, 8] it was shown that M∇

N −m∇
N converges in distribution to a randomly shifted

Gumbel variable, where m∇
N =

√
2
π

logN − 3√
32π

log logN . Even more is known, in particular
convergence of the full extremal process [2, 3]. For the membrane model, the picture is less

clear. The best previous result [21] is that
M�

N

logN
converges to 1

π
in probability. The question

whether a centred version of M�
N converges in distribution was posed, for example, in [15,

28]. We prove that this is the case.

THEOREM 1.1. Let d = 4. The random variable

M�
N − m�

N := M�
N − 1

π
logN + 3

16π
log logN

converges in distribution. The limit law is a randomly shifted Gumbel distribution μ∞, given
by

μ∞
(
(−∞, x]) = Ee−γ ∗Ze−8πx ∀x,

where γ ∗ is a constant and Z is a positive random variable that is the limit in law of

ZN = √
8

∑
v∈VN

(logN − πψN,v)e
−8(logN−πψN,v).

Before we put this result in context and discuss our proof strategy, let us point out a gen-
eralization.

REMARK 1.2. Our approach is not limited to the membrane model. In fact, consider for
l ∈N+ the ∇ l-model, given by the probability measure

P
(l)
A (dψ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Z
(l)
A

exp
(
−1

2

∑
v∈Zd

∣∣� l
2
1 ψv

∣∣2) ∏
v∈A

dψv

∏
v∈Zd\A

δ0(dψv), l even,

1

Z
(l)
A

exp
(
−1

2

∑
v∈Zd

∣∣∇1�
l−1

2
1 ψv

∣∣2) ∏
v∈A

dψv

∏
v∈Zd\A

δ0(dψv), l odd
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(note that l = 1 corresponds to the gradient model and l = 2 to the membrane model) in
the critical dimension d = 2l on the cube A = [0,N]d ∩ Zd. Then Theorem 1.1 generalizes
to this setting, and the maximum of the field, appropriately centred, converges in law to a
randomly shifted Gumbel distribution. Our proof in the following would only require minor
modifications to yield this more general result. However, since the case l = 1 is covered by
[7], while the ∇ l-model for l > 2 is rarely studied, we choose to focus on the case l = 2 in
the following. This allows us to avoid more complicated notation.

1.2. Log-correlated fields. In recent years, there has been great interest in the study of
log-correlated Gaussian fields. Very roughly speaking, these are fields where the covariance
between the values at two different sites decays logarithmically in their distance. Examples
include the two-dimensional gradient and four-dimensional membrane model. It is conjec-
tured that these form a universality class in the sense that many of their features do not de-
pend on the detailed structure of the covariance function (see [17] for a general discussion).
One example of such a feature is the behaviour of the maximum of the field, and one ex-
pects that convergence in law of the recentred maximum holds true for general log-correlated
fields. However, it is a challenging problem to verify this fact for specific examples of log-
correlated fields. In recent years convergence in law of the recentred maximum has been
proven for the gradient model, as already discussed, and also for various other models. Let
us mention branching Brownian motion [6], branching random walks [1], and also problems
from random matrix theory (see [11] for partial results).

Furthermore, there have been efforts to give sufficient criteria for convergence in law of the
maximum that cover a wide range of log-correlated fields. In [22], this was done for so-called
∗-scale invariant models. Most importantly for us, in [16] Ding, Roy and Zeitouni gave a set
of four assumptions that ensure that the maximum of a field converges in distribution. Let us
recall their result, slightly reformulated (we have changed the domain from [0,N − 1]d to
[0,N]d, and replaced log+ |a| with log(1 + |a|) in (A.0) and (A.1), but it is straightforward
to check that the theorem stated here is equivalent to the theorem as stated in [16]). We write
dN(v) := dist(v, ∂[0,N]d) for the distance of v to the boundary of [0,N]d and d(x) := d1(x).

THEOREM 1.3 ([16], Theorem 1.3 and Theorem 1.4). Let VN = [0,N]d ∩ Zd, and let
ϕN = {ϕN,v : v ∈ VN } be a centred Gaussian field. Assume that:

(A.0) (Logarithmically bounded fields) There is a constant α0 > 0 such that for all u, v ∈
VN ,

VarϕN,v ≤ logN + α0

and

E(ϕN,v − ϕN,u)
2 ≤ 2 log

(
1 + |u − v|) − |VarϕN,v − VarϕN,u| + 4α0.

(A.1) (Logarithmically correlated fields) For any δ > 0 there is a constant α(δ) > 0 such
that for all u, v ∈ VN with min(dN(u), dN(v)) ≥ δN∣∣Cov(ϕN,v, ϕN,u) − (

logN − log
(
1 + |u − v|))∣∣ ≤ α(δ).

(A.2) (Near diagonal behaviour) There are both a continuous function f1 :(0,1)d →R and
a function f2 : Zd × Zd → R such that the following holds. For all L,ε, δ > 0, there exists
N0 = N0(L, ε, δ) such that for all x ∈ [0,1]d, N ≥ N0 such that Nx ∈ Zd and d(x) ≥ δ, and
for all u, v ∈ [0,L]d ∩Zd we have∣∣Cov(ϕN,Nx+v, ϕN,Nx+u) − logN − f1(x) − f2(u, v)

∣∣ < ε.
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(A.3) (Off diagonal behaviour) There is a continuous function f3 : Dd → R, where
Dd = {(x, y) : x, y ∈ (0,1)d, x �= y} such that the following holds. For all L,ε, δ > 0 there
exists N1 = N1(L, ε, δ) > 0 such that for all x, y ∈ [0,1]d, N ≥ N1 such that Nx,Ny ∈ Zd,
min(d(x), d(y)) ≥ δ and |x − y| ≥ 1

L
we have∣∣Cov(ϕN,Nx,ϕN,Ny) − f3(x, y)

∣∣ < ε.

Let MN = maxv∈VN
ϕN,v and

mN = √
2d logN − 3

2
√

2d
log logN.

Then the sequence MN − mN converges in distribution to a randomly shifted Gumbel distri-
bution μ∞. The limit distribution is given by

μ∞
(
(−∞, x]) = Ee−γ ∗Ze−√

2dx ∀x,

where γ ∗ is a constant and Z is a positive random variable that is the limit in law of

ZN = ∑
v∈VN

(
√

2d logN − ϕN,v)e
−√

2d(
√

2d logN−ϕN,v).

This theorem easily implies Theorem 1.1 once we show that ψ�
N (or rather

√
8πψ�

N ) satis-
fies assumptions (A.0), (A.1), (A.2), (A.3). In fact, we can prove even slightly stronger state-
ments than these. Let us state the precise results that we will prove. We abbreviate λ = √

8π .

THEOREM 1.4. The field ϕN := λψ�
N in dimension d = 4 satisfies:

(A.0′) There is a constant α′
0 > 0 such that for all u, v ∈ VN ,

VarϕN,v ≤ min
(
logN + α′

0, α
′
0 log

(
2 + dN(v)

))
and

VarϕN,v − Cov(ϕN,v, ϕN,u) ≤ log
(
1 + |u − v|) + 2α′

0.

(A.1′) There is a constant α′′
0 > 0 such that for all u, v ∈ VN∣∣∣∣Cov(ϕN,v, ϕN,u) − log

(
2 + max(dN(u), dN(v))

1 + |u − v|
)∣∣∣∣ ≤ α′′

0 .

(A.2′) There are a constant θ0 > 0, a continuous function f1 : (0,1)4 →R and a function
f2 : Z4 × Z4 → R such that the following holds. For all L,ε > 0, θ > θ0 there exists N ′

0 =
N ′

0(L, ε, θ) such that for all x ∈ [0,1]4, N ≥ N ′
0 such that Nx ∈ Z4 and d(x) ≥ (logN)θ

N
, and

for all u, v ∈ [0,L]4 ∩Z4 we have∣∣Cov(ϕN,Nx+v, ϕN,Nx+u) − logN − f1(x) − f2(u, v)
∣∣ < ε.

(A.3′) There are a constant θ1 > 0 and a continuous function f3 : D4 → R, where D4 =
{(x, y) : x, y ∈ (0,1)4, x �= y} such that the following holds. For all L,ε > 0, θ > θ1 there
exists N ′

1 = N ′
1(L, ε, θ) such that for all x, y ∈ [0,1]4, N ≥ N ′

1 such that Nx,Ny ∈ Z4,

min(d(x), d(y)) ≥ (logN)θ

N
and |x − y| ≥ 1

L
we have∣∣Cov(ϕN,Nx,ϕN,Ny) − f3(x, y)

∣∣ < ε.

It is not hard to check that the assumptions (A.0′), (A.1′), (A.2′), (A.3′) imply (A.0), (A.1),
(A.2), (A.3), respectively, so that Theorem 1.1 is a straightforward corollary of Theorem 1.4.
We give a few more details in Section 4.

The proof of Theorem 1.4 is the main contribution of this work. In the next section we will
describe our approach.
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1.3. Green’s function estimates. The covariance function of the membrane model is the
Green’s function G�

N of the discrete Bilaplacian on the grid [0,N]d with zero boundary data,
and the assumptions (A.0′), (A.1′), (A.2′), (A.3′) all correspond to certain estimates for this
Green’s function. Therefore our goal is to understand this Green’s function. We are going
to apply tools from PDE theory and numerical analysis, so before proceeding further it is
convenient to rescale our domain to a unit box. Let h = 1

N
, let Vh = [0,1]4 ∩ (hZ)4, and

let ψ�
h,x := ψ�

N,x
h
. Let G�

N and G�
h be the covariance functions of ψ�

N and ψ�
h . Then also

G�
h (x, y) = G�

N(x
h
,

y
h
).

Using G�
N and G�

h , VN and Vh, and ψN and ψh simultaneously is a slight abuse of nota-
tion. It should, however, always be clear from the context which object we are referring to.
Let us also remark that from a PDE point of view it would arguably be more natural to choose
h = 1

N+2 and rescale [0,N]4 to [h,1 − h]4, as this would give our domain a natural bound-
ary layer of zeros, matching the continuous Dirichlet boundary data. Our choice of rescaling,
however, is in line with [16].

