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Let Y = (Y (t))t≥0 be a zero-mean Gaussian stationary process with
covariance function ρ : R → R satisfying ρ(0) = 1. Let f : R → R be a
square-integrable function with respect to the standard Gaussian measure,
and suppose the Hermite rank of f is d ≥ 1. If

∫
R

|ρ(s)|d ds < ∞, then
the celebrated Breuer–Major theorem (in its continuous version) asserts that

the finite-dimensional distributions of Zε := √
ε
∫ ·/ε
0 f (Y (s)) ds converge to

those of σW as ε → 0, where W is a standard Brownian motion and σ is
some explicit constant. Since its first appearance in 1983, this theorem has
become a crucial probabilistic tool in different areas, for instance in signal
processing or in statistical inference for fractional Gaussian processes.

The goal of this paper is twofold. First, we investigate the tightness in
the Breuer–Major theorem. Surprisingly, this problem did not receive a lot of
attention until now, and the best available condition due to Ben Hariz [J. Mul-
tivariate Anal. 80 (2002) 191–216] is neither arguably very natural, nor easy-
to-check in practice. In contrast, our condition very simple, as it only requires
that |f |p must be integrable with respect to the standard Gaussian measure
for some p strictly bigger than 2. It is obtained by means of the Malliavin
calculus, in particular Meyer inequalities.

Second, and motivated by a problem of geometrical nature, we extend the
continuous Breuer–Major theorem to the notoriously difficult case of self-
similar Gaussian processes which are not necessarily stationary. An appli-
cation to the fluctuations associated with the length process of a regularized
version of the bifractional Brownian motion concludes the paper.

1. Introduction and statement of the main results. Let Y = (Y (t))t≥0 be a zero-mean
Gaussian stationary process, with covariance function E[Y(t)Y (s)] = ρ(|t − s|) such that
ρ(0) = 1. Let γ = N(0,1) be the standard Gaussian measure on R. Consider a function
f ∈ L2(R, γ ) of Hermite rank d ≥ 1, that is, f has a series expansion given by

(1.1) f (x) =
∞∑

q=d

cqHq(x), cd �= 0,

where Hq(x) is the qth Hermite polynomial.
It has become a central result in modern stochastic analysis that, under the condition∫

R
|ρ(s)|d ds < ∞, the finite-dimensional distributions (f.d.d.) of the process

(1.2) Zε(t) := √
ε

∫ t/ε

0
f
(
Y(s)

)
ds, t ≥ 0
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converge, as ε tends to zero, to those of σW , where W = (W(t))t≥0 is a standard Brownian
motion and

(1.3) σ 2 =
∞∑

q=d

c2
qq!

∫
R

ρ(s)q ds.

(Observe that |ρ(s)| = |E[Y(s)Y (0)]| ≤ ρ(0) = 1 by Cauchy–Schwarz, and thus σ 2 is well
defined under our integrability assumption on ρ and the square-integrability of f ). This is a
continuous version of the celebrated Breuer–Major theorem proved in [3], that can be found
stated this way, for example, in the paper by Ben Hariz [1]. We also refer the reader to
[13], Chapter 7, where a modern proof of the original discrete version1 of the Breuer–Major
theorem is given, by means of the recent Malliavin–Stein approach.

The condition
∫
R

|ρ(s)|d ds < ∞ turns out to be also necessary for the convergence of Zε

to σW in the sense of f.d.d., because σ 2 is not properly defined when
∫
R

|ρ(s)|d ds = ∞.
What about the functional convergence, that is, convergence in law of Zε to σW in C(R+)

endowed with the uniform topology on compact sets? First, let us note that Chambers and
Slud ([4], page 328) provide a counterexample of a zero-mean Gaussian stationary process Y

and a square-integrable function f satisfying Zε ⇒ σW in the sense of f.d.d., but not in the
functional sense; as a consequence, we see that the mere condition

∫
R

|ρ(s)|d ds < ∞ does
not imply tightness in general.

Before the present paper, the best sufficient condition ensuring tightness in the continuous
Breuer–Major theorem was due to Ben Hariz [1]: more precisely, it is shown in [1], Theo-
rem 1, that the functional convergence of Zε to σW holds true whenever either

(1.4) there exists R > 1 such that
∞∑

q=d

|cq |√
q!

(∫
R

∣∣ρ(s)
∣∣q ds

)1/2
Rq < ∞,

or

(1.5) the cq are all positive and f ∈ L4(R, γ ).

The two conditions (1.4)–(1.5) proposed by Ben Hariz [1] were obtained thanks to moment
inequalities à la Rosenthal; they are neither very natural, nor easy-to-check.

In the present paper, our first main objective is to remedy the situation and provide a simple
sufficient condition for the convergence Zε ⇒ σW to hold in law in C(R+) endowed with
the uniform topology on compact sets. Surprisingly and compared to [1], our finding is that
only a little more integrability of the function f is enough.

THEOREM 1.1. Let Y = (Y (t))t≥0 be a zero-mean Gaussian stationary process with
covariance function E[Y(t)Y (s)] = ρ(|t − s|) such that ρ(0) = 1. Consider a function f ∈
L2(R, γ ) with expansion (1.1) and Hermite rank d ≥ 1. Suppose that

∫
R

|ρ(s)|d ds < ∞.
Then, if f ∈ Lp(R, γ ) for some p > 2, the process Zε defined in (1.2) converges in law in
C(R+) to σ(W(t))t≥0, where W is a Brownian motion and σ 2 is defined in (1.3).

The proof of Theorem 1.1 is based on the application of the techniques of Malliavin calcu-
lus and it has been inspired by the recent work of Jaramillo and Nualart [9] on the asymptotic
behavior of the renormalized self-intersection local time of the fractional Brownian motion.
The main idea to prove tightness is to use the representation of the random variable Zε(t) as

Zε(t) = δd(−DL−1)dZε(t),

1Note that the proof contained in [13], Chapter 7, can be easily extended (mutatis mutandis) to cover the
continuous framework as well.



CONTINUOUS BREUER–MAJOR THEOREM 149

where δ, D and L are the basic operators in Malliavin calculus and then apply Meyer inequal-
ities to upper bound E[|Zε(t) − Zε(s)|p] by C|t − s|p/2, where p is the exponent appearing
in Theorem 1.1.

Then, as an application of the previous result we aim to solve the following problem. Let
X = (X(t))t≥0 be a self-similar continuous Gaussian centered process, and assume moreover
that almost no path of X is rectifiable, that is, the length of X on any compact interval is
infinite: in symbols, L(X; [0, t]) = +∞ for all t > 0. Examples of such processes include the
fractional Brownian motion and relatives, such as the bifractional Brownian motion and the
subfractional Brownian motion. Consider the C1-regularization Xε of X given by

(1.6) Xε(t) = 1

ε

∫ t+ε

t
X(u)du.

Can we compute at which speed the length of Xε on [0, t] explodes? Stated in a different
way, what is the asymptotic behavior of the family of processes indexed by ε:

(1.7) L
(
Xε; [0, t]) =

∫ t

0

∣∣Ẋε(u)
∣∣du, t ≥ 0,

when ε → 0?
Let us first take a look at the simplest case, that is, where X = B is a fractional Brown-

ian motion (fBm) of index H ∈ (0,1). We recall that the fBm B = (B(t))t≥0 is a centered
Gaussian process with covariance

(1.8) E
[
B(t)B(s)

] = 1

2

(
t2H + s2H − |t − s|2H )

.

Making a change of variable and using the self-similarity of B , we observe that

L
(
Bε; [0, t]) = ε−1

∫ t

0

∣∣B(u + ε) − B(u)
∣∣du =

∫ t/ε

0

∣∣B(
ε(v + 1)

) − B(εv)
∣∣dv

law= εH
∫ t/ε

0

∣∣B(v + 1) − B(v)
∣∣dv =: εH− 1

2 Zε(t) (as a process in t),

so that we are left to study the asymptotic behavior of Zε as ε → 0. Since the fractional
Gaussian noise (B(t + 1) − B(t))t≥0 is stationary, to conclude it actually suffices to apply
Theorem 1.1 to the process Y(t) = B(t + 1) − B(t). Indeed, if we choose for f the function

f (x) = |x| −
√

2
π

of Hermite rank 2 (indeed, f =
√

2
π

∑∞
q=1

(−1)q−1

2qq!(2q−1)
H2q , see Section 6.3),

we have f ∈ Lp(R, γ ) for any p ≥ 2. In this way, we obtain the following result:

(i) If H < 3
4 , then

ε
1
2 −H

(
L
(
Bε; [0, t]) − tεH−1

√
2

π

)
t≥0

⇒ σH

(
W(t)

)
t≥0

in C(R+) as ε → 0,

(1.9)

with W a standard Brownian motion and σ 2
H = 1

π

∑∞
q=1

(2q)!
22q−1q!2(2q−1)2

∫ ∞
−∞ a2H (h)2q dh,

where, for any α > 0,

(1.10) aα(h) = 1

2

(|h − 1|α + |h + 1|α − 2|h|α), h ∈ R.

Furthermore, in the case H ≥ 3
4 , it is known that (tightness in the case H = 3

4 can be
proved by the same techniques as in Theorem 1.1 and follows from Theorem 1.2 below):
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(ii) If H = 3
4 , then

ε− 1
4√| log ε|

(
L
(
Bε; [0, t]) − tε− 1

4

√
2

π

)
t≥0

⇒ 3

8
√

π

(
W(t)

)
t≥0

in C(R+) as ε → 0.

(1.11)

(iii) If H > 3
4 , then

εH−1
(
L
(
Bε; [0, t]) − tεH−1

√
2

π

)
⇒ “Rosenblatt process”

in C(R+) as ε → 0.

(1.12)

The asymptotic behavior of (1.7) is therefore completely understood when X = B is a fBm
but are the previous convergences (1.9), (1.11) and (1.12) still true for any self-similar con-
tinuous Gaussian centered process? In this paper, our second main objective is to answer this
question, which is particularly difficult because of the lack of stationarity of the increments
of X in such a generality.

To have a better idea of what may happen, let us now consider the case where X = B̃ is
the bifractional Brownian motion with indices H ∈ (0,1) and K ∈ (0,1], meaning that the
covariance of B̃ is given by

(1.13) E
[
B̃(t)B̃(s)

] = 2−K((
t2H + s2H )K − |t − s|2HK)

.

When K = 1, B̃ is nothing but a fBm with index H . In general, we can think of B̃ as a

perturbation of a fBm B with index HK . Indeed, set Z(t) = ∫ ∞
0 (1 − e−θt )θ− 1+K

2 dW(θ),
t ≥ 0, where W stands for a standard Brownian motion independent of B̃ . As shown by
Lei and Nualart [10], the process Z has absolutely continuous trajectories; moreover, with
Y(t) = Z(t2H ),

(1.14)
(√

2−KK


(1 − K)
Y(t) + B̃(t)

)
t≥0

law= (
2

1−K
2 B(t)

)
t≥0.

Recall definition (1.6). We immediately deduce from (1.14) that, for any ε > 0,

(1.15)
(√

2−KK


(1 − K)
Y ε(t) + B̃ε(t)

)
t≥0

law= (
2

1−K
2 Bε(t)

)
t≥0.

