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We consider a stochastic flow φt (x,ω) in R
n with initial point φ0(x,ω) =

x, driven by a single n-dimensional Brownian motion, and with an outward
radial drift of magnitude F(‖φt (x)‖)

‖φt (x)‖ , with F nonnegative, bounded and Lip-
schitz. We consider initial points x lying in a set of positive distance from
the origin. We show that there exist constants C∗, c∗ > 0 not depending on
n, such that if F > C∗n then the image of the initial set under the flow has
probability 0 of hitting the origin. If 0 ≤ F ≤ c∗n3/4, and if the initial set
has a nonempty interior, then the image of the set has positive probability of
hitting the origin.

1. Introduction and main results. In this paper, we study a hitting problem of stochas-
tic flows with radial drift. Let (�,F,P ) be a probability space. For x ∈ R

n \ {0} we define
the unit radial vector in the x direction as

u(x) = x

‖x‖
and we define

u(0) = 0.

Here, ‖ · ‖ denotes the Euclidean norm.
We consider a Brownian flow φ = {φt (x,ω); t ≥ 0, x ∈ R

n,ω ∈ �} starting from a set
A0 ⊂ R

n such that

dφt (x) = F(‖φt(x)‖)
‖φt(x)‖ u

(
φt (x)

)
dt + dWt for t ≥ 0,

(1.1)
φ0(x) = x ∈ A0.

Here, Wt is a standard n-dimensional Brownian motion, not depending on x, and F(·) is a
nonnegative, bounded Lipschitz function. Throughout the paper, the differential d is taken
with respect to t . We also set up the standard Brownian filtration

Ft = σ(Ws : s ≤ t).

Note that the flow might not be defined after φ reaches the origin, due to the singular drift
there. In fact, we will use a stopping time which is intuitively defined as

(1.2) τ = τA0 = inf
{
t : φt (x) = 0 for some x ∈ A0

}
.

For additional details, we refer the reader to Section 2.
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We are interested in the question of whether the flow can hit the origin with positive prob-
ability, in the case where the initial set A0 is at positive distance from the origin. We say that
φ hits 0 if τ < ∞, and define the corresponding event

GA0,F,n := {τA0 < ∞}.
Before stating our main results, we give some background on related hitting problems. It

is well known that for a single Brownian motion Wt in R
n, the radial distance Dt = ‖Wt‖ is

a Bessel process which satisfies the following SDE:

(1.3) dDt = dW̃t + n − 1

2Dt

dt,

where W̃t is a one-dimensional Brownian motion. Assuming D0 > 0, it is a familiar fact that
Dt can hit 0 with positive probability iff n < 2, where fractional values of n are allowed in
(1.3). This question and many more can be answered using ideas from potential theory and
harmonic functions; see [10] or most other books in Markov processes. In one dimension and
with F(y) = (n − 1)/2, we see that (1.1) is identical to the Bessel equation (1.3).

There is an intimate connection between Bessel processes and their associated flows, to
stochastic Loewner evolution (SLE), also called Schramm–Loewner evolution (see Lawler
[9] for some basic facts). Indeed, on page x of the preface of [9], Lawler states “With the
Brownian input, the Loewner equation becomes an equation of Bessel type, and much of the
analysis of SLE comes from studying such stochastic differential equations. For example, the
different “phases” of SLE (simple/nonsimple/space-filling) are deduced from properties of
the Bessel equation.” In his St. Flour notes [15], Werner states on page 131: “Then, we see
that SLEκ can be interpreted in terms of the flow of a complex Bessel process.” For a further
explanation of this point of view, see Katori [7].

Here are a few details. SLE is usually thought of as a flow in a subset of the complex
plane, with random parameters. The equation for chordal SLE gt (x), which takes values in
the upper complex half-plane, is

∂tgt (x) = 2

gt (x) − κW(t)
,

where W(t) is a one-dimensional Brownian motion and κ > 0 is a parameter. Setting gt (x) =
κht (x) + κW(t), we find

dht (x) = 2/κ2

ht (x)
dt − dW(t),

which is an equation of Bessel type.
Since the Bessel process and its associated flow play such an important role in SLE, we

feel that it is of interest to study Bessel flows in higher dimensions, and similar flows such as
in (1.1). Perhaps the most basic property of the Bessel process is its probability of hitting the
origin, and this is the question we investigate in this paper.

Although such hitting questions are classical and have been completely answered for a
large class of Markov processes, the reader may be surprised to learn that for processes such
as φt(·) which take values in a function space, the potential theory is more difficult or even
intractable. In such cases, we must fall back on more basic ideas, such as covering arguments
and comparison with a random walk. As usual, the critical case is the most difficult. The
critical case is where the parameters of the process are at or near the boundary between
hitting and not hitting.

Stochastic partial differential equations (SPDE) provide a source of such examples, and
hitting questions for such equations have been studied in [2–4, 13, 14] among others. These
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papers deal with the stochastic heat and wave equations either with no drift or with well-
behaved drift. Since (1.1) has singular drift, the following result might be more relevant to
our situation. Suppose that x lies in the unit circle [0,1] with endpoints identified, and that
u(t, x) satisfies

(1.4) ∂tu = ∂2
xu + u−α + Ẇ ,

where Ẇ = Ẇ (t, x) is two-parameter white noise. Assume that u(0, x) is continuous and
strictly greater than 0. Then u hits 0 with positive probability if α < 3, and hits 0 with prob-
ability 0 if α > 3. We say that u hits 0 if there is a point (t, x) such that u(t, x) = 0. See
[11] and [12] for details. A natural question about (1.4) is whether white noise Ẇ could be
replaced by colored noise. We can regard (1.1) as a degenerate SPDE which does not have
the Laplacian, and where the colored noise is independent of x, so the noise is at the opposite
extreme from white noise.

Returning to our stochastic flow φt , we see that for a fixed point x0 ∈ R
n and for n ≥ 2

there is no chance that φt(x0) can hit 0. In that situation, even with zero drift F ≡ 0, as already
mentioned, ‖φt(x0)‖ is a Bessel process with radial drift (n − 1)/(2‖φ‖) and n ≥ 2. Adding
extra radial drift with F ≥ 0 makes it even less likely for φt (x0) to hit the origin. However,
if we allow x ∈ A0 to vary, then we may have several chances for φt(x) to hit 0. Intuitively,
the Brownian motion Wt which drives our flow has n independent components, so we may
expect that φ has n independent chances to get closer to 0, and so the critical drift should be
proportional to n. Our first guess might also be that the critical drift is proportional to 1/‖φ‖,
as for the Bessel process. Here, the critical drift is that drift which lies on the boundary be-
tween a positive probability of hitting 0 and a zero probability of hitting 0. Unfortunately,
there is no comparison principle for ‖φt(x)‖, so we cannot be sure that increasing the ra-
dial drift increases ‖φ‖. Thus we cannot conclude that larger radial drift leads to a smaller
probability of φ hitting 0, and so we cannot give precise meaning to the term “critical drift.”

By introducing new processes ψt(x) = φt(x) − Wt and Bt = −Wt , we may rewrite the
problem in terms of ψt and Bt :

dψt(x) = F(‖ψt(x) − Bt‖)
‖ψt(x) − Bt‖ u

(
ψt(x) − Bt

)
dt, for 0 ≤ t < τ,

(1.5)
ψ0(x) = x ∈ A0.

Note that Bt is a standard n-dimensional Brownian motion. We denote

At = {
ψt(x) : x ∈ A0

}
,

which for any t < τ is a subset of Rn.
Now we are ready to state our main results. Recall that F : Rn → R is a nonnegative

Lipschitz function. In our first theorem, we prove that for F bounded below by a large enough
constant, the Brownian motion Bt does not hit the region At . Moreover, the distance between
At and Bt tends to ∞ as t → ∞.

THEOREM 1. There exists C∗ > 0 not depending on n such that for all n ≥ 1 the follow-
ing holds. Suppose the set A0 ⊂ R

n has a positive distance from the origin. If F(x) ≥ C∗n
for all x ∈ R

n, then we have

P(GA0,F,n) = 0.

In the next two theorems, we prove that when F is bounded from above by a small enough
constant, the Brownian motion Bt hits the region At with positive probability. Hitting the
region with probability one requires that the region be rather large, or else the transience of
Brownian motion in high dimensions works against hitting.
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THEOREM 2. There exists c∗ > 0 not depending on n such that for all n ≥ 1 the following
holds. Suppose

A0 = {
(x1, . . . , xn) : x1 ≥ 1 and x2, . . . , xn ∈ R

}
.

If 0 ≤ F(x) ≤ c∗n3/4 for all x ∈R
n, then

P(GA0,F,n) = 1.

If we are willing to accept a positive probability of {φt (x) : x ∈ A0} hitting 0, we can
extend Theorem 2 to a broad class of initial sets A0. If we make the set A0 smaller, then the
set of ω for which {φt (x) : x ∈ A0} hits 0 will also become smaller. Theorem 3 shows that if
A0 contains an open ball, then the probability of the above set hitting 0 is still positive.

