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A STOCHASTIC TELEGRAPH EQUATION FROM THE
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Massachusetts Institute of Technology and Institute for
Information Transmission Problems

A stochastic telegraph equation is defined by adding a random inhomo-
geneity to the classical (second-order linear hyperbolic) telegraph differen-
tial equation. The inhomogeneities we consider are proportional to the two-
dimensional white noise, and solutions to our equation are two-dimensional
random Gaussian fields. We show that such fields arise naturally as asymp-
totic fluctuations of the height function in a certain limit regime of the
stochastic six-vertex model in a quadrant. The corresponding law of large
numbers—the limit shape of the height function—is described by the (deter-
ministic) homogeneous telegraph equation.

1. Introduction.

1.1. Preface. The central object of this work is a second-order inhomogeneous
linear differential equation

(1) fXY (X,Y ) + β1fY (X,Y ) + β2fX(X,Y ) = u(X,Y ), x, y ≥ 0,

on an unknown function f (X,Y ) with given right-hand side u(X,Y ) and constants
β1, β2 ∈ R. The equation (1) is known (in equivalent forms obtained by multiply-
ing the unknown function f with exp(aX + bY )) as the telegraph equation or the
Klein–Gordon equation.

We will be particularly interested in the case when the inhomogeneity u(X,Y )

is proportional to the two-dimensional white noise η,

(2) u(X,Y ) = v(X,Y )η,

where the prefactor v(X,Y ) will be made explicit later. We call (1), (2) the stochas-
tic telegraph equation.

The deterministic equation (1) is a classical object (see, e.g., [28], Chapter V)
and its stochastic versions were intensively studied in the last 50 years. Random
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FIG. 1. Configuration of the six-vertex model in the positive quadrant with the domain wall bound-
ary conditions and the corresponding height function H(x,y).

terms were first added to hyperbolic PDEs in [17, 18], and there have been nu-
merous developments since then. We will not try to survey those, but let us still
mention a few. The maximum of the solution was analyzed in [53]. The existence,
uniqueness and regularity of the solutions in nonlinear situations are discussed in
[19, 20, 39, 50, 51, 59]. The higher-dimensional setting is considered in several ar-
ticles including [22, 31, 32, 49, 52]. Significant amount of work was devoted to the
design of discrete approximation schemes and numeric algorithms, for example,
in [47, 48, 56, 63]. Further, [34] develops Feynman–Kac-type formulas, [33] and
[23] study intermittency of the solutions, and [46] deals with (non-Gaussian) Lévy
noises. Stochastic hyperbolic partial differential equations were also surveyed in
[30], and mentioned in textbooks [29, 62].

The direction we take in the present paper appears different from any of the prior
works, however. Our interest in the stochastic telegraph equation stems from the
fact that it governs the asymptotics of the macroscopic fluctuations for a particular
case of a celebrated lattice model of Statistical Mechanics called the six-vertex
model; we refer to [6] for general information about this and related models.

More concretely, we deal with the stochastic six-vertex model (as well as its
deformation—the dynamic six-vertex model) that was first introduced in [41] and
whose asymptotic behavior has been recently studied in [1, 2, 5, 12, 25, 27, 58].
The model is defined in the positive quadrant via a sequential stochastic procedure.
We postpone the exact definition till the next subsection, and for now let us just say
that the configurations of the model can be viewed as collections of lattice paths
on the square grid that may touch each other but can never cross; see Figure 1.
These paths are further interpreted as level lines of a function H(X,Y ) called the
the height function.

We investigate the limit regime in which the mesh size of the grid goes to 0,
and simultaneously the turns of the paths become rare—the weights of two of
the six possible local edge configurations around a vertex converge to zero. We
find that the exponential qH(X,Y ), where q is a quantization parameter involved
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in the definition of the model (that tends to 1 in our limit regime), converges to a
nonrandom limit shape, which solves (1) with zero right-hand side u(X,Y ) ≡ 0.
Simultaneously, centered and scaled fluctuations of qH(X,Y ) converge to solutions
of the stochastic telegraph equation (1), (2).

The stochastic six-vertex model and our results can be put in several contexts.
The asymptotic results of [12, 25, 27, 41] treat the model as an interacting particle
system in the Kardar–Parisi–Zhang (KPZ) universality class [24, 44]. In fact, there
is a limit transition [1, 12] from the stochastic six-vertex model to a ubiquitous
member of this class—the Asymmetric Simple Exclusion Process (ASEP). There
are two further limits from the ASEP to stochastic partial differential equations: the
first one leads to a certain Gaussian field of fluctuations [35, 36], while the second
one leads to the KPZ equation itself [4, 7, 14, 60]. However, in both cases the
resulting SPDEs are stochastic versions of a parabolic PDE—the heat equation,
while in our limit regime we observe a hyperbolic PDE with a stochastic term.

While the heat equation is closely related to Markov processes (indeed, the tran-
sition probabilities of the Brownian motion are given by the heat kernel), the tele-
graph equation (1) is not. It provides the simplest instance of a non-Markovian
evolution, and we refer to [37] for a review of its relevance in physics. From the
point of view of the approximation by the six-vertex model, the lack of Markov
property is a corollary of the fact that for a rarely turning path, it is important to
know not only its position, but also the direction in which it currently moves. Thus,
in order to create a Markov process, one would need to extend the state space so
that the direction is also recorded; see [55] for nice lectures about such random
evolutions.

For the six-vertex model with fixed (i.e., not changing with the mesh size)
weights, there is a general belief that the model should develop deterministic limit
shapes as the mesh size goes to zero; see [54, 57]. However, mathematical under-
standing or description of them remains a major open problem. For special points
in the space of parameters, the model is equivalent to dimer models, where the limit
shape phenomenon is well understood; see [21, 45]. The approach that one uses in
these cases is to develop variational principles, identifying limit shapes with max-
imizers of a certain integral functional of the slope of the shape. As a corollary,
the limit shape solves Euler–Lagrange equations for the variational problem, and
these equations ordinarily are elliptic. From this perspective, our hyperbolic PDE
(1) seems difficult to predict.

In the stochastic case of the six-vertex model with fixed weights [12] computes
the limit shape for the domain wall boundary conditions, and [41, 58] explain that,
more generally, the limit shape has to satisfy a version of the inviscid Burgers
equation. The telegraph equation can be treated as a regularization of this equation
(cf. inviscid vs. viscous Burgers equation); in Remark 5.3 below, we explain how
the PDE of [58] can be recovered as a limit of (1). One might be surprised that
while the six-vertex hydrodynamic equation of [41, 58] does not look linear, (1) is.
The explanation lies in the change of the unknown function H(X,Y ) �→ qH(X,Y ),
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which linearizes the equation. A vague analogy would be with the Hopf–Cole
transform, which identifies the exponentials of solutions of the (nonlinear) KPZ
equation with solutions of the (linear, with multiplicative noise) stochastic heat
equation.

The same observable qH(X,Y ) plays an important role in [25], where a conver-
gence of the stochastic six-vertex model to the KPZ equation is proven via SPDE
techniques (a one-point distributional convergence in a similar limit regime was
proved in [14], Theorem 12.3, via a free fermionic reduction of [10], and a SPDE
convergence in a low-density regime for higher spin stochastic vertex models was
previously proved in [27]; see the introduction to [25] for a more complete bibli-
ography of related works). The limit regime of [25] is similar to ours in the part
that both address the case of weak asymmetry in the stochastic six-vertex model,
yet the two regimes yield very different limiting SPDEs. It would be interesting to
try to find an interpolation between our results and those of [25].

In the rest of the Introduction, we give a precise definition of the stochastic six-
vertex model, describe our limit regime and list the asymptotic results. We further
outline our results on the telegraph equation and its discrete version that, to our
best knowledge, appear to be new.

1.2. The dynamic stochastic six-vertex model. Our main object of study is the
homogeneous stochastic six-vertex model of [12, 41] and its one-parameter defor-
mation introduced as the dynamic stochastic six-vertex model in [9]. Consider the
configurations of the six-vertex model in positive quadrant. These are noninter-
secting paths that are allowed to touch (see Figure 1) or, equivalently, assignments
of six types of vertices (see Figure 3) to the integer points of the quadrant.

For some of our results, we focus on the domain wall boundary conditions,
when the paths enter the quadrant through every point of its left boundary; see
Figure 1. For other results, we allow arbitrary deterministic boundary conditions
(configurations of incoming paths) along the x and y axes.

A key tool of our approach is the height function H(x,y). It has a local def-
inition: We set H(1,0) = 0, declare that the height function is increased by 1,
H(x, y + 1) − H(x,y) = 1, whenever we move up and the segment [(x − 1

2 , y +
1
2), (x− 1

2 , y+ 3
2)] crosses a path, and it is decreased by 1, H(x+1, y)−H(x,y) =

−1, whenever we move to the right and the segment [(x− 1
2 , y+ 1

2), (x+ 1
2 , y+ 1

2)]
crosses a path. The height function is constant in regions with no paths. One way
to think about the height function is that it is defined not at the integer points, but
at the half-integers—centers of the faces of the square grid; then H(x,y) corre-
sponds to the point (x − 1

2 , y + 1
2).4 Figure 1 shows an example. For the domain

wall boundary conditions, H(x,y) counts the number of paths that pass through

4There is a slight asymmetry between x and y coordinates which we keep to match the notation to
those of previous works.
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FIG. 2. The function d(x, y) defined along the paths in the dynamic stochastic six-vertex model.

or below (x, y). Formally, for (x, y) ∈ Z
2≥1, H(x,y) is the total number of vertices

of types II, III and V at positions (x, y′) with y′ ≤ y. We further extend H(x,y)

to real (x, y) first linearly in the x-direction, and then linearly in the y-direction.
The resulting function is monotone and 1-Lipschitz in x and y directions.

We also need a modified version of the height function defined through

(3) d(x, y) = x − y − 1 + 2H(x,y).

When we move one step to the right, d(x, y) increases by 1 if we follow a path.
When we move one step up, it decreases by 1 if we follow a path. Therefore, along
each path the height changes piecewise-linearly, growing along the horizontal seg-
ments and decaying along the vertical ones. Note that this rule is contradictory at
points where two paths touch, as we will have two values of d(x, y) with differ-
ence 2; cf. Figure 2. However, this is not important, as we will never need the value
of the function d(x, y) at such points.

We now define the probability distribution on our path configurations. The ran-
dom configuration is obtained by a sequential construction from the bottom-left
corner in the upright direction, and the vertices are sampled according to the proba-
bilities in Figure 3. The probabilities depend on three fixed real parameters: q > 0,
α ≥ 0, 0 < b < 1. The parameter α is sometimes referred to as the dynamic pa-
rameter, according to the fact that for α 	= 0 the weights of the model satisfy the
dynamic, or face variant of the Yang–Baxter equation rather than the simpler vertex
one. Following the conventional terminology of statistical physics, our probabil-
ity distribution can be viewed as a stochastic (or Markovian) version of a two-
dimensional exactly solvable IRF (Interaction-Round-a-Face) or SOS (Solid-On-
Solid) model; cf. [9]. At α = 0, we return to the setting of the stochastic six-vertex
model of [12] with b1 = b, b2 = bq .
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FIG. 3. Weights of six types of vertices. Local changes of the height function H(x,y) are shown in
gray.

1.3. Limit regime and main asymptotic results. In what follows, we take L as
a large parameter and set

(4) b = exp
(
−β1

L

)
, qb = exp

(
−β2

L

)
, β1, β2 > 0, β1 	= β2.

The parameter α ≥ 0 will remain fixed. In particular, if α = 0, then

b1 = exp
(
−β1

L

)
, b2 = exp

(
−β2

L

)
.

Further, we consider the limit L → ∞, and it is sometimes convenient to use al-
ternative parameters q and s defined by

(5) q = q1/L, ln(q) = β1 − β2, s= lim
L→∞

1 − b

1 − bq
= β1

β2
.

We will sometimes switch between β1, β2 notation and q, s notation to make for-
mulas more aesthetically pleasing. We will always assume β1 	= β2, which implies
q, s 	= 1.

We prove the following results:

1. For the domain wall boundary conditions and any α ≥ 0, we develop in The-
orems 2.1, 2.4 the law of large numbers for the height function H(x,y) and the
central limit theorem for its centered and rescaled fluctuations. The relevant limit
quantities are given as contour integrals, and the proofs are based on exact expres-
sions for the expectation of shifted q-moments of the height function H(X,Y ).
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We rely on several ingredients—contour integral expressions of [9], a Gaussian-
ity lemma for random variables with moments given by contour integrals of [13],
and a novel combinatorial argument of Theorem 2.10 linking cumulants with their
shifted versions.

2. For arbitrary (deterministic) boundary conditions in the case α = 0, we
prove in Theorem 5.1 the law of large numbers by showing that qH(x,y) converges
in probability to the solution of the telegraph equation (1) with u(x, y) ≡ 0 and
prescribed boundary values along the lines x = 0 and y = 0. The proof is based
on a novel stochastic four-point relation of Theorem 3.1 for qH(x,y). This relation
does not seem to be present in the existing literature but, once written, its proof is
immediate from the definition of the model. It can also be derived from the duality
relations of [26], (2.6), [27], Proposition 2.6, [25], Corollary 3.4. We were led to
this relation by [64] that provided different derivations of its averaged version.

3. For arbitrary (deterministic) boundary conditions in the α = 0 case, we
present the central limit theorem for qH(x,y) in Theorem 6.1. The answer is given
by the stochastic telegraph equation (1), (2) with the variance of the white noise
v(x, y) being a nonlinear function of the limiting profile for qH(x,y) afforded by
the law of large numbers. The proof again exploits the four-point relation of The-
orem 3.1.

4. We investigate the low density boundary conditions (which means that there
are few paths entering through the boundary; their locations are still deterministic,
but they are changing as L → ∞; the distinction with previous results is that in
points 2 and 3 the average density of incoming paths was positive, while here it
tends to 0), in the case α = 0, which has an interpretation through evolution of a
family of independent persistent random walks. We prove in Theorem 7.1 the law
of large numbers and central limit theorem for the properly centered and scaled
H(x,y). The answer is still given by the stochastic telegraph equation (1), (2), but
the variance of the white noise v(x, y) becomes a linear function of the limiting
profile.