OBSERVATION 1.5. Under the aforementioned rescaling, each statement (A.0′), (A.1′),
(A.2′), (A.3′) from Theorem 1.4 for λψ�

N in dimension d = 4 is equivalent to the correspond-
ing following statement for G�

h .

(B.0′) There is a constant α′
0 > 0 such that for all x, y ∈ Vh,

λ2G�
h (x, x) ≤ min

(
− logh + α′

0, α
′
0 log

(
2 + d(x)

h

))
and

λ2(
G�

h (x, x) − G�
h (x, y)

) ≤ log
(

1 + |x − y|
h

)
+ 2α′

0.

(B.1′) There is a constant α′′
0 > 0 such that for all x, y ∈ Vh∣∣∣∣λ2G�

h (x, y) − log
(

2 + max(d(x), d(y))

h + |x − y|
)∣∣∣∣ ≤ α′′

0 .

(B.2′) There are a constant θ0 > 0, a continuous function f1 : (0,1)4 →R and a function
f2 : Z4 × Z4 → R such that the following holds. For all L,ε > 0, θ > θ0 there exists N ′

0 =
N ′

0(L, ε, θ) such that for all h ≤ 1
N ′

0
with 1

h
∈ N, all x ∈ Vh such that d(x) ≥ h| logh|θ and

for all u, v ∈ [0,L]4 ∩Z4 we have∣∣λ2G�
h (x + hu,x + hv) + logh − f1(x) − f2(u, v)

∣∣ < ε.

(B.3′) There are a constant θ1 > 0 and a continuous function f3 : D4 → R, where D4 =
{(x, y) : x, y ∈ (0,1)4, x �= y} such that the following holds. For all L,ε > 0, θ > θ1 there
exists N ′

1 = N ′
1(L, ε, θ) such that for all h ≤ 1

N ′
1

with 1
h

∈ N and for x, y ∈ Vh such that

min(d(x), d(y)) ≥ h| logh|θ and |x − y| ≥ 1
L

we have∣∣λ2G�
h (x, y) − f3(x, y)

∣∣ < ε.

Let us discuss how one might prove Theorem 1.4, or rather the statements (B.0′), (B.1′),
(B.2′), (B.3′). We write 
h = (hZ)4 ∩ ([−h,1+h]4 \[0, h]4). The function G�

h is the Green’s
function associated to the discrete boundary value problem

(1.1)

�2
huh = fh in Vh,

uh = 0 on 
h,

Dh
ν uh = 0 on 
h
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(where Dh
ν u(x) = u(x+hν)−u(x)

h
and ν is an outward unit normal vector). That is, for y ∈ Vh

the function Gh(·, y) is the unique solution of that equation with right hand side fh = δh(y),
defined as

δh,y(x) =
⎧⎨⎩

1

h4 if x = y,

0 otherwise.

One previous strategy to prove estimates for G�
h , introduced in [21] and used as well in [14],

was to compare G�
h to G

�

h , the Green’s function associated to the discrete boundary value
problem

(1.2)

�2
huh = fh in Vh,

uh = 0 on 
′
h,

�hu = 0 on 
h,

where 
′
h = (hZ)4 ∩ ([−2h,1 + 2h]4 \ [−h,1 + h]4). The problem (1.2) can be seen as an

iterated version of the discrete Poisson problem, and so many of the analytic and probabilistic
tools available for the latter also have a version for (1.2). In particular, there are random walk
representations for G

�

h that allow to control it well. The strategy in [21] then was to use PDE
techniques to compare solutions of (1.1) and (1.2). This allows to estimate the difference
between Gh and Gh uniformly in compact subsets of (0,1)4. For our purposes, this is not
good enough, as for (B.2′) and (B.3′) an error term that is only bounded is already too much.
Note however that results similar to (B.0′), (B.1′) can be proved using these methods. In fact,
[21], Proposition 1.1, and [14], Lemma 2.1, are already weaker versions of (B.0′) and (B.1′).

In [26] the authors considered G�
h in dimensions 2 and 3, and used a very different strat-

egy. They used a compactness argument to transfer estimates for the continuous Green’s
function in domains with singularities to the discrete setting. This allowed them the prove
discrete Caccioppoli inequalities (i.e., L2-based decay estimates on balls of various sizes)
and to conclude from these estimates for G�

h . In principle, this strategy can also be applied in
our four-dimensional setting. One obstacle to this is that, unlike the two- or three-dimensional
case, the relevant continuous estimates cannot be found in the literature. Even more impor-
tantly, the estimates in [26] are all up to a possibly large constant, and so the argument would
have to be modified significantly to obtain estimates such as (B.2′) and (B.3′).

Instead of the aforementioned approaches to derive estimates for G�
h we will use esti-

mates for the approximation quality of finite difference schemes for the Bilaplacian. This
idea is not completely new as, for example, in [15] estimates for finite difference schemes
from [31] were used to prove convergence of the rescaled four-dimensional membrane model
in some negative Sobolev space. However, we would like to obtain a much stronger conclu-
sion, namely pointwise estimates for the difference of the discrete and continuous Green’s
function. The result from [31] is very general, but because of its generality it requires in our
specific case very strong assumptions on the solution of the continuous Bilaplace equation to
be approximated (being C5) to yield estimates useful for us (the W

2,2
h -approximation error

decaying like h
1
2 ).

We will use a rather different estimate for the approximation quality of finite difference
schemes. We will discuss the details in Section 2.2. Roughly speaking, the result is the fol-
lowing: Let 2 < s < 5

2 , let u ∈ Ws,2 ∩ W
2,2
0 ((0,1)4) extended by 0 to R4, and assume that
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�2u = f in (0,1)4, so that u satisfies

(1.3)

�2u = f in (0,1)4,

u = 0 on ∂(0,1)4,

∂νu = 0 on ∂(0,1)4.

Furthermore, let uh : (hZ)4 →R be the solution of

�2
huh = T h,3,3,3,3f in Vh,

uh = 0 on (hZ)4 \ Vh,

where T h,3,3,3,3 is a certain regularization operator. Then

‖u − uh‖W
2,2
h (Vh)

≤ Chs−2‖u‖Ws,2((0,1)4),

where ‖ · ‖
W

2,2
h (Vh)

is a discrete Sobolev norm.

This result is inspired by closely related recent results in [27]. However, in that work the
focus is on obtaining estimates as above for s as large as possible. In the case of interest to
us, s < 5

2 , the result can essentially be shown using the methods from [18–20].
We will use this result to compare solutions of (1.1) with solutions of (1.3). In particular,

we will use it when u is the regular part of the continuous Green’s function on [0,1]4. To
do so, we need regularity estimates for solutions of (1.3). As already mentioned, optimal
estimates for higher order elliptic problems on four-dimensional polyhedral domains are not
yet in the literature. Instead we will use much weaker estimates (similar to ones in [24, 25])
which are nonetheless sharp enough for our purposes. These estimates will allow us to place
the regular part of the Green’s function in W 2+κ0,2 for some small κ0 > 0, and this is good
enough to apply the estimate above.

We will also need to have good estimates for the discrete Green’s function on the full space
(hZ)4. These were derived in [23] using Fourier analysis. Furthermore, Theorem 2.3 gives us
control over the W

2,2
h -norm of the difference of u and uh, while we are actually interested in

the L∞
h -norm and want it to decay. To achieve this, we will use a discrete Sobolev-inequality

that allows us to control the L∞
h -norm by the W

2,2
h -norm at the cost of a term logarithmic

in h. The presence of this term is the reason why we can prove (B.2′) and (B.3′) only up to
distance | logh|θ to the boundary. For (B.0′) and (B.1′) we do not need a decaying but only a
bounded error term and so we can prove these estimates on the whole domain.

We will give the details of the argument that we sketched here in the following sections.
In Section 2 we gather various useful results: The aforementioned result on finite difference
schemes from [27], as well as some discrete inequality of Poincaré-Sobolev-type. These tools
will allow us to compare G�

h with various other Green’s functions: the discrete Green’s func-
tion of the full space (that we discuss in Section 3.1) and the continuous Green’s functions
of the box [0,1]4 and of the full space (that we both discuss in Section 3.2). After all these
preparations we can then turn to the proof of Theorem 1.4 in Section 4. We first prove a
crucial lemma, Lemma 4.1 that shows that the regular part of the discrete and continuous
Green’s functions on the box are uniformly close, and then we use this lemma and the results
of the preceding sections to establish Theorem 1.4. Finally, we use Theorem 1.3 to conclude
Theorem 1.1 as well.

1.4. Notation. Our notation mostly follows that of [26], with some minor modifications.
From now on we will only consider the membrane and not the gradient model, so there is no
risk of confusion when we drop all superscripts �.
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In the following, C denotes a constant that is independent of all other occurring variables,
but whose precise value may change from occurrence to occurrence. By Cr,s,t,... we simi-
larly denote a constant depending only on r, s, t, . . . whose precise value may change from
occurrence to occurrence. Occasionally we write r = s + O(t) to express |r − s| ≤ Ct .