THEOREM 3. There exists c∗ > 0 not depending on n such that for all n ≥ 1 the follow-
ing holds. Suppose A0 ⊂ R

n has a nonempty interior. If 0 ≤ F(x) ≤ c∗n3/4 for all x ∈ R
n,

then

P(GA0,F,n) > 0.

Roughly speaking, our theorems say that the critical drift (if there is one) for (1.1) has

magnitude between c∗n 3
4 /‖φ‖ and C∗n/‖φ‖.

We also note that in the case n = 1, our question reduces to finding the critical parameter
for a Bessel process to hit the origin. We leave the details of this case to the reader.

2. Precise setup of the flow. A good reference for the general theory of stochastic flows
is the book of Kunita [8]. However, since our flow is driven by a single Brownian motion, we
can make use of properties of Brownian motion to simplify our setup. We also need to keep
in mind that the flow should only exist up to time τ which was intuitively defined as the first
time t that φt(x) = 0 for some x ∈ A0.

Our strategy is to truncate the drift and take the limit as the truncation level tends to infinity.
Let

(2.1) fN(x) = F(‖x‖)
‖x‖ ∨ (1/N)

u(x), f∞(x) = F(‖x‖)
‖x‖ u(x),

where ∨ denotes the maximum. Observe that fN is a globally Lipschitz function.
We start by defining the translated flow (1.5), with respect to the truncated drift fN . Let

ψ
(N)
t (x) satisfy

dψ
(N)
t (x) = fN

(
ψ

(N)
t (x) − Bt

)
dt, for t ≥ 0,

(2.2)
ψ

(N)
0 (x) = x ∈ R

n

with Bt = −Wt . Then (2.2) is an ordinary differential equation and fN(ψ
(N)
t (x) − Bt) is a

(random) Lipschitz function of ψ
(N)
t (x). It follows that (2.2) has a unique solution which is

Ft -adapted, where we recall that Ft is the Brownian filtration.
Given a set A⊂ R

n, let

τ (N)(A) = inf
{
t ≥ 0 : inf

x∈A
∣∣ψ(N)

t (x) − Bt

∣∣ ≤ 1/N
}

and let τ (N)(A) = ∞ if the above set is empty. It follows that for x ∈ A and 0 ≤ t ≤ τ (N)(A),
we have

dψ
(N)
t (x) = fN

(
ψ

(N)
t (x) − Bt

)
dt,

(2.3)
ψ

(N)
0 (x) = x ∈R

n
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and that fN(ψ
(N)
t (x)) = f∞(ψ

(N)
t (x)) for 0 ≤ t ≤ τ (N)(A), almost surely. Again, almost

surely, we have 0 ≤ τ (1)(A) ≤ τ (2)(A) ≤ · · · . Now we give the rigorous definition of τ(A),
namely

τ(A) = lim
N→∞ τ (N)(A).

Let τ(A) = ∞ on the exceptional set where τ (N)(A) is not nondecreasing in N . We note that
τ(A) = ∞ is possible even off of this exceptional set. Now we can define ψA as follows for
0 ≤ t < τ(A) and x ∈ A :

ψA
t (x) = lim

N→∞ψ
(N)
t (x).

We see that for 0 ≤ t < τ(A) and for x ∈ A, we have

dψA
t (x) = f

(
ψA

t (x) − Bt

)
dt,

(2.4)
ψA

0 (x) = x ∈R
n.

In order to define ψA
t for all time, we introduce a cemetery state � and let

ψA
t = �

for t ≥ τ(A). Finally, as in the Introduction, we define

At = {
ψt(x) : x ∈ A

}
.

Our next goal is to formulate a strong Markov property for ψA. In fact, ψA is a nonantic-
ipating measurable function of the Brownian path Bt , so we can define the shift operator θt

for Bt and extend it to ψA.

LEMMA 4. Let a ⊂ R
n and suppose that σ is a stopping time with respect to the filtration

(Ft )t>0 generated by Brownian motion Bt . Assume that σ < τ(A) almost surely. Then con-
ditioned on Fσ , we have that ψt(x) := (θσψA)t (x) satisfies the following modified version
of (2.4). For 0 ≤ t < θσ τ(A) = τ(Aσ ) and x ∈ Aσ ,

dψt(x) = f
(
ψt(x) − (θσB)t

)
dt,

(2.5)
ψ0(x) = x.

This lemma follows immediately from the strong Markov property of Brownian motion.
For x ∈ A and t < τ(A), we can also define

φA
t (x) = ψA

t (x) − Bt

and let φA
t (x) = � for t ≥ τA. From (2.5), we see that φA

t (x) satisfies (1.1) for x ∈ A and t <

τA. Also, the strong Markov property for φA
t (x) follows from Lemma 4, and the formulation

is similar.
We will often use the following containment property, which follows by the definition of

a flow. If S1 ⊂ S2 ⊂ A0 and t ∈ [0, τA0), then we have that with probability 1,

φt (S1) ⊂ φt(S2) and ψt(S1) ⊂ ψt(S2).(2.6)

Finally, we record a scaling property of (1.5) which we will use repeatedly. Since this kind
of scaling is standard, we leave the proof to the reader.

LEMMA 5. Let (ψt ,Bt ,A0, τ ) be a solution to (1.5). Then for λ > 0,(
λψλ−2t , λBλ−2t , λA0, λ

−2τ
)

is also a solution to (1.5), but with F(x) replaced by F(x/λ).

Note that this scaling does not change any lower or upper bounds on F .
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3. Proof of Theorem 1. Throughout this section, we assume n ≥ 2; as mentioned at the
end of Section 1, the case n = 1 reduces to an easy question about the Bessel process.

Here is an outline of our strategy. We will show that if there exists a constant C∗ such that
if F(x) > C∗n for all x ∈ R

n then the following holds. We construct a sequence of stopping
times τ0 ≤ τ1 ≤ · · · such that limi→∞ τi = ∞ almost surely, and such that the distance from
Bτi

to Aτi
tends to get larger and larger. Furthermore, at times τi we enlarge the region Aτi

,
and call the enlarged region Aτi

. Then we show that with probability 1, the Brownian motion
Bt never hits the enlarged region At . So by (2.6) and the strong Markov property, Bt cannot
hit the original region. We write ρi for the distance from Bτi

to our enlarged region Aτi
. This

would prove Theorem 1.
Now we give the details. To start with, let τ0 = 0. Considering that the initial domain A0

of the flow is of positive distance ρ0 > 0 from the origin, we define A0 = Bρ0(0)c, that is, the
complement of the ball of radius ρ0 centered at the origin. Then A0 ⊂ A0. We provisionally
define Ãt = ψ

A0
t (A0) for t < τ(A0), where we recall that τ(A0) is the stopping time τ defined

with respect to the initial set A0. Next, let ρ̃(t) be the shortest distance from Bt to Ãt . Let
τ1 be the smallest time t ∈ [0, τ (A0)) such that ρ̃(t) equals either ρ0/2 or 2ρ0. If there is no
such time t , then Bt never hits Ãt , and Theorem 1 is proved. So we assume that there is such
a time τ1. Finally, let ρ1 = ρ̃(τ1).

For 0 = τ0 ≤ t < τ1, define At = Ãt = ψ
A0
t (Aτ0). Next, define

Aτ1 = Bρ1(Bτ1)
c.

So at the end of our time stage [τ0, τ1) we have changed our region so it is again the com-
plement of a ball centered at the location of the Brownian particle Bτ1 and of radius ρ1. We
illustrate this setup in Figure 1.

Now we repeat the procedure, with time restarted at τ1 and with Bτ1 playing the role of
the origin, and proceed inductively. Here, we have used the strong Markov property to restart
the process. To summarize, at each time τi we change our region to be Aτi

= Bρi
(Bτi

)c, the
complement of the ball of radius ρi with center Bτi

. It follows from our construction that ρi

equals either ρi−1/2 or 2ρi−1. Observe that the following lemma implies Theorem 1.

LEMMA 6. There exists a constant C∗ > 0 not depending on n such that if F(x) ≥ C∗n
for all x ∈ R

n, then:

FIG. 1. The initial set A0 and the case when ρ1 = 2ρ0.
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(i) limi→∞ ρi = ∞ almost surely.
(ii) limi→∞ τi = ∞ almost surely.

The remainder of this section is therefore dedicated to the proof of Lemma 6. Before we
start with the proof, we introduce the following auxiliary lemmas, which will be proved later
in this section.

The following lemma establishes a lower bound on the tail distribution of the Brownian
exit time from a ball of radius 1/2.

LEMMA 7. Let σ be the first time that an n-dimensional standard Brownian motion Bt

reaches ‖Bt‖ = 1/2, and assume 0 ≤ p < 1. There exists a constant C1 > 0 not depending
on the dimension n ≥ 1 such that

(3.1) P

(
σ >

C1

n

)
> p.

The above probability is computed explicitly in Ciesielski and Taylor [1], Theorem 2,
page 444. However, their expression involves an infinite series with roots of Bessel functions,
and dependence on the dimension n is not immediately clear. So we give a self-contained
proof.

