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We study asymmetric zero-range processes on Z with nearest-neighbour
jumps and site disorder. The jump rate of particles is an arbitrary but bounded
nondecreasing function of the number of particles. For any given environ-
ment satisfying suitable averaging properties, we establish a hydrodynamic
limit given by a scalar conservation law including the domain above critical
density, where the flux is shown to be constant.

1. Introduction. The asymmetric zero-range process (AZRP) with site disorder was in-
troduced in [18] (in connection with condensation phenomena), and has since then attracted
strong interest due to its phase transition first described in [19]. This phase transition is one of
the reasons why the hydrodynamic behaviour of this process is still a partially open problem.
This question is addressed in this paper, and we believe this is the first rigorous result in this
direction embedded in a general framework.

The AZRP with site disorder is defined by a nondecreasing jump rate function g :N →N,
a function α : Zd → R+ (called the environment or disorder), and a jump distribution p(·)
on Z

d , for d ≥ 1. A particle leaves site x at rate α(x)g[η(x)], where η(x) denotes the current
number of particles at x, and moves to x + z, where z is chosen at random with distribution
p(·). This model has product invariant measures; it exhibits a critical density ρc if the function
g is bounded, and if g and α satisfy some averaging properties plus a proper tail assumption.
In the models we consider in this paper (see next section for greater precision), d = 1, there
will be a unique equilibrium for each density up to this critical value ρc and no equilibria of
strictly higher density. For instance in the case g(·) ≡ 1 and p(·) concentrated on the value
1, we obtain M/M/1 queues in tandem, for which [2] showed that there were no invariant
measures of supercritical density.

A signature of phase transition arises in the hydrodynamic limit. For asymmetric conserva-
tive systems with local interactions, one usually expects (see, e.g., [23, 29]) a hydrodynamic
limit given by entropy solutions of a scalar conservation law

(1) ∂tρ(t, x) + ∂x

[
f

(
ρ(t, x)

)] = 0,

where ρ(t, x) is the local particle density field, and f (ρ) is the flux-density relation deter-
mined by the microscopic dynamics. For the site-disordered AZRP in any space dimension,
the hydrodynamic limit was studied in [14] but only in the case where phase transition does
not occur (i.e., ρc = +∞). It was shown to be still given by (1), with an effective flux function
depending on the disorder distribution. The hydrodynamic limit including phase transition
was studied by [32] for M/M/1 queues in tandem. It was shown there that one still has (1),
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but phase transition is indicated by a plateau on the flux function f for ρ ∈ [ρc,+∞), where
this function takes a constant value c > 0, which is the infimum of the support of the distribu-
tion of α(0), that is the slowest service rate, achieved only asymptotically by faraway servers
in both directions (see Section 2.2 for a precise statement). Both [14, 32] are quenched results
established for almost every realization of a random i.i.d. site disorder. A similar flat region
was predicted (albeit not established to this day) in [31] for nonmonotone spatially homoge-
neous zero-range processes. Both [31] and our model correspond to condensation regimes,
though of different natures (localized in our case but uniformly distributed in the case of
[31]). As pointed out in [31], the hydrodynamic limit in such a regime falls outside the scope
of standard local-equilibrium based approaches. On the mathematical side, related references
on condensation in asymmetric zero-range processes include [16, 26].

In this paper, we extend the result of [32] to a large class of site-disordered AZRP, namely,
with nearest-neighbour jumps, not necessarily totally asymmetric, and general jump rate
function g. Moreover, we go beyond the case of an ergodic disorder by giving optimal con-
ditions on a given environment for the hydrodynamic limit, and show that the location of the
transition can be influenced by zero-density defects, invisible on the limiting empirical dis-
tribution of the environment. To achieve our results, we show that the missing1 equilibria can
be replaced by weaker pseudo-equilibria, and we introduce an interface process that gives
a new point of view of the microscopic density profile. We point out that the scaling limit
of the interface process, which comes in parallel to the hydrodynamic limit, contains more
information than the latter, in particular, the motion of microscopic characteristics. However,
we leave a precise description of this to a future paper, where it will be investigated in full
generality.

Also partly conveyed by the interface process is the local equilibrium property, that is
the natural question following the derivation of the hydrodynamic limit. This property is
studied in depth in the companion paper [12]. Note that the situation is more delicate than
usual in that the “freezing” of supercritical areas in the hydrodynamic scaling does not have
local implications. In fact, locally we see (in various forms) the convergence to the upper
equilibrium measure, which has lower density.

The paper is organized as follows. In Section 2, we introduce the model and notation, and
state our hydrodynamic result. We comment and illustrate the latter in Section 3. In Section 4,
we prove it. Finally, some technical results are proved in Appendices A and B.

2. Notation and results. In the sequel, R denotes the set of real numbers, Z the set
of signed integers, N = {0,1, . . .} the set of nonnegative integers, and N := N ∪ {+∞}. For
x ∈ R, �x	 denotes the integer part of x, that is, largest integer n ∈ Z such that n ≤ x, and δx

denotes the Dirac measure at x. If f is a real-valued function defined on an interval I of R,
and x ∈ I , we denote by

f (x+) := lim
y→x,y>x

f (y), resp. f (x−) := lim
y→x,y<x

f (y)

the right (resp., left) limit of f at x, whenever this makes sense given the position of x in I .
The notation X ∼ μ means that a random variable X has probability distribution μ.

Let X := N
Z

denote the set of particle configurations, and X := N
Z the subset of particle

configurations with finitely many particles at each site. A configuration in X is of the form
η = (η(x) : x ∈ Z) where η(x) ∈ N for each x ∈ Z. The set X is equipped with the coor-
dinatewise order: for η, ξ ∈ X, we write η ≤ ξ if and only if η(x) ≤ ξ(x) for every x ∈ Z;
in the latter inequality, ≤ stands for extension to N of the natural order on N, defined by

1Supercritical.
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n ≤ +∞ for every n ∈ N, and +∞ ≤ +∞. This order is extended to probability measures on
X: For two probability measures μ, ν, we write μ ≤ ν if and only if

∫
f dμ ≤ ∫

f dν for any
nondecreasing function f on X.

2.1. The process and its invariant measures. Let p(·) be a probability measure on Z

supported on {−1,1}. We set p := p(1), q = p(−1) = 1 − p, and assume p ∈ (1/2,1], so
that the mean drift of the associated random walk is p − q > 0.

Let g : N→ [0,+∞) be a nondecreasing function such that

(2) g(0) = 0 < g(1) ≤ lim
n→+∞g(n) =: g∞ < +∞.

We extend g to N by setting g(+∞) = g∞. Without loss of generality, we henceforth assume
g(+∞) = g∞ = 1.

Let α = (α(x), x ∈ Z) (called the environment or disorder) be a [0,1]-valued sequence.
The set of environments is denoted by

(3) A := [0,1]Z.

We consider the Markov process (ηα
t )t≥0 on X with generator given for any cylinder function

f : X →R by

(4) Lαf (η) = ∑
x,y∈Z

α(x)p(y − x)g
(
η(x)

)[
f

(
ηx,y) − f (η)

]
,

where, if η(x) > 0, ηx,y denotes the new configuration obtained from η after a particle has
jumped from x to y. In cases of infinite particle number, the following interpretations hold: if
η(x) < η(y) = +∞, ηx,y denotes the new configuration obtained from η after a particle has
been removed from x; if η(x) = +∞ > η(y), ηx,y denotes the new configuration obtained
from η after a particle has been added at y. If η(x) = η(y) = +∞, then ηx,y = η.

This process has the property that if η0 ∈ X, then almost surely, one has ηt ∈ X for every
t > 0. In this case, it may be considered as a Markov process on X with generator (4) restricted
to functions f : X →R.

When the environment α(·) is identically equal to 1, we recover the homogeneous zero-
range process (see [1] for its detailed analysis).

For the existence and uniqueness of (ηα
t )t≥0, see [11], Appendix B. Recall from [1] that,

since g is nondecreasing, (ηα
t )t≥0 is attractive, that is, its semigroup maps nondecreasing

functions (with respect to the partial order on X) onto nondecreasing functions. One way to
see this is to construct a monotone coupling of two copies of the process; see Section 4.1.1
below.

We set

g(n)! :=
n∏

k=1

g(k)

for n ∈ N \ {0}, and g(0)! := 1. For β < 1, we define the probability measure θβ on N by

(5) θβ(n) := Z(β)−1 βn

g(n)! , n ∈ N, where Z(β) :=
+∞∑
�=0

β�

g(�)! .

We denote by μα
β the invariant measure of Lα defined (see, e.g., [14]) as the product measure

with marginal θβ/α(x) at site x:

(6) μα
β(dη) := ⊗

x∈Z
θβ/α(x)

[
dη(x)

]
.
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Let

(7) c := inf
x∈Zα(x).

The measure (6) can be defined on X for

(8) β ∈ [0, c]
by using the conventions

θ1 := δ+∞,(9)

β

a
= 0 if β = 0 and a ≥ 0.(10)

The measure (6) is always supported on X if

(11) β ∈ (0, c) ∪ {0}.
When β = c > 0, conventions (9)–(10) yield a measure supported on configurations with
infinitely many particles at all sites x ∈ Z that achieve the infimum in (7), and finitely many
particles at other sites. In particular, this measure is supported on X when the infimum in (7)
is not achieved. When c = 0, the measure (6) is supported on the empty configuration. Since
(θβ)β∈[0,1) is an exponential family, we have that, for β ∈ [0, c],
(12) μα

β is weakly continuous and stochastically increasing in β

and that the mean value of θβ , given for β ∈ [0,1) by

(13) R(β) :=
+∞∑
n=0

nθβ(n)

is an analytic function on [0,1), increasing from 0 to +∞, extended (cf. (9)) by setting
R(1) = +∞. The mean particle density at x under μα

β is defined for β ∈ [0, c] by

(14) Rα(x,β) := Eμα
β

[
η(x)

] = R

[
β

α(x)

]
.

2.2. The effective flux. From now on, we will assume that α satisfies the following as-
sumption.

ASSUMPTION 2.1. There exists a probability measure Q0 on A such that

(15) Q0 = lim
n→+∞

1

n + 1

0∑
x=−n

δα(x) = lim
n→+∞

1

n + 1

n∑
x=0

δα(x).

If follows from Assumption 2.1 that

(16) C := inf suppQ0 ≥ inf
x∈Zα(x) = c.

Assumption 2.1 is satisfied for instance in the case of an ergodic random environment.

EXAMPLE 2.1. Let Q be a spatially ergodic probability measure on A with marginal Q0
(for instance, Q = Q⊗Z

0 ). Then Q-almost every α ∈ A satisfies Assumption 2.1 and equality
in (16).
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Example 2.1 is special because it yields equality in (16). In Section 3.1, we give examples
of deterministic environments satisfying Assumption 2.1 for which (16) is a strict inequality.

For β ∈ (0, c) ∪ {0}, using conventions (9)–(10), we can define the following quantity,
which can be interpreted (see Lemma 2.1 below) as the average mean density under μα

β :

(17) R
α
(β) := lim

n→+∞
1

n + 1

0∑
x=−n

R

[
β

α(x)

]
= lim

n→+∞
1

n + 1

n∑
x=0

R

[
β

α(x)

]
.

Indeed, applying (15) to the bounded continuous function a → R[β/a], we obtain existence
and equality of the above limits, and the equality

(18) R
α
(β) = R

Q0
(β) ∀β ∈ [0, c),

where

(19)

R
Q0

(β) :=
∫
[0,1]

R

[
β

a

]
dQ0[a]

=
∫
[C,1]

R

[
β

a

]
dQ0[a] ∈ [0,+∞] ∀β ∈ [0,C]

is also defined using conventions (9)–(10). The function defined by (19) is finite for β ∈
(0,C) ∪ {0}, because the integrand in (19) is bounded. If 0 < β = C, the integral in (19) may
diverge at C. Consequently, R

α
is finite for β ∈ (0, c) ∪ {0} and if β = c < C, but may be

infinite if β = c = C. The function R
Q0 is increasing and continuous on the interval [0,C]

(see Lemma 3.1 below), and so is R
α

on (0, c) ∪ {0} by (18). We may thus define inverses of

R
Q0 and R

α
on their respective images.

We define the critical density by

(20) ρα
c := sup

{
R

α
(β),β ∈ (0, c) ∪ {0}} ∈ [0,+∞].

Thus ρα
c = 0 if c = 0, whereas if c > 0, we also have

(21) ρα
c := R

α
(c−).

By (18) and monotone convergence in (19), we have

(22) ρα
c =

∫
[0,1]

R

[
c

a

]
dQ0(a) =

∫
[C,1]

R

[
c

a

]
dQ0(a) =

∫
[c,1]

R

[
c

a

]
dQ0(a),

where the last equality follows from (16).

REMARK 2.1. While ρα
c is equal to the value obtained by letting β = c in (19), it may not

be obtained by letting β = c in (17). Indeed, the latter procedure may produce two different
limits in (17), or a common limit different from the quantity defined by (20) (see example in
Remark 3.2).

For the reason explained in Remark 2.1, it is relevant for us to define the value R
α
(c) when

c > 0 by the continuity extension

(23) R
α
(c) := R

α
(c−) = ρα

c ∈ [0,+∞]
and not by extending definition (17) to β = c. With (23), R

α
becomes an increasing con-

tinuous function from [0, c] to [0, ρα
c ], and we may define its inverse from [0, ρc] to [0, c].

Then, for β ∈ (0, c) ∪ {0}, we may reindex the invariant measure μα
β by the mean density

ρ ∈ (0, ρα
c ) ∪ {0}, by setting

(24) μα,ρ := μα

(R
α
)−1(ρ)

.

We now justify as announced the interpretation of (17) as the mean density.
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LEMMA 2.1. Let β ∈ (0, c) ∪ {0}, and ρ = R
α
(β) ∈ (0, ρα

c ) ∪ {0}. Let ηα,ρ = ηα
β be a

random configuration in X with distribution μα,ρ = μα
β . Then the following limits hold in

probability:

(25) lim
n→+∞

1

n + 1

n∑
x=0

ηα
β(x) = lim

n→+∞
1

n + 1

n∑
x=0

ηα
β(−x) = R

α
(β),

that is,

(26) lim
n→+∞

1

n + 1

n∑
x=0

ηα,ρ(x) = lim
n→+∞

1

n + 1

n∑
x=0

ηα,ρ(−x) = ρ.

REMARK 2.2. The limit (25) may not hold in the case β = c. This is why we did not
extend the reindexation (24) to this value of β and ρ = R

α
(c) = ρα

c .

Lemma 2.1 is proved in Appendix A. We next define the subcritical part of the effective
flux function as follows:

(27) f α(ρ) = (p − q)
(
R

α)−1
(ρ) ∀ρ < ρα

c .