In the first version of this text the central limit theorem of (3) was presented as
a conjecture with two heuristic arguments in favor of its validity. Later on, [61]
proved the conjecture by combining the four-point relation with certain new ideas.
This prompted us to return to our original heuristic approaches, and we were even-
tually able to turn one of them into a complete proof (different from the one in
[61]). It is this proof that is presented in Section 6 below; the second heuristic
approach has been moved to an Appendix.

1.4. The classical telegraph equation and its discretization. As many of our
results are based on the analysis of the telegraph equation (1) and its discrete
counterpart encoded in the four-point relation of Theorem 3.1, we need some
information about its solutions. There is a classical part here (see, e.g., [28])—
existence/uniqueness of the solutions to hyperbolic PDEs and an integral represen-
tation of the solutions through the Riemann function of the equation. We review
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FIG. 4. The weights of the random walk toward the origin.

this part at the beginning of Section 4. We further demonstrate in Theorem 4.7
that the discrete version of the telegraph equation admits a similar theory, with the
Riemann function replaced by an appropriate discrete analogue. This greatly sim-
plifies the proofs, as the convergence of the discretization to the telegraph equation
itself becomes a corollary of the convergence for the (explicit) Riemann functions.

Motivated by the fact that we obtained the telegraph equation from a stochastic
system of nonintersecting paths, we further develop a theory for the representa-
tions of its solutions as path integrals. This may be viewed as an analogue of the
Feynman–Kac formula for the parabolic equations. For the homogeneous equa-
tion (1) with u(x, y) ≡ 0, such a theory was previously known—[40, 43] (see also
[55]), explain that a solution at (x, y) can be represented as an expectation of the
boundary data at the point where a persistent Poisson random walk started at (x, y)

exits the quadrant; see Theorem 4.11 for the exact statement.
For the inhomogeneous equation, we find a stochastic representation (that we

have not seen before) in terms of two persistent Poisson random walks. The addi-
tional term is the integral of the right-hand side u(X,Y ) over the domain between
two (random) paths with sign depending on which path is higher. We refer to The-
orem 4.11 for more details.

In addition, we develop, in Theorems 4.8, 4.9, a stochastic representation for the
solutions of the discretization of the telegraph equation. The result is similar: one
needs to launch a random walk from the observation point and compute the ex-
pectation at the exit point to get the influence of the boundary data, and one needs
to sum the inhomogeneity of the equation over the domain between trajectories of
two random walks. The needed random walk combinatorially is the same path of
the six-vertex model, but with flipped stochastic weights, as in Figure 4.

2. The domain wall boundary conditions. In this section, we focus on the
domain wall boundary conditions: the paths enter at every integer point of the y-
axis and no paths enter through the x-axis, as in Figures 1, 2. We prove the law of
large numbers and the central limit theorem for the height function.
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2.1. Formulation of LLN and CLT.

THEOREM 2.1. For each α ≥ 0, in the limit regime (4) we have

lim
L→∞

1

L
H(Lx,Ly) = h(x, y) (convergence in probability),

where h(x, y) is the only real (deterministic) solution of

(q−h(x,y)qy−x + α−1)(qh(x,y) − 1)

1 + α−1

= 1

2π i

∮
−1

exp
(

ln(q)

(
−x

sz

1 + sz
+ y

z

1 + z

))
dz

z
,

(6)

with integration in positive direction around the singularity at −1 and avoiding the
singularities at 0 and −1

s
. At α = 0, the left-hand side of (6) becomes qh(x,y) − 1.

REMARK 2.2. In terms of β1 and β2, the right-hand side of (6) can be rewrit-
ten as

(7)
1

2π i

∮
−β1

exp
(
(β1 − β2)

(
−x

z

β2 + z
+ y

z

β1 + z

))
dz

z

with a positively oriented integration contour encircling z = −β1, but not −β2
or 0.

PROPOSITION 2.3. In the setting of Theorem 2.1 with α = 0, consider the
limit q → 0 with fixed value of s< 1. Then

(8) lim
q→0

h(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0,
x

y
> s−1,

(
√
sx − √

y)2

1 − s
, s≤ x

y
≤ s−1

y − x,
x

y
< s.

Note that the right-hand side of (8) is precisely the limit shape of the stochastic
six-vertex model in the asymptotic regime of fixed q as L → ∞, as obtained in
[12], Theorem 1.1.

Let us apply the differential operator f �→ fxy + β1fy + β2fx to (7). We can
differentiate under the integral sign, which gives

1

2π i

∮
−β1

dz

z
exp

(
(β1 − β2)

(
−x

z

β2 + z
+ y

z

β1 + z

))

×
[
−(β1 − β2)

2 z

β1 + z
· z

β2 + z
(9)

+ β1(β1 − β2)
z

β1 + z
− β2(β1 − β2)

z

β2 + z

]
= 0.
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This shows that a functional of the limit shape (which is qh(x,y) in α = 0 case and
the left-hand side of (6) for general α) satisfies the equation fxy +β1fy +β2fx = 0,
which is a variant of the telegraph equation; cf., for example, [28]. In Section 5,
we upgrade the law of large numbers at α = 0 to general boundary conditions and
prove that the link to the telegraph equation persists.

For a point (x, y) ∈ Z>0 ×Z>0, define

(10) O(x, y) = −α−1qH(x,y) + qy−x+1−H(x,y).

THEOREM 2.4. Fix k ∈ Z>0 and reals y > 0 and x1 ≥ x2 ≥ · · · ≥ xk > 0. For
each α ≥ 0, in the limit regime (4) the random variables

H(Lxi,Ly) −EH(Lxi,Ly)√
L

, i = 1, . . . , k,

converge as L → ∞ (in the sense of moments) to a centered Gaussian vector. The
asymptotic covariance is given in terms of O(x, y) by

lim
L→∞L

Cov(O(Lx1,Ly),O(Lx2,Ly))

(1 + α−1)2

= ln(q)

(2π i)2

∮
−1

∮
−1

z1

z1 − z2

2∏
i=1

[
exp

(
ln(q)

(
−xi

szi

1 + szi

+ y
zi

1 + zi

))
dzi

zi

]

+ ln(q)

2π i

∮
−1

exp
(

ln(q)

(
−x1

sz

1 + sz
+ y

z

1 + z

))
dz

z
(11)

× 1

1 + α−1

[
qy−x2 + α−1

+ 1

2π i

∮
−1

exp
(

ln(q)

(
−x2

sz

1 + sz
+ y

z

1 + z

))
dz

z

]
,

where x1 ≥ x2, positively oriented integration contours enclose −1, but not 0 or
−1

s
, and for the first integral the z1-contour is inside the z2-contour. If α = 0, then

lim
L→∞LCov

(
qH(Lx1,Ly), qH(Lx2,Ly))

= ln(q)

(2π i)2

∮
−1

∮
−1

z1

z1 − z2

2∏
i=1

[
exp

(
ln(q)

(
−xi

szi

1 + szi

+ y
zi

1 + zi

))
dzi

zi

]
(12)

+ ln(q)

2π i

∮
−1

exp
(

ln(q)

(
−x1

sz

1 + sz
+ y

z

1 + z

))
dz

z
, x1 ≥ x2,

with similar integration contours.



TELEGRAPH FROM THE SIX-VERTEX MODEL 4147

REMARK 2.5. Expanding

qH(Lx,Ly) = qEH(Lx,Ly)

(
1 + ln(q)

(
H(Lx,Ly) −EH(Lx,Ly)

)

+ (
ln(q)

)2 (H(Lx,Ly) −EH(Lx,Ly))2

L2 + · · ·
)
,

and noticing that ln(q) is of order L−1, one can derive the covariance of
H(Lx,Ly) from that of qH(Lx,Ly), or from that of O(Lx,Ly). However, the re-
sulting formulas are much bulkier than (11), (12) and we have not found a good
way to simplify them.

At α = 0, we can generalize Theorem 2.4; in Section 6, we describe its upgrade
to general boundary conditions and link it to a stochastic telegraph equation.

In the remainder of this section, we prove Theorems 2.1, 2.4 and Proposi-
tion 2.3.

2.2. Observables. The asymptotic analysis of this section is based on (alge-
braic) results from [9] that generalize those of [12, 15, 16, 26]; more powerful
results can be found in [3].

As before, we use the notation O(x, y) = −α−1qH(x,y) + qy−x+1−H(x,y).

THEOREM 2.6 ([9], Theorem 10.1). For any fixed y ≥ 1 and x1 ≥ x2 ≥ · · · ≥
xn ∈ Z>0, the expectation

EN(x1, . . . , xN)

:= 1

(−α−1;q)n
E

[
n∏

k=1

(
qy−xk+1 − α−1q2k−2 − qk−1O(xk, y)

)](13)

is equal to

qn(n−1)/2

(2π i)n

∮
. . .

∮ ∏
1≤i<j≤n

zi − zj

zi − qzj

×
n∏

i=1

[(1 + q−1 1−b
1−qb

zi

1 + 1−b
1−qb

zi

)xi−1(
1 + zi

1 + q−1zi

)y dzi

zi

]
,

(14)

with positively oriented integration contours encircling −q and no other poles of
the integrand. In particular, EN(x1, . . . , xN) does not depend on α.

REMARK 2.7. The expression qy−x+1 −α−1q2k−2 −qk−1O(x, y) in (13) can
be written as (

qy−x+1q−H(x,y) + α−1qk−1)(
qH(x,y) − qk−1)

.
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In the case α = 0, the observable EN simplifies to

(15) EN(x1, . . . , xN)|α=0 = E

[
n∏

k=1

(
qH(xk,y) − qk−1)]

.

REMARK 2.8. The formula (14) matches [12], Theorem 4.12, with x1 = x2 =
· · · = t + 1, y = x. Note that there is a shift by 1 because of slightly different
coordinate systems.

PROPOSITION 2.9. In (14), for each n ≥ 1, and for q, b sufficiently close to
1, one can deform the contours so that they still include the poles at −q , and in
addition are nested: zi is inside qzj for 1 ≤ i < j ≤ n. This deformation does not
change the value of the integral.

We omit the proof of Proposition 2.9, as it is a direct contour deformation sim-
ilar to [16], Theorem 8.13; see also discussion after Proposition 2.2 in [10]. In
what follows, we always use the result of Theorem 2.6 on the contours of Propo-
sition 2.9.

2.3. Limit of expectation. Straightforward limit transition in the N = 1 ver-
sion of Theorem 2.6 yields that

lim
L→∞E

[
qy−x − α−1 −O(Lx,Ly)

1 − α−1

]

is the expression in the right-hand side of (6).
Second-order expansion of N = 1 version of Theorem 2.6 can be similarly used

to obtain the second-order expansion of E[O(Lx,Ly)] as L → ∞. This expecta-
tion is used for the centering in Theorem 2.4.

2.4. Limit of covariance. Applying N = 2 version of Theorem 2.6, we get for
x1 ≥ x2,

lim
L→∞L

[
E2(Lx1,Lx2) − E1(Lx1)E1(Lx2)

]

= L

(2π i)2

∮ ∮ [
qz1 − qz2

z1 − qz2
− 1

]
(16)

×
2∏

i=1

[(1 + q−1 1−b
1−qb

zi

1 + 1−b
1−qb

zi

)xi−1(
1 + zi

1 + q−1zi

)y dzi

zi

]

= ln(q)

(2π i)2

∮ ∮
z1

z1 − z2

2∏
i=1

[
exp

(
ln(q)

(
−xi

szi

1 + szi

+ y
zi

1 + zi

))
dzi

zi

]
,
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where the contours (see Proposition 2.9) are such that they both enclose −1 and
z1-contour is inside the z2-contour. On the other hand,

E2(Lx1,Lx2)

= 1

(1 + α−1)(1 + α−1q)
E

[ 2∏
k=1

(
qLy−Lxk+1 − α−1q2k−2

− qk−1
EO(Lxk,Ly) − qk−1(

O(Lxk,Ly) −EO(Lxk,Ly)
))]

=
∏2

k=1 E[qLy−Lxk+1 − α−1q2k−2 − qk−1O(Lxk,Ly)]
(1 + α−1)(1 + α−1q)

+ q Cov(O(Lx1,Ly),O(Lx2,Ly))

(1 + α−1)(1 + qα−1)
.

(17)

Thus, as L → ∞ in the regime (4),

E2(Lx1,Lx2) − E1(Lx1)E1(Lx2)

= q Cov(O(Lx1,Ly),O(Lx2,Ly))

(1 + α−1)(1 + qα−1)

+ E[qLy−Lx1+1 − α−1 −O(Lx1,Ly)]
(1 + α−1)

×
(
E[qLy−Lx2+1 − α−1q2 − qO(Lx2,Ly)]

(1 + qα−1)

− E[qLy−Lx2+1 − α−1 −O(Lx2,Ly)]
(1 + α−1)

)
,

which can be transformed into

q Cov(O(Lx1,Ly),O(Lx2,Ly))

(1 + α−1)(1 + qα−1)
+ O

(
(1 − q)2)

+ (1 − q)α−1 ∏2
k=1 E[qLy−Lxk+1 − α−1 −O(Lxk,Ly)]

(1 + α−1)3

+ E[qLy−Lx1+1 − α−1 −O(Lx1,Ly)]
(1 + α−1)2

× (
α−1(

1 − q2) + (1 − q)EO(Lx2,Ly)
)
.
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We conclude that

lim
L→∞

LCov(O(Lx1,Ly),O(Lx2,Ly))

(1 + α−1)2

= lim
L→∞L

[
E2(Lx1,Lx2) − E1(Lx1)E1(Lx2)

]

+ ln(q) lim
L→∞

[
E1(Lx1)

] limL→∞[E1(Lx2)] + qy−x2 + α−1

1 + α−1 .

(18)

Using (18), (16) and the computation of Section 2.3 we arrive at (11).

2.5. Cumulant-type sums. Our proof of the asymptotic Gaussianity in Theo-
rem 2.4 relies on a combinatorial statement presented in this section.

Let Sn denote the set of all set partitions of {1, . . . , n}. An element s ∈ SN is a
collection S1, . . . , Sk of disjoint subsets of {1, . . . , n} such that

k⋃
m=1

Sm = {1, . . . , n}.

The number of nonempty sets in s ∈ Sn will be called the length of s and denoted
as �(s).