We can thus write, assuming that Y and B̃ are independent and defined on the same proba-

bility space, and with B := 2
K−1

2 (
√

2−KK

(1−K)

Y + B̃):

L
(
B̃ε; [0, t]) − 2

1−K
2 tεHK−1

√
2

π

= ε−1
∫ t

0

∣∣B̃(u + ε) − B̃(u)
∣∣du − 2

1−K
2 tεHK−1

√
2

π

= 2
1−K

2

∫ t

0

{∣∣∣∣B(u + ε) − B(u)

ε

∣∣∣∣ − εHK−1

√
2

π

}
du

+
∫ t

0

{∣∣∣∣2 1−K
2

B(u + ε) − B(u)

ε
−

√
2−KK


(1 − K)

Y(u + ε) − Y(u)

ε

∣∣∣∣
− 2

1−K
2

∣∣∣∣B(u + ε) − B(u)

ε

∣∣∣∣}du

=: aε(t) + bε(t).
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When HK < 1
2 , we deduce from (1.9) that

(1.16) ε
1
2 −HKaε ⇒ 2

1−K
2 σHKW,

whereas

∣∣bε(t)
∣∣ ≤

√
2−KK


(1 − K)

∫ t

0

∣∣∣∣Y(u + ε) − Y(u)

ε

∣∣∣∣du

→
√

2−KK


(1 − K)

∫ t

0

∣∣Ẏ (u)
∣∣du.

(1.17)

By combining (1.16) and (1.17) together, we eventually obtain that

(1.18) ε
1
2 −HK

(
L
(
B̃ε; [0, t]) − 2

1−K
2 tεHK−1

√
2

π

)
t≥0

⇒ (
2

1−K
2 σHKW(t)

)
t≥0,

which is analogous to (1.9). The situation where HK ≥ 1
2 looks more complicated at first

glance because to conclude we not only need an upper bound as the one given by (1.17), but
we have to understand the exact behavior of bε when ε → 0. For all t > 0, one has almost
surely that ε−1(Y (t + ε) − Y(t)) → Ẏ (t) = 2Ht2H−1Ẋ(t2H ), whereas ε−1|B(t + ε) − B(t)|
diverges to +∞. Hence, at a heuristic level, one has that∣∣∣∣2 1−K

2
B(t + ε) − B(t)

ε
−

√
2−KK


(1 − K)

Y(t + ε) − Y(t)

ε

∣∣∣∣
− 2

1−K
2

∣∣∣∣B(t + ε) − B(t)

ε

∣∣∣∣
a.s.→ −

√
2−KK


(1 − K)
Ẏ (t) × lim

ε→0
sign

(
B(t + ε) − B(t)

) =: A(t).

Although the previous reasoning is only heuristic (because limε→0 sign(B(t + ε) − B(t))

does not exist), it seems to indicate that bε may converge almost surely as ε → 0 without
further renormalization, to a random variable of the form

∫ t
0 A(u)du. If such a claim were

true, we would deduce from it that(
L
(
B̃ε; [0, t]) − 2

1−K
2 tεHK−1

√
2

π

)
t≥0

→

⎧⎪⎪⎨⎪⎪⎩
2

1−K
2 σ1/2W +

∫ ·
0

A(u)du in law if HK = 1

2
,∫ ·

0
A(u)du a.s. if HK >

1

2
,

(1.19)

with W a Brownian motion independent of B̃ , a statement which would be very different
compared to (1.9), (1.11) and (1.12).

Our first attempt to study the asymptotic behavior of (1.6) in the case where X = B̃ is
a bifractional Brownian motion was to check whether the reasoning leading to (1.19) can
be made rigorous. We failed to then realize that the claim (1.19) is actually wrong. What
is correct is that convergences (1.9), (1.11) and (1.12) continue to be valid for a wide class
of self-similar centered Gaussian processes, containing not only the bifractional Brownian
motion, but other perturbations of the fractional Brownian motion.

With this application in mind, the second goal of our paper is to generalize Theorem 1.1
to self-similar Gaussian processes which are not necessarily stationary. We will also consider
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the case where the integral
∫
R

|ρ(s)|d ds is infinite but the limit is still Gaussian (in such a
critical case, a logarithmic factor is required), or when a non-Gaussian limit appears.

Let us first present the class of processes under consideration. Assume that X = (X(t))t≥0
is a centered Gaussian process that is self-similar of order β ∈ (0,1). We define φ : [1,∞) →
R by φ(x) = E[X(1)X(x)], so that, for 0 < s ≤ t , we have

(1.20) E
[
X(s)X(t)

] = s2β
E

[
X(1)X

(
t

s

)]
= s2βφ

(
t

s

)
.

Therefore, φ characterizes the covariance function of X. Moreover, let us also assume the
following two hypotheses on φ, which were first introduced and considered in [7]:

(H.1) There exists α ∈ (0,2β] such that φ has the form

φ(x) = −λ(x − 1)α + ψ(x),

where λ > 0 and ψ(x) is twice-differentiable on an open set containing [1,∞) and there
exists a constant C ≥ 0 such that, for any x ∈ (1,∞):

(a) |ψ ′(x)| ≤ Cxα−1,
(b) |ψ ′′(x)| ≤ Cx−1(x − 1)α−1,
(c) ψ ′(1) = βψ(1) when α ≥ 1.

(H.2) There are constants C > 0, c > 1 and 1 < ν ≤ 2 such that, for all x ≥ c:

(d)
∣∣φ′(x)

∣∣ ≤ {
Cx−ν if α < 1,

Cxα−2 if α ≥ 1.

(e)
∣∣φ′′(x)

∣∣ ≤ {
Cx−ν−1 if α < 1,

Cxα−3 if α ≥ 1.

We refer to [7], Section 4, for explicit examples of processes X satisfying (H.1) and (H.2),
among them the bifractional Brownian motion ([7], Section 4.1) and the subfractional Brow-
nian motion ([7], Section 4.2).

Now, for ε > 0 and t ≥ 0, let us define

(1.21) �εX(t) = X(t + ε) − X(t) and Yε(t) = �εX(t)

‖�εX(t)‖L2(�)

.

Finally, define the family of stochastic processes F̃ε = (F̃ε(t))t≥0 by

(1.22) F̃ε(t) = 1√
ε

∫ t

0
f
(
Yε(u)

)
du.

By the self-similarity property of X, the process F̃ε has the same law as Fε , where

(1.23) Fε(t) = √
ε

∫ t/ε

0
f
(
Y1(u)

)
du.

The second contribution of this paper is the following theorem, which is an extension of
Theorem 1.1 (central case) and the main results of Taqqu’s seminal paper [18] (noncentral
case) to a situation where the underlying Gaussian process X does not need to have stationary
increments. This lack of stationarity is actually the main difficulty we will have to cope with.

THEOREM 1.2. In the above setting, assume that (H.1) and (H.2) are in order for a
centered Gaussian process X = (X(t))t≥0, self-similar of order β ∈ (0,1) and whose covari-
ance function is given by (1.20). Let f ∈ L2(R, γ ) a function with Hermite rank d ≥ 1 and
expansion (1.1) and let Fε be defined in (1.23). Then the following is true as ε → 0:
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1. If α < 2 − 1
d

, then the finite-dimensional distributions of the family {Fε : ε > 0} con-
verges in law to those of a Brownian motion with variance given by (1.3) with ρ(h) = aα(h)

defined in (1.10).
2. If α = 2 − 1

d
, then the finite-dimensional distributions of the family {Fε/

√| log ε| :
ε > 0} converges in law to those of a Brownian motion with variance

(1.24) σ 2
1− 2

d

= c2
dd!

(
1 +

(
β − α

2

)
d

)(
1 − 1

2d

)d(
1 − 1

d

)d

.

Moreover, if f ∈ Lp(R, γ ) for some p > 2, then the convergences in (1) and (2) hold in law
in C(R+).

Let us finally consider the case α > 2 − 1
d

and d ≥ 2. We will show that, for all t ≥
0, the random variable ε

1
2 −d(1− α

2 )F̃ε(t) converges in L2(�) to a random variable cdH∞(t)

belonging to the dth Wiener chaos. The process H∞ = (H∞(t))t≥0 is a generalization of the
Hermite process (see [6, 12, 18]) and it has a covariance given by

Kd(s, t) = E
[
H∞(s)H∞(t)

]
= d!

(2λ)d

∫ s

0

∫ t

0

(
∂u∂vE[X(u)X(v)]

(uv)β−α/2

)d

dudv.
(1.25)

This then leads to the following noncentral limit theorem in the case α > 2 − 1
d

.

THEOREM 1.3. Under the assumptions of Theorem 1.2, if α > 2 − 1
d

, then the process

{ε 1
2 −d(1− α

2 )Fε : ε > 0} converges in law in C(R+) to F∞ = cdH∞.

We note that a discrete counterpart of point 1 in Theorem 1.2 was already obtained by
Harnett and Nualart in [7], in exactly the same setting. However, we would like to offer the
following comments to help the reader comparing our results with those contained in [7].
First, neither point 2 of Theorem 1.2 nor the tightness property and Theorem 1.3 have been
considered in [7]. Second, and a little bit against common intuition, it turns out that it was
more difficult to deal with the continuous setting; indeed, in the continuous case we have to
handle the situation where |t − s| < 1, which does not appear in the discrete setting. Third,
our original motivation of proving Theorems 1.1, 1.2 and 1.3 is of geometrical nature; in our
mind, this work actually represents a first step toward a better understanding of the asymptotic
behavior of functionals of the kind (1.7) (or more complicated ones) that arise very often in
differential geometry.

To conclude this Introduction, let us go back to the case of the bifractional Brownian
motion X = B̃ , and let us see what the conclusions of Theorems 1.2 and 1.3 become in

this case, when for f we choose the function f (x) = |x| −
√

2
π

. Since, on one hand, the
bifractional Brownian motion defined by (1.13) satisfies (H.1) and (H.2) with α = 2β = 2HK

and, on the other hand, one has ‖�εB̃(t)‖L2(�) ∼ 2
1−K

2 εHK as ε → 0 for any t > 0, we
deduce from our Theorems 1.2 and 1.3 that:

• if HK < 3/4, then the family {ε 1
2 −HK(L(B̃ε; [0, t])−E[L(B̃ε; [0, t])]) : ε > 0} converges

in law in C(R+) to a Brownian motion with variance

21−K

π

∞∑
q=1

(2q)!
22q−1q!2(2q − 1)2

∫ ∞
−∞

a2HK(h)2q dh,

see also (1.18) and compare with claim (1.19);
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• if HK = 3/4, then the family { ε
− 1

4√
log ε

(L(B̃ε; [0, t]) − E[L(B̃ε; [0, t])]) : ε > 0} converges

in law in C(R+) to a Brownian motion with variance 2−K× 9
64π

;
• if HK > 3/4, then the family {εHK−1(L(B̃ε; [0, t])−E[L(B̃ε; [0, t])]) : ε > 0} converges

in law in C(R+) toward a stochastic process F∞ which lies in the second Wiener chaos.

The rest of the paper is organized as follows. Section 2 contains some preliminaries on
Maliavin calculus and a basic multivariate chaotic central limit theorem. The proof of Theo-
rem 1.1 is given in Section 3. Section 4 provides some useful properties satisfied by self-
similar processes X under assumptions (H.1) and (H.2) and contains the proof of Theo-
rem 1.2. The proof of Theorem 1.3 is then given in Section 5. Finally, Section 6 contains
some technical lemmas that are used along the paper.

Throughout the paper, C denotes a generic positive constant whose value may change from
line to line.