We extend the function f α to densities ρ ≥ ρc by setting

(28) f α(ρ) = (p − q)c ∀ρ ≥ ρα
c

An alternative expression for (27) is, for any ρ < ρα
c and x ∈ Z,

(29) f α(ρ) =
∫

X

[
pα(x)g

(
η(x)

) − qα(x + 1)g
[
η(x + 1)

]]
dμα,ρ(η)

which can be interpreted (cf. (108)) as the mean current in the equilibrium state μα,ρ with
density ρ. Indeed, it follows from (5) that

(30)
∫

X
α(x)g

(
η(x)

)
dμα

β(η) =
∫
N

g(n)dθβ(n) = β

for all x ∈ Z, α ∈ A and β ∈ [0, c]. Then, by (30) and (24),

(31)
∫

X

[
pα(x)g

(
η(x)

) − qα(x + 1)g
[
η(x + 1)

]]
dμα

β(η) = (p − q)
(
R

α)−1
(ρ).

Some properties of the flux function are stated in Lemma 3.1. In the sequel, we shall often
omit the superscript α, and write R, f and ρc.

2.3. The hydrodynamic limit. We first recall some standard definitions in hydrodynamic
limit theory. We denote by M(R) the set of Radon measures on R. To a particle configuration
η ∈ X, we associate a sequence of empirical measures (πN(η) : N ∈ N \ {0}) defined by

πN(η) := 1

N

∑
y∈Z

η(y)δy/N ∈M(R).

Let ρ0(·) ∈ L∞(R), and let (ηN
0 )N∈N\{0} denote a sequence of X-valued random variables.

We say this sequence has limiting density profile ρ0(·), if the sequence of empirical mea-
sures πN(ηN

0 ) converges in probability to the deterministic measure ρ0(·)dx with respect to
the topology of vague convergence. We can now state our result. The following additional
assumption on the environment will be required for one of the statements.
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ASSUMPTION 2.2. We say that the environment α has macroscopically dense defects if
there exists a sequence of sites (xn)n∈Z such that

(32) ∀n ∈ Z, xn < xn+1; lim
n→±∞α(xn) = c

and

(33) lim
n→±∞

xn+1

xn

= 1.

THEOREM 2.1. Assume the environment α satisfies Assumption 2.1, and the sequence
(ηN

0 )N∈N\{0} has limiting density profile ρ0(·) ∈ L∞(R). For each N ∈ N \ {0}, let (η
α,N
t )t≥0

denote the process with initial configuration ηN
0 and generator (4). Assume either that the

initial data is subcritical, that is, ρ0(·) < ρc; or that the defect density Assumption 2.2 holds.
Let ρ(·, ·) denote the entropy solution to

(34) ∂tρ(x, t) + ∂xf
[
ρ(x, t)

] = 0

with initial datum ρ0(·). Then for any t > 0, the sequence (η
α,N
Nt )N∈N\{0} has limiting density

profile ρ(·, t).

REMARK 2.3. The existence of a sequence satisfying condition (32) is equivalent to the
property

(35) lim inf
x→+∞α(x) = lim inf

x→−∞α(x) = c

for the constant c in (7). The additional requirement (33) sets a restriction on the sparsity of
slow sites (where by “slow sites” we mean sites where the disorder variable becomes arbi-
trarily close or equal to the infimum value c). The role of Assumption 2.2 will be discussed
in Section 3. In particular, we will see in Section 3.3 that this condition prevents macroscopic
separation of slow sites, as the latter could result in a spatially heterogeneous conservation
law in the hydrodynamic limit.

A special case. Of special importance is the so-called Riemann problem, that is the case
when the initial data ρ0(·) has the particular form

(36) Rλ,ρ(x) = λ1{x<0} + ρ1{x≥0}
for λ,ρ ∈ R. In this case, entropy solutions can be computed explicitly. Namely, let λ,ρ ∈R

and h = (f̂ ′)−1, where f̂ denotes the convex (resp., concave) envelope of f on [λ,ρ] (resp.,
[ρ,λ]). Then (see Proposition 3.2 below), the entropy solution is given by

(37) Rλ,ρ(x, t) = h

(
x

t

)
.

As will be discussed in Section 3, the phase transition can be seen explicitly on such solu-
tions in the form of a front of critical density moving to the right after blocking supercritical
densities coming from the left.

Remarks on the proof of Theorem 2.1. The difficulty of proving hydrodynamics comes
from the absence of invariant measures and the condensation phenomenon at supercritical
densities. This prevents us from using the traditional approach to hydrodynamic limits based
on local equilibrium, because the latter property ([12]) fails at supercritical densities. In that
approach, a lattice approximation of the macroscopic profile is defined by block averaging. A
lattice version of the macroscopic equation is then obtained using block estimates, thanks to
which the microscopic flux function can be replaced by a function of the local block average.
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In our case, due to condensation, mesoscopic block densities can blow up around condensa-
tion sites and fail to reflect the hydrodynamic density.

We shall circumvent the impossibility of using the usual approach thanks to the follow-
ing new ideas. First, we shall show that for our purpose, we retain sufficient information by
replacing the unavailable supercritical equilibria by “pseudo-equilibria”, that are simply sys-
tems with supercritical homogeneous macroscopic density profile. Next, in Section 4.3, we
define a lattice profile in a new way, replacing the usual discrete block average

ρN,l(x, t) = 1

2l + 1

∑
y∈Z:|y−�Nx	|≤l

ηN
Nt (y)

(by discrete we mean that possible values of ρN,l are discretized densities) by a continuous
lattice density field ρN(x) taking “real” density values, that is, the interface process referred
to in the Introduction. In a space region where ρN does not fluctuate much, the system is
close to an equilibrium or pseudo-equilibrium configuration with an a priori random density
parameter (such a configuration is not necessarily a stationary state when the density is indeed
random, see Remark 4.1 below).

This new point of view will be coupled to a reduction principle introduced in [5] (see
also [6–9]), where we showed that proving hydrodynamic limit for the Cauchy problem boils
down to proving it for the Riemann problem, which can be analyzed more directly. The pas-
sage from Riemann to Cauchy problem can then be carried out in a way similar in spirit
to Riemann-based numerical schemes for scalar conservation laws, by controlling the prop-
agation of the error committed at successive time steps when replacing the actual entropy
solution with a suitable piecewise constant approximation.

3. Discussion and examples. In this section, we shed more light on Theorem 2.1 by
giving examples of environments, flux functions and entropy solutions, and illustrating the
role of Assumption 2.2.

3.1. The flux function. We start by stating basic properties of the flux function. So far, we
have defined the critical density ρα

c (cf. (20)–(21)) and the flux function f α (cf. (27)–(28))
associated with an environment α satisfying Assumption 2.1. These can be embedded in the
following family of critical densities and flux functions parametrized by a pair (Q0, c), where
Q0 is a probability measure on [0,1], and c satisfies (16):

(38) f Q0,c(ρ) :=
{
(p − q)

(
R

Q0)−1
(ρ) if ρ < ρc(Q0, c),

(p − q)c if ρ ≥ ρc(Q0, c),

where R
Q0 is defined by (19), and (recalling conventions (9)–(10))

(39) ρc(Q0, c) :=
∫
[0,1]

R

[
c

a

]
dQ0(a) =

∫
[c,1]

R

[
c

a

]
dQ0(a).

Then, with definitions (38)–(39), we can write

(40) f α = f Q0(α),infα, ρα
c = ρc

(
Q0(α), infα

)
.

For a given Q0, the maximal value of c is C := inf suppQ0, cf. (16). For this value of c, we
denote f Q0,c by f Q0 and ρc(Q0, c) by ρc(Q0):

(41) f Q0 := f Q0,inf suppQ0, ρc(Q0) := ρc(Q0, inf suppQ0).

REMARK 3.1. Since ρc(Q0, c) defined by (39) is a nondecreasing function of c, ρc(Q0)

is the maximal critical density one can obtain from Q0. Note that ρc(Q0) may be infinite if
the integral in (39) diverges for c = C, but ρc(Q0, c) is always finite when c < C.
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In the context of Example 2.1, we thus have the following.

EXAMPLE 3.1. Let Q be a spatially ergodic probability measure on A with marginal Q0
(for instance, Q = Q⊗Z

0 ). Then, for Q-almost every α ∈ A,

(42) f α = f Q0, ρα
c = ρc(Q0).

LEMMA 3.1.

(i) The functions R
Q0 and f Q0,c are increasing and analytic, respectively, from [0,C)

to [0,R
Q0

(C)) and from [0, ρc(Q0, c)) to [0, (p − q)c).
(ii) The function f Q0,c is (p − q)-Lipschitz.

(iii) The function f Q0,c is concave if g satisfies

(43) n → g(n + 1) − g(n) is nonincreasing.

PROOF OF LEMMA 3.1.
Proof of (i). Since R is continuously differentiable on [0,1), by (19),

(
R

Q0)′
(β) =

∫
[0,1]

1

a
R′

[
β

a

]
dQ0(a).

Hence, since the function R defined by (13) is increasing, the function R
Q0 is increasing,

thus f Q0,c is increasing on [0, ρc(Q0, c)] ∩ R. Similarly, (19) and analyticity of R imply

analyticity of R
Q0 and f Q0,c.

Proof of (ii). This boils down to proving that for any x ∈ Z, for any ρ ∈ [0, ρc),(
R

Q0)−1
(ρ) =

∫
X

α(x)g
[
η(x)

]
dμα,ρ(η)

is 1-Lipschitz. Let ρ ≤ ρ ′ < ρc. By (12) and (24), Strassen’s theorem (see, e.g., [28]) yields
a coupling measure μ̃(dη, dζ ) of μα,ρ and μα,ρ′

under which η ≤ ζ holds a.s. Then, setting

(44) β = (
R

Q0)−1
(ρ) and β ′ = (

R
Q0)−1(

ρ′)
we have by (30)(

R
Q0)−1(

ρ′) − (
R

Q0)−1
(ρ) = α(x)

∫
X

[
g
(
ζ(x)

) − g
(
η(x)

)]
dμ̃(η, ζ )

≤
∫

X

[
ζ(x) − η(x)

]
dμ̃(η, ζ )(45)

= R

[
β ′

α(x)

]
− R

[
β

α(x)

]
.

In the inequality we used α(x) ≤ 1, (24) and the fact that g is nondecreasing and bounded
above by 1, so that either ζ(x) = η(x), or g(ζ(x)) − g(η(x)) ≤ 1 ≤ ζ(x) − η(x). Averag-

ing the inequality (45) over x = 0, . . . , n and using (17) yields the upper bound R
Q0

(β ′) −
R

Q0
(β) which is equal to ρ′ − ρ by (44).

Proof of (iii). It is shown in [13] that (43) implies concavity of the flux function for the
corresponding homogeneous zero-range process, or equivalently, convexity of R. The latter

property combined with (19) implies convexity of R = R
Q0 , thus concavity of f Q0,c defined

by (38). �
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3.2. A family of deterministic environments. As pointed out after Example 2.1, an ergodic
environment always yields equality in (16). In this subsection, to illustrate the more general
situation where this equality may fail, we define a family of deterministic environments that
produces a given pair (Q0, c) satisfying (16), and will serve again later in the section.

Let

(46) X := {xn,n ∈ Z}, Y := {yn,n ∈ Z}
be doubly infinite increasing Z-valued sequences (if c = C, only Y will be used, see (49)
below). Let also (αn)n∈Z be a doubly infinite [c,1]-valued sequence satisfying

(47) lim
n→±∞αn = c.

For x ∈ Z, we set

u(x) := ∑
n∈Z

1[yn,yn+1)(x)
x − yn

yn+1 − yn

,(48)

α(x) := F−1
Q0

(
u(x)

)
1Z\X (x) + 1{c<C}

∑
n∈Z

αn1{xn}(x),(49)

where FQ0(t) := Q0((−∞, t]) denotes the cumulative distribution function (c.d.f.) of Q0,
and F−1

Q0
its generalized inverse. The following lemma is established in Appendix B.

LEMMA 3.2.

(i) The environment (α(x))x∈Z satisfies Assumption 2.1 if and only if

lim
n→±∞

yn+1

yn

= 1,(50)

lim
n→±∞

n

yn

= 0,(51)

lim
n→±∞

n

xn

= 0.(52)

(ii) The environment (α(x))x∈Z satisfies Assumption 2.2 if and only if c = C and (50)
holds, or c < C and the sequence (xn)n∈Z satisfies condition (33).

To prove (i) of Lemma 3.2, we must essentially prove that assumption (51) is necessary
and sufficient for (48) to yield a uniformly distributed set of values in the sense that

(53) lim
n→+∞

1

n + 1

n∑
x=0

δu(x) = lim
n→+∞

1

n + 1

0∑
x=−n

δu(x) = U(0,1).

Indeed, the first term on the right-hand side of (49) is nothing but the inversion method to
generate an arbitrary random variable from a uniform one. The environment defined by (49)
has the following interpretation. The first term has fast oscillations that reproduce an ergodic-
like behaviour with distribution Q0. This produces the subcritical part of the flux, that is the
first line of (38). When c < C, the second term introduces a dense sequence of defects that
leads to (7) and to the supercritical part of the flux, that is, the second line of (38). Condition
(52) prevents this term from adding an atom at c to Q0.

The following example fulfills the requirements of Lemma 3.2.

EXAMPLE 3.2. xn = yn = 1{n�=0} sgn(n)�|n|κ	 with κ > 1, c ≤ C.
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In the next subsection, we explain why the behaviour of the zero-range process with en-
vironment (49) is expected to be different from the one described by Theorem 2.1 when the
conditions of Lemma 3.2 are not fulfilled. After this, we will always assume these conditions
satisfied.

3.3. The defect density condition. Conditions (33) and (50) can be interpreted by saying
that there is no macroscopic separation of points in the corresponding sequence. When these
conditions are not satisfied, a hidden scaling may emerge, and the hydrodynamic limit falls
outside the scope of Theorem 2.1, although we formulate some natural conjectures below.
The following example illustrates failure of (33) while (50)–(51) hold.

EXAMPLE 3.3. xn = 1{n�=0} sgn(n)�κ |n|	, yn = sgn(n)�|n|κ ′ 	 with κ, κ ′ > 1, c < C.

In this example, the set XN := N−1X of rescaled defect locations has a subsequential
scaling limit when N → +∞ with N ∈ N , where

(54) N := {
κn : n ∈ N \ {0}}.

Indeed,

lim
N→+∞,N∈N 1XN

= 1B, where B := {±κn : n ∈ Z
}
.

