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We study a sequence of symmetric n-player stochastic differential games
driven by both idiosyncratic and common sources of noise, in which play-
ers interact with each other through their empirical distribution. The unique
Nash equilibrium empirical measure of the n-player game is known to con-
verge, as n goes to infinity, to the unique equilibrium of an associated mean
field game. Under suitable regularity conditions, in the absence of common
noise, we complement this law of large numbers result with nonasymptotic
concentration bounds for the Wasserstein distance between the n-player Nash
equilibrium empirical measure and the mean field equilibrium. We also show
that the sequence of Nash equilibrium empirical measures satisfies a weak
large deviation principle, which can be strengthened to a full large deviation
principle only in the absence of common noise. For both sets of results, we
first use the master equation, an infinite-dimensional partial differential equa-
tion that characterizes the value function of the mean field game, to construct
an associated McKean–Vlasov interacting n-particle system that is exponen-
tially close to the Nash equilibrium dynamics of the n-player game for large
n, by refining estimates obtained in our companion paper. Then we establish
a weak large deviation principle for McKean–Vlasov systems in the pres-
ence of common noise. In the absence of common noise, we upgrade this
to a full large deviation principle and obtain new concentration estimates for
McKean–Vlasov systems. Finally, in two specific examples that do not satisfy
the assumptions of our main theorems, we show how to adapt our methodol-
ogy to establish large deviations and concentration results.
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1. Introduction. Description of the model. In this article, we study Nash equilibria for
a class of symmetric n-player stochastic differential games, for large n. To describe our main
results, we first provide an informal description of the n-player game (see Section 2.3 for a
complete description). Let the empirical measure of a vector x = (x1, . . . , xn) in (Rd)n be
denoted by

mn
x = 1

n

n∑
k=1

δxk
,

where δx is the Dirac delta mass at x ∈ R
d , which lies in P(Rd), the space of probability

measures on R
d . Given independent Rd0 -valued and R

d -valued Wiener processes W and
B1, . . . ,Bn and R

d -valued initial conditions (X1
0, . . . ,X

n
0), a time horizon T < ∞, an action

space A, a drift functional b : Rd × P(Rd) × A → R
d and two constant matrices σ ∈ R

d×d

and σ0 ∈ R
d×d0 , with σ nondegenerate, the state of the n-player game at time t is given by

Xt = (X1
t , . . . ,X

n
t ), where the state Xi of the ith agent follows the dynamics

dXi
t = b

(
Xi

t ,m
n
Xt

, αi(t,Xt )
)
dt + σ dBi

t + σ0 dWt .(1.1)

Here, αi : [0, T ] × (Rd)n → A is a Markovian control that is chosen to minimize the ith
objective function

Jn
i

(
α1, . . . , αn)= E

[∫ T

0
f
(
Xi

t ,m
n
Xt

, αi(t,Xt )
)
dt + g

(
Xi

T ,mn
XT

)]
,(1.2)

for suitable cost functionals f and g. An n-tuple (α1, . . . , αn) is said to be a Nash equilibrium
of this game (in closed-loop strategies) if for every i = 1, . . . , n, and Markov control α̃,

Jn
i

(
α1, . . . , αi−1, αi, αi+1, . . . , αn)≤ Jn

i

(
α1, . . . , αi−1, α̃, αi+1, . . . , αn).

Under suitable conditions, it was shown in [10] this game has a unique Nash equilibria
that can be characterized in terms of the classical solution of a certain partial differential
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equation (PDE) system called the Nash system, introduced in Section 2.3. If X = {Xt =
(X1

t , . . . ,X
n
t ), t ∈ [0, T ]}, is the associated state process, then (mn

Xt
)t∈[0,T ] is referred to as

the associated Nash equilibrium empirical measure. Under additional regularity conditions, it
was also shown in [10] that (mn

Xt
)t∈[0,T ] converges, as n goes to infinity, to the unique equi-

librium (μt )t∈[0,T ] of a certain associated mean field game (MFG), described in Section 2.4.
The equilibrium μ = (μt , t ∈ [0, T ]) is itself a stochastic flow of probability measures, and
can be described in terms of the value function of the MFG, which is the unique solution
to an infinite-dimensional PDE referred to as the so-called master equation (see Section 2.4
for full details). As we clarify below, the convergence of (mn

Xt
)t∈[0,T ] to (μt )t∈[0,T ] must be

regarded as a Law of Large Numbers (LLN) for games of type (1.1)–(1.2).
Main results and strategy of proof. This is the second article in a two-part series, with

the first part [20] complementing the aforementioned LLN with a functional central limit
theorem; see [20] for a more thorough introduction and bibliography. In this work, we refine
the law of large numbers (LLN) convergence result of [10] mentioned above by establishing
non-asymptotic concentration bounds and large deviation results.

We first construct a related interacting diffusion system X = (X
1
, . . . ,X

n
) of McKean–

Vlasov type:

(1.3) dX
i

t = b̃
(
t,X

i

t ,m
n
Xt

)
dt + σ dBi

t + σ0 dWt,

for a suitable drift b̃ defined in terms of the drift b and the solution to the master equation.
We then show that this McKean–Vlasov system is exponentially close to the Nash system.
More precisely, under suitable assumptions (see Assumptions A, B and B′ below) we prove
(see Theorem 4.3) that there exist constants C < ∞ and δ > 0 such that for every a > 0 and
n ≥ C/a we have

P
(
W2,Cd

(
mn

X,mn
X

)
> a

)≤ 2ne−δa2n2
,(1.4)

where Wp,Cd denotes the p-Wasserstein distance on the space of probability measures on
the path space Cd := C([0, T ];Rd) with finite pth moment. This is a refinement of cruder
estimates obtained in [10] and [20], relation (4.27), which are used to characterize LLN
and (central limit) fluctuations of the Nash equilibrium empirical measure from the MFG
equilibrium, respectively. The exponential equivalence estimate (1.4) reduces the problem of
establishing concentration estimates or LDPs for the (sequence of) Nash systems to that of
establishing analogous results for the (sequence of) McKean–Vlasov systems.

The following is the summary of our main results in the absence of common noise (i.e.,
when σ0 = 0):

1. We obtain concentration results for McKean–Vlasov systems of the form (1.3) (see
Section 5.2 and, in particular, Theorem 5.6), which are interesting in their own right. Prior
works on concentration for McKean–Vlasov systems [7, 8], motivated mostly by questions
of long-time convergence to equilibrium, restricted attention naturally to gradient drift coef-
ficients. We thus adopt a new approach, for Lipschitz but nongradient drifts, that yields not
only deviation probability bounds like those in [7, 8] but also full concentration of measure,

in the sense that Lipschitz functions of (X
1
, . . . ,X

n
) concentrate around their means. The

proofs rely on transport inequalities, crucially using a result of [22].
2. We use the exponential equivalence along with the result in (1) above to obtain concen-

tration results for quantities like

P

(
sup

t∈[0,T ]
Wp,Rd

(
mn

Xt
, μt

)≥ ε
)
,
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for ε > 0 and for exponents p ∈ {1,2} (see Corollaries 3.3 and 3.5); here, Wp,Rd is the p-
Wasserstein distance on the space of probability measures on R

d with finite pth moment.
In fact, these bounds are consequences of more powerful results we obtain on concentration
of Lipschitz functions of X (see Theorems 3.2 and 3.4). Notably, we show that as soon
as the i.i.d. initial states (Xi

0)
n
i=1 obey a dimension-free concentration of measure property,

then so do the Nash systems. In addition, under modest additional assumptions, we obtain
comparable results on the rate of convergence of the equilibrium controls in the n-player
game to the MFG equilibrium control (see Theorem 3.9).

3. We show (in Theorem 3.10) that the sequence ((mn
Xt

)t∈[0,T ])n∈N obeys a large deviation
principle (LDP) in the space of continuous paths taking values in the space P(Rd), equipped
with the W1,Rd metric. We explicitly identify the rate function in a form similar to that of
Dawson–Gärtner [19]. Our LDP can be obtained essentially by bootstrapping known large
deviations results for McKean–Vlasov systems, such as those in [2, 9, 19]. Indeed, the result
then nearly follows from the exponential equivalence (1.4) and [19], except that our drift
coefficient b̃ in (1.3) is (necessarily) time-dependent. In any case, we provide a complete
proof because, in our setting with constant volatility coefficients, a relatively simple argument
is available based on contraction mapping and, furthermore, because a similar argument is
required for the LDP in the presence of common noise described below, for which there are
no previous results.

In the presence of common noise (i.e., σ0 �= 0), the LDP we obtain for ((mn
Xt

)t∈[0,T ])n∈N
is in fact a weak LDP, with a rate function that fails to be a good rate function; that is, the
rate function does not have compact level sets (see Theorem 3.11).

Our results on concentration and large deviations appear to be the first of their kind for
diffusion-based MFGs. Moreover, in the McKean–Vlasov setting, our concentration bounds
and our weak LDP in the case with common noise appear to be new as well. The recent
papers [1, 16, 17] develop similar techniques for MFGs with finite state space and without
common noise, using the (finite-dimensional) master equation to connect the n-player equi-
librium to a more classical interacting particle system, and then transferring limit theorems
(specifically, a LLN, CLT and LDP) from the latter to the former. Notably, the second and
third author recently developed in [31] a quite general LDP for static (i.e., one-shot) mean
field games, but the methods used therein do not seem adaptable to dynamic settings. To the
best of our knowledge, there are no prior results on LDPs in the presence of common noise
or concentration bounds for MFGs, whether in finite or infinite state space, or for static or
dynamic games.

Required assumptions and examples. As further elaborated in [20], the above results are all
proven under admittedly very strong hypotheses, namely Assumptions A, and Assumption B
or B′, which are spelled out in Section 2.5. That said, the same strategy of connecting the
n-player equilibrium and a corresponding McKean–Vlasov system in order to transfer limit
theorems seems to be more widely applicable than our rather restrictive assumptions might
suggest. We illustrate this in Section 7 via two models, the linear-quadratic model of [14]
and the Merton-type model of [32], which admit explicit solutions for both the n-player and
mean field games. Taking advantage of the explicit solutions, we are able to derive similar
concentration bounds and LDPs for these systems in spite of unbounded coefficients and
other technical impediments.

Organization of the paper. In Section 2, we introduce common notation, describe the Nash
system, the master equation, the MFG and the main sets of assumptions. In Section 3, we give
precise statements of the main results, with the concentration bounds in Section 3.1, and the
large deviations results in Section 3.2. The proofs of the concentration bounds and LDP are
given in Sections 5 and 6, respectively. These rely on exponential estimates between the Nash
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system and the master equation, which are first developed in Section 4. Section 7 provides two
examples that are not covered by the main theorem, but for which the general methodology
can still be shown to apply. Finally, we discuss some open problems in Section 8.

2. Nash systems and master equations.

2.1. Notation and model inputs. For a topological space E, let P(E) denote the set of
Borel probability measures on E. Throughout the paper, we make use of the standard notation
〈μ,ϕ〉 := ∫

E ϕ dμ for integrable functions ϕ on E and measures μ on E. Given n ∈ N, we
often use boldface X = (x1, . . . , xn) for an element of En, and we write

mn
X := 1

n

n∑
i=1

δxi

for the associated empirical measure, which lies in P(E). When (E,‖ · ‖) is a normed space,
given p ∈ [1,∞), we write Pp(E,‖ · ‖), or simply Pp(E) if the norm is understood, for
the set of μ ∈ P(E) satisfying 〈μ,‖ · ‖p〉 < ∞. For a separable Banach space (E,‖ · ‖), we
always endow Pp(E,‖ · ‖) with the p-Wasserstein metric Wp,(E,‖·‖) defined by

Wp,(E,‖·‖)(μ, ν) := inf
π

(∫
E×E

‖x − y‖pπ(dx, dy)

)1/p

,(2.1)

where the infimum is over all probability measures π on E × E with marginals μ and ν.
When the space E and/or the norm ‖ · ‖ is understood, we may omit it from the subscript in
Wp,(E,‖·‖), for example, by writing Wp , or Wp,E , or Wp,‖·‖.

For a positive integer k, we always equip R
k with the Euclidean norm, denoted | · |, unless

stated otherwise. For fixed T ∈ (0,∞), we will make use of the path spaces

Ck := C
([0, T ];Rk), k ∈ N,

which are always endowed with the supremum norm ‖x‖∞ = supt∈[0,T ] |xt |. For m ∈ P(Ck)

and t ∈ [0, T ], we write mt for the time-t marginal of m, that is, the image of m under the
map Ck � x → xt ∈ R

k .

2.2. Derivatives on Wasserstein space. The formulation of the master equation requires
a suitable derivative for functions of probability measures. This section defines this notion of
derivative, but it is worth noting that this paper will make no use of this notion of derivative
except to state the master equation and the assumptions we impose on its solution. The main
estimates derived in Section 4 of the companion paper [20] make use of properties of this
derivative, but in this paper we simply apply these estimates.

For an exponent q ∈ [1,∞), we say that a function V : Pq(Rd) → R is C 1 if there exists
a continuous map δV

δm
: Pq(Rd) ×R

d →R satisfying:

(i) For every Wq,Rd -compact set K ⊂ Pq(Rd), there exists c < ∞ such that

supm∈K | δV
δm

(m,v)| ≤ c(1 + |v|q) for all v ∈ R
d .

(ii) For every m,m′ ∈Pq(Rd),

V
(
m′)− V (m) =

∫ 1

0

∫
Rd

δV

δm

(
(1 − t)m + tm′, v

)(
m′ − m

)
(dv) dt.(2.2)

Note that the condition (i) is designed to make the integral in (ii) well-defined. Only one
function δV

δm
can satisfy (2.2), up to a constant shift; that is, if δV

δm
satisfies (2.2) then so does

δV
δm

+ c for any c ∈ R. For concreteness, we always choose the shift to ensure∫
Rd

δV

δm
(m,v)m(dv) = 0.
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If δV
δm

(m,v) is continuously differentiable in v, we define its intrinsic derivative DmV :
Pq(Rd) ×R

d →R
d by

DmV (m,v) = Dv

(
δV

δm
(m,v)

)
,

where we use the notation Dv for the gradient in v. If, for each v ∈ R
d , the map m →

δV
δm

(m,v) is C 1, then we say that V is C 2 and let δ2V
δm2 denote its derivative, or more explicitly,

δ2V

δm2

(
m,v, v′)= δ

δm

(
δV

δm
(·, v)

)(
m,v′).

We will also make some use of the derivative

DvDmV (m,v) = Dv

[
DmV (m,v)

]
,

when it exists, and we note that DvDmV takes values in R
d×d ; for some results, we will also

consider higher order derivatives Dk
vDmV (m,v) with values in R

d×···×d ∼= R
dk+1

for k ∈ N.

Finally, if V is C 2 and if δ2V
δm2 (m,v, v′) is twice continuously differentiable in (v, v′), we let

D2
mV

(
m,v, v′)= D2

v,v′
δ2V

δm2

(
m,v, v′)

denote the d × d matrix of partial derivatives (∂vi
∂v′

j
[δ2V/δm2](m,v, v′))i,j . Equivalently

(see Lemma 2.4 in [10]),

D2
mV

(
m,v, v′)= Dm

(
DmV (·, v)

)(
m,v′).

2.3. Nash systems and n-player games. We fix throughout the paper a filtered probability
space (
,F,F = (Ft )t∈[0,T ],P), supporting independent F-Wiener processes W of dimen-
sion d0 (called common noise) and (Bi)∞i=1 of dimension d (called idiosyncratic noises) (we
choose the dimension of the idiosyncratic noises (Bi)∞i=1 to be equal to the dimension of the
state space for convenience only), as well as a sequence of i.i.d. F0-measurable R

d -valued
initial states (Xi

0)
∞
i=1 with distribution μ0.

We describe the n-player game and PDE systems first, deferring a precise statement of
assumptions to Section 2.5. We are given an exponent p∗ ≥ 1, an action space A, assumed to
be a Polish space and Borel measurable functions

(b, f ) : Rd ×Pp∗(
R

d)× A →R
d ×R,

g :Rd ×Pp∗(
R

d)→R,

along with two matrices σ ∈R
d×d and σ0 ∈ R

d×d0 , where σ is nondegenerate.
In the n-player game, players i = 1, . . . , n control the state process (Xt = (X1

t , . . . ,

Xn
t ))t∈[0,T ], given by

dXi
t = b

(
Xi

t ,m
n
Xt

, αi(t,Xt )
)
dt + σ dBi

t + σ0 dWt,(2.3)

where we recall that mn
Xt

denotes the empirical measure associated with the vector Xt . Here,
αi is the control chosen by player i in feedback form. The objective of player i is to try to
choose αi to minimize

Jn,i(α1, . . . , αn)= E

[∫ T

0
f
(
Xi

t ,m
n
Xt

, αi(t,Xt )
)
dt + g

(
Xi

T ,mn
XT

)]
.
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A (closed-loop) Nash equilibrium is defined in the usual way as a vector of feedback functions
(α1, . . . , αn), where αi : [0, T ] × (Rd)n → A are such that the SDE (2.3) is unique in law,
and

Jn,i(α1, . . . , αn)≤ Jn,i(α1, . . . , αi−1, α̃, αi+1, . . . , αn),
for any alternative choice of feedback control α̃ such that the SDE (2.3), with αi replaced by
α̃, is unique in law.

From the work of [3], we know that a Nash equilibrium can be built using a system of HJB
equations. Define the Hamiltonian H : Rd ×Pp∗

(Rd) ×R
d →R by

H(x,m,y) = inf
a∈A

[
b(x,m,a) · y + f (x,m,a)

]
.

Assume that this infimum is attained for each (x,m,y), and let α̂(x,m,y) denote a mini-
mizer; we will place assumptions on the function α̂ in the next section. Although we do not
explicitly require α̂ to be unique, the reader must be aware of the fact that Assumption A
stated below is rather constraining. For instance, Assumption A requires the existence of a
smooth solution to the master equation, which is described in detail in the next subsection. In
all existing works on the subject, existence of a smooth solution to the master equation is in
fact proven under the assumption that α̂(x,m,y) is unique (see, for instance, [13, 18, 26]).
In [10], the Hamiltonian is smooth and b(x,m,a) = a: Following the proof of Theorem 2 in
[35], uniqueness of the minimizer follows. It is convenient to define the functionals b̂ and f̂

on R
d ×Pp∗

(Rd) ×R
d by

b̂(x,m,y) = b
(
x,m, α̂(x,m,y)

)
and

f̂ (x,m,y) = f
(
x,m, α̂(x,m,y)

)
,

(2.4)

and note that then

H(x,m,y) = b̂(x,m,y) · y + f̂ (x,m,y).(2.5)

The n-player Nash system is a PDE system for n functions, (vn,i : [0, T ] × (Rd)n → R)ni=1,
given by

∂tv
n,i(t,x) + H

(
xi,m

n
x,Dxi

vn,i(t,x)
)

+
n∑

j=1,j �=i

Dxj
vn,i(t,x) · b̂(xj ,m

n
x,Dxj

vn,j (t,x)
)

+ 1

2

n∑
j=1

Tr
[
D2

xj ,xj
vn,i(t,x)σσ�]

+ 1

2

n∑
j,k=1

Tr
[
D2

xj ,xk
vn,i(t,x)σ0σ

�
0
]= 0,

(2.6)

with terminal condition vn,i(T ,x) = g(xi,m
n
x).

Using (classical) solutions to the n-player Nash system, we may construct an equilibrium
for the n-player game. The ith agent uses the feedback control

[0, T ] × (
R

d)n � (t,x) → α̂
(
x,mn

x,Dxi
vn,i(t,x)

)
.

As a result, the in-equilibrium state process X = (X1, . . . ,Xn) is governed by

dXi
t = b̂

(
Xi

t ,m
n
Xt

,Dxi
vn,i(t,Xt )

)
dt + σ dBi

t + σ0 dWt,(2.7)
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with b̂ defined in (2.4). Under Assumption A of Section 2.5 below, the SDE (2.7) is uniquely
solvable. Indeed, due to Assumption A(4), Dxi

vn,i is at most of linear growth; moreover,
the second derivatives of vn,i exist and are continuous, which ensures that Dxi

vn,i is locally
Lipschitz. Also, Assumption A(1) and the fact that x → mn

x is a Lipschitz function from
(Rd)n to (Pp∗

(Rd),Wp∗,Rd ) ensure that the SDE system (2.7) has a unique strong solution.