2. Preliminaries. In this section, we gather several preliminary results that will be used
for proving the main results of this paper.

2.1. Elements of Malliavin calculus. We assume that the reader is already familiar with
the classical concepts of Malliavin calculus as outlined, for example, in the three books [13–
15].

To be in a position to use Malliavin calculus to prove the results of our paper, we shall
adopt the following classical Hilbert space notation. Let H be a real and separable Hilbert
space. Let X be an isonormal Gaussian process indexed by H and defined on a probability
space (�,F,P), that is, X = {X(h),h ∈ H} is a family of jointly centered Gaussian random
variables satisfying E[X(h)X(g)] = 〈h,g〉H for all h,g ∈ H. We will also assume that F is
the σ -field generated by X.

For integers q ≥ 1, let H⊗q denote the qth tensor product of H, and let H�q denote the
subspace of symmetric tensors of H⊗q . Let {en}n≥1 be a complete orthonormal system in H.
For functions f,g ∈ H�q and r ∈ {1, . . . , q} we define the r th-order contraction of f and g

as the element of H⊗(2q−2r) given by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r ,

where f ⊗0 g = f ⊗ g by definition and, if f,g ∈ H�q , f ⊗q g = 〈f,g〉H⊗q .
The qth Wiener chaos is the closed linear subspace of L2(�) that is generated by the

random variables {Hq(X(h)), h ∈ H,‖h‖H = 1}, where Hq stands for the qth Hermite poly-
nomial. For q ≥ 1, it is known that the map Iq(h

⊗q) = Hq(X(h)) (h ∈ H, ‖h‖H = 1) provides
a linear isometry between H�q (equipped with the modified norm

√
q!‖ · ‖H⊗q ) and the qth

Wiener chaos. By convention, I0(x) = x for all x ∈R.
It is well known that any F ∈ L2(�) can be decomposed into Wiener chaos as follows:

(2.1) F = E[F ] +
∞∑

q=1

Iq(fq),

where the kernels fq ∈ H�q are uniquely determined by F .
For a smooth and cylindrical random variable F = f (X(h1), . . . ,X(hn)), with hi ∈ H

and f ∈ C∞
b (Rn) (f and all of its partial derivatives are bounded), we define its Malliavin

derivative as the H-valued random variable given by

DF =
n∑

i=1

∂f

∂xi

(
X(h1), . . . ,X(hn)

)
hi.
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By iteration, one can define the kth derivative DkF as an element of L2(�;H⊗k). For any
natural number k and any real number p ≥ 1, we define the Sobolev space Dk,p as the closure
of the space of smooth and cylindrical random variables with respect to the norm ‖ · ‖k,p

defined by

‖F‖p
k,p = E

(|F |p) +
k∑

i=1

E
(∥∥DiF

∥∥p

H⊗i

)
.

The divergence operator δ is defined as the adjoint of the derivative operator D. An element
u ∈ L2(�;H) belongs to the domain of δ, denoted by Dom δ, if there is a constant cu depend-
ing on u such that ∣∣E(〈DF,u〉H)∣∣ ≤ cu‖F‖L2(�)

for any F ∈ D
1,2. If u ∈ Dom δ, then the random variable δ(u) is defined by the duality

relationship

(2.2) E
(
Fδ(u)

) = E
(〈DF,u〉H),

which holds for any F ∈ D
1,2. In a similar way, we can introduce the iterated divergence

operator δk for each integer k ≥ 2, defined by the duality relationship

(2.3) E
(
Fδk(u)

) = E
(〈
DkF,u

〉
H⊗k

)
,

for any F ∈D
k,2, where u ∈ Dom δk ⊂ L2(�;H⊗k).

The Ornstein–Uhlenbeck semigroup (Tt )t≥0 is the semigroup of operators on L2(�) de-
fined by

TtF =
∞∑

q=0

e−qt Iq(fq),

if F admits the Wiener chaos expansion (2.1). Denote by L the infinitesimal generator of
(Tt )t≥0 in L2(�). Let L−1F = −∑∞

q=1
1
q
Iq(fq) if F is given by (2.1).

The operators D, δ and L satisfy the relationship L = −δD, which leads to the represen-
tation

(2.4) F = −δDL−1F,

for any centered random variable F ∈ L2(�).
Consider the isonormal Gaussian process X(h) = h indexed by H = R, defined in the

probability space (R,B(R), γ ). We denote the corresponding Sobolev spaces of functions
by D

k,p(R, γ ). In this context, for any function g, we have Dg = g′, δg = xg − g′ and
Lg = g′′ − xg′ (see [13]). Let f ∈ L2(R, γ ) be a function of Hermite rank d , with expansion
(1.1). Let us introduce the function fd defined by a shift of d units in the coefficients, that is,

(2.5) fd(x) =
∞∑

q=d

cqHq−d(x).

We claim that fd belongs to the Sobolev space D
d,2(R, γ ). In fact, using that H ′

q(x) =
qHq−1(x), we can write

f
(d)
d (x) =

∞∑
q=2d

cq(q − d)(q − d − 1) · · · (q − 2d + 1)Hq−2d(x)
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and ∥∥f (d)
d

∥∥2
L2(R,γ ) =

∞∑
q=2d

c2
q(q − d)2(q − d − 1)2 · · · (q − 2d + 1)2(q − 2d)!

≤
∞∑

q=2d

c2
qq! < ∞.

The function fd has the following representation in terms of the Malliavin operators:

(2.6) fd = (−DL−1)df.

Indeed, using that H ′
q(x) = qHq−1(x), we have

−DL−1f =
∞∑

q=d

cq

q
H ′

q(x) =
∞∑

q=d

cqHq−1(x),

and iterating d times this formula, we get (2.6). Formula (2.6) implies that if f ∈ Lp(R, γ ) for
some p > 1, then fd ∈ D

d,p(R, γ ), that is, fd is d-times weakly differentiable with deriva-
tives in Lp(R, γ ). In fact, by Meyer inequalities (see [14]), the operators D and (−L)1/2 are
equivalent in Lp(R, γ ) and we obtain, for any k = 1, . . . , d ,∥∥f (k)

d

∥∥
Lp(R,γ ) = ∥∥Dk[(−DL−1)df

]∥∥
Lp(R,γ )

= ∥∥Dk+1(−L−1)[(−DL−1)d−1
f
]∥∥

Lp(R,γ )

≤ cp

∥∥(−L)(k−1)/2(−DL−1)d−1
f
∥∥
Lp(R,γ )

≤ c′
p

∥∥Dk−1[(−DL−1)d−1
f
]∥∥

Lp(R,γ ).

Iterating this inequality and taking into account that the operator −DL−1 is bounded in
Lp(R, γ ), we obtain

(2.7)
∥∥f (k)

d

∥∥
Lp(R,γ ) ≤ c(2)

p

∥∥(−DL−1)d−k
f
∥∥
Lp(R,γ ) ≤ c(3)

p ‖f ‖Lp(R,γ ).

2.2. Multivariate chaotic central limit theorem. Points 1 and 2 in Theorem 1.2 will be
obtained by checking that the assumptions of the following theorem are satisfied. We as-
sume that X is an isonormal Gaussian process indexed by H defined on a probability space
(�,F,P), with F is the σ -field generated by X.

THEOREM 2.1. Fix an integer p ≥ 1, and let {Gε : ε > 0} be a family of p-dimensional
vectors with components in L2(�) and centered. According to (2.1), we can write each com-
ponent Gε

i of Gε in the form

Gε
i =

∞∑
q=1

Iq

(
gε

i,q

)
.

Let us suppose that the following conditions hold:

(a) For each i, j ∈ {1, . . . , p} and each q ≥ 1, σi,j,q = limε→0 q!〈gε
i,q, g

ε
j,q〉H⊗q exists.

(b) For each i ∈ {1, . . . , p}, ∑∞
q=1 σi,i,q < ∞.

(c) For each i ∈ {1, . . . , p}, each q ≥ 2 and each r = 1, . . . , q − 1, limε→0 ‖gε
i,q ⊗r

gε
i,q‖H⊗2q−2r = 0.

(d) For each i ∈ {1, . . . , p}, limN→∞ supε∈(0,1]
∑∞

q=N+1 q!‖gε
i,q‖2

H⊗2q = 0.
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Then Gε = (Gε
1, . . . ,G

ε
p) converges in distribution to Np(0,�) as ε tends to zero, where

� = (σi,j )1≤i,j≤p is defined by σi,j = ∑∞
q=1 σi,j,q .

PROOF. This theorem is a multivariate counterpart of the chaotic central limit theorem
proved by Hu and Nualart in [8]. First, notice that, by the results of Nualart and Peccati
[16] and Peccati and Tudor [17], conditions (a) and (c) imply that, for any N ≥ 1, the
family of random vectors (Iq(g

ε
i,q))1≤q≤N,1≤i≤p converges in law to a centered Gaussian

vector (Zi,q)1≤q≤N,1≤i≤p with covariance E[Zi,qZj,q ′ ] = σi,j,qδq,q ′ . This implies that, for
each N ≥ 1, the family of p-dimensional random vectors (

∑N
q=1 Iq(g

ε
i,q))1≤i≤p converges

in law to the Gaussian distribution Np(0,�N), where �N = (σN
i,j )1≤i,j≤p is defined by

σN
i,j = ∑N

q=1 σi,j,q . Finally, conditions (b) and (d) and a simple triangular inequality allows
us to conclude the proof. �

3. Proof of Theorem 1.1. Since the convergence in the sense of f.d.d. follows from the
classical Breuer–Major theorem (see, e.g., [1]), it remains to show that the family {Zε : ε > 0}
is tight. For this we need to show that for any 0 ≤ s < t and ε > 0 and for some p > 2, there
exists a constant Cp > 0 such that∥∥Zε(t) − Zε(s)

∥∥
Lp(�) ≤ Cp|t − s|1/2.

To show this inequality, we will use an approach based on stochastic integral representations
and Meyer’s inequalities.

Let H be the Hilbert space defined as the closure of the set of step functions with respect to
the scalar product 〈1[0,t],1[0,s]〉H = E[Y(s)Y (t)], s, t ≥ 0. By identifying Y(t) with Y(1[0,t]),
we can thus suppose that Y is an isonormal Gaussian process indexed by H defined on a
probability space (�,F,P). We will assume that F is generated by Y .

The function fd introduced in (2.5) leads to the following representation of f (Y (u)) as an
iterated divergence:

f
(
Y(u)

) = δd(fd

(
Y(u)

)
1⊗d
[0,u]

)
.

Indeed,

f
(
Y(u)

) =
∞∑

q=d

cqHq

(
Y(u)

) =
∞∑

q=d

cqIq

(
1⊗q
[0,u]

)

=
∞∑

q=d

cqδd(Iq−d

(
1⊗q−d
[0,u]

)
1⊗d
[0,u]

) = δd

( ∞∑
q=d

cqHq−d

(
Y(u)

)
1⊗d
[0,u]

)
.