We then expect the hydrodynamic limit to be given by (34) outside B , and completed by
specific boundary conditions on B , to indicate that the macroscopic current at these points
cannot exceed c. These boundary conditions are similar to those introduced in [25] to describe
the hydrodynamic limit of the totally asymmetric zero-range process with a single defect. The
hydrodynamic profile ρ(·, t) at time t is expected to be a measure of the form

(55) ρ(·, t) = ∑
x∈B

m(x, t)δx + ρ̃(·, t),

where ρ̃ is a weak entropy solution of (34) outside B , while on B , ρ satisfies the boundary
conditions

(56) m(x, t) > 0 ⇒ ∂m

∂t
(x, t) = [

f
(
ρ̃(x−, t)

) − (p − q)c
]
, x ∈ B

and ρ̃ satisfies the boundary conditions

(57) ρ̃(x+, t) = ρ̃(x−, t) ∧ ρc, x ∈ B.

These boundary conditions stipulate that on a time interval where the flux coming from the
left exceeds c at some x ∈ B , macroscopic condensation occurs in the form of a growing
Dirac mass. When the flux comes back below c, the condensate starts decreasing until either
it disappears, or starts growing again if the flux again starts exceeding c.

The next example satisfies (33) but violates condition (50).

EXAMPLE 3.4. yn = 1{n�=0} sgn(n)�κ |n|	, xn = sgn(n)�|n|κ ′ 	 with κ, κ ′ > 1, c ≤ C.

In this case, the environment (49) has a macroscopic profile under the following subse-
quential scaling limit (with N as in (54)):

(58) α(x) := lim
N→+∞,N∈N α

(�Nx	),
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where

α(x) = ∑
n∈Z

1(κn,κn+1)(x)F−1
Q0

(
x − κn

κn+1 − κn

)
(59)

+ ∑
n∈Z

1(−κn+1,−κn)(x)F−1
Q0

(
x + κn+1

κn+1 − κn

)
.

We then expect the hydrodynamic limit as N → +∞ in N to be given by the spatially
inhomogeneous conservation law

(60) ∂tρ(t, x) + ∂x

{
α(x)min

[
fhom

(
ρ(t, x)

)
, (p − q)c

]} = 0,

where

(61) fhom(ρ) := (p − q)R−1(ρ)

is the flux function of the homogeneous zero-range process defined by (4) for α(·) identically
equal to 1. The truncation by (p−q)c in (60) is due to the dense sequence of defects (xn)n∈Z.
Similar hydrodynamic limits without this term appear in [3, 15, 17, 30].

Finally, both conditions (33) and (50) may fail simultaneously, as in the following example.

EXAMPLE 3.5. xn = yn = 1{n�=0} sgn(n)�κ |n|	, with κ > 1, c < C.

Here, we expect the hydrodynamic limit as N → +∞ in N to be of the form

∂tρ(t, x) + ∂x

{
α(x)fhom

(
ρ(t, x)

)} = 0

outside B , and the truncation term (p − q)c in (60) to be replaced by boundary conditions
(56)–(57) (where the right-hand side of (56) is now multiplied by α(x)).

From now on, we assume that conditions (33) and (50)–(52) of Lemma 3.2 are satisfied.

3.4. The dilute limit. In general, the subcritical part of the flux is not very explicit, unless
specific choices of Q0 make (19) computable. In this subsection, we discuss the so-called
dilute limit ([4, 24]), that is, a homogeneous system perturbed by a sequence of defects with
vanishing density (but macroscopically dense in the sense of Assumption 2.2). In this case,
the subcritical flux is exactly the flux function fhom (see (61)) of the homogeneous zero-range
process. One way to obtain this limit is to consider the special case Q0 = δ1 (hence C = 1)
of (48)–(49), that is,

(62) α(x) =
{
αn if x = xn,n ∈ Z,

1 if x /∈X .

Then, for every β ∈ [0, c), the limits in (17) exist and are similar to the limit obtained for the
homogeneous zero-range process:

(63) R(β) = R(β).

Therefore, by (21), the critical density is given by

(64) ρc = R(c−) = R(c).

REMARK 3.2. Recall now Remark 2.1: if we wanted here to define ρc using (17) for
β = c, this would yield

R(c) = lim
n→+∞

1

xn + 1

n∑
k=0

R

[
c

αk

]
+ R(c)

(65)

= lim
n→+∞

1

1 − x−n

n∑
k=0

R

[
c

α−k

]
+ R(c).
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The above limits may not exist, or exist and not coincide, and even if they do, their common
value depends on the respective speeds of convergence of the sequence (αn)n∈Z to c and of
the sequence (n/xn)n∈Z to 0 (recall that R(1) = +∞ and that n/xn vanishes by (52)). It is
possible to tune these speeds so as to obtain any prescribed finite or infinite limits in (65). In
particular, if αn has constant value c, the two limits in (65) are equal to +∞, that is different
from (64).

The flux function defined by (27)–(28) becomes here (recall (61); the index d stands for
“dilute”)

(66) fd(ρ) :=
{

fhom(ρ) if ρ < ρc

(p − q)c if ρ ≥ ρc

}
= fhom(ρ) ∧ (p − q)c.

The dilute limit (66) can be understood intuitively as follows. Due to (52), slow sites are very
rare, hence the system exhibits long homogeneous stretches where it behaves as a homoge-
neous process. Thus the memory of slow sites is only retained by the flux truncation, but not
by the shape of the flux function prior to truncation.

This phenomenon was pointed out in [24] for our model and for the totally asymmetric
simple exclusion process with site disorder, and established in [4] in the latter case.

Dilute limit from a random environment. A different way to recover the dilute limit
(which in fact corresponds to [4, 24]) is a double limit for an i.i.d. environment where the
probability of a slow site is ε, and ε → 0 after the scaling parameter. Let Q0 be a probability
measure on [c,1], and define

(67) Qε
0 := (1 − ε)δ1 + εQ0.

Referring to (19) and (41), we shall more simply write R
ε

for R
Qε

0 , ρc(ε) for ρc(Q
ε
0), and f ε

for f Qε
0 . Recall that, by Example 3.1, f ε is the flux produced by any random environment

whose distribution Qε is ergodic with marginal Qε
0 (for instance, the product measure with

marginal Qε
0 corresponding to i.i.d. environment). It follows from (67) that

R
ε
(β) = (1 − ε)R(β) + εR

Q0
(β), β ∈ (0, c),(68)

ρc(ε) = (1 − ε)R(c) + ερc(Q0).(69)

Thus, if ρc(Q0) < +∞, we have

lim
ε→0

R
ε
(β) = R(β), β ∈ [0, c),(70)

lim
ε→0

ρc(ε) = R(c) = ρc,(71)

lim
ε→0

f ε(ρ) = fd(ρ).(72)

3.5. Supercritical entropy solutions. We now describe the consequences of the flat line
(28) on the behaviour of entropy solutions. This is best understood through the analysis of
the so-called Riemann problem, that is, the Cauchy problem for particular initial data of the
form (36), for which entropy solutions can be computed explicitly; see (37). In the following
proposition, we analyze the Riemann solution when

(73) +∞ > λ ≥ ρc > ρ.
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PROPOSITION 3.1. Assume (73). Let

(74) vc(ρ) := inf
r∈[ρ,ρc)

f (ρc) − f (r)

ρc − r
= inf

r∈[ρ,ρc)

f̂ (ρc) − f̂ (r)

ρc − r
= f̂ ′(ρc−),

where f̂ denotes the concave envelope of f on [ρ,ρc]. In particular, if f is concave,

(75) vc(ρ) = f ′(ρc−) =
{∫

[c,1]
1

a
R′

[
c

a

]
dQ0(a)

}−1
.

Then, for every t > 0, we have

Rλ,ρ(x, t) = λ, ∀x < 0,(76)

Rλ,ρ(x, t) = Rρc,ρ(x, t) ∀x > 0,(77)

lim
t→+∞Rλ,ρ(x, t) = ρc ∀x ≥ 0,(78)

Rλ,ρ(0+, t) = ρc,(79)

Rλ,ρ(x, t) = ρc ∀x ∈ (
0, tvc(ρ)

)
,(80)

Rλ,ρ(x, t) < ρc ∀x > tvc(ρ).(81)

We prove this proposition in the next subsection, but we first comment on its interpretation
and give examples. Property (76) states that the initial constant density is not modified to
the left of the origin. This is not related to phase transition, but only to the fact that f is
nondecreasing, hence characteristic velocities are always nonnegative. Properties (78)–(80)
are signatures of the phase transition. They express the fact that, regardless of the supercritical
value on the left-hand side, supercritical densities are blocked, and the right-hand side is
dominated by the critical density. In particular, (80)–(81) state that a front of critical density
propagates to the right from the origin at speed vc(ρ) > 0 if vc(ρ) > 0. The positivity of vc(ρ)

is thus an interesting property to investigate. In particular, (75) shows (similar to Remark 3.1)
that vc(ρ) > 0 if c < C, whereas if c = C, vc(ρ) may vanish if the integral in (75) diverges
at C.

To be more explicit, let us examine the following examples, where for simplicity we as-
sume p = 1 and q = 0.

EXAMPLE 3.6. We consider the M/M/1 queues in series, that is, g(n) = n ∧ 1, in the
dilute limit (62).

With this choice of g, (13) and (61) write

(82) R(β) = β

1 − β
, fhom(ρ) = ρ

1 + ρ
.

Recall that in the dilute limit f is given by fd defined in (66). The latter, in view of (82),
writes

(83) fd(ρ) =
[

ρ

1 + ρ

]
∧ c =

⎧⎨⎩
ρ

1 + ρ
if ρ < ρc := c

1 − c
,

c if ρ ≥ ρc.

Since fd defined by (83) is concave, (74) yields

(84) vc(ρ) = f ′
hom

(
ρ−

c

) = (1 − c)2.

The next example exhibits a transition between vc(ρ) = 0 and vc(ρ) > 0.
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EXAMPLE 3.7. We consider the M/M/1 queues in series, that is, g(n) = n ∧ 1, and c =
C (for instance, coming from an ergodic environment with marginal Q0, cf. Example 2.1).

Given (82), the critical density is ρc(Q0) defined by (41) and (39), hence

(85) ρc(Q0) =
∫
[c,1]

c

a − c
dQ0(a).

By (iii) of Lemma 3.1, f is concave. It follows from (75) that

(86) vc(ρ) =
{∫

[c,1]
a

(a − c)2 dQ0(a)

}−1
.

A critical exponent. Assume now that under Q0, α(0) has a density q0 on (c,1] such that

(87) q0(t)
t→c∼ A(t − c)κ

for some constants A > 0 and κ > −1. Then ρc(Q0) < +∞ is equivalent to κ > 0 and
vc(ρ) > 0 is equivalent to κ > 1.

3.6. Proof of Proposition 3.1. We conclude this section with the proof of Proposition 3.1.
For this proof, we recall the following construction and result for the Riemann entropy solu-
tion (37), which will also be useful in Section 4. Let λ,ρ, v ∈R. If λ ≤ ρ, we set

Gλ,ρ(v) := inf
{
f (r) − vr : r ∈ [λ,ρ]}

(88)
= inf

{
(p − q)θ ∧ c − vR(θ) : θ ∈ [

R
−1

(λ),R
−1

(ρ)
]}

,

h(v) := argmin
{
f (r) − vr : r ∈ [λ,ρ]}.(89)

If λ ≥ ρ, we set

Gλ,ρ(v) := sup
{
f (r) − vr : r ∈ [ρ,λ]}

(90)
= sup

{
(p − q)θ ∧ c − vR(θ) : θ ∈ [

R
−1

(ρ),R
−1

(λ)
]}

,

h(v) := argmax
{
f (r) − vr : r ∈ [ρ,λ]}.(91)

Note that h(v) is a priori well defined if and only if the infimum in (88), or the supremum in
(90), is uniquely achieved.

PROPOSITION 3.2 ([9]).

(o) If λ < ρ (resp., λ > ρ), h = (f̂ ′)−1, where f̂ denotes the convex (resp., concave)
envelope of f on [λ,ρ] (resp., [ρ,λ]).

(i) There exists an at most countable set �(λ,ρ) such that the infimum in (88), or the
supremum in (90), is uniquely achieved for every v ∈R \ �(λ,ρ).

(ii) The function h thus defined outside �(λ,ρ) can be extended to R into a function (still
denoted by h) that is nondecreasing if λ ≤ ρ, nonincreasing if λ ≥ ρ.

(iii) Let v ∈ �(λ,ρ). If λ ≤ ρ, h(v−) is the smallest and h(v+) the largest minimizer in
(88). If λ ≥ ρ, h(v−) is the largest and h(v+) the smallest maximizer in (90).

(iv) For every v,w ∈ R,

(92)
∫ w

v
h(u)du = Gλ,ρ(w) − Gλ,ρ(v).
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(v) The function

(93) Rλ,ρ(x, t) := h(x/t)

is the unique entropy solution to (34) with Cauchy datum Rλ,ρ(·) defined by (36).

We can now prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. We first prove the equalities in (74). Since f̂ (ρc) = f (ρc)

and f̂ ≥ f , the second member of (74) cannot be smaller than the third one. The equality
between the third and fourth quantities follows from concavity of f̂ . Assume there exists
r ∈ [ρ,ρc) such that f̂ is linear on [r, ρc], and let r0 be the infimum of such values r . Then
f̂ (r0) = f (r0), and

vc(ρ) ≤ f (ρc) − f (r0)

ρc − r0
= f̂ (ρc) − f̂ (r0)

ρc − r0
= inf

r∈[ρ,ρc)

f̂ (ρc) − f̂ (r)

ρc − r
,

where the last equality follows from concavity of f̂ . Thus the second and third members
of (74) coincide, and the infimum is achieved for r = r0. Assume now that there exists no
r ∈ [ρ,ρc) such that f̂ is linear on [r, ρc]. Then there exists a sequence (rn)n∈N converging
to ρc such that f̂ (rn) = f (rn), for otherwise one would have f̂ > f , thus f̂ linear, on a left
neighbourhood of ρc. Then

(94) vc(ρ) ≤ lim
n→+∞

f (ρc) − f (rn)

ρc − rn
= lim

n→+∞
f̂ (ρc) − f̂ (rn)

ρc − rn
= f̂ ′(ρc−).

Thus the above inequality is an equality.
For the sequel of the proof, recall that, by (91),

(95) Rλ,ρ(x, t) = argmax
θ∈[λ,ρ]

[
f (θ) − x

t
θ

]
.

Proof of (76). Since f is nondecreasing and we take x < 0,

f (λ) − x

t
λ > f (r) − x

t
r

for all x < 0 and r ∈ [ρ,λ]. Thus (76) follows from (95) and (v) of Proposition 3.2.
Proof of (77). For any r > ρc, we have f (r) = f (ρc), thus for x > 0,

f (ρc) − x

t
ρc > f (r) − x

t
r

whence the result.
Proof of (79). Let ε > 0 and r ∈ [ρ,ρc − ε]. Then

f (r) − x

t
r < f (ρc) − x

t
ρc

as soon as

(96) x < t inf
r∈[ρ,ρc−ε]

f (ρc) − f (r)

ρc − r
=: tvε

c (ρ).