2.4. The mean field game and master equation. The master equation is a PDE for a
function U : [0, T ] ×R

d ×Pp∗
(Rd) →R, given by

0 = ∂tU(t, x,m) + H
(
x,m,DxU(t, x,m)

)
+ 1

2
Tr
[(

σσ� + σ0σ
�
0
)
D2

xU(t, x,m)
]

+
∫
Rd

b̂
(
v,m,DxU(t, v,m)

) · DmU(t, x,m,v) dm(v)

+ 1

2

∫
Rd

Tr
[(

σσ� + σ0σ
�
0
)
DvDmU(t, x,m,v)

]
dm(v)(2.8)

+ 1

2

∫
Rd

∫
Rd

Tr
[
σ0σ

�
0 D2

mU
(
t, x,m,v, v′)]dm(v)dm

(
v′)

+
∫
Rd

Tr
[
σ0σ

�
0 DxDmU(t, x,m,v)

]
dm(v),

for (t, x,m) ∈ (0, T ) × R
d × Pp∗

(Rd), with terminal condition U(T , x,m) = g(x,m). The
connection between the Nash system and the master equation is clarified in [10] and Propo-
sition 4.1 of [20]; roughly speaking, vn,i(t,x) is expected to be close to U(t, xi,m

n
x) as n

tends to infinity.
Just as the n-player Nash system was used to build an equilibrium for the n-player game,

we will use the master equation to describe an equilibrium for the associated mean field game,
described below. First, consider the McKean–Vlasov equation

dXt = b̂
(
Xt ,μt ,DxU(t,Xt ,μt )

)
dt

+ σ dB1
t + σ0 dWt, μ = L(X |W),

(2.9)

with initial condition X0 = X1
0, where L(X |W) denotes the conditional law of X given

(the path) W , viewed as a random element of Pp∗
(Cd). Here, a solution X = (Xt )t∈[0,T ]

is required to be adapted to the filtration generated by the process (X1
0,Wt ,B

1
t )t∈[0,T ]. No-

tice that necessarily μt = L(Xt |W) = L(Xt |(Ws)s∈[0,t]) a.s., for each t ∈ [0, T ], because
(Ws − Wt)s≥t is independent of (Xs,Ws)s≤t . Assumptions A(1) and A(5), stated in Sec-
tion 2.5 below, ensure that there is a unique strong solution to (2.9); this follows from a
straightforward adaptation of the arguments in Chapter 1 of Sznitman [37] (cf. Section 7 of
[15], Section 7, and Section 2.1 of [13]). For the reader who is more familiar with the PDE
formulation of mean field games, we emphasize that the process (μt )t∈[0,T ] is a weak solution
to the stochastic Fokker–Planck equation

dμt = −div
(
b̂
(·,μt ,DxU(t, ·,μt )

)
μt

)
dt + 1

2
Tr
[
D2

xμt

(
σσ� + σ0σ

�
0
)]

dt

− (
σ�

0 Dxμt

) · dWt,

for t ∈ [0, T ], which follows from a straightforward application of Itô’s formula to the process
(φ(Xt))t∈[0,T ] for smooth test functions φ.
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Since U is a classical solution to the master equation with bounded derivatives (see As-
sumptions A(1) and A(5) in Section 2.5 below), it is known that the measure flow μ con-
structed from the McKean–Vlasov equation (2.9) is the unique equilibrium of the mean field
game; see, for instance, Proposition 5.106 in [12]. A mean field game equilibrium is usually
defined as a fixed point of the map � that sends a W -measurable random measure μ on Cd

(such that (μt )t∈[0,T ] is adapted to the filtration generated by W ) to a new random measure
�(μ), defined as follows:

(i) Solve the stochastic optimal control problem, with μ fixed:⎧⎪⎨⎪⎩inf
α
E

[∫ T

0
f
(
Xα

t ,μt , αt

)
dt + g

(
Xα

T ,μT

)]
,

s.t. dXt = b
(
Xα

t ,μt , αt

)
dt + σ dB1

t + σ0 dWt,

where (αt )t∈[0,T ] is an A-valued progressively measurable process (with respect to the filtra-
tion generated by X0, B and W ) such that SDE admits a unique strong solution and the cost
functional makes sense (to simplify, we use strong solutions when dealing with stochastic
optimal controls over open loop controls).

(ii) Letting X∗ denote the optimally controlled state process, set �(μ) = L(X∗|W).

Note that if the optimization problem in step (i) has multiple solutions, the map � may be
set-valued, and we seek μ such that μ ∈ �(μ). The original formulation of Lasry and Lions
[33] is a forward–backward PDE system, which is essentially equivalent to this fixed-point
procedure, when σ0 = 0. When σ0 �= 0, the forward–backward PDE becomes stochastic, but
the same connection remains. For more details on the connection between the master equation
and more common PDE or probabilistic formulations of mean field games, see [4, 5, 11] or
Section 1.2.4 in [10]. For our purposes, we simply take the McKean–Vlasov equation (2.9)
as the definition of μ.

2.5. Assumptions. The following standing assumption holds throughout the paper, and
this is notably the same standing assumption as in the companion paper [20] (specifically,
Assumption A therein).

ASSUMPTION A.

1. A minimizer α̂(x,m,y) ∈ arg mina∈A[b(x,m,a) · y + f (x,m,a)] exists for every
(x,m,y) ∈ R

d × Pp∗
(Rd) × R

d , for some p∗ ∈ [1,2] such that the function b̂(x,m,y) de-
fined in (2.4) is Lipschitz in all variables. That is, there exists C < ∞ such that, for all
x, x′, y, y′ ∈ R

d and m,m′ ∈ Pp∗
(Rd),∣∣b̂(x,m,y) − b̂

(
x′,m′, y′)∣∣≤ C

(∣∣x − x′∣∣+Wp∗
(
m,m′)+ ∣∣y − y′∣∣),

where Wp∗ is shorthand for Wp∗,(Rd ,|·|).
2. The d × d matrix σ is nondegenerate.
3. The initial states (Xi

0)
∞
i=1 are i.i.d. with law μ0 ∈ Pp′

(Rd) for some p′ > 4.
4. For each n, the n-player Nash system (2.6) has a classical solution (vn,i)ni=1, in the

sense that each function vn,i(t,x) is continuously differentiable in t and twice continuously
differentiable in x. Moreover, Dxj

vn,i has at most linear growth and vn,i has at most quadratic
growth, for each fixed n, i, j . That is, there exist Ln,i < ∞ and Ln,i,j< ∞ such that, for all
t ∈ [0, T ] and x ∈ (Rd)n, ∣∣Dxj

vn,i(t,x)
∣∣≤ Ln,i,j

(
1 + |x|),∣∣vn,i(t,x)

∣∣≤ Ln,i

(
1 + |x|2).
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5. The master equation admits a classical solution U : [0, T ]×R
d ×P2(Rd) � (t, x,m) →

U(t, x,m). The derivative DxU(t, x,m) exists and is Lipschitz in (x,m), uniformly in t

(with respect to the metric Wp∗ for the argument m ∈ Pp∗
(Rd)), and U admits continuous

derivatives ∂tU , DxU , DmU , D2
xU , DvDmU , DxDmU and D2

mU . Moreover, DxU , DmU ,
DxDmU and D2

mU are assumed to be bounded.

Recall that |x| in A(4) is the Euclidean norm of x ∈ (Rd)n; in some places, we denote it by
‖x‖n,2 in order to distinguish it explicitly from other norms, as in Section 3.1 below. We also
need some assumptions on the growth of the function f̂ , defined in (2.4), using of course the
same function α̂ from Assumption A(1). We provide two alternatives.

ASSUMPTION B. f̂ (x,m,y) is Lipschitz in y, uniformly in (x,m). That is, there exists
C < ∞ such that, for all x, y, y ′ ∈ R

d and m ∈ Pp∗
(Rd),∣∣f̂ (x,m,y) − f̂

(
x,m,y′)∣∣≤ C

∣∣y − y′∣∣.
ASSUMPTION B′ .

1. The solution U to the master equation is uniformly bounded.
2. The Nash system solutions (vn,i)ni=1 are bounded, uniformly in n and i.
3. f̂ (x,m,y) is locally Lipschitz in y with quadratic growth, uniformly in (x,m). That is,

there exists C < ∞ such that, for all x, y, y′ ∈ R
d and m ∈ Pp∗

(Rd),∣∣f̂ (x,m,y) − f̂
(
x,m,y′)∣∣≤ C

(
1 + |y| + ∣∣y′∣∣)∣∣y − y′∣∣.

These are admittedly very heavy assumptions, but they do cover a broad class of models.
We refer the reader to the end of Section 1 and Section 2.4 in [20] for a detailed discus-
sion and references. Notice that we do not place any assumptions directly on the terminal
cost function g, but A(5) along with the boundary condition U(T , x,m) = g(x,m) impose
implicit requirements on g.

3. Statements of main results. This section summarizes the main results on the
n-player Nash equilibrium empirical measures (mn

X)n≥1 and on their marginal flows
((mn

Xt
)t∈[0,T ])n≥1, defined by the SDE (2.7). Proofs are deferred to later sections. It is help-

ful to first recall the associated law of large numbers associated, regarding the convergence
of (mn

X)n≥1 to μ, where μ is defined by the McKean–Vlasov equation (2.9). The first part
is quoted from [20], and we elaborate here on the rate of convergence in various metrics.
Define, for p ∈ [1,2], the constants

rn,p =

⎧⎪⎪⎨⎪⎪⎩
n−1/2 if d < 2p,

n−1/2 log(1 + n) if d = 2p,

n−p/d if d > 2p.

(3.1)

The following law of large numbers is a slight elaboration on Theorem 3.1 of [20] and The-
orem 2.13 of [10], with the short proof deferred to the end of Section 5.3.

THEOREM 3.1. Suppose Assumption A holds, as well as either Assumption B or B′.
Then, with p∗ ∈ [1,2] as in Assumption A,

lim
n→∞E

[
W2

2,Cd

(
mn

X,μ
)]= 0,
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and there exists C < ∞ such that, for each n ≥ 1,

sup
t∈[0,T ]

E
[
Wp∗

p∗,Rd

(
mn

Xt
, μt

)]≤ Crn,p∗,

E

[
sup

t∈[0,T ]
W2

2,Rd

(
mn

Xt
, μt

)]≤ Cn−2/(d+8).

The two different ways of estimating the rate of convergence in Theorem 3.1 (with the
supremum over t inside or outside of the supremum) are somewhat standard in the theory of
McKean–Vlasov equations and related particle systems. See, for instance, [10] and Chapter 6
in [13] for earlier applications in the framework of MFGs. A key point is that the distance
between the initial sample in the n-player game and the initial theoretical distribution is kept
stable under the Nash equilibrium dynamics. As a result, all known estimates for the rate
of convergence in Theorem 3.1 do depend on the dimension d , which is a consequence of
existing results on the fluctuations of the empirical distribution of a sample of i.i.d. random
variables in R

d (see, for instance, [25]). In the central limit theorem of our companion paper
[20] (see Theorem 3.2 therein) the dimension d also plays a notable role in the smoothness
assumptions required of b and in the precise space in which the limit is formulated.

3.1. Concentration inequalities in the absence of common noise. We next look for a
concentration bound for the empirical measure mn

X of the Nash system, in the case of no
common noise, that is, σ0 = 0. Precisely, we work here with the empirical measure of the full
paths, so that mn

X is a random element of P(Cd). We derive in this section an estimate on

P
(
Wp∗,Cd

(
mn

X,μ
)
> ε

)
, ε > 0.

The proofs of the main results, Theorems 3.2 and 3.4, of this section are given in Section 5.4.
In the following, we consider two different choices of norms on (Cd)n, namely the 1 and

2 norms. For x = (x1, . . . , xn) ∈ (Cd)n, let

‖x‖n,1 :=
n∑

i=1

∥∥xi
∥∥∞, ‖x‖n,2 :=

√√√√ n∑
i=1

∥∥xi
∥∥2
∞.

Note that we still always use the standard sup-norm ‖ · ‖∞ on Cd , defined by ‖x‖∞ =
supt∈[0,T ] |xt |, where | · | is the usual Euclidean norm on R

d . For a normed space (E,‖ · ‖),
write Lip(E,‖ · ‖) for the set of 1-Lipschitz functions, that is, the set of f : E → R with
|f (x)−f (y)| ≤ ‖x −y‖ for all x, y ∈ E. If the norm is understood, we write simply Lip(E).

Recall in the following that μ0 is the law of the initial state (see Assumption A(3)). We
now state our first concentration result.

THEOREM 3.2. Assume p∗ = 1 and σ0 = 0, and suppose Assumption A holds, as well
as either Assumption B or B′. Assume there exists κ > 0 such that∫

Rd
exp

(
κ|x|2)μ0(dx) < ∞.(3.2)

Then there exist C < ∞, δ > 0 such that, for every a ≥ C, every n ≥ 1 and every � ∈
Lip((Cd)n,‖ · ‖n,1), we have

P
(
�(X) −E�(X) > a

)≤ 3n exp
(−δa2/n

)
.(3.3)

We quickly obtain a probabilistic rate of convergence, complementing Theorem 3.1.
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COROLLARY 3.3. Under the assumptions of Theorem 3.2, there exist C < ∞ and δ > 0
such that, for every a > 0 and every n ≥ C/min{a, ad+8}, we have

P

(
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,μs

)
> a

)
≤ 3n exp

(−δa2n
)
.(3.4)

PROOF. Note that x → sups∈[0,T ]W1,Rd (mn
xs

,μs) is (1/n)-Lipschitz from ((Cd)n,

‖ · ‖n,1) to R. Observe also from Theorem 3.1 that

E

[
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,μs

)]≤ cn−1/(d+8)

for some c < ∞. Then, for any a > 0,

P

(
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,μs

)
> a

)
≤ P

(
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,μs

)−E

[
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,μs

)]
> a/2

)
+ P

(
E

[
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,μs

)]
> a/2

)
.

The second term vanishes if cn−1/(d+8) ≤ a/2. The first term is bounded by the right-hand
side of (3.4) when an ≥ 2c̃, with c̃ being defined as the constant C in the statement of Theo-
rem 3.2. The corollary then holds with C = max((2c)d+8,2c̃). �

The proof of Theorem 3.2 relies on the following well-known result of concentration of
measure, borrowed from Theorem 2.3 of [22] and Theorem 3.1 of [6], which asserts that the
following are equivalent:

(i) μ0 satisfies (3.2) for some κ > 0.
(ii) There exists κ > 0 such that, for every ϕ ∈ Lip(Rd), we have

μ0
(
ϕ − 〈μ0, ϕ〉 > a

)≤ exp
(−a2/2κ

)
.

(iii) There exists a finite constant κ > 0 such that

W1,Rd (μ0, ν) ≤
√

2κR(ν|μ0), for every ν ∈ P1(
R

d) with ν � μ0.(3.5)

Here, R denotes relative entropy, defined by

R(ν|μ0) =
⎧⎪⎨⎪⎩
∫

dν

dμ0
log

dν

dμ0
dμ0 if ν � μ0,

∞ otherwise,
(3.6)

where ν � μ0 denotes that ν is absolutely continuous with respect to μ0. In fact, the change
in the constant κ required between each of the conditions (i)–(iii) is universal, in particular
independent of both μ0 and the underlying metric space. We refer the reader to the book by
Ledoux [34] for more discussion on concentration of measure and alternative formulations
of (ii), some of which we collect in Section 5.1. The idea behind the proof of Theorem 3.2,
given in Section 5.4, is to show that the law of the solution X on the path space (Cd)n satisfies
a transport inequality like (3.5) with a constant that depends optimally on the dimension n.

If we are willing to strengthen the condition (3.2), then we may sharpen Theorem 3.2 to
make it dimension-free, in the sense that the bound will no longer depend on n. The proof
of Theorem 3.4 below has a similar flavor to that of Theorem 3.2. The starting point for our
strengthening of Theorem 3.2, in Theorem 3.4, is the remarkable result of Gozlan [27] that
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shows that dimension-free concentration is equivalent to the following quadratic transport
inequality:

W2,Rd (μ0, ν) ≤
√

2κR(ν|μ0), for every ν ∈P2(
R

d) with ν � μ0.(3.7)

More precisely, there exists a finite constant κ > 0 such that (3.7) holds if and only if there
exists δ > 0 such that for every n ∈ N, every f ∈ Lip((Rd)n) (using the usual Euclidean
metric on (Rd)n), and every a > 0 we have

μn
0
(
f − 〈

μn
0, f

〉
> a

)≤ exp
(−δa2).

By now, many probability measures are known to satisfy (3.7). The standard Gaussian mea-
sure on R

d , for instance, satisfies (3.7) with κ = 1. More generally, if μ0(dx) = e−V (x) dx

for some twice continuously differentiable function V on R
d with Hessian bounded below

(in semidefinite order) by cI for some c > 0, then μ0 satisfies (3.7) with κ = 1/c; see Corol-
lary 7.2 in [28]. Of course, Dirac measures satisfy (3.7) trivially.

The following theorem is analogous to Theorem 3.2 but assumes (3.7) in place of (3.5), or
equivalently (3.2).

THEOREM 3.4. Assume σ0 = 0, and suppose Assumption A holds, as well as either
Assumptions B or B′. Assume there exists a finite constant κ > 0 such that (3.7) holds. Then
there exist C < ∞ and δ1, δ2 > 0 such that, for every a > 0, every n ≥ C/a2, and every
� ∈ Lip((Cd)n,‖ · ‖n,2), we have

P
(
�(X) −E�(X) > a

)≤ 2n exp
(−δ1a

2n
)+ 2 exp

(−δ2a
2).(3.8)

We immediately obtain an improvement of Corollary 3.3.

COROLLARY 3.5. Under the assumptions of Theorem 3.4, there exist C < ∞ and
δ1, δ2 > 0 such that, for every a > 0 and every n ≥ C/min(a, ad+8), we have

P

(
sup

s∈[0,T ]
W2,Rd

(
mn

Xs
,μs

)
> a

)
≤ 2n exp

(−δ1a
2n2)+ 2 exp

(−δ2a
2n
)
.(3.9)

PROOF. Similar to Corollary 3.3, this follows from Theorem 3.4: Note first that the map-
ping x → sups∈[0,T ]W2,Rd (mn

xs
,μs) is n−1/2-Lipschitz from ((Cd)n,‖ · ‖n,2) to R. Then, by

Theorem 3.1, we have

E

[
sup

s∈[0,T ]
WRd ,2

(
mn

Xs
,μs

)]≤ cn−1/(d+8)

for a constant c < ∞. �

A final notable corollary allows us to estimate the distance between the n-player and k-
player games, for different population sizes n and k. This follows immediately from Corol-
laries 3.3 and 3.5, using the triangle inequality.

COROLLARY 3.6. Under the assumptions of Theorem 3.2, there exist C < ∞ and δ > 0
such that, for every a > 0 and every n, k ≥ C/min{a, ad+8}, we have

P

(
sup

s∈[0,T ]
W1,Rd

(
mn

Xs
,mk

Xs

)
> a

)
≤ 3n exp

(−δa2n
)+ 3k exp

(−δa2k
)
.

Alternatively, under the assumptions of Theorem 3.4, there exist C < ∞ and δ1, δ2 > 0 such
that, for every a > 0 and every n, k ≥ C/min(a, ad+8), we have

P

(
sup

s∈[0,T ]
W2,Rd

(
mn

Xs
,mk

Xs

)
> a

)
≤ 2n exp

(−δ1a
2n2)+ 2 exp

(−δ2a
2n
)

+ 2k exp
(−δ1a

2k2)+ 2 exp
(−δ2a

2k
)
.
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REMARK 3.7. The exponent d + 8 that appears in all of the corollaries of this section
is suboptimal, stemming from our application of the second part of Theorem 3.1 (which
hinges on results of [29]). But we obtained a better rate (coming from [25]) in Theorem 3.1
by taking the supremum outside of the expectation. With this in mind, one easily derives
analogs of Corollaries 3.3, 3.5 and 3.6 in which the supremum is outside of the probability
and expectation. For instance, in the setting of Corollary 3.3, there exist constants C < ∞
and δ > 0 such that for every a > 0 and n ∈ N satisfying a ≥ C max{n−1, rn,1} we have

sup
s∈[0,T ]

P
(
W1,Rd

(
mn

Xs
,μs

)
> a

)≤ 3n exp
(−δna2).

The key advantage is that the requirement a ≥ C max{n−1, rn,1} is much weaker; for a fixed
a this inequality “kicks in” for much smaller n, as rn,1 ≤ n−1/(d+8).

REMARK 3.8. When there is common noise, it is natural to wonder what remains of
these concentration bounds. One certainly cannot expect exactly the same results to hold,
because concentration requires a degree of independence; for example, in the degenerate
case where Xi ≡ W for all i, and Theorems 3.2 and 3.4 clearly fail. See Remark 5.7 for a
brief discussion of this possibility.