Then, using the continuity of δd , we obtain∥∥Zε(t) − Zε(s)
∥∥
Lp(�) = √

ε

∥∥∥∥∫ t/ε

s/ε
f
(
Y(u)

)
du

∥∥∥∥
Lp(�)

= √
ε

∥∥∥∥∫ t/ε

s/ε
δd(fd

(
Y(u)

)
1⊗d
[0,u]

)
du

∥∥∥∥
Lp(�)

≤ cp

d∑
k=0

√
ε

∥∥∥∥∫ t/ε

s/ε
Dk(fd

(
Y(u)

)
1⊗d
[0,u]

)
du

∥∥∥∥
Lp(�;H⊗k+d )

=: cp

d∑
k=0

Rk.
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Using Minkowski and Hölder inequalities, we can write, for any k = 0,1, . . . , d ,

Rk = √
ε

∥∥∥∥∫[s/ε,t/ε]2
f

(k)
d

(
Y(u)

)
f

(k)
d

(
Y(v)

)〈1[0,u],1[0,v]〉dH dudv

∥∥∥∥1/2

Lp/2(�)

≤ ∥∥f (k)
d

∥∥
Lp(R,γ )

(
ε

∫ t/ε

s/ε

∫ t/ε

s/ε

∣∣ρ(u − v)
∣∣d+k

dudv

)1/2
.

Using the assumptions of Theorem 1.1 as well as (2.7), we deduce that ‖f (k)
d ‖Lp(R,γ ) is finite.

Finally, the change of variable (u, v) → (u,u + h) leads to

ε

∫ t/ε

s/ε

∫ t/ε

s/ε

∣∣ρ(u − v)
∣∣d+k

dudv ≤ C(t − s)

∫
R

∣∣ρ(h)
∣∣d+k

dh ≤ C(t − s),

which provides the desired estimate.

4. Proof of Theorem 1.2. In this section, X will be a self-similar Gaussian process with
covariance (1.20). The proof of Theorem 1.2 is quite technical and is divided into two parts:
(i) the proof of convergence of the finite-dimensional distributions (see Sections 4.2 and 4.3,
corresponding to the two cases α < 2 − 1/q and α = 2 − 1/q) and (ii) the proof of tightness
of the sequence (see Section 4.4). In order to prove convergence of finite-dimensional dis-
tributions, we will need three technical lemmas which provide information on the variance
and covariance of X under Hypotheses (H.1) and (H.2). They are stated next in Section 4.1.
Further technical lemmas, used in Sections 4.1, 4.2 and 4.3 are proved in Section 6.

4.1. A few useful properties satisfied by X. The first lemma give the structure of the
variance of an increment of length one, assuming Hypothesis (H.1).

LEMMA 4.1. Assuming (H.1), there exists a continuous function u1 : (0,∞) → R such
that for s > 0

E
[(

X(s + 1) − X(s)
)2] = 2λs2β−α(1 + u1(s)

)
.

Furthermore, given η > 0, there exists a positive constant Cη such that for all s ≥ η one has

(4.1)
∣∣u1(s)

∣∣ ≤ Cηs
−δ1 where δ1 =

{
1 − α if α < 1,

2 − α if α ≥ 1.

PROOF. If s ≥ 1, the assertion follows from [7], Lemma 3.1. Let us now assume that
0 < s < 1. Proceeding as in the proof of [7], Lemma 3.1, we get that

E
[(

X(s + 1) − X(s)
)2]

= 2λs2β−α + ψ(1)
(
(s + 1)2β − s2β) − 2s2β

∫ 1+ 1
s

1
ψ ′(y) dy

= 2λs2β−α(1 + u1(s)
)
,

where

u1(s) = (2λ)−1ψ(1)sα−2β((s + 1)2β − s2β) − λ−1sα
∫ 1+ 1

s

1
ψ ′(y) dy.

Then the bound (4.1) for η ≤ s < 1 follows immediately from the fact that u1(s) is bounded
for η ≤ s < 1. �
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In the next two lemmas, we will show formulas and estimates for the covariance E[(X(t +
1) − X(t))(X(s + 1) − X(s))] in two different situations. First, we will assume Hypothesis
(H.1) and consider the case where |t − s| ≤ M1(s ∧ t) + M2 for some constants M1 and M2,
and the second lemma will handle the case |t − s| ≥ (c − 1)(s ∧ t) + c under Hypotheses
(H.1) and (H.2), where c is the constant appearing in (H.2).

LEMMA 4.2. Assume (H.1) and let η > 0. Then, for all s, t > η satisfying η ≤ |s − t | ≤
M1(s ∧ t) + M2 for some positive constants M1, M2, it holds that

E
[(

X(t + 1) − X(t)
)(

X(s + 1) − X(s)
)] = λ(s ∧ t)2β−α(2aα(s − t) + u2(s, t)

)
,

where aα(h) is the function defined in (1.10) and u2 : [0,∞)2 → R is a continuous function
satisfying the bounds

(4.2)
∣∣u2(s, t)

∣∣ ≤ C
(
(s ∧ t)−1|s − t |α−1 + (s ∧ t)α−2) if |s − t | ≥ 1

and

(4.3)
∣∣u2(s, t)

∣∣ ≤ C
(
(s ∧ t)α−11{α<1} + (s ∧ t)α−21{α≥1}

)
if |s − t | < 1.

PROOF. Assume without loss of generality that t > s, so that t = s + h for some h > 0.
Then the assertion becomes

E
[(

X(s + h + 1) − X(s + h)
)(

X(s + 1) − X(s)
)]

= s2β−αλ
(
2aα(h) + u2(s, s + h)

)
,

where u2(s, s + h) satisfies the bounds

(4.4)
∣∣u2(s, s + h)

∣∣ ≤ C
(
s−1hα−1 + sα−2)

for all s, h such that s ≥ η and 1 ≤ h ≤ M1s + M2 and

(4.5)
∣∣u2(s, s + h)

∣∣ ≤ C
(
sα−11{α<1} + sα−21{α≥1}

)
for all s, h such that s ≥ η and η ≤ h < 1.

Let us first show the claim (4.5). In this case,

E
[(

X(s + h + 1) − X(s + h)
)(

X(s + 1) − X(s)
)]

= (s + 1)2βφ

(
s + h + 1

s + 1

)
− (s + h)2βφ

(
s + 1

s + h

)
− s2βφ

(
s + h + 1

s

)
+ s2βφ

(
s + h

s

)
= −λ

(
(s + 1)2β−αhα − (s + h)2β−α(1 − h)α − s2β−α(h + 1)α + s2β−αhα)

+ (s + 1)2βψ

(
s + h + 1

s + 1

)
− (s + h)2βψ

(
s + 1

s + h

)
− s2βψ

(
s + h + 1

s

)
+ s2βψ

(
s + h

s

)
= s2β−α(2λaα(h) + u2(s, s + h)

)
,
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where

u2(s, s + h)

=
(

1 −
(

1 + 1

s

)2β−α)
hα +

((
1 + h

s

)2β−α

− 1
)
(1 − h)α

+ sα

((
1 + 1

s

)2β

ψ

(
1 + h

s + 1

)
−

(
1 + h

s

)2β

ψ

(
1 + 1 − h

s + h

)
− ψ

(
1 + h + 1

s

)
+ ψ

(
1 + h

s

))

=
(

1 −
(

1 + 1

s

)2β−α)
hα +

((
1 + h

s

)2β−α

− 1
)
(1 − h)α + sαv(s, h).

For the first part on the right-hand side, we have, using the mean value theorem,∣∣∣∣(1 −
(

1 + 1

s

)2β−α)
hα +

((
1 + h

s

)2β−α

− 1
)
(1 − h)α

∣∣∣∣
≤ C

(
s−1hα + (s/h)−1(1 − h)α

) ≤ Cs−1

and we obtain the desired inequality.
For v(s, h), we first treat the case α < 1. In this case, it follows straightforwardly from

the mean value theorem that |v(s, h)| ≤ Cs−1, which yields sα|v(s, h)| ≤ Csα−1. In the case
α ≥ 1, a Taylor expansion in s−1 around 0 yields that

v(s, h)

=
(

1 + 1

s

)2β

ψ

(
1 + h

s + 1

)
−

(
1 + h

s

)2β

ψ

(
1 + 1 − h

s + h

)
− ψ

(
1 + h + 1

s

)
+ ψ

(
1 + h

s

)
=

(
1 + 2β

1

s
+ O

(
1

s2

))(
ψ(1) + ψ ′(1)

h

s + 1
+ O

(
1

s2

))
−

(
1 + 2β

h

s
+ O

(
1

s2

))(
ψ(1) + ψ ′(1)

1 − h

s + h
+ O

(
1

s2

))
− ψ(1) − ψ ′(1)

h + 1

s
− O

(
1

s2

)
+ ψ(1) + ψ ′(1)

h

s
+ O

(
1

s2

)
= ψ(1)2β

1

s
+ ψ ′(1)

h

s
− ψ ′(1)

1 − h

s
− ψ(1)2β

h

s

− ψ ′(1)
h + 1

s
+ ψ ′(1)

h

s
+ O

(
1

s2

)
= 2(1 − h)

(
βψ(1) − ψ ′(1)

)1

s
+ O

(
1

s2

)
= O

(
1

s2

)
,

where we have used that βψ(1) = ψ ′(1) to derive the last equality. This yields (4.5).
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Let us now show the claim (4.4). In this case, we have

E
[(

X(s + h + 1) − X(s + h)
)(

X(s + 1) − X(s)
)]

= (s + 1)2β

(
φ

(
s + h + 1

s + 1

)
− φ

(
s + h

s + 1

))
− s2βφ

(
s + h + 1

s

)
+ s2βφ

(
s + h

s

)
= −λ

(
(s + 1)2β−α(hα − (h − 1)α

) − s2β−α((h + 1)α − hα))
+ (s + 1)2β

(
ψ

(
s + h + 1

s + 1

)
− ψ

(
s + h

s + 1

))
− s2β

(
ψ

(
s + h + 1

s

)
− ψ

(
s + h

s

))
= s2β−α(2λaα(h) + u2(s, s + h)

)
,

where

u2(s, s + h) =
(

1 −
(

1 + 1

s

)2β−α)(
hα − (h − 1)α

)
+ sα

((
1 + 1

s

)2β(
ψ

(
1 + h

s + 1

)
− ψ

(
1 + h − 1

s + 1

))
− ψ

(
1 + h + 1

s

)
+ ψ

(
1 + h

s

))

=
(

1 −
(

1 + 1

s

)2β−α)(
hα − (h − 1)α

) + sαw(s, h).

By the mean value theorem, we have that∣∣∣∣(1 −
(

1 + 1

s

)2β−α)(
hα − (h − 1)α

)∣∣∣∣ ≤ Cs−1hα−1,

which gives the desired estimate. Furthermore,

w(s,h) =
(

1 + 1

s

)2β(
ψ

(
1 + h

s + 1

)
− ψ

(
1 + h − 1

s + 1

))
− ψ

(
1 + h + 1

s

)
+ ψ

(
1 + h

s

)

=
(

1 + 1

s

)2β ∫ h
s+1

h−1
s+1

ψ ′(1 + y)dy −
∫ h+1

s

h
s

ψ ′(1 + y)dy

=
((

1 + 1

s

)2β

− 1
)∫ h

s+1

h−1
s+1

ψ ′(1 + y)dy

+
∫ h

s+1

h−1
s+1

ψ ′(1 + y)dy −
∫ h+1

s

h
s

ψ ′(1 + y)dy

=
((

1 + 1

s

)2β

− 1
)∫ h

s+1

h−1
s+1

ψ ′(1 + y)dy

+
∫ 1

s+1

0
ψ ′

(
1 + h − 1

s + 1
+ y

)
dy −

∫ 1
s

1
ψ ′

(
1 + h

s
+ y

)
dy
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=
((

1 + 1

s

)2β

− 1
)∫ h

s+1

h−1
s+1

ψ ′(1 + y)dy

+
∫ 1

s+1

0

(
ψ ′

(
1 + h − 1

s + 1
+ y

)
− ψ ′

(
1 + h

s
+ y

))
dy

×
∫ 1

s

1
s+1

ψ ′
(

1 + h

s
+ y

)
dy.