Thus Rλ,ρ(x, t) > ρc − ε for x satisfying (96). By (77) and (95),

(97) Rλ,ρ(x, t) ≤ ρc ∀x > 0.

Finally, vε
c (ρ) > 0 because f is strictly increasing and continuous (recall Lemma 3.1). Hence,

Rλ,ρ(x, t) > ρc − ε for x < tvε
c (ρ).
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Proof of (80). If 0 < x < tvc(ρ), by definition (74) of vc(ρ), we have

f (r) − x

t
r < f (ρc) − x

t
ρc

for any r ∈ [ρ,ρc). This implies Rλ,ρ(x, t) ≥ ρc. Recalling (97), the proof is complete.
Proof of (81). If x > tvc(ρ), by definition (74) of vc(ρ), there exists r ∈ [ρ,ρc) such that

f (r) − x

t
r > f (ρc) − x

t
ρc.

Thus Rλ,ρ(x, t) �= ρc, hence, by (97), Rλ,ρ(x, t) < ρc.
Proof of (78). By (95), any subsequential limit R∞ of Rλ,ρ(x, t) as t → +∞ must be a

maximizer of f on [ρ,λ]. By (97), R∞ ≤ ρc. Thus, R∞ = ρc. �

4. Proof of Theorem 2.1. We hereafter develop the proof of Theorem 2.1 along the lines
explained after the statement of the Theorem. Precisely, in Section 4.1, we recall the Harris
construction of the process and state some useful properties of the current. In Section 4.2,
we reduce the problem of general hydrodynamics to that of Riemann hydrodynamics (Corol-
lary 4.2) via the study of the asymptotic current in such systems (Proposition 4.2). To this
end, we construct microscopic Riemann states by means of pseudo-equilibrium states. In
Section 4.3, we introduce the interface process and state a scaling limit result for this pro-
cess (Proposition 4.5), that will be proved in parallel to Proposition 4.2. Finally, Section 4.4
is the core of the proof of Propositions 4.2 and 4.5. A key ingredient of this proof is the
study of pseudo-equilibrium current and density that is stated as Proposition 4.3 and proved
in Section 4.5.

4.1. Preliminary material. We first recall some definitions and preliminary results on the
graphical construction and currents from [10, 11].

4.1.1. Harris construction and coupling. We introduce a probability space (�,F,P),
whose generic element ω, called a Harris System ([22]), is a locally finite point measure of
the form

(98) ω(dt, dx, du, dz) = ∑
n∈N

δ(Tn,Xn,Un,Zn)

on (0,+∞) × Z × (0,1) × {−1,1}, where δ(·) denotes Dirac measure, and (Tn,Xn,Un,

Zn)n∈N is a (0,+∞)×Z×(0,1)×{−1,1}-valued sequence. We denote by E the expectation
corresponding to the probability measure P. Under P, ω is a Poisson measure with intensity

(99) dt dx1[0,1](u) dup(z) dz.

We write (t, x, u, z) ∈ ω when ω({(t, x, u, z)}) = 1, and we also say that (t, x, u, z) is a
potential jump event. On (�,F,P), a càdlàg process (ηα

t )t≥0 with generator (4) and initial
configuration η0 can be constructed in a unique way (see [11], Appendix B) so that

(100) ∀(s, x, v, z) ∈ ω, v ≤ α(x)g
[
ηα

s−(x)
] ⇒ ηα

s = (
ηα

s−
)x,x+z

and, for all x ∈ Z and 0 ≤ s ≤ s′,

ω
((

s, s′] × Ex

) = 0 ⇒ ∀t ∈ (
s, s′], ηt (x) = ηs(x)

(101)
where Ex := {

(y,u, z) ∈ Z× (0,1) × {−1,1} : x ∈ {y, y + z}}
(note that the inequality in (100) implies ηα

t−(x) > 0, cf. (2), thus (ηα
t−)x,x+z is well defined).

Equation (100) says when a potential jump event gives rise to an actual jump, while (101)
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states that no jump ever occurs outside potential jump events. This process defines a random
flow

(102) (α, η0, t) ∈ A × X ×R
+ → ηα

t = ηt (α, η0,ω) ∈ X.

In particular, this flow allows us to couple an arbitrary number of processes with generator
(4), corresponding to different values of η0, by using the same Poisson measure ω for each
of them. Since g is nondecreasing, the update rule (100) implies that

(103) (α, η0, t) → ηt (α, η0,ω) is nondecreasing w.r.t. η0.

It follows that the process is completely monotone, and thus attractive (see [9], Section 3.1).
For instance, the coupling of two processes (ηα

t )t≥0 and (ζ α
t )t≥0 behaves as follows. Assume

ω({(t, x, u, z)}) = 1 and that (without loss of generality) ηα
t−(x) ≤ ζ α

t−(x), so that (since g is
nondecreasing) g(ηα

t−(x)) ≤ g(ζα
t−(x)). Then the following jumps from x to x + z occur at

time t :

(J1) If u ≤ α(x)g(ηα
t−(x)), a η and a ζ particle simultaneously jump.

(J2) If α(x)g(ηα
t−(x)) < u ≤ α(x)g(ζ α

t−(x)), a ζ particle alone jumps.
(J3) If α(x)g(ζ α

t−(x)) < u, nothing happens.

The above dynamics implies that (ηα
t , ζ α

t )t≥0 is a Markov process on X
2

with generator

L̃αf (η, ζ ) = ∑
x,y∈Z

α(x)p(y − x)
(
g
(
η(x)

) ∧ g
(
ζ(x)

))[
f

(
ηx,y, ζ x,y) − f (η, ζ )

]
+ ∑

x,y∈Z
α(x)p(y − x)

[
g
(
η(x)

) − g
(
ζ(x)

)]+[
f

(
ηx,y, ζ

) − f (η, ζ )
]

(104)

+ ∑
x,y∈Z

α(x)p(y − x)
[
g
(
ζ(x)

) − g
(
η(x)

)]+[
f

(
η, ζ x,y) − f (η, ζ )

]
.

4.1.2. Currents. Let x· = (xs)s≥0 denote a Z-valued piecewise constant càdlàg path such
that |xs − xs−| ≤ 1 for all s ≥ 0. In the sequel, we shall use paths (x·) independent of the
Harris system used for the particle dynamics, hence we may assume that x· has no jump time
in common with the latter. We denote by �α

x·(τ, t, η) the rightward current across the path x·
in the time interval (τ, t] in the process (ηα

s )s≥τ starting from η in environment α, that is, the
sum of two contributions. The contribution of particle jumps is the number of times a particle
jumps from xs− to xs− + 1 (for τ < s ≤ t), minus the number of times a particle jumps from
xs− + 1 to xs−. The contribution of path motion is obtained by summing over jump times
s of the path, a quantity equal to the number of particles at xs− if the jump is to the left, or
minus the number of particles at xs− + 1 if the jump is to the right. If

(105)
∑
x>xτ

η(x) < +∞

we also have

(106) �α
x·(τ, t, η) = ∑

x>xt

ηα
t (x) − ∑

x>xτ

η(x).

It follows from (106) that if x· and y· are two paths as above, then

(107) �α
y·(τ, t, η) − �α

x·(τ, t, η) = −
yt∑

x=xt+1

ηt (x) +
yτ∑

x=xτ +1

η(x)

with the convention
∑b

x=a := 0 if a > b. Formula (107) remains valid even if (105) does not
hold.
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For x0 ∈ Z, we shall write �α
x0

for the current across the fixed site x0; that is, �α
x0

(τ, t, η) :=
�α

x·(τ, t, η), where x· is the constant path defined by xt = x0 for all t ≥ τ . If τ = 0, we simply
write �α

x·(t, η) or �α
x0

(t, η) instead of �α
x·(0, t, η) or �α

x0
(0, t, η). It follows from the above

definition of the current that, for every x ∈ Z,

(108) E
[
�α

x (τ, t, η)
] = E

{∫ t

τ

{
pα(x)g

[
ηα

s (x)
] − qα(x + 1)g

[
ηα

s (x + 1)
]}

ds

}
.

The following results will be important tools to compare currents. Let us couple two pro-
cesses (ζt )t≥0 and (ζ ′

t )t≥0 through the Harris construction, with x· = (xs)s≥0 as above.

LEMMA 4.1. For each V > 1, there exists b = b(V ) > 0 such that for large enough t , if
ζ0 and ζ ′

0 agree on an interval (x, y), then outside probability e−bt ,

ζs(u) = ζ ′
s(u) for all 0 ≤ s ≤ t and u ∈ (x + V t, y − V t).

Lemma 4.1 is a version of finite propagation property, proved in [10] as well as Corol-
lary 4.1 below. The next lemma is an adaptation of [11], Corollary 4.2.

LEMMA 4.2. For a particle configuration ζ ∈ X and a site x0 ∈ Z, we define

Fx0(x, ζ ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x∑
y=1+x0

ζ(y) if x > x0,

−
x0∑

y=x

ζ(y) if x ≤ x0.

For any 0 ≤ t0 ≤ t , define xM
t = sups∈[t0,t] xs and xm

t = infs∈[t0,t] xs . Let ζ0 ∈ X, ζ ′
0 ∈ X. Then,

given V > 1,

0 ∨ sup
x∈[min(x0,x

m
t )−V (t−t0),max(x0,x

M
t )+1+V (t−t0)]

[
Fx0(x, ζ0) − Fx0

(
x, ζ ′

0
)]

≥ �α
x·

(
t0, t, ζ

′
0
) − �α

x·(t0, t, ζ0)

with probability greater than 1 −Ce−(t−t0)/C , where C is a positive constant depending only
on V .

COROLLARY 4.1. For y ∈ Z, define the configuration

(109) η∗,y := (+∞)1(−∞,y]∩Z.

Then, for any ζ ∈ X,

�α
y (t, ζ ) ≤ �α

y

(
t, η∗,y)

.

Finally, the following result (see [11], Proposition 4.1) is concerned with the asymptotic
current produced by a source-like initial condition.

PROPOSITION 4.1. Assume xt is such that limt→+∞ t−1xt exists. Let η
α,t
0 := η∗,xt , see

(109). Then

lim sup
t→∞

{
E

∣∣t−1�α
xt

(
t, η∗,xt

) − (p − q)c
∣∣ − p

[
α(xt ) − c

]} ≤ 0.
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4.2. Reduction to the Riemann problem. Precisely, we shall use the following definition
and theorem from [5]. Let η, ξ ∈ X be two particle configurations with finite mass to the left,
that is,

max
(∑

x≤0

η(x),
∑
x≤0

ξ(x)

)
< +∞

we define

�(η, ξ) := sup
x∈Z

∣∣∣∣∑
y≤x

[
η(y) − ξ(y)

]∣∣∣∣.
DEFINITION 4.1 ([5], Definition 3.1). The process defined by (4) is macroscopically

stable if it enjoys the following property. Let (ηN
0 )N∈N\{0} and (ξN

0 )N∈N\{0} be any two se-
quences of initial configurations with uniformly bounded mass in the sense

(110) sup
N∈N\{0}

N−1 max
(∑

x∈Z
ηN

0 (x),
∑
x∈Z

ξN
0 (x)

)
< +∞.

Then, for every t > 0, it holds that

(111) N−1�
(
ηN

Nt , ξ
N
Nt

) ≤ N−1�
(
ηN

0 , ξN
0

) + oN(1),

where oN(1) denotes a sequence of random variables converging to 0 in probability.

THEOREM 4.1 ([5], Theorem 3.2). Assume the process is macroscopically stable, enjoys
the finite propagation property (Lemma 4.1). Assume further that for every u ∈ R and every
Riemann initial data of the form ρ0(·) = Rλ,ρ(· − u), where Rλ,ρ is defined in (36), there
exists an initial sequence (ηN

0 )N∈N\{0} with profile ρ0 such that the statement of Theorem 2.1
holds. Then Theorem 2.1 holds for any initial data ρ0 ∈ L∞(R) and any initial sequence with
profile ρ0(·).

The sequel of this section will be devoted to proving the particular case of Theorem 2.1
corresponding to the Riemann problem, that is, when ρ0 = Rλ,ρ defined by (36). By macro-
scopic stability, it is actually sufficient to prove this result for a particular sequence of initial
configurations that we now construct. A proof of macroscopic stability for a class of models
including ours can be found for instance in [21], Proposition 2.23.

Equilibria and pseudo-equilibria. Let (ξ
α,ρ
0 )ρ∈[0,+∞) denote a family of X-valued ran-

dom configurations such that

(112) 0 ≤ ρ ≤ ρ ′ ⇒ ξ
α,ρ
0 ≤ ξ

α,ρ′
0

almost surely, and the limits

(113) lim
n→+∞n−1

0∑
x=−n

ξ
α,ρ
0 (x) = lim

n→+∞n−1
n∑

x=0

ξ
α,ρ
0 (x) = ρ

hold in probability. Such a family can be constructed in many ways. Let us denote by Fβ the
c.d.f. of the probability measure θβ defined in (5), and by F−1

β the generalized inverse of Fβ .
Let (V x)x∈Z be a family of i.i.d. random variables independent of the Harris system, such
that for every x ∈ Z, V x is uniformly distributed on (0,1). Then we may set

(114) ξ
α,ρ
0 (x) := F−1

R−1(ρ)

(
V x)

.
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Then (112) follows from the fact that (θR−1(ρ) := θρ)ρ∈[0,+∞) is a stochastically nondecreas-
ing family of probability distributions, and (114) yields a monotone coupling of these distri-
butions. Besides, since θρ has mean R(R−1(ρ)) = ρ and the random variables ξ

α,ρ
0 are inde-

pendent, (113) follows from the law of large numbers. Notice that instead of (θρ)ρ∈[0,+∞),
we could have used any other nondecreasing family of distributions parametrized by its mean.
We could also have used the inversion method to construct deterministic instead of i.i.d. con-
figurations in the spirit of (48)–(49).

It may seem more natural to consider a family (ξ
α,ρ
0 ) of stationary processes. This can

be used for instance to infer local equilibrium besides hydrodynamic limit. However, the
problem of local equilibrium and loss of local equilibrium in our setting is deferred to [12],
where it is investigated in depth. To obtain stationary processes, one should replace (114)
with

(115) ξ
α,ρ
0 (x) := F−1

R
−1

(ρ)
α(x)

(
V x)

.

By Lemma 2.1, this construction satisfies (112)–(113) but is restricted to ρ ∈ [0, ρc). It is
not always possible to extend this family to a family (ξα,ρ)ρ∈[0,+∞) satisfying (112)–(113).
A necessary and sufficient condition for this is that the invariant measure μα

β defined by (6)
satisfies (25) when β = c, which may not be true (see Remark 2.2). In this case, one may for
instance complete (115) by setting, for 2ρc ≥ ρ > ρc,

(116) ξ
α,ρ
0 := ξ

α,ρc

0 + ζ
α,ρ−ρc

0 ,

where ζ α,r is given by the right-hand side of (114), and so on, by adding successive layers.
However, the law of ξ

α,ρ
0 for ρ > ρc is no longer invariant for the process with generator (4).