Lastly, we discuss similar concentration inequalities for the in-equilibrium controls them-
selves. We find that the results are most naturally stated in terms of the natural coupling of
the in-equilibrium state processes with i.i.d. copies of the solution of the McKean–Vlasov
equation, driven by the same Brownian motions and initial states

dX i
t = b̂

(
X i

t ,μt ,DxU
(
t,X i

t ,μt

))
dt + σ dBi

t + σ0 dWt, μ = L
(
X i |W )

,

with initial condition X i
0 = Xi

0, where L(X i |W) denotes the conditional law of X given (the
path) W . The proof of the following is given in Section 5.4.

THEOREM 3.9. Suppose Assumption A holds, as well as either Assumptions B or B′.
Assume α̂(x,m,y) is Lipschitz on R

d ×Pp∗
(Rd) ×R

d . Define the in-equilibrium controls

α
n,i
t = α̂

(
Xi

t ,m
n
Xt

,Dxi
vn,i(t,Xt )

)
,

and the limiting controls

βi
t = α̂

(
X i

t ,μt ,DxU
(
t,X i

t ,μt

))
,

for t ∈ [0, T ]. Then, with rn,p defined as in (3.1), we have for each n ≥ 1

E

[
1

n

n∑
i=1

∫ T

0

∣∣αn,i
t − βi

t

∣∣p∗
dt

]
≤ Crn,p∗ .(3.10)

If we assume also that σ0 = 0, then:

(i) If p∗ = 1 and (3.2) holds for some κ > 0, then there exist C < ∞ and δ1 > 0 such
that for every a > 0 and every n ≥ C/min{a, ad+8},

P

(
1

n

n∑
i=1

∫ T

0

∣∣αn,i
t − βi

t

∣∣2 dt > a2

)
≤ 3ne−δ1a

2n + 2ne−δ2a
2n2

.

(ii) If (3.7) holds for some κ > 0, then there exist C < ∞ and δ1, δ2 > 0 such that for
every a > 0 and every n ≥ C/min{a, ad+8},

P

(
1

n

n∑
i=1

∫ T

0

∣∣αn,i
t − βi

t

∣∣2 dt > a2

)
≤ 4ne−δ1a

2n2 + 2e−δ2a
2n.
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The assumption that α̂ is Lipschitz in its arguments is not unreasonable; it is valid in the
most common case where b(x,m,a) = a and f (x,m,a) = −1

2 |a|2, for example. See also
Section 3.1.4 of [12] for additional examples, at least when α̂ does not depend on the measure,
together with Lemma 6.18 in Chapter 6 of [12] for cases when α̂ is allowed to depend on μ.
Notably, the controls appear in Theorem 3.9 integrated in time; analogous results, with the
integral replaced by a supt∈[0,T ], would require a very different and likely more involved
argument.

3.2. Large deviations. In this section, we state a large deviation principle (LDP) for
the sequence (mn

Xt
)t∈[0,T ] regarded as a sequence of random variables with values in the

space C([0, T ];P1(Rd)), where P1(Rd) is equipped with the 1-Wasserstein distance, and
C([0, T ];P1(Rd)) is equipped with the resulting uniform topology. Below, let C∞

c (Rd) de-
note the space of smooth compactly supported functions on R

d . It is convenient here to define

b̃(t, x,m) := b̂
(
x,m,DxU(t, x,m)

)
(3.11)

= b
(
x,m, α̂

(
x,m,DxU(t, x,m)

))
,

with α̂ being the minimizer in Assumption A(1).
Following [19], we now introduce the action functional, which requires the following def-

inition: we say that a distribution-valued path t → νt defined on [0, T ] is absolutely continu-
ous if, for each compact set K ⊂ R

d , there exists a neighborhood UK of 0 (for the inductive
topology) in the space CK(Rd) of functions in C∞

c (Rd) whose support is included in K and
an absolutely continuous function δK : [0, T ] → R such that∣∣〈μt, f 〉 − 〈μs,f 〉∣∣≤ ∣∣δK(t) − δK(s)

∣∣, s, t ∈ [0, T ], f ∈ UK.

We refer to [19] for more details. The action functional I : C([0, T ];P1(Rd)) → [0,∞] is
then given by

I (ν) =
⎧⎪⎨⎪⎩

1

2

∫ T

0

∥∥ν̇t −L∗
t,νt

νt

∥∥2
νt

dt if t → νt is absolutely continuous,

∞ otherwise,
(3.12)

where, for (t,m) ∈ [0, T ] ×P1(Rd), L∗
t,m is the formal adjoint of the operator

Lt,mϕ = 1

2
Tr
[
σσ�D2

xϕ
]+ Dxϕ · b̃(t, ·,m),

for ϕ ∈ C∞
c (Rd), and the seminorm ‖ · ‖m acts on Schwartz distributions by

‖γ ‖2
m := sup

ϕ∈C∞
c (Rd )

〈m,|Dxϕ|2〉�=0

〈γ,ϕ〉2

〈m, |Dxϕ|2〉 ,

the notation 〈·, ·〉 here denoting the duality bracket.
We may now state the first main LDP, which covers the case without common noise (σ0 =

0). Its proof is given in Section 6.1.3.

THEOREM 3.10. Assume p∗ = 1 and σ0 = 0, and suppose Assumption A and either
Assumption B or B′ hold. Suppose also that∫

Rd
exp

(
λ|x|)μ0(dx) < ∞ for all λ > 0.

Then the sequence (mn
Xt

, t ∈ [0, T ])n∈N satisfies a large deviation principle on C([0, T ];
P1(Rd)), with good rate function ν = (νt )t∈[0,T ] → I (ν) + R(ν0|μ0), where I is given by
(3.12) and R is as in (3.5).
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This follows almost immediately from the results of [19] on large deviations for McKean–
Vlasov particle systems, once the exponential equivalence of the Nash system and the
McKean–Vlasov system is established. However, we revisit this classical question of large
deviations from the McKean–Vlasov limit and provide a simpler self-contained proof based
on the contraction principle, which is possible in our setting because the volatility coeffi-
cients are constant. Our main interest in providing our own proof is in addressing the case
with common noise, for which there are no known results. This leads to the weak LDP of
Theorem 3.11 below, for which we must first develop some notation.

We first introduce (τx :Rd � z → z−x)x∈Rd the group of translations on R
d , as well as the

orthogonal projection �σ−1σ0
from R

d onto the image of σ−1σ0. Then, for any continuous
path φ from [0, T ] into R

d , we define Ĩ φ to be the rate function as given by (3.12), but
modified by replacing the drift b̃ with (t, x,m) → b̃(t, x + φt ,m ◦ τ−1

−φt
) where it appears in

the operator Lt,m. Also, for a path ν ∈ C([0, T ];P1(Rd)), we let

M
b̃,ν
t :=

(
σ�σ−1σ0

σ−1
(∫

Rd
x d(νt − ν0)(x) −

∫ t

0

〈
νs, b̃(s, ·, νs)

〉
ds

))
t∈[0,T ]

.

This allows us to define the following functional:

J σ0(ν) = ĨM
b̃,ν ((

νt ◦ τ−1

M
b̃,ν
t

)
t∈[0,T ]

)
.

We may now state the weak LDP, valid even when there is common noise. Its proof is deferred
to Section 6.2.2. Recall in the following that R denotes the relative entropy, defined in (3.6).

THEOREM 3.11. Assume p∗ = 1, and suppose Assumption A and either Assumptions B
or B′ hold. Suppose also that∫

Rd
exp

(
λ|x|)μ0(dx) < ∞, for all λ > 0.

Then the sequence (mn
Xt

, t ∈ [0, T ])n∈N satisfies the following weak large deviation principle

in C([0, T ];P1(Rd)):

(i) For any open subset O of C([0, T ];P1(Rd)),

lim inf
n→∞

1

n
logP

(
mn

X· ∈ O
)≥ − inf

ν∈O

(
J σ0(ν) +R(ν0|μ0)

)
.

(ii) For any compact subset K of C([0, T ];P1(Rd)),

lim sup
n→∞

1

n
logP

(
mn

X· ∈ K
)≤ − inf

ν∈K

(
J σ0(ν) +R(ν0|μ0)

)
.

(iii) For any closed subset F of C([0, T ];P1(Rd)),

lim sup
n→∞

1

n
logP

(
mn

X· ∈ F
)≤ − lim

δ↘0
inf

ν∈Fδ

(
J σ0(ν) +R(ν0|μ0)

)
,

where Fδ = {ν ∈ C([0, T ];P1(Rd)) : infν̃∈F supt∈[0,T ]W1(̃νt , νt ) ≤ δ}.
It must be stressed that J σ0 coincides with I when σ0 = 0 since the image of σ0 reduces

to {0}, the process Mb̃,ν is null and Ĩ 0 = I .
We also emphasize that other forms of the rate function J σ0 are given in Section 6. For

instance, the formulation provided in Proposition 6.5 is certainly more tractable than the one
given just prior to Theorem 3.11, but it has the major drawback of holding only for a special
class of paths ν. In fact, all these different expressions for J σ0 convey the same idea: As soon
as σ0 differs from the null matrix, the rate function is not a good rate function, that is to say,
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its level sets are not compact. The reason is quite clear: the common noise permits to shift
for free the mean of ν in the directions included in the image of σ0. In words, J σ0(ν) may
remain bounded even if the mean path of ν has higher and higher oscillations.

To illustrate the latter fact, let φ ∈ Cd with φ0 = 0, call X
φ

the solution to the McKean–
Vlasov equation:

dX
φ

t = b̃
(
t,X

φ

t ,L
(
X

φ

t

))
dt + σ dB1

t + σ0φ̇t dt, t ∈ [0, T ],
and let ν = (L(X

φ

t ))t∈[0,T ] denote its flow of marginal laws. In that case, Mb,ν coincides

with σ0φ, and thus (νt ◦ τ−1
M

b,ν
t

)t∈[0,T ] is the flow of marginal laws of (X
φ

t − σ0φt)t∈[0,T ], the

latter solving the McKean–Vlasov equation (with no common noise) with drift b̃ given by

(t, x,m) → b(t, x +σ0φt ,m ◦ τ−1
−σ0φt

). As a result, ĨM
b̃,ν

((νt ◦ τ−1

M
b̃,ν
t

)t∈[0,T ]) is null, whatever

φ is.

4. Main estimates. The results announced in Section 3 hinge on the estimates developed
in this section. We begin by recalling two key estimates from [20], which we then use to derive
the central exponential approximation of Theorem 4.3.

In the following results and proofs, U is the classical solution to the master equation (2.8).
The letter C denotes a generic positive constant, which may change from line to line but is
universal in the sense that it never depends on i or n, though it may of course depend on
model parameters, including, for example, the bounds on the growth and the regularity of U

and its derivatives, the Lipschitz constants of b and f , and the time horizon T .
To proceed, we define an n-particle SDE system of McKean–Vlasov type, which we will

compare to the true Nash system. Precisely, let X = (X
1
, . . . ,X

n
) solve the approximating

n-particle system

(4.1) dX
i

t = b̂
(
X

i

t ,m
n
Xt

,DxU
(
t,X

i

t ,m
n
Xt

))
dt + σ dBi

t + σ0 dWt, X
i

0 = Xi
0.

Because of Assumptions A(1) and A(5), this SDE system admits a unique strong solution.
We make the following abbreviations: For (t,x) ∈ [0, T ] × (Rd)n, define

un,i(t,x) = U
(
t, xi,m

n
x

)
.

Also, in what follows, for i = 1, . . . , n, define

Mi
t =

∫ t

0

n∑
j=1

(
Dxj

vn,i(s,Xs) − Dxj
un,i(s,Xs)

) · σ dBj
s(4.2)

+
∫ t

0

n∑
j=1

(
Dxj

vn,i(s,Xs) − Dxj
un,i(s,Xs)

) · σ0 dWs,(4.3)

Ni
t =

∫ t

0

(
vn,i(s,Xs) − un,i(s,Xs)

)
dMi

s .(4.4)

We may now state the main estimates from Theorems 4.2 and 4.6 of [20]. These two estimates
are quite similar, but one holds under Assumption B and the other under Assumption B′.

THEOREM 4.1. Suppose Assumptions A and B hold. Then there exists C < ∞ such that,
for each n,

1

n

n∑
i=1

E

[∫ T

0

∣∣Dxi
vn,i(t,Xt ) − DxU

(
t,Xi

t ,m
n
Xt

)∣∣2 dt

]
≤ C

n2 ,(4.5)

E

[
1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞

]
≤ C

n2 .(4.6)
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Moreover,

1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞ ≤ C

n

n∑
i=1

[
Mi]

T + C

n2 ,(4.7)

and for all t ∈ [0, T ],

(4.8)
1

n

n∑
i=1

[
Ni]

t ≤ C

n3

n∑
i=1

[
Mi]

t , and
1

n

n∑
i=1

[
Mi]

T ≤ C

n2 + C

n

n∑
i=1

∣∣Ni
T

∣∣.
THEOREM 4.2. Suppose Assumptions A and B′ hold. Then (4.7) holds, and, for suffi-

ciently large n, the estimates (4.5) and (4.6) hold. For i = 1, . . . , n and a constant η > 0,
define Mi as in (4.2) and Qi by

Qi
t =

∫ t

0

[
2
(
vn,i(s,Xs) − un,i(s,Xs)

)
+ η sinh

(
η
(
vn,i(s,Xs) − un,i(s,Xs)

))]
dMi

s .

Then, for sufficiently large n and η, we have for all t ∈ [0, T ],

(4.9)
1

n

n∑
i=1

[
Qi]

t ≤ C

n3

n∑
i=1

[
Mi]

t , and
1

n

n∑
i=1

[
Mi]

T ≤ C

n2 + C

n

n∑
i=1

∣∣Qi
T

∣∣.
The main estimate for our purposes is the following theorem, which provides an expo-

nential estimate of the distance between the solutions X and X of the SDEs (2.7) and (4.1),
respectively. These estimates will also serve us well in our study of large deviations in Sec-
tion 6.

THEOREM 4.3. Suppose Assumption A holds, as well as either Assumption B or B′.
Then there exist constants κ1, κ2 ∈ (0,∞) such that for every ε > 0 and n ≥ κ1/ε we have

P
(
W2,Cd

(
mn

X,mn
X

)
> ε

)≤ P

(
1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞ > ε2

)

≤ 2n exp
(
−ε2n2

κ2

)
.

(4.10)

The constants κ1 and κ2 depend (in an increasing manner) only on the Lipschitz constants
and uniform bounds of the coefficients in Assumptions A and B or B′.

PROOF. The first inequality in (4.10) is an immediate consequence of the definition (2.1)
of the 2-Wasserstein metric. Turning to the second inequality, we prove the case where As-
sumption B holds; the proof under Assumption B′ is obtained by simply replacing every
occurrence of Ni , Theorem 4.1 and the estimate (4.8) with Qi , Theorem 4.2, and (4.9), re-
spectively. Recall the definitions of Mi and Ni from (4.2) and (4.4). Use (4.7) to get

(4.11)
1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞ ≤ c0

n

n∑
i=1

[
Mi]

T + c0

n2 ,

where c0 < ∞ is a constant (independent of n), which we will now keep track of to clarify
the following arguments. From Theorem 4.1, we have the estimates

(4.12)
1

n

n∑
i=1

[
Ni]

t ≤ c1

n3

n∑
i=1

[
Mi]

t , and
1

n

n∑
i=1

[
Mi]

T ≤ c2

n2 + c3

n

n∑
i=1

∣∣Ni
T

∣∣,
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where the constants c1, c2, c3 < ∞ do not depend on i or n. Fix i for the moment, as well
as δ, γ > 0, to be determined later. Note that for every continuous local martingale R, we
have E[exp(RT − 1

2 [R]T )] ≤ 1. Combining this with Markov’s inequality, we have for each
i = 1, . . . , n,

P

(
γNi

T ≥ δγ + γ 2

2

[
Ni]

T

)
≤ exp(−δγ )

and P

(
−γNi

T ≥ δγ + γ 2

2

[
Ni]

T

)
≤ exp(−δγ ).

Thus, defining the event An = {∃i ∈ {1, . . . , n} : γ |Ni
T | ≥ δγ + γ 2

2 [Ni]T }, we have

P(An) ≤
n∑

i=1

P

(
γ
∣∣Ni

T

∣∣≥ δγ + γ 2

2

[
Ni]

T

)
≤ 2n exp(−δγ ).

On the other hand, on Ac
n,

1

n

n∑
i=1

[
Mi]

T ≤ c2

n2 + c3

n

n∑
i=1

∣∣Ni
T

∣∣
≤ c2

n2 + c3δ + c3γ

2n

n∑
i=1

[
Ni]

T

≤ c2

n2 + c3δ + c1c3
γ

2n3

n∑
i=1

[
Mi]

T ,

and for n2 ≥ (c1c3γ ) ∨ (c2/c3δ) it holds that 1
n

∑n
i=1[Mi]T ≤ 4c3δ. Thus, for any such n,

P

(
1

n

n∑
i=1

[
Mi]

T > 4c3δ

)
≤ P(An) ≤ 2n exp(−δγ ).(4.13)

Recalling (4.11), we may choose ε > 0 and set δ = ε2/8c3c0 to get

P

(
1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞ > ε2

)
≤ P

(
1

n

n∑
i=1

[
Mi]

T >
ε2

c0
− 1

n2

)

≤ P

(
1

n

n∑
i=1

[
Mi]

T >
ε2

2c0

)

≤ 2n exp
(
− ε2γ

8c3c0

)
,

whenever n2 ≥ (c1c3γ )∨ (8c0c2/ε
2)∨ (2c0/ε

2). In particular, choose γ = n2/c1c3 to deduce
(4.10), with κ1 = √

(8c2c0) ∨ (2c0) and κ2 = 16c0c1c
2
3. �

5. Proofs of concentration inequalities. In this section, we prove the claims of Sec-
tion 3.1. Due to Theorem 4.3, it remains only to find concentration estimates for the McKean–
Vlasov system X. We did not find directly applicable results for this, so we develop our own
in Sections 5.1–5.3 below. Finally, in Section 5.4 we address the MFG system.
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5.1. Review of concentration inequalities. We begin by reviewing known results charac-
terizing concentration in terms of transport inequalities, combining well-known facts about
sub-Gaussian random variables with Proposition 6.3 of [28] and Theorem 3.1 of [6]. Recall
the definition of relative entropy R from (3.6).

THEOREM 5.1. Let (E,‖ · ‖) be a separable Banach space and θ ∈ P1(E). Let κ > 0.
Consider the following statements:

(i) For all ν � θ ,

W1,E(θ, ν) ≤
√

2κR(ν|θ).

(ii) For every λ ∈ R and ϕ ∈ Lip(E,‖ · ‖),∫
E

exp
(
λ
(
ϕ − 〈θ,ϕ〉))θ(dx) ≤ exp

(
κλ2/2

)
.

(iii) For every a > 0 and ϕ ∈ Lip(E,‖ · ‖),
θ
(
ϕ − 〈θ,ϕ〉 > a

)≤ exp
(−a2/2κ

)
.

(iv) We have
∫
E exp(‖x‖2/6κ)θ(dx) < ∞.

Then (i) ⇔ (ii) ⇒ (iii) ⇒ (iv). Moreover, if (iv) holds for a given κ , then (i) holds with κ

replaced by

κ ′ = 6
(

1 + 4 log
∫
E

exp
(‖x‖2/6κ

)
μ(dx)

)
.

In particular, (i)–(iv) are equivalent up to a universal change in the constant κ .

In addition, we will need two well-known tensorization results, both of which follow from
Proposition 1.9 of [28]. In what follows, given a separable Banach space (E,‖ · ‖) and p ≥ 1,
by (En,‖ · ‖n,p) we will mean En equipped with the p norm,

(5.1) ‖x‖n,p =
(

n∑
i=1

‖xi‖p

)1/p

,

for x = (x1, . . . , xn) ∈ En. The subscript in ‖ · ‖n,p indicates that we are using the p norm
on the n-fold product space; while one might more descriptively include the space En itself
in the subscript, the underlying space E should always be clear from context. Typically, p

will be either 1 or 2.

THEOREM 5.2. Let (E,‖ · ‖) be a separable Banach space, κ > 0 and θ ∈ P1(E).

(i) Suppose W1,E(θ, ν) ≤ √
2κR(ν|θ), for all ν � θ . Then, for all ν � θn, we have

W1,(En,‖·‖n,1)

(
θn, ν

)≤
√

2nκR
(
ν|θn

)
.