Fix n = 1,2, . . . and suppose that for each subset A ⊂ {1,2, . . . , n} we are given
a number MA called the “joint moment of A.” Then we define the corresponding
joint cumulant Cn through

(19) Cn := ∑
s∈Sn

(−1)�(s)+1(
�(s) − 1

)! ∏
A∈s

MA.

THEOREM 2.10. Fix n > 2. Take n random variables ξ1, . . . , ξn, n determin-
istic real numbers r1, . . . , rn, n(n − 1)/2 real numbers aij , 1 ≤ i < j ≤ n, and an
auxiliary small parameter ε > 0. Define two different sets of moments MA, M ′

A for
A = {i1 < i2 < · · · < im} ⊂ {1, . . . , n} through

(20) MA = E

[
m∏

k=1

ξik

]
, M ′

A = E

[
m∏

k=1

(rik + ε · ξik )

] ∏
1≤k<l≤m

(
1 + ε2 · aik,il

)
.

Then the corresponding cumulants Cn, C′
n given by (19) are related through

C′
n = εn · Cn + εn+1 · P(ε, ri, aij , ξi) or

Cn = ε−n · C′
n − ε · P(ε, ri, aij , ξi),

(21)

where the remainder P is a polynomial in ε, ri , aij , 1 ≤ i, j ≤ n and joint moments
of ξi of the total order up to n.
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REMARK 2.11. If aij depend only on the second index, ai,j = ãj , then M ′
A

can be rewritten as

(22) M ′
A = E

(
m∏

k=1

[
(rik + ε · ξik )

(
1 + ε2 · ãik

)k−1])
.

This is the form which appears in our proof of Theorem 2.4.

PROOF OF THEOREM 2.10. Let us expand M ′
A into a large sum, opening the

parentheses, substitute into C′
n and collect the terms. Each term is a product of

(usual) moments MB , numbers rik and aik,il , and powers of ε. We plug in the
expansions into the definition of C′

n and further expand and collect the same terms
as much as possible.

Let us introduce a combinatorial encoding for each term of the resulting sum.
We start with n vertices, representing the indices {1,2, . . . , n}. We proceed by
drawing edges between some of the vertices: an edge joining i with j represents
the factor ε2 ·ai,j , i < j . Some of the vertices will be linked into (disjoint) clusters:
a cluster with vertices i1, . . . , im represents the factor εm

E[∏m
k=1 ξik ]. Any vertex

t that does not belong to any cluster produces the factor rt . We call the result-
ing combinatorial structure a clustered graph and identify it with the expression
obtained by multiplying the factors corresponding to its edges and clusters.

Claim. For each clustered graph with nonzero contribution to C′
n, one of the

following holds:

1. Either there are no clusters and the remaining graph is connected,
or
2. Each vertex is connected (by a path consisting of edges) to a vertex belong-

ing to a cluster (in other words, each edge-connected component intersects with a
cluster).

Putting it otherwise, the claim says that if we fix a clustered graph for which
neither of the conditions holds, then the sum of the terms in C′

n corresponding to
this graph vanishes. Before proving the claim note that it implies the statement of
the theorem. Indeed, if there are no clusters, then we must have at least n−1 edges,
which produces the factor ε2(n−1) = O(εn+1). Otherwise, each vertex in a cluster
produces a factor of ε, and all vertices outside the clusters produce at least εm+1,
where m ≥ 1 is their number. Altogether we again get O(εn+1). We conclude that
the only structures that have the power of ε smaller than εn+1 are those with no
edges at all and with all vertices belonging to some clusters. This gives εn prefactor
and these terms precisely combine into the conventional cumulant Cn.

We now prove the claim. Fix a clustered graph G for which neither of the
properties hold. Then this graph has an edge-connected component A which does
not intersect with clusters and A 	= {1, . . . , n}. Take a set partition s0 of the set
{1, . . . , n} \ A. Note that each set partition s in (19) for which the graph G arises
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in the decomposition (when MA are replaced by M ′
A), is necessarily obtained by

taking such s0 and then either adding A to one of the sets, or by putting A as a new
set of the partition. Each choice leads to one appearance of G. Let us sum over all
these choices. For that, suppose that s0 has r parts. When we add A to one of the
sets of s0, then the resulting partition has r parts and, therefore, the corresponding
coefficient in (19) is (−1)r+1(r − 1)!. On the other hand, if A creates a new set,
then the coefficient becomes (−1)r+2r!. Since there are precisely r sets to which
A can be added and r · (−1)r+1(r − 1)! + (−1)r+2r! = 0, we see that the total
contribution of G in (19) (with M ′

A instead of MA) vanishes. �

2.6. Proof of LLN and CLT.

PROOF OF THEOREM 2.1. In Section 2.3, we have shown that E(O(Lx,Ly))

converges to the expression given by (6). The covariance computation of Sec-
tion 2.4 implies that limL→∞E(O(Lx,Ly)−E(O(Lx,Ly)))2 = 0 and, therefore,
O(Lx,Ly) converges in probability to the deterministic limit given by (6). Since
1
L
H(Lx,Ly) is obtained from O(Lx,Ly) by applying a strictly monotone uni-

formly Lipschitz map (cf. (10)), we deduce the convergence for 1
L
H(Lx,Ly) as

well. �

PROOF OF THEOREM 2.4. In Section 2.4, we obtained the formulas for the
asymptotic covariance of L1/2O(Lxk,Ly) which matches (11), (12). It remains to
prove the asymptotic Gaussianity, for which we are going to show that the joint
cumulants of L1/2O(Lxk,Ly) of orders higher than 2 vanish as L → ∞.

Fix n > 3 and take n-tuple x1 ≤ x2 ≤ · · · ≤ xn. We aim to prove that the nth joint
cumulant of {O(Lxk,Ly)}nk=1, which we denote Cn, decays faster than L−n/2 as
L → ∞.

For a set A = {i1 < i2 < · · · < im} ⊂ {1,2, . . . , n}, let M ′
A = Em(i1, i2, . . . , im),

as given by (14). As in Section 2.5, we denote through C′
n the corresponding joint

“cumulant.” Contour integral expressions of Theorem 2.6 combined with [13],
Lemma 4.2, (with γ = 1) yields that C′

n = o(L−n/2) as L → ∞.
Note that a priori C′

n is different from the conventional cumulant Cn. However,
we can relate them using Theorem 2.10. For that, we write

O(Lx,Ly) =O∞(x, y) + L−1/2
O(x, y),

where O∞(x, y) = EO(Lx,Ly) and 
O(x, y) is the fluctuation, for which we
know (from the covariance computation of Section 2.4) that it is tight as L → ∞.

Then we transform Em(Lx1, . . . ,Lxm) as

E

m∏
k=1

qLy−Lxk+1 − α−1q2k−2 − qk−1O(Lxk,Ly)

1 + α−1qk−1

(23)

= E

m∏
k=1

qLy−Lxk+1 − α−1q2(k−1) − qk−1O∞(xk, y) − qk−1L−1/2
O(x, y)

(1 + α−1)(1 + α−1

1+α−1 (qk−1 − 1))
.
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Let us examine the kth factor of (23). The numerator splits into four terms, each of
them has the form appearing in Theorem 2.10. We need to deal with the denomi-
nator. For that, we choose an integer M > n/2 and expand

1

(1 + α−1)(1 + α−1

1+α−1 (qk−1 − 1))

= 1

1 + α−1

[
1 − α−1

1 + α−1

(
qk−1 − 1

)

+
(

α−1

1 + α−1

(
qk−1 − 1

))2
+ · · ·

+
(

α−1

1 + α−1

(
qk−1 − 1

))M

+ o
(
(q − 1)M

)]
.

Note that we can ignore o((q−1)M), as this term has smaller order than the desired
cumulants. In the rest, we expand each (qk−1 − 1)b into b + 1 terms using the
binomial theorem. Altogether we get 1 + 2 + · · · + (M + 1) = (M + 1)(M + 2)/2
terms.

We plug the resulting sum into the kth factor of (23) and get a sum of 2(M +
1)(M + 2) terms. Each term has a form

r · [(
1 + (q − 1)

)u]k−1 or L−1/2ξ
[(

1 + (q − 1)
)u]k−1

,

where u is a positive integer, r is a deterministic number, ξ is a random vari-
able. We arrive at an expression of the form of the definition of M ′

A in (20); see
Remark 2.11. The conclusion is that (23) turns into a sum of finitely many expres-
sions, each of which has the form of M ′

A (for various choices of parameters) in
Theorem 2.10.

At this point, we would like to apply Theorem 2.10 with ε = L−1/2. Note that
the “cumulants” C′

n in this theorem are multilinear over the choices of ri and ξi .
In other words, if we fix 1 ≤ t ≤ n, set rt = rt [1] + rt [2], ξt = ξt [1] + ξt [2] and
denote the resulting cumulants through C′

n[1], C′
n[2], then C′

n = C′
n[1] + C′

n[2].
Thus, after we expand the kth factor in (23) into 2(M + 1)(M + 2) terms for each
k = 1, . . . ,m and further plug the expansions into “cumulant” C ′

n, then using the
multilinearity we get a sum of n · 2(M + 1)(M + 2) “cumulants.” For each of
those, we apply Theorem 2.10 to reduce them to the conventional cumulants. At
this point, most of the terms vanish, as they involve the conventional cumulant of
a constant (in fact, zero) random variable. In order L−n/2, the only remaining term
is L−n/2 times the conventional cumulant of 
O(x1, y), . . . ,
O(xn, y). Since
by [13], Lemma 4.2, the entire sum, C′

n, is o(L−n/2), we conclude that the latter
cumulant, Cn, is o(Ln/2). �
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2.7. q → 0 limit. Here we prove Proposition 2.3. Although an extension of
this computation to the case of general α is possible, we do not address it here.

At α = 0, we take the statement of Theorem 2.1 and absorb 1 as the residue at
0 of the contour integral, getting the formula

(24) qh(x,y) = 1

2π i

∮
exp

(
ln(q)

(
−x

sz

1 + sz
+ y

z

1 + z

))
dz

z
,

with integration contour enclosing 0 and −1, but not −s−1. At this point, we re-
strict ourselves to the case

(25) s≤ x

y
≤ s−1.

The q → 0 limit means that ln(q) is a large parameter. We study the asymptotics
of (24) through the steepest descent method. We thus need to find critical points of
the argument of the exponent, that is, to solve

(26) 0 = ∂

∂z

(
−x

sz

1 + sz
+ y

z

1 + z

)
= − sx

(1 + sz)2 + y

(1 + z)2 .

The solutions zc are given by

(27)
1 + szc

1 + zc

= ±
√
sx

y
, zc =

1 − (±
√

sx
y

)

±
√

sx
y

− s
, 1 + szc = s−1 − 1

s−1 − (±
√

y
sx

)
.

We need the solution with

∂2

∂z2

(
−x

sz

1 + sz
+ y

z

1 + z

)
< 0,

as we want the steepest descent contour to be orthogonal to the real axis (note that
our large parameter ln(q) is negative). That is, we need

2
s2x

(1 + sz)3 − 2
y

(1 + z)3 < 0,

which is true if

(28)

⎧⎪⎨
⎪⎩

(
1 + sz

1 + z

)3
>

s2x

y
,

1 + sz > 0,

or

⎧⎪⎨
⎪⎩

(
1 + sz

1 + z

)3
<

s2x

y
,

1 + sz < 0.

Note that due to (25) and (27), 1 + szc > 0 for both solutions Therefore, the so-
lution with −

√
sx
y

does not satisfy (28), while the second one does. We conclude

that the correct solution has +
√

sx
y

in (27), that is,

zc =
1 −

√
sx
y√

sx
y

− s
.
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Using (25), we see that zc > 0 and, therefore, we can deform the contour in (24)
to run through the critical point. The usual critical point approximation arguments
show that the integral then behaves as

(29) qh(x,y) ∼ exp
(

ln(q)

(
−x

szc

1 + szc

+ y
zc

1 + zc

))
1

zc

· 1

2π i

∫ i∞
−i∞

exp
(
κcu

2)
du,

where κc is half of the second derivative at the critical point—the integral is eval-
uated to

√
2π/κc. Therefore,

(30) lim
q→0

h(x, y) = −x
szc

1 + szc

+ y
zc

1 + zc

= (
√
sx − √

y)2

1 − s
,

which is precisely (8). By combinatorics of the model, h(x, y) = 0 for x/y =
s−1 implies that also h(x, y) = 0 for all x/y > s−1, as there are no paths to the
right from the line x/y = s−1. Similarly, h(x, y) = y − x for x/y = s implies that
h(x, y) = y − x for x/y < s, as there is maximal possible number of paths to the
left from the line x/y = s. In the formula (6), this can be also seen: the integral
will now be dominated not by the neighborhood of the critical point, but by the
residue at 0 or ∞, which appears when we deform the contour to reach the critical
point.

3. Four-point relation. All our results for more general (than domain wall)
boundary conditions are based on the following statement.

THEOREM 3.1. Consider the stochastic six-vertex model in the quadrant with
arbitrary (possibly, even random) boundary conditions. For each x, y ≥ 0, we have
an identity

qH(x+1,y+1) − b · qH(x,y+1) − bq · qH(x+1,y) + (b + bq − 1) · qH(x,y)

(31)
= ξ(x + 1, y + 1),

where the conditional expectation and variance for ξ are

E
[
ξ(x + 1, y + 1) | H(u, v), u ≤ x or v ≤ y

] = 0,(32)

E
[
ξ2(x + 1, y + 1) | H(u, v), u ≤ x or v ≤ y

]
= (

qb(1 − b) + b(1 − qb)
)

x
y + b(1 − qb)(1 − q)qH(x,y)
x(33)

− b(1 − b)(1 − q)qH(x,y)
y,

with


x = qH(x+1,y) − qH(x,y), 
y = qH(x,y+1) − qH(x,y).

REMARK 3.2. The relation (32) implies that ξ(x, y) are uncorrelated, that is,
Eξ(x, y)ξ(x′, y′) = 0 for any (x, y) 	= (x′, y′).
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PROOF OF THEOREM 3.1. Let us denote H(x,y) through h. We fix the types
of vertices at positions (x, y), (x + 1, y), (x, y + 1) and sample the vertex at
(x + 1, y + 1) according to the probabilities of Figure 3. There are four cases
to consider.