If μα
c does not satisfy (25), one may use invariant measures up to ρc − δ for any prescribed

δ > 0, and complete them above this density in a way similar to (116), setting, for ρ < 2ρc −δ,

(117) ξ
α,ρ
0 := ξ

α,ρc−δ
0 + ζ

α,ρ−ρc+δ
0

and so on as above. As a consequence of (112) and attractiveness property (103), we also
have

(118) 0 ≤ ρ ≤ ρ ′ ⇒ ξ
α,ρ
t ≤ ξ

α,ρ′
t

for t ≥ 0, where (ξ
α,ρ
t )t≥0 denotes the process evolving according to (4) with initial configu-

ration ξ
α,ρ
0 . Processes (ξ

α,ρ· ) that are not stationary (they can never be if ρ > ρc) are what we
called “pseudo-equilibria” at the beginning of this section, because they are time-invariant
on the macroscopic scale, where they correspond to a flat density profile with uniform den-
sity ρ at all times. However, this property does not hold on a smaller scale for supercritical
densities, due to the mass escape at slow sites (see [2, 11, 12, 20]).

Microscopic Riemann data. Using these equilibria and pseudo-equilibria, we can con-
struct suitable Riemann states as follows. For s, t ≥ 0 and u, v ∈R, we set

(119) xt = �ut	, yt
s = �ut + vs	

(where t plays the role of a scaling parameter, and s is the actual time variable). For λ,ρ ∈ R,
we set

η
α,λ,ρ
0 (x) := ξ

α,λ
0 (x)1{x≤0} + ξ

α,ρ
0 (x)1{x>0},(120)

η
α,λ,ρ,t,u
0 (x) := ξ

α,λ
0 (x)1{x≤�ut	} + ξ

α,ρ
0 (x)1{x>�ut	}.(121)

The main step to derive Theorem 2.1 for Riemann data is to derive the asymptotic current
seen from a moving observer. This is stated in the following proposition, which is the main
result of this section.
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PROPOSITION 4.2. For every λ,ρ ∈ [0,+∞), u ∈ R and v < 1, the following limit holds
in probability:

(122) lim
t→+∞ t−1�α

yt·
(
t, η

α,λ,ρ,t,u
0

) = Gλ,ρ(v),

where Gλ,ρ(v) was defined in (88)–(90) of Proposition 3.2.

The proof of Proposition 4.2 is performed in Section 4.4, using the interface process con-
structed in Section 4.3, and the asymptotics of the current for pseudo-equilibria, stated in
Proposition 4.3 below. The proof of the latter is deferred to Section 4.5. We now show that
Proposition 4.2 indeed implies Riemann hydrodynamics.

COROLLARY 4.2. Theorem 2.1 holds for initial data of the form (36).

PROOF OF COROLLARY 4.2. We rely on the notation and statement of Proposition 3.2.
It is enough to prove that, for every v,w ∈ R such that v < w,

lim
t→+∞ t−1

�ut+wts	∑
x=�ut+vts	+1

η
λ,ρ,t,u
ts (x) =

∫ w

v
Rλ,ρ(x, s) dx

(123)
= s

[
Gλ,ρ(v) − Gλ,ρ(w)

]
in probability. Setting T = ts and U = u/s, by (107), we have

t−1
�ut+wts	∑

x=�ut+vts	+1

η
λ,ρ,t,u
ts (x)

= sT −1
�UT +wT 	∑

x=�UT +vT 	+1

η
λ,ρ,T ,U
T (x)(124)

= sT −1(
�α

YT·
(
T ,ηλ,ρ,T ,U ) − �α

ZT·
(
T ,ηλ,ρ,T ,U ))

,

where YT· := �UT + v.	 and ZT· := �UT + w.]	. Let us assume first that w < 1. Applying
Proposition 4.2 to YT· and ZT· , we obtain

(125) lim
T →+∞T −1

�UT +wT 	∑
x=�UT +vT 	+1

η
λ,ρ,T ,U
T (x) = Gλ,ρ(v) − Gλ,ρ(w)

in probability, which, in view of (124), is equivalent to (123).
Let us now prove (123) for w > 1. Choose W,V ∈ R such that W < 1 < V < w. By

finite propagation property (Lemma 4.1), on an event ET with probability tending to 1 as
T → +∞, it holds that η

α,λ,ρ,T ,U
T (x) = ξ

α,ρ
T (x) for every x > �UT + V T 	. It follows from

(130) in Proposition 4.3 below that

(126) lim
T →+∞T −1

�UT +wT 	∑
x=�UT +V T 	+1

η
α,λ,ρ,T ,U
T (x) = (w − V )ρ

in probability. If v > 1, we take V = v and we are done. Indeed, recall from Lemma 3.1 that
f is 1-Lipschitz; thus, using (88)–(90), Gλ,ρ(a) = f (ρ) − aρ for every a ≥ 1. Otherwise,
applying (125) to W yields the limit (still in probability)

(127) lim
T →+∞T −1

�UT +WT 	∑
x=�UT +vT 	+1

η
α,λ,ρ,T ,U
T (x) = Gλ,ρ(v) − Gλ,ρ(W).
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By attractiveness property (103), we have

T −1
�UT +V T 	∑

x=�UT +WT 	+1

η
α,λ,ρ,T ,U
T (x) ≤ T −1

�UT +V T 	∑
x=�UT +WT 	+1

ξ
α,max(λ,ρ)
T (x).

Using (130) again, we have

(128) lim
T →+∞

{
1

T

�UT +V T 	∑
x=�UT +WT 	+1

η
α,λ,ρ,T ,U
T (x) − (V − W)max(λ,ρ)

}+
= 0.

Since W and V can be chosen arbitrarily close to 1, and Gλ,ρ is continuous, (126)–(128)
imply the limit

(129) lim
T →+∞

1

T

�UT +wT 	∑
x=�UT +vT 	+1

η
α,λ,ρ,T ,U
T (x) = Gλ,ρ(v) − Gλ,ρ(1) + (w − 1)ρ

in probability. So, proceeding as after (126), the right-hand side of (129) coincides with that
of (125). �

For the proof of Proposition 4.2, we shall need to know the behaviour of equilibria and
pseudo-equilibria processes in terms of asymptotic current and hydrodynamic profile, uni-
formly with respect to density. This is stated in the following proposition, which will be
proved in Section 4.5.

PROPOSITION 4.3. For ρ ∈ [0,+∞), let (ξ
α,ρ
t )t≥0 denote the process with initial config-

uration ξ
α,ρ
0 . Then, for every A,B ∈ R such that A < B , every ε > 0 and every ρ0 ∈ [0,+∞),

the following limits hold in probability:

lim
t→+∞ sup

A<a<b<B
b−a>ε,ρ≤ρ0

∣∣∣∣∣ 1

(b − a)t

�bt	∑
x=�at	

ξ
α,ρ
t (x) − ρ

∣∣∣∣∣ = 0,(130)

lim
t→+∞ sup

A<a<B
ρ≤ρ0

∣∣∣∣1

t
�α�at	

(
t, ξ

α,ρ
0

) − f (ρ)

∣∣∣∣ = 0.(131)

In the above proposition, the uniformity with respect to ρ is crucial for our needs. A con-
sequence of this uniformity is that limits similar to (130)–(131) still hold for a random ρ

instead of a deterministic ρ, a situation that will arise in Section 4.3 and in the sequel. More
precisely, we can state the following corollary to Proposition 4.3.

COROLLARY 4.3. For every A,B ∈ R such that A < B , every ε > 0, and every family
(ρt )t≥0 of [0,+∞)-valued random variables, the following limits hold in probability:

lim
t→+∞ sup

A<a<b<B
b−a>ε

∣∣∣∣∣ 1

(b − a)t

�bt	∑
x=�at	

ξ
α,ρt
t (x) − ρt

∣∣∣∣∣ = 0,(132)

lim
t→+∞ sup

A<a<B

∣∣∣∣1

t
�α�at	

(
t, ξ

α,ρt

0

) − f (ρt )

∣∣∣∣ = 0.(133)
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REMARK 4.1. As will be seen in the proof of Proposition 4.3, the reason why the unifor-
mity in Proposition 4.3 (and consequently Corollary 4.3) holds is that we are working with
a simultaneous monotone coupling of all the equilibrium (or pseudo-equilibrium) processes.
Note that we cannot a priori relate the distribution of ξ

α,ρt
t for a random ρ to the equilibrium

distributions of our process, but this will not be needed for our purpose. In other words, if
ρt is a [0, ρc)-valued random variable, though one might be tempted to call ξ

α,ρt
t a “random

equilibrium state”—in the sense that it is the state at time t of an equilibrium process with
a randomly chosen parameter, it is not in general itself an “equilibrium state”—in the sense
that its distribution is not necessarily a stationary distribution, though this may happen in
particular situations, like for instance if ρt is independent of the family of coupled processes
(ξα,r· )r∈[0,ρc).

4.3. The interface process. To construct our interface process, we shall rely on a prop-
erty of nearest-neighbour attractive systems (see, e.g., [27], Lemma 4.7, or [29], Lemma 6.5),
namely that the number of sign changes between the difference of two coupled configurations
(through rules (J1)–(J3), that is, generator (104)) in such a system is a nonincreasing func-
tion of time. The location of a sign change can be viewed as an interface; see also [11],
Lemma 4.3, in the context of our model. Here, we shall explore this property more precisely
by constructing simultaneous nearest-neighbour dynamics for all interfaces with all equilib-
ria or pseudo-equilibria processes, which will define the evolution of a new version of the
microscopic density profile, whose scaling limit will be investigated.

The existence and definition of the interface process will be made possible by the following
lemma. In the sequel, without loss of generality, we assume λ ≤ ρ. For notational simplicity,
we shall henceforth write η

α,λ,ρ,t
0 instead of η

α,λ,ρ,t,u
0 for the configuration defined by (121).

PROPOSITION 4.4. There exists a family of processes (X α,r,t
s )s≥0 indexed by r ∈ [λ,ρ],

such that

(134) X α,r,t
0 = �ut	,

and the following holds:

(i) For every r ∈ [λ,ρ] and s ≥ 0, X α,r,t
s is an interface between η

α,λ,ρ,t
s and ξα,r

s in the
sense that

ηα,λ,ρ,t
s (y) ≤ ξα,r

s (y) for y ≤ X α,r,t
s ,

ηα,λ,ρ,t
s (y) ≥ ξα,r

s (y) for y >X α,r,t
s .

(135)

(ii) For every r ∈ [λ,ρ], (X α,r,t
s )s≥0 is a piecewise constant càdlàg Z-valued process with

nearest-neighbour jumps.
(iii) For every r, r ′ ∈ [λ,ρ] and every s ≥ 0, it holds that

(136) r ≤ r ′ ⇒ X α,r,t
s ≤ X α,r ′,t

s .

(iv) For every r ∈ [λ,ρ] and t > 0, there exist Poisson processes N±,r,t· with intensity 1 such
that, for all s ≥ 0,

(137) −N−,r,t
s ≤ X α,r,t

s −X α,r,t
0 ≤ N+,r,t

s .

Proposition 4.4 will be proved at the end of this subsection. Observe that, since X α,r,t· is
Z-valued and monotone with respect to r , as a function of r (for fixed s and t), it is a step
function. We may define its generalized inverses:

R−,α,x,t
s := sup

{
r ∈ [λ,ρ] : X α,r,t

s < x
}
,(138)

R+,α,x,t
s := inf

{
r ∈ [λ,ρ] :X α,r,t

s > x
}

(139)
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for x ∈ R. Since X α,r,t· takes integer values, R+,α,.,t
s and R−,α,.,t

s have the same constant
value on (x, x +1) for every x ∈ Z. Both (X α,r,t

s )s≥0,r≥0 and (R±,α,x,t
s )s≥0,x∈Z will be called

the interface process. The latter is an approximation of the (monotone) hydrodynamic profile,
while the former is an approximation of its inverse, which gives the positions of the different
density levels r of the profile. We shall see below that, after rescaling, they do converge to the
profile and inverse profile. It follows from (135), (136) and (138)–(139) that, for any x, y ∈ Z

such that x < y, and any s ≥ 0,

(140) ξα,r−
s (z) ≤ ηα,λ,ρ,t

s (z) ≤ ξα,r+
s (z), for all z ∈ (x, y) ∩Z

provided r− and r+ satisfy

(141) 0 < r− < R−,α,x,t
s , r+ >R+,α,y,t

s .

In particular, in a region where R+,α,x,t
s and R−,α,x,t

s do not vary too much with x and
remain close to each other, the process is close to ξ

α,ρ
s for some random value of ρ. We may

view this as a coupling formulation of the local equilibrium property, as this means that the
configuration is locally close to that of an equilibrium (or pseudo-equilibrium) configuration
with random density parameter. Recall however from Remark 4.1 that, due to the randomness
of this parameter, this coupling information does not a priori translate into an information
on the local distribution of η

α,λ,ρ
s , like in particular being close to a stationary distribution,

and that such information is not necessary to our purpose. On the other hand, whenever
R+,α,x,t − R−,α,x,t is of order one, this can be interpreted as the presence of a shock at
microscopic location x.

In order to prove Proposition 4.2, we shall have to study limits of the time-rescaled pro-
cesses

xα,t (r, s) := t−1X α,r,t
ts ,(142)

ρ±,α,t (y, s) := R±,α,ty,t
ts(143)

defined for r ∈ [λ,ρ], s ≥ 0 and y ∈ R. For every x ∈ Z, the restrictions of ρ+,α,t (·, s) and
ρ−,α,t (·, s) to (x/t, (x + 1)/t) have the same constant value. We denote these common re-
strictions by ρα,t (·, s):

(144) ρα,t (y, s) := ρ+,α,t (y, s) = ρ−,α,t (y, s) ∀x ∈ Z,∀y ∈
(

x

t
,
x + 1

t

)
.

Note that, as functions of r and y, xα,t (·, s) and ρ±,α,t (·, s) are generalized inverses of each
other. We next define a convenient topology to study limits of these rescaled interfaces.