(ii) Suppose W2,E(θ, ν) ≤ √
2κR(ν|θ), for all ν � θ . Then, for all ν � θn, we have

W1,(En,‖·‖n,2)

(
θn, ν

)≤ W2,(En,‖·‖n,2)

(
θn, ν

)≤
√

2κR
(
ν|θn

)
.

The key difference between (i) and (ii) in Theorem 5.2 is of course that (ii) is dimension-
free. Before we can apply these general principles to the study of concentration of interacting
diffusions of McKean–Vlasov type, we first quote a slight modification of Corollary 4.1 of
[22] (alternatively, see Theorem 1 of [38]).
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THEOREM 5.3. For k ∈ N, suppose b : [0, T ]×R
k →R

k is jointly measurable and there
exists L < ∞ such that∣∣b(t, x) − b(t, y)

∣∣≤ L|x − y|, for all x, y ∈ R
k.

Assume also that

sup
t∈[0,T ]

∣∣b(t,0)
∣∣< ∞.(5.2)

For another k′ ∈ N, let σ ∈ R
k×k′

, and let ‖σ‖op = sup{|σx| : x ∈R
k′
, |x| ≤ 1} denote the op-

erator norm. Fix a probability space supporting a k′-dimensional Wiener process W . Finally,
let Xx = (Xx

t )t∈[0,T ] denote the unique strong solution to the SDE

dXx
t = b

(
t,Xx

t

)
dt + σ dWt, X0 = x,

and let Px ∈ P(C([0, T ];Rk)) denote the law of Xx . Then there exists κ < ∞, depending
only on T , L, and ‖σ‖op (and not on the values of k, k′, (5.2)), such that, for all x ∈ R

k we
have

W1,(Ck,‖·‖k,2)
(Q,Px) ≤

√
2κR(Q|Px),

for all Q ∈P1(Ck) with Q � Px.

(5.3)

In particular, it holds for every a > 0 and � ∈ Lip(Ck,‖ · ‖k,2) that

Px

(
� − 〈Px,�〉 > a

)≤ exp
(−a2/2κ

)
.

PROOF. This would follow immediately from [22], Corollary 4.1 (or [38], Theorem 1),
except that we are using the operator norm instead of the Hilbert–Schmidt (Frobenius) norm
for σ . It is straightforward to check that their proof goes through with no change and that the
constant κ does not depend on the values of k, k′ or supt∈[0,T ] |b(t,0)|. The final claim (“in
particular”) follows from the implication (i) ⇒ (iii) in Theorem 5.1. �

5.2. McKean–Vlasov concentration inequalities. We now specialize this result to obtain
concentration bounds for interacting diffusions. Let B1, . . . ,Bn be i.i.d. standard Wiener
processes of dimension d . We are given a parameter p ∈ [1,2], to be specified later, and a
drift b̃ : [0, T ]×R

d ×Pp(Rd) →R
d which is Lipschitz in the space and measure arguments;

more precisely, there exists L̃ < ∞ such that

(5.4)
∣∣b̃(t, x,m) − b̃

(
t ′, x′,m′)∣∣≤ L̃

(∣∣x − x′∣∣+Wp

(
m,m′)), t ∈ [0, T ].

Assume also that

sup
t∈[0,T ]

∣∣b̃(t,0, δ0)
∣∣< ∞.(5.5)

Lastly, we are given σ ∈ R
d×d . Now, consider the n-particle system X̃ = (X̃1, . . . , X̃n) that

is the unique strong solution to the SDE system

dX̃i
t = b̃

(
t, X̃i

t ,m
n
X̃t

)
dt + σ dBi

t ,(5.6)

with initial conditions X̃1
0, . . . , X̃

n
0 which are i.i.d. with law μ̃0 satisfying E[|X̃1

0|2] < ∞.
For x ∈ (Rd)n, let Px ∈ P((Cd)n) denote the law of the solution to the SDE system (5.6)

started from initial states (X̃1
0, . . . , X̃

n
0) = x. Then x → Px is a version of the conditional law

of X̃ given X̃0. Moreover, for any x and y in (Rd)n we can couple Px and Py in the usual
way, by solving the SDE system from the two initial states with the same Brownian motion.
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Let πx,y denote this coupling. In what follows, we will make use of the following standard
estimates: Under assumption (5.4), there exists a constant c that depends only on T , p, and
L̃ (and not on n or the value of (5.5)), such that

(5.7)
∣∣〈Px,�〉 − 〈Py,�〉∣∣p ≤

∫ ∥∥x′ − y′∥∥p
n,pπx,y

(
dx′, dy′)≤ c‖x − y‖p

n,p,

for all � ∈ Lip((Cd)n,‖ · ‖n,p) and x,y ∈ (Rd)n. For our first concentration result, recall that
‖x‖∞ = sups∈[0,T ] |x(s)|, and that on (Cd)n we make use of the corresponding 1 and 2

norms on the product space as in (5.1).

THEOREM 5.4. Assume that the Lipschitz condition (5.4) holds with p = 2. Assume also
that there exists κ0 < ∞ such that

W2(μ̃0, ν) ≤
√

2κ0R(ν|μ̃0), for ν � μ̃0.(5.8)

Then there exist a constant δ > 0, independent of n, such that for every a > 0 and every
� ∈ Lip((Cd)n,‖ · ‖n,2) we have

P
(
�(X̃) −E�(X̃) > a

)≤ 2e−δa2
.

PROOF. To apply Theorem 5.3, we first check that the constant κ in (5.3) does not
grow with the dimension n. To this end, define βn : [0, T ] × (Rd)n → (Rd)n by βn(t,x) =
(b̃(t, x1,m

n
x), . . . , b̃(t, xn,m

n
x)). Define also the nd × nd volatility matrix �n by

�n =

⎛⎜⎜⎜⎝
σ

σ
. . .

σ

⎞⎟⎟⎟⎠ ,

with omitted entries understood to be zero. This way, we can write

dX̃t = βn(t, X̃t ) dt + �n dW t ,

where W = (B1, . . . ,Bn). We wish to show that βn(t, ·) is Lipschitz, uniformly in t and
n, and that supn ‖�n‖op < ∞. First, notice that for x = (x1, . . . , xn) ∈ (Rd)n and y =
(y1, . . . , yn) ∈ (Rd)n we have for t ∈ [0, T ],∣∣b̃(t, xi,m

n
x

)− b̃
(
t, yi,m

n
y

)∣∣≤ L̃
(|xi − yi | +W2

(
mn

x,mn
y

))
≤ L̃

(
|xi − yi | +

√√√√1

n

n∑
j=1

|xj − yj |2
)

= L̃|xi − yi | + L̃n−1/2|x − y|,
where |x − y| as usual denotes the Euclidean distance. Hence,

∣∣βn(t,x) − βn(t,y)
∣∣≤

√√√√ n∑
i=1

(
L̃|xi − yi | + L̃n−1/2|x − y|)2

≤ 2L̃|x − y|.
This shows that the Lipschitz constant L of βn is uniform in n. It is clear that ‖�n‖op ≤
‖σ‖op.
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Now, for x ∈ (Rd)n recall that x → Px is a version of the conditional law of X̃ given
X̃0 = x. By Theorem 5.3, there is a constant c̃ > 0, independent of n due to the above con-
siderations, such that for any � ∈ Lip((Cd)n,‖ · ‖n,2) we have

Px
(
� − 〈Px,�〉 > a

)≤ exp
(−a2/2c̃

)
, for all a > 0.

Moreover, combining Theorem 5.2(ii) with Theorem 5.1, the assumption (5.8) ensures that
for every a > 0 and ϕ ∈ Lip((Rd)n,‖ · ‖n,2) we have

μ̃n
0
(
ϕ − 〈

μ̃n
0, ϕ

〉
> a

)≤ exp
(−a2/2κ0

)
.

Finally, fix any � ∈ Lip((Cd)n,‖·‖n,2). Then by (5.7), the map x → 〈Px,�〉 is c-Lipschitz on
(Rd)n with respect to the Euclidean norm. Use this along with the previous two inequalities
(together with the fact that μ̃n

0 is the law of X̃0) to conclude

P
(
�(X̃) −E�(X̃) > a

)≤ E
[
P
(
�(X̃) − 〈PX̃0

,�〉 > a/2|X̃0
)]

+ P
(〈PX̃0

,�〉 −E〈PX̃0
,�〉 > a/2

)
≤ exp

(−a2/8c̃
)+ exp

(−a2/8κ0c
2).

The assertion of the theorem follows with δ = 1/(8 max{c̃, κ0c
2}). �

We now treat the case where p = 1 in (5.4) and μ̃0 satisfies the much weaker assumption

W1,Rd (μ̃0, ν) ≤
√

2κ0R(ν|μ̃0), for ν � μ̃0.(5.9)

Adapting the proof of Theorem 5.4 yields the following.

THEOREM 5.5. Assume that the Lipschitz condition (5.4) holds with p = 1. Assume also
that (5.9) holds for some κ0 < ∞. Then there exist constants c, δ > 0, independent of n, such
that for every a > 0 and every � ∈ Lip((Cd)n,‖ · ‖n,1), we have

P
(
�(X̃) −E�(X̃) > a

)≤ 2 exp
(−δa2/n

)
.

PROOF. We proceed as in the proof of Theorem 5.4. It follows from (5.9) and Theo-
rem 5.2(i) that

W1,((Rd )n,‖·‖n,1)

(
μ̃n

0, ν
)≤

√
2nκ0R

(
ν|μ̃n

0

)
, for ν � μ̃n

0.(5.10)

Thus, for any function ϕ ∈ Lip((Rd)n,‖ · ‖n,1), Theorem 5.1 yields

μ̃n
0
(
ϕ − 〈

μ̃n
0, ϕ

〉
> a

)≤ exp
(−a2/2nκ0

)
.(5.11)

Fix � ∈ Lip((Cd)n,‖ · ‖n,1), and note that � is
√

n-Lipschitz with respect to ‖ · ‖n,2 because
of the elementary inequality ‖ · ‖n,1 ≤ √

n‖ · ‖n,2. Recall that (Rd)n � x → Px is a version of
the conditional law of X given X0. By Theorem 5.3, there is a constant c̃ > 0, independent
of n and � (as argued in the proof of Theorem 5.4), such that

Px
(
� − 〈Px,�〉 > a

)≤ exp
(−a2/2c̃n

)
, for all a > 0.(5.12)

Moreover, the map x → 〈Px,�〉 is c-Lipschitz on ((Rd)n,‖ · ‖n,1) due to (5.7). Use (5.11)
along with (5.12) to get

P
(
�(X̃) −E�(X̃) > a

)≤ E
[
P
(
�(X̃) − 〈PX̃0

,�〉 > a/2|X̃0
)]

+ P
(〈PX̃0

,�〉 −E〈PX̃0
,�〉 > a/2

)
≤ exp

(−a2/8nc̃
)+ exp

(−a2/8nκ0c
2).

The assertion of the theorem follows with δ = 1/(8 max{c̃, κ0c
2}). �
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5.3. McKean–Vlasov expectation bounds. The results of the previous subsection (the no-
tation of which we keep here) pertain to the concentration of a function �(X̃) around its mean
but tell us nothing about the size of E�(X̃). In this section, we study the rate of convergence
of (mn

X̃t
)t∈[0,T ] to its limit (μ̃t )t∈[0,T ], defined through the McKean–Vlasov SDE

dỸ 1
t = b̃

(
t, Ỹ 1

t , μ̃t

)
dt + σ dB1

t , Ỹ 1
0 = X̃1

0, μ̃t = Law
(
Ỹ 1

t

)
.

The assumptions on b̃ in Section 5.2 ensure the existence of a unique strong solution (Ỹ 1, μ̃)

to this equation (see, e.g., Section 7 of [15], or Section 2.1 in Chapter 2 of [13]). We next
provide some quantitative bounds on E[Wp

p,Rd (m
n
X̃t

, μ̃t )] for fixed t as well as a uniform

bound, E[supt∈[0,T ]W
p

p,Rd (m
n
X̃t

, μ̃t )]. The results are essentially known but are provided for
the sake of completeness.

THEOREM 5.6. Fix n ∈ N, and assume (5.4) holds for some p ∈ [1,2]. Recall the defi-
nition of rn,p from (3.1). If E[|X1

0|2p+δ] < ∞ for some δ > 0, then there exists C < ∞ such
that for each n and each t ∈ [0, T ] we have

E
[
Wp

p

(
mn

X̃t
, μ̃t

)]≤ Crn,p.(5.13)

If E[|X1
0|d+5] < ∞, then there exists C < ∞ such that for each n we have

E

[
sup

s∈[0,T ]
W2

2
(
mn

X̃s
, μ̃s

)]≤ Cn−2/(d+8).(5.14)

PROOF. The proof begins with a standard coupling argument. Construct i.i.d. copies of
the unique solution Ỹ of the McKean–Vlasov equation, where Ỹ = (Ỹ 1, . . . , Ỹ n), with

dỸ i
t = b̃

(
t, Ỹ i

t , μ̃t

)
dt + σ dBi

t , Ỹ i
0 = X̃i

0, μ̃t = Law
(
Ỹ i

t

)
.

Together with (5.6), this implies∣∣X̃i
t − Ỹ i

t

∣∣≤ ∫ t

0

∣∣b̃(s, X̃i
s,m

n
X̃s

)− b̃
(
s, Ỹ i

s , μ̃s

)∣∣ds

≤ L̃

∫ t

0

(∣∣X̃i
s − Ỹ i

s

∣∣+Wp

(
mn

X̃s
, μ̃s

))
ds.

By Gronwall’s inequality, we have∣∣X̃i
t − Ỹ i

t

∣∣≤ C

∫ t

0
Wp

(
mn

X̃s
, μ̃s

)
ds.

Taking the power to the p and averaging the left-hand side of the last inequality over i =
1, . . . , n, we get

Wp
p

(
mn

X̃t
,mn

Ỹ t

)≤ 1

n

n∑
i=1

∣∣X̃i
t − Ỹ i

t

∣∣p ≤ C

∫ t

0
Wp

p

(
mn

X̃s
, μ̃s

)
ds.

Use the triangle inequality and Gronwall’s inequality once more to obtain

Wp
p

(
mn

X̃t
,mn

Ỹ t

)≤ C

∫ t

0
Wp

p

(
mn

Ỹ s
, μ̃s

)
ds.

Using again the triangle inequality, we have

Wp
p

(
mn

X̃t
, μ̃t

)≤ CWp
p

(
mn

Ỹ t
, μ̃t

)+ C

∫ t

0
Wp

p

(
mn

Ỹ s
, μ̃s

)
ds.(5.15)
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Now, (5.14) fits exactly Theorem 1.3 of [29]. To prove (5.13), it suffices to show that

E
[
Wp

p

(
mn

Ỹ t
, μ̃t

)]≤ Crn,p.(5.16)

To this end, note that Ỹ i
t are i.i.d. with law μ̃t . Hence, by Theorem 1 of [25],

E
[
Wp

p

(
mn

Ỹ t
, μ̃t

)]≤ Crn,pE
[∣∣Ỹ 1

t

∣∣2p+δ]p/(2p+δ)
,

where C depends only on p, δ and d . Finally, it suffices to note that standard estimates yield

sup
t∈[0,T ]

E
[∣∣Ỹ 1

t

∣∣2p+δ]≤ C
(
1 +E

[∣∣Ỹ 1
0
∣∣2p+δ])

< ∞. �

These estimates allow us to now provide a proof of the law of large numbers for the MFG
system, stated in Theorem 3.1.

PROOF OF THEOREM 3.1. The first claim is proved in Theorem 3.1 of [20]. To prove the
other two claims, note first that (4.6) implies

E
[
W 2

2,Cd

(
mn

X,mn
X

)]≤ C

n2 ,(5.17)

with X as in (2.7) and X as in (4.1). We now simply simply use (5.17) along with the rates
of convergence for the McKean–Vlasov empirical measures mn

X
, which were just identified

in Theorem 5.6. �

5.4. Proofs of Theorems 3.2, 3.4 and 3.9. Using the developments of Section 5.2, we are
now ready to prove the main results on concentration for the MFG system.

PROOF OF THEOREM 3.2. Note that for � ∈ Lip((Cd)n,‖ · ‖n,1) we have

P
(
�(X) −E�(X) > a

)≤ P

(
�(X) − �(X) >

a

3

)
+ P

(
�(X) −E�(X) >

a

3

)
+ P

(
E�(X) −E�(X) >

a

3

)
,

(5.18)

with X as in (2.7) and X as in (4.1). Comparing (4.1) with σ = 0 to (5.6) with b̃ defined as in
(3.11), and noting that when p∗ = 1, Assumptions A.1–A.5 ensure that b̃ satisfies condition
(5.4), the result of Theorem 5.5 can be applied to bound the second term by 2 exp(−δa2/n).
The third term vanishes for a ≥ 3

√
C, with C as in Theorem 4.1, because by (4.6) therein

and the Cauchy–Schwarz inequality, we have

E�(X) −E�(X) ≤ E

n∑
i=1

∥∥Xi − X
i∥∥∞

≤ n1/2

(
E

n∑
i=1

∥∥Xi − X
i∥∥2

∞

)1/2

≤ √
C.

Finally, using Theorem 4.3 with ε = a/3n, we know there exist κ1 < ∞, κ2 > 0 such that for
a ≥ κ1,

P

(
�(X) − �(X) >

a

3

)
≤ P

(
1

n

n∑
i=1

∥∥Xi − X
i∥∥∞ >

a

3n

)



236 F. DELARUE, D. LACKER AND K. RAMANAN

≤ P

(
1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞ >
a2

9n2

)

≤ 2n exp
(
− a2

9κ2

)
.

Combining the above results, we find that for a suitable δ (smaller than the above, if neces-
sary), and a sufficiently large, we have for n ≥ 2

P
(
�(X) −E�(X) > a

)≤ 3n exp
(
−δa2

n

)
. �

PROOF OF THEOREM 3.4. Fix � ∈ Lip((Cd)n,‖ · ‖n,2). We start with the same inequal-
ity (5.18) as in the previous proof. Comparing (4.1) with σ0 = 0 to (5.6) with b̃ defined as in
(3.11), and noting that Assumptions A.1–A.5 ensure that b̃ satisfies condition (5.4), the result
of Theorem 5.4 can be applied to bound the second term therein by 2 exp(−δa2). The third
term is zero for n ≥ 9C/a2, with C as in Theorem 4.1, because by (4.6) therein, and Jensen’s
inequality, we have

E�(X) −E�(X) ≤ E

√√√√ n∑
i=1

∥∥Xi − X
i∥∥2

∞ ≤
√√√√E

n∑
i=1

∥∥Xi − X
i∥∥2

∞ ≤
√

C√
n

.

Finally, use the Lipschitz continuity of � and Theorem 4.3 with ε = a/(3
√

n) to get

P

(
�(X) − �(X) >

a

3

)
≤ P

(√√√√1

n

n∑
i=1

∥∥Xi − X
i∥∥2

∞ >
a

3
√

n

)

≤ 2n exp
(
−a2n

9κ2

)
.

Letting δ1 := 1/(9κ2) and δ2 := δ, we find for n ≥ 9C/a2:

P
(
�(X) −E�(X) > a

)≤ 2n exp
(−δ1a

2n
)+ 2 exp

(−δ2a
2). �

REMARK 5.7. It is worth commenting on a natural idea for extending the arguments
of this section to the case with common noise. For the McKean–Vlasov system X, one can

bootstrap the arguments of Sections 5.2 and 5.3 by studying the shifted paths X
i

t − σ0Wt .
This line of reasoning leads to various conditional concentration estimates, for example, on
expressions of the form

P
(
�(X) −E

[
�(X)|W ]

> ε|W )
.

However, we are unable to transfer such estimates to the Nash system X, because our main
estimate (Theorem 4.3) of the distance between the two systems X and X does not appear to
have a conditional analogue.

PROOF OF THEOREM 3.9. Define the controls

α
n,i
t = α̂

(
X

i

t ,m
n
Xt

,DxU
(
t,X

i

t ,m
n
Xt

))
.