1. If no paths enter into the vertex (x + 1, y + 1) from below or from the left,
then the type of the vertex is I and H(x+1, y) = H(x, y+1) = H(x+1, y+1) =
h, 
x = 
y = 0. In particular, ξ(x + 1, y + 1) = 0 and, therefore, its conditional
expectation and variance vanish, which agrees with (32), (33).

2. If two paths enter into the vertex (x+1, y+1) (one from below and one from
the left), then the type of the vertex is II, and H(x + 1, y) = h − 1, H(x, y + 1) =
h + 1, H(x + 1, y + 1) = h, 
x = qh(q−1 − 1), 
y = qh(q − 1). This implies
ξ(x +1, y +1) = qh(1−bq −bq ·q−1 − (1−b−bq)) = 0. Again, the conditional
expectation and variance vanish matching (32), (33).

3. If the path enters into the vertex (x +1, y +1) from below, but no path enters
from the left, then we choose between the vertex types IV and VI with probabilities
bq and 1 − bq , respectively. In both cases, H(x + 1, y) = h − 1, H(x, y + 1) = h,

x = qh(q−1 − 1), 
y = 0. In the first case of type IV , H(x + 1, y + 1) = h − 1
and

ξ(x + 1, y + 1) = qh(
q−1 − b − bq · q−1 + (b + bq − 1)

) = qh(
q−1 − b

)
(1 − q).

In the second case of type VI, H(x + 1, y + 1) = h and

ξ(x + 1, y + 1) = qh(
1 − b − bq · q−1 + (b + bq − 1)

) = qhb(q − 1).

The conditional expectation of ξ(x + 1, y + 1) becomes

bq · qh(
q−1 − b

)
(1 − q) + (1 − bq) · qhb(q − 1) = 0.

The conditional variance is

bq · (
qh(

q−1 − b
)
(1 − q)

)2 + (1 − bq)
(
qhb(q − 1)

)2

= b(1 − bq)(1 − q)
(
q−1 − 1

)
q2h,

which matches (33).
4. If the path enters into the vertex (x+1, y+1) from the left, but no path enters

from below, then we choose between the vertex types III and V with probabilities
b and 1 − b, respectively. In both cases, H(x + 1, y) = h, H(x, y + 1) = h + 1,

x = 0, 
y = qh(q − 1). In the first case of type III, H(x + 1, y + 1) = h+ 1 and

ξ(x + 1, y + 1) = qh(
q − b · q − bq + (b + bq − 1)

) = qh(1 − b)(q − 1).

In the second case of type V , H(x + 1, y + 1) = h and

ξ(x + 1, y + 1) = qh(
1 − b · q − bq + (b + bq − 1)

) = qhb(1 − q).

The conditional expectation of ξ(x + 1, y + 1) becomes

b · qh(1 − b)(q − 1) + (1 − b) · qhb(1 − q) = 0.
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The conditional variance of ξ(x + 1, y + 1) is

b · (
qh(1 − b)(q − 1)

)2 + (1 − b) · (
qhb(1 − q)

)2 = b(1 − b)(1 − q)2q2h,

which matches (33). �

At times, it will be convenient to use the integrated form of (31).

COROLLARY 3.3. In the notation of Theorem 3.1, for each X,Y ≥ 1, we have

−(1 − b)

X−1∑
x=1

qH(x,0) − (1 − bq)

Y−1∑
y=1

qH(0,y) + (1 − b)

X−1∑
x=1

qH(x,Y )

+ (1 − bq)

Y−1∑
y=1

qH(X,y) + (b + bq − 1)qH(0,0) − bq · qH(X,0)

(34)
− b · qH(0,Y ) + qH(X,Y )

=
X∑

x=1

Y∑
y=1

ξ(x, y).

PROOF. We sum (31) over x = 0, . . . ,X − 1, y = 0, . . . , Y − 1. �

4. The telegraph partial differential equation. We saw in Theorem 2.1 and
equation (9) that the limit shape (after a nonlinear transformation) solves the tele-
graph equation. In order to move forward, we need to collect the facts about this
equation and its solutions. Some parts of this section are based on [28], Chapter V.

4.1. Existence and uniqueness of solutions. Take three arbitrary real param-
eters λ, μ, ν and a continuous function g(x, y) : R≥0 × R≥0 → R. Consider the
following integral equation for an unknown continuous function φ(x, y), x ≥ 0,
y ≥ 0:

φ(X,Y ) + λ

∫ X

0
φ(x,Y ) dx + μ

∫ Y

0
φ(X,y) dy

+ ν

∫ X

0

∫ Y

0
φ(x, y) dx dy = g(X,Y ).

(35)

PROPOSITION 4.1. For each a, b > 0, the equation (35) has a continuous
solution φ(x, y) in [0, a] × [0, b]. The solution is unique.

PROOF. Because of the invariance of the form of the equation with respect to
translations, it suffices to prove the claim for small a and b; we will require that(|λ| + |μ| + |ν|)(a + b + ab) < 1.
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Let Ca,b denote the Banach space of continuous functions on [0, a] × [0, b]
equipped with the supremum norm. Let � : Ca,b → Ca,b be defined through

[�f ](X,Y )

= g(X,Y ) − λ

∫ X

0
f (x,Y ) dx − μ

∫ Y

0
f (X,y) dy − ν

∫ X

0

∫ Y

0
f (x, y) dx dy.

We claim that for sufficiently small a, b the map � is a contraction. Indeed,

‖�f1 − �f2‖

= sup
0≤X≤a,0≤Y≤b

∣∣∣∣λ
∫ X

0

(
f1(x,Y ) − f2(x,Y )

)
dx

+ μ

∫ Y

0

(
f1(X,y) − f2(X,y)

)
dy + ν

∫ X

0

∫ Y

0

(
f1(x, y) − f2(x, y)

)
dx dy

∣∣∣∣
≤ (|λ| + |μ| + |ν|)(a + b + ab)‖f1 − f2‖.

By the contraction mapping principle (Banach fixed-point theorem), there exists a
unique φ such that �φ = φ, which gives the unique solution to (35). �

Differentiating (35), we rewrite it as a partial differential equation (with g̃ =
gxy)

(36) φxy(x, y) + λφy(x, y) + μφx(x, y) + νφ(x, y) = g̃(x, y), x, y > 0.

For various choices of λ, μ, ν and g̃ this equation has various names, for example,
the telegraph equation or Klein–Gordon equation.

The solutions to (36) with different λ, μ, ν are readily related to each other by
an observation that if φ solves (36), then ψ(x, y) = ewx+vyφ(x, y) solves

ψxy + (λ − w)ψy + (μ − v)ψx + (ν − wμ − vλ + wv)ψ

= g̃(x, y) exp(wx + vy).
(37)

PROPOSITION 4.2. Take a, b > 0 and consider the equation (36) on an un-
known continuous function φ : [0, a] × [0, b] → R with continuous mixed deriva-
tive φxy in the interior of the rectangle. If g̃(x, y) is continuous, and (36) is sup-
plemented with boundary condition

φ(x,0) = χ(x), φ(0, y) = ψ(y),

with given continuously differentiable χ and ψ that have the same value at the
origin, then (36) has a unique solution.

REMARK 4.3. When the boundary data or g̃(x, y) are less regular, then one
need to understand the solution φ in a generalized sense through (35), (38). In the
next section, we provide an explicit formula (42) for the solution, which can be
also used for extending to more general initial data; see Remark 4.5 below.
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PROOF OF PROPOSITION 4.2. Using transformation (37) if necessary, we may
and will consider only the case λ = μ = 0. We integrate the equation to get

φ(X,Y ) − φ(X,0) − φ(0, Y ) + φ(0,0) + ν

∫ X

0

∫ Y

0
φ(x, y) dx dy

=
∫ X

0

∫ Y

0
g̃(x, y) dx dy,

(38)

which is (35) with

g(X,Y ) =
∫ X

0

∫ Y

0
g̃(x, y) dx dy + χ(X) + ψ(Y ) − χ(0).

By Proposition 4.1, there is a unique continuous solution. Since φ(X,Y ) in (38) is
given by the sum of double integrals of continuous functions and two other con-
tinuously differentiable functions, its mixed partial derivative exists and is contin-
uous. Thus, we can differentiate (38) returning to (36). �

4.2. Solutions as contour integral. Define the Riemann function (for the equa-
tion (40) below) through

R(X,Y ;x, y)

= 1

2π i

∮
−β1

(β2 − β1) dz

(z + β1)(z + β2)

× exp
[
(β1 − β2)

(
−(X − x)

z

z + β2
+ (Y − y)

z

z + β1

)]
,

(39)

where the integration goes in positive direction and encircles −β1, but not −β2.
Note that we can also integrate in the negative direction around −β2 for the same
result, because the residue of the integrand at infinity vanishes.

THEOREM 4.4. Consider the equation

(40) φXY (X,Y ) + β1φY (X,Y ) + β2φX(X,Y ) = u(X,Y ), X,Y > 0,

with boundary conditions

(41) φ(x,0) = χ(x), φ(0, y) = ψ(y),

where χ and ψ are continuously differentiable with ψ(0) = χ(0). The solution
(afforded by Proposition 4.2) has the form

φ(X,Y ) = ψ(0)R(X,Y ;0,0)

+
∫ Y

0
R(X,Y ;0, y)

(
ψ ′(y) + β2ψ(y)

)
dy

(42)

+
∫ X

0
R(X,Y ;x,0)

(
χ ′(x) + β1χ(x)

)
dx

+
∫ X

0

∫ Y

0
R(X,Y ;x, y)u(x, y) dx dy.
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REMARK 4.5. If we integrate by parts the terms involving ψ ′(y) and χ ′(x) in
(42), then using the smoothness R(X,Y ;x, y) we get an expression which contin-
uously depends on the boundary data ψ(y), χ(x) (in the supremum norm). This
can be used to define the solution to (40) for nondifferentiable χ(x), ψ(y).

PROOF OF THEOREM 4.4. The function R(X,Y ;x, y) satisfies the following
properties, which are checked by direct differentiation under the integral sign:

1. RXY + β1RY + β2RX = 0,
2. [RX + β1R]Y=y = 0 = [Rx − β1R]Y=y ,
3. [RY + β2R]X=x = 0 = [Ry − β2R]X=x ,
4. [R]X=x,Y=y = 1.

Using these properties, we apply the differential operator F �→ FXY + β1FY +
β2FX to each term in (42). The first term gives 0 by the first property. The second
term gives (using the first two properties)∫ Y

0

(
RXY (X,Y ;0, y) + β1RY (X,Y ;0, y) + β2RX(X,Y ;0, y)

)
× (

ψ ′(y) + β2ψ(y)
)
dy

+ [(
RX(X,Y ;0, y) + β1R(X,Y,0, y)

)(
ψ ′(y) + β2ψ(y)

)]
y=Y

= 0.

The third term also vanishes by similar reasoning with the first and third properties.
The fourth term gives (using all four properties)∫ X

0

∫ Y

0

(
RXY (X,Y ;x, y) + β1RY (X,Y ;x, y)

+ β2RX(X,Y ;x, y)
)
u(x, y) dx dy

+
∫ X

0

[
RX(X,Y ;x, y) + β1R(X,Y ;x, y)

]
y=Y dx

+
∫ Y

0

[
RY (X,Y ;x, y) + β2R(X,Y ;x, y)

]
x=X dy

+ [
R(X,Y ;x, y)u(x, y)

]
x=X,y=Y

= u(X,Y ).

We conclude that (42) satisfies (40). It remains to check the boundary conditions.
At X = 0, the third and fourth terms in (42) vanish. Integrating by parts and using
the third and fourth properties, we obtain

ψ(0) ·R(0, Y ;0,0) +
∫ Y

0
R(0, Y ;0, y)

(
ψ ′(y) + β2ψ(y)

)
dy
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=R(0, Y ;0, Y )ψ(Y ) −
∫ Y

0

(
Ry(0, Y ;0, y) − β2R(0, Y ;0, y)

)
ψ(y)dy

= ψ(Y ).

At Y = 0, the second and fourth terms in (42) vanish. Integrating by parts and
using the second and fourth properties, we then get

χ(0)R(X,0;0,0) +
∫ X

0
R(X,0;x,0)

(
χ ′(x) + β1χ(x)

)
dx

= χ(X)R(X,0;X,0)

+
∫ X

0

(
Rx(X,0;x,0) − β1R(X,0, x,0)

)
χ(x)dx = χ(X). �

4.3. Discretization. The telegraph equation has a natural discretization, which
we present here. (We have not seen it in the literature before.)

Consider the following equation for an unknown function �(x,y), x, y =
0,1,2, . . . :

�(x + 1, y + 1) − b1�(x,y + 1) − b2�(x + 1, y)

+ (b1 + b2 − 1)�(x, y)

= u(x + 1, y + 1)

(43)

with a given right-hand side u and subject to boundary conditions

(44) �(x,0) = χ(x), �(0, y) = ψ(Y ), X,Y = 0,1,2, . . . , χ(0) = ψ(0).

We take b1 and b2 to be arbitrary distinct real numbers satisfying 0 < b1, b2 < 1.
Although, these restrictions can be easily removed if needed (this mould lead to
natural modifications of the formulas below).

PROPOSITION 4.6. The equations (43), (44) have a unique solution.

PROOF. Using (43) and starting from (44), we recursively define the values
of �(x,y) first for the point (1,1), then for the points (1,2), (2,1), then for the
points (1,3), (2,2), (3,1), etc. �

Define the discrete Riemann function through

Rd(X,Y ;x, y)

= 1

2π i

∮
− 1

b2(1−b1)

(b2 − b1) dz

(1 + b2(1 − b1)z)(1 + b1(1 − b2)z)

×
(

1 + b1(1 − b1)z

1 + b2(1 − b1)z

)X−x(
1 + b2(1 − b2)z

1 + b1(1 − b2)z

)Y−y

,

(45)
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where the integration goes in positive direction and encircles − 1
b2(1−b1)

, but

not − 1
b1(1−b2)

. Note that we can also integrate in the negative direction around

− 1
b1(1−b2)

for the same result.