For a, b ∈ R such that a < b, let Fa,b
λ,ρ denote the set of nondecreasing functions ψ on

R such that ψ(x) = λ for x < a and ψ(x) = ρ for x > b. An element ψ of Fa,b
λ,ρ can be

identified with its derivative, that is, a measure on R supported on [a, b] with mass ρ −λ. The
generalized inverse ψ−1 of ψ lies in the set Ea,b

λ,ρ of nondecreasing functions on [λ,ρ] with

value a at λ and b at ρ. An element of Ea,b
λ,ρ is identified with its derivative, that is, a measure

on [λ,ρ] with mass b − a. In the sequel, we identify measures on [a, b] with measures on
R supported on [a, b]. We denote by Ma,b,m the set of measures on [a, b] with mass no
greater than m, and we equip this set with the topology of weak convergence, for which it is
compact. By Helly’s theorem, the notion of convergence induced on either set Fa,b

λ,ρ or Ea,b
λ,ρ

is that of pointwise convergence at every continuity point of the limiting function. With these
topologies,

(145) the involution ψ → ψ−1 between Fa,b
λ,ρ and Ea,b

λ,ρ is bi-continuous.
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For T > 0, we let M̃a,b,m,T denote the set of continuous functions from [0, T ] to Ma,b,m

equipped with the topology of uniform convergence. In the next subsection, in parallel to
Proposition 4.2, we shall prove its following counterpart in terms of the interface process.

PROPOSITION 4.5. For every T > 0 and V > 1,

(i) the processes (ρ±,α,t (·, s))s≥0 converge in probability in

M̃u−V T,u+V T,ρ−λ,T as t → +∞
to the deterministic process (ρ(·, s))s≥0, where ρ(x, s) = Rλ,ρ(x −u, s) is the solution given
by (93) of the Riemann problem (34) with initial datum (36) centered at u;

(ii) the process (xα,t (·, s))s≥0 converges in probability in M̃λ,ρ,2V T,T as t → +∞ to
the deterministic trajectory (x(r, s))s≥0 such that, for every s ≥ 0, x(·, s) is the generalized
inverse of ρ(·, s).

REMARK 4.2. In fact (as alluded to in the Introduction), xα(r, ·) can be interpreted as a
generalized characteristic for the conservation law (34). This will be substantially developed
in a forthcoming paper.

To prepare the proof of Proposition 4.5, we first need a tightness result with respect to the
topology introduced above.

PROPOSITION 4.6. For every T > 0 and V > 1,

(i) the family of processes (xα,t (·, s))s≥0 is tight in M̃λ,ρ,2V T,T ;
(ii) the family of processes (ρ+,α,t (·, s), ρ−,α,t (·, s))s≥0 is tight in

M̃u−V T,u+V T,ρ−λ,T ,

and any subsequential weak limit of this sequence is a random pair (ρ+,α(·, s), ρ−,α(·, s))s≥0
of elements of M̃u−V T,u+V T,ρ−λ,T . Besides, almost surely with respect to the law of this pair,
it holds that for all s ≥ 0, ρ+,α(·, s) = ρ−,α(·, s) =: ρα(·, s) a.e. on [0,+∞).

PROOF OF PROPOSITION 4.6. Let Yα,t
s := �ut	+N+,r,t

s and Zα,t
s := �ut	−N−,r,t

s . By
(i) and (iv) of Proposition 4.4, we have ρ±,α,t (y, s) = λ for y < Zα,t

s and ρ±,α,t (y, s) = ρ for
y > Yα,t

s . Besides, by the law of large numbers for Poisson processes, t−1Yα,t
st and t−1Zα,t

st

converge in probability respectively to u + s and u − s. Hence, with probability tending to
1 as t → +∞, for every s ∈ [0, T ], xα,t (·, s) lies in Eu−V s,u+V s

λ,ρ (thus in Mλ,ρ,2V s ) and

ρ±,α,t (·, s) lies in Fu−V s,u+V s
λ,ρ (thus in Mu−V s,u+V s,ρ−λ).

Remark that (ii) follows from (i) and (145). Now we show point (i). To this end, it is
enough to show that for every continuous test function ϕ on [λ,ρ], the family of processes
(xα,t· (ϕ))t∈[0,T ] defined by the Stieltjes integral

xα,t
s (ϕ) :=

∫ ρ

λ
ϕ(r)xα,t (dr, s)

is tight. Equivalently, we shall show it for piecewise constant functions ϕ of the form

ϕ(r) =
n−1∑
k=0

ϕk1(rk,rk+1](r),

where n ≥ 1 and λ = r0 < r1 < · · · < rn = ρ, since such functions uniformly approximate
continuous functions on [λ,ρ]. In this case, we have

(146) xα,t
s (ϕ) =

n−1∑
k=0

ϕk

[
xα,t (rk+1, s) − xα,t (rk, s)

]
.
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The problem thus boils down to proving that the family (xα,t (r, ·))t≥0 of processes is tight
in C0([0, T ];R). By Proposition 4.4, (iv) and Markov property, for any 0 ≤ s, (X α,r,t

s+τ −
X α,r,t

s )τ≥0 is stochastically dominated by a rate 1 Poisson process. Hence, for every ε > 0
and inverse integer ε/T > δ > 0,

P

(
sup

0≤s<s′≤T , s′−s<δ

∣∣xα,t
s′ (ϕ) − xα,t

s (ϕ)
∣∣ > ε

)
≤ 1

δ
P

(
1

δT t
P(δT t) >

ε

δT

)
(147)

≤ 1

δ
e−tIδT (ε),

where

IδT (ε) := ε ln
ε

δT
− ε + δT .

Inequality (147) follows from cutting the interval [0, T ] into intervals of length δT and using
Poisson large deviation bounds. Choosing δ > 0, we obtain Iδ(ε) > 0, hence the modulus of
continuity of xα,t· vanishes in probability as t → +∞ and then δ → 0. �

We conclude this subsection, as announced, with the proof of Proposition 4.4.

PROOF OF PROPOSITION 4.4. At time s = 0, Properties (i) and (iii) hold thanks to (120)
and (112). Note that if η

α,λ,ρ,t
0 (y) = ξ

α,r
0 (y) for y ∈ [a, b] ∩ Z, a, b ∈ Z, then we can take

X α,r,t
0 = y for any y ∈ [a − 1, b] ∩Z.
We define the evolution of the interface position X α,r,t· as follows. Assume X α,t,r

s− = x.
This position is only possibly modified at time s if a clock from our Harris construction rings
at time s and position x or x + 1: that is, if ω({(s,w,u, z}) = 1, for some w ∈ {x, x + 1},
u ∈ [0,1] and z ∈ {−1,1}, where ω is the Poisson measure defined by (98). We then update
the interface position or not according to the following rules:

Case 1. Assume (148)–(149) below hold:

α(w)g
(
ηα

s−(w)
)
< u ≤ α(w)g

(
ξ

α,r
s− (w)

)
,

ηα
s−(w + z) − ξ

α,r
s− (w + z) = 0,

(148)

w = x, z = 1.(149)

By rule (J2), this means a potential jump from x to x + 1. Then we set

(150) X α,r,t
s = x + 1.

Case 2. Assume (151)–(152) below hold:

α(w)g
(
ξ

α,r
s− (w)

)
< u ≤ α(w)g

(
ηα

s−(w)
)
,

ηα
s−(w + z) − ξ

α,r
s− (w + z) = 0,

(151)

w = x + 1, z = −1.(152)

By rule (J2), this means a potential jump from x + 1 to x. Then we set

(153) X α,r,t
s = x − 1.

Case 3. If neither (148)–(149) nor (151)–(152) holds, we set

(154) X α,r,t
s = x.

The above rules satisfy property (ii). We now prove that they do satisfy the other properties
as well.
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Proof of (i).
Case 1. The first condition in (148) implies that a ξ

α,r
s− particle jumps from w = x to w +

z = x + 1 at time s, without being accompanied by a ηα
s− particle. Since g is nondecreasing,

this condition also implies ηα
s−(x)− ξ

α,r
s− (x) < 0. After this jump, we have ηα

s (x)− ξα,r
s (x) ≤

0, and due to the second condition in (148), we also have ηα
s (x + 1) − ξα,r

s (x + 1) < 0.
Case 2. The first condition in (151) implies that an ηα

s− particle jumps from w = x + 1 to
w + z = x at time s, without being accompanied by a ξ

α,r
s− particle. Since g is nondecreasing,

this condition also implies ηα
s−(x+1)−ξ

α,r
s− (x+1) > 0. After this jump, we have ηα

s (x+1)−
ξα,r
s (x + 1) ≥ 0, and due to the second condition in (151), we also have ηα

s (x) − ξα,r
s (x) > 0.

In both cases, for any y ∈ Z \ {w,w + z}, the sign of ηα
s (y)− ξα,r

s (y) is the same as that of
ηα

s−(y) − ξ
α,r
s− (y). Therefore, property (i) holds at time s, respectively with (150) in Case 1,

and with (153) in Case 2.
We now consider all possibilities in Case 3.
Case (a). w = x and the first condition in (148) does not hold, or w = x + 1 and the first

condition in (151) does not hold. Since property (i) at time s− implies ηα
s−(x) − ξ

α,r
s− (x) ≤ 0

and ηα
s−(x + 1) − ξ

α,r
s− (x + 1) ≤ 0, by rules (J1)–(J3), either no particle jumps from w to

w + z, or both an ηα
s− particle and a ξ

α,r
s− particle do.

Case (b). w = x, z = 1, the first condition in (148) holds but not the second one. As in
case 1 above, the former condition implies ηα

s−(x) − ξ
α,r
s− (x) < 0. By property (i) at time

s− and the latter condition, ηα
s−(x + 1) − ξ

α,r
s− (x + 1) > 0. Thus, ηα

s (x) − ξα,r
s (x) ≤ 0 and

ηα
s (x + 1) − ξα,r

s (x + 1) ≥ 0.
Case (c). w = x + 1, z = −1, the first condition in (151) holds but not the second one. As

in Case 2 above, the former condition implies ηα
s−(x + 1) − ξ

α,r
s− (x + 1) > 0. By property (i)

at time s−, we must have ηα
s−(x) − ξ

α,r
s− (x) ≤ 0. Thus, ηα

s (x) − ξα,r
s (x) ≤ 0 and ηα

s (x + 1) −
ξα,r
s (x + 1) ≥ 0.

Case (d). w = x, z = −1 and the first condition in (148) holds, so that ηα
s−(x) < ξ

α,r
s− (x)

and a ξ
α,r
s− particle alone jumps from x to x − 1 at time s. By property (i) at time s−, ηα

s−(x −
1)−ξα

s−(x −1) ≤ 0. At time s, we have ηα
s (x)−ξα,r

s (x) ≤ 0 and ηα
s (x −1)−ξα,r

s (x −1) < 0.
Case (e). w = x + 1, z = 1 and the first condition in (151) holds, so that ηα

s−(x + 1) −
ξ

α,r
s− (x + 1) > 0 and an ηα

s− particle alone jumps from x + 1 to x + 2 at time s. By property
(i) at time s−, ηα

s−(x + 2) − ξα
s−(x + 2) ≥ 0. At time s, we have ηα

s (x + 1) − ξα,r
s (x + 1) ≥ 0

and ηα
s (x + 2) − ξα,r

s (x + 2) > 0.
In Case 3(a), respectively in all the other subcases of Case 3, for any y ∈ Z, respectively

for any y ∈ Z\{w,w+z}, the sign of ηα
s (y)−ξα,r

s (y) is the same as that of ηα
s−(y)−ξ

α,r
s− (y).

Therefore, property (i) holds at time s with (154).
Proof of (iii). We have to prove that, whenever r < r ′ and

(155) X α,r,t
s− = X α,r ′,t

s− = x,

then X α,r,t
s ≤ X α,r ′,t

s . We must thus check that if X α,r,t· jumps to the right, then X α,r ′,t· does
the same, and if X α,r ′,t· jumps to the left, then X α,r,t· does the same.

Case 1′. If X α,r,t· jumps to the right, we are in Case 1 above. Since (by (118)) ξ
α,r ′
s− ≥

ξ
α,r
s− , the first condition in (148) is also satisfied for density r ′, and the second condition in

(148) for r implies ηα
s−(x + 1) ≤ ξ

α,r ′
s− (x + 1). But (155) and property (i) at time s− imply

ηα
s−(x + 1) ≥ ξ

α,r ′
s− (x + 1), hence ηα

s−(x + 1) = ξ
α,r ′
s− (x + 1), thus the second condition in

(148) is also satisfied for r ′, so that X α,r ′,t· jumps to the right.

Case 2′. If X α,r ′,t· jumps to the left, we are in Case 2 above. Since (by (118)) ξ
α,r ′
s− ≥ ξ

α,r
s− ,

the first condition in (151) is also satisfied for density r , and the second condition in (151) for
r ′ implies ηα

s−(x) ≥ ξ
α,r
s− (x). But (155) and property (i) at time s− imply ηα

s−(x) ≤ ξ
α,r
s− (x),
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hence ηα
s−(x) = ξ

α,r
s− (x), thus the second condition in (151) is also satisfied for r , so that

X α,r,t· jumps to the left.
Proof of (iv). The way we defined the evolution of X α,r,t· shows that (137) holds if we

define N±,r,t· as follows. At time s = 0, we set

N+,r,t
0 = N−,r,t

0 = �ut	.
Then, for the evolution of these processes, at time s, if N+,r,t

s− = x, we set N+,r,t
s = x + 1 if

and only if ω({(s, x)} × [0,1] × {1}) = 1, otherwise N+,r,t
s = x. Similarly, if ω({(s, x)} ×

[0,1]× {−1}) = 1, we set N−,r,t
s = x − 1, otherwise N−,r,t

s = x. The processes (N±,r,,t
s )s≥0

defined in this way are Poisson processes with intensity 1. �

4.4. Riemann hydrodynamics: Proofs of Propositions 4.2 and 4.5. Recall that we assume
λ ≤ ρ. The natural analogues of the propositions below for λ ≥ ρ are proven entirely in the
same way. Recall definitions (119) of xt and yt

s . We start proving the easier part of Proposi-
tion 4.2, that is, the upper bound.

PROPOSITION 4.7. For every λ ≤ ρ ∈ [0,+∞), t > 0 and u,v ∈ R, the following limit
holds in probability.

(156) lim
t→+∞

[
t−1�α

yt·
(
t, η

α,λ,ρ,t
0

) − Gλ,ρ(v)
]+ = 0.

PROOF OF PROPOSITION 4.7. By Lemma 4.2 and (107), we have for r ∈ [λ,ρ],
t−1�α

yt·
(
t, η

α,λ,ρ,t
0

) ≤ t−1�α
yt·

(
t, ξ

α,r
0

)
,(157)

t−1�α
yt·

(
t, ξ

α,r
0

) = t−1�α
xt−1

(
t, ξ

α,r
0

) − t−1
yt
t∑

x=xt

ξ
α,r
t (x).(158)

By Proposition 4.10 below, the first term on the right-hand side of (158) converges a.s. to the
mean current f (r). On the other hand, by (130) of Proposition 4.3, the second term converges
in distribution to −vr . This yields (156), recalling definition (88) of Gλ,ρ . �

We now proceed to the proof of the lower bound in Proposition 4.2, which will be carried
out in parallel to that of Proposition 4.5.