We will separately estimate |αn,i − αn,i | and then |αn,i − βi |. In the following, the constant
C < ∞ can change from line but never depends on n or i. First, use the Lipschitz assumptions
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on α̂ and DxU to get∣∣αn,i
t − α

n,i
t

∣∣≤ C
(∣∣Xi

t − X
i

t

∣∣+Wp∗,Rd

(
mn

Xt
,mn

Xt

)
+ ∣∣Dxi

vn,i(t,Xt ) − DxU
(
t,Xi

t ,m
n
Xt

)∣∣
+ ∣∣DxU

(
t,Xi

t ,m
n
Xt

)− DxU
(
t,X

i

t ,m
n
Xt

)∣∣)
≤ C

(∣∣Xi
t − X

i

t

∣∣+Wp∗,Rd

(
mn

Xt
,mn

Xt

)
+ ∣∣Dxi

vn,i(t,Xt ) − DxU
(
t,Xi

t ,m
n
Xt

)∣∣).
Using (4.5) and (4.6) (recalling 1 ≤ p∗ ≤ 2), we conclude

E

[
1

n

n∑
i=1

∫ T

0

∣∣αn,i
t − α

n,i
t

∣∣2 dt

]
≤ C

n2 .(5.19)

Recall now the definitions of un,i and Mi from the beginning of Section 4. Note next that

Dxi
un,i(t,x) = DxU

(
t, xi,m

n
x

)+ 1

n
DmU

(
t, xi,m

n
x, xi

)
, x ∈ (

R
d)n

(see equation (4.4) or Proposition 2.1 of [20]) and that DmU is bounded by assumption. Since
σ is nondegenerate, we find∫ T

0

∣∣Dxi
vn,i(t,Xt ) − DxU

(
t,Xi

t ,m
n
Xt

)∣∣2 dt

≤ C

n2 + 2
∫ T

0

∣∣Dxi
vn,i(t,Xt ) − Dxi

un,i(t,Xt )
∣∣2 dt

≤ C

n2 + C
[
Mi]

T .

Thus, using inequality (4.13) from the proof of Theorem 4.3 (with γ = n2/c1c3), we find
δ1 > 0 such that, for a > 0 and n ≥ C/a,

P

(
1

n

n∑
i=1

∫ T

0

∣∣αn,i
t − α

n,i
t

∣∣2 dt > a2

)
≤ 2ne−δ1a

2n2
.(5.20)

We next estimate |αn,i − βi |. Use again the Lipschitz assumptions on α̂ and DxU to get∣∣αn,i
t − βi

t

∣∣≤ C
(∣∣Xi

t −X i
t

∣∣+Wp∗,Rd

(
mn

Xt
, μt

))
.

A straightforward application of Gronwall’s inequality, exactly as in the proof of Theo-
rem 5.6, lets us bound this further by

C

∫ t

0
Wp∗,Rd

(
mn

Xs
,μs

)
ds.

Integrate, average, take expectations, and apply Theorem 5.6 to get

E

[
1

n

n∑
i=1

∫ T

0

∣∣αn,i
t − βi

t

∣∣p∗
dt

]
≤ Crn,p∗ .

Combine this with (5.19), noting that n−1 ≤ Crn,p∗ , to complete the proof of (3.10). To prove
the final claim, apply Corollary 3.3 or Corollary 3.5 (more precisely, the easier analogues
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for the uncontrolled dynamics X
i
) to find δ2, δ3 > 0 such that, for every a > 0 and every

n ≥ C/min{a, ad+8},

P

(
sup

t∈[0,T ]
Wp∗,Rd

(
mn

Xt
, μt

)
> a

)
≤
⎧⎨⎩3ne−δ2a

2n in case (i),

2ne−δ2a
2n2 + 2e−δ3a

2n in case (ii).

Combine this with (5.20) to complete the proof. �

6. Large deviations of the empirical measure. In this section, we prove a LDP for
the sequence (mn

X)n≥1 regarded as a sequence of random variables with values in the
space C([0, T ];P1(Rd)), where P1(Rd) is equipped with the 1-Wasserstein distance and
C([0, T ];P1(Rd)) is equipped with the resulting uniform topology. A key result is the fol-
lowing exponential equivalence of the sequences (mn

Xt
)t∈[0,T ] and (mn

Xt
)t∈[0,T ], that is, the

empirical measure flows associated with the n-player Nash equilibrium dynamics and the
approximating n-particle system, respectively.

COROLLARY 6.1. Suppose Assumptions A and either B or B′ hold, with p∗ = 1. Then,
for every ε > 0,

lim
n→∞

1

n
logP

(
sup

t∈[0,T ]
W2

(
mn

Xt
,mn

Xt

)
> ε

)
= −∞.

PROOF. This follows immediately from Theorem 4.3. �

6.1. LDP for weakly interacting diffusions in the presence of common noise. A simple
and well-known result of large deviations theory is that if a sequence satisfies a LDP, then
any exponentially equivalent sequence also satisfies a LDP with the same rate function (e.g.,
Theorem 4.2.13 of [21]). In particular, due to Corollary 6.1, to derive a LDP for the sequence
(mn

X)n≥1 of empirical measure flows of the Nash equilibrium dynamics, it suffices to prove a
LDP for the sequence (mn

X
)n≥1 of empirical measure flows of the approximating n-particle

system of weakly interacting diffusions. While there exist several forms of LDPs for the
empirical measures of McKean–Vlasov or weakly interacting diffusions [2, 9, 19], all of
them are obtained in the absence of common noise (i.e., σ0 = 0) and, strictly speaking, for
time-independent coefficients and nonrandom initial states.

This prompts us to revisit the aforementioned results and to first establish an LDP for the
sequence of empirical measures of a general n-particle system of weakly interacting diffu-
sions that has the following form:

(6.1) dX̃i
t = b̃

(
t, X̃i

t ,m
n
X̃t

)
dt + σ dBi

t + σ0 dWt,

with some initial condition X̃i
0, where σ ∈ R

d×d , σ0 ∈ R
d×d0 , B and W are independent

Brownian motions as specified in Section 2.3, the families (X̃i
0)i≥1 and ((Bi)i≥1,W) are

all independent, and the drift b̃ maps [0, T ] × R
d × P1(Rd) to R

d . As usual, we denote
X̃t = (X̃1

t , . . . , X̃
n
t ). Observe that, except for the fact that σ0 �= 0, (6.1) is similar to (5.6).

REMARK 6.2. Note that with the particular choice

b̃(t, x,m) = b̂
(
x,m,DxU(t, x,m)

)
, t ∈ [0, T ], x ∈ R

d,m ∈P1(
R

d),
the general n-particle system X̃ coincides with X, the n-particle approximation to the Nash
equilibrium dynamics proposed in (4.1), which is the primary object of interest.
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We impose the following conditions on the general n-particle system dynamics.

CONDITION 6.3. The following conditions are satisfied:

1. The initial conditions (X̃i
0)i≥1 are i.i.d. random variables with common law μ0 and

finite exponential moments of any order, namely

(6.2) ∀λ > 0, E
[
exp

(
λ
∣∣X̃1

0
∣∣)]=

∫
Rd

exp
(
λ|y|)μ0(dy) < ∞.

2. The drift function b̃ : [0, T ]×R
d ×P1(Rd) →R

d is bounded, continuous and Lipschitz
continuous in the last two arguments, uniformly in time.

6.1.1. Form of the rate function. In this section, we use informal arguments to conjecture
the form of the rate function for (mn

X̃
)n≥1 (see Theorem 6.6 and Corollary 6.7 below), and

then show in the subsequent section that (mn
X̃

)n≥1 does indeed satisfy a LDP with this rate
function.

The general strategy to allow σ0 to be nonzero entails first freezing the common noise.
Indeed, by the standard support theorem for trajectories of Brownian motion (see, e.g.,
Lemma 3.1 of [36]), the path of W lives with positive probability in any open ball of the path
space Cd

0 := {φ ∈ Cd : φ0 = 0}. Then, for any φ in the Cameron–Martin space H1
0([0, T ];Rd),

let (X̃
φ
t = (X̃

1,φ
t , . . . , X̃

n,φ
t ))t∈[0,T ] denote the unique strong solution to the SDE

(6.3) dX̃
i,φ
t = b̃

(
t, X̃

i,φ
t ,mn

X̃
φ
t

)
dt + σ dBi

t + φ̇t dt,

with X̃
i,φ
0 = X̃i

0 as initial condition. Here, recall that H1
0([0, T ];Rd) = {φ ∈ H1([0, T ];Rd) :

φ0 = 0}, where H1([0, T ];Rd) is the Hilbert space of Rd -valued absolutely continuous func-
tions φ on [0, T ] whose weak derivative φ̇ is also square integrable on [0, T ], equipped with
the norm ‖φ‖H1 = (

∫ T
0 |φ(t)|2 dt)1/2 + (

∫ T
0 |φ̇(t)|2 dt)1/2.

The dynamics in (6.3) fail to fall under the scope of [9] because b̃ is not continuous with
respect to the weak topology on P(Rd). Moreover, while the results of [19] permit more
general continuity assumptions, they do not quite cover our dynamics (6.3) because of the
time-dependence in b̃ and φ̇ and the randomness of the initial states. Nevertheless, we borrow
the associated rate function obtained in [19].

Recall from Section 3.2 the notation for the seminorm ‖ · ‖m acting on Schwartz distri-
butions, for m ∈ P1(Rd), as well as the definition of absolutely continuous (abs. cont. in
abbreviated form) distribution-valued functions. Following the notation in [19], for each φ ∈
H1([0, T ];Rd), we define the corresponding action functional Iφ : C([0, T ] : P1(Rd)) →
[0,∞] by

(6.4) Iφ(ν) :=
⎧⎪⎨⎪⎩

1

2

∫ T

0

∥∥ν̇t −L∗
t,νt

νt + div(νt φ̇t )
∥∥2
νt

dt if t → νt is abs. cont.,

∞ otherwise,

where, for (t,m) ∈ [0, T ] ×P1(Rd), L∗
t,m is the formal adjoint of the operator

(6.5) Lt,mh(x) = 1

2
Tr
[
σσ�D2h(x)

]+ Dh(x) · b̃(t, x,m), h ∈ C∞
c

(
R

d).
Observe that the operator L∗

t,νt
(·) − div(φ̇t ·) in (6.4) is the adjoint of Lt,νt (·) + φ̇t · D(·).

Below, we will often use the action functional I 0, given by I 0 = Iφ for φ ≡ 0.
The functional Iφ admits several alternative representations. Lemma 6.4 presents one that

will be used to extend the definition of Iφ to continuous φ. To present this representation, we
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first need to introduce some more notation. Let (τx : Rd � z → z − x)x∈R denote the group
of translations on R

d . For (t,m) ∈ [0, T ] ×P1(Rd) and a path φ ∈ Cd
0 , define L̃∗

t,m[φ] to be
the formal adjoint of the operator

L̃t,m[φ]h(x) = 1

2
Tr
[
σσ�D2h(x)

]
+ Dh(x) · b̃(t, x + φt ,m ◦ τ−1

−φt

)
, h ∈ C∞

c

(
R

d).
Finally, define the modified action functional Ĩ φ : C([0, T ];P1(Rd)) → [0,∞] by

(6.6) Ĩ φ(ν) :=
⎧⎪⎨⎪⎩

1

2

∫ T

0

∥∥ν̇t − L̃∗
t,νt

[φ]νt

∥∥2
νt

dt if t → νt is abs. cont.,

∞ otherwise.

In other words, this is the action functional corresponding to the drift (t, x,m) → b̃(t, x +
φt ,m ◦ τ−1

−φt
).

We then have the following relationship between Iφ and Ĩ φ .

LEMMA 6.4. For φ ∈ H1
0([0, T ];Rd),

(6.7) Iφ(ν) = Ĩ φ((νt ◦ τ−1
φt

)
t∈[0,T ]

)
.

The proof of Lemma 6.4 is deferred to Section 6.4. Its importance arises from the fact that
it allows one to extend the definition of the actional functional Iφ(·) to functions φ that are
merely continuous. Indeed, note that, whenever φ ∈ Cd and ν ∈ C([0, T ];P1(Rd)), the path
(νt ◦ τ−1

φt
)0≤t≤T is continuous due to the fact that

(6.8) W1
(
νt ◦ τ−1

φt
, νs ◦ τ−1

φs

)≤ |φt − φs | +W1(νt , νs), s, t ∈ [0, T ].
This ensures that the cost Ĩ φ(ν) is well-defined. So, in the rest of the presentation of our
main results, we take the identity in (6.7) as the definition of the cost functional Iφ for just
continuous φ with φ0 = 0. Observe that this extension is especially meaningful since Iφ(ν)

may be finite even when φ does not lie in the Cameron–Martin space H1
0([0, T ];Rd). For

instance, if b ≡ 0 and (νt = δφt )0≤t≤T for some φ ∈ Cd
0 , then we have νt ◦ τ−1

φ = δ0 for all

t ∈ [0, T ] and then Iφ(ν) = 0.
Roughly speaking, [19] asserts that whenever the common law of (X̃i

0)i≥1 reduces to a
Dirac mass, (mn

X̃
φ )n≥1 satisfies a LDP with Iφ as rate function. Returning to (6.1), and de-

noting σ0φ by the path t → σ0φt , this leads naturally to the conjecture that the collection
(mn

X̃
)n≥1 should then satisfy a LDP with rate function

(6.9) J σ0(ν) := inf
φ∈Cd

0

Iσ0φ(ν),

provided that ν ∈ C([0, T ];P1(Rd)) is such that ν0 is equal to the common law of (X̃i
0)i≥1.

The intuitive argument behind this assertion is that, by the standard support theorem for
Brownian motion, the common noise (σ0Wt)t∈[0,T ] lives with a positive probability in the
neighborhood of σ0φ, for any φ in Cd

0 . In other words, the cost for (σ0Wt)t∈[0,T ] to be in the
neighborhood of φ is null; as a result, the minimal cost for mn

X̃
to be in the neighborhood

of some ν ∈ C([0, T ];P1(Rd)) is the infimum of Iσ0φ(ν) over all φ in Cd
0 . Of course, when

σ0 = 0, Iσ0φ(ν) is independent of φ and J 0 coincides with I 0. Observe that, whenever σ0 �= 0,
Jσ0(ν) depends on σ0 only through its image space Im(σ0) This latter fact becomes apparent
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with the following explicit expression for J σ0(ν) in Proposition 6.5, when ν is smooth. First,
define the mean path of a measure flow ν ∈ C([0, T ];P1(Rd)) by

M
ν =

(
M

ν
t :=

∫
Rd

x dνt (x)

)
t∈[0,T ]

∈ Cd .(6.10)

In the following, let �σ−1σ0
∈ R

d×d denote the orthogonal projection onto the image of
σ−1σ0.

PROPOSITION 6.5. Let ν ∈ C([0, T ];P1(Rd)) be such that its mean path M
ν from

(6.10) lies in H1([0, T ];Rd). Then the functionals I 0 defined in (6.4), with φ = 0, and J σ0

defined in (6.9), satisfy

J σ0(ν) = I 0(ν) − 1

2

∫ T

0

∣∣�σ−1σ0
σ−1(

Ṁ
ν
t − 〈

νt , b̃(t, ·, νt )
〉)∣∣2 dt.

The proof of Proposition 6.5 is relegated to Section 6.6. In the general case, when the mean
path is not necessarily absolutely continuous, we have another expression for J σ0 , based on
the same factorization as in Lemma 6.4. This may be regarded as our main statement on the
form of the rate function. See the discussion following Theorem 3.11 for intuition regarding
this form of the rate function.

THEOREM 6.6. Take ν ∈ C([0, T ];P1(Rd)) and with M
ν as in (6.10), let

M
b̃,ν
t := σ�σ−1σ0

σ−1
(
M

ν
t −M

ν
0 −

∫ t

0

〈
νs, b̃(s, ·, νs)

〉
ds

)
, for t ∈ [0, T ].

Then J σ0 in (6.9) satisfies

J σ0(ν) =
⎧⎨⎩ĨM

b̃,ν ((
νt ◦ τ−1

M
b̃,ν
t

)
t∈[0,T ]

)
if σ0 �= 0,

I 0(ν), if σ0 = 0,

where I 0 and Ĩ φ are defined in (6.4) and (6.6), respectively.

The proof of Theorem 6.6 is given in Section 6.6. As this proof shows, the above expres-
sion may be restated in terms of the mean constant path (νt ◦τ−1

M
ν
t −M

ν
0
)t∈[0,T ]. (Observe that, if

X̃t is a random variable with law νt , then X̃t −E[X̃t ] has distribution νt ◦ τ−1
M

ν
t
, which justifies

the terminology, “mean constant path”.)
As a corollary, we obtain the following result, whose proof is also deferred to Section 6.6.

COROLLARY 6.7. Take ν ∈ C([0, T ];P1(Rd)) and σ0 �= 0. Then

J σ0(ν) = Ĩ−M
ν+M

ν
0
((

νt ◦ τ−1
M

ν
t −M

ν
0

)
t∈[0,T ]

)
− 1

2

∫ T

0

∣∣�σ−1σ0
σ−1〈νt , b̃(t, ·, νt )

〉∣∣2 dt.

Observe that the first term on the right-hand side does not depend upon σ0. This is in
contrast with the second term, which attains its minimum when σ0 is null and its maximum
when σ0 has full rank.
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6.1.2. The form of the LDP. We now provide the form of the LDP. The conjectured form
of the rate function of the previous subsection did not take into account the random initial
states (X̃i

0)i≥1, which we recall are i.i.d. with law μ0. Sanov’s theorem suggests the true rate
function should take the form

(6.11) C
([0, T ];P1(

R
d)) � ν → J̃ σ0,μ0(ν) := J σ0(ν) +R(ν0|μ0),

where R denotes relative entropy, defined in (3.6), and J σ0 is as defined in (6.9).
The precise large deviation principle for the sequence (mn

X̃
)n≥1 takes the following form;

its proof is given in Section 6.3.

THEOREM 6.8. Under the stated assumptions, the sequence (mn
X̃

)n≥1, as defined by

(6.1), satisfies a weak large deviation principle in C([0, T ];P1(Rd)) with rate function
J̃ σ0,μ0 defined in (6.11). That is, the following hold:

(i) For any open subset O of C([0, T ];P1(Rd)),

lim inf
n→∞

1

n
logP

(
mn

X̃
∈ O

)≥ inf
ν∈O

J̃ σ0,μ0(ν).

(ii) For any closed subset F of C([0, T ];P1(Rd)),

lim sup
n→∞

1

n
logP

(
mn

X̃
∈ F

)≤ − lim
δ↘0

inf
ν∈Fδ

J̃ σ0,μ0(ν),

where Fδ = {ν ∈ C([0, T ];P1(Rd)) : infν̃∈F supt∈[0,T ]W1(̃νt , νt ) ≤ δ}.

REMARK 6.9. It is worth mentioning that J σ0 and, therefore, J̃ σ0,μ0 , is not a good rate
function (i.e., does not have compact level sets) except when σ0 = 0; see Proposition 6.10 be-
low. When σ0 �= 0, we can easily see that the level set {Jσ0 ≤ 0} = {J σ0 = 0} is not compact.
This can be seen either from Theorem 6.6 or via a direct computation (but very much in the
spirit of the statement of the theorem). Indeed, for any φ ∈ H1

0([0, T ];Rd), as in Section 3.2,
we may call X̄φ the unique solution to the McKean–Vlasov equation

dX̄
φ
t = b̃

(
t, X̄

φ
t ,L

(
X̄

φ
t

))
dt + σ dB1

t + σ0φ̇t dt, t ∈ [0, T ],
with X̄

φ
0 = X̃1

0 as initial condition. Then the path (ν
φ
t = L(X̄

φ
t ))t∈[0,T ] solves the Fokker–

Planck equation (see [37])

ν̇
φ
t −L∗

t,ν
φ
t

ν
φ
t + div

(
ν

φ
t σ0φ̇t

)= 0, t ∈ [0, T ],

in the distributional sense, with the initial condition ν
φ
0 = μ0. Also, Iσ0φ(νφ) +R(ν

φ
0 |μ0) =

0; hence, J σ0(νφ) + R(ν
φ
0 |μ0) = 0. However, taking the mean in the McKean–Vlasov dy-

namics, we see that

Ṁ
νφ

t = 〈
ν

φ
t , b̃

(
t, ·, νφ

t

)〉+ σ0φ̇t , t ∈ [0, T ].
Since b̃ is bounded and φ may be arbitrarily chosen in H1

0([0, T ];Rd), we deduce that

{Mνφ : φ ∈ H1
0([0, T ];Rd)} is unbounded, and in particular it is not precompact in Cd . This

clearly implies that the set {νφ : φ ∈ H1
0([0, T ];Rd)}, which is contained in {J σ0 ≤ 0} by

construction, is not precompact in C([0, T ];P1(Rd)).