We write ∂i for the partial derivative in direction ei , and ∂α = ∂
α1
1 · · · ∂α4

4 for a multi-
index α. We denote by ∇ , ∇2, �, �2 the gradient, the Hessian matrix, the Laplacian and
the Bilaplacian, respectively. In particular, the reader should not confuse ∇2 and �. For
� ⊂ R4 open, k ∈ N, p ∈ [1,∞], α ∈ (0,1) we use the Lp-space Lp(�), the Hölder space
C0,α(�) and the Sobolev space Wk,2(�); the latter equipped with the norm ‖u‖2

Wk,2(�)
=∑

|α|≤k ‖∂αu‖2
L2(�)

. For s > 0 not an integer (i.e., s = k + t where k ∈ N, 0 < t < 1) we will

also encounter the fractional Sobolev space Ws,2(�) with norm ‖u‖2
Ws,2(�)

= ‖u‖2
Wk,2(�)

+
[u]2

Ws,2(�)
and the seminorm [u]2

Ws,2(�)
= ∑

|α|=k

∫
�

∫
�

|∂αu(x)−∂αu(y)|2
|x−y|4+2t dx dy. For any s < 0,

we define Ws,2(�) as the dual of W
−s,2
0 (�). We extend these definitions to vector-valued

functions by taking the l2-norm of the norms of the components.
By Br(x) we denote the open ball of radius r around x.
For a unit vector a ∈ R4 define the forward difference quotient Dh

av(x) := 1
h
(v(x + ha) −

v(x)) and the backward difference quotient Dh−av(x) := 1
h
(v(x) − v(x − ha)). When a is a

standard unit vector ei , we write Dh
i instead of Dh

ei
and Dh−i instead of Dh−ei

.
The discrete gradient is the vector ∇hv(x) := (Dh

i v(x))4
i=1, the discrete Hessian is the

tuple ∇2
hv(x) := (Dh

i Dh−j v(x))4
i,j=1, the discrete Laplacian is �hv(x) := ∑4

i=1 Dh
i Dh−iv(x),

and the discrete Bilaplacian is �2
h := �h◦�h. For a multi-index α ∈ N4, we write Dh

αuh(x) =
(Dh

1 )α1 · · · (Dh
4 )α4uh(x). Given A ⊂ (hZ)4 and uh : A → R, we define ‖uh‖2

L2
h(A)

=∑
x∈A h4|uh(x)|2, and ‖uh‖L∞

h (A) = supx∈A |uh(x)|. We will also use the discrete Sobolev-

norm ‖uh‖2
W

2,2
h (A)

= ‖uh‖2
L2

h(A)
+ ‖∇huh‖2

L2
h(A)

+ ‖∇2
huh‖2

L2
h(A)

, where we extend the defini-

tions to vector-valued functions as before.
For r > 0 and x ∈ (hZ)4 we let Qh

r (x) = x + [−r, r]4 ∩ (hZ)4 be the cube of diameter 2r

around x.
Let us also fix once and for all a smooth function η : R4 → R that is equal to 1 on B 1

2
(0)

and 0 outside B1(0). We define η(r)(x) = η(rx), η
(r)
y (x) = η(r)(x − y) and let η

(r)
h,y be the

restriction of η
(r)
y to (hZ)4. Thus η

(r)
y and η

(r)
h,y are cut-off functions at scale r around y.

2. Preliminaries.

2.1. Discrete inequalities. We collect here two discrete inequalities that we will use sev-
eral times in the following. We begin with a Poincaré inequality.

LEMMA 2.1. Let x∗ ∈ (hZ)4, r ≥ 0. Let uh : (hZ)4 → R and suppose that uh vanishes
on at least one of the faces of Qr(x∗). Let this face be contained in a plane xi = c. Then

(2.1)

‖uh‖2
L2

h(Qh
r (x∗)) ≤ Cr2

∑
x : {x,x+hei}⊂Qh

r (x∗)
h4∣∣Dh

i uh(x)
∣∣2

≤ Cr2‖∇huh‖2
L2

h(Qh
r (x∗)).

PROOF. This is a particular case of [26], Lemma 2.1. For the convenience of the reader
we give a proof. The second inequality is obvious, so we only prove the first. By translating
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and reflecting the lattice and renaming the coordinates, we can assume i = 4, Qh
r (x∗) =

[0,2r]4 ∩ (hZ)4. We write x = (x′, x4) where x′ ∈ R3, x4 ∈ R, uh = 0 if x4 = 0. We will
prove the one-dimensional estimate

(2.2)
∑

x4∈[0,2r]∩hZ

∣∣uh

(
x′, x4

)∣∣2 ≤ Cr2
∑

x4∈[0,2r−h]∩hZ

∣∣Dh
4uh

(
x′, x4

)∣∣2.
Once we have established this, (2.1) follows by multiplying (2.2) by h4 and summing over
all x′ ∈ [0,2r]3 ∩ (hZ)3. To prove (2.2), we use u(x′,0) = 0 and write∣∣uh

(
x′, x4

)∣∣ =
∣∣∣∣ ∑
y4∈[0,x4−h]∩hZ

uh

(
x′, y4 + h

) − uh

(
x′, y4

)∣∣∣∣
=

∣∣∣∣ ∑
y4∈[0,x4−h]∩hZ

hDh
4uh

(
x′, y4

)∣∣∣∣
≤ h

(
x4

h

) 1
2
( ∑

y4∈[0,x4−h]∩hZ

∣∣Dh
4uh

(
x′, y4

)∣∣2) 1
2

≤ √
2hr

( ∑
y4∈[0,2r−h]∩hZ

∣∣Dh
4uh

(
x′, y4

)∣∣2) 1
2

and therefore ∑
x4∈[0,2r]∩hZ

∣∣uh

(
x′, x4

)∣∣2 ≤ 2r

h
2hr

∑
y4∈[0,2r−h]∩hZ

∣∣Dh
4uh

(
x′, y4

)∣∣2
≤ 4r2

∑
y4∈[0,2r−h]∩hZ

∣∣Dh
4uh

(
x′, y4

)∣∣2.
This shows (2.2). �

Next, we give an inequality of Poincaré-Sobolev type. Given uh : (hZ)4 →R that vanishes
outside of Vh we would like to estimate its pointwise values by the ‖uh‖W

2,2
h ((hZ)4)

-norm. We

cannot hope for such an estimate to hold with a constant independent of h, as the (continuous)
Sobolev space W 2,2((0,1)4) does not embed into L∞((0,1)4). However, by Strichartz’s [29]
version of the Moser-Trudinger inequality any u ∈ W 2,2((0,1)4) with ‖u‖W 2,2((0,1)4) = 1

satisfies
∫
(0,1)4 ec|u(x)|2 dx ≤ C, and this suggests that u can diverge at worst like

√| log |x||.
So back in the discrete setting we can hope for an estimate with a factor scaling like

√| logh|.
Indeed we have the following result.

LEMMA 2.2. Assume that uh : (hZ)4 → R vanishes outside of Vh. Then for any x ∈ Vh

we have ∣∣uh(x)
∣∣ ≤ C

√
log

(
2 + d(x)

h

)
‖uh‖W

2,2
h ((hZ)4)

.

This lemma in combination with Theorem 2.3 will allow us to control the distance between
the solution of a continuous Bilaplace equation and its discrete approximation at the cost of
a logarithmic divergence (which we will be able to absorb in the applications in Section 4).

PROOF OF LEMMA 2.2. We first want to localize to a ball around x. Let vh =
η

(d(x)+h)
h,x uh. Then vh(x) = uh(x). Furthermore, vh is supported on Qh

d(x)+h(x). The discrete
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chain rule implies that∣∣Dh
i vh(y)

∣∣ ≤ C sup
z∈Qh

h(y)

∣∣Dh
i η

(d(x)+h)
h,x (z)

∣∣ sup
z∈Qh

h(y)

∣∣uh(z)
∣∣

+ C sup
z∈Qh

h(y)

∣∣η(d(x)+h)
h,x (z)

∣∣ sup
z∈Qh

h(y)

∣∣Dh
i uh(z)

∣∣
≤ C sup

z∈Qh
h(y)

∣∣Dh
i η

(d(x)+h)
h,x (z)

∣∣( ∑
z∈Qh

h(y)

∣∣uh(z)
∣∣2) 1

2

+ C sup
z∈Qh

h(y)

∣∣η(d(x)+h)
h,x (z)

∣∣( ∑
z∈Qh

h(y)

∣∣Dh
i uh(z)

∣∣2) 1
2

and a similar expression for |Dh
i Dh−j vh(y)|. If we sum the squares of these estimates over y,

we see that

‖vh‖W
2,2
h ((hZ)4)

≤ C
∥∥η(d(x)+h)

h,x

∥∥
L∞

h ((hZ)4)

∥∥∇2
huh

∥∥
L2

h(Qh
d(x)+2h(x))

+ C
∥∥∇hη

(d(x)+h)
h,x

∥∥
L∞

h ((hZ)4)‖∇huh‖L2
h(Qh

d(x)+2h(x))

+ C
∥∥∇2

hη
(d(x)+h)
h,x

∥∥
L∞

h ((hZ)4)‖uh‖L2
h(Qh

d(x)+2h(x))(2.3)

≤ C
∥∥∇2

huh

∥∥
L2

h(Qh
d(x)+2h(x)) + C

d(x) + h
‖∇huh‖L2

h(Qh
d(x)+2h(x))

+ C

(d(x) + h)2 ‖uh‖L2
h(Qh

d(x)+2h(x)).

We can apply Lemma 2.1 to uh and Dh
i uh for any i ∈ {1, . . . ,4}, because these vanish on

Qh
d(x)+2h(x)\ [−h,1+h]4 and hence in particular on a face of Qh

d(x)+2h(x). Thus, we obtain

(2.4)
‖uh‖L2

h(Qh
d(x)+2h(x)) ≤ C

(
d(x) + 2h

)‖∇huh‖L2
h(Qh

d(x)+2h(x))

≤ C
(
d(x) + 2h

)2∥∥∇2
huh

∥∥
L2

h(Qh
d(x)+2h(x)).

If we combine this with (2.3) and note that d(x) + 2h ≤ 2(d(x) + h), we obtain

(2.5) ‖vh‖W
2,2
h ((hZ)4)

≤ C‖uh‖W
2,2
h ((hZ)4)

.

Furthermore, an argument analogous to the one that led to (2.4) shows that

(2.6) ‖vh‖L2
h((hZ)4) ≤ C

(
d(x) + h

)2∥∥∇2
hvh

∥∥
L2

h((hZ)4).

Now we are in a position to apply discrete Fourier analysis, similar to the proof of [21],
Proposition B.1. Let

v̂h(ξ) = h4
∑

y∈(hZ)4

vh(y)eiy·ξ

for any ξ ∈ [−π
h
, π

h
]4 be the Fourier transform of vh. Then we also have the inverse formula

vh(z) = 1

(2π)4

∫
[− π

h
, π

h
]4

v̂h(ξ)e−iz·ξ dξ
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for any z ∈ (hZ)4, and Plancherel’s formula in the form∫
[− π

h
, π

h
]4

∣∣v̂h(ξ)
∣∣2 dξ = (2πh)4

∑
y∈(hZ)4

∣∣vh(y)
∣∣2 = (2π)4∥∥vh(y)

∥∥2
L2

h((hZ)4)
.