PROPOSITION 4.8. For every λ ≤ ρ ∈ [0,+∞), t > 0, u ∈ R and v < 1, the following
limit holds in probability

(159) lim
t→+∞

[
t−1�α

yt·
(
t, η

α,λ,ρ,t
0

) − Gλ,ρ(v)
]− = 0.

Let us summarize the general idea to prove Propositions 4.5 and 4.8. In order to estimate
the current across our “observer” yt· travelling at speed v, we consider our process η

α,λ,ρ· at
times ts for s ∈ [0,1] (here, t → +∞ plays the role of a scaling parameter, and s ∈ [0,1]
that of a macroscopic time variable). We use the interface process to compare our process
around the observer to ξ

α,ρ
ts with a priori random density ρ = ρ±,α,t (t−1yt

ts, s), where t−1yt
ts

is the macroscopic location of our observer at macroscopic time s (i.e., microscopic time
ts). Roughly speaking, if we are lucky enough that the traveller never sits on a shock, the
interface processes ρ±,α,t (·, ts) will be close to each other and not significantly vary in the
neighbourhood of t−1yt

ts , which means that the process in the neighbourhood of yt
ts is close

to ξ
α,ρ
ts for both values ρ = ρ±,α,t (t−1yt

ts, s). Using the uniform estimates (130)–(131) from
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Proposition 4.3, we can show that the instantaneous current across yt· is close to f (r)−vr for
r = ρ±,α,t (t−1yt

ts, s), which has the desired lower bound Gλ,ρ(v). Since this holds for every
s ∈ [0,1], by integrating the instantaneous current over s, we obtain the same bound for the
total current between s = 0 and s = 1, which is the statement of Proposition 4.8. Besides, the
minimizer in Gλ,ρ(v) is precisely unique outside a shock, and equal to the value ρ(u + vs, s)

of the entropy solution. Thus ρ±,α,t (t−1yt
ts, s) must be close to ρ(u + vs, s).

However, we cannot a priori discard that v is precisely the speed of a shock, because
we cannot specify v to avoid shocks before knowing where they are, which would require
knowing that the limit we are trying to prove does hold. This is why we shall first replace
�α

yt· by �
α,L
yt· defined below in (160), that is, a local spatial average of �α

yt· over the observer’s
position. Indeed, shocks are isolated, so the above argument should be true almost everywhere
along this spatial average. We point out that our interface-based definition of local equilibrium
(or pseudo-equilibrium) remains valid at supercritical densities, which is not the case for the
usual weak-convergence based approach, due to lack of invariant measures.

Let L ∈ N \ {0}. We define spatial averages of currents as follows:

�
α,L
�yt· 	

(
t, η

α,λ,ρ,t
0

) := L−1
L−1∑
i=0

�α
�yt· +i	

(
t, η

α,λ,ρ,t
0

)
,(160)

�
α,L
�yt· 	

(
s, s′, ηα,λ,ρ,t

0

) := L−1
L−1∑
i=0

�α
�yt· +i	

(
s, s′, ηα,λ,ρ,t

0

)
.(161)

By (107),

t−1�α
�yt· 	

(
t, η

α,λ,ρ,t
0

) ≥ t−1�
α,L
�yt· 	

(
t, η

α,λ,ρ,t
0

)
(162)

− t−1L−1
L−1∑
i=1

�ut	+i∑
x=�ut	+1

η
α,λ,ρ,t
0 (x).

By next lemma, the last term on the right-hand side of (162) can be neglected.

LEMMA 4.3. For L = �εt	, it holds that

(163) lim
ε→0

lim
t→+∞E

{
t−1L−1

L−1∑
i=1

�ut	+i∑
x=�ut	+1

η
α,λ,ρ,t
0 (x)

}
= 0.

PROOF OF LEMMA 4.3. By definition (121) of η
α,λ,ρ,t
0 , we have η

α,λ,ρ,t
0 ≤ ξ

α,ρ
0 . The

result then follows from (113). �

From now on, we shall always assume L = �εt	 for ε positive but arbitrarily small. Propo-
sitions 4.5 and 4.8 will essentially be consequences of Proposition 4.9 below.

PROPOSITION 4.9. For a < b, m > 0, δ > 0 and r(·, ·) ∈ M̃a,b,m,T , define

(164) γ ε,δ[r(·, ·)] := δ

2

�2/δ	∑
k=0

γ
ε,δ
k

[
r(·, ·)],

where

γ
ε,δ
k

[
r(·, ·)] := 1

ε

∫ ε

0

{
f

[
r

(
u + vkδ

2
+ z − δ,

kδ

2

)]
(165)

− vr

(
u + vkδ

2
+ z − δ,

kδ

2

)}
dz.
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Then, for every ε > 0, h > 0, λ,ρ ∈ [0,+∞), t > 0 and u,v ∈R,

(166) lim
δ→0

lim sup
t→+∞

P
(
t−1�

α,�εt	
yt·

(
t, η

α,λ,ρ,t
0

)
< γ ε,δ[ρ−,α,t (·, ·)] − h

) = 0.

Before proving Proposition 4.9, we prove that it implies Proposition 4.5 and Proposi-
tion 4.8.

PROOF OF PROPOSITIONS 4.5 AND 4.8. In the following, using Proposition 4.6,
we consider any sequence of values of t tending to +∞ along which the process
(ρ+,α,t (·, s), ρ−,α,t (·, s))s≥0 converges in law to some (ρα(·, s))s≥0. It will be implicit in
the notation that t → +∞ will mean a limit along this subsequence.

Propositions 4.7, 4.9, Lemma 4.3 and (162) imply that, for any h > 0,

(167) lim
ε→0

lim
δ→0

lim sup
t→+∞

P
(
γ ε,δ[ρ−,α,t (·, ·)] > Gλ,ρ(v) + h

) = 0.

Since γ ε,δ is a continuous functional, and ρα(·, s) ∈ M̃a,b,m for some a, b, m, γ ε,δ(ρ−,α,t )

converges in law as t → +∞ to γ ε,δ(ρα) and γ ε,δ(ρα) converges a.s. as δ → 0 to γ ε(ρα),
where γ ε is defined on M̃a,b,m by

(168) γ ε(r) := 1

ε

∫ 1

0

∫ ε

0

{
f

[
r(u + vs + z−, s)

] − vr(u + vs + z−, s)
}
dzds.

Finally, since ρα ∈ M̃a,b,m, γ ε(ρα) converges a.s. (with respect to the distribution of the
random function ρα) as ε → 0 to γ (ρα), where γ (·) is defined by

(169) γ (r) :=
∫ 1

0

{
f

[
r(u + vs+, s)

] − vr(u + vs+, s)
}
ds,

it follows from (167) and definition (88) of Gλ,ρ(v) that

(170) γ
(
ρα) = Gλ,ρ(v) a.s.

Equality (170), together with (88), (89) and (93), implies (i) of Proposition 4.5. The latter
combined with (145) implies (ii) of Proposition 4.5. Finally, (170) and (166) establish Propo-
sition 4.8. �

PROOF OF PROPOSITION 4.9. We shall compute �
α,L
�yt· 	(t, η

α,λ,ρ,t
0 ) by decomposing the

time interval [0, t] into subintervals of length tδ/2 denoted by tIk := [tkδ/2, t (k + 1)δ/2) =
[tsk, tsk+1) for k = 0, . . . ,K − 1 for

(171) K := �2/δ	
and a last interval tIK := [tKδ/2, t] = [tsK, tsK+1], where tsK+1 = t . We thus write

(172) �
α,L
�yt· 	

(
t, η

α,λ,ρ,t
0

) =
K∑

k=0

�
α,L
�yt· 	

(
tsk, tsk+1, η

α,λ,ρ,t
tsk

)
.

In the sequel, for notational simplicity, we shall write (for i = 0, . . . ,L − 1)

ρ−
k,i := ρ−,α,t (t−1yt

tsk
+ t−1i − δ, sk

) − δ,

ρ+
k,i := ρ+,α,t (t−1yt

tsk
+ t−1i + δ, sk

) + δ,

ξ±
k,i := ξ

ρ±
k,i

tsk
,

ξ±
k,k+1,i := ξ

ρ±
k,i

tsk+1
,

ηk := η
α,λ,ρ,t
tsk

.

(173)
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These processes represent a discretization in our analysis. By (140)–(141) and (142)–(143),
we have

(174) ξ−
k,i(x) ≤ η

α,λ,ρ,t
tsk

(x) ≤ ξ+
k,i(x)

for every i ∈ {0, . . . ,L − 1} and x ∈ U , where

(175) U := (
yt
tsk

− tδ + i, yt
tsk

+ tδ + i
)
.

By Lemma 4.2, there is an event E
ε,δ
t with probability tending to 1 as t → +∞, on which the

following holds for every k = 0, . . . ,K and i = 0, . . . , �εt	, V ∈ (1,2) and v ∈ R such that
V + v < 2:

�α
�yt· +i	(tsk, tsk+1, ηk) − �α

�yt· +i	
(
tsk, tsk+1, ξ

−
k,i

)
≥ −0 ∨ max

{
Fyt

tsk
+i (ηk, x) − Fyt

tsk
+i

(
ξ−
k,i , x

) : x ∈ V
}

(176)

≥ −
yt
tsk

+i+(V +v)δ/2∑
x=yt

tsk
+i−V δ/2

[
ξ+
k,i(x) − ξ−

k,i(x)
]
,

where

(177) V := [
yt
tsk

+ i − V tδ/2, yt
tsk

+ i + (V + v)tδ/2
]
.

Notice that, thanks to the condition V + v < 2, the interval V defined by (177) is indeed
contained in the interval U defined by (175). Thus, on E

ε,δ
t ,

(178) t−1�
α,�εt	
�yt· 	 (tsk, tsk+1, ηk) ≥ �

1,ε,δ
k (t) − �

2,ε,δ
k (t),

where

�
1,ε,δ
k (t) := 1

�εt	
�εt	−1∑

i=0

t−1�α
�yt· +i	

(
tsk, tsk+1, ξ

−
k,i

)
,

�
2,ε,δ
k (t) := 1

�εt	
�εt	−1∑

i=0

t−1
yt
tsk

+i+(V +v)tδ/2∑
x=yt

tsk
+i−V tδ/2

[
ξ+
k,i(x) − ξ−

k,i(x)
]
.

There, �
1,ε,δ
k (t) is the essential item, that is the current through the expectedly close process

ξ
α,ρ−

k,i· whose limiting value is given by Corollary 4.3 (mind here that ρ−
k,i is a random vari-

able). On the other hand, �
2,ε,δ
k (t) is the error, which is controlled (see (183) below) by the

microscopic jump of the interface process. The latter is negligible in the absence of a macro-
scopic shock, so it will be negligible after spatial averaging. Below we replace these terms
by their “main” values, which are functions of the interface processes ρ±,α,t rather than the
particle processes.

For �
1,ε,δ
k (t) in (178), we write, for each i = 0, . . . , �εt	 − 1, using (107),

t−1�α
yt· +i

(
tsk, tsk+1, ξ

−
k,i

) = t−1�α
yt
tsk

+i

(
tsk, tsk+1, ξ

−
k,i

)
(179)

− t−1

yt
tsk+1

+i∑
x=yt

tsk
+i+1

ξ−
k,k+1(x).
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Hence, by Corollary 4.3,

(180) �
1,ε,δ
k (t) ≥ �̃

1,ε,δ
k (t) − e

ε,δ
k (t),

where e
ε,δ
k (t) → 0 in probability as t → +∞, and

�̃
1,ε,δ
k (t) := 1

�εt	 − 1

�εt	∑
i=0

[
f

(
ρ−

k,i

) − vρ−
k,i

]
= 1

ε

∫ ε

0

{
f

[
ρ−,α,t − δ

(
t−1yt

tsk
+ z − δ, sk

)]
(181)

− vρ−,α,t − δ
(
t−1yt

tsk
+ z − δ, sk

)}
dz

≥ γ
ε,δ
k − δ

(
ρ−,α,t ).

To obtain the first line of (181), we applied (133) to the first line on the r.h.s. of (179), and
(132) to the second line on the right-hand side of (179). To obtain the second line of (181),
observe that by (173), the integrand on the second line of (181) is constant on intervals of
length 1/t , and the first line is the corresponding Riemann sum. For �

2,ε,δ
k (t) in (178), by

Corollary 4.3, for each k = 0, . . . ,K ,

(182) lim
t→+∞

[
�

2,ε,δ
k (t) − �̃

2,ε,δ
k (t)

] = 0 in probability,

where

�̃
2,ε,δ
k (t) := δ(2V + v)

2�εt	
�εt	−1∑

i=0

[
ρ+

k,i − ρ−
k,i

]
= δ(2V + v)

2ε

∫ ε

0

[
ρ+,α,t (t−1yt

tsk
+ z + δ, sk

)
− ρ−,α,t (t−1yt

tsk
+ z − δ, sk

)]
dz + δ2(2V + v)

(183)

= δ(2V + v)

2ε

{∫ ε+δ

ε−δ
ρα,t (u + vsk + z, sk) dz

−
∫ δ

−δ
ρα,t (u + vsk + z, sk) dz

}
+ δ2(2V + v)

≤ 2ρδ2(2V + v)

ε
+ δ2(2V + v)

is the “main part” of �
2,ε,δ
k (t). Note that in the third equality, we replaced the functions ρ±,α,t

with ρα,t , as all these functions coincide a.e. in space (see (144)). Hence

(184)
K∑

k=0

�̃
2,ε,δ
k (t) ≤ 2ρδ(2V + v)

ε
+ δ(2V + v).

By (172) and (178),

t−1�
α,L
�yt· 	

(
t, η

α,λ,ρ,t
0

) =
K∑

k=0

t−1�
α,L
�yt· 	

(
tsk, tsk+1, η

α,λ,ρ,t
tsk

)

≥
K∑

k=0

�
1,ε,δ
k (t) −

K∑
k=0

�
2,ε,δ
k (t).

Hence, the conclusion follows from (180), (181), (182) and (184). �
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4.5. Proof of Proposition 4.3. This subsection is devoted to the proof of Proposition 4.3.
The proof will be carried out in two steps. The main step will be to prove a nonuniform result
for the asymptotic current at a given density that we now state.

PROPOSITION 4.10. Let η0 ∈ X be an initial (deterministic or random) configuration
satisfying, for some ρ ∈ [0,+∞),

(185) lim
n→+∞

1

n

n∑
x=0

η0(x) = lim
n→+∞

1

n

0∑
x=−n

η0(x) = ρ

in probability. Then, for any x ∈ R and t > 0, the following limit holds in probability with
respect to the law of the process:

(186) lim
N→+∞N−1�α�Nx	(Nt, η0) = tf (ρ).

Before proving Proposition 4.10, we use it to derive Proposition 4.3.