As explained in Remark 6.9, the lack of compactness of the level sets of J σ0 explains the
need for the additional limit over δ in (ii) in the statement of Theorem 6.8. Fortunately, there
is no longer need for such a relaxation when F is compact.
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PROPOSITION 6.10. Assume that σ0 �= 0 and that K is a compact subset of C([0, T ];
P1(Rd)). Then

lim
δ↘0

inf
ν∈Kδ

(
J σ0(ν) +R(ν0|μ0)

)= inf
ν∈K

(
J σ0(ν) +R(ν0|μ0)

)
.

If σ0 = 0, the above holds true for any closed (instead of compact) set F ⊂ C([0, T ];
P1(Rd)). In the latter case, (mn

X̃
)n≥1 satisfies a standard LDP with a good rate function.

Although the level sets of J σ0 are not compact when σ0 �= 0, we have the following weaker
version. The proofs of both Propositions 6.10 and 6.11 are given in Section 6.6.

PROPOSITION 6.11. For any σ0 �= 0 and a ≥ 0, there exists a compact subset K ⊂
C([0, T ];P1(Rd)) and a constant κ < ∞ such that, for any ν in the level set{

γ ∈ C
([0, T ];P1(

R
d)) : J σ0(γ ) +R(γ0|μ0) ≤ a

}
,

the following hold:

(i) (νt ◦ τ−1
M

ν
t
)t∈[0,T ] ∈ K .

(ii) For any φ ∈ Cd
0 satisfying Iσ0φ(ν) ≤ a, the path (Mν

t −σ0φt )t∈[0,T ] lies in H1([0, T ];
R

d) and has H1-norm is less than κ .

Proposition 6.11 shows that the counterexample that we constructed prior to the statement
of the proposition to prove the lack of compactness of the level sets of J σ0 is somehow
typical, as boundedness of the rate function forces the “centered” path (νt ◦ τ−1

M
ν
t
)t∈[0,T ] to

live in a compact subset.

REMARK 6.12. Instead of a LDP for the marginal empirical measures of the system
(6.1), we could also provide a LDP for the empirical measure of the paths, as done in [9] and
[23] for the case σ0 = 0.

In fact, our proof of Theorem 6.8 shows that the rate function for the latter would take the
following variational form:

J σ0(M) = inf
{
R(Q|μ0 ×W) : φ ∈ Cd

0 ,Q ∈ P1(
R

d × Cd
0
)
,�(Q, φ) = M

}
,

for M ∈ P1(Cd), where W stands for the Wiener measure, and � maps a pair (Q, φ) onto
the law under Q of the solution x = (xt )t∈[0,T ] of the following McKean–Vlasov equation:

xt = e +
∫ t

0
b̃
(
s, xs,Q ◦ x−1

s

)
ds + σwt + σ0φt , t ∈ [0, T ],

where (e,w = (wt )t∈[0,T ]) denotes the canonical process on the space R
d × Cd

0 .
When σ0 = 0 and Q has first marginal μ0, this formulation essentially reduces to the one

obtained in [9] and [23]. We prefer to focus on the LDP for the flow mn
X of marginal empirical

measures instead of empirical measures on the path space, for the following reasons. First,
its rate function has a more pleasant form, though this is hardly more than a matter of taste.
Second, it is precisely this quantity that governs the interactions between the players.

6.1.3. Proof of the large deviations principle without common noise. We now obtain
Theorem 3.10 as a simple corollary of the results established above.

PROOF OF THEOREM 3.10. Observe that, due to Theorem 6.6, the rate function I (ν) +
R(ν0|μ0) in the statement of Theorem 3.10 coincides with the rate function J̃ σ0,μ0 defined in
(6.11). Thus, Theorem 3.10 is an immediate consequence of Theorem 6.8, Proposition 6.10
and the fact that σ0 = 0. �
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6.2. LDP for the sequence (mn
X)n≥1. In Sections 6.2.1 and 6.2.2, we establish the weak

LDP without and with common noise, respectively.

6.2.1. A weak LDP. By combining Corollary 6.1 and Theorem 6.8, we end up with the
following statement.

THEOREM 6.13. Suppose Assumptions A and either Assumption B or B′ hold, and that
the common distribution μ0 of the i.i.d. initial states (Xi

0)i≥1 of the solutions (Xn)n≥1 to
the Nash equilibrium dynamics satisfy the exponential integrability condition (6.2). Then
the sequence (mn

X)n≥1 satisfies (as in the statement of Theorem 6.8) a weak LDP with rate
function J̃ σ0,μ0 defined in (6.11), provided the drift b̃ in (6.5) satisfies

b̃(t, x,m) = b̂
(
x,m,DxU(t, x,m)

)
, t ∈ [0, T ], x ∈ R

d,m ∈P1(
R

d).
REMARK 6.14. Note that the rate function J̃ σ0,μ0 is defined in terms of the quantities

J σ , Iφ and Lt,m specified in (6.9), (6.4) and (6.5), and that the dependence of J̃ σ0,μ0 on the
drift b̃ is reflected in the definition (6.5) of the operator Lt,m.

PROOF. We first note that, as already observed in Remark 6.2, with the definition of b̃

given as above, X̃ of (6.1) coincides with X of (4.1). The basic idea behind the proof is
to apply Theorem 6.8 to immediately obtain a weak LDP for mn

X̃
= mn

X
, and then apply

Corollary 6.1 to transfer the weak LDP to mn
X . The proof is fairly standard, except that some

care is needed because the rate function does not have compact level sets.
We first prove the lower bound, that is, the analogue of (i) in the statement of Theorem 6.8,

but for (mn
X)n≥1. Without any loss of generality, we can assume that infν∈O J̃ σ0,μ0(ν) < ∞,

as otherwise the lower bound is trivial. Then, for any η > 0, using (6.11), we can find ν(η) ∈ O

such that

inf
ν∈O

J̃ σ0,μ0(ν) ≥ J σ0
(
ν(η))+R

(
ν

(η)
0 |μ0

)− η.

Since O is open, we can find ε > 0 such that the ball B(ν(η), ε) := {ν ∈ C([0, T ];P1(Rd)) :
supt∈[0,T ]W1(νt , ν

(η)
t ) < ε} is contained in O . By (i) of Theorem 6.8, and the identity mn

X̃
=

mn
X·

, we have

lim inf
n→∞

1

n
logP

(
mn

X
∈ B

(
ν(η), ε/2

))≥ − inf
ν∈B(ν(η),ε/2)

J̃ σ0,μ0(ν)

≥ −[J σ0
(
ν(η))+R

(
ν

(η)
0 |μ0

)]
≥ − inf

ν∈O

(
J σ0(ν) +R(ν0|μ0)

)− η.

Since the right-hand side of the last inequality is finite, using Corollary 6.1, we then obtain

lim inf
n→∞

1

n
logP

(
mn

X ∈ O
)

≥ lim inf
n→∞

1

n
logP

(
mn

X ∈ B
(
ν(η), ε

))
≥ lim inf

n→∞
1

n
logP

(
mn

X
∈ B

(
ν(η), ε/2

)
, sup
t∈[0,T ]

W1
(
mn

Xt
,mn

Xt

)
< ε/2

)
≥ − inf

ν∈O

(
J σ0(ν) +R(ν0|μ0)

)− η.

Letting η tend to 0, this proves the lower bound.
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We now turn to the proof of the upper bound, namely the analog of (ii) in Theorem 6.8.
We know that, for any ε > 0 and for any closed subset F ∈ C([0, T ];P1(Rd)),

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)

≤ lim sup
n→∞

1

n
log

(
P

(
mn

X ∈ F, sup
t∈[0,T ]

W1
(
mn

Xt
,mn

Xt

)≤ ε
)

+ P

(
sup

t∈[0,T ]
W1

(
mn

Xt
,mn

Xt

)
> ε

))
≤ lim sup

n→∞
1

n
log

(
P
(
mn

X
∈ Fε

)+ P

(
sup

t∈[0,T ]
W1

(
mn

Xt
,mn

Xt

)
> ε

))
≤ max

[
lim sup
n→∞

1

n
logP

(
mn

X
∈ Fε

)
,

lim sup
n→∞

1

n
logP

(
sup

t∈[0,T ]
W1

(
mn

Xt
,mn

Xt

)
> ε

)]
.

By Corollary 6.1, the second argument in the maximum is −∞. Hence,

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)≤ lim sup

n→∞
1

n
logP

(
mn

X
∈ Fε

)
.

Since Fε is closed, Theorem 6.8(ii) and the identity mn
X̃

= mn
X

yield

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)≤ lim

δ↘0
inf

μ∈(Fδ)ε

(
J σ0(ν) +R(ν0|μ0)

)
.

Obviously, (Fδ)ε ⊂ Fδ+ε , from which we get

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)≤ lim

δ↘0
inf

μ∈Fδ+ε

(
J σ0(ν) +R(ν0|μ0)

)
.

Letting ε tend to 0, we obtain, as required,

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)≤ lim

δ↘0
inf

ν∈Fδ

(
J σ0(ν) +R(ν0|μ0)

)
.

This completes the proof. �

6.2.2. Proof of the weak LDP in the presence of common noise. We are now in a position
to complete the proof of the weak LDP in the presence of common noise.

PROOF OF THEOREM 3.11. The result is an immediate consequence of Theorem 6.13
after observing that the rate function J̃ σ0,μ0(ν) therein coincides with the the rate function
J σ0(ν) +R(ν0|μ0) given above, due to Theorem 6.6. �

6.3. Proof of Theorem 6.8. Our proof relies on the so-called contraction principle, which
is somewhat similar to the approach developed in [9] and [23]. In particular, the strategy
used in this section may be adapted to obtain an LDP for the empirical distribution of the
paths of (6.1) (instead of the marginal empirical distributions), with the rate function having
a variational representation; see Remark 6.12.
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6.3.1. Case when b̃ = 0. The first step of the proof is to focus on the case when the drift
b̃ is trivial. Then we can have a look at the pair

(6.12)
(
Q̄n,W

)=
(

1

n

n∑
i=1

δ(X̃i
0,B

i),W

)
,

which we regard as a random element with values in the product space:

P1(
R

d × Cd
0
)× Cd

0 .

As above, Cd
0 is equipped throughout the paragraph with the uniform topology and P1(Rd ×

Cd
0 ) is equipped with the corresponding 1-Wasserstein distance. Also, for a probability mea-

sure Q on R
d ×Cd

0 , we denote by R(Q|μ0 ×W) the relative entropy with respect to μ0 ×W,
where W is the Wiener measure on the space Cd

0 . Then we have the following statement.

PROPOSITION 6.15. The pair (Q̄n,W)n≥1 satisfies the following weak LDP:

(i) For any open subset O of P1(Rd × Cd
0 ) × Cd

0 ,

lim inf
n→∞

1

n
logP

((
Q̄n,W

) ∈ O
)≥ − inf

(Q,φ)∈O
R(Q|μ0 ×W);

(ii) For any closed subset F of P1(Rd × Cd
0 ) × Cd

0 ,

lim sup
n→∞

1

n
logP

((
Q̄n,W

) ∈ F
)≤ − lim

δ↘0
inf

(Q,φ)∈Fδ

R(Q|μ0 ×W),

where

Fδ =
{
(Q, φ) ∈ P1(

R
d × Cd

0
)× Cd

0

: inf
(Q′,φ′)∈F

[
max

(
W1

(
Q,Q′),∥∥φ − φ′∥∥∞

)]≤ δ
}
.

PROOF. We start with the proof of (i). First, observe that for any ε > 0, Q ∈ P1(Rd ×Cd
0 )

and φ ∈ Cd
0 , the independence of Q̄n and W implies

logP
(
W1

(
Q̄n,Q

)
< ε,‖W − φ‖∞ < ε

)
= logP

(
W1

(
Q̄n,Q

)
< ε

)+ logP
(‖W − φ‖∞ < ε

)
.

(6.13)

By the support theorem for the trajectories of a Brownian motion (see Lemma 3.1 in [36]),

lim
n→∞

1

n
logP

(‖W − φ‖∞ < ε
)= 0.

Also, on dividing the first term in the second line of (6.13) by n and taking the limit inferior,
Sanov’s theorem in the 1-Wasserstein topology (see, for instance, [39]) implies that

lim inf
n→∞

1

n
logP

(
W1

(
Q̄n,Q

)
< ε

)≥ − inf
Q′∈P1(Rd×Cd

0 ):W1(Q,Q′)<ε

R
(
Q′|μ0 ×W

)
≥ −R(Q|μ0 ×W).

Now, given an open set O ⊂ P1(Rd × Cd
0 ) × Cd

0 , and η > 0, choose (Q, φ) ∈ O such that

inf
(Q′,φ′)∈O

R
(
Q′|μ0 ×W

)≥ R(Q|μ0 ×W) − η.
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By choosing ε > 0 such that the set{(
Q′, φ′) ∈ P1(

R
d × Cd

0
)× Cd

0 : max
(
W1

(
Q′,Q

)
,
∥∥φ′ − φ

∥∥∞
)
< ε

}
is contained in O , we get

lim inf
n→∞

1

n
logP

((
Q̄n,W

) ∈ O
)≥ −R(Q|μ0 ×W)

≥ − inf
(Q′,φ′)∈O

R
(
Q′|μ0 ×W

)− η.

The proof of (i) follows on sending η to 0.
We now prove the upper bound (ii). Consider a closed set F in the product space P1(Rd ×

Cd
0 ) × Cd

0 , and let

F ′ = {
Q : ∃φ ∈ Cd

0 , (Q, φ) ∈ F
}
,

which may not be closed. Then the LDP for the sequence (Q̄n)n≥1 yields

lim sup
n→∞

1

n
logP

((
Q̄n,W

) ∈ F
)≤ − inf

Q∈cl(F ′)
R(Q|μ0 ×W),

where cl(F ′) is the closure of F ′. In order to complete the proof, it suffices to note that, if
Q ∈ cl(F ′), then there exists a sequence (Qn,φn) ∈ F such that W1(Q,Qn) → 0. Hence, for
any δ > 0, we can choose n large enough such that (Q, φn) ∈ Fδ . Therefore,

inf
Q∈cl(F ′)

R(Q|μ0 ×W) ≥ inf
(Q,φ)∈Fδ

R(Q|μ0 ×W),

which completes the proof. �

6.3.2. Contraction principle for nonzero drift. We now consider the general case with an
arbitrary drift b̃ that satisfies Condition 6.3. Let e and w = (wt )t∈[0,T ] denote the canonical
variables on R

d × Cd
0 , and for (Q, φ) ∈ P1(Rd × Cd

0 ) × Cd
0 as above, consider the McKean–

Vlasov equation:

xt = e +
∫ t

0
b̃
(
s, xs,Q ◦ x−1

s

)
ds + σwt + σ0φt , t ∈ [0, T ],

on the space R
d × Cd equipped with the probability measure Q on the Borel σ -field. Here,

Q ◦ x−1
s stands for the law of xs under Q. Under Condition 6.3, the above equation has

a unique solution x. Let � be the mapping that takes (Q, φ) to the probability measure
Q ◦ x−1 on Cd , and let � be the mapping that takes (Q, φ) to the flow of marginal measures
(Q ◦ x−1

t )t∈[0,T ]. Note that then �(Q, φ) is an element of P1(Cd) and �(Q, φ) is an element
of C([0, T ];P1(Rd)), and we have the following useful relation for each n:

(6.14) mn
X = �

(
Q̄n,W

)
.

It is easily verified that the mapping � is continuous. Actually, we prove a slightly stronger
property.

LEMMA 6.16. The mapping � is uniformly continuous from the space P1(Rd ×Cd
0 )×Cd

0
into C([0, T ];P1(Rd)).

PROOF. Consider two probability measures Q and Q′ on R
d × Cd

0 and two paths φ and
φ′ in Cd

0 such that W1(Q,Q′) < ε and ‖φ − φ′‖∞ < ε, for some ε > 0. By definition of the
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1-Wasserstein distance, we know that there exists a probability measure M on (Rd × Cd
0 )2,

with Q and Q′ as marginal distributions, such that∫
(Rd×Cd

0 )2
max

(∣∣e − e′∣∣,∥∥w − w′∥∥∞
)
dM

(
(e,w),

(
e′,w′))< ε.

Denoting by (e,w) and (e′,w′) the canonical processes on (Rd × Cd
0 )2, we consider the

system of two equations:

xt = e +
∫ t

0
b̃
(
s, xs,M ◦ x−1

s

)
ds + σwt + σ0φt ,

x′
t = e′ +

∫ t

0
b̃
(
s, x′

s,M ◦ (x′
s

)−1)
ds + σw′

t + σ0φ
′
t , t ∈ [0, T ].

By Gronwall’s lemma, there exists C < ∞ (possibly depending on σ and σ0) such that for
every t ∈ [0, T ],∣∣xt − x′

t

∣∣
≤ C

(∣∣e − e′∣∣+ ∥∥w − w′∥∥∞ + ∥∥φ − φ′∥∥∞ +
∫ t

0
ds

∫
(Rd×Cd

0 )2

∣∣xs − x′
s

∣∣dM)
.

Integrating with respect to M, applying Gronwall’s lemma once again and allowing the con-
stant C to increase from line to line, we obtain∫

(Rd×Cd
0 )2

∣∣xt − x′
t

∣∣dM ≤ 3Cε, t ∈ [0, T ],

which implies

sup
t∈[0,T ]

W1
(
M ◦ x−1

t ,M ◦ (x′
t

)−1)≤ 3Cε.

It is clear that, for all t ∈ [0, T ], M◦x−1
t = [�(Q, φ)]t and M◦ (x′

t )
−1 = [�(Q′, φ′)]t , from

which we conclude that

sup
t∈[0,T ]

W1
([

�(Q, φ)
]
t ,
[
�
(
Q′, φ′)]

t

)≤ 3Cε,

which completes the proof. �

6.3.3. Proof of Theorem 6.8. We can now make use of the contraction principle to prove
Theorem 6.8. We start with the proof of the lower bound (i) in the statement of Theorem 6.8.
For any open set O of C([0, T ];P1(Rd)), the relation (6.14), the continuity property of �

established in Lemma 6.16 and Proposition 6.15 yield

lim inf
n→∞

1

n
logP

(
mn

X ∈ O
)≥ − inf

φ∈Cd
0

inf
Q∈P1(Rd×Cd

0 )):�(Q,φ)∈O

R(Q|μ0 ×W).

By Lemma 6.17 below, the right-hand side is equal to

− inf
ν∈O

inf
φ∈Cd

0

(
Iσ0φ(ν) +R(ν0|μ0)

)
,

where recall that I · is the functional defined in (6.7). This completes the proof of the lower
bound.

We turn to the proof of the upper bound (ii). Similarly, for any closed set F ⊂
C([0, T ];P1(Rd)),

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)≤ − lim

δ↘0
inf

(Q,φ)∈(�−1(F ))δ

R(Q|μ0 ×W).
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By the uniform continuity of � (Lemma 6.16), for any η > 0, we can choose δ > 0 small
enough such that for any (Q, φ) ∈ (�−1(F ))δ , �(Q, φ) belongs to Fη. Therefore,

lim sup
n→∞

1

n
logP

(
mn

X ∈ F
)≤ − lim

η↘0
inf

�(Q,φ)∈Fη

R(Q|μ0 ×W).

To complete the proof, apply Lemma 6.17 once again to conclude that

inf
(Q,φ):�(Q,φ)∈Fη

R(Q|μ0 ×W) = inf
ν∈Fη

inf
φ∈Cd

inf
Q:�(Q,φ)=ν

R(Q|μ0 ×W)

= inf
ν∈Fη

J̃ σ0,μ0(ν),

which completes the proof.

6.4. Proof of auxiliary lemmas. We now prove the auxiliary Lemma 6.17 below. This
relies on Lemma 6.4, which we first prove.

PROOF OF LEMMA 6.4. Fix ν ∈ C([0, T ];P1(Rd)) and φ ∈ H1
0([0, T ];Rd). It is

straightforward to check that ν = (νt )t∈[0,T ] is absolutely continuous if and only if ν̃ :=
(νt ◦ τ−1

φt
)t∈[0,T ] is. Now, suppose that ν is absolutely continuous, and let us compute the

time-derivative of ν̃. For any test function h ∈ C∞
c (Rd) and 0 ≤ s < t ≤ T , we have

〈̃νt − ν̃s , h〉 = 〈
νt , h(· − φt)

〉− 〈
νs, h(· − φs)

〉
= 〈

νt − νs, h(· − φs)
〉+ 〈

νt , h(· − φt) − h(· − φs)
〉
.