THEOREM 4.7. The solution to (43), (44) has the form

�(X,Y ) = χ(0)Rd(X,Y ;0,0)

+
Y∑

y=1

Rd(X,Y ;0, y)
(
ψ(y) − b2ψ(y − 1)

)

+
X∑

x=1

Rd(X,Y ;x,0)
(
χ(x) − b1χ(x − 1)

)

+
X∑

x=1

Y∑
y=1

Rd(X,Y ;x, y)u(x, y).

(46)

PROOF. Directly from the definition, we see that the function Rd satisfies:

1. Rd(X + 1, Y + 1) − b1Rd(X,Y + 1) − b2Rd(X + 1, Y ) + (b1 + b2 −
1)Rd(X,Y ) = 0,

2. [Rd(X + 1) − b1Rd(X)]y=Y = 0 = [Rd(x − 1) − b1Rd(x)]y=Y ,
3. [Rd(Y + 1) − b2Rd(Y )]x=X = 0 = [Rd(y − 1) − b2Rd(y)]x=X ,
4. [Rd(X,Y ;x, y)]x=X,y=Y = 1.

We apply the difference operator F �→ F(X + 1, Y + 1) − b1F(X,Y + 1) −
b2F(X + 1, Y ) + (b1 + b2 − 1)F (X,Y ) to each of the four terms of (46) using the
properties of Rd . The first term gives zero by the first property. The second term
gives (using the first and second properties)

Y∑
y=1

(
Rd(X + 1, Y + 1;0, y) − b1Rd(X,Y + 1;0, y)

− b2Rd(X + 1, Y ;0, y)

+ (b1 + b2 − 1)Rd(X,Y ;0, y)
)(

ψ(y) − b2ψ(y − 1)
)

+ (
Rd(X + 1, Y + 1;0, Y + 1) − b1Rd(X,Y + 1;0, Y + 1)

)
× (

ψ(Y + 1) − b2ψ(Y )
) = 0.

(47)

The third term gives zero for similar reasons via the first and third properties. The
fourth term gives (using all four properties)

X∑
x=1

Y∑
y=1

(
Rd(X + 1, Y + 1;x, y) − b1Rd(X,Y + 1;x, y)
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− b2Rd(X + 1, Y ;x, y)

+ (b1 + b2 − 1)Rd(X,Y ;x, y)
)
u(x, y)

+
X∑

x=1

(
Rd(X + 1, Y + 1;x,Y + 1)

− b1Rd(X,Y + 1;x,Y + 1)
)
u(x,Y + 1)(48)

+
Y∑

y=1

(
Rd(X + 1, Y + 1;X + 1, y)

− b2Rd(X + 1, Y ;X + 1, y)
)
u(X + 1, y)

+Rd(X + 1, Y + 1;X + 1, Y + 1)u(X + 1, Y + 1)

= u(X + 1, Y + 1).

We conclude that (46) satisfies (43), and it remains to check the boundary condi-
tions.

At X = 0, note that by the third property of Rd , Rd(0, Y ;0, y) = b
−y
2 Rd(0, Y ;

0,0). Therefore, we have (using the fourth property as well)

�(0, Y ) =Rd(0, Y ;0,0)

(
ψ(0) +

Y∑
y=1

b
−y
2

(
ψ(y) − b2ψ(y − 1)

))

=Rd(0, Y ;0,0)ψ(Y )b−Y
2 = Rd(0, Y ;0, Y )ψ(Y ) = ψ(Y ).

(49)

At Y = 0, by the second property, Rd(X,0;x,0) = b−x
1 Rd(X,0;0,0), and thus,

�(X,0) = Rd(X,0;0,0)

(
χ(0) +

X∑
x=1

b−x
1

(
χ(x) − b1χ(x − 1)

))

=Rd(X,0;0,0)χ(X)b−X
1 =Rd(X,0;X,0)χ(X) = χ(X).

(50)

�

4.4. Solutions as path integrals: Discrete case. In this section, we interpret the
formula of Theorem 4.7 as an expectation of a certain path integral. Essentially,
this is a development of a version of the Feynman–Kac formula for the difference
equation (43).

Consider a random path that starts at a point (X,Y ) in the positive quadrant and
moves in the direction of decreasing x and y. At each step, the path moves by one
to the left, or down, or makes a turn. The choices are made according to proba-
bilities of Figure 4. These weights are obtained from the weights of Figure 3 by
central symmetry (x, y) �→ (−x,−y). In other words, the weights of the straight
segments remained the same, while the weights of corners were swapped in order
to preserve stochasticity.
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FIG. 5. Two paths T−, T| and the function Ibetween(x, y): values +1 and −1 are shown by +© and
-©, respectively.

THEOREM 4.8. Consider the equation (43), (44) with u(X,Y ) = 0, X,Y ≥ 0,
and χ(0) = ψ(0) = 0. For convenience, extend χ(−a) = ψ(−a) = 0, a > 0. The
solution �(X,Y ) admits the following stochastic formula. Take a (reversed, with
probabilities of Figure 4) path leaving (X+1, Y ) to the left in horizontal direction,
and let y denote the ordinate of the first point when it reaches the line x = 0. Take
another path leaving (X,Y + 1) down in vertical direction, and let x denote the
abscissa of the first point when it reaches the line y = 0. Then

(51) �(X,Y ) = E
[
ψ(y)

] +E
[
χ(x)

]
.

We will give a proof a little later, and now we will see what happens when
u 	= 0.

Suppose that we are given a trajectory T of a path build out of the blocks of
Figure 4. For a point (x, y) ∈ Z× Z, we say that (x, y) is weakly below T , if any
of the points of the square (x − 1/2, x + 1/2) × (y − 1/2, y + 1/2) is below (i.e.,
has a smaller vertical coordinate and the same horizontal coordinate) than a point
of the path. Similarly, we say that (x, y) is weakly to the left from T , if any point
of (x − 1/2, x + 1/2) × (y − 1/2, y + 1/2) is to the left of a point of the path.

Now suppose that we are given two paths T− and T|. Define

Ibetween(x, y) = 1(x,y) is weakly below T−

+ 1(x,y) is weakly to the left from T| − 1.
(52)

In other words, Ibetween(x, y) is ±1 between the paths T−, T+ and vanishes oth-
erwise. The sign depends on which path is higher. An illustration of the values of
this function is shown in Figure 5.

THEOREM 4.9. Consider the equation (43), (44) with χ(x) = ψ(y) = 0,
x, y ≥ 0. The solution �(X,Y ) admits the following stochastic formula. Take a
(reversed, with probabilities of Figure 4) path T− leaving (X + 1, Y ) to the left
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in horizontal direction and another path T| leaving (X,Y + 1) down in vertical
direction. Then

(53) �(X,Y ) = E

[
X∑

x=1

Y∑
y=1

u(x, y)Ibetween(x, y)

]
,

where we use the definition (52). In words, �(X,Y ) is the expected signed sum of
all the inhomogeneities of (43) between the paths.

By linearity of the equation, the solution to (43) when both u and χ , ψ are
nonvanishing is the sum of the right-hand sides in (51), (53).

COROLLARY 4.10. In the notation of Theorem 4.8, 4.9 consider the case
when both u(x, y) and χ , ψ are nonvanishing. Then

(54) �(X,Y ) = E
[
ψ(y)

] +E
[
χ(x)

] +E

[
X∑

x=1

Y∑
y=1

u(x, y)Ibetween(x, y)

]
.

PROOF OF THEOREM 4.8. By linearity, it suffices to consider the case

(55) χ ≡ 0, ψ(y) =
{

1 y = y0,

0 otherwise.

In this case, the right-hand side of (51) becomes the probability of intersecting the
line x = 1/2 at point (1/2, y0). Let us compute this probability.

We start by considering a particular case of the stochastic six-vertex model (with
the weights of Figure 3 at α = 0) when we have only one path. In this case, the
expectation of the height function has a simple probabilistic meaning:

E

[
1 − qH(x+1,y)

1 − q

]

= Prob
(
the path passes to the right from (x + 1/2, y + 1/2)

)
= Prob

(
the path passes below (x + 1/2, y + 1/2)

)
.

(56)

In this formula, we think about the paths as having integer coordinates, and we
introduced shifts by 1/2 to avoid ambiguity for the case when the path passes
exactly through the point of interest.

Suppose that the path enters the positive quadrant through the point (1, y0) com-
ing from the left. Then by Theorem 3.1, (56) denoted as F−

y0
(X,Y ) (the superscript

− indicates that the path enters horizontally) solves

F−
y0

(X + 1, Y + 1) − b1F
−
y0

(X,Y + 1) − b2F
−
y0

(X + 1, Y )

+ (b1 + b2 − 1)F−
y0

(X,Y ) = 0,
(57)
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with

(58) F−
y0

(X,0) = 0, F−
y0

(0, Y ) =
{

0, Y < y0,

1, Y ≥ y0.

Theorem 4.7 gives a closed formula:

(59) F−
y0

(X,Y ) = Rd(X,Y ;0, y0) + (1 − b2)

Y∑
y=y0+1

Rd(X,Y ;0, y).

Consider the difference

P−,−(0, y0;X,Y ) := F−
y0

(X,Y ) − F−
y0

(X,Y − 1).

Relation (56) implies that it computes the probability that the path, which entered
the quadrant horizontally at (1, y0), ends horizontally at (X + 1/2, Y ) (i.e., the
path enters into (X + 1, Y ) from the left). Using (59), we get

P−,−(0, y0;X,Y ) = (1 − b2)

Y−1∑
y=y0+1

(
Rd(X,Y ;0, y)

−Rd(X,Y − 1;0, y)
)

+ (1 − b2)Rd(X,Y ;0, Y ) +Rd(X,Y ;0, y0)

−Rd(X,Y − 1;0, y0).

(60)

Since Rd(X,Y ;x, y) depends only on differences X − x, Y − y, the sum tele-
scopes and (60) simplifies to

(61) P−,−(0, y0;X,Y ) =Rd(X,Y ;0, y0) − b2Rd(X,Y ;0, y0 + 1).

By translation invariance, the same formula holds for the path which starts not
by entering from the left into (1, y0), but into an arbitrary point (x0 + 1, y0):

(62) P−,−(x0, y0;X,Y ) = Rd(X,Y ;x0, y0) − b2Rd(X,Y ;x0, y0 + 1).

Note that this holds for Y = y0 as well, if we agree that Rd(X,y0;x0, y0 + 1) = 0.
By symmetry, we can also obtain similar formulas for the case when the path

starts by entering from below into a point (x0, y0 + 1). The probability of this path
entering into (X,Y + 1) from below is

(63) P|,|(x0, y0;X,Y ) =Rd(X,Y ;x0, y0) − b1Rd(X,Y ;x0 + 1, y0).

Let us return to proving (51) in the particular case (55). We need to show that

(64) �(X,Y ) = P−,−(−X,−Y ;0,−y0).

Note that we changed the signs of the coordinates to reflect the fact that the walk
in the direction of growing (x, y) with weights of Figure 3 differs from the one
from Figure 4 that we need to use.
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The definition of P−,− readily implies that (64) satisfies the boundary condition
(44), (55). On the other hand, note that since Rd(X,Y ;x, y) depends only on
(X − x), (Y − y), the first property in the proof of Theorem 4.7 is equivalent to

Rd(X,Y ;x − 1, y − 1) − b1Rd(X,Y ;x, y − 1)

− b2Rd(X,Y ;x − 1, y)

+ (b1 + b2 − 1)Rd(X,Y ;x, y) = 0.

(65)

Combining (61) with (65), we conclude that (64) satisfies (43). �

PROOF OF THEOREM 4.9. By linearity, it suffices to prove (53) for the case
when u(x, y) is nonzero only at one point, where it equals 1. In this case, by
Theorem 4.7 the solution is

�(X,Y ) = 1X≥x01Y≥y0Rd(X,Y ;x0, y0).

When either X < x0 or Y < y0, matching with (53) is immediate, so we will
only consider the case X ≥ x0, Y ≥ y0. Then (53) suggests that we need to compute
the expectation of Ibetween(x0, y0).

Using the notation from the proof of Theorem 4.8 and (62), (63), we have

E
[
Ibetween(x0, y0) + 1

]

=
Y∑

y=y0

P−,−(−X,−Y ;−x,−y) +
X∑

x=x0

P|,|(−X,−Y ;−x,−y)

=
Y∑

y=y0

(
Rd(−x0,−y;−X,−Y) − b2Rd(−x0,−y;−X,−Y + 1)

)
(66)

+
X∑

x=x0

(
Rd(−x,−y0;−X,−Y) − b1Rd(−x,−y0;−X + 1,−Y)

)

=
Y∑

y=y0

(
Rd(X,Y ;x0, y) − b2Rd(X,Y ;x0, y + 1)

)

+
X∑

x=x0

(
Rd(X,Y ;x, y0) − b1Rd(X,Y ;x + 1, y0)

)
,

where we agree that Rd(X,Y ;X + 1, y0) = Rd(X,Y ;x0, Y + 1) = 0.
On the other hand, let us sum (65) over x = x0 + 1, . . . ,X + 1, y = y0 +

1, . . . , Y + 1 except for (x, y) = (X + 1, Y + 1). Note that the formula (45) for
Rd makes sense even when x > X and, moreover, it vanishes identically. This im-
plies that (65) still holds for such x (as its proof is just a computation showing
identical vanishing of the integrand). Similarly, we can deform the contour in (45),
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so that it encloses − 1
b1(1−b2)

instead of − 1
b2(1−b1)

. Then the result vanishes for
y > Y and, therefore, (65) holds again. Note, however, that we cannot take both
x > X and y > Y simultaneously, as then the argument no longer works.

We get

Rd(X,Y ;x0, y0) + (1 − b1)

X∑
x=x0+1

Rd(X,Y ;x, y0)

+ (1 − b2)

Y∑
y=y0+1

Rd(X,Y ;x0, y)

−Rd(X,Y ;X,Y ) = 0.

(67)

Recall that Rd(X,Y ;X,Y ) = 1. Thus, (66) turns into

E
[
Ibetween(x0, y0) + 1

] = 1 +Rd(X,Y ;x0, y0). �

4.5. Solutions as path integrals: Continuous case. In this section, we develop
a continuous analogue of Section 4.4 and present the Feynman–Kac formula for
the solution of the telegraph equation (40).

The basic stochastic object is the persistent Poisson random walk. It starts from
(X,Y ) ∈ R

2
>0 and moves toward the origin along vertical and horizontal directions.