Here, we make a comment about the difficulties in working in high-dimensional space. We
want to establish a lower bound for the probability that B stays inside an n-dimensional ball
of radius 1/2. Therefore, it is not enough to bound

P

(
σ >

C1

n

)
= P

(
sup

0≤t≤C1/n

‖Bt‖ <
1

2

)
by the probability that B remains inside the cube [−1/2,1/2]n, due to the difference between
the volume of balls and cubes in high dimensions. Also, a high-dimensional cube has a large
ratio between the maximum and minimum distances between the center and the boundary. In
the proof of Lemma 7, we use the radial component Dt = ‖Bt‖ of the Brownian motion and
introduce stopping times and auxiliary processes for comparison, in order to derive (3.1).

In the following lemma, we establish a lower bound on the transition probability for ρi .

LEMMA 8. There exists a constant C∗ not depending on n such that if F(x) ≥ C∗n for
all x ∈ R

n, then for all i ∈N,

P(ρi = 2ρi−1|Fτi−1) ≥ 2

3
.

Now we are ready to prove Lemma 6.

PROOF OF LEMMA 6. (i) We define

Xi = log2(ρi/ρi−1),

where Xi takes the values {−1,1}. Lemma 8 states that

P(Xi = 1|Fτi−1) ≥ 2

3
.

By expanding the probability space if necessary, we can construct a Fτi
-measurable random

variable Yi ≤ Xi for all i, such that Yi also takes on the values 1, −1, and such that

P(Yi = 1|Fτi−1) = 2

3
.
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It follows that Y1, Y2, . . . is a sequence of i.i.d. random variables with expectation 1/3. The
strong law of large numbers along with the fact that Xi ≥ Yi implies that, almost surely,

lim inf
m→∞ log2

(
ρm

ρ0

)
= lim inf

m→∞
m∑

i−1

Xi ≥ lim
m→∞

m∑
i−1

Yi = ∞

and we get part (i).
(ii) Since (τi)i∈N is a nondecreasing sequence of random variables, the limit τ∞ =

limi→∞ τi almost surely exists, and we would like to show that it is infinity a.s. By the
construction of the sequence {ρi}i≥0 and since ρi → ∞ a.s. by part (i) the distance between
Bt and At tends to ∞ as t ↑ τ∞ and is strictly positive for t < τ∞ with probability one.

Therefore, for almost every realization ω, we can find a natural number N(ω) such that
1
N

≤ ψ
A0
t (x) for all 0 ≤ t < τ∞ and x ∈ A0. On this ω, the drift in equation (1.5) is therefore

identical to fN in (2.1). Since fN is a Lipschitz function, the corresponding flow is finite
for all time with probability one. Therefore, the distance between Bt and At tends to ∞ as
t ↑ τ∞, only if τ∞ = ∞ a.s. It follows that τi → ∞ almost surely, and this proves part (ii).

�

By our earlier comment, Theorem 1 follows from Lemma 6. The remainder of this section
is dedicated to the proofs of Lemmas 7 and 8.

PROOF OF LEMMA 7. We first show that there exist a natural number n∗ and a constant
C1,n∗ > 0 such that (3.1) holds whenever n ≥ n∗. Then we generalize the requirement n ≥ n∗
to n ≥ 1 by possibly choosing a number C1 > 0 smaller than C1,n∗ .

Recall that Dt = ‖Bt‖ is a Bessel process which satisfies

(3.2) dDt = n − 1

2Dt

dt + dW̃t ,

for some one-dimensional Brownian motion W̃t .
Let σ0 be the first time t that Dt = 3/8, and let

D
(1)
t = Dσ0+t .

Let Gt be the filtration generated by W̃t . By the strong Markov property of Brownian motion,
conditioned on Gσ0 , D

(1)
t satisfies (3.2) with the initial condition D

(1)
0 = 3/8. Now define

D
(2)
t to be the solution of

dD
(2)
t = f

(
D

(2)
t

)
dt + dW̃t ,

D
(2)
0 = 3

8
,

where

f (x) =
{
(n − 1)/(2x) if 0 < x < 1/4,

2(n − 1) if x ≥ 1/4.

By a standard comparison result (see Theorem 1.1 in Chapter V.1 of Ikeda and Watanabe [6]),
since D

(1)
t has drift which is not greater than the drift of D

(2)
t , we conclude

D
(1)
t ≤ D

(2)
t

for all t ≥ 0 with probability 1. Actually, the result of Ikeda and Watanabe does not cover
locally unbounded drift, so we must argue via a truncation argument. We leave these details
to the reader.
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So D
(1)
t will reach 1/2 later than D

(2)
t reaches 1/2. Now let σ1 be the first time t that

D
(1)
t = 1/2, and let σ2 be the first time t that D

(2)
t = 1/2. It follows that σ ≥ σ1 ≥ σ2, and so

P(σ > x) ≥ P(σ2 > x).

Finally, let σ3 be the first time t that D
(2)
t = 1/4 or D

(2)
t = 1/2. Then σ2 ≥ σ3, and so

P(σ > x) ≥ P(σ2 > x) ≥ P(σ3 > x).

Therefore, in order to prove (3.1), we look for a lower bound on P(σ3 > x). To this end,
let D

(3)
t be the solution of

dD
(3)
t = 2(n − 1) dt + dW̃t ,

D
(3)
0 = 3

8
,

and let σ4 to be the first time t that D
(3)
t = 1/4 or 1/2. Then σ3 = σ4. Finally, let σ5 be the

first time t that D
(3)
t = 1/2. Then we have

P(σ > x) ≥ P(σ3 > x) = P(σ4 > x)

≥ P
(
σ4 > x,D(3)

σ4
= 1/2

)
.

Note that on D
(3)
σ4 = 1/2, we have σ4 = σ5, and also {D(3)

σ4 = 1/2}c = {D(3)
σ4 = 1/4}. Thus, we

can continue the above inequality as follows:

P(σ > x) ≥ P
(
σ4 > x,D(3)

σ4
= 1/2

)
= P

(
σ5 > x,D(3)

σ4
= 1/2

)
= P(σ5 > x) − P

(
σ5 > x,D(3)

σ4
= 1/4

)
≥ P(σ5 > x) − P

(
D(3)

σ4
= 1/4

)
.

(3.3)

We first give an upper bound on P(D
(3)
σ4 = 1/4). Recall that

h(x) = e−2(n−1)x − e−(n−1)

e−(n−1)/2 − e−(n−1)

is a harmonic function for D
(3)
t , since the process D

(3)
t has the generator

Gf (x) = 2(n − 1)f ′(x) + 1

2
f ′′(x).

Furthermore, h(1/4) = 1 and h(1/2) = 0. We deduce that

P
(
D(3)

σ4
= 1/4

) = h(3/8) = e−3(n−1)/2 − e−2(n−1)

e−(n−1) − e−2(n−1)

= e−(n−1)/2(
1 + o(1)

)(3.4)

as n → ∞.
We now focus on P(σ5 > x). Assume that

x ≤ 1/
(
8(n − 1)

)
.
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Note that for t ≤ x we have (n − 1)t ≤ 1/8. Thus, for such values of x, using the reflection
principle we have

P(σ5 > x) ≥ P
(

sup
0≤t≤x

W̃ (t) < 1/8
)

= 1 − P
(

sup
0≤t≤x

W̃ (t) ≥ 1/8
)

= 1 − 2P
(
W̃ (x) ≥ 1/8

)
.

Using a standard Gaussian random variable Z, we get

P
(
W̃ (x) ≥ 1/8

) = P(
√

xZ ≥ 1/8) = P

(
Z ≥ 1

8
√

x

)

≤ 4
√

2
√

x√
π

exp
(
− 1

128x

)
.

See Durrett [5], Theorem 1.2.3, page 12, for the Gaussian estimate.
With x ≤ 1/(8(n − 1)), we have

P
(
W̃ (x) ≥ 1/8

) ≤ 2√
π

1√
n − 1

exp
(
−n − 1

16

)
.

So,

(3.5) P(σ5 > x) ≥ 1 − 4√
π

1√
n − 1

exp
(
−n − 1

16

)
.

Combining (3.3), (3.4) and (3.5), we can conclude that for large values of n and x ≤
1/(8(n − 1)), we get P(σ > x) > p. In particular,

P

(
σ >

1

8n

)
> p

for all n ≥ n∗ for some n∗.
It remains to lower the requirement n ≥ n∗ to n ≥ 1. Note that for each fixed value of n,

we have P(σ > C/n) → 1 as the constant C ↓ 0. Thus for each 1 ≤ n < n∗, we can find
C1,n > 0 such that

P

(
σ >

C1,n

n

)
> p.

By choosing

C1 = min
{
C1,1, . . . ,C1,n∗−1,

1

8

}
,

we can conclude that

P

(
σ >

C1

n

)
> p

for all n ≥ 1. �

PROOF OF LEMMA 8. Notice that by the strong Markov property applied at time τi−1,
we can start afresh at that time and relabel τi−1 as τ0 = 0. By translating if necessary, we may
assume that:

1. i = 1,
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2. τ0 = 0,
3. B0 = 0.

Furthermore, by scaling time and space via Lemma 5, we can assume that

4. ρ0 = 1.