Assume first that φ is continuously differentiable. Then, by the absolute continuity of t → νt ,
the continuity of h and φ and the fact that h has compact support, we may divide by t − s

and then send s → t (for a fixed value of t) in the above to obtain

d

dt
〈̃νt , h〉 = 〈

ν̇t , h(· − φt)
〉− 〈

νt , φ̇t · Dh(· − φt)
〉
,(6.15)

where the derivative φ̇t is understood in a (time-)distributional sense. By approximation,
noting that H1-convergence implies sup-norm convergence, we can lift the restriction that φ

is continuously differentiable and merely require that φ ∈ H1
0([0, T ];Rd).

Next, we claim that, for any h ∈ C∞
c (Rd),〈

L̃∗
t ,̃νt

[φ]̃νt , h(·)〉= 〈
L∗

t,νt
νt , h(· − φt)

〉
.(6.16)

The proof is simple:〈̃
νt , L̃t ,̃νt [φ]h〉= 〈

νt ◦ τ−1
φt

,
1

2
Tr
[
σσ�D2h(·)]+ Dh(·) · b̃(t, · + φt , ν̃t ◦ τ−1

−φt

)〉
=
〈
νt ,

1

2
Tr
[
σσ�D2h(· − φt )

]+ Dh(· − φt) · b̃(t, ·, νt )

〉
= 〈

νt ,Lt,νt h(· − φt)
〉
.

Combining (6.15) and (6.16), we may calculate, for h ∈ C∞
c (Rd),〈 ˙̃νt − L̃∗

t ,̃νt
[φ]̃νt , h

〉
= d

dt
〈̃νt , h〉 − 〈

L̃∗
t ,̃νt

[φ]̃νt , h
〉

= 〈
ν̇t , h(· − φt)

〉− 〈
νt , φ̇t · Dh(· − φt)

〉− 〈
L∗

t,νt
νt , h(· − φt)

〉
.
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Hence, changing h into h(· + φt) to pass from the second to the third line below, we get

‖ ˙̃νt − L̃∗
t ,̃νt

[φ]̃νt‖2
ν̃t

= sup
h∈C∞

c (Rd ):
〈̃νt ,|Dh|2〉�=0

〈 ˙̃νt − L̃∗
t ,̃νt

[φ]̃νt , h〉2

〈̃νt , |Dh|2〉

= sup
h∈C∞

c (Rd )

〈νt ,|Dh|2〉�=0

(〈ν̇t , h〉 − 〈νt , φ̇t · Dh〉 − 〈L∗
t,νt

νt , h〉)2

〈νt , |Dh|2〉

= ∥∥ν̇t −L∗
t,νt

νt + div(φ̇t νt )
∥∥2
νt

.

Comparing the definitions of Iφ and Ĩ φ , the proof is complete. �

LEMMA 6.17. For ν ∈ C([0, T ];P1(Rd)) and φ ∈ Cd
0 ,

inf
Q∈P1(Rd×Cd

0 ):�(Q,φ)=ν

R(Q|μ0 ×W) = Ĩ σ0φ
((

νt ◦ τ−1
σ0φt

)
t∈[0,T ]

)+R(ν0|μ0).

Observe that the first term on the right-hand side in Lemma 6.17 coincides with
Iσ0φ((νt )t∈[0,T ]) when φ ∈ H1

0([0, T ];Rd); when φ /∈ H1
0([0, T ];Rd), we called it

Iσ0φ((νt )t∈[0,T ])).

PROOF OF LEMMA 6.17. First, let (e,w) be the coordinate maps on R
d × Cd , as before,

and let �∗ : P1(Rd × Cd
0 ) → C([0, T ];P1(Rd)) be the mapping that takes, for a frozen φ ∈

Cd
0 , Q to the flow of marginal laws of the solution (yt )t∈[0,T ] of the McKean–Vlasov equation:

yt = e +
∫ t

0
b̃
(
s, ys + σ0φs,Q ◦ (τ−σ0φs ys)

−1)ds + σwt , t ∈ [0, T ].

We now claim that �(Q, φ) = ν if and only �∗(Q)t = νt ◦ τ−1
σ0φt

for all t ∈ [0, T ], which
can be seen by performing the change of variables (xt = yt + σ0φt)t∈[0,T ] where (xt )t∈[0,T ]
solves

xt = e +
∫ t

0
b̃
(
s, xs,Q ◦ x−1

s

)
ds + σwt + σ0φt , t ∈ [0, T ].

Hence, since φ0 = 0, it suffices now to show that

(6.17) inf
Q∈P1(Rd×Cd

0 ):�∗(Q)=ν

R(Q|μ0 ×W) = Ĩ σ0φ(ν) +R(ν0|μ0).

We start from the left-hand side of (6.17), for a fixed Q ∈ P1(Rd ×Cd
0 ). By Theorem D.13

in [21],

(6.18) R(Q|μ0 ×W) =R(q|μ0) +
∫
Rd

R
(
Qx0 |W)

dq(x0),

with q ∈ P(Rd) denoting the first marginal of Q ∈ P(Rd × Cd
0 ), and with (Qx0)x0∈Rd denot-

ing a regular conditional probability distribution of the Cd coordinate given the R
d coordi-

nate, under Q. In particular, replacing μ0 by q in (6.18), we see that the second term in the
right-hand side identifies with R(Q|q ×W).

Now, for (e,w) ∈ R
d × Cd

0 , let �(e,w) ∈ Cd denote the solution y of the equation

(6.19) yt = e +
∫ t

0
b̃
(
s, ys + σ0φs,�

∗(Q)t ◦ τ−1
−σ0φs

)
ds + σwt , t ∈ [0, T ],
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noting of course that Q ◦ y−1
t = �∗(Q)t for each t ∈ [0, T ], by construction. The nondegen-

eracy of σ (see Assumption A(2)) ensures that the map �(x0, ·) is one-to-one from Cd
0 to Cd ,

for a fixed x0 ∈ R
d . Hence, by the contraction property for relative entropy,

R
(
Qx0 |W)= R

(
Qx0 ◦ �(x0, ·)−1|W ◦ �(x0, ·)−1).

By the Donsker–Varadhan formula (see, for instance, Lemma 6.2.13 in [21]), we have

R
(
Qx0 |W)= sup

F∈Cb(Cd )

[∫
Cd

F
(
�(x0, ·))dQx0

− log
(∫

Cd
eF(�(x0,·)) dW

)]
,

(6.20)

where Cb(Cd) is the set of bounded continuous functions on Cd . The above right-hand side is
denoted by L

(1)
δx0

(Qx0 ◦ �(x0, ·)−1) in [19]; see Lemma 4.6 therein. Using that same notation
here, by (6.18), we end up with

R(Q|q ×W) =
∫
Rd

R
(
Qx0 |W)

dq(x0)

=
∫
Rd

L
(1)
δx0

(
Qx0 ◦ �(x0, ·)−1)dq(x0).

(6.21)

Now, passing the integral inside the supremum in (6.20), we obtain

R(Q|q ×W)

≥ sup
F∈Cb(Cd )

∫
Rd

dq(x0)

[∫
Cd

F
(
�(x0, ·))dQx0

− log
(∫

Cd
eF(�(x0,·)) dW

)]
= sup

F∈Cb(Cd )

[∫
Rd×Cd

F
(
�(·, ·))dQ

−
∫
Rd

dq(x0) log
(∫

Cd
eF(�(x0,·)) dW

)]
=: L(1)

q

(
Q ◦ �−1),

(6.22)

where the definition in the last line agrees with the notation in Lemma 4.6 of [19]. In fact,
the converse inequality holds as well: Because � is a one-to-one map of Rd × Cd

0 to Cd , we
again use the contraction property of relative entropy to get

R(Q|q ×W) = R
(
Q ◦ �−1|(q ×W) ◦ �−1))

= sup
F∈Cb(Cd )

[∫
Rd×Cd

F ◦ �dQ− log
(∫

Rd×Cd
eF◦� d(q ×W)

)]
.

By Jensen’s inequality and concavity of log, this is bounded above by the right-hand side
of (6.22), which shows that R(Q|q × W) = L

(1)
q (Q ◦ �−1). Using this along with (6.21) in

(6.18), we end up with

R(Q|μ0 ×W) = R(q|μ0) + L(1)
q

(
Q ◦ �−1).

Recalling that q denotes the first marginal of Q and that �∗(Q)0 = q , we have

inf
Q:�∗(Q)=ν

R(Q|μ0 ×W) = inf
Q:�∗(Q)=ν

[
R(ν0|μ0) + L(1)

q

(
Q ◦ �−1)].
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Finally, return to (6.19) and observe that (Q ◦ �−1
t )t∈[0,T ] coincides with �∗(Q). Also, for

any two probability measures ν0 and P on R
d and Cd , with ν0 being the image of P by the

mapping (xt )t∈[0,T ] → x0, there exists a unique Q ∈ P(Rd × Cd
0 ) such that P = Q ◦ �−1; if

P is integrable then Q is also integrable. Because, t → φt is continuous, the drift (t, x) →
b(t, x + σ0φt ,�

∗(Q)t ◦ τ−1
−σ0φs

) is nice enough that we may apply Lemma 4.6 from [19], as
well as Section 4.5 therein to conclude

inf
Q:�∗(Q)=ν

R(Q|μ0 ×W) = R(ν0|μ0) + Ĩ σ0φ(ν).

Importantly, to check the above equality, we can assume that R(ν0|μ0) < ∞, in which case
ν0 ∈ P1(Rd); hence, by (4.11) in [19], with ν = ν0, it is straightforward to verify that the
minimum of the right-hand side of (4.10) in [19], may be restricted to the P ’s that are
integrable. By the previous argument, those P can be written in the form Q ◦ �−1, with
Q ∈ P1(Rd × Cd

0 ), which yields the above identity. �

6.5. Proofs of Propositions 6.10 and 6.11. We start with the proof of Proposition 6.11.

PROOF. Take a path ν such that J σ0(ν) + R(ν0|μ0) ≤ a. Then, modifying without any
loss of generality the value of a, we can find φ ∈ Cd

0 such that Iσ0φ(ν) + R(ν0|μ0) ≤ a. By
Lemma 6.4, we deduce that the path (̃νt = νt ◦ τ−1

σ0φt
)t∈[0,T ] is absolutely continuous. Also,

for any test function h ∈ C∞
c (Rd) such that |Dxh| and |D2

xh| are bounded by 2, we have∫ T

0

∣∣〈 ˙̃νt , h〉∣∣2 dt ≤ C(a),

where C(a) is a constant only depending on a and the uniform bounds on b, σ , and σ0.
We can easily find a sequence of functions (hp)p≥1 in C∞

c (Rd) converging to the identity
function, uniformly on compact subsets, and satisfying at the same time the two constraints
‖Dxhp‖∞ ≤ 2 and ‖D2

xhp‖∞ ≤ 2. Using the fact that ν̃ ∈ C([0, T ];P1(Rd)), we have

lim
p→∞ sup

t∈[0,T ]
∣∣〈̃νt , hp〉 −M

ν̃
t

∣∣= 0.

Since the set {ψ ∈ H1([0, T ];Rd) : ‖ψ‖H1 ≤ √
C(a)} is closed for the uniform topology, we

deduce that Mν̃ = M
ν −σ0φ is in H1([0, T ];Rd) and has H1-norm bounded by

√
C(a). This

proves claim (ii).
Also, from Lemma 6.4 we know that

Ĩ σ0φ(̃ν) +R(̃ν0|μ0) = Iσ0φ(ν) +R(ν0|μ0) ≤ a.

Returning to the definition (6.4) of the action functional and using the fact that b̃ is bounded,
we can find a new constant, still denoted by C(a) (and depending only on the same quantities
as above), such that

I 0
(0)(̃ν) +R(̃ν0|μ0) ≤ C(a),

where I 0
(0) is the action functional I 0 in the case when b̃ ≡ 0 (i.e., when Lt,m = 1

2 Tr[σσ�D2
x]).

By Lemma 6.17,

I 0
(0)(̃ν) +R(̃ν0|μ0) = inf

Q:�(0)(Q,0)=ν̃
R(Q|μ0 ×W),

where �(0) is the map � in the case when b̃ ≡ 0. By Sanov’s theorem for the 1-Wasserstein
topology (see [39]), R is a good rate function on P1(Cd). Hence, by the contraction principle,
the left-hand side forms a good rate function on C([0, T ];P1(Rd)). We deduce that there
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exists a compact set K ⊂ C([0, T ];P1(Rd)), depending only on a > 0, such that ν̃ ∈ K .
Now, νt ◦ τ−1

M
ν
t
= ν̃t ◦ τ−1

M
ν
t −σ0φt

for all t . Using (6.8) and modifying the definition of K , we

easily deduce that (νt ◦ τ−1
M

ν
t
)t∈[0,T ] is in K , which completes the proof of (i). �

We turn to the proof of Proposition 6.10.

PROOF OF PROPOSITION 6.11. We start with the first claim. We observe that the quantity
infν∈Kδ(J

σ0(ν) +R(ν0|μ0)) is nondecreasing as δ decreases. In particular,

lim
δ↘0

inf
ν∈Kδ

(
J σ0(ν) +R(ν0|μ0)

)≤ inf
ν∈K

(
J σ0(ν) +R(ν0|μ0)

)
.

In order to prove the converse bound, we proceed as follows. By the above inequality, we can
assume that the left-hand side is finite, as otherwise there is nothing to prove. Recall from
Lemma 6.17 that

inf
�(Q,φ)∈Kδ

R(Q|μ0 ×W) = inf
ν∈Kδ

(
J σ0(ν) +R(ν0|μ0)

)
.(6.23)

Since the right-hand side is less than some C > 0 independent of δ, the left-hand side can be
rewritten as

inf
{
R(Q|μ0 ×W) : (Q, φ) s.t. �(Q, φ) ∈ Kδ,R(Q|μ0 ×W) ≤ C

}
.

Consider now a sequence (Qn,φn)n≥1 in P1(Rd ×Cd
0 )×Cd

0 , with φn ∈ Cd
0 and R(Qn|μ0 ×

W) ≤ C, yielding a 1/n-approximation of the infimum when δ = 1/n. Let νn = �(Qn,φn) ∈
K1/n, and notice that (νn)n≥1 is precompact in C([0, T ];P1(Rd)) by compactness of K .
Proposition 6.11 ensures that (σ0φ

n)n≥1 must too be precompact in Cd
0 , and thus without loss

of generality we may assume (φn)n≥1 is precompact as well. Finally, because R(·|μ0 ×W)

is a good rate function on P1(Rd × Cd
0 ) by [39], we deduce that (Qn)n≥1 is precompact.

Relabel the subsequence and assume that (μn,Qn,φn)n≥1 converges to some (μ,Q, φ). By
the continuity of � (see Lemma 6.16), ν = �(Q, φ) ∈ K . Hence, by the lower semicontinuity
of relative entropy, we get

R(Q|μ0 ×W) ≤ lim inf
n→∞ R

(
Qn|μ0 ×W

)= lim
δ↘0

inf
�(Q,φ)∈Kδ

R(Q|μ0 ×W).

Lemma 6.17 implies that (6.23) holds also without the δ, that is,

inf
�(Q,φ)∈K

R(Q|μ0 ×W) = inf
ν∈K

(
J σ0(ν) +R(ν0|μ0)

)
,

and the proof of the first claim is complete.
It remains to prove the second claim. In the case when σ0 = 0, the fact that J 0(·) +

R(·0|μ0) is a good rate function is a consequence of the proof of Proposition 6.11. Equiva-
lently, we can invoke Lemma 6.17, which asserts that

J 0(ν) +R(ν0|μ0) = inf
Q:�(Q,0)=ν

R(Q|μ0 ×W).

Since R is a good rate function on P1(Cd) and � is continuous, the left-hand side forms a
good rate function on C([0, T ];P1(Rd)). So, whenever (infν∈Fδ (J

σ0(ν) +R(ν0|μ0)))δ>0 is
bounded, we may restrict ν in a compact set, and the passage to the limit works exactly as
before. �



254 F. DELARUE, D. LACKER AND K. RAMANAN

6.6. Proofs of Proposition 6.5, Theorem 6.6 and Corollary 6.7. We start with the proof
of Proposition 6.5.

PROOF OF PROPOSITION 6.5. The proof relies on another formulation of the rate func-
tion Iσ0φ . Let C1,2

c ([0, T ] × R
d) denote the set of compactly supported functions φ on

[0, T ] × R
d possessing one time derivative and two space derivatives. By [19], Lemma 4.8,

we claim that for φ ∈ C2
0([0, T ];Rd)

I σ0φ(ν) = sup
ψ∈C

1,2
c ([0,T ]×Rd )

[
〈νT ,ψT 〉 − 〈ν0,ψ0〉

−
∫ T

0

〈
νt , (∂t +Lt,νt )ψt + σ0φ̇t · Dxψt + 1

2

∣∣σ�Dxψt

∣∣2〉dt

]
,

where we write ψt(x) = ψ(t, x). Since ν ∈ P1(C([0, T ];P1(Rd))), we can allow ψ in the
supremum to be at most of linear growth in x, uniformly in time, with bounded derivatives.
Now consider the change of variables ψ̃t (x) = ψt(x) − σ0φ̇t · (σσ�)−1x. We then have

∂t ψ̃t (x) = ∂tψt (x) − σ0φ̈t · (σσ�)−1
x,

Dxψ̃t = Dxψt − (
σσ�)−1

σ0φ̇t ,

Lt,νt ψ̃t (x) = Lt,νt ψt (x) − b̃(t, x, νt ) · [(σσ�)−1
σ0φ̇t

]
.

We then find that

Iσ0φ(ν) = sup
ψ∈C

1,2
c ([0,T ]×Rd )

[
〈νT ,ψT 〉 − 〈ν0,ψ0〉

−
∫ T

0

〈
νt , (∂t +Lt,νt )ψt + 1

2

∣∣σ�Dxψt

∣∣2〉dt

]
− (

M
ν
T · [(σσ�)−1

σ0φ̇T

]−M
ν
0 · [(σσ�)−1

σ0φ̇0
])

+
∫ T

0
M

ν
t · [(σσ�)−1

σ0φ̈t

]
dt

+
∫ T

0

(〈
νt , b̃(t, ·, νt )

〉 · [(σσ�)−1
σ0φ̇t

]
+ 1

2
[σ0φ̇t ] · [(σσ�)−1

σ0φ̇t

])
dt.

The first term on the right-hand side is I 0(ν). By expanding the term on the second line by
integration by parts, we get

Iσ0φ(ν) = I 0(ν) +
∫ T

0

[
−Ṁ

ν
t + 〈

νt , b̃(t, ·, νt )
〉+ 1

2
σ0φ̇t

]
· [(σσ�)−1

σ0φ̇t

]
dt.

(6.24)

Note that this shows that Iσ0φ(ν) < ∞ if and only if I 0(ν) < ∞. We wish to extend the
identity (6.24) to φ ∈ H1

0([0, T ];Rd). As the right-hand side above is clearly continuous in
H1

0([0, T ];Rd), we must only show that the left-hand side is as well, at least when suitable
terms are finite. Fix a sequence φn ∈ C2

0([0, T ];Rd), converging in H1-norm to some φ ∈
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H1
0([0, T ];Rd). First, use the definition to see that, for a finite constant C depending on σ0,

Iσ0φ
n

(ν) ≤ Iσ0φ(ν) + C

∫ T

0

∥∥ν̇t −L∗
t,νt

νt + div(νtσ0φ̇t )
∥∥
νt

∣∣φ̇t − φ̇n
t

∣∣dt

+ C

2

∫ T

0

∣∣φ̇t − φ̇n
t

∣∣2 dt(6.25)

≤ Iσ0φ(ν) + C
[
Iσ0φ(ν)

]1/2∥∥φ − φn
∥∥
H1 + C

2

∥∥φ − φn
∥∥2
H1 .

Similarly,

Iσ0φ(ν) ≤ Iσ0φ
n

(ν) + [
Iσ0φ

n

(ν)
]1/2∥∥φ − φn

∥∥
H1 + 1

2

∥∥φ − φn
∥∥2
H1 .(6.26)

If Iσ0φ(ν) = ∞, then Iσ0φ
n
(ν) = ∞ for all n, and likewise I 0(ν) = ∞. In this case, the

identity (6.24) holds for φ. If Iσ0φ(ν) < ∞, then (6.25) implies supn Iσ0φ
n
(ν) < ∞. Then

(6.25) and (6.26) together imply that Iσ0φ
n
(ν) → Iσ0φ(ν), and again (6.24) holds for φ.