Whenever it moves horizontally, it turns down with intensity β1 > 0. Whenever it
moves vertically, it turns to the left with intensity β2 > 0. This process is the limit
of the random walks of Section 4.4 with weights of Figure 4 in the limit regime (4).
There is one choice to be made—when the path leaves (X,Y ) it can start by going
horizontally or vertically. We denote the resulting (random) trajectories through
T− and T|, respectively.

THEOREM 4.11. Consider the telegraph equation (40), (41). Assume that
ψ(0) = χ(0) = 0 and extend these functions to negative arguments as identical
zeros. The solution φ(X,Y ) admits the following stochastic formula. Consider two
(independent) persistent Poisson paths T− and T|, leaving (X,Y ) horizontally and
vertically, respectively. Let y be the ordinate of the first intersection of T− with
the y-axis, and let x be the abscissa of the first intersection of T| with the x-axis.
Further, for any point (x, y) ∈ R

2
>0, define

Ibetween(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 (x, y) is between T− and T| with T− above,

−1 (x, y) is between T− and T| with T− below,

0 otherwise.

Then

(68) φ(X,Y ) = Eχ(x) +Eψ(y) +E

[∫ X

0

∫ Y

0
Ibetween(x, y)u(x, y) dx dy

]
.
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PROOF. Consider the limit transition (4) with simultaneous rescaling by L of
the coordinates x and y, boundary conditions χ , ψ , the right-hand side u(x, y), and
the solutions �(X,Y ). Then Corollary 4.10 and the straightforward limit relation

lim
L→∞Rd(LX,LY ;Lx,Ly) =R(X,Y ;x, y),

implies that the solution to the difference relation (43) turns into the solution to the
telegraph equation (40). Simultaneously, the same limit transition turns the random
walks of Section 4.4 into persistent Poisson random walks.

We conclude that (68) is the L → ∞ limit of (54). �

5. Law of large numbers through four-point relation. From now on, we
set α = 0 and study only the stochastic six-vertex model. Our aim is to extend
Theorem 2.1 to arbitrary boundary conditions. Our main technical tool is the four-
point relation of Section 3.

5.1. LLN for general boundary conditions.

THEOREM 5.1. Fix a, b > 0, take two 1-Lipschitz monotone functions χ :
[0, a] → R, ψ : [0, b] → R such that χ(0) = ψ(0). Suppose that the bound-
ary condition in the stochastic six-vertex model is chosen so that as L → ∞,
1
L
H(Lx,0) → χ(x) and 1

L
H(0,Ly) → ψ(y) uniformly on x ∈ [0, a], y ∈ [0, b].

Define the function qh : [0, a] × [0, b] → R as the solution to the PDE

∂2

∂x ∂y

(
qh(x,y)) + β2

∂

∂x

(
qh(x,y)) + β1

∂

∂y

(
qh(x,y)) = 0,

qh(x) = χ(x), qh(0,y) = ψ(y,0).

(69)

Then the height function of the stochastic six-vertex model (α = 0) satisfies the
law of large numbers in the limit regime (4):

(70) lim
L→∞ sup

(x,y)∈[0,a]×[0,b]

∣∣∣∣ 1

L
H(Lx,Ly) − h(x, y)

∣∣∣∣ = 0 in probability.

REMARK 5.2. Proposition 4.2 says that (69) has a unique solution in the quad-
rant x, y ≥ 0 for any continuously differentiable boundary data on the lines x = 0,
y = 0. When the boundary data are less regular, one has to consider the integrated
form (35) of the equation instead. Note that h(x,0) and h(0, y) must be 1-Lipschitz
by the definition of the height function.

REMARK 5.3. In terms of the partial derivatives of h(x, y) and q, s parame-
ters, the equation (69) turns into a nonlinear PDE

(71)
1

ln(q)
hxy + hxhy + 1

s− 1
hx + s

s− 1
hy = 0.
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In terms of ρ = hx it gives (writing (71) as an expression of hy through hx , hxy

and differentiating with respect to x)

1

ln(q)

(
ρxy + (1 − s)ρxρy

s+ (s− 1)ρ

)
+ ρx · s

s− 1
· 1

s+ (s− 1)ρ

+ ρy · 1

s− 1
· (
s+ (s− 1)ρ

)
.

(72)

As q → 0, (72) becomes the equation for the limit shape of the stochastic six-vertex
model discussed in [58], in agreement with Proposition 2.3 above.

Another limit is s → 1 with fixed q, which turns (71) into hx + hy = 0. The
limit shape h becomes constant along the lines x − y = const .

PROOF OF THEOREM 5.1. The function 1
L
H(Lx,Ly) is monotone and 1-

Lipschitz in each of its variables. Therefore, by the Arzela–Ascoli theorem, the
sequence of functions EqH(Lx,Ly) has subsequential limits (with respect to supre-
mum norm topology on continuous functions in [0, a] × [0, b]) which are also
Lipschitz. Let h̃(x, y) be one of such limits. Taking the expectation of (34), we
obtain

−(1 − b)

LX−1∑
x=1

EqH(x,0) − (1 − bq)

LY−1∑
y=1

EqH(0,y)

+ (1 − b)

LX−1∑
x=1

EqH(x,LY ) + (1 − bq)

LY−1∑
y=1

EqH(LX,y)

+ (b + bq − 1)EqH(0,0) − bq ·EqH(LX,0)

− b ·EqH(0,LY ) +EqH(LX,LY) = 0.

(73)

Sending L → ∞ in (73), we get for all 0 ≤ X ≤ a, 0 ≤ Y ≤ b,

−β

∫ X

0
qh̃(x,0) dx − (

β − ln(q)
) ∫ Y

0
qh̃(0,y) dy + β

∫ X

0
qh̃(x,Y ) dx

(74)

+ (
β − ln(q)

) ∫ Y

0
qh̃(X,y) dy − qh̃(0,0) − qh̃(X,0) − qh̃(0,Y ) + qh̃(X,Y ) = 0.

By Proposition 4.1, the integral equation (74) has a unique solution. Hence, all
limiting points h̃ coincide with a unique limit h, and qh solves (69).

So far we have shown that the expectation EqH converges to qh, and next we
show that the fluctuations decay to 0.
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Set U(x, y) = qH(Lx,Ly) −EqH(Lx,Ly). Subtracting (73) from (34), we obtain

U(X,Y ) + (1 − b)

LX−1∑
x=1

U(x/L,Y ) + (1 − bq)

LY−1∑
y=1

U(X,y/L)

=
LX∑
x=1

LY∑
y=1

ξ(x, y).

(75)

We claim that the maximum of right-hand side of (75) over (X,Y ) ∈ [0, a]× [0, b]
converges to 0 in probability as L → ∞. Indeed, consider the function

V (X,Y ) =
LX∑
x=1

LY∑
y=1

ξ(x, y).

Since U(X,Y ), (X,Y ) ∈ [0, a] × [0, b], is Lipschitz, (75) implies that so is
V (X,Y ). Thus, it suffices to show that for some fixed X and Y , V (X,Y ) → 0
in probability. Using (32) (see Remark 3.2), we get

(76) E
[
V (X,Y )

]2 =
LX∑
x=1

LY∑
y=1

E
[
ξ(x, y)

]2

We further use (33) to compute each term of the right-hand side. Note that |
x | <
C(1 − q), |
y | < C(1 − q) for a constant C > 0 which depends only on a, b. It
follows that as L → ∞, E[ξ(x, y)]2 ≤ const ·L−3 and (76) goes to 0 as const ·L−1.
Thus, V (X,Y ) converges to 0 in probability.

The uniformly bounded random functions U(X,Y ) are uniformly Lipschitz on
[0, a] × [0, b] as L → ∞. Therefore, their laws are tight (in Skorohod topology)
as L → ∞; see, for example, [38], Corollary 3.7.4. Any subsequential limit Ũ has
continuous trajectories and must solve the L = ∞ version of (75), which reads

Ũ (X,Y ) + β1

∫ X

0
Ũ (x,Y ) dx + β2

∫ Y

0
Ũ (X,y) dy = 0,

0 ≤ x, y ≤ M.

(77)

By Proposition 4.1, the only solution to (77) is Ũ ≡ 0. Thus, the law of U(X,Y ),
(X,Y ) ∈ [0, a] × [0, b], converges to the law of the zero function.

We have thus shown that sup(x,y)∈[0,a]×[0,b] |qH(Lx,Ly) −qh(x, y)| → 0 in prob-
ability as L → ∞, which implies (70). �

REMARK 5.4. An alternative way to prove Theorem 5.1 is to use Theorems
3.1 and 4.7 to represent qH through the Riemann function. The convergence of
the discrete Riemann function to its continuous counterpart of Theorem 4.4 would
then imply the description of the limiting profile through the telegraph equation.
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5.2. Consistency check. We would like to directly see that the result of Theo-
rem 5.1 complemented with formulas for the solution of Theorem 4.4 matches the
contour integral expression of Theorem 2.1 at α = 0.

Let us find formulas for the solution to (40) with specific boundary condi-
tion. We take u(X,Y ) = 0, φ(X,0) = q−p1X = exp(−(β1 − β2)p1X), φ(0, Y ) =
qp2Y = exp((β1 − β2)p2Y) for two constants p1,p2. Then the solution is

2π iφ(X,Y )

= 2π iR(X,Y ;0,0)
(78)

+ 2π i
∫ Y

0
R(X,Y ;0, y)

(
p2(β1 − β2) + β2

)
exp

(
(β1 − β2)p2y

)
dy

+ 2π i
∫ X

0
R(X,Y ;x,0)

(−p1(β1 − β2) + β1
)

exp
(−(β1 − β2)p1x

)
dx.

Plugging in the definition of R and integrating in x and y, this can be transformed
to (with the notation pi = ρi

1+ρi
, so that ρi = pi

1−pi
)

∮
−β1

exp
[
(β1 − β2)

(
−X

z

z + β2
+ Y

z

z + β1

)]
(β2ρ1 − β1ρ2) dz

(z − β1ρ2)(z − β2ρ1)

−
∮
−β1

ρ1β2 + β1

z − ρ1β2
exp

[
(β1 − β2)Y

z

z + β1

]

×
(

exp
[
− ρ1

1 + ρ1
(β1 − β2)X

])
dz

(z + β1)
.

(79)

Note that the residue at z = ρ1β2 for both terms in (79) coincides with

exp
[
(β1 − β2)

(
−X

ρ1

1 + ρ1
+ Y

ρ1β2

ρ1β2 + β1

)]
.

Thus, we can include ρ1β2 into the integration contours. After that, the second
integral vanishes, and we get the final expression

(80)
∮
−β1,ρ1β2

exp
[
(β1 − β2)

(
−X

z

z + β2
+ Y

z

z + β1

)]
(β2ρ1 − β1ρ2) dz

(z − β1ρ2)(z − β2ρ1)
.

In particular, when p1 = 0, p2 = 1 (i.e., ρ1 = 0, ρ2 = +∞), we return to the
domain wall boundary conditions, and the contour integral transforms into

(81)
∮
−β1,0

exp
[
(β1 − β2)

(
−X

z

z + β2
+ Y

z

z + β1

)]
dz

z
,

in agreement with Theorem 2.1 (cf. Remark 2.2). Note that 0 is included in the
contour, as here we deal with qh(x,y), while (7) corresponded to qh(x,y) − 1.
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6. CLT for general boundary conditions. We say that a function f :
[a, b] → R is piecewise C1-smooth, if it is continuous on the segment [a, b] and
there exists a finite partition a = x0 < x1 < · · · < xn = b such that f is continu-
ously differentiable on each open interval (xi−1, xi), 1 ≤ i ≤ n, and its derivative
has left and right limits at each point xi , 1 ≤ i ≤ n − 1.

The goal of this section is to prove the following statement.

THEOREM 6.1. In the setting of Theorem 5.1, assume additionally that the
boundary conditions χ(x), ψ(y) are piecewise C1-smooth.5 Then the fluctuation
field

√
L(qH(Lx,Ly) − EqH(Lx,Ly)) converges as L → ∞ (in the sense of con-

vergence of finite-dimensional distributions) to a random Gaussian field φ(x, y),
x, y ≥ 0, which solves

φxy + β1φy + β2φx

= η ·
√

(β1 + β2)qh
xq

h
y + (β2 − β1)β2q

hqh
x − (β2 − β1)β1q

hqh
y

(82)

with zero boundary conditions φ(x,0) = φ(0, y) = 0, where η is the two-
dimensional white noise, and qh is the limit shape afforded by Theorem 5.1.

REMARK 6.2. The first version of this text stated Theorem 6.1 as a conjecture;
we also provided two heuristic arguments for it. The conjecture was proved by
Shen and Tsai a few months later; see [61]. On the other hand, we later realized
that one of our heuristic arguments could be also turned into a complete proof
(different from the one in [61]); it is this proof that we include below. Our other
heuristic argument can be found in the Appendix.

REMARK 6.3. There are two ways to make sense of the solution to (82). One
can use the integrated form (35) to smooth out the white noise. Alternatively, one
can use the formula for the solution of Theorem 4.4.

REMARK 6.4. If we denote φ(x, y) = ψ(x, y)qh(x,y) ln(q), so that

ψ(x, y) = lim
L→∞

H(Lx,Ly) −EH(Lx,Ly)√
L

,

then (82) is rewritten as

ψxy + β1ψy + β2ψx + (β1 − β2)(ψyhx + ψxhy)

= η ·
√

(β1 + β2)hxhy − β2hx + β1hy.
(83)

5We believe that the statement is true for arbitrary monotone and 1-Lipschitz χ and ψ . However,
without the piecewise-smoothness condition the justification of convergence of the sum (96) to the
integral (97) needs additional technical efforts.
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REMARK 6.5. We checked on a computer the consistency between (82) and
Theorem 2.4. Namely, using Theorem 4.4, the solution to (40) has the covariance

Cov
(
φ(X1, Y1), φ(X2, Y2)

)
(84)

=
∫ X1∧X2

0

∫ Y1∧Y2

0
R(X1, Y1;x, y)R(X2, Y2;x, y)V ∞(x, y) dx dy,

with V ∞ as in the second line of (97) below. Plugging into (84), the contour inte-
gral expressions for R and the expressions for qh of Theorem 2.1 for the domain
wall boundary conditions we arrive at a 6-fold integral expression. On the other
hand, it has to be equal to the double contour integral of Theorem 2.4 (for points
on the same horizontal line, as in that theorem). We actually do not know how
to verify it rigorously without using Theorem 6.1, but evaluation of both expres-
sions using Maple software (using symbolic computations of terms for converging
series) shows that they are indeed equal.