Therefore, using the bounds on the derivatives of ψ given by (H.1) and the fact that h ≤
M1s + M2, we get that ∣∣w(s,h)

∣∣ ≤ C
(
s−2 + s−1−αhα−1).

This completes the proof. �

If X is fBm with Hurst parameter H ∈ (0,1), we have that

E
[(

X(t + 1) − X(t)
)(

X(s + 1) − X(s)
)] = a2H (s − t).

Therefore, heuristically speaking, Lemma 4.2 expresses that a process X satisfying (H.1) is
a “perturbed” fBm with Hurst parameter β = α/2.

For later reference, let us record here that the function aα defined in (1.10) has the asymp-
totics

(4.6) aα(h) = 1

2
α(α − 1)|h|α−2 + o

(|h|α−2)
as |h| → ∞. In particular, if |h| > η, there exists a constant Cη such that

(4.7)
∣∣aα(h)

∣∣ ≤ Cη|h|α−2.

Hypothesis (H.2) implies the following bound for the covariance.

LEMMA 4.3. Let s, t > 0 such that s ∧ t ≥ η > 0 and |s − t | ≥ (c − 1)(s ∧ t) + c, where
c is the constant appearing in hypothesis (H.2). Then, assuming (H.2), there exists a constant
Cη > 0 (not depending on s or t), such that∣∣E[(

X(s + 1) − X(s)
)(

X(t + 1) − X(t)
)]∣∣

≤ Cη

{
(s ∧ t)2β+ν−2∣∣s − t |−ν if α < 1,

(s ∧ t)2β−α
∣∣s − t |α−2 if α ≥ 1,

(4.8)

and the exponent ν is defined in hypothesis (H.2).

PROOF. Without loss of generality, we assume that s ≥ t so that |t − s| ≥ (c−1)s ∧ t + c

translates into s ≥ c(t + 1). As s ≥ t , we have by self-similarity that

E
[(

X(s + 1) − X(s)
)(

X(t + 1) − X(t)
)]

= (t + 1)2β

(
φ

(
s + 1

t + 1

)
− φ

(
s

t + 1

))
− t2β

(
φ

(
s + 1

t

)
− φ

(
s

t

))
= (

(t + 1)2β − t2β)(φ

(
s + 1

t + 1

)
− φ

(
s

t + 1

))
+ t2β

(
φ

(
s + 1

t + 1

)
− φ

(
s

t + 1

)
− φ

(
s + 1

t

)
+ φ

(
s

t

))
.
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As s ≥ c(t + 1), we have that s/(t + 1) ≥ c and, therefore, by (H.2), for each x ∈ [ s
t+1 , s+1

t+1 ],

(4.9)
∣∣φ′(x)

∣∣ ≤ C

{
tν(s − t)−ν if α < 1,

t2−α(s − t)α−2 if α ≥ 1,

and, for each x ∈ [ s
t+1 , s+1

t
],

(4.10)
∣∣φ′′(x)

∣∣ ≤ C

{
tν+1(s − t)−ν−1 if α < 1,

t3−α(s − t)α−3 if α ≥ 1.

This yields the assertion, as by the mean value theorem,

φ

(
s + 1

t + 1

)
− φ

(
s

t + 1

)
= 1

t + 1
φ′(x1)

and

φ

(
s + 1

t + 1

)
− φ

(
s

t + 1

)
− φ

(
s + 1

t

)
+ φ

(
s

t

)
= 1

t + 1
φ′(x2) − 1

t
φ′(x3)

= 1

t + 1

(
φ′(x2) − φ′(x3)

) +
(

1

t + 1
− 1

t

)
φ′(x3)

= 1

t + 1
(x2 − x3)φ

′′(x4) − 1

t2 + t
φ′(x3),

where the xi are some appropriate values in the correct intervals for (4.9) and (4.10) to hold.
�

We can now proceed to the proof of Theorem 1.2. In this section, H will denote the Hilbert
space defined as the closure of the set of step functions with respect to the scalar product
〈1[0,t],1[0,s]〉H = E[X(s)X(t)], s, t ≥ 0 and, as before, we can consider that X as an isonor-
mal Gaussian process indexed by H, and defined on a probability space (�,F,P). We will
assume that F is generated by X.

First, we will prove the convergence of the finite dimensional distributions of Fε , sepa-
rately in the two cases α < 2 − 1

d
and α = 2 − 1

d
and later we will show tightness.

4.2. Convergence of finite-dimensional distributions: The case α < 2 − 1
d

. Fix an in-
teger p ≥ 2, choose times 0 < t1 < · · · < tp < ∞, and consider the random vector Gε =
(Fε(t1), . . . ,Fε(tp)), where Fε has been defined in (1.23). We will make use of the notation

ξt = ∥∥X(t + 1) − X(t)
∥∥
L2(�)

and

(4.11) �(s, t) = E
[
Y1(s)Y1(t)

] = ξ−1
s ξ−1

t E
[
�1X(s)�1X(t)

]
.

The chaotic expansion of Fε(t) is given by

(4.12) Fε(t) =
∞∑

q=d

Iq

(
gε

t,q

)
,

where, for each t > 0,

gε
t,q = cq

√
ε

∫ t/ε

0
ξ−q
u ∂⊗q

u du,
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and ∂u = 1[u,u+1]. We will denote by Fq,ε(t) = Iq(g
ε
t,q) the projection of Fε(t) on the qth

Wiener chaos. Using the relation between multiple stochastic integrals and Hermite polyno-
mials, we can write

E
(
Hq

(
Y1(u)

)
Hq

(
Y1(v)

)) = E
(
Iq

(
∂⊗q
u

)
Iq

(
∂⊗q
v

))
= 〈

∂⊗q
u , ∂⊗q

v

〉 = 〈∂u, ∂v〉q
= (

E
(
Y1(u)Y1(v)

))q = �q(u, v),

so that

E
[
Fq,ε(s)Fq,ε(t)

] = c2
qε

∫ s/ε

0

∫ t/ε

0
E
[
Hq

(
Y1(u)

)
Hq

(
Y1(v)

)]
dudv

= c2
qq!ε

∫ s/ε

0

∫ t/ε

0
�q(u, v) dudv.

(4.13)

We are now going to check that assumptions (a), (b), (c) and (d) of Theorem 2.1 are
satisfied by the family of p-dimensional vectors Gε .

Proof of condition (a). Lemma 6.3 implies that, for every q ≥ d and for every i, j ∈
{1, . . . , p}, q!〈gε

ti ,q
, gε

tj ,q
〉H⊗q → σ 2

α,q(ti ∧ tj ) as ε → 0, where σ 2
α,q is given by (6.18).

Proof of condition (b). This is straightforward.
Proof of condition (c). We have to show that for r = 1,2, . . . , q − 1 and for all T > 0,

(4.14) lim
ε→0

∥∥gε
T ,q ⊗r gε

T ,q

∥∥2
H⊗2(q−r) = 0.

Using the notation (4.11), we see that

gε
T ,q ⊗r gε

i,q = c2
qε

∫ T/ε

0

∫ T/ε

0
ξ−q
s ξ

−q
t 〈∂s, ∂t 〉rH∂⊗(q−r)

s ⊗ ∂
⊗(q−r)
t ds dt

= c2
qε

∫ T/ε

0

∫ T/ε

0
ξ−(q−r)
s ξ

−(q−r)
t �r(s, t)∂⊗(q−r)

s ⊗ ∂
⊗(q−r)
t ds dt.

Therefore, ∥∥gε
T ,q ⊗r gε

T ,q

∥∥2
H⊗2(q−r)

= c4
qε2

∫
(0,T /ε)4

�r(s, t)�r(l,m)�q−r (s, l)�q−r (t,m)ds dt dl dm.
(4.15)

We claim that

(4.16) sup
ε>0

ε

∫ T/ε

0

∫ T/ε

0

∣∣�q(s, t)
∣∣ds dt ≤ C,

where C is some constant not depending on q or ε. Taking into account that |�(s, t)| ≤ 1, it
suffices to show that

sup
ε>0

ε

∫ T/ε

0

∫ T/ε

0

∣∣�d(s, t)
∣∣ds dt < ∞.

By Lemmas 6.1 and 6.2, it suffices to show that

sup
ε>0

ε

∫ T/ε

0

∫ T/ε

0

∣∣ad
α(s − t)

∣∣ds dt < ∞,

which is an immediate consequence of (4.7) and the fact that α < 2 − 1
d

.
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Let us write the integration domain (0, T /ε)4 in the form
⋃4

i=1 Di , where

D1 = {
(s, t, l,m) ∈ (0, T /ε)4 : |s − t | ≥ (c − 1)(s ∧ t) + c

}
,

D2 = {
(s, t, l,m) ∈ (0, T /ε)4 : |l − m| ≥ (c − 1)(l ∧ m) + c

}
,

D3 = {
(s, t, l,m) ∈ (0, T /ε)4 : |s − l| ≥ (c − 1)(s ∧ l) + c

}
,

D4 = {
(s, t, l,m) ∈ (0, T /ε)4 : |t − m| ≥ (c − 1)(t ∧ m) + c

}
.

We claim that the integral over any of the sets Di converges to zero. By Hölder’s inequality,
we have for nonnegative functions f1, f2, f3, f4 and real numbers xi ≤ yi for i = 1,2,3,4
that

ε2
∫ y1

x1

∫ y2

x2

∫ y3

x3

∫ y4

x4

f1(s, t)f2(l,m)f3(s, l)f4(t,m)ds dt dl dm

≤
(
ε

∫ y1

x1

∫ y2

x2

f1(s, t)
q/r

)r/q(
ε

∫ y3

x3

∫ y4

x4

f2(l,m)q/r

)r/q

×
(
ε

∫ y1

x1

∫ y3

x3

f3(s, t)
q/(q−r)

)(q−r)/q(
ε

∫ y2

x2

∫ y4

x4

f4(s, t)
q/(q−r)

)(q−r)/q

.

The above inequality, together with (4.16) and Lemmas 6.1 and 6.3, implies that the integral
over

⋃4
i=1 Di converges to zero. It therefore suffices to consider the integral over

⋂4
i=1 Dc

i .
Using the decompositions,

�r(s, t) = Rα,r(s, t) + ar
α(s, t)

and

�q−r (s, t) = Rα,q−r (s, t) + aq−r
α (s, t)

provided by Lemma 6.2, and applying the above Hölder inequality and Lemma 6.2 with
M1 = c − 1 and M2 = c, yields

lim
ε→0

∥∥gε
T ,q ⊗r gε

T ,q

∥∥2
H⊗2(q−r) = lim

ε→0
c4
qε2

∫
⋂4

i=1 Dc
i

ar
α(t − s)ar

α(m − l)

× aq−r
α (l − s)aq−r

α (m − t) ds dt dl dm.

It thus suffices to show that

lim
ε→0

ε2
∫
(0, T

ε
)4

∣∣ar
α(t − s)ar

α(m − l)aq−r
α (l − s)aq−r

α (m − t)
∣∣ds dt dl dm = 0.