Now that we know (6.24) holds for all φ ∈ H1
0([0, T ];Rd), we take the infimum on both

sides. To do this, note that if S = R�R for some positive definite d × d matrix R, if V a
subspace of Rd , and if � the orthogonal projection from R

d to the subspace RV , then for
any y ∈ R

d we have infx∈V Sx · (1
2x − y) = −1

2 |�Ry|2. With R = σ−1 and V equal to the
image of σ0, we find

inf
φ∈H1

0([0,T ];Rd )
I σ0φ(ν) = I 0(ν) − 1

2

∫ T

0

∣∣�σ−1σ0
σ−1(

Ṁ
ν
t − 〈

νt , b̃(t, ·, νt )
〉)∣∣2 dt.

In particular,

J σ0(ν) ≤ I 0(ν) − 1

2

∫ T

0

∣∣�σ−1σ0
σ−1(

Ṁ
ν
t − 〈

νt , b̃(t, ·, νt )
〉)∣∣2 dt.

If the left-hand side is infinite, the proof is over. If it is finite, we know from Proposi-
tion 6.11 that the infimum over Cd

0 in the definition of J σ0 can be reduced to an infimum
over H1([0, T ];Rd), since M

ν is in H1([0, T ];Rd). This completes the proof. �

We now turn to the proof of Theorem 6.6. The proof of Corollary 6.7 is similar, so we omit
it.

PROOF OF THEOREM 6.6. Note that the operator σ�σ−1σ0
in the definition of M

b̃,ν

ensures that there exists φ̃ ∈ Cd
0 such that Mb̃,ν = σ0φ̃. Thanks to Lemma 6.4, this permits

the following change of variables:

J σ0(ν) = inf
φ∈Cd

0

Ĩ σ0φ
((

νt ◦ τ−1
σ0φt

)
t∈[0,T ]

)
= inf

φ∈Cd
0

Ĩ σ0(φ+φ̃)(((νt ◦ τ−1
σ0φ̃t

) ◦ τ−1
σ0φt

)
t∈[0,T ]

)
=: J̃ σ0,φ̃

((
νt ◦ τ−1

σ0φ̃t

)
t∈[0,T ]

)
,

where, for ψ ∈ Cd
0 , we define J̃ σ0,ψ just like J σ0 but with the drift modified to (t, x,m) →

b̃(t, x + σ0ψt,m ◦ τ−1
−σ0ψt

). More precisely,

J̃ σ0,ψ (ν) := inf
φ∈Cd

0

Ĩ σ0(φ+ψ)((νt ◦ τ−1
σ0φt

)
t∈[0,T ]

)
.
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The analog of Proposition 6.5 for this modified drift now implies that if ν has mean path in
H1

0([0, T ];P1(Rd)) then

J̃ σ0,φ̃(ν) = Ĩ σ0φ̃(ν)

− 1

2

∫ T

0

∣∣�σ−1σ0
σ−1(

Ṁ
ν
t − 〈

νt , b̃
(
t, · + σ0φ̃t , νt ◦ τ−1

−σ0φ̃t

)〉)∣∣2 dt.

The mean path of ν̃ = (νt ◦ τ−1

M
b̃,ν
t

= νt ◦ τ−1
σ0φ̃t

)t∈[0,T ] is precisely

M
ν̃
t = M

ν
t − σ�σ−1σ0

σ−1
(
M

ν
t −M

ν
0 −

∫ t

0

〈
νs, b̃(s, ·, νs)

〉
ds

)
,

so the above yields

J̃ σ0,φ̃
((

νt ◦ τ−1
σ0φ̃t

)
t∈[0,T ]

)= Ĩ σ0φ̃(ν̃) = ĨM
b̃,ν ((

νt ◦ τ−1

M
b̃,ν
t

)
t∈[0,T ]

)
. �

7. Examples. This section discusses two explicitly solvable models that do not fit our
assumptions A. Nonetheless, we show that our strategy for deriving limit theorems by com-
parison with a more classical McKean–Vlasov system is still successful in these cases.

7.1. A linear-quadratic model. In this section, we discuss how our ideas apply to the
mean field game model of systemic risk proposed in [14]. Here, d = 1, σ and σ0 are positive
constants, the action space A = R, and for some ḡ, ε, b̄ > 0 and 0 ≤ q2 ≤ ε we have

b(x,m,a) = b̄(m − x) + a,

f (x,m,a) = 1

2
a2 − qa(m − x) + ε

2
(m − x)2,

g(x,m) = ḡ

2
(m − x)2,

where m = ∫
R

y dm(y). Both the drift and cost functions induce a herding behavior toward
the population average; see [14] for a thorough discussion.

It was shown in (3.24) of [14] that the unique closed loop Nash equilibrium dynamics is
given by

αi
t =

[
q + ϕn

t

(
1 − 1

n

)](
Xt − Xi

t

)
, t ∈ [0, T ],(7.1)

where Xt = 1
n

∑n
i=1 Xi

t , and where ϕn is the unique solution to the Riccati equation:

ϕ̇n
t = 2(b̄ + q)ϕn

t +
(

1 − 1

n2

)∣∣ϕn
t

∣∣2 − (
ε − q2), ϕn

T = ḡ.

The explicit solution takes the form

ϕn
t = −(ε − q2)(e(δ+

n −δ−
n )(T −t) − 1) − ḡ(δ+

n e(δ+
n −δ−

n )(T −t) − δ−
n )

(δ−
n e(δ+

n −δ−
n )(T −t) − δ+

n ) − ḡ(1 − 1
n2 )(e(δ+

n −δ−
n )(T −t) − 1)

,(7.2)

where

δ±
n = −(b̄ + q) ±

√
(b̄ + q)2 +

(
1 − 1

n2

)(
ε − q2

)
.(7.3)



LARGE DEVIATIONS AND CONCENTRATION FOR MEAN FIELD GAMES 257

In particular, the Nash equilibrium state process is given by the solution X = (X1, . . . ,Xn)

of the SDE system

dXi
t =

(
b̄ + q + ϕn

t

(
1 − 1

n

))(
Xt − Xi

t

)
dt + σ dBi

t + σ0 dWt,

t ∈ [0, T ].
(7.4)

It is straightforward to show that ϕn
t → ϕ∞

t as n → ∞, uniformly in t ∈ [0, T ], where ϕ∞
is the unique solution to the Riccati equation

ϕ̇∞
t = 2(b̄ + q)ϕ∞

t + ∣∣ϕ∞
t

∣∣2 − (
ε − q2), ϕ∞

T = ḡ.

The explicit solution is of the same form given by (7.2) and (7.3), with n = ∞. It follows that
X = (X1, . . . ,Xn) should be “close” in some sense to the solution Y = (Y 1, . . . , Y n) of the
auxiliary SDE system

dY i
t = (

b̄ + q + ϕ∞
t

)(
Y t − Y i

t

)
dt + σ dBi

t + σ0 dWt,(7.5)

initialized at the same points Y i
0 = Xi

0. Of course, it should be noted that the process Y plays
here the same role as the process X in (4.1), the solution U to the master equation being
given in the current framework by

U(t, x,m) = ϕ∞
t

2
(m − x)2.

In this regard, the fact that X and Y should be “close” is completely analogous to the state-
ments of Theorems 4.1 and 4.2. Here, we prefer to use Y instead of the notation X used in
previous sections, to avoid any confusion with the empirical mean process that appears in
(7.1).

To compare (7.4) and (7.5), we use the fact that X0 = Y 0, and we apply Gronwall’s in-
equality to find a constant C < ∞ such that

1

n

n∑
i=1

∥∥Xi − Y i
∥∥∞ ≤ C

∥∥∥∥(1 − 1

n

)
ϕn − ϕ∞

∥∥∥∥∞
1

n

n∑
i=1

∥∥Xi
∥∥∞, a.s.,(7.6)

where, as usual, ‖ · ‖∞ denotes the supremum norm on [0, T ]. On the other hand, the equation
(7.4) and Gronwall’s inequality yield

1

n

n∑
i=1

∥∥Xi
∥∥∞ ≤ C

(
1 + 1

n

n∑
i=1

∣∣Xi
0

∣∣+ 1

n

n∑
i=1

∥∥Bi
∥∥∞ + ‖W‖∞

)
a.s.

As soon as (Xi
0)i≥1 are i.i.d. and sub-Gaussian (e.g., E[exp(κ|X1

0|2)] < ∞ for some κ > 0),
we find a uniform sub-Gaussian bound on these averages; that is, there exist constants C <

∞, δ > 0, independent of n, such that

P

(
1

n

n∑
i=1

∥∥Xi
∥∥∞ > a

)
≤ exp

(−δ2a2), for all a ≥ C,n ∈N.

Assuming without any loss of generality that the constant C in the last display coincides with
the one in (7.6), and letting rn = C‖(1 − 1

n
)ϕn − ϕ∞‖∞, we find that, for a ≥ Crn,

P
(
W1,Cd

(
mn

X,mn
Y

)
> a

)≤ P

(
1

n

n∑
i=1

∥∥Xi − Y i
∥∥∞ > a

)

≤ P

(
rn

n

n∑
i=1

∥∥Xi
∥∥∞ > a

)

≤ exp
(−δ2a2/r2

n

)
.

(7.7)
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It is straightforward to check that rn = O(1/n), which implies in particular the exponential
equivalence of (mn

X) and (mn
Y ), in the sense that

lim
n→∞

1

n
logP

(
W1,Cd

(
mn

X,mn
Y

)
> a

)= −∞ for all a > 0.

Moreover, the concentration estimates of Section 3.1 are all valid; all that was used in the
proofs were the estimates in (7.7) and the concentration bounds for McKean–Vlasov systems
of Sections 5.2 and 5.3.

Derivation of the LDP. As made clear in Section 6, the relation (7.7) is the cornerstone to
get a LDP for (mn

X)n≥1. Indeed, we can have the LDP for (mn
Y )n≥1 by adapting the arguments

of Section 6, but this requires some care as the drift here is no longer bounded.
Most of the derivation of Theorem 6.8 is based upon on the contraction principle: the fact

that the drift is unbounded is not a problem for duplicating the proof. In fact, the assump-
tion that b is bounded is used only a few times in Section 6, mainly for the derivation of
Propositions 6.10 and 6.11. We explain below how to accommodate the unboundedness of b.

Notice in particular that, specialized to the present setting, the rate function of the weak
LDP (see Theorem 6.8) has the form

J σ0(ν) +R(ν0|μ0),

where

J σ0(ν) = inf
φ∈Cd

0

I 0((νt ◦ τ−1
σ0φt

)
t∈[0,T ]

)
,

I 0 standing for Dawson and Gartner’s rate function as defined in the statement of Lemma 6.4
with the drift b̃ : (t, x,μ) → b̄ + q + ϕ∞

t (x − μ) and with μ denoting the mean of μ. Re-
markably, since b̃(t, x +φt ,m◦ τ−1

−φt
) = b̃(t, x,m), I 0 is completely independent of φ, which

ultimately leads to nice formulas in our setting.
When σ0 = 0, there is no need to push further the analysis. So, for the rest of this short

discussion, we can assume σ0 > 0. To proceed, we observe that, due to the special form
of interaction in the dynamics, we can easily shift the path φ appearing in the definition of
J σ0(ν). Indeed, we can rewrite J σ0(ν) (first changing σ0φ into φ and then shifting φ) as

J σ0(ν) = inf
φ∈Cd

0

I 0(((νt ◦ τ−1
M

ν
t −M

ν
0

) ◦ τ−1
φt

)
t∈[0,T ]

)
.

The key fact to observe here is that νt ◦ τ−1
M

ν
t −M

ν
0

has zero mean.

When φ is smooth enough, Lemma 6.4 provides another representation for I 0((νt ◦
τ−1
φt

)t∈[0,T ]) and the relation (6.24) in the proof of Proposition 6.5 remains true as well. Thus,
combining the special form of the drift together with (6.24), we see that, when (νt )t∈[0,T ] has
a constant mean, we have

I 0((νt ◦ τ−1
φt

)
t∈[0,T ]

)≥ I 0((νt )t∈[0,T ]
)
.

Arguing as in (6.25)–(6.26), the latter remains true when φ lies in H1
0([0, T ];Rd). We now

want to check that this remains true when φ ∈ Cd
0 . To do so, we must revisit the first step in

the proof of Proposition 6.10. If

I 0((νt ◦ τ−1
φt

)
t∈[0,T ]

)≤ a,

for some a > 0, we can find a constant C(a, ν) such that Mν − φ lies in H1([0, T ];Rd)

with an H1 norm less than C(a, ν). The main difference with the proof of Proposition 6.10
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is that the constant C here depends on ν, but it suffices to check that necessarily φ lies in
H1([0, T ];Rd). Therefore, (still in the case where (νt )t∈[0,T ] has a constant mean) we end up
with

inf
φ∈Cd

0

I 0((νt ◦ τ−1
φt

)
t∈[0,T ]

)= I 0((νt )t∈[0,T ]
)
.

In the general case when the mean is not constant, this yields

J σ0(ν) = I 0((νt ◦ τ−1
M

ν
t −M

ν
0

)
t∈[0,T ]

)
.

Then, if needed, we can revisit the proof of Proposition 6.10 to specialize the upper bound
in the case of compact sets. The only fact that is needed from Proposition 6.11 is that the
aforementioned constant C(a, ν) is uniform in ν in compact subsets, which can be shown to
be true. This suffices to obtain the complete form of the LDP, as stated in Theorem 3.11.

7.2. A Merton-type model. We now turn to one of the models of [32], which fails to fit
our general assumptions for a number of reasons. As in Section 7.1, the coefficients are un-
bounded and the Hamiltonian is non-Lipschitz. But now both volatility terms are controlled,
and agents are more heterogeneous in the sense that each is assigned a certain type vector,
denoted by ζi = (Xi

0, δi, θi,μi, σi, νi) and belonging to the space

Z := {
(x, δ, θ,μ,σ, ν) ∈ R× (0,∞) × [0,1] × (0,∞) × [0,∞)2 : σ + ν ≥ c

}
,

where c > 0 is fixed. Suppose henceforth that we are given an infinite sequence of deter-
ministic type vectors (ζi)i∈N. Assume also, for simplicity, that all of these parameters are
uniformly bounded from above.

The n-player game is described by a state process X = (X1, . . . ,Xn) given by

dXi
t = αi

t

(
μi dt + νi dBi

t + σi dWt

)
,

where each Xi
t is one-dimensional. Agent i chooses (αi

t )t∈[0,T ] to try to maximize the ex-
pected utility

−E

[
exp

(
− 1

δi

(
Xi

T − θiXT

))]
,

where XT = 1
n

∑n
k=1 Xk

T . This is essentially Merton’s problem of portfolio optimization, un-
der exponential utility, but with each agent concerned not only with absolute wealth but also
with relative wealth, as measured by the average XT . The parameter θi ∈ [0,1] determines
the tradeoff between absolute and relative performance concerns; see [32] for a complete
discussion.

We express the equilibrium in terms of the constant

ηn := 1

n

n∑
k=1

δkμkσk

σ 2
k + ν2

k (1 − θk/n)

/(
1 − 1

n

n∑
k=1

θkσ
2
k

σ 2
k + ν2

k (1 − θk/n)

)
,

assuming the denominator is nonzero (which certainly holds if θk < 1 for at least one k). It
is shown in Theorem 3 of [32] that there exists a Nash equilibrium in which agent i chooses
the constant (i.e., time- and state-independent) control

αn
i := δiμi + ηnθiσi

σ 2
i + ν2

i (1 − θi/n)
.

The corresponding state process is given by

Xi
t = Xi

0 + αn
i μit + αn

i νiB
i
t + αn

i σiWt .
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Now, as in the previous section, we can show that X is very close to a particle system
Y = (Y 1, . . . , Y n), where

Y i
t = Xi

0 + α̃n
i μit + α̃n

i νiB
i
t + α̃n

i σiWt ,

and where

α̃n
i := δiμi + ηnθiσi

σ 2
i + ν2

i

,

η̃n := 1

n

n∑
k=1

δkμkσk

σ 2
k + ν2

k

/(
1 − 1

n

n∑
k=1

θkσ
2
k

σ 2
k + ν2

k

)
.

More precisely, note that the uniform bounds on the type parameters ensure that there exists
L̃ > 0 such that |α̃n

i − αn
i | ≤ L̃/n for all n ≥ 2 and all i, and we conclude that

∥∥Xi − Y i
∥∥∞ ≤ L̃

n

(
μiT + νi

∥∥Bi
∥∥∞ + σi‖W‖∞

)
.

By assuming that (Xi
0)i≥1 are i.i.d. and sub-Gaussian as in the previous subsection, it is

straightforward to show that there exist constants C,δ > 0, independent of n, such that

(7.8) P

(
1

n

n∑
i=1

∥∥Xi − Y i
∥∥∞ > a

)
≤ exp

(−δ2n2a2), for all a ≥ C/n,n ≥ 2.

Again, this estimate allows us to transfer limit theorems and concentration estimates for Y
over to X.

While Y is not exactly a standard McKean–Vlasov system because of the type parameters,
it is close enough that we can do some similar analysis. Let us illustrate one simple way to
study the limiting behavior of mn

Y . Define a map � : P(Z × C1) × C1 → P(C1) by setting
�(Q,w) equal to the image of Q ◦ Ŷ−1

w , where Ŷw : Z × C1 → C1 is defined for each w ∈ C1

by setting

Ŷw(ζ, )(t) = x0 + δμ + Q1θσ

σ 2 + ν2

(
μt + ν(t) + σw(t)

)
,

where ζ = (x0, δ, θ,μ,σ, ν), and where

Q1 :=
∫
Z×C1

δμσ

σ 2 + ν2

/(
1 − θσ 2

σ 2 + ν2

)
Q(dζ, d).

We may then write

mn
Y = �

(
1

n

n∑
i=1

δ(ζi ,B
i),W

)
.

For a fixed M > 0, it is easily checked that the map � is continuous (with respect to weak
convergence) when restricted to the subset of (Q,w) for which δμσ ≤ M and 1−θσ 2/(σ 2 +
ν2) ≥ 1/M holds for Q-a.e. (ζ, ). Therefore, we may easily identify the limit of mn

Y as
n → ∞, as long as 1

n

∑n
i=1 δ(ζi ,B

i) converges a.s. Moreover, if the type vectors ζi are i.i.d.

then the sequence of empirical measures 1
n

∑n
i=1 δ(ζi ,B

i) satisfies a LDP, according to Sanov’s
theorem. If σi = 0 for all i, so there is no common noise, then �(Q,w) does not depend on
w, and we may deduce a LDP for mn

Y from the contraction principle. If the common noise is
present, we can either deduce a LDP conditionally on W (i.e., quenched), or we can deduce
an unconditional (i.e., annealed) weak LDP, as is done in Propositions 6.15 and Theorem 6.8
in a general setting.
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8. Conclusions and open problems. In this paper and the companion [20], we have
seen how a sufficiently well behaved solution to the master equation can be used to derive
asymptotics for mean field games, in the form of a law of large numbers, central limit theo-
rem and LDP, as well as nonasymptotic concentration bounds. This worked under a class of
reasonable but restrictive assumptions, notably including boundedness of various derivatives
of the master equation. Without this boundedess, it is not clear if we can always expect the
Nash system mn

X and the McKean–Vlasov system mn
X

to share the same large deviations,
or to be exponentially equivalent as in Theorem 4.3. In the two examples we presented in
Section 7, there were no difficulties, but it is not clear how much regularity we really need
for the master equation.

To comment more on this point, note that the proof of our main estimate Theorem 4.1
(given in Section 4 of [20]) was in many ways parallel to Lipschitz FBSDE estimates. To
cover linear-quadratic models, we should allow the first derivatives of U(t, x,m) to grow
linearly in x and W1(m, δ0) and the Hamiltonian to have quadratic growth in both x and α.
This leads to a quadratic FBSDE system, as we encountered in the proof of Theorem 4.2
(given in Section 4 of [20]), but with unbounded coefficients controlled only in terms of the
forward component. This would certainly require a much more delicate analysis.

Technical assumptions notwithstanding, there is an interesting gap in the current state of
the limit theory for closed-loop versus open-loop equilibria. The papers [24, 30] provide
laws of large numbers for open-loop equilibria, with the key advantage of addressing the
nonunique regime, that is, when there are multiple mean field equilibria. A sequence of
n-player equilibria may have multiple limit points as n → ∞, but any such limit point is
a mean field equilibrium in a suitable weak sense. In the closed-loop setting, there are no
limit theorems addressing the nonunique regime, which is important in light of the fact that
nonuniqueness is a key feature of many game theoretic models. On the other hand, we now
have a central limit theorem and LDP for closed-loop equilibria, in the unique regime, and no
such results are known for open-loop equilibria. However, it is worth mentioning that anal-
ogous LDPs have been established in the nonunique regime in the simpler setting of static
games [31].
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