These transformations may change our drift F , but not the lower bound on F . Thus, to prove
Lemma 8, it suffices to show

(3.6) P(ρ1 = 2) ≥ 2

3
.

Our intuitive idea is as follows. We show that with high probability the time spent by the
Brownian motion in B1/2(0) is greater than C1/n, for some constant C1 not depending on n.
If this event occurs, then the magnitude of the total drift on points y ∈ At ∩ (B5/2(0) \ B1(0))

is

F(‖y − Bt‖)
‖y − Bt‖ ≥ C∗n

3

within the time interval [0,C1/n]. The inequality was from the hypothesis F(x) ≥ C∗n of
Lemma 8 and from the distance between a point in B5/2(0) and the Brownian motion in
B1/2(0) is at most 5/2 + 1/2 = 3. Furthermore, we will see that the projection of this drift
onto the outward radial direction at worst reduces this drift by a multiplicative factor c. See
Figure 2 for the illustration. Thus, it follows from (1.5) the total outward radial drift on a
point y ∈ B5/2(0) \ B1(0) for the time interval [0,C1/n] is at least

(3.7) inf
y∈B5/2(0)\B1(0)

{
F(‖y − Bt‖)

‖y − Bt‖
}

· C1

n
≥ C∗n

3
· c · C1

n
> 3/2,

if C∗ is large enough. Also observe that 3/2 is the radial distance from B1(0) to the boundary
of B5/2(0). Roughly speaking, this means that if C∗ is large enough, then any point in the
region B5/2(0)\B1(0) will now be at least at distance 5/2 from the origin, while the Brownian

FIG. 2. The projection of the drift onto the radial direction.
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motion remains in B1/2(0). Note that the drift might be smaller than 3/2 if the point exits the
ball B5/2(0) during the time interval [0,C1/n], but this is what we want to show anyway.
Also, once it exits this ball, it never reenters. So in both cases the point in B5/2(0) \ B1(0)

exits the ball B5/2(0), and the distance between the Brownian particle and At increases by a
factor of 2.

In order to make this argument precise, let A be the event that σ > C1/n. We will show that
on the event A, we have ρ1 = 2ρ0. Since Lemma 7 shows that P(A) > p, choosing p > 2/3
will then give us (3.6). From the reasoning which was given in the preceding paragraph and
specifically in (3.7), all that is left to verify is the statement about the radial part of the drift.
Let a ∈ B1/2(0) and b ∈ B5/2(0) \ B1(0). We wish to show that there is a constant c > 0
not depending on n such that for any such pair of points a, b the projection of b − a on b

has magnitude bounded below by c. First, we note that the points 0, a, b determine a plane
passing through the origin, so we may assume that n = 2, and our space is the x − y plane.
We may also assume that b lies on the vertical axis, with y-coordinate between 1 and 5/2.
Then the projection is bounded by∣∣(y − x) · y∣∣ = |y · y − x · y|

≥ ‖y‖2 − ‖x‖ · ‖y‖
≥ (‖y‖ − ‖x‖)‖y‖

≥ 1

2
· 1.

(3.8)

So, we may choose c = 1/2. This completes the proof of Lemma 8. �

4. Proof of Theorem 2. We again assume that n ≥ 2. First, we introduce some defini-
tions and notation which will help us to compare the problem of hitting the origin for φA0 , to
the corresponding problem for a class of biased random walks.

Notation. Recall our previous notation x = (x1, . . . , xn). We define x⊥ = (x2, . . . , xn).
We further write Bt = (B

(1)
t , . . . ,B

(n)
t ) and define B⊥

t = (B
(2)
t , . . . ,B

(n)
t ).

As stated in Theorem 2, we assume

(4.1) A0 = {
x ∈ R

n : x1 ≥ 1
}
.

By scaling via Lemma 5, if we prove Theorem 2 for this definition of A0, we have also proved
it for A0 = {x ∈ R

n : x1 ≥ a} for any a > 0.
Next, we define the following objects by induction.

(i) A sequence τ0 ≤ τ1 ≤ · · · of stopping times with limit τ∞ = limi→∞ τi .
(ii) A sequence of positive random variables ρ0, ρ1, . . ..

(iii) A collection {At }t<τ∞ of random subsets of Rn.

Here, ρi is the distance of Bτi
to Aτi

. Recall that τ was defined in (1.2). Note that it is possible
that τ < τ∞. One of the main ingredients in the induction is to choose At such that, At ⊂ At

for t < τ ∧ τ∞.
To begin with, let τ0 = 0 and let

ρ0 = sup
x∈∂A0

∣∣B(1)
0 − x1

∣∣ = 1,

where ∂A0 = {x ∈ R
n : x1 = 1} is the boundary of the set A0. Let τ1 be the first time t > 0

such that

(4.2) sup
x∈∂At

∣∣B(1)
t − x1

∣∣ = 1

2
or 2
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FIG. 3. The initial set A0 and the case when ρ1 = 1/2.

and note that τ1 < τ unless both of these times are ∞. We leave it to the reader to check that
τ1 < ∞ with probability one. For 0 ≤ t < τ1, let

At =At .

We provisionally define

Ãτ1 =Aτ1 .

Finally, we let

ρ1 = sup
x∈∂Ãτ1

∣∣B(1)
τ1

− x1
∣∣.

See Figure 3 for the setup.
Now assume that we have defined τm, ρm, and {At }t<τm such that At ⊂ At for t < τm.

First, we define

Aτm = {
x ∈R

n : x1 ≥ B(1)
τm

+ ρm

}
and note that Aτm ⊂ Aτm .

Recall that the shift operator θt was defined before Lemma 4. Next, we define τm+1, so
that τm+1 − τm is the first time t > 0 such that

sup
x∈∂(θτmψAτm )t (Aτm)

∣∣B(1)
t − x1

∣∣ = 1

2
ρm or 2ρm.

Then, for 0 ≤ t < τm+1 − τm, let

At+τm = (
θτmψAτm

)
t (Aτm).

Again, we provisionally define

Ãτm+1 = (
θτmψAτm

)
τm+1

(Aτm)

and define

ρm+1 = sup
x∈∂Ãτm+1

∣∣B(1)
τm+1

− x1
∣∣.

This completes our inductive definition. Our next goal is to show the following proposition,
which essentially proves Theorem 2. The rest of this section is devoted to the proof of this
proposition.

PROPOSITION 9. We have:

(i) limi→∞ ρi = 0 almost surely.
(ii) P(τ∞ < ∞) = 1.
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PROOF. The proof of Proposition 9 is rather long, hence we divide it into a few steps.
But before presenting the details, we give a brief overview of the proof. A point x moves

in the vertical direction (the x1 direction) because Brownian motion Bt spends time with B(1)

close to x1, and with B⊥ close to x⊥. To take account of |x⊥ − B⊥|, we cover the Brownian
path B⊥

t with balls of various sizes, and consider the amount of time the Brownian motion
spends in (i) balls of the smallest size and (ii) annuli consisting of set differences between
two balls of the same center. Second, as time progresses, the point x may move not only
in the vertical direction, but also in the lateral direction (the x⊥ direction). As x moves in
the lateral direction, it may get closer to certain parts of the Brownian path which did not
contribute much drift previously. Thus, we need to control the lateral distance over which
x might move. Using the same balls as before, we will control the amount of lateral drift
experienced by x, and thus the distance which x⊥ can travel. The upward drift experienced
by x1 will then be the sum of contributions from all the balls, and over all possible positions
of x⊥.

Step 1: a random walk comparison. We set up a random walk comparison as we did at
the beginning of Section 3. Recall that the vertical direction refers to the first coordinate of
R

n, and the horizontal direction refers to the remaining coordinates. We will show that the
vertical distance between the Brownian motion and At is bounded by the distance from the
origin of a one-dimensional biased random walk initiated at +1.

In order to do that, we consider At (x) which satisfies (1.5), with F(x) ≡ ‖F‖∞ for all
x ∈ R instead of F . For every i = 0,1, . . ., let τ i and ρi be the equivalents of τi and ρi with
A instead of A. Moreover, let At be the equivalent of At with A instead of A. Then from the
construction of {(τi, ρi)}i≥0 and At , it follows that for every i = 0,1, . . .,

P(ρi+1 = ρi/2) ≤ P(ρi+1 = ρi/2),

and

P(τ∞ < ∞) ≤ P(τ∞ < ∞).

From the preceding paragraph, we conclude that it is enough to prove Proposition 9 for A.
In order to simplify notation, we will write (At (x), τi, ρi,At ) instead of (At (x), τ i, ρi,At ),
when there is no ambiguity.

Using scaling via Lemma 5 with ‖F‖∞ in place of F , we find that there is a constant
p ∈ (0,1) such that, conditioned on Fτi−1 ,

log2 ρi =
{

log2 ρi−1 + 1 with probability p,

log2 ρi−1 − 1 with probability 1 − p,

for i = 0,1, . . ., and the increments ρi+1 − ρi are independent. It follows that {log2 ρi}i∈N
is a nearest-neighbor random walk on the integers, and is biased if p �= 1/2. So, ρi → 0 as
i → ∞ with probability 1 if and only if p < 1/2. Since the probability p is the same for each
time stage [τm, τm+1], we prove that p < 1/2 only on the first time stage t ∈ [τ0, τ1], and this
will complete the proof of Proposition 9(i).