As aα is the covariance function of a fractional Brownian motion with Hurst parameter α/2,
this follows from the results in Breton–Nourdin [2] or Darses–Nourdin–Nualart [5].

Proof of condition (d). We have to show that, for each T > 0,

lim
N→∞ sup

ε>0

∞∑
q=N+1

q!∥∥gε
T ,q

∥∥2
H⊗q

= lim
N→∞ sup

ε>0

∞∑
q=N+1

c2
qq!ε

∫ T/ε

0

∫ T/ε

0
�q(s, t) ds dt = 0.

As by assumption
∑∞

q=d c2
qq! = ‖f ‖2

L2(R,γ )
< ∞, this follows from (4.16).

As conditions (a)–(d) are verified, it follows that the random vector (Gε(t1), . . . ,G
ε(tp))

converges in distribution, as ε tends to zero, to Np(0,�), where � = (σi,j )1≤i,j≤p is the
matrix given by

σi,j = σ 2(ti ∧ tj ).

Here, σ 2 is given by (1.3) with ρ(h) = aα(h) defined in (1.10). This completes the proof.
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4.3. Convergence of finite-dimensional distributions: The case α = 2 − 1
d

. Fix an in-
teger p ≥ 2, choose times 0 < t1 < · · · < tp < ∞, and consider the random vector Gε =
(Fε(t1)/

√| log ε|, . . . ,Fε(tp)/
√| log ε|), where Fε has been defined in (1.23). As before, we

need to show that assumptions (a), (b), (c) and (d) of Theorem 2.1 are satisfied by the family
of p-dimensional vectors Gε .

Condition (a) follows from Lemma 6.3, with σi,j,d = σ 2
1−2/d(ti ∧ tj ) and σi,j,q = 0 for

q > d . Condition (b) is obvious. In order to show conditions (c) and (d), let us first remark
that (4.16) is replaced here by

(4.17) sup
ε>0

ε

| log ε|
∫ T/ε

0

∫ T/ε

0

∣∣�q(s, t)
∣∣ds dt ≤ C,

which follows from Lemmas 6.1 and 6.2, and the fact that

ε

| log ε|
∫ T/ε

0

∫ T/ε

0

∣∣ad
α(s − t)

∣∣ds dt ≤ Cε

| log ε|
∫ T/ε

0

∫ T/ε

0
|t − s|−1 ds dt < ∞.

By the same arguments as in the case α < 2 − 1
d

, condition (c) reduces to show that for any
r = 1, . . . , q − 1,

lim
ε→0

ε2

(log ε)2

∫
(0,T /ε)4

ar
α(t − s)ar

α(m − l)aq−r
α (l − s)aq−r

α (m − t) ds dt dl dm = 0,

and again this follows from the analogous result for the fractional Brownian motion. Finally,
condition (d) is a consequence of (4.17).

4.4. Proof of tightness. Suppose first that α < 2 − 1
d

. It suffices to show that for any
0 ≤ s < t and ε > 0, there exists a constant Cp > 0 such that∥∥Fε(t) − Fε(s)

∥∥
Lp(�) ≤ Cp|t − s|1/2.

To show this inequality, we will follow the methodology developed in the proof of Theo-
rem 1.1. The starting point of the proof is the following representation of f (Y1(u)) as an
iterated divergence:

f
(
Y1(u)

) = δd(fd

(
Y1(u)

)
ξ−d
u ∂⊗d

u

)
.

Then using Meyer’s inequalities, we obtain∥∥Fε(t) − Fε(s)
∥∥
Lp(�) = √

ε

∥∥∥∥∫ t/ε

s/ε
f
(
Y1(u)

)
du

∥∥∥∥
Lp(�)

= √
ε

∥∥∥∥∫ t/ε

s/ε
δd(fd

(
Y1(u)

)
ξ−d
u ∂⊗d

u

)
du

∥∥∥∥
Lp(�)

≤ cp

d∑
k=0

√
ε

∥∥∥∥∫ t/ε

s/ε
Dk(fd

(
Y1(u)

)
ξ−d
u ∂⊗d

u

)
du

∥∥∥∥
Lp(�;H⊗k)

=: cp

d∑
k=0

Rk.

Using Minkowski and Hölder inequalities, we can write for any k = 0,1, . . . , d ,

Rk = √
ε

∥∥∥∥∫[s/ε,t/ε]2
f

(k)
d

(
Y1(u)

)
f

(k)
d

(
Y1(v)

)(〈∂u, ∂v〉H
ξuξv

)d+k

dudv

∥∥∥∥1/2

Lp/2(�)

≤ ∥∥f (k)
d

∥∥
Lp(R,γ )

(
ε

∫ t/ε

s/ε

∫ t/ε

s/ε

∣∣�d+k(u, v)
∣∣dudv

)1/2
,
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where �(u,v) has been defined in (4.11). From the assumptions of Theorem 1.1 and (2.7), it
follows that the quantity ‖f (d)

d ‖Lp(R,γ ) is finite. Then it suffices to show that for all 0 ≤ s ≤ t

(4.18) Aε := ε

∫ t/ε

s/ε

∫ t/ε

s/ε

∣∣�d(u, v)
∣∣dudv ≤ t − s.

In order to show (4.18), notice first that on the region where u ≤ M , v ≤ M or |u − v| ≤ M ,
we obtain the bound CM(t − s). Therefore, it suffices to consider the integral over the region

Dε,M = {
(u, v) ∈ [s/ε, t/ε]2 ∩ [M,∞)2 : |u − v| ≥ M

}
.

We denote the corresponding term by

Ãε := ε

∫
Dε,M

∣∣�d(u, v)
∣∣dudv.

We are going to use two different estimates for |�d(u, v)|. First, on the region {(u, v) ∈
Dε,M : |u − v| ≤ (c − 1)(s ∧ t) + c}, using Lemmas 4.1 and 4.2, we have for large M ,

�d(u, v) = 1

2d(1 + u1(u))d(1 + u1(u + h))d

×
(

u ∧ v

u ∨ v

)(β− α
2 ) d(

2aα

(|u − v|) + u2(u, v)
)d

≤ C|u − v|(α−2)d .

Second, on the region {(u, v) ∈ Dε,M : |u − v| ≥ (c − 1)(s ∧ t) + c}, using this time Lemmas
4.1 and 4.3, we can write, again for large M ,∣∣�d(u, v)

∣∣ ≤ CM

2d(1 + u1(u))d(1 + u1(u + h))d

× (
(u ∧ v)(α+ν−2)d |u − v|−dν1α<1 + |u − v|d(α−2)1α≥1

)
≤ C|u − v|(α−2)d .

These estimates and the change of variable (u, v) → (u,u + h) lead to

Ãε ≤ C(t − s)

∫ ∞
M

h(α−2)d dh.

Under the condition α < 2− 1
d

, the integral
∫ ∞
M h(α−2)2d dh is finite and we obtain the desired

estimate.
Suppose now that α = 2 − 1

d
. We claim that for any 0 ≤ s < t and ε ∈ (0,1), there exists a

constant Cp > 0 such that

1√| log ε|
∥∥Fε(t) − Fε(s)

∥∥
Lp(�) ≤ Cp|t − s|1/2.

The proof is analogous to the case α < 2 − 1
d

, and can be completed using the estimate

sup
ε∈(0,1)

1√| log ε|
(∫ t/ε

M
h−1 dh

)1/2
< ∞.

5. Proof of Theorem 1.3. Recall the definition of F̃ε given by (1.22). Denote F̂ε =
ε1/2−d(1−α/2)F̃ε and let F̂q,ε be the projection of F̂ε on the qth Wiener chaos. Note that by
assumption, the exponent 1/2 − d(1 − α/2) is positive. As in the proof of Theorem 1.2, we
are again first proving convergence of finite-dimensional distributions and then tightness.
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5.1. Convergence of finite-dimensional distributions. We will show for s, t ≥ 0 that

lim
ε,δ→0

E
[
F̂q,ε(s)F̂q,δ(t))

] =
{
c2
dKd(s, t) if q = d,

0 if q > d,
(5.1)

where Kd(s, t) has been defined in (1.25), and also that

(5.2) lim
N→∞ lim sup

ε→0

∞∑
q=N

E
[
F̂q,ε(t)

2] = 0.

Then (5.1) for q = d implies that for every sequence εn → 0, and for each t ≥ 0, the sequence
of random variables F̂q,εn(t) is a Cauchy sequence in L2(�). Therefore, F̂d,ε(t) converges in
L2(�) as ε tends to zero to cdH∞(t), where H∞(t) is the generalized Hermite process with
covariance given by (1.25). Also, for q > d , F̂q,ε converges to zero in L2(�), as ε tends to
zero. Together with (5.2), this implies that for any t ≥ 0, F̂ε(t) converges in L2(�), as ε tends
to zero, to cdH∞(t). As a consequence, the finite-dimensional distributions of the process F̂ε

converge in law to those of the process cdH∞. This is also true for the finite-dimensional
distributions of the process ε1/2−d(1−α/2)Fε , because this process has the same law as F̂ε .

We now proceed to the proof of (5.1) and (5.2). Taking into account that (see (4.12))

F̂q,ε(t) = cqε−d(1− α
2 )

∫ t

0

∥∥�εX(u)
∥∥−q

L2(�)
Iq

(
1⊗q
[u,u+ε]

)
du,

we can write

E
[
F̂q,ε(s)F̂q,δ(t)

] = c2
qq!(εδ)−d(1− α

2 )
∫ s

0

∫ t

0
�

q
ε,δ(u, v) dudv,

where

(5.3) �ε,δ(u, v) = E[(X(u + ε) − X(u))(X(v + δ) − X)(v)]√
E[(X(u + ε) − X(u))2]E[(X(v + δ) − X(v))2] .

Assuming t ≥ ε, consider the decomposition

E
[
F̂q,ε(t)

2] = c2
qq!εd(α−2)

∫ t

0

∫ t

0
�q

ε,ε(u, v) dudv

= c2
qq!εd(α−2)

∫
[0,t]2∩{u∧v≤ε}

�q
ε,ε(u, v) dudv

+ c2
qq!εd(α−2)

∫ t

ε

∫ t

ε
�q

ε,ε(u, v) dudv.

Then, using the bound (6.23) and the fact that |�ε,ε(u, v)| ≤ 1, we can write for any q ≥
q∗ ≥ d such that α > 2 − 1

q∗ ,

E
[
F̂q,ε(t)

2] ≤ c2
qq!tε1+d(α−2) + Cc2

qq!ε(q∗−d)(2−α)

(5.4)

×
∫ t

ε

∫ t

ε

(
(u ∨ v)α−2(uv)−β+ α

2
)q∗

dudv.

Notice that the integral appearing in the right-hand side of the above equation is finite because
(−β + α

2 )q∗ ≥ (α
2 − 1)q∗ > −1

2 and (α − 2)q∗ > −1. As a consequence, if q > d we can
choose q∗ > d with α > 2 − 1

q∗ and we obtain

lim
ε→0

E
[
F̂q,ε(t)

2] = 0.
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Furthermore, the estimate (5.4) also implies

(5.5) sup
ε∈(0,1)

sup
q≥d

E
[
F̂q,ε(t)

2] ≤ Cc2
qq!,

which allows us to establish (5.2) because the series
∑∞

q=d c2
qq! is convergent.