We have

D̂h
αvh(ξ) = (

e−ihξ1 − 1
)α1 · · · (e−ihξ4 − 1

)α4 v̂h(ξ)

for any α ∈N4. This implies∣∣D̂h
αvh(ξ)

∣∣ ≥ 1

C
|ξ1|α1 · · · |ξ4|α4

∣∣v̂h(ξ)
∣∣

for any ξ ∈ [−π
h
, π

h
]4. In combination with Plancherel’s formula and (2.6) we conclude∫

[− π
h
, π

h
]4

|ξ |4∣∣v̂h(ξ)
∣∣2 ≤ C

∥∥∇2
hvh

∥∥2
L2

h((hZ)4)
≤ C‖vh‖2

W
2,2
h ((hZ)4)

,(2.7)

∫
[− π

h
, π

h
]4

∣∣v̂h(ξ)
∣∣2 ≤ C‖vh‖2

L2
h((hZ)4)

≤ C
(
d(x) + h

)4‖vh‖2
W

2,2
h ((hZ)4)

.(2.8)

Next, we estimate∣∣vh(x)
∣∣ = 1

(2π)4

∣∣∣∣∫[− π
h
, π

h
]4

v̂h(ξ)e−ix·ξ dξ

∣∣∣∣
≤ C

∫
[− π

h
, π

h
]4

∣∣v̂h(ξ)
∣∣ dξ

≤ C

(∫
[− π

h
, π

h
]4

(
|ξ |4 + 1

(d(x) + h)4

)∣∣v̂h(ξ)
∣∣2 dξ

) 1
2

×
(∫

[− π
h
, π

h
]4

(
|ξ |4 + 1

(d(x) + h)4

)−1
dξ

) 1
2
.

Using (2.7) and (2.8), we see that∫
[− π

h
, π

h
]4

(
|ξ |4 + 1

(d(x) + h)4

)∣∣v̂h(ξ)
∣∣2 dξ ≤ C‖vh‖2

W
2,2
h ((hZ)4)

.

Furthermore, we can compute using polar coordinates that∫
[− π

h
, π

h
]4

(
|ξ |4 + 1

(d(x) + h)4

)−1
dξ =

∫
[− π

h
, π

h
]4

(d(x) + h)4

1 + (d(x) + h)4|ξ |4 dξ

≤ C

∫ 2π
h

0

(d(x) + h)4s3

1 + (d(x) + h)4s4 ds

≤ C log
(

1 + (
d(x) + h

)4
(

2π

h

)4)
≤ C log

(
2 + d(x)

h

)
.

Putting everything together, we indeed arrive at

∣∣uh(x)
∣∣ = ∣∣vh(x)

∣∣ ≤ C

√
log

(
2 + d(x)

h

)
‖vh‖W

2,2
h ((hZ)4)

≤ C

√
log

(
2 + d(x)

h

)
‖uh‖W

2,2
h ((hZ)4)

. �
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2.2. Estimates for finite difference schemes. Let us discuss next the estimate for the ap-
proximation order of finite difference schemes that was already mentioned in the Introduc-
tion.

To state it we need some definitions, taken from [27]. For j ≥ 1 let θj be the standard
univariate centred B-spline of degree j − 1 (cf. [20], Section 1.9.4). Of interest to us are

θ3(z) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3

4
− z2, |z| ≤ 1

2
,

1

2

(
|z| − 3

2

)2
,

1

2
< |z| ≤ 3

2
,

0, else,

θ1(z) :=
⎧⎨⎩1, |z| ≤ 1

2
,

0, else.

Using this, we can define the smoothing operator T
h,j
i for 1 ≤ i ≤ 4 as

T
h,j
i f (x) := 1

h

∫
R

f (x1, . . . , xi−1, yi, xi+1, . . . , x4)θj

(
xi − yi

h

)
dyi

extended to distributions on R4 in the obvious way. Furthermore, we set

T h,j,...,j f := T
h,j

1 ◦ · · · ◦ T
h,j

4 f.

It is important for us that T
h,j
i maps constant functions to themselves and that

T
h,j
i ∂2

i f = Dh
i Dh−iT

h,j−2
i f.

If we define the shorthand

T h,3,3,3,3−2ei := T
h,3
1 ◦ · · · ◦ T

h,3
i−1 ◦ T

h,1
i ◦ T

h,3
i+1 ◦ · · · ◦ T

h,3
4

we also have

(2.9) T h,3,3,3,3∂2
i f = Dh

i Dh−iT
h,3,3,3,3−2ei f.

THEOREM 2.3. Let 2 < s < 5
2 , let u ∈ W

s,2
0 ((0,1)4), extended by 0 to ũ ∈ Ws,2(R4). Let

�2ũ = f as distributions, so that in particular

�2u = f in (0,1)4.

Furthermore, let uh : (hZ)4 →R be the solution of

�2
huh = T h,3,3,3,3f in Vh,

uh = 0 on (hZ)4 \ Vh.

Then we have

‖uh − ũ‖
W

2,2
h ((hZ)4)

≤ Csh
s−2‖u‖Ws,2((0,1)4).

Note that f = �2ũ ∈ Ws−4,2(R4) is in a negative Sobolev space. The operator T h,3,3,3,3

maps Wt,2(R4) to C(R4) for any t > −5
2 (see [20], Section 1.9.4). So in particular T h,3,3,3,3f

has pointwise values and the difference scheme in Theorem 2.3 makes sense.
This theorem is closely related to [27], Theorem 1.2. In that theorem, one takes 5

2 < s ≤ 3,
and T h,3,3,3,3 is replaced by T h,2,2,2,2. The novelty of that work lies in choosing a good
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extension ũ and dealing with its boundary values. In our case, we can just extend u by 0 and
thereby avoid many of these subtleties. In fact, all the ideas for the proof of Theorem 2.3 are
already, for example, in [20].

To make this work more self-contained, we give some details for a proof of Theorem 2.3,
closely following [27].

PROOF OF THEOREM 2.3. First of all, s < 5
2 and u ∈ W

s,2
0 ((0,1)4) imply that ũ is actu-

ally in Ws,2(R4) and ‖ũ‖Ws,2(R4) = ‖u‖Ws,2((0,1)4).
Let eh : (hZ)4 →R be given by eh = ũ − uh. Then,

�2
heh = �2

hũ − �2
huh = �2

hũ − T h,3,3,3,3�2ũ on Vh,

eh = 0 on (hZ)4 \ Vh

and by summation by parts we have

(2.10)

∥∥∇2
heh

∥∥2
L2

h((hZ)4)
= (

eh,�
2
heh

)
L2

h((hZ)4)

= (
eh,�

2
hũ − T h,3,3,3,3�2ũ

)
L2

h((hZ)4).

We can rewrite �2
hũ − T h,3,3,3,3�2ũ using (2.9) as

�2
hũ − T h,3,3,3,3�2ũ =

4∑
i=1

Dh
i Dh−i�hũ − T h,3,3,3,3∂2

i �ũ

=
4∑

i=1

Dh
i Dh−i�hũ − Dh

i Dh−iT
h,3,3,3,3−2ei�ũ

=
4∑

i=1

Dh
i Dh−igi,

where

gi := �hũ − T h,3,3,3,3−2ei�ũ.

We can insert this into (2.10) and use summation-by-parts once again to obtain

∥∥∇2
heh

∥∥2
L2

h((hZ)4)
=

4∑
i=1

(
eh,D

h
i Dh−igi

)
L2

h((hZ)4)

=
4∑

i=1

(
Dh

i Dh−ieh, gi

)
L2

h((hZ)4)

≤
4∑

i=1

‖gi‖L2
h((hZ)4)

∥∥∇2
heh

∥∥
L2

h((hZ)4)

and thus

(2.11)
∥∥∇2

heh

∥∥
L2

h((hZ)4) ≤
4∑

i=1

‖gi‖L2
h((hZ)4).

The summands on the right-hand side can be bounded using the Bramble–Hilbert lemma
(see, e.g., [20], Theorem 2.28): As s > 2,∣∣�hũ(x)

∣∣ ≤ Ch‖ũ‖L∞(x+(−3h/2,3h/2)4) ≤ Ch,s‖ũ‖Hs(x+(−3h/2,3h/2)4).
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Because s > 3
2 and T h,3,3,3,3−2ei f (x) only depends on f |x+(−3h/2,3h/2)4 we can conclude

from [20], Theorem 1.67, and the locality of T h,3,3,3,3−2ei that∣∣T h,3,3,3,3−2ei�ũ(x)
∣∣ ≤ Ch,s‖ũ‖Hs(x+(−3h/2,3h/2)4).

Thus gi(x) is a bounded linear functional of ũ ∈ Ws,2(x + (−3h/2,3h/2)4). This functional
vanishes when ũ|x+(−3h/2,3h/2)4 is a polynomial of degree at most 2. Indeed, if that is the case
then �ũ|x+(−3h/2,3h/2)4 is a constant function, and �hũ(x) is equal to the same constant, and

the claim follows from the fact that T
h,3
1 · · ·T h,3

i−1T
h,1
i T

h,3
i+1 · · ·T h,3

4 maps constant functions to
themselves.

We have now shown that gi(x) is a bounded linear functional of ũ ∈ Ws,2(x +
(−3h/2,3h/2)4) that vanishes on polynomials of degree at most 2. By the Bramble–Hilbert
lemma it is bounded by Ch,s[ũ]Ws,2(x+(−3h/2,3h/2)4) for s ≤ 3. Using a scaling argument to
determine the correct prefactor of h, we obtain∣∣gi(x)

∣∣ ≤ Csh
s−4[ũ]Ws,2(x+(−3h/2,3h/2)4)

and hence

(2.12)

‖gi‖2
L2

h((hZ)4)
≤ Ch4

∑
x∈(hZ)4

h2(s−4)[ũ]2
Ws,2(x+(−3h/2,3h/2)4)

≤ Csh
2(s−2)[ũ]2

Ws,2(R4)
≤ Csh

2(s−2)‖u‖2
Ws,2((0,1)4)

for those s. Now we can plug (2.12) into (2.11) and obtain∥∥∇2
heh

∥∥
L2

h((hZ)4) ≤ Csh
s−2‖u‖Ws,2((0,1)4)

for s < 5
2 . Using the discrete Poincaré inequality completes the proof. �

3. Estimates for other Green’s functions.

3.1. Estimates for the discrete Green’s function of the full space. Our strategy will be to
compare Gh with several other Green’s functions, so let us introduce these first.