In addition to ρ1, we define the maximum displacement of Ãτ1 in the x1-direction Dτ1 as

(4.3) Dτ1 = sup
x∈∂Ãτ1

(x1 − 1) = ρ1 + B(1)
τ1

− 1.

We are interested in finding a bound of the probability p = P(ρ1 = 2). First, note that if
we set Dτ1 ≡ 0, from (4.3) and by the gambler’s ruin, we would have p = 1/3, since it is
the probability that 1 − B

(1)
t , a one-dimensional Brownian motion starting at 1, hits 2 before

hitting 1/2. That is,

p = 1/2

1/2 + 1
= 1/3.
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Since Dτ1 > 0, P -a.s., in order to get a bound on p, we assume the following hypothesis,
which will be verified later. For every δ > 0 sufficiently small,

(4.4) P

(
Dτ1 <

1

4
− 2δ

)
> 1 − δ.

From (4.3), it follows that under {Dτ1 < 1
4 − 2δ}, p is bounded from above by the probability

that a Brownian motion, starting from 1 + 1
4 − 2δ, exits the interval [1/2,2] from the right

boundary. It follows that

q ≡ 1 − p ≥ 2 − (1 + 1
4 − 2δ)

2 − (1 + 1
4 − 2δ) + |1/2 − (1 + 1

4 − 2δ)| > 1/2 + δ.

Therefore, in order to prove that Bt hits At , we just need to verify (4.4). The remainder of the
proof is dedicated to deriving an inequality similar to (4.4).

Step 2: construction of a cover on the Brownian path. Recall that B0 = 0. In order to bound
the vertical and lateral drifts we first need to fix a cover of the Brownian path {B⊥

t : t ∈ [0, T ]}
in R

n−1, for some arbitrary T > 0, and specify some of its properties.
In what follows, �·� is the ceiling function which gives the smallest integer greater than or

equal to the number inside.

PROPOSITION 10. For any ε > 0, there exists a constant C2 not depending on n such
that the following holds. If K ∈ (0,1/8) and r = ek with integer 1 ≤ k ≤ k∞, where k∞ =
�(logn)/2�, then with probability at least 1 − ε, we can cover {B⊥

t : t ∈ [0, T ]} ⊂R
n−1 with

a number �C2
nT

Ke2k � of (n − 1)-dimensional balls of radius r .

We prove Proposition 10 in Section 5.
Recall that τ1 was defined in (4.2). We define the following event:

(4.5) E1 = {τ1 ≤ T }.
The following lemma, which is proved in Section 6, helps us to bound the probability of Ec

1 .

LEMMA 11. There exist constants C3,C4 > 0 such that

P(τ1 > T ) ≤ C3 exp(−C4T ).

Let ε > 0 be arbitrarily small. By Lemma 11, we can fix T large enough so that

(4.6) P
(
Ec

1
)
< ε.

We also fix K ∈ (0,1/8) and let

(4.7) m∗
k(n) =

⌈
C2

nT

Ke2k

⌉
,

where C2 is defined as in Proposition 10.
We define E2 to be the event that there is a cover of {B⊥

t : t ∈ [0, T ]} with m∗
k(n) balls of

of radius ek for any k = 1, . . . , �(logn)/2�. From Proposition 10, we have

(4.8) P
(
Ec

2
)
< ε.

Step 3: uniform bound on the Brownian occupation time. In order to bound the vertical and
lateral drift, we will bound the amount of time spent by the Brownian motion in each ball of
the cover which was constructed in the previous step. Let L

(n−1)
t (·) be the occupation measure

of the n− 1 dimensional Brownian motion B⊥
t . Define L(n−1)(·) = limt→∞ L

(n−1)
t (·), where

we often omit the dependence in n and write Lt(·) and L(·). We will need the following
proposition.
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PROPOSITION 12. Assume that n ≥ 4. Let Br (0) be a ball of radius r > 0 centered at
the origin. Then, there exist constants C5,C6 > 0 such that

P
(
L(n−1)(Br (0)

)
> sr2) ≤ C5 exp

(−C6n
2s

)
for all s > 8

n
.

The proof of Proposition 12 is given in Section 6.
From now on, assume that n ≥ 4. We will deal with the case where n = 2,3 later. Assume

further that E2 is satisfied. Denote by Bk
i , i = 1, . . . ,m∗

k(n), the balls of radius ek in the
random cover of {B⊥

t : t ∈ [0, T ]}. We also write C · Bk
i as the ball with the same center as

Bk
i with radius C times the radius of Bk

i .
In what follows, we fix 1 ≤ k ≤ k∞, where k∞ = �(logn)/2�. Suppose that p ∈ Rn−1, and

define

(4.9) τ̄ (p) = inf
{
t ≥ 0 : |Bt − p| < 2ek}.

Assume that τ̄ (p) ≤ T . Let τ0, τ1, τ2, . . . be the times at which we choose new balls in the
cover of {B⊥

t : t ∈ [0, T ]}. That is, τ0 = 0, and Bk
0 is centered at the origin. Then τ1 is the exit

time from Bk
0 and Bk

1 is centered at Bτ1 . We continue in the same manner, so Bk
i has its center

at Bτi
with radius ek . By our assumption τ̄ (p) ≤ T , and since Bk

i cover B[0,T ], it follows that
there must be a first index i(p) such that

(4.10) |Bτi(p)
− Bτ̄(p)| < ek

and hence

(4.11) |Bτi(p)
− p| < 3ek.

Note that τi(p) is a stopping time with respect to the Brownian filtration (Ft )t≥0. Also, we
have τi(p) < τ̄ (p) by the construction of our cover. By this definition, Bt /∈ 2Bek (p) for t <

τ̄ (p), and so Bt /∈ 2Bek (p) for t < τi(p) also. From (4.10) and (4.11), we have

(4.12) 2Bek (p) ⊂ 5Bk
i(p).

Next, we consider the occupation measure of the Brownian path after time τi(p). Using the
time shift operator {θt }t≥0, we define

L(n−1)
τi(p)

(
2Bek (p)

) = θτi(p) · L(n−1)(2Bek (p)
)
.

Since Bt /∈ 2Bek (p) for t < τi(p), it follows from (4.12) that

(4.13)
L(n−1)(2Bek (p)

) = L
(n−1)
τi (p)

(
2Bek (p)

)
≤ L

(n−1)
τi (p)

(
5Bk

i(p)

)
.

By the strong Markov property of Brownian motion with respect to the stopping time τi(p)

and using Proposition 12, it follows that if s > 8/n, then there are C5,C6 > 0 such that

(4.14) P
(
L

(n−1)
τi (p)

(
5Bk

i(p)

)
> 25se2k) ≤ C5 exp

(−C6n
2s

)
.

Now let Ak,i be the event that

(4.15) L
(n−1)
τi (p)

(
5Bk

i

) ≤ ρ
e2k

n

for some positive constant ρ independent of i and k, which will be fixed later. From (4.14),
we have for ρ/(25n) > 8/n (i.e., ρ > 200),

(4.16) P
(
Ac

k,i

) ≤ C5 exp(−C6nρ/25).
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Let us define the good event where all bounds such as (4.15) are satisfied as

E3 =
k∞⋂
k=1

m∗
k(n)⋂
i=1

Ak,i .

Note that from (4.15) and (4.13), it follows that if ρ > 200, then we have on E3

(4.17) sup
p∈Rn−1

L(n−1)(2Bek (p)
) ≤ ρ

e2k

n
.

From (4.17), we get that under E3 we have a uniform bound in p on the occupation measure
L(n−1), which is a stronger statement than the local bound in Proposition 12.

We now show that we can choose ρ large enough, so the probability of E3 will be arbitrary
close to 1. Recall that k∞ = �(logn)/2�. From (4.16) and (4.7), it follows that

P
(
Ec

3
) ≤

k∞∑
k=1

m∗
k(n)∑
i=1

P
(
Ac

k,i

)

≤
k∞∑
k=1

m∗
k(n)C5e

−C6nρ/25

=
k∞∑
k=1

⌈
C2

nT

Ke2k

⌉
C5e

−C6nρ/25.

Using (4.7), we continue with

P
(
Ec

3
) ≤ C

nT

K
e−C6nρ/25

k∞∑
k=1

1

e2k

≤ C
nT

K
e−C6nρ/25

(
1

e2 +
∫ k∞

1

1

e2x
dx

)

≤ C
nT

K
e−C6nρ/25

(
1

e2 +
∫ (logn)/2+1

1

1

e2x
dx

)
= C

nT

K
e−C6nρ/25 1

2e2

(
3 − 1

n

)
= C′ T

K
e−C6nρ/25(3n − 1).

Note that the right-hand side is positive since n ≥ 1. In order to have P(Ec
3) < ε, we need ρ

to satisfy

(4.18) C′ T
K

e−C6nρ/25(3n − 1) < ε.