It remains to show (5.1) for q = d . For any ε > 0, we define

F̂
(1)
d,ε(t) = cdε−d(1− α

2 )
∫ ε

0

∥∥�εX(u)
∥∥−d

L2(�)
Id

(
1⊗q
[u,u+ε]

)
du

and F̂
(2)
d,ε(t) = F̂d,ε(t) − F̂

(1)
d,ε(t). It is easy to show that

lim
ε→0

E
[
F̂

(1)
d,ε(t)

2] = 0.

Therefore,

lim
ε,δ→0

E
[
F̂d,ε(s)F̂d,δ(t)

] = lim
ε,δ→0

E
[
F̂

(2)
d,ε(s)F̂

(2)
d,δ (t)

]
.

We can write

(5.6) E
[
F̂

(2)
d,ε(s)F̂

(2)
d,δ (t)

] = c2
dd!

∫ s

ε

∫ t

δ

(
(εδ)α/2−1�ε,δ(u, v)

)d
dudv.

By Lemma 6.5, we have that

lim
ε,δ→0

∫ s

ε

∫ t

δ

(
(εδ)α/2−1�ε,δ(u, v)

)d
dudv

=
∫ s

0

∫ t

0

(
lim

ε,δ→0
(εδ)α/2−1�ε,δ(u, v)

)d
dudv

=
∫ s

0

∫ t

0

(
∂u,vE[X(u)X(v)]

2λ(uv)β−α/2

)d

dudv,

where the interchange of integration and limit is justified by the bound (6.23), which yields
an integrable bound since we have d(α − 2) > −1. This completes the proof of (5.1) and
(5.2).

5.2. Tightness. To show tightness, it suffices to estimate the moment of order two of an
increment. We can write, for s ≤ t ,

E
[∣∣F̂ε(s) − F̂ε(t)

∣∣2] = εd(α−2)
∞∑

q=d

c2
qq!

∫ t

s

∫ t

s
�q

ε,ε(u, v) dudv

≤
( ∞∑

q=d

c2
qq!

)
εd(α−2)

∫ t

s

∫ t

s

∣∣�d
ε,ε(u, v)

∣∣dudv.

If we integrate on the set where at least one of the variables is less than ε, using Hölder’s
inequality we obtain the bound

Cεd(α−2)(t − s)

∫
R

1[s,t](u)1[0,ε](u) du ≤ Cε
d(α−2)+ 1

p1 (t − s)
1+ 1

p2 ,

where 1/p1 + 1/p2 = 1. Choosing p1 = 1/(d(2 − α)) > 1, we obtain a bound of the form
C(t − s)2−d(2−α). Notice that 2 − d(2 − α) > 1.

On the other hand, if both variables are larger than ε, we can use the estimate (6.23) and
we obtain the bound

C

∫ t

s

∫ t

s

(
(u ∨ v)α−2(uv)−β+ α

2
)d

dudv.
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Making the change of variables (u, v) → (s + x(t − s), s + y(t − s), the above integral can
be bounded by

C(t − s)2+d(2α−β−2)
∫ 1

0

∫ 1

0

(
(x ∨ y)α−2(xy)−β+ α

2
)d

dx dy

and again we obtain the desired estimate because

2 + d(2α − β − 2) ≥ 2 + d(2α − 3) > d ≥ 1.

6. Technical lemmas.

6.1. Lemmas for the case α ≤ 2 − 1/q . Define

(6.1) ϕα,q(ε) =
{
ε if α < 2 − 1/q,

ε/| log ε| if α = 2 − 1/q.

LEMMA 6.1. Assume (H.1) and (H.2). If α ≤ 2 − 1/q , then for any T > 0,

(6.2) lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1D2(s, t)

∣∣�q(s, t)
∣∣ds dt = 0

and

(6.3) lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1D2(s, t)

∣∣αq
α(s − t)

∣∣ds dt = 0,

where � and aα are defined by (4.11) and (1.10), respectively, the set D2 contains all tuples
(s, t) ∈ R

2+ such that |s − t | ≥ (c − 1)(s ∧ t) + c, and c is the constant appearing in (H.2).

PROOF. The second statement (6.3) is a special case of (6.2) as �(s, t) = aα(s − t)

when X is a fractional Brownian motion. Indeed, as in this case E((�1X(t))2) = 1 (recall
that �1X(t) = X(t + 1) − X(t)), we have �1Y = �1X and, therefore,

�(s, t) = E
(
�1Y(s)�1Y(t)

) = E
(
�1X(s)�1X(t)

) = aα(s − t).

Consequently, it suffices to show (6.2).
Note that for all ε ∈ (0,1),∫ T/ε

0

∫ T/ε

0
1Aδ(s, t) ds dt ≤ CT δε−1,

where Aδ contains all tuples (s, t) such that at least one of the variables s and t is bounded
by δ. Together with the fact that |�(s, t)| ≤ 1, we get that

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1Aδ(s, t)

∣∣�q(s, t)
∣∣ds dt ≤ CT δ

for all δ > 0. It therefore suffices to show that

lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1D2∩Ac

δ
(s, t)

∣∣�q(s, t)
∣∣ds dt = 0.

By symmetry, it suffices to consider the integral over the set {t ≤ s}, meaning that we are
eventually left to show that

lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1D2,δ

(s, t)
∣∣�q(s, t)

∣∣ds dt = 0,
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where D2,δ = D2 ∩ Ac
δ ∩ {t ≤ s} contains all tuples (s, t) which are elements of D2 and such

that s ≥ t ≥ δ. Then we can apply Lemma 4.3 and obtain that∣∣E[(
X(s + 1) − X(s)

)(
X(t + 1) − X(t)

)]∣∣
≤ Cδ

{
t2β−2+ν(s − t)−ν if α < 1,

t2β−α(s − t)α−2 if α ≥ 1,

where Cδ is a positive constant depending on δ.
Moreover, we claim that

(6.4) inf
δ≤s<∞

(
1 + u1(s)

) = bδ > 0.

In fact, for any s ≥ 0 we have E[(X(s + 1) − X(s))2] > 0 (this is a consequence of the
self-similarity property) and the map s → E[(X(s + 1) − X(s))2] is continuous. Then (6.4)
follows from the fact that that 1 + u1(s) is a strictly positive continuous function on [δ,∞),
which is bounded by 1 + Kδs

−δ1 , with δ1 > 0, for s large enough, and for some constant Kδ ,
by Lemma 4.1. Notice that u1(s) may blow up at zero if α < 2β . Therefore, we obtain

∣∣�(s, t)
∣∣ ≤ Cδb

−1
δ

{
tα−2+ν(s − t)−ν if α < 1,

(s − t)α−2 if α ≥ 1.

If α < 2 − 1/q , we then get that∫ T/ε

0

∫ T/ε

0
1D2,δ

(s, t)
∣∣�q(s, t)

∣∣ds dt ≤ Cδb
−1
δ ε−(α−2)q−2

and the assertion follows as

lim
ε→0

ε−(α−2)q−2ϕα,q(ε) = 0.

In the case α = 2 − 1/q ≥ 1, we obtain∫ T/ε

0

∫ T/ε

0
1D2,δ

(s, t)
∣∣�q(s, t)

∣∣ds dt ≤ Cδb
−1
δ ε−1,

and again

lim
ε→0

ε−1ϕα,q(ε) = 0. �

LEMMA 6.2. Let α ≤ 2 − 1/q , assume (H.1) and (H.2) and, for r = 1,2, . . . , q , define

(6.5) Rα,r(s, t) = �r(s, t) − ar
α(s − t),

where � and aα are defined by (4.11) and (1.10), respectively. Then, for all M1,M2 > 0, it
holds that

(6.6) lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1DM1,M2

(s, t)
∣∣Rα,r(s, t)

∣∣q/r
ds dt = 0,

where the set DM1,M2 is given by

(6.7) DM1,M2 = {
(s, t) ∈ R

2 : |s − t | ≤ M1(s ∧ t) + M2
}
.

PROOF. From (6.5), we see that

(6.8) sup
(s,t)∈DM1,M2

∣∣Rα,r(s, t)
∣∣ ≤ Cα,q.
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Indeed, by the Cauchy–Schwarz inequality |�(s, t)| ≤ 1 and, by (4.6), |aα(s − t)| ≤ Cα . Also
note that for δ > 0,

(6.9)
∫ T/ε

0

∫ T/ε

0
1Dδ(s, t) ds dt ≤ CT nδ,

where Dδ consists of all tuples (s, t) ∈ R
2+ such that at least one of the quantities s, t, |s − t |

is less than δ, and CT is some positive constant. The bounds (6.8) and (6.9) now yield that

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1Dδ∩DM1,M2

(s, t)
∣∣Rα,r(s, t)

∣∣q/r
ds dt ≤ Cδ

for all δ > 0. Also, by symmetry it suffices to consider the integral over the set {(s, t) ∈
DM1,M2 : s < t}. It therefore suffices to prove that

(6.10) lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ T/ε

0
1DM1,M2,δ

(s, t)
∣∣Rα,r(s, t)

∣∣q/r
ds dt = 0,

where

DM1,M2,δ = {
(s, t) : δ ≤ s < t, δ ≤ t − s ≤ M1s + M2

}
.

For (s, t) ∈ DM1,M2,δ , Lemmas 4.1 and 4.2 apply and yield that

�r(s, t) =
(

s

t

)(β−α/2)r 2−r

(1 + u1(s))r/2(1 + u1(t))r/2

(
2aα(t − s) + u2(s, t)

)r
=

(
s

t

)(β−α/2)r(
1 + u1(s)

)−r/2(1 + u1(t)
)−r/2

×
(
aα(t − s)r +

r∑
r ′=1

(
r

r ′
)

aα(t − s)r−r ′
2−r ′

u2(s, t)
r ′
)
.

Therefore, we have that

Rα,r(s, t) = �r(s, t) − ar
α(s − t) =

3∑
l=1

Rα,r,l(s, t),

where

Rα,r,1(s, t) =
(

s

t

)(β−α/2)r((
1 + u1(s)

)−r/2(1 + u2(t)
)−r/2 − 1

)
× (

aα(t − s) + 2−1u2(s, t)
)r

,

Rα,r,2(s, t) =
((

s

t

)(β−α/2)r

− 1
)
aα(t − s)r ,

Rα,r,3(s, t) =
(

s

t

)(β−α/2)r r∑
r ′=1

(
r

r ′
)

aα(t − s)r−r ′
2−r ′

u2(s, t)
r ′
.

We will now show that

(6.11) lim
ε→0

ϕα,q(ε)

∫ T/ε

0

∫ t

0
1DM1,M2,δ

(s, t)
∣∣Rα,r,l(s, t)

∣∣q/r
ds dt = 0

for l = 1,2,3. This then implies (6.10) as

∣∣Rα,r(s, t)
∣∣q/r ≤ 3 max

l=1,2,3

∣∣Rα,r,l(s, t)
∣∣q/r ≤ 3

3∑
l=1

∣∣Rα,r,l(s, t)
∣∣q/r

.
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If not otherwise specified, all formulas proved throughout the rest of this section are only
claimed to be valid for (s, t) ∈ DM1,M2,δ . Furthermore, C in the following denotes a generic
positive constant which may change from line to line and might depend on δ. Dependence on
variables is indicated as parameters. Notice that on the set DM1,M2,δ one has

(6.12)
2M1

t − s
≥ 1

s
if s ≥ M2

M1
.