Recall that λ = √
8π . Let G be the Green’s function of the continuous Bilaplacian on

[0,1]4 with Dirichlet boundary data (i.e., of the problem (1.3)). We also need Green’s func-
tions on the full space. Let Ĝ(x, y) := − 1

λ2 log |x − y|. It is easy to check that this is a funda-

mental solution of the Bilaplacian (i.e., that �2(− 1
λ2 log | · −y|) = δy in the sense of distribu-

tions). We also define Ĝh : (hZ)4 × (hZ)4 → R by Ĝh(x, y) = F(
x−y

h
) − 1

λ2 logh where F

is the function introduced in the following lemma. We added the summand − 1
λ2 logh here to

ensure that Ĝh has the same asymptotic behaviour as Ĝ. We also define shifted versions of
Ĝh and Ĝ, namely for r > 0 we let Ĝ(r) = Ĝ + log r

λ2 , and Ĝ
(r)
h = Ĝh + log r

λ2 . We occasionally

write Gy for G(·, y), and define Gh,y , Ĝy , Ĝh,y , Ĝ
(r)
y and Ĝ

(r)
h,y analogously.

LEMMA 3.1 ([23], pages 96–97). There is a function F : Z4 →R such that

�2
1F(x) =

{
1, x = 0,

0, else,

satisfying the asymptotics

F(x) = − 1

8π2 log |x| + 1

24π2

x4
1 + x4

2 + x4
3 + x4

4

|x|6 + O

(
1

|x|4
)

for x �= 0.
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In [23], F is defined using the discrete Fourier multiplier associated to �2
1. By expanding

that multiplier into a Laurent series and computing the Fourier transform termwise it is possi-
ble to give asymptotic expansions to arbitrary high order. This technique also applies to other
discrete polyharmonic Green’s functions. For our purposes, the first two terms quoted above
are sufficient.

Lemma 3.1 immediately gives us an asymptotic expansion of Ĝh, and so we can easily
obtain estimates for Ĝh and Ĝ

(r)
h .

LEMMA 3.2. Let h > 0, and r ≥ 192h. Let α ∈ N4 with |α| ≤ 2. Then for any x, y ∈
(hZ)4 with r

64 ≤ |x − y|∞ ≤ 16r we have∣∣∣∣Ĝ(r)
h (x, y) − 1

λ2 log
(

r

|x − y| + h

)∣∣∣∣ ≤ C,(3.1)

∣∣Dh
αĜ

(r)
h,y(x)

∣∣ ≤ C

r |α| ,(3.2)

∣∣Dh
αĜ

(r)
h,y(x) − ∂αĜ(r)

y (x)
∣∣ ≤ C

h

r |α|+1 .(3.3)

PROOF. By translation invariance, we may assume y = 0. The definition of Ĝ
(r)
h implies

that

(3.4)

Ĝ
(r)
h (x,0) = F

(
x

h

)
− 1

λ2 logh + 1

λ2 log r

= − 1

λ2 log
|x|
h

+ h2

24π2

x4
1 + x4

2 + x4
3 + x4

4

|x|6 + O

(
h4

|x|4
)

− 1

λ2 logh + 1

λ2 log r

= 1

λ2 log
r

|x| + h2

24π2

x4
1 + x4

2 + x4
3 + x4

4

|x|6 + O

(
h4

|x|4
)
.

From this we immediately conclude (3.1) in the case x �= 0. In case x = 0, we can directly
use

Ĝ
(r)
h (0,0) = F(0) + 1

λ2 log
r

h

to obtain (3.1).
The explicit formula for Ĝ reveals that∣∣∂αĜ

(r)
0 (x)

∣∣ =
∣∣∣∣∂α 1

λ2 log
r

|x|
∣∣∣∣ ≤ C

r |α|

if r
64 ≤ |x|∞, and thus (3.2) easily follows from (3.3).
For (3.3) we want to take discrete derivatives of each summand in (3.4) separately. If

g = O( h4

|·|4 ), then |Dh
αg(x)| ≤ C

h|α|
h4

|x|4 = C h4−|α|
|x|4 so for |α| ≤ 2 we can neglect the error term.

Using Taylor’s theorem, we can see that

Dh
α

(
1

λ2 log
r

|x| + h2

24π2

x4
1 + x4

2 + x4
3 + x4

4

|x|6
)

= ∂α 1

λ2 log
r

|x| + O

(
h

|x||α|+1

)
.

Note that we can avoid the singularity here because |x| ≥ r
64 ≥ 3h. This easily implies (3.3).

�
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3.2. Estimates for continuous Green’s functions. We want to compare G and Gh. This
is only useful if we also have estimates for G to begin with. We will derive such estimates in
this section. The following estimates are far from optimal, but sufficient for our purposes.

We obviously have a well-posedness result for the Bilaplace equation in the energy space
W 2,2. The following result states that the same holds true if we raise the regularity slightly.

THEOREM 3.3. There exists κ0 > 0 with the following property: Let 0 ≤ κ ≤ κ0. Then for
each f ∈ W−2+κ,2((0,1)4) there is a unique u ∈ W 2+κ,2 ∩ W

2,2
0 ((0,1)4) such that �2u = f

in the sense of distributions, and we have the estimate

(3.5) ‖u‖W 2+κ,2((0,1)4) ≤ Cκ‖f ‖W−2+κ,2((0,1)4)

for a constant Cκ depending only on κ .

For convenience, we will assume in the following that κ0 < 1
2 , and fix such a κ0. Note that

W 2+κ,2 ∩ W
2,2
0 ((0,1)4) = W

2+κ,2
0 ((0,1)4) if κ < 1

2 .

PROOF OF THEOREM 3.3. This is a special case, for example, of [25], Theorem 6.32,
but for the convenience of the reader we give the short argument.

We begin with the case κ = 0. In that case, we can test the weak form of �2u = f with u

and obtain ∥∥∇2u
∥∥2
L2((0,1)4) = (

u,�2u
)
L2((0,1)4)

= (u, f )L2((0,1)4) ≤ ‖u‖W 2,2((0,1)4)‖f ‖W−2,2((0,1)4).

The Poincaré inequality implies ‖u‖W 2,2((0,1)4) ≤ C‖∇2u‖L2((0,1)4) and so we obtain (3.5).
For the general case we can use a stability result for analytic families of operators on

Banach spaces: The spaces Ws,2((0,1)4) and W
s,2
0 ((0,1)4) (for 3

2 < s < 5
2 ) each form an

interpolation family with respect to complex interpolation, and so by [30], Proposition 4.1,
the set of those s ∈ (3

2 , 5
2) for which �2 : W

s,2
0 ((0,1)4) → Ws−4,2((0,1)4) has a bounded

inverse is open. We know that this set contains 2, so the existence of κ0 as in the theorem
follows. �

Next, we state some estimates for G. We begin by estimating the regular part of G in
certain Sobolev norms. Recall that Ĝ(r)(x, y) = Ĝ(x, y) + log r

λ2 for any r > 0.

LEMMA 3.4. Let κ0 be as in Theorem 3.3, and let 0 ≤ κ ≤ κ0. Let K ≥ 2, r > 0, y ∈
(0,1)4 be such that d(y)

K
≤ r ≤ d(y)

2 . Then

(3.6)
∥∥Gy − η(r)

y Ĝ(r)
y

∥∥
W 2+κ,2((0,1)4) ≤ CK,κ

rκ

for a constant CK,κ depending only on K and κ .

PROOF. Let H(r) = Gy − η
(r)
y Ĝ

(r)
y . By Theorem 3.3, it suffices to show

(3.7)
∥∥�2H(r)

∥∥
W−2+κ,2((0,1)4) ≤ CK,κ

rκ
.

By standard interpolation theory and our assumption κ ∈ [0, κ0] ⊂ [0,2] it suffices to estab-
lish this for κ ∈ {0,2}.

Observe that �2H(r) is zero in (0,1)4 \Br(y) as well as in Br/2(y) (as the two singularities
cancel out). This means that �2H(r) is supported in Br(y) \ Br/2(y) and there it is equal to
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−�2(η
(r)
y Ĝ

(r)
y ). We have an explicit formula for Ĝ

(r)
y , and so it is straightforward to check

that |�2(η
(r)
y Ĝ

(r)
y )| is bounded by CK

r4 on Br(y) \Br/2(y). This easily implies (3.7) for κ = 2.

For the case κ = 0, we need to be slightly more careful: Let χ
(r)
y be a cut-off function that

is 1 on Br(y) \ Br/2(y) and zero outside B2r (y) \ Br/4(y) (e.g., χ
(r)
y = η

(2r)
y − η

(r/2)
y ). Then

we have �2H(r) = −χ
(r)
y �2(η

(r)
y Ĝ

(r)
y ) and thus we can calculate∥∥�2H(r)

∥∥
W−2,2((0,1)4)

= sup
‖ϕ‖

W
2,2
0 ((0,1)4)

=1

∫
�2H(r)ϕ

= sup
‖ϕ‖

W
2,2
0 ((0,1)4)

=1

∫
−�2(

η(r)
y Ĝ(r)

y

)
χ(r)

y ϕ

= sup
‖ϕ‖

W
2,2
0 ((0,1)4)

=1

∫
−�

(
η(r)

y Ĝ(r)
y

)
�

(
χ(r)

y ϕ
)

≤ C
∥∥�(

η(r)
y Ĝ(r)

y

)∥∥
L2(B2r (y)\Br/4(y)) sup

‖ϕ‖
W

2,2
0 ((0,1)4)

=1

∥∥�(
χ(r)

y ϕ
)∥∥

L2((0,1)4).

To estimate the second factor, we proceed as in the calculation that led to (2.5). We have a
Poincaré inequality

(3.8) ‖u‖L2(z+(−s,s)4) ≤ Cs‖∇u‖L2(z+(−s,s)4)

for any u ∈ W 1,2(z + (−s, s)4) that is zero (in the sense of traces) on one of the faces of
z + (−s, s)4. This is the continuous analogue to Lemma 2.1, and the proof is very similar.
Using (3.8) we can estimate∥∥�(

χ(r)
y ϕ

)∥∥
L2((0,1)4)

≤ C
∥∥∇2ϕ

∥∥
L2(Bd(y)(y)) + C

r
‖∇ϕ‖L2(Bd(y)(y)) + C

r2 ‖ϕ‖L2(Bd(y)(y))

≤ C

(
1 + d(y)

r
+ d(y)2

r2

)∥∥∇2ϕ
∥∥
L2(y+(−d(y),d(y))4) ≤ CK‖ϕ‖

W
2,2
0 ((0,1)4)

.