From the conditions on (4.16), we can choose ρ > 200 such that (4.18) is satisfied. For such
ρ, we get

(4.19) P
(
Ec

3
)
< ε.

In the next steps, we derive an upper bound of the lateral drift (in the x⊥-direction) and
the vertical drift (x1-direction), during the time interval [0, τ1], on point p which initially is
in A0. Our bound will be independent of the initial position p.
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We write

p = (p1, . . . , pn) = (
p1,p

⊥)
,

where p⊥ = (p2, . . . , pn) ∈ Rn−1.
Step 4: bound on the lateral drift. We use the cover of the Brownian path on [0, T ] and

the bounds on the Brownian occupation time which were established in the previous steps,
in order to bound the lateral drift (i.e., the displacement of p⊥). We will use the notation
{p⊥(t)}t≥0 to denote the position of p⊥ at time t with p⊥(0) ∈ A0 being its original position.

We first define concentric balls centered at p(0)⊥ in R
n−1. Let V k

p(0) be a ball of radius

2ek centered at p(0)⊥ for k = 1, . . . , k∞. Then we define the set of the concentric annuli
Ak

p(0) = V k
p(0) \V k−1

p(0) , for k = 2,3, . . ., with the first set equal to the first ball: A1
p(0) := V 1

p(0).

So, these annuli (except for the first) have inner radii 2ek and outer radii 2ek+1.
Let D⊥

k be the maximal lateral drift experienced by a point q = (q1, q
⊥) such that

(4.20) q1 ≤ 0 and q⊥ ∈ Bek

(
p⊥(0)

)
assuming that the Brownian particle is located at r = (r1, r

⊥). Recall that by the hypothesis
of Theorem 2, ‖F‖∞ ≤ c∗n3/4. On the first interval [0, τ1], the vertical distance (along the
x1-axis) from At to Bt is on the interval [1/2,2] and so it is bounded below by 1/2. The
lateral distance (along x⊥) from Bt to a point q in At is ‖q⊥ − B⊥

t ‖. From (1.5), it follows
that

(4.21)

D⊥
k ≤ ‖F‖∞

1√
1/4 + ‖q⊥ − r⊥‖2

≤ c∗n3/4 1√
1/4 + ‖q⊥ − r⊥‖2

.

We distinguish between the following two cases:
Case 1: r⊥ ∈ A1

p(0). Then from (4.21) it follows that there exists a constant C > 0 inde-
pendent of n and p, such that

(4.22) D⊥
1 ≤ Cc∗n3/4.

Case 2: r⊥ ∈ Ak+1
p(0), for 1 ≤ k ≤ k∞. Then from (4.21) it follows that there exists a constant

C > 0 independent of n and p, such that

(4.23)
D⊥

k ≤ ‖F‖∞
1√

1/4 + e2k

≤ Cc∗n3/4e−k.

We define k0 by the equation

ek0 = (
ek∞)1/2 = n1/4.

First, we assume that the process {p⊥(t)}t≥0 stops when it exits from Bek0 (p
⊥(0)). If, under

this assumption, we find that p⊥(t) in fact does not exit from Bek0 (p
⊥(0)) over time [0, T ],

then the unmodified process must not exit either.
We will use our estimates on the occupation measure for Brownian motion from step 3, in

the various balls 2Be2k (p⊥(0)), in order to bound the horizontal drift experienced by points
in At where t ∈ [0, τ1]. We distinguish the following 3 cases: k = 1, 1 < k < k0 and k0 ≤
k ≤ k∞. In the first two cases, k < k0, we have that p⊥(t) traverses at most ek0−k balls. For
k > k0, we have that p⊥(t) traverses at most one ball. Then, recalling that ek0 = n1/4, we
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have the following. In each term, we first write our upper bound for the drift from (4.22) and
(4.23), then the number of balls traversed, and then the occupation measure Ln−1 of each
ball from (4.17). At first, we separate these terms by dots. Let D⊥

τ1
be the total horizontal drift

experienced by p(t) between [0, τ1]. It follows that

D⊥
τ1

≤ Cc∗n3/4 · ek0 · L(n−1)[A1
(
p⊥(0)

)]
+

k0−1∑
k=2

Cc∗n3/4e−k · ek0−k · L(n−1)[Ak

(
p⊥(0)

)]

+
k∞∑

k=k0

Cc∗n3/4e−k · 1 · L(n−1)[Ak

(
p⊥(0)

)]

≤ Cc∗n3/4ek0ρ
1

n
+ Cc∗

k0∑
k=0

n3/4ek0−2kρ
e2k

n
+ Cc∗

k∞∑
k=k0

n3/4e−kρ
e2k

n

≤ Cc∗ρn−1/4ek0 + Cc∗
k0∑

k=0

n3/4ek0ρ
1

n
+ Cc∗

k∞∑
k=k0

n3/4e−kρ
e2k

n

≤ Cc∗ρ + Cc∗ρk0 + Cc∗ρn−1/4ek∞

≤ n1/4,

for c∗ small enough. Note that we used ek0 = n1/4, ek∞ = n1/2, and k0 = C logn in the last
inequality.

Because Bek0 (p
⊥(0)) has radius n1/4, we find that for c∗ small enough, p⊥(t) does not

exit from this ball, as required.
Step 5: bound on the downward drift. We use the same strategy as in Step 4 to bound

the total downward drift. Let D1
k be the maximal downward drift experienced by a point

q = (q1, q
⊥) as in (4.20), assuming that the Brownian particle is located at r = (r1, r

⊥). As
in Step 4, on the first interval [0, τ1], the vertical distance (along the x1-axis) from At to Bt

is on the interval [1/2,2] and so it is bounded below by 1/2. The lateral distance (along x⊥)
from Bt to q is ‖q⊥ − r⊥‖. We want to compute an upper bound of the vertical drift on the
point q , so we multiply the factor 1√

1/4+‖q⊥−r⊥‖2
, which bounds the projection of the drift

vector from Bt to q onto the x1–direction, to the diagonal drift. We get that

(4.24)

D1
k ≤ ‖F‖∞

1√
1/4 + ‖q⊥ − r⊥‖2

· 1√
1/4 + ‖q⊥ − r⊥‖2

≤ c∗n3/4 1

1/4 + ‖q⊥ − r⊥‖2 .

We again distinguish between the following cases:
Case 1: r⊥ ∈ A1

p(0). Then from (4.24) it follows that there exists a constant C > 0 inde-
pendent of n and p, such that

(4.25) D1
1 ≤ ‖F‖∞ ≤ Cc∗n3/4.

Case 2: r⊥ ∈ Ak
p(0), for 2 ≤ k ≤ k∞. Then from (4.24) it follows that there exists a constant

C > 0 independent of n and p, such that

(4.26)
D1

k ≤ c∗n3/4 1

1/4 + e2k

≤ Cc∗n3/4e−2k.
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Let D1
τ1

be the total vertical drift experienced by p(t) between [0, τ1]. As in the previous
step, in each term, we first write our upper bound for the drift from (4.25) and (4.26), then
the number of balls traversed, and then the occupation measure of each ball from (4.17). It
follows that

D1
τ1

≤ Cc∗n3/4 · ek0 · L(n−1)[A1
(
p⊥(0)

)]
+

k0−1∑
k=2

Cc∗n3/4e−2k · ek0−k · L(n−1)[Ak

(
p⊥(0)

)]

+
k∞∑

k=k0

Cc∗n3/4e−2k · 1 · L(n−1)[Ak

(
p⊥(0)

)]

≤ Cc∗n3/4 · n1/4 · ρ 1

n
+ Cc∗

k0∑
k=0

n3/4ek0−3kρ
e2k

n

+ Cc∗
k∞∑

k=k0

n3/4e−2kρ
e2k

n

≤ Cc∗ρ + Cc∗ρn−1/4ek0

k0∑
k=0

e−k + Cc∗ρn−1/4k∞

≤ Cc∗ρ + Cc∗ρn−1/4ek0 + Cc∗ρn−1/4k∞.

Since ek0 = n1/4 and k∞ = (logn)/2, we have

D ≤ Cc∗.

By choosing a small c∗, we get

(4.27) D1
τ1

≤ 1/8,

on the event
⋂3

i=1 Ei . Recall Dτ1 was defined in (4.3). From (4.27), (4.6), (4.8) and (4.19),
we get (4.4) and we complete the proof for n > 3.

Step 6: bound Dτ1 for n = 2,3. In this case, we can bound the total downward drift at x

due to B⊥[0,T ] by c∗C7, where C7 is some positive constant, since the Brownian motion is at a
positive distance from x on [0, τ1]. Again, by choosing c∗ small enough, we get

Dτ1 < c∗C7T ≤ 1/8

on the event E1. From the above equation and (4.6), we get (4.4) and we complete the proof
for n = 2,3. �

5. Proof of Proposition 10. Recall that our goal is to get an upper bound, with a high
probability, on the number of balls of radius r needed to cover the Brownian path B⊥[0,T ].