In the rest of this section, we prove Theorem 6.1. The idea is to combine The-
orems 3.1 and 4.7 with martingale central limit theorem to reach the result. We
detail only one-point convergence, as convergence of finite-dimensional distribu-
tions is proven in the same way by invoking multi-dimensional CLT instead of its
one-dimensional counterpart.

We combine Theorem 3.1 with Theorem 4.7 to get

qH(X,Y ) = qH(0,0)Rd(X,Y ;0,0)

+
Y∑

y=1

Rd(X,Y ;0, y)
(
qH(0,y) − b2q

H(0,y−1))

+
X∑

x=1

Rd(X,Y ;x,0)
(
qH(x,0) − b1q

H(x−1,0))

+
X∑

x=1

Y∑
y=1

Rd(X,Y ;x, y)ξ(x, y).

(85)

The first three terms in (85) are deterministic, while the expectation of ξ(x, y)

vanishes. Therefore, rescaling (X,Y ) �→ (LX,LY), we get

(86) qH(LX,LY) −EqH(LX,LY) =
LX∑
x=1

LY∑
y=1

Rd(LX,LY ;x, y)ξ(x, y).

We now compute the L → ∞ limit of the variance of (86). Relation (32) implies
that ξ(x, y) is uncorrelated noise; denote its variance by V (x, y). Then

(87) E
(
qH(LX,LY) −EqH(LX,LY))2 = E

[
LX∑
x=1

LY∑
y=1

[
Rd(LX,LY ;x, y)

]2
V (x, y)

]
.
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V (x, y) is computed through (33) to be

V (x, y) = (
qb(1 − b) + b(1 − qb)

)

x
y

(88)
+ b(1 − qb)(1 − q)qH(x,y)
x − b(1 − b)(1 − q)qH(x,y)
y.

Choose a small parameter θ > 0. We split the summation domain [1,LX] ×
[1,LY ] in (87) into disjoint squares of size θL × θL (and possibly smaller rect-
angles near the boundary of the domain). Take one such square [LX0,LX0 +
Lθ ] × [LY0,LY0 + Lθ ] and consider the part of the sum corresponding to the
indices x and y inside it. We first approximate the sum in the right-hand side of
(87) without expectation and then take the expectation at the last step. Note that
|V (x, y)| < const ·L−3, since 1 − b, 1 − qb, 1 − q , 
x and 
y all decay as L−1.
Therefore, the random variable under expectation in (87) multiplied by L is uni-
formly bounded. Hence, convergence in probability would imply convergence of
expectation in (87).

Let us deal with the terms in the second line of (88) and concentrate on
b(1 − qb)(1 − q)[qH(x,y)
x]. Since H(x,y) is 1-Lipschitz in both variables, us-
ing Theorem 5.1, we get

qH(x,y) = qH(LX0,LY0) + O(θ) = qh(X0,Y0) + o(1) + O(θ),

where the remainder o(1) tends to 0 in probability as L → ∞ uniformly in (x, y) ∈
[1,LX] × [1,LY ], and remainder O(θ) is bounded from above by a deterministic
constant tending to zero with speed θ as θ → 0. Also[

Rd(LX,LY ;x, y)
]2 = [

R(X,Y ;X0, Y0)
]2 + O(θ).

Without loss of generality, we may assume that q < 1. Then 
x is a positive num-
ber, hence summations of (o(1) + O(θ)) · 
x cause no problems: if real num-
bers a1, a1, . . . , ak are positive and real numbers e1, . . . , ek satisfy |ei | < C, then
|a1e1 + a2e2 + · · · + akek| ≤ C(a1 + · · · + ak). We conclude that∑

x∈[LX0,LX0+Lθ ]
y∈[LY0,LY0+Lθ ]

[
Rd(LX,LY ;x, y)

]2
b(1 − qb)(1 − q)qH(x,y)
x

= −L−2β2 ln(q)
[
R(X,Y ;X0, Y0)

]2
qh(X0,Y0)

(89)

×
( ∑

y∈[LY0,LY0+Lθ ]

(
qH(LX0+Lθ+1,y) − qH(LX0,y)))

+ (
o(1) + O(θ)

) · L−2 · (θL) · sup
y

(
qH(LX0+Lθ+1,y) − qH(LX0,y)).

Applying Theorem 5.1 again, we get

−θL−1β2 ln(q)
[
R(X,Y ;X0, Y0)

]2
qh(X0,Y0)

(
qh(X0+θ,Y0) − qh(X0,Y0)

)
+ θL−1o(1) + (

o(1) + O(θ)
)
L−1θ2.

(90)
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FIG. 6. When there are no corner-type vertices (types V and VI), the configuration of the six-vertex
model looks like a grid with the number of intersections (i.e., type II vertices) equal to the product of
the numbers of vertically and horizontally incoming paths. 6 = 2 × 3 in the picture.

Similarly, the asymptotic behavior of the sum of the terms arising from
−b(1 − b)(1 − q)qH(x,y)
y in the third line of (88) is

θL−1β1 ln(q)
[
R(X,Y ;X0, Y0)

]2
qh(X0,Y0)

(
qh(X0,Y0+θ) − qh(X0,Y0)

)
+ θL−1o(1) + (

o(1) + O(θ)
)
L−1θ2.

(91)

The next step is to deal with the first line of (88), which is more complicated due
to the product 
x
y . The key observation here is that the random variable 
x
y

vanishes unless the vertex at (x + 1, y + 1) has type II, as in Figure 3; in the latter
case, 
x
y is q2H(x,y)(1 − q)(1 − q−1). Arguing similarly to the previous two
cases, we then write∑

x∈[LX0,LX0+Lθ ]
y∈[LY0,LY0+Lθ ]

[
Rd(LX,LY ;x, y)

]2(
qb(1 − b) + b(1 − qb)

)

x
y

= (
o(1) + O(θ)

) · L−1 · θ2

− L−3[
R(X,Y ;X0, Y0)

]2
(β1 + β1) ln2(q)q2h(X0,Y0)

× #
{
type II vertices in [LX0,LX0 + Lθ ] × [LY0,LY0 + Lθ ]}.

(92)

We would like to understand the last line of (92). For that, let � denote the
square [LX0,LX0 + Lθ ] × [LY0,LY0 + Lθ ]. Suppose that along the bottom part
of �, n paths are entering inside it, and along the left part of �, m paths are en-
tering inside. Further, suppose that there are C vertices of types V and VI inside
�—these vertices represent “corners.” Note that if C = 0, then the number of type
II vertices in � is n · m. Indeed, if we reinterpret the type II vertex as two paths
transversally intersecting each other (rather than touching), then each of n paths
which entered vertically, must intersect each of the m paths which entered horizon-
tally; cf. Figure 6. Let us view the general C > 0 case as a perturbation of C = 0.
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Then each of C corners might change the number of type II vertices at most by
θL, as adding this corner changes the behavior of only one path. The conclusion
is that

(93)
∣∣(Number of type II vertices in �) − nm

∣∣ ≤ θL · C.

Let us now find an upper bound for C. Let U be the sum of θ2L2 i.i.d.
Bernoulli random variables ξi with Prob(ξi = 1) = 1 − min(b1, b2), Prob(ξi =
0) = min(b1, b2). Then the definition of the stochastic six-vertex model implies
that C ≤ U in the sense of stochastic dominance. In particular, EC ≤ const · θ2L2

L
,

and C ≤ const · θ2L2

L
with probability tending to 1 as L → ∞.

We conclude that

(94)
∣∣(Number of type II vertices in �) − nm

∣∣ ≤ const ·θ3L2

both in expectation and with high probability as L → ∞. Finally,

n = H(LX0,LY0) − H(LX0 + Lθ,LY0)

= L
(
h(X0, Y0) − h(X0 + θ,Y0)

) + L · o(1),

m = L
(
h(X0, Y0 + θ) − h(X0, Y0)

) + L · o(1),

and (92) turns into

o(1) · L−1 + O
(
θ3) · L−1

+ L−1[
R(X,Y ;X0, Y0)

]2
(β1 + β1) ln2(q)q2h(X0,Y0)

× (
h(X0 + θ,Y0) − h(X0, Y0)

) · (
h(X0, Y0 + θ) − h(X0, Y0)

)
.

(95)

We now combine the terms from (90), (91), (95) and obtain

L

[
LX∑
x=1

LY∑
y=1

[
Rd(LX,LY ;x, y)

]2
V (x, y)

]

= ∑
0≤i≤X/θ

∑
0≤j≤Y/θ

[
R(X,Y ; θi, θj)

]2[−θβ2 ln(q)qh(θi,θj)

× (
qh(θ(i+1),θj) − qh(θi,θj))

+ θβ1 ln(q)qh(θi,θj)(qh(θi,θ(j+1)) − qh(θi,θj))
+ (β1 + β1) ln2(q)q2h(θi,θj)(h(

θ(i + 1), θj
)

− h(θi, θj)
) · (

h
(
θi, θ(j + 1)

) − h(θi, θj)
)]

+ o(1) + O(θ),

(96)

where o(1) is a random term which (for any fixed θ > 0) converges to 0 in prob-
ability as L → ∞, and O(θ) is a θ -dependent random variable, whose absolute
value is almost surely bounded by const ·θ .
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At this point, we first send L → ∞ and then θ → 0. Note that the sum in the
right-hand side of (96) is deterministic, so there is no randomness involved in
the θ → 0 limit. Recall that qh solves the telegraph equation (69). The boundary
data χ(x), ψ(y) are two piecewise C1-smooth functions. Hence, due to integral
representation of the solution (42), qh and, therefore, also h inherit smoothness:
hx is piecewise-continuous in x and continuous in y; hy is continuous in x and
piecewise-continuous in x. Hence, all the terms in (96) are smooth and as θ → 0
the sum converges to an integral. We conclude that

lim
L→∞L

[
LX∑
x=1

LY∑
y=1

[
Rd(LX,LY ;x, y)

]2
V (x, y)

]

=
∫ X

0

∫ Y

0
dx dy

[
R(X,Y ;x, y)

]2[−β2 ln(q)qh(x,y)qh(x,y)
x(97)

+ β1 ln(q)qh(x,y)qh(x,y)
y + (β1 + β1) ln2(q)q2h(x,y)hx(x, y)hy(x, y)

]
,

both in probability and in expectation. Since ln(q) = β1 − β2 and qh
x = ln(q)qh

x ,
qh
y = ln(q)qhhy , (97) matches the variance of the solution to (82) at point (X,Y )

when written in the form of Theorem 4.4.
If instead of variance, we compute the L → ∞ limit of the covariance of (86)

at (X,Y ) = (X1, Y1) and (X,Y ) = (X2, Y2), then the argument is very similar.
Indeed, since the noise ξ(x, y) is uncorrelated, (87) is replaced with

E
[(

qH(LX1,LY1) −EqH(LX1,LY1)
)(

qH(LX2,LY2) −EqH(LX2,LY2)
)]

= E

[
Lmin(X1,X2)∑

x=1

Lmin(Y1,Y2)∑
y=1

Rd(LX1,LY1;x, y)

×Rd(LX2,LY2;x, y)V (x, y)

]
.

(98)

Repeating the asymptotic analysis of (87), we arrive at an analogue of (97):

lim
L→∞L

[
Lmin(X1,X2)∑

x=1

Lmin(Y1,Y2)∑
y=1

Rd(LX1,LY1;x, y)Rd(LX2,LY2;x, y)V (x, y)

]

=
∫ min(X1,X2)

0

∫ min(Y1,Y2)

0
dx dyR(X1, Y1;x, y)R(X2, Y2;x, y)

× [−β2 ln(q)qh(x,x)qh(x,y)
x + β1 ln(q)qh(x,y)qh(x,y)

y

+ (β1 + β1) ln2(q)q2h(x,y)hx(x, y)hy(x, y)
]
,

which matches the covariance of the solution to (82) at points (X1, Y1) and
(X2, Y2) when written in the form of Theorem 4.4.
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It remains to prove the asymptotic Gaussianity of (86). Let us linearly or-
der the integer points inside the rectangle [1,LX] × [1,LY ] as follows: (1,1),
(2,1), (1,2), (3,1), (2,2), (1,3), (4,1), (3,2), (2,3), (1,4), . . . , that is, we
sequentially trace the diagonals x + y = const. Theorem 3.1 implies that then
Rd(LX,LY ;x, y)ξ(x, y) is a martingale difference in (x, y), and we can apply
the martingale central limit theorem; see, for example, [42], Section 3. There are
two conditions to check:

1. The conditional variance, which by Theorem 3.1 is given by

LX∑
x=1

LY∑
y=1

[
Rd(LX,LY ;x, y)

]2
V (x, y),

with V as in (88), should have the same L → ∞ behavior as the unconditional
variance (87), in the sense that the ratio tends to 1 in probability.

2. The Lindeberg condition should hold, which in our setting reads

(99) lim
L→∞

LX∑
x=1

LY∑
y=1

E
[
L · ξ2(x, y)IL·ξ2(x,y)>ε

] = 0 for each ε > 0.

The first condition is a reformulation of (97) and, therefore, it is already proven.
For the Lindeberg condition, note that by its definition (31), |ξ(x, y)| is uniformly
bounded by C/L for a deterministic constant C. Thus, the indicator Iξ2(x,y)L>ε

becomes empty as L → ∞, and the expression (99) vanishes for large L. The
asymptotic Gaussianity follows, and the proof of Theorem 6.1 is complete.

7. Low density limit. The law of large numbers of Section 5 and the central
limit theorem of Section 6 admit a low density degeneration in which the asymp-
totic equations become linear. The degeneration is explained in this section.

We still work in the asymptotic regime (4), but we change the asymptotic be-
havior of the boundary conditions H(x,0) and H(0, y), as compared to Theorems
5.1 and 6.1. We introduce a new parameter 0 < δ < 1 and assume that H(Lx,0)

and H(0,Ly) grow proportionally to L1−δ . This means that there are much fewer
paths entering the quadrant from the bottom and from the left. Hence, the density
of lines everywhere in the quadrant would stay low and tend to 0 as L → ∞.