We also have that �(η
(r)
y Ĝ

(r)
y ) is bounded by C

r2 on B2r (y) \ Br/4(y) and hence

∥∥�(
η(r)

y Ĝ(r)
y

)∥∥
L2(B2r (y)\Br/4(y)) ≤ Cr2 · 1

r2 = C.

Using this, we obtain (3.7) for κ = 0. �

Next, we give some estimates on the local behaviour of G. The first two allow us to control
G far from and close to the singularity, respectively, while the last one expresses the Hölder
continuity of G − Ĝ near the diagonal.

LEMMA 3.5. Let κ0 be as in Theorem 3.3. Let y ∈ (0,1)4. The function Gy is smooth on
(0,1)4 \ {y}, and G − Ĝ is symmetric and smooth on (0,1)4 × (0,1)4 \ {(x, x) : x ∈ (0,1)4}
and can be extended continuously to (0,1)4 × (0,1)4. Slightly abusing notation, we write

G(y,y) − Ĝ(y, y) := lim
(y′,y′′)→(y,y)

y′ �=y′′
G

(
y′, y′′) − Ĝ

(
y′, y′′).
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Let K ≥ 1. We have the following estimates, where d(y)
K

≤ r ≤ d(y)
2 :

∣∣G(x,y)
∣∣ ≤ C if |x − y| ≥ d(y)

4
,(3.9) ∣∣G(x,y) − Ĝ(r)(x, y)

∣∣ ≤ CK if |x − y| ≤ d(y).(3.10)

Furthermore if r > 0 is arbitrary, |y′ − y| ≤ d(y)
8 and |y′′ − y| ≤ d(y)

8 we have the estimate

(3.11)

∣∣G(
y′, y′′) − Ĝ(r)(y′, y′′) − (

G(y,y) − Ĝ(r)(y, y)
)∣∣

≤ C
|y′ − y|κ0 + |y′′ − y|κ0

d(y)κ0
.

PROOF. The smoothness of G and G − Ĝ follows from standard regularity theory for
higher order elliptic equations. The estimate (3.9) is given in [24], Theorem 8.1. There also a
variant of (3.10) (without the correction log r

λ2 and with slightly worse error term) is given. The
results in [24] however are in a far more general setting, so we prefer to give an elementary
proof of the specific estimates we need.

We use a standard Caccioppoli inequality (see, e.g., [9], Capitolo II, Teorema 3.II or Teo-
rema 6.I): If u ∈ W 2,2(Bs(z)) and �2u = 0 in Bs(z) then

(3.12)
∥∥∇2u

∥∥
L∞(Bs/2(z))

≤ C

s2

∥∥∇2u
∥∥
L2(Bs(z))

.

We will also need a special case of the Gagliardo-Nirenberg interpolation inequality, namely

(3.13) ‖u‖L∞(Bs(z)) ≤ C

(
s2∥∥∇2u

∥∥
L∞(Bs(z))

+ 1

s2 ‖u‖L2(Bs(z))

)
.

To see this, observe first that by scaling we can assume s = 1. The Poincaré inequality implies
that ‖u− a − b · (·− z)‖L∞(B1(z)) ≤ C‖∇2u‖L∞(B1(z)), where a = 1

|B1|
∫

u and b = 1
|B1|

∫ ∇u,
and so we only have to bound a and b. We have |a| ≤ C‖u‖L2(B1(z))

, and the estimate ‖u −
a‖L2(B1(z))

≤ ‖u‖L2(B1(z))
implies

|b| ≤ C
∥∥b · (· − z)

∥∥
L2(B1(z))

≤ C
(∥∥u − a − b · (· − z)

∥∥
L2(B1(z))

+ ‖u − a‖L2(B1(z))

)
≤ C

(∥∥∇2u
∥∥
L∞(B1(z))

+ ‖u‖L2(B1(z))

)
.

This completes the proof of (3.13).
After these preparations we can now begin with the proof of (3.9). We first assume that

d(x) ≤ 2d(y). Let H(d(y)/8) = Gy − η
(d(y)/8)
y Ĝ

(d(y)/8)
y . Lemma 3.4 with κ = 0 implies that

(3.14)
∥∥∇2H(d(y)/8)

∥∥
L2((0,1)4) ≤ C.

The function H(d(y)/8) agrees with Gy on (0,1)4 \ Bd(y)/8(y). Because d(x)
16 + d(y)

8 ≤ d(y)
4 ≤

|x − y|∞ we have Bd(x)/16(x) ∩ Bd(y)/8(y) = ∅ and thus (3.14) implies∥∥∇2Gy

∥∥
L2(Bd(x)/16(x)) ≤ C.

Using the Caccioppoli inequality (3.12) we conclude

(3.15)
∥∥∇2Gy

∥∥
L∞(Bd(x)/32(x)) ≤ C

d(x)2 .
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Next, note that the Poincaré inequality (3.8) applied on x + (−d(x), d(x))4 and (3.14) imply
that ∥∥H(d(y)/8)

∥∥
L2(Bd(x)(x)) ≤ Cd(x)2∥∥∇2H(d(y)/8)

∥∥
L2(x+(−d(x),d(x))4) ≤ Cd(x)2

and therefore

‖Gy‖L2(Bd(x)/32(x)) ≤ Cd(x)2.

Recalling (3.15), an application of (3.13) concludes the proof.
It remains to consider the case d(x) > 2d(y). In that case |x − y| ≥ d(x) − d(y) ≥ d(x)

2 ,
so we can interchange the roles of x and y and repeat the above proof (using that G(x,y) =
G(y,x)).

Next, we give a proof of (3.10). This is quite similar to the preceding argument. Because
G(r) differs from G(d(y)) only by at most 1

λ2 logK ≤ CK we can assume r = d(y). Let again

H(d(y)) = Gy − η
(d(y))
y Ĝ

(d(y))
y . Observe first that if |x − y| ≥ d(y)

4 then (3.9) implies (3.10).

Therefore, we can restrict our attention to the case |x − y| ≤ d(y)
4 . By Lemma 3.4, we have

that ∥∥∇2H(d(y))
∥∥
L2((0,1)4) ≤ C.

The function H(d(y)) agrees with Gy − Ĝ
(d(y))
y on Bd(y)/2(y). Thus, as before, the Cacciop-

poli inequality implies that∥∥∇2(Gy − Ĝy)
∥∥
L∞(Bd(y)/4(y)) ≤ C

d(y)2

and the Poincaré inequality implies

‖Gy − Ĝy‖L2(Bd(y)/4(y)) ≤ ∥∥H(d(y))
∥∥
L2(Bd(y)(y)) ≤ Cd(y)2

so that the conclusion follows from the interpolation inequality (3.13).
For (3.11) observe that by Lemma 3.4, we control the W 2+κ0,2-norm of Gy −

η
(d(y))
y Ĝ

(d(y))
y . That Sobolev space embeds into the Hölder space C0,κ0 and so we have[

Gy − η(d(y))
y Ĝ(d(y))

y

]
C0,κ0 ((0,1)4) ≤ C

∥∥Gy − η(d(y))
y Ĝ(d(y))

y

∥∥
W 2+κ0,2((0,1)4)

≤ C

d(y)κ0
.

Because Gy − η
(d(y))
y Ĝ

(d(y))
y agrees with Gy − Ĝ

(d(y))
y on Bd(y)/2(y) this implies∣∣G(

y′, y
) − Ĝ(d(y))(y′, y

) − (
G(y,y) − Ĝ(d(y))(y, y)

)∣∣ ≤ C
|y′ − y|κ0

d(y)κ0
.

If we add and subtract log r−logd(y)

λ2 on the left-hand side, we obtain

∣∣G(
y′, y

) − Ĝ(r)(y′, y
) − (

G(y,y) − Ĝ(r)(y, y)
)∣∣ ≤ C

|y′ − y|κ0

d(y)κ0
.

Similarly, we obtain∣∣G(
y′′, y′) − Ĝ(r)(y′′, y′) − (

G
(
y, y′) − Ĝ(r)(y, y′))∣∣ ≤ C

|y′′ − y|κ0

d(y′)κ0
,

where we used that d(y′) ≥ 7
8d(y) so that y, y′′ ∈ Bd(y′)/2(y

′). If we add the last two estimates
and use once again that d(y′) ≥ 7

8d(y) we arrive at (3.11). �
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4. Proof of the main theorems. In this section, we will finally prove that Gh satisfies
(B.0′), (B.1′), (B.2′), (B.3′), which according to Observation 1.5 implies Theorem 1.4.

Recall that Gh is the Green’s function of the discrete Bilaplacian on Vh with zero boundary
data outside Vh, G is the Green’s function of the continuous Bilaplacian on (0,1)4 with zero
Dirichlet boundary data, and Ĝ

(r)
h and Ĝ(r) are shifted versions of the discrete and continuous

full space Green’s function.
The main technical statement used in the proof of Theorem 1.4 will be the following.

LEMMA 4.1. Let κ0 be as in Theorem 3.3. Let K ≥ 2, and r ≥ 192h. Then for all x, y ∈
Vh with d(y)

K
≤ r ≤ d(y)

2 we have∣∣(Gh(x, y) − η
(r)
h,y(x)Ĝ

(r)
h (x, y)

) − (
G(x,y) − η(r)

y (x)Ĝ(r)(x, y)
)∣∣

≤ CK

hκ0

rκ0

√
log

(
2 + d(x)

h

)
.

This lemma is so useful because it simultaneously provides control over the difference
between the discrete and continuous Green’s function when x, y are far apart and over the
difference of the regular part of the discrete and continuous Green’s function when x, y are
close.

PROOF OF LEMMA 4.1. We define Hh = Gh,y − η
(r)
h,yĜ

(r)
h,y and H = Gy − η

(r)
y Ĝ

(r)
y . Let

H̃h be the solution of

�2
hH̃h = T h,3,3,3,3�2H in Vh,

H̃h = 0 on (hZ)4 \ Vh.