Let τr,1 be the first time t that the (n−1)-dimensional Brownian motion B⊥
t initiated at the

origin exits the ball B(0, r) centered at 0 of radius r . At τr,1, we start the Brownian motion
from the origin over again and wait until the next time τr,2 at which the restarted Brownian
motion reaches distance r from its starting point. We also write τr,0 = 0. Let

σi = σr,i = τr,i − τr,i−1.

Then σi : i = 1,2, . . . are i.i.d. random variables.
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Let N = Nr,T be the number of balls of radius r needed to cover the Brownian path B⊥[0,T ].
By Brownian scaling, N equals in law to the number of balls of radius 1 needed to cover the
Brownian path B⊥

[0,T /r2]. So we can redefine σi and N to reflect this Brownian scaling, that
is, σi are i.i.d. exit times from a unit ball.

We expect σi to be about C/n, since the Bessel process ‖B⊥
t ‖ has drift about n for 1/2 ≤

‖B⊥
t ‖ ≤ 1 and larger when ‖B⊥

t ‖ ≤ 1/2. So, roughly speaking we expect

(5.1) N ≈ nT

r2 .

The following lemma is an important ingredient in the proof of Proposition 10.

LEMMA 13. For any m ≥ 1, there exist constants C8,C9 > 0 such that

P
(

inf
i=1,...,m

σi < K/n
)

≤ mC8 exp(−C9n/K)

for all 0 < K < 1/8.

PROOF. Note that for any K > 0 and m ≥ 1 we have

P
(

inf
i=1,...,m

σi < K/n
)

≤ mP(σ1 < K/n).

Hence we need to show that mP(σ1 < K/n) is small enough.
For simplicity, we let σ = σ1. Recall that the Bessel process Yt = ‖B⊥

t ‖ satisfies the fol-
lowing SDE:

dYt = n − 2

2Yt

dt + dWt,

where Wt is a standard one-dimensional Brownian motion.
Note that σ is greater than σ̃ , which is the time needed for Yt to exit the interval [1/2,1]

starting from Y0 = 3/4. Therefore, it suffices to bound

mP(σ̃ < K/n).

Suppose now that

K < 1/8

so that within time t < K/n, the drift term in Yt is at most 1/8. Then, in order for σ̃ < K/n,
we must have

sup
0≤t≤K/n

|Wt | ≥ 1/8.

However, a standard Brownian estimate gives

P
(

sup
0≤t≤K/n

|Wt | ≥ 1/8
)

≤ C8 exp(−C9n/K),

where C8, C9 are positive constants.
It follows that

P
(

inf
i=1,...,m

σi < K/n
)

≤ mC8 exp(−C9n/K). �

PROOF OF PROPOSITION 10. Recall that r = ek , k = 1, . . . , k∞, so we are covering the
Brownian path with balls of radius ek .
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By a scaling argument, this is equivalent to a cover the path of B⊥, between 0 to T/r2 =
T e−2k with balls of radius 1. Note that if σi ≥ K/n for all i = 1,2, . . . , then we will need

m∗ = m∗(n) =
⌈

nT

Ke2k

⌉
,

such balls. Let 0 < K < 1/8. From Lemma 13, it follows that the probability to cover the
path with m∗ balls of radius 1 is

Pk := P
(

inf
i=1,...,m∗σi < K/n

)
≤ C8

⌈
nT

Ke2k

⌉
exp(−C9n/K).

The sum of the probabilities Pk over k is bounded by

� 1
2 logn�∑
k=1

Pk ≤ C8 exp(−C9n/K)

� 1
2 logn�∑
k=1

⌈
nT

Ke2k

⌉

≤ C̃8
nT

K
exp(−C9n/K).

It follows that for any ε ∈ (0,1), there exists N(ε,K) such that if n > N(ε,K) then for
any choice of r = ek , k = 1, . . . , �(logn)/2�, we have σi ≥ K/n for all i = 0, . . . ,m∗ with
probability 1 − ε. From the preceding paragraph, we get the result for n > N(ε,K).

Note that similar covers in dimensions n ≤ N(ε,K) will hold by projection of the covers
when n > N(ε,K), possibly with an additional multiplicative constant in m∗

k(n). We there-
fore proved the result for all n ≥ 1. �

6. Proof of Proposition 12 and Lemma 11. Before we prove Proposition 12, we recall
Theorem 2 (p. 444) from Ciesielski and Taylor [1].

THEOREM 14 (Paraphrased). Suppose n ≥ 1. Let τn be the first time that a n dimensional
Brownian motion leaves a ball of radius 1 in R

n. Let Ln be the amount of time that the same
Brownian motion spends in this ball. Then

τn
D= Ln+2.

PROOF OF PROPOSITION 12. Recall that B⊥ is an n− 1 dimensional Brownian motion.
From Theorem 14, we have for dimensions n ≥ 4,

P(Ln−1 > s) = P(τn−3 > s).(6.1)

We will derive an upper bound on the right-hand side of (6.1). For notational convenience,
we will first establish an upper bound on P(τn > s) as a function of n and replace n by n − 3
later.

First of all, note that this bound only depends on Y(t) = ‖B(t)‖ for Y ∈ (0,1]. In this case,
the drift of Y satisfies

(6.2)
n − 1

2Y(t)
≥ n − 1

2
.

Let

X(t) = (n − 1)t

2
+ W(t),

where W(t) is a one-dimensional standard Brownian motion.
From (6.2) and a standard comparison result (see Theorem 1.1 in Chapter V.1 of Ikeda and

Watanabe [6]), we compare the drifts of Y and X, we see that Y(t) > X(t) for 0 ≤ t ≤ τn with
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probability 1. Note that the result of Ikeda and Watanabe does not cover locally unbounded
drift, but this could be argued via a standard truncation argument.

Therefore, from (6.1) we get

P(Ln+2 > s) ≤ P
(
τX
n > s

)
,

where τX
n denotes the first time t that Xt = 1.

Simple calculations give us

P
(
τX
n > s

) ≤ P
(
X(s) ≤ 1

)
= P

(
(n − 1)s/2 + W(s) ≤ 1

)
= P

(
W(s) ≤ 1 − (n − 1)s/2

)
.

Note that for s > 4/(n − 1),

1 − (n − 1)s

2
≤ −(n − 1)s

4
.

So, we conclude that

P(Ln+2 > s) ≤ P
(
τX
n > s

)
≤ P

(
W(s) ≤ −(n − 1)s

4

)
(6.3)

≤ C ′
5 exp

(−C′
6n

2s
)

for some constants C′
5, C′

6. Replacing n by n − 3 only changes the constants C′
5, C′

6 in (6.3)
but nothing else. �

6.1. Proof of Lemma 11. Recall that we must show that there exist constants C3,C4 > 0
such that

P(τ1 > T ) ≤ C3 exp(−C4T ).

We distinguish between the following two cases.
Case 1. F ≡ 0. Then P(τ1 > T ) ≤ P(supt∈[0,T ] |B(1)

t | ≤ 2), and the result follows by a
standard Gaussian tail estimate.

Case 2. ‖F‖∞ > 0. Note that ρt , which is the maximal vertical distance between At and
Wt , is given by

Dt = ρt + B
(1)
t − 1,

where Dt is the maximal vertical drift accumulated up to time t . From (1.5) with ‖F‖∞
instead of F and (4.2), we get

Dt ≥ t

2
‖F‖∞ for all 0 ≤ t ≤ τ1.

It follows that

ρt ≥ 1 + t

2
‖F‖∞ + Wt for all 0 ≤ t ≤ τ1,

where Wt is a one-dimensional Brownian motion. Let Z be a standard Gaussian random
variable. It follows that there exist C3,C4 > 0 independent from n such that

P(τ1 > T ) ≤ P
(

sup
0≤t≤T

ρt ≤ 2
)
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≤ P

(
1 + 1

2
‖F‖∞T + WT ≤ 2

)
= P

(
Z ≤ 1√

T
− 1

2
‖F‖∞

√
T

)
≤ C3 exp(−C4T ). �

7. Proof of Theorem 3. We use our usual notation for a point a ∈ R
n, that is a =

(a1, . . . , an) and a⊥ = (a2, . . . , an). Let B(n−1)
r (a⊥) be a ball in R

n−1 of radius r and center
a⊥, for a ∈R

n.
Let F denote the set of Lipschitz functions F : Rn → R satisfying the hypotheses of The-

orems 2 and 3, namely 0 ≤ F(x) ≤ c∗n3/4 for all x ∈ R
n. The following lemma will help us

to prove Theorem 3.

LEMMA 15. Let

AF,m
0 = {1} × B(n−1)

m (0)

and let AF,m
t be the image of AF,m

0 under our flow ψ
AF,m

0
t . Then

lim
m→∞ inf

F∈FP
(
Bt hits AF,m

t

) = 1.

Note that Theorem 2 implies that the above limit is 1 for F ∈ F fixed. Lemma 15 states
that this convergence is uniform in F ∈ F.

PROOF OF LEMMA 15. Let (ψF
t ,Bt ) be a solution to (1.5) with drift F ∈ F, which is

initiated by A0 = {1} × R
n−1. We define σF to be the first time that Bt hits At = ψF

t (A0).
Define F ≡ c∗n3/4, and note that F ≤ F for all F ∈ F.