Let us begin by treating Rα,r,1. By Lemma 4.1, we know that for some positive constant
Cδ only depending on δ, it holds that

(6.13)
∣∣u1(s)

∣∣ < Cεs
−δ1 and

∣∣u1(t)
∣∣ < Cεt

−δ1

with δ1 = 1 − α if α < 1, δ1 = 2 − α if α ≥ 1. The bound (6.13) and the mean value theorem
imply that

(6.14)
∣∣(1 + u1(s)

)−r/2(1 + u1(t)
)−r/2 − 1

∣∣ ≤ C
(∣∣u1(s)

∣∣ + ∣∣u1(t)
∣∣) ≤ Cs−δ1 .

Furthermore, taking into account the bounds (4.7), (4.2) and (4.3), we can write∣∣aα(t − s) + 2−1u2(s, t)
∣∣r

≤ C
(
(t − s)(α−2)r + (

s(α−2)r + s−r (t − s)(α−1)r)1{t−s≥1}

+ (
s(α−1)r1{α<1} + s(α−2)r1{α≥1}

)
1{t−s<1}

)
.

(6.15)

The bounds (6.14) and (6.15), together with (6.12), thus yield∣∣Rα,r,1(s, t)
∣∣q/r ≤ C((t − s)(α−2)q− q

r
δ1

+ (
s(α−2)q− q

r
δ1 + s−q− q

r
δ1(t − s)(α−1)q− q

r
δ11{t−s≥1}

+ (
s(α−1)q− q

r
δ11{α<1} + s(α−2)q− q

r
δ11{α≥1}

)
1{t−s<1}

)
and therefore, after a straightforward calculation,∫ T/ε

0

∫ t

0
1DM1,M2,δ

(s, t)
∣∣Rα,r,1(s, t)

∣∣q/r
ds dt ≤ Cε−(α−2)q+ q

r
δ1−2.

Notice that (α − 2)q − q
r
δ1 + 2 ≤ 1 − q

r
δ1, with equality only if α = 2 − 1/q . Therefore,

taking into account that 0 < δ1 ≤ 1, we obtain for ε ≤ 1,

ϕα,q(ε)ε−(α−2)q+ q
r
δ1−2

⎧⎪⎨⎪⎩
< ε

q
r
δ1 if α < 2 − 1/q,

= 1

| log ε|ε
q
r
δ1 if α = 2 − 1/q.

This shows (6.11) for l = 1.
Let us turn to Rα,r,2. We can write, using (4.7),∫ T/ε

0

∫ t

0
1DM1,M2,δ

(s, t)
∣∣Rα,r,2(s, t)

∣∣q/r
ds dt

≤ C

∫ T/ε

0

∫ t

0
1DM1,M2,δ

(s, t)

(
1 −

(
s

t

)(β−α/2)r)q/r

(t − s)(α−2)q ds dt.

Making the change of variables s = x/ε and t = y/ε, the integral in the right-hand side of
the above inequality can be written as

ε−(α−2)q−2
∫ T

0

∫ y

0
1{ δ

ε
≤x<y, δ

ε
≤y−x≤M1x+M2

δ
}
(

1 −
(

x

y

)(β−α/2)r)q/r

× (y − x)(α−2)q dx dy.
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We claim that ∫ T

0

∫ y

0

(
1 −

(
x

y

)(β−α/2)r)q/r

(y − x)(α−2)q dx dy < ∞.

Indeed, with the change of variables x = zy, we obtain∫ T

0

∫ y

0

(
1 −

(
x

y

)(β−α/2)r)q/r

(y − x)(α−2)q dx dy

=
∫ T

0

∫ 1

0

(
1 − z(β−α/2)r )q/r

(1 − z)(α−2)qy(α−2)q+1dzdy < ∞.

Finally, this shows (6.11) for l = 2 as ε−(α−1)q−2ϕα,q(ε) converges to zero as ε → 0.
It remains to study Rα,q,3. In this case, using (4.7) and the bounds (4.2) and (4.3) for u2,

we get that ∣∣aα(s − t)r−r ′
u2(s, t)

r ′ ∣∣q/r

≤ C(t − s)(α−2)q(r−r ′)/r

× ((
s(α−2)qr ′/r + s−qr ′/r (t − s)(α−1)qr ′/r)1{t−s≥1}

+ (
s(α−1)qr ′/r1{α<1} + s(α−2)qr ′/r1{α≥1}

)
1{t−s<1}

)
.

Therefore, |Rα,r,3(s, t)|q/r is also bounded by the above quantity, after a tedious but straight-
forward calculation, leads to∫ T/ε

0

∫ t

0
1DM1,M2,ε

(s, t)
∣∣Rα,r,3(s, t)

∣∣q/r
ds dt

≤ C
(| log ε|ε(2−α)qr ′/r−1 ∨ ε(2−α)q−2).

Noting that (α − 2)qr ′/r + 1 ≤ 1 − r ′/r < 1, we obtain (6.11) for l = 3, completing the
proof. �

LEMMA 6.3. In the setting introduced above, let s, t ≥ 0 and let q be a positive integer.
Recall that Fε(t) has been introduced in (4.12) and that we denote by Fq,ε(t) the projection
of Fε(t) on the qth Wiener chaos for any q ≥ d . Assume (H.1) and (H.2). Then, for α < 2− 1

q
,

it holds that

(6.16) lim
ε→0

E
[
Fq,ε(s)Fq,ε(t)

] = σ 2
α,q(s ∧ t),

and, for α = 2 − 1
q

, it holds that

(6.17) lim
ε→0

1

| log ε|E
[
Fq,ε(s)Fq,ε(t)

] = σ 2
2−1/q(s ∧ t),

where σ 2
α,q is given by

(6.18) σ 2
α,q = c2

qq!
∫
R

aq
α(h) dh

if α < 2 − 1/q , and by (1.24), if α = 2 − 1/q .

PROOF. Recall the definition (6.1) of the helper function ϕα,q . From (4.13), we know
that

E
[
Fq,ε(s)Fq,ε(t)

] = c2
qq!ε

∫ s/ε

0

∫ t/ε

0
�q(u, v) dudv.
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By Lemmas 6.1 and 6.2, we get that

lim
ε→0

ϕα,q(ε)

∫ s/ε

0

∫ t/ε

0
�q(u, v) dudv = lim

ε→0
ϕα,q(ε)

∫ s/ε

0

∫ t/ε

0
aα(u − v)q dudv,

where aα is defined in (1.10). Then the convergences follow from the proof of the classical
Breuer–Major theorem; see, for example, [11], Theorem 7.2, for the details (the proof given
in [11] can be extended mutatis mutandis to cover continuous framework as well). �

6.2. Lemmas for the case α > 2 − 1/d .

LEMMA 6.4. Assume α > 2 − 1/d and (H.2). Then one has for s, t > 0 that

(6.19)
∣∣∂s,tE

[
X(s)X(t)

]∣∣ ≤ C(s ∧ t)2β−α(s ∨ t)α−2,

where C is a positive constant only depending on α and β . In particular, for u, v > 0 it holds
that

(6.20) lim
ε,δ→0

1

εδ
E
[(

X(s + ε) − X(s)
)(

X(t + δ) − X(t)
)] = ∂s,tE

[
X(s)X(t)

]
.

PROOF. For 0 < s ≤ t , we have by self-similarity that

E
[
X(s)X(t)

] = s2βφ

(
t

s

)
with φ(x) = E[X(1)X(x)]. A routine calculation yields that

∂s,tE
[
X(s)X(t)

] = (2β − 1)s2β−2φ′
(

t

s

)
− s2β−3tφ′′

(
t

s

)
.

Using (H.2) if t/s ≥ c and the fact that φ′(t/s) is bounded and |φ′′(t/s)| ≤ C(t/s − 1)α−2 if
t/s ≤ c, we obtain

(6.21)
∣∣∂s,tE

[
X(s)X(t)

]∣∣ ≤ Cs2β−αtα−2,

which proves the asserted bound. As by assumption α − 2 > −1/d ≥ −1 and by definition
2β − α > 0, the derivative is therefore integrable on any interval [0, a] × [0, b] and we get
that

E
[(

X(s + ε) − X(s)
)(

X(t + δ) − X(t)
)] =

∫ t+δ

t

∫ s+ε

s
∂u,vE

[
X(u)X(v)

]
dudv,

so that (6.20) follows. �

LEMMA 6.5. Assume α > 2 − 1/d and (H.2) and recall that �ε,δ(s, t) has been intro-
duced in (5.3). Then it holds that

(6.22) lim
ε,δ→0

(εδ)α/2−1�ε,δ(s, t) = ∂s,tE[X(s)X(t)]
2λ(st)β−α/2 .

Furthermore, there exists a positive constant CT such that for any s, t ∈ [0, T ] such that s ≥ ε

and t ≥ δ, it holds that

(6.23)
∣∣�ε,δ(s, t)

∣∣ ≤ CT (εδ)1− α
2 (s ∨ t)α−2(st)−β+ α

2 .
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PROOF. By self-similarity and Lemma 4.1, we have that

E
[(

X(s + ε) − X(s)
)2] = ε2β

E
[(

X(s/ε + 1) − X(s/ε)
)2]

= 2λεαs2β−α(1 + u1(s/ε)
)
,

where u1(s/ε) ≤ C(s/ε)α−2 converges to zero as ε → 0. Therefore, also using Lemma 6.4,
we have that

lim
ε,δ→0

(εδ)α/2−1�ε,δ(s, t) = lim
ε,δ→0

(εδ)−1E[(X(s + ε) − X(s))(X(t + δ) − X(t))]
2λ(st)β−α/2

= ∂s,tE[X(s)X(t)]
2λ(st)β−α/2 .

In order to establish the bound (6.23), using Lemma 4.1 and the condition s/ε ≥ 1 and t/δ ≥
1, we obtain∣∣�ε,δ(s, t)

∣∣ ≤ C(εδ)−
α
2 (st)−β+ α

2

∫ t+δ

t

∫ s+ε

s
∂u,vE

[
X(u)X(v)

]
dudv.

Finally, in view of the estimate (6.19), we can write∣∣�ε,δ(s, t)
∣∣ ≤ C(εδ)1− α

2 (st)−β+ α
2 (s ∨ t)α−2.

This completes the proof of the lemma. �

6.3. Chaos expansion of the absolute value. The next statement has been used in the end
of the introductory section, when we applied Theorems 1.2 and 1.3 in the case where X = B̃

is a bifractional Brownian motion, and when for f we choose the function f (x) = |x| −
√

2
π

.
The proof is well known and standard, we include it here for completeness.

PROPOSITION 6.1 (Chaos expansion of the absolute value). It holds that

|x| =
√

2

π
+

√
2

π

∞∑
q=1

(−1)q−1

2qq!(2q − 1)
H2q(x), x ∈ R.

PROOF. The absolute mean of a standard Gaussian is
√

2
π

. By symmetry and the fact that

Hq(x) = (−1)qφ(x)−1φ(q)(x),

with φ(x) = 1√
2π

e−x2/2 the Gaussian density, we get
∫
R

|u|H2q+1(u)φ(u)du = 0 and∫
R

|u|H2q(u)φ(u)du = 2
∫ ∞

0
uH2q(u)φ(u)du = 2

∫ ∞
0

uφ(2q)(u) du

= −2
∫ ∞

0
φ(2q−1)(u) du = 2φ(2q−2)(0)

=
√

2

π
H2q−2(0) =

√
2
π
(−1)q−1(2q − 2)!
2q−1(q − 1)! .

The desired conclusion follows. �
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