Our goal is to estimate |Hh(x) − H(x)|. We will estimate Hh − H̃h and H̃h − H separately.
The estimate of the latter term is straightforward: Using Theorem 2.3 and Lemma 3.4, we

obtain

‖H̃h − H‖
W

2,2
h ((hZ)4)

≤ CKhκ0‖H‖W 2+κ0,2((0,1)4)

≤ CK

hκ0

rκ0
.

Estimating Hh − H̃h is more tedious. Similarly as in the proof of Lemma 3.4, we let
χ

(r)
y = η

(4r)
y − η

(r/4)
y and χ

(r)
h,y be the restriction of χ

(r)
y to (hZ)4. Then we have

(4.1)

�2
h(Hh − H̃h)

= �2
h

(
Gh,y − η

(r)
h,yĜ

(r)
h,y

) − T h,3,3,3,3�2(
Gy − η(r)

y Ĝ(r)
y

)
= χ

(r)
h,y�

2
h

(
Gh,y − η

(r)
h,yĜ

(r)
h,y

) − χ
(r)
h,yT

h,3,3,3,3�2(
Gy − η(r)

y Ĝ(r)
y

)
= −χ

(r)
h,y�

2
h

(
η

(r)
h,yĜ

(r)
h,y

) + χ
(r)
h,yT

h,3,3,3,3�2(
η(r)

y Ĝ(r)
y

)
= −χ

(r)
h,y�

2
h

(
η

(r)
h,yĜ

(r)
h,y

) +
4∑

i=1

χ
(r)
h,yT

h,3,3,3,3∂2
i �

(
η(r)

y Ĝ(r)
y

)

= −χ
(r)
h,y

4∑
i=1

Dh
i Dh−i

(
�h

(
η

(r)
h,yĜ

(r)
h,y

) + T h,3,3,3,3−2ei�
(
η(r)

y Ĝ(r)
y

))
.
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Because Hh − H̃h is supported in Vh we have∥∥∇2
h(Hh − H̃h)

∥∥2
L2

h((hZ)4)

= (
�2

h(Hh − H̃h),Hh − H̃h

)
L2

h((hZ)4)

≤ sup
ϕh=0 on (hZ)4\Vh‖ϕh‖

W
2,2
h

((hZ)4)
=1

(
�2

h(Hh − H̃h), ϕh

)
L2

h((hZ)4))‖Hh − H̃h‖W
2,2
h ((hZ)4)

which together with the Poincaré inequality implies that

‖Hh − H̃h‖W
2,2
h ((hZ)4)

≤ C sup
ϕh=0 on (hZ)4\Vh‖ϕh‖

W
2,2
h

((hZ)4)
=1

(
�2

h(Hh − H̃h), ϕh

)
L2

h((hZ)4)).

Combining this with (4.1), and abbreviating T ∗
i := T h,3,3,3,3−2ei we see that

(4.2)

‖Hh − H̃h‖W
2,2
h ((hZ)4)

≤ C sup
ϕh=0 on (hZ)4\Vh‖ϕh‖

W
2,2
h

((hZ)4)
=1

4∑
i=1

(
Dh

i Dh−i

(−�h

(
η

(r)
h,yĜ

(r)
h,y

)

+ T ∗
i �

(
η(r)

y Ĝ(r)
y

))
, χ

(r)
h,yϕh

)
L2

h((hZ)4))

≤ C sup
ϕh=0 on (hZ)4\Vh‖ϕh‖

W
2,2
h

((hZ)4)
=1

4∑
i=1

(−�h

(
η

(r)
h,yĜ

(r)
h,y

)

+ T ∗
i �

(
η(r)

y Ĝ(r)
y

)
,Dh

i Dh−iχ
(r)
h,yϕh

)
L2

h((hZ)4))

≤ C

4∑
i=1

∥∥−�h

(
η

(r)
h,yĜ

(r)
h,y

) + T ∗
i �

(
η(r)

y Ĝ(r)
y

)∥∥
L2

h(Qh
8r (y)\Qh

r/32(y))

× sup
ϕh=0 on (hZ)4\Vh‖ϕh‖

W
2,2
h

((hZ)4)
=1

∥∥∇2
h

(
χ

(r)
h,yϕh

)∥∥
L2

h((hZ)4)),

where we used that χ
(r)
h,y is supported in B4r (y) \ Br/8(y) so that the support of �h(χ

(r)
h,yϕh)

is certainly contained in Qh
8r (y) \ Qh

r/32(y). The discrete product rule and the Poincaré in-
equality imply that∥∥∇2

h

(
χ

(r)
h,yϕh

)∥∥
L2

h((hZ)4))

≤ C
∥∥∇2

hϕh

∥∥
L2

h(Qh
d(y)+h(y)) + C

r
‖∇hϕh‖L2

h(Qh
d(y)+h(y)) + C

r2 ‖ϕh‖L2
h(Qh

d(y)+h(y))

≤ C

(
1 + d(y) + h

r
+ (d(y) + h)2

r2

)
‖ϕh‖W

2,2
h ((hZ)4)

≤ CK‖ϕh‖W
2,2
h ((hZ)4)
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and hence

(4.3) sup
ϕh=0 on (hZ)4\Vh‖ϕh‖

W
2,2
h

((hZ)4)
=1

∥∥∇2
h

(
χ

(r)
h,yϕh

)∥∥
L2

h((hZ)4)) ≤ CK.

Let us now also estimate the first factor in (4.2). The operator T h,3,3,3,3−2ei preserves
constant functions. Therefore for any z with |z − y|∞ ≥ r

32

(4.4)

(
T h,3,3,3,3−2ei�

(
η(r)

y Ĝ(r)
y

))
(z)

= �
(
η(r)

y Ĝ(r)
y

)
(z)

+ (
T h,3,3,3,3−2ei

(
�

(
η(r)

y Ĝ(r)
y

)
(·) − �

(
η(r)

y Ĝ(r)
y

)
(x)

))
(z)

= �
(
η(r)

y Ĝ(r)
y

)
(z) + O

(
h sup

z+(− 3h
2 , 3h

2 )

∣∣∇3(
η(r)

y Ĝ(r)
y

)∣∣)

= �
(
η(r)

y Ĝ(r)
y

)
(z) + O

(
h

r3

)
,

where we have used that |T h,3,3,3,3−2ei f (z)| ≤ C supz+(−3h/2,3h/2) |f | in the second step as

well as the explicit formula for Ĝ(r)(z, y) in the third step. From Lemma 3.2 and Taylor’s
theorem, we know that for r

64 ≤ |z − y|∞ ≤ 16r

Dh
αĜ

(r)
h,y(z) = ∂αĜ(r)

y (z) + O

(
h

r |α|+1

)
,

Dh
αĜ

(r)
h,y(z) = O

(
1

r |α|
)
,

Dh
αη

(r)
h,y(z) = ∂αη(r)

y (z) + O

(
h

r |α|+1

)
,

Dh
αη

(r)
h,y(z) = O

(
1

r |α|
)
.

If we combine these estimates with the discrete product rule, we obtain that for any z with
r

32 ≤ |z − y|∞ ≤ 8r

(4.5) �h

(
η

(r)
h,yĜ

(r)
h,y

)
(z) = �

(
η(r)

y Ĝ(r)
y

)
(z) + O

(
h

r3

)
.

Combining (4.4) and (4.5) we find that∣∣∣∣∣−�h

(
η

(r)
h,yĜ

(r)
h,y

) +
4∑

i=1

T h,3,3,3,3−2ei�
(
η(r)

y Ĝy

)∣∣∣∣∣ ≤ C
h

r3

on Qh
8r (y) \ Qh

r/32(y) and therefore∥∥∥∥∥−�h

(
η

(r)
h,yĜ

(r)
h,y

) +
4∑

i=1

T h,3,3,3,3−2ei�
(
η(r)

y Ĝy

)∥∥∥∥∥
L2

h(Qh
8r (y)\Qh

r/32(y))

≤ C
h

r
.

If we use this result and (4.3) in (4.2) we see that

‖Hh − H̃h‖W
2,2
h ((hZ)4)

≤ CK

h

r
.
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In summary,

‖Hh − H‖
W

2,2
h ((hZ)4)

≤ ‖Hh − H̃h‖W
2,2
h ((hZ)4)

+ ‖H̃h − H‖
W

2,2
h ((hZ)4)

≤ CK

(
hκ0

rκ0
+ h

r

)
≤ CK

hκ0

rκ0

because h
r

≤ 1. Finally, Lemma 2.2 allows us to conclude that for any x ∈ (hZ)4

∣∣Hh(x) − H(x)
∣∣ ≤ CK

√
log

(
2 + d(x)

h

)
‖Hh − H‖

W
2,2
h ((hZ)4)

≤ CK

hκ0

rκ0

√
log

(
2 + d(x)

h

)
.

This completes the proof. �

Before we turn to the proof of Theorem 1.4 let us observe that Lemma 2.2 already implies
an upper bound on Gh(x, y).

LEMMA 4.2. For any x, y we have that

(4.6)
∣∣Gh(x, y)

∣∣ ≤ C

√
log

(
2 + d(x)

h

)
log

(
2 + d(y)

h

)
.

PROOF. The idea is the same as in the proof of [26], Lemma 8.1. We have

Gh(x, y) = (Gh,x, δh,y)L2
h((hZ)4)

= (
Gh,x,�

2
hGh,y

)
L2

h((hZ)4)

= (∇2
hGh,x,∇2

hGh,y

)
L2

h((hZ)4).

This implies on the one hand

(4.7)
∣∣Gh(x, y)

∣∣ ≤ ∥∥∇2
hGh,x

∥∥
L2

h((hZ)4)

∥∥∇2
hGh,y

∥∥
L2

h((hZ)4)

and on the other hand (by choosing y = x) that

Gh(x, x) = ∥∥∇2
hGh,x

∥∥2
L2

h((hZ)4)
.

From Lemma 2.2, we know that

∣∣Gh(x, x)
∣∣ ≤

√
log

(
2 + d(x)

h

)∥∥∇2
hGh,x

∥∥
L2

h((hZ)4).