PROOF OF PROPOSITION 4.3.
Proof of (130). Let a, b ∈ R such that a < b, and ρ ≥ 0. Since by (107), we have

�α�at	−1
(
t, ξ

α,ρ
0

) − �α�bt	
(
t, ξ

α,ρ
0

) =
�bt	∑

x=�at	
ξ

α,ρ
t (x) −

�bt	∑
x=�at	

ξ
α,ρ
0 (x),

applying (113) and Proposition 4.10 gives

(187) lim
t→+∞

∣∣∣∣∣ 1

(b − a)t

�bt	∑
�at	

ξ
α,ρ
t (x) − ρ

∣∣∣∣∣ = 0

in probability. The stronger uniform result is obtained using attractiveness and a discretization
of densities and positions. Indeed, for n ∈N \ {0} and k = 0, . . . , n, let

rn
k := k

n
ρ0, xn

k := A + k

n
(B − A),

S(t) := sup
A<a<b<B

b−a>ε,ρ≤ρ0

∣∣∣∣∣ 1

(b − a)t

�bt	∑
�at	

ξ
α,ρ
t (x) − ρ

∣∣∣∣∣,(188)

Sn(t) := max
k,l,m=0,...,n

m−l>nε

∣∣∣∣∣ 1

(xn
m − xn

l )t

�xn
mt	∑

x=�xn
l t	

ξ
α,rn

k
t (x) − rn

k

∣∣∣∣∣.
By (187), for each n ∈ N \ {0}, Sn(t) converges to 0 in probability as t → +∞. On the other
hand, S(t) ≤ Sn(t)+En(t), where En(t) is an upper bound for the discretization error. Using
(118), we can take as upper bound

En(t) := max
k,l,m=0,...,n

m−l>nε

1

(xn
m − xn

l )t

�xn
mt	∑

x=�xn
l t	

[
ξ

α,rn
k+1

t (x) − ξ
α,rn

k
t (x)

] + ρ0

n

(189)

+ 2

nε
max

k=0,...,n
max

l=0,...,n−1

1

(xn
l+1 − xn

l )t

�xn
l+1t	∑

x=�xn
l t	

ξ
α,rn

k
t (x).
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It follows from (187) that

lim
t→+∞

(
En(t) − 2

ρ0

n
− 2

ρ0

nε

)+
= 0

in probability. Since n can be taken arbitrarily large, (130) follows.
Proof of (131). We use the same discretization (188) as previously, now setting

T (t) := sup
A<a<B
ρ≤ρ0

∣∣∣∣1

t
�α�Na	

(
t, ξ

α,ρ
0

) − f (ρ)

∣∣∣∣,
T n(t) := max

k,l=0,...,n

∣∣∣∣1

t
�α

�txn
l 	

(
t, ξ

α,rn
k

0

) − f
(
rn
k

)∣∣∣∣.
By Proposition 4.10, for each n ∈ N \ {0}, T n(t) converges to 0 in probability as t → +∞.
We again write T (t) ≤ T n(t) + Fn(t), but now the discretization bound Fn(t) is controlled
using Lemma 4.2 and (107), which yields

Fn(t) := max
k=0,...,n,l=0,...,n−1

t−1
�txn

l+1	∑
x=�txn

l 	
ξ

α,rn
k

t (x)

(190)

+ max
k=0,...,n−1

t−1
�(B+V )t	∑

x=�(A−V )t	

[
ξ

α,rn
k+1

t (x) − ξ
α,rn

k

0 (x)
]
.

It follows from (187) that

lim
t→+∞

(
Fn(t) − (B − A + 2V )

ρ0

n

)+
= 0

in probability, so we may conclude as previously. �

The sequel of this subsection is devoted to the proof of Proposition 4.10. In the case ρ < ρc,
Proposition 4.10 was proven in [11], Lemma 4.10, for subcritical equilibria, that is, η0 =
ξ

α,ρ
0 defined by (115). Indeed, [11], Lemma 4.10, was valid only for x ≤ 0 because in [11]

only the second limit in (185) was assumed; since (185) gives two limits, the proof of [11],
Lemma 4.10, is also valid for x > 0. The following lemma shows that it implies the same for
any η0 satisfying (185) with ρ < ρc.

LEMMA 4.4. Assume (186) holds for some η0 ∈ X satisfying (185). Then it holds for any
η′

0 ∈ X satisfying (185).

PROOF OF LEMMA 4.4. Since both η0 and η′
0 satisfy (185), Lemma 4.2 implies, for any

x ∈ R, t > 0, the limit in probability

(191) lim
N→+∞

∣∣N−1�α�Nx	(Nt, η0) − N−1�α�Nx	
(
Nt,η′

0
)∣∣ = 0. �

To complete the proof of Proposition 4.10, we now treat the case ρ ≥ ρc as follows. Recall
(28).

PROPOSITION 4.11. Under assumption (185) for ρ ≥ ρc,

(192) lim
N→+∞N−1�α�Nx	(Nt, η0) = tf (ρ) = t (p − q)c.
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For the proof of Proposition 4.11, we need to define the following quantities, for κ ∈ A an
arbitrary environment and ε > 0:

Aε(κ) := sup
{
x ≤ 0 : κ(x) ≤ c + ε

} ∈ Z
− ∪ {−∞},(193)

aε(κ) := inf
{
x ≥ 0 : κ(x) ≤ c + ε

} ∈N(194)

with the usual conventions inf∅ = +∞ and sup∅ = −∞. It follows from the above defini-
tions that

lim
ε→0

Aε(κ) = −∞, lim
ε→0

aε(κ) = +∞,(195)

lim inf
x→−∞κ(x) = c ⇒ ∀ε > 0, Aε(κ) > −∞,(196)

lim inf
x→+∞κ(x) = c ⇒ ∀ε > 0, aε(κ) < +∞.(197)

Coming back to the setting of Proposition 4.11, (196)–(197) and (35) imply that Aε(α) and
aε(α) are finite. Besides, a consequence of Assumption 2.2 is the following.

LEMMA 4.5. For every ε > 0,

(198) lim
n→±∞n−1aε(τnα) = 0, lim

n→±∞n−1Aε(τnα) = 0.

PROOF OF LEMMA 4.5. Consider for instance the first limit. For any n ∈ Z, there exists
a unique k(n) ∈ Z such that xk(n)−1 < n ≤ xk(n), where (xk)k∈Z is the sequence in Assump-
tion 2.2. Since limn→+∞ k(n) = +∞, by (32), for n large enough, we have α(xk(n)) < c + ε.
Hence

n−1aε(τnα) ≤ n−1[xk(n) − n] ≤ n−1[xk(n) − xk(n)−1]
which vanishes as n → +∞ by (33). �

PROOF OF PROPOSITION 4.11. To derive (192), we establish first an upper bound, then
a lower bound, that is,

lim
N→∞E

[
N−1�α�Nx	(Nt, η0) − t (p − q)c

]+ = 0,(199)

lim inf
N→+∞E

[
N−1�α�Nx	(Nt, η0)

] ≥ t (p − q)c.(200)

Step one: upper bound (199). Let yN := �Nx	 + Aε(τ�Nx	α). By (107),

(201) N−1�α�Nx	(Nt, η0) ≤ N−1�α
yN

(Nt, η0) + N−1
�Nx	∑

x=yN+1

η0(x).

By Corollary 4.1,

�α
yN

(Nt, η0) ≤ �α
yN

(
Nt,η∗,yN

)
.

Applying Proposition 4.1 to the right-hand side, and using the fact that α(yN) ≤ c + ε (by
definition (193) of Aε(·)), we obtain

(202) lim sup
N→+∞

E
{[

N−1�α
yN

(Nt, η0) − t (p − q)c
]+} ≤ εt.

By assumption (185) and Lemma 4.5, the second term on the right-hand side of (201) van-
ishes as N → +∞. The upper bound (199) then follows from (202) and (201) by letting
ε → 0.
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Step two: lower bound (200). Let δ > 0, and set η
α,δ
0 := ξ

α,ρ
0 defined by (117). We are

going to prove that

(203) lim inf
δ→0

lim inf
N→∞ E

{
N−1�α�Nx	

(
Nt,η

α,δ
0

)} ≥ t (p − q)c.

Indeed, since both η0 and η
α,δ
0 satisfy (185), Lemma 4.2 implies the limit in probability

(204) lim
N→+∞

∣∣N−1�α�Nx	
(
Nt,η

α,δ
0

) − N−1�α�Nx	(Nt, η0)
∣∣ = 0.

Thus (203) implies (200).
Proof of (203). We use (107) to write

N−1�α�Nx	
(
Nt,η

α,δ
0

) − N−1�α
zN

(
Nt,η

α,δ
0

) ≥ −N−1
zN∑

x=1+�Nx	
η

α,δ
0 (x),(205)

where zN := �Nx	 + aε

(�Nx	) − 1.(206)

By Lemma 4.5 and assumption (185), the right-hand side of (205) vanishes a.s. as N → +∞.
Therefore, to establish (203), it is enough to prove that

(207) lim inf
ε→0

lim inf
δ→0

lim inf
N→∞ E

{
N−1�α

zN

(
Nt,η

α,δ
0

)} ≥ t (p − q)c.

In order to prove the above, we write (cf. (108))

E
{
N−1�α

zN

(
Nt,η

α,δ
0

)}
= N−1

∫ Nt

0
E

{
pα(zN)g

[
ηα,δ

s (zN)
]

(208)

− qα(1 + zN)g
[
(ηα,δ

s (1 + zN)
]}

ds.

Since by attractiveness, we have ηα,δ
s ≥ ξ

α,ρc−δ
s , in the above integral, we have the lower

bound (cf. (27))

E
{
α(zN)g

[
ηα,δ

s (zN)
]} ≥ E

{
α(zN)g

[
ξα,ρc−δ
s (zN)

]}
(209)

=
∫

X
α(zN)g(ξ) dμα,ρc−δ(ξ) = R

−1
(ρc − δ).

On the other hand, by definitions (206) of zN , (193) of aε(α), and the inequality g ≤ 1, we
have the upper bound

(210) E
{
α(1 + zN)g

[
(ηα,δ

s (1 + zN)
]} ≤ c + ε.

The above bounds (209)–(210) imply that from (208) we get

E
{
N−1�α

zN

(
Nt,η

α,δ
0

)} ≥ t
[
pR

−1
(ρc − δ) − q(c + ε)

]
.

The limit (207) follows, since R
−1

(ρc) = c (cf. (23)). �

APPENDIX A: PROOF OF LEMMA 2.1

Consider for instance the left-hand side Mn of (25). By (14),

Eμα
β
(Mn) = 1

n + 1

n∑
x=0

R

[
β

α(x)

]
n→+∞−→ R(β).
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On the other hand,

V (β) :=
+∞∑
n=0

n2θβ(n) − R(β)2

is continuous on [0,1), and, using Assumption 2.1, we have

Vμα
β
(Mn) = 1

(n + 1)2

n∑
x=0

V

[
β

α(x)

]
n→+∞∼ V (β)

n
,

where (with the conventions (9)–(10))

V (β) :=
∫
[0,1]

V

(
β

a

)
dQ0(a) =

∫
[C,1]

V

(
β

a

)
dQ0(a) ∈ [0,+∞) ∀β ∈ [0, c).

The conclusion then follows from Tchebychev’s inequality.

APPENDIX B: PROOF OF LEMMA 3.2

Proof of (i). If c < C, by considering test functions f supported either around c or around
[C,1], we see that (15) holds if and only if the contributions of each term on the right-hand
side of (49) to the empirical measures converges separately. Following (47), the contribution
of the second term can only be a pointmass at c and this requires xn/n to have a finite limit.
If this pointmass were positive, by (48)–(49), the contribution of the first term would also
contain a pointmass at c in compensation, because Q0 does not have such a pointmass. This
is impossible because F−1

Q0
(u) always lies in the support of Q0, hence in [C,1]. Conversely,

(52) implies that the second term of (49) does not contribute to the limits in (15). Therefore,
(15) is equivalent to (52) plus (53).

Assume all conditions hold. We verify (53). Condition (51) implies that

(211) lim
n→+∞

1

yn

yn−1∑
x=0

δu(x) = lim
n→−∞

1

yn

0∑
x=yn+1

δu(x) = U(0,1).

Indeed, let Qn := (yn − y0)
−1 ∑yn−1

x=y0
δu(x). For a nondecreasing function f on [0,1],

(212)
∫
[0,1]

f (u)dQn(u) =
∑n−1

k=0 lki(lk)∑n−1
k=0 lk

,

where lk := yk+1 − yk , and

i(l) = 1

l

l−1∑
i=0

f

(
i

l

)

is a rectangle approximation of
∫ 1

0 f (u)du with an error bounded by ‖f ‖∞/l. It follows that
(212) approximates

∫ 1
0 f (u)du with an error bounded by

‖f ‖∞
∑n−1

k=0 lk
1
lk∑n−1

k=0 lk
= ‖f ‖∞

n

yn

which implies (211) by (51). Condition (50) allows to fill the gap between (211) and (15).
Indeed, for the above test function f ,

1

yp+1

yp∑
k=0

f
[
u(k)

] ≤ 1

n

n−1∑
k=0

f
[
u(k)

] ≤ 1

yp

yp+1∑
k=0

f
[
u(k)

]
,
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where p is such that yp ≤ n − 1 < yp+1, and (50) makes the ratio of the extreme terms tend
to 1 as p → ±∞. Considering f (u) = u, we have∫

[0,1]
f (u)dQn(u) = 1

yn

n−1∑
k=0

lk∑
i=0

i

lk
= 1

yn

n−1∑
k=0

lk + 1

2
= yn + n

2yn

that converges to
∫ 1

0 udu only if (51) holds. If (50) fails, consider a subsequence of values of
yn+1/yn converging to a ∈ (1,+∞], then for f (u) = u, and zn = (yn + yn+1)/2, we have

(213)
1

zn

zn∑
x=y0

f
[
u(x)

] = 2

yn + yn+1

(
yn + n

2
+ sn

)
,

where sn ∼ ln/8 is the contribution of the sum between x = yn + 1 and x = zn. Hence, using
(51), the left-hand side of (213) converges to

2

1 + a

[
1

2
+ a − 1

8

]
= a + 3

4(a + 1)
< 1/2.

Proof of (ii). If c < C, this is a tautology. If c = C, for n ∈ Z, by (48)–(49), the sequence
(yn)n∈Z satisfies α(yn) = C = c, and thus satisfies Assumption 2.2 by (50). Conversely, let
(tn)n∈Z be such that tn+1/tn → 1 and α(tn) → C. The latter limit implies that (tn)n∈Z is
extracted from a sequence of the form

(214) zn = yn + εn(yn+1 − yn),

where εn → 0 as n → ±∞. If yn+1/yn has a subsequence tending to a ∈ [1,+∞], the cor-
responding subsequence of tn+1/tn converges to a. Thus a = 1.
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