Let ε > 0 be arbitrary small. From the statement of Theorem 2, it follows that there exists
T0 large enough, such that for all T > T0, we have

P
(
σF > T

)
< ε.

We observe that in the proof of Theorem 2 the only bound on F which was used is ‖F‖∞ ≤
c∗n3/4, see the second paragraph of Step 1 in Proposition 9 and the bounds on D⊥

τ1
and D1

τ1
in Steps 4 and 5 of Proposition 9 (respectively). We therefore conclude that for all T > T0,

(7.1) sup
F∈F

P
(
σF > T

)
< ε.

Now choose m > 0 depending on ε and the dimension n such that

(7.2) P
(

sup
0≤t≤T

∥∥B(n−1)
t

∥∥ > m
)

< ε.

Let AF
m be the event that Bt hits AF,m

t = ψF
t (AF,m

0 ). Also, let ∂AF,m
t denote the image of

the boundary of the original ball B(n−1)
m (0) under the same drift. We also note that the drift

experienced by AF,m
t is continuous as long as Bt has not yet hit AF,m

t .
Note that as long as ‖B(n−1)

t ‖ < m, the drift induced on ∂AF,m
t by Bt , when projected on

R
n−1, and further projected onto the radial direction in R

n−1, points away from the origin.
It follows that the projection of ∂AF,m

t onto R
n−1 lies in the exterior of the ball Bm(0), and

in fact encloses this ball. By continuity, it follows that as long as ‖B(n−1)
t ‖ < m, we have

AF,m
t ⊃ B(n−1)

m (0).
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By the above and (7.1), we have

sup
F∈F

P
(
AF

m

)
> 1 − 2ε

and this completes the proof of Lemma 15. �

PROOF OF THEOREM 3. By the hypothesis of Theorem 3, we can assume that A0 con-
tains a cylinder

Cδ(a) = (a1, a1 + δ) × B(n−1)
δ

(
a⊥)

for some a ∈R
n and some δ > 0. Furthermore, we can assume that a1 > 0.

Let 0 < ε < a1/2, ε1 > 0, and let σ be the first time t that B
(1)
t = a1 − ε/2. It is easy to see

that there is a positive probability that ‖B⊥
σ ‖ < ε and σ < ε1. Thus, if ε1 is small enough and

σ < ε1, the integral of the drift from time 0 to time σ , acting on Cδ(a) up to time σ will be
arbitrarily small. It follows that there is a positive probability that ‖B⊥

σ ‖ < ε and ψ
A0
σ (Cδ(a))

contains the disc (a1 + ε/2) × B(n−1)
δ/2 (a⊥). So, B

(1)
σ = a1 − ε/2 has distance ε from the line

x1 = a1 + ε/2, and if ε < δ/4 then

B(n−1)
δ/2

(
a⊥) ⊃ B(n−1)

δ/4

(
B⊥

σ

)
.

Using Lemma 15, choose a natural number m such that

(7.3) inf
F∈FP

(
Bt hits AF,m

t

)
> 0.

Using the strong Markov property, let us start over at time σ . Next, by translation and by our
scaling (Lemma 5), we find that our new Brownian motion starts at 0, and that (a1 + ε/2) ×
B(n−1)

δ/4 (B⊥
σ ) has been transformed to a set containing {1} × B(n−1)

K (0) with K > δ/(4ε). If
ε > 0 is small enough, we conclude that K > m and so

{1} × B(n−1)
K (0) ⊃ {1} × B(n−1)

m (0).

Using (7.3), we conclude that with positive probability, Bt hits AF,K
t . Since our original

region At , after scaling, contains AF,K
t , it follows that Bt hits At with positive probability.

This completes the proof of Theorem 3. �

Acknowledgments. We are very grateful to anonymous referees for careful reading of
the manuscript, and for a number of useful comments and suggestions that significantly im-
proved this paper. We also thank Alexey Kuznetsov who proposed the problem that we solve
in this paper.

The second author was supported in part by a Simons Foundation grant.

REFERENCES

[1] CIESIELSKI, Z. and TAYLOR, S. J. (1962). First passage times and sojourn times for Brownian motion
in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434–450.
MR0143257 https://doi.org/10.2307/1993838

[2] DALANG, R. C., KHOSHNEVISAN, D. and NUALART, E. (2007). Hitting probabilities for systems of non-
linear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat. 3 231–271.
MR2365643

[3] DALANG, R. C. and SANZ-SOLÉ, M. (2010). Criteria for hitting probabilities with applications to sys-
tems of stochastic wave equations. Bernoulli 16 1343–1368. MR2759182 https://doi.org/10.3150/
09-BEJ247

[4] DALANG, R. C. and SANZ-SOLÉ, M. (2015). Hitting probabilities for nonlinear systems of stochastic
waves. Mem. Amer. Math. Soc. 237 v+75. MR3401290 https://doi.org/10.1090/memo/1120

http://www.ams.org/mathscinet-getitem?mr=0143257
https://doi.org/10.2307/1993838
http://www.ams.org/mathscinet-getitem?mr=2365643
http://www.ams.org/mathscinet-getitem?mr=2759182
https://doi.org/10.3150/09-BEJ247
http://www.ams.org/mathscinet-getitem?mr=3401290
https://doi.org/10.1090/memo/1120
https://doi.org/10.3150/09-BEJ247


HITTING PROBABILITIES OF A FLOW 671

[5] DURRETT, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Prob-
abilistic Mathematics 31. Cambridge Univ. Press, Cambridge. MR2722836 https://doi.org/10.1017/
CBO9780511779398

[6] IKEDA, N. and WATANABE, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed.
North-Holland Mathematical Library 24. North-Holland, Amsterdam; Kodansha, Tokyo. MR1011252

[7] KATORI, M. (2015). Bessel Processes, Schramm-Loewner Evolution, and the Dyson Model. SpringerBriefs
in Mathematical Physics 11. Springer, Singapore. MR3445783

[8] KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Ad-
vanced Mathematics 24. Cambridge Univ. Press, Cambridge. MR1070361

[9] LAWLER, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Mono-
graphs 114. Amer. Math. Soc., Providence, RI. MR2129588

[10] MÖRTERS, P. and PERES, Y. (2010). Brownian Motion. Cambridge Series in Statistical and Proba-
bilistic Mathematics 30. Cambridge Univ. Press, Cambridge. MR2604525 https://doi.org/10.1017/
CBO9780511750489

[11] MUELLER, C. (1997). Long time existence for the wave equation with a noise term. Ann. Probab. 25 133–
151. MR1428503 https://doi.org/10.1214/aop/1024404282

[12] MUELLER, C. and PARDOUX, E. (1999). The critical exponent for a stochastic PDE to hit zero. In Stochastic
Analysis, Control, Optimization and Applications. Systems Control Found. Appl. 325–338. Birkhäuser,
Boston, MA. MR1702968

[13] MUELLER, C. and TRIBE, R. (2002). Hitting properties of a random string. Electron. J. Probab. 7 no. 10,
29. MR1902843 https://doi.org/10.1214/EJP.v7-109

[14] NUALART, E. and VIENS, F. (2009). The fractional stochastic heat equation on the circle: Time regularity
and potential theory. Stochastic Process. Appl. 119 1505–1540. MR2513117 https://doi.org/10.1016/j.
spa.2008.07.009

[15] TSIRELSON, B. and WERNER, W. (2004). Lectures on Probability Theory and Statistics (J. Picard, ed.).
Lecture Notes in Math. 1840. Springer, Berlin. Lectures from the 32nd Probability Summer School
held in Saint-Flour, July 7–24, 2002. MR2079670 https://doi.org/10.1007/b96719

http://www.ams.org/mathscinet-getitem?mr=2722836
https://doi.org/10.1017/CBO9780511779398
http://www.ams.org/mathscinet-getitem?mr=1011252
http://www.ams.org/mathscinet-getitem?mr=3445783
http://www.ams.org/mathscinet-getitem?mr=1070361
http://www.ams.org/mathscinet-getitem?mr=2129588
http://www.ams.org/mathscinet-getitem?mr=2604525
https://doi.org/10.1017/CBO9780511750489
http://www.ams.org/mathscinet-getitem?mr=1428503
https://doi.org/10.1214/aop/1024404282
http://www.ams.org/mathscinet-getitem?mr=1702968
http://www.ams.org/mathscinet-getitem?mr=1902843
https://doi.org/10.1214/EJP.v7-109
http://www.ams.org/mathscinet-getitem?mr=2513117
https://doi.org/10.1016/j.spa.2008.07.009
http://www.ams.org/mathscinet-getitem?mr=2079670
https://doi.org/10.1007/b96719
https://doi.org/10.1017/CBO9780511779398
https://doi.org/10.1017/CBO9780511750489
https://doi.org/10.1016/j.spa.2008.07.009

	Introduction and main results
	Precise setup of the ﬂow
	Proof of Theorem 1
	Proof of Theorem 2
	Notation

	Proof of Proposition 10
	Proof of Proposition 12 and Lemma 11
	Proof of Lemma 11

	Proof of Theorem 3
	Acknowledgments
	References