Combining the last two estimates, we obtain∣∣Gh(x, x)
∣∣ ≤ C log

(
2 + d(x)

h

)
which is (4.6) in the special case x = y. For the general case, we can use (4.7) to see that∣∣Gh(x, y)

∣∣ ≤ ∥∥∇2
hGh,x

∥∥
L2

h((hZ)4)

∥∥∇2
hGh,y

∥∥
L2

h((hZ)4)

≤ C

√
log

(
2 + d(x)

h

)
log

(
2 + d(y)

h

)
. �
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Now we can turn to the proof of the main technical result of this work, Theorem 1.4.

PROOF OF THEOREM 1.4. Recall that according to Observation 1.5 we actually have to
verify (B.0′), (B.1′), (B.2′) and (B.3′).

Step 1: Proof of (B.1′).
Let x, y ∈ (hZ)4. We can assume w.l.o.g. that d(x) ≤ d(y) (else interchange x and y). If

d(y) < 768h we have that | log(2+ max(d(x),d(y))
h+|x−y| )| ≤ C, and by Lemma 4.2 also |Gh(x, y)| ≤

C, so that (B.1′) holds trivially. Thus we can assume d(y) ≥ 768h.
Consider first the case |x − y| ≤ d(y)

4 . Then Lemma 4.1 with K = 2, that is, r = d(y)
2 ≥

192h implies∣∣Gh(x, y) − η
(d(y)/2)
h,y (x)Ĝ

(d(y)/2)
h (x, y) − G(x,y) + η(d(y)/2)

y (x)Ĝ(d(y)/2)(x, y)
∣∣

≤ C
hκ0

rκ0

√
log

(
2 + d(x)

h

)
which implies that∣∣Gh(x, y) − Ĝ

(d(y)/2)
h (x, y) − G(x,y) + Ĝ(d(y)/2)(x, y)

∣∣
≤ C

hκ0

rκ0

√
log

(
2 + 2r

h

)
.

The function s �→ 1
sκ0

√
log(2 + 2s) is bounded on [1,∞), so that we actually obtain

(4.8)
∣∣Gh(x, y) − Ĝ

(d(y)/2)
h (x, y) − G(x,y) + Ĝ(d(y)/2)(x, y)

∣∣ ≤ C.

From Lemma 3.2, we know∣∣∣∣Ĝ(d(y)/2)
h (x, y) − 1

λ2 log
(

d(y)

|x − y| + h

)∣∣∣∣ ≤ C

(where we have absorbed a term 1
λ2 log 2 into the constant). Furthermore by Lemma 3.5,∣∣G(x,y) − Ĝ(d(y)/2)(x, y)

∣∣ ≤ C.

If we use these estimates in (4.8), we obtain∣∣∣∣Gh(x, y) − 1

λ2 log
(

d(y)

|x − y| + h

)∣∣∣∣ ≤ C.

Because |x − y| ≤ d(y)
4 , d(y)

|x−y|+h
is bounded away from 1 by a constant, and so∣∣∣∣ 1

λ2 log
(

d(y)

|x − y| + h

)
− 1

λ2 log
(

2 + d(y)

|x − y| + h

)∣∣∣∣ ≤ C.

Combining this with the preceding inequality we arrive at (B.1′).
If |x − y| ≥ d(y)

4 we argue similarly. We use Lemma 4.1 with r = d(y)
4 ≥ 192h and con-

clude ∣∣Gh(x, y) − G(x,y)
∣∣ ≤ C.

This combined with Lemma 3.5 implies again (B.1′), as now d(y)
|x−y|+h

is bounded above.
Step 2: Proof of (B.2′).
Recall from Lemma 3.5 that a(x) := λ2 lim(x′,x′′)→(x,x)

x′ �=x′′
(G(x′, x′′) − Ĝ(x′, x′′)) is well

defined for each x ∈ (0,1)4 and that a : (0,1)4 →R is continuous.
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After this remark we can proceed similarly as in the first step. We choose f1(x) = a(x),
f2(u, v) = λ2F(u − v) with the F from Lemma 3.1. Furthermore, we choose θ0 = 1

2κ0
.

Given L and θ > θ0 we take N ′
0 so large that 768L ≤ | logh|θ when h ≤ 1

N ′
0
. Then d(x) ≥

h| logh|θ ≥ 768Lh. We want to apply Lemma 4.1 with K = 8 and r = d(x)
4 at the point

(x + hu,x + hv). We have that r = d(x)
4 ≤ d(x+hv)+Lh

4 ≤ d(x+hv)
2 and similarly r ≥ d(x+hv)

8 ,

and also r = d(x)
4 ≥ 192Lh ≥ 192h so that all assumptions of the lemma are satisfied. We

obtain

(4.9)

∣∣Gh(x + hu,x + hv) − Ĝ
(d(x)/4)
h (x + hu,x + hv)

− G(x + hu,x + hv) + Ĝ(d(x)/4)(x + hu,x + hv)
∣∣

≤ C
hκ0

rκ0

√
log

(
2 + d(x + hu)

h

)

≤ C
hκ0

√| logh|
rκ0

≤ C
hκ0

√| logh|
(h| logh|θ )κ0

≤ C| logh| 1
2 −θκ0 .

Here we could omit the cut-off functions η
(d(x)/4)
h and η(d(x)/4) because |x +hu− (x +hv)| ≤

4Lh ≤ d(x)
8 . Since θκ0 > θ0κ0 = 1

2 , for N ′
0 large enough the term on the right hand side will

be less than ε
2λ2 whenever h ≤ 1

N ′
0
.

By (3.11) in Lemma 3.5, we have for u, v ∈ [0,L]4∣∣∣∣G(x + hu,x + hv) − Ĝ(d(x)/4)(x + hu,x + hv) − a(x)

λ2 + 1

λ2 log
d(x)

4

∣∣∣∣
≤ C

( |hu|κ0 + |hv|κ0

d(x)κ0

)

≤ CL

hκ0

d(x)κ0

≤ CL| logh|−θκ0 .

Thus we can choose N ′
0 large enough such that for h ≤ 1

N ′
0

we have

sup
u,v∈[0,L]4∩Z4

∣∣∣∣G(x + hu,x + hv) − Ĝ(d(x)/4)(x + hu,x + hv)

− a(x)

λ2 − 1

λ2 log
d(x)

4

∣∣∣∣ ≤ ε

2λ2

uniformly in x. Our definition of G
(d(x)/4)
h implies that

Ĝ
(d(x)/4)
h (x + hu,x + hv) = F

(
x + hu

h
− x + hv

h

)
− 1

λ2 logh + 1

λ2 log
d(x)

4

= F(u − v) − 1

λ2 logh + 1

λ2 log
d(x)

4
.
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Using these results in (4.9), we arrive at∣∣∣∣Gh(x + hu,x + hv) − F(u − v) + 1

λ2 logh − a(x)

λ2

∣∣∣∣ ≤ ε

λ2

for h ≤ 1
N ′

0
, which implies (B.2′).

Step 3: Proof of (B.3′).
This is very similar to Step 2. We set f3(x, y) = λ2G(x,y), which is continuous away

from the diagonal according to Lemma 3.5.
We use Lemma 4.1 with K = L and r = d(y)

L
≤ 1

L
≤ |x − y|. For N ′

1 large enough we have
r ≥ 192h, and the lemma implies∣∣Gh(x, y) − G(x,y)

∣∣ ≤ CL

hκ0
√| logh|
rκ0

≤ CL| logh| 1
2 −θκ0

and it suffices to take N ′
1 so large that the right-hand side is less than ε

λ2 for any h ≤ 1
N ′

1
.

Step 4: Proof of (B.0′).
Here we actually need to prove three estimates, namely

λ2Gh(x, x) ≤ | logh| + C,(4.10)

λ2Gh(x, x) ≤ C log
(

2 + d(x)

h

)
,(4.11)

λ2(
Gh(x, x) − Gh(x, y)

) ≤ log
(

1 + |x − y|
h

)
+ C.(4.12)

Now (4.10) follows immediately from (B.1′), and (4.11) is a special case of Lemma 4.2.
Finally, (4.12) can be obtained from (B.1′) as follows. We know that

λ2(
Gh(x, x) − Gh(x, y)

)
≤ log

(
2 + d(x)

h

)
− log

(
2 + max(d(x), d(y))

h + |x − y|
)

+ C

= log
(

(d(x) + 2h)(|x − y| + h)

h(h + |x − y| + 2 max(d(x), d(y)))

)
+ C

so one only has to observe that

d(x) + 2h

h + |x − y| + 2 max(d(x), d(y))
≤ C. �

Finally, we give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Because of Theorem 1.3 and Observation 1.5 all we have
to check is that each of the statements (A.0′), (A.1′), (A.2′), (A.3′) implies its counterpart
without the prime.

We begin with (A.0′) =⇒ (A.0). We know that

VarϕN,v ≤ min
(
logN + α′

0, α
′
0 log

(
2 + dN(v)

))
and this implies in particular that

VarϕN,v ≤ logN + α′
0.

Furthermore, if we know

VarϕN,v − Cov(ϕN,v, ϕN,u) ≤ log+ |u − v| + 2α′
0
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then by symmetry this also holds with u, v interchanged, so that we actually have

max
(
VarϕN,v − Cov(ϕN,v, ϕN,u),VarϕN,u − Cov(ϕN,v, ϕN,u)

)
≤ log+ |u − v| + 2α′

0

and a short calculation shows that this is the same as

E(ϕN,v − ϕN,u)
2 ≤ 2 log+ |u − v| − |VarϕN,v − VarϕN,u| + C.

For (A.1′) =⇒ (A.1) one has to verify that min(d(u), d(v)) ≥ δN implies∣∣∣∣log
(

2 + max(dN(u), dN(v))

1 + |u − v|
)

− log
(

N

1 + |u − v|
)∣∣∣∣ ≤ Cδ,

which is straightforward.
For (A.2′) =⇒ (A.2) we fix some θ > θ0. Given L, ε, δ, we choose N0 ≥ N ′

0(L, ε, θ)

large enough such that | logN |θ ≤ δN for all N ≥ N0 and conclude (A.2). Analogously one
sees that (A.3′) =⇒ (A.3). �
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