THEOREM 7.1. Fix a, b > 0, and 0 < δ < 1. Take two continuous mono-
tone functions χ : [0, a] → R, ψ : [0, b] → R such that χ(0) = ψ(0). Suppose
that the boundary condition in the stochastic six-vertex model is chosen so that
as L → ∞, Lδ−1H(Lx,0) → χ(x) and Lδ−1H(0,Lx) → ψ(y) uniformly on
(x, y) ∈ [0, a] × [0, b].

Define the function h : [0, a] × [0, b] → R as the solution to the PDE

hxy + β2hx + β1hy = 0, x, y ≥ 0; h(x,0) = χ(x,0),

h(0, y) = ψ(y,0),
(100)
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and a random field φ : [0, a] × [0, b] → R as a solution to

(101) φxy + β1φy + β2φx = η ·
√

β1hy − β2hx

with zero boundary conditions φ(x,0) = φ(0, y) = 0, where η is the two-
dimensional white noise. Then the height function H(x,y) of the stochastic six-
vertex model (α = 0) satisfies (for (x, y) ∈ [0, a] × [0, b])

lim
L→∞E

H(Lx,Ly)

L1−δ
= h(x, y),(102)

lim
L→∞

H(Lx,Ly) −EH(Lx,Ly)√
L1−δ

= φ(x, y).(103)

Let us present an interpretation of Theorem 7.1. Consider a L1−δ × L1−δ box
inside [1,LX]×[1,LY ]. The height function H(x,y) changes by a constant when
we cross the box and, therefore, there are finitely many paths inside. Each path has
rare turns and, as L → ∞, it turns into a persistent Poisson random walk:

• Whenever a path travels to the right, it turns upwards with intensity β1,
• whenever a path travels upwards, it turns to the right with intensity β2.

Recall that the paths were interacting with each other through the noninter-
secting condition. Let us now change the way we view the vertices of type V of
Figure 3: instead of thinking that paths touch each other, let us imagine that we
observe an intersection of vertical and horizontal paths. Now paths simply do not
feel each other; the only interaction is that whenever paths intersect, they cannot
turn at exactly the same moment. However, since intersections are rare, this in-
teraction is negligible as L → ∞. We conclude that in a L1−δ × L1−δ box the
configuration as L → ∞ is probabilistically indistinguishable from a collection of
independent persistent Poisson random walks. Gluing together all L1−δ × L1−δ

boxes, we conclude that the entire configuration in [1,LX] × [1,LY ] looks like
that.

Thus, Theorem 7.1 can be treated as the law of large numbers and central limit
theorem for the height function of a collection of independent persistent Poisson
random walks with prescribed densities of entry points on the boundary of the
quadrant. We find it somewhat surprising that the stochastic PDE (101) appears
in such a simple setup. It should be possible to prove this Poisson result directly
without appealing to the discretization provided by the six-vertex model, but we
leave this question out of the scope of the article.

The proof of Theorem 7.1 is similar to those of Theorems 5.1, 6.1. The details
are presented in the Appendix.
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APPENDIX A: PROOF OF THEOREM 7.1

Theorem 3.1 written in terms of qH −1 and combined with Theorem 4.7 implies
that

qH(X,Y ) − 1 =
Y∑

y=1

Rd(X,Y ;0, y)
[(

qH(0,y) − 1
) − b2

(
qH(0,y−1) − 1

)]

+
X∑

x=1

Rd(X,Y ;x,0)
[(

qH(x,0) − 1
) − b1

(
qH(x−1,0) − 1

)]
(104)

+
X∑

x=1

Y∑
y=1

Rd(X,Y ;x, y)ξ(x, y).

The first two terms of the right-hand side of (104) are deterministic and give
E(qH − 1), while the third one is responsible for the fluctuations. Resuming (104)
and using qH(0,0) = 1, we obtain

E
[
qH(X,Y ) − 1

]
= Rd(X,Y ;0, Y )

(
qH(0,Y ) − 1

)

+
Y−1∑
y=1

[
Rd(X,Y ;0, y) − b2Rd(X,Y ;0, y + 1)

](
qH(0,y) − 1

)

+Rd(X,Y ;X,0)
(
qH(X,0) − 1

)

+
X−1∑
x=1

[
Rd(X,Y ;x,0) − b1Rd(X,Y ;x + 1,0)

](
qH(x,0) − 1

)
.

(105)

We now pass to the limit L → ∞ in (105). For that, note the deterministic inequal-
ity ∣∣H(x,y)

∣∣ ≤ ∣∣H(La,0)
∣∣ + ∣∣H(0,Lb)

∣∣, 0 ≤ x ≤ La,0 ≤ x ≤ Lb,

which implies

qH(x,y) − 1 = ln(q)H(x, y) + O
([

ln(q)H(x, y)
]2)

= ln(q)H(x, y) + O
(
L−2δ).(106)

In addition, with the notation of Section 4,

lim
L→∞Rd(LX,LY ;Lx,Ly) =R(X,Y ;x, y),

lim
L→∞L

(
Rd(LX,LY ;Lx,Ly) − b2Rd(LX,LY ;Lx,Ly + 1)

)
= β2R(X,Y ;x, y) −Ry(X,Y ;x, y),
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lim
L→∞L

(
Rd(LX,LY ;Lx,Ly) − b1Rd(LX,LY ;Lx + 1,Ly)

)
= β1R(X,Y ;x, y) −Rx(X,Y ;x, y).

We conclude that

lim
L→∞E

H(LX,LY)

L1−δ

= R(X,Y ;0, Y )h(0, Y )

+
∫ Y

0

[
β2R(X,Y ;0, y) −Ry(X,Y ;0, y)

]
h(0, y) dy

+R(X,Y ;X,0)h(X,0)

+
∫ X

0

[
β1R(X,Y ;x,0) −Rx(X,Y ;x,0)

]
h(x,0) dx.

(107)

When integrated by parts, (107) matches the formula of Theorem 4.4 for the solu-
tion to (100).

Thus, (102) is proved and we proceed to (103). Using (104), we have

(108) qH(LX,LY) −EqH(LX,LY) =
LX∑
x=1

LY∑
y=1

Rd(LX,LY ;x, y)ξ(x, y).

The remaining proof proceeds in the following two steps: we first show that the
finite-dimensional distributions of (108) converge to those of the Gaussian pro-
cess (β1 − β2)φ(X,Y ), and then deduce the limit for the centered height function
H(LX,LY) as a corollary. In fact, in the first step we will detail only one-point
convergence; the convergence of any finite-dimensional distributions is proven in
the same way by invoking the multidimensional central limit theorem instead of
the one-dimensional version (cf. the proof of Theorem 6.1 above).

Let us investigate the variance of the right-hand side of (108) as L → ∞. From
(32), (33) the variance equals

LX∑
x=1

LY∑
y=1

Rd(LX,LY ;x, y)2

×E
[(

qb(1 − b) + b(1 − qb)
)(

qH(x,y) − qH(x−1,y))
× (

qH(x,y) − qH(x,y−1))
+ b(1 − qb)(1 − q)qH(x,y)(qH(x,y) − qH(x−1,y))
− b(1 − b)(1 − q)qH(x,y)(qH(x,y) − qH(x,y−1))].

(109)

We split (109) into two parts: the leading contribution and vanishing terms. The
former is given by the third and fourth lines with L → ∞ approximations qH ≈ 1
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and qH(x,y) − qH(x−1,y) ≈ ln(q)(H(x, y) − H(x − 1, y)):

b(1 − qb)(1 − q) ln(q)

LX∑
x=1

LY∑
y=1

Rd(LX,LY ;x, y)2

×E
[
H(x,y) − H(x − 1, y)

]

− b(1 − b)(1 − q) ln(q)

LX∑
x=1

LY∑
y=1

Rd(LX,LY ;x, y)2

×E
[
H(x,y) − H(x, y − 1)

]
.

(110)

We sum by parts in (110) and compute the limit L → ∞. For the first sum, we get

b(1 − qb)(1 − q) ln(q)

×
[

LX∑
x=1

LY∑
y=1

[
Rd(LX,LY ;x, y)2

−Rd(LX,LY ;x + 1, y)2]
EH(x,y)

+
LY∑
y=1

Rd(LX,LY ;LX + 1, y)2
EH [LX,y]

−
LY∑
y=1

Rd(LX,LY ;1, y)2
EH(0, y)

]
.

(111)

The explicit formula (45) implies that L(Rd(LX,LY ;Lx,Ly)2 − Rd(LX,LY ;
Lx + 1,Ly)2) → − ∂

∂x
R2(X,Y ;x, y) as L → ∞. Combining with (102), we ob-

tain the L → ∞ asymptotics of (111):

L−1−δβ2(β2 − β1)
2
[∫ X

0

∫ Y

0

(
− ∂

∂x
R2(X,Y ;x, y)

)
h(x, y) dx dy

(112)

+
∫ Y

0
R(X,Y ;X,y)2h[X,y]dy −

∫ Y

0
R(X,Y ;0, y)2h(0, y) dy

]
.

We further integrate by parts in (112) and do the same computation for the second
sum in (110). The final result is

(113) L−1−δ(β2 −β1)
2
∫ X

0

∫ Y

0
R2(X,Y ;x, y)

(
β2hx(x, y)−β1hy(x, y)

)
dx dy.

Note that this is precisely the variance of (β1 − β2)φ(X,Y ), when we use Theo-
rem 4.4 to solve (101).

The next step is to show that the remaining terms in (109) indeed do not con-
tribute to the leading asymptotic behavior. We start from the second line in (109).
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Note that (qH(x,y) − qH(x−1,y))(qH(x,y) − qH(x,y−1)) ≤ 0 and Rd is uniformly
bounded as L → ∞ (because it converges to R). Thus, the absolute value of the
first line in (109) is bounded by (here C is a positive constant)

(114)
C

L
E

LX∑
x=1

LY∑
y=1

(
qH(x−1,y) − qH(x,y))(qH(x,y) − qH(x,y−1)).

Note that the (x, y)-summand is nonzero if and only if both H(x − 1, y) =
H(x,y)+ 1 and H(x, y − 1) = H(x,y). In other words, this happens if the vertex
at (x, y) has type II (cf. Figure 3). We conclude that (114) is bounded from above
by

(115)
C ′

L3E
(
number of vertices of type II inside [1,LX] × [1,LY ]).

We proceed to bound this expectation. For that, let us first bound the expected
number of vertices of types V and VI (corners). Let us denote the latter number by
N . Note that we have O(L1−δ) paths entering into [1,LX]× [1,LY ] from the left
or from below. Each path has O(L−1) vertices, and at each of these vertices with
probability at most 1 − b1 or 1 − b2 a corner might occur. We conclude that there
are O(1) corners along each path. It follows that EN = O(L1−δ) and EN 2 =
O(L2−2δ). Next, note that each vertex of type II must belong to a column (vertical
line of fixed x-coordinate) in which either a path enters into the quadrant from
below or there is a corner in this column. For the same reason, each vertex of type
II must belong to a row with similar properties. Since the number of both such
rows and columns is O(L1−δ), we conclude that the number of vertices of type II
is O(L1−δ · L1−δ). Plugging into (115), we get

C′

L3 O
(
L1−δ · L1−δ) = O

(
L−1−2δ),

which is of lower order than the leading term of (109). The justification of the fact
that the remainder terms that were left out when passing from (109) to (110) is
straightforward and we omit it.

We have computed the asymptotic variance of (108) and now proceed to show-
ing the asymptotic Gaussianity. Let us linearly order the integer points inside
the rectangle [1,LX] × [1,LY ] as follows: (1,1), (2,1), (1,2), (3,1), (2,2),
(1,3), (4,1), (3,2), (2,3), (1,4), . . . , that is, we sequentially trace the diagonals
x + y = const. Theorem 3.1 implies that then Rd(LX,LY ;x, y)ξ(x, y) is then
a martingale difference in (x, y), and we can apply the martingale central limit
theorem; see, for example, [42], Section 3. There are two conditions to check:

1. The conditional variance, which by Theorem 3.1 is given by (the expression
below differs from (109) by the absence of the expectation)

LX∑
x=1

LY∑
y=1

Rd(LX,LY ;x, y)2
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× [(
qb(1 − b) + b(1 − qb)

)(
qH(x,y) − qH(x−1,y))(qH(x,y) − qH(x,y−1))

(116)
+ b(1 − qb)(1 − q)qH(x,y)(qH(x,y) − qH(x−1,y))
− b(1 − b)(1 − q)qH(x,y)(qH(x,y) − qH(x,y−1))],

should have the same L → ∞ behavior as the unconditional variance (109), in the
sense that the ratio tends to 1 in probability.

2. The Lindeberg condition should hold, which in our setting reads

(117) lim
L→∞

LX∑
x=1

LY∑
y=1

E
[
ξ2(x, y)L1+δIξ2(x,y)L1+δ>ε

] = 0 for each ε > 0.

For the first condition, note that since we already know the decay of variance in
(109), we can infer that L1−δH(Lx,Ly) → h(x, y) in probability. Since H is a
monotone function in each of its variables, the one-point convergence further im-
plies the convergence to h as a continuous function of two variables in the supre-
mum norm. Then the same argument as for (109) goes through and we obtain the
same asymptotics (113) for (116) as for (109).

For the Lindeberg condition, note that by its definition (31), |ξ(x, y)| is uni-
formly bounded by C/L for a deterministic constant C. Thus, the indicator
Iξ2(x,y)L1+δ>ε becomes empty as L → ∞, and the expression (117) vanishes for
large L.

The asymptotic Gaussianity follows, and we have thus shown the following
convergence in finite-dimensional distributions:

(118) lim
L→∞L

1+δ
2

[
qH(LX,LY) −EqH(LX,LY)] = (β1 − β2)φ(X,Y ).

It remains to deduce the same convergence for centered and rescaled H(LX,LY).
For that, we write

qH(LX,LY) = qEH(LX,LY)qH(LX,LY)−EH(LX,LY)

(119)

= qEH(LX,LY)
∞∑

n=0

[ln(q)(H(LX,LY) −EH(LX,LY))]n
n!Ln

.

Since ln(q)H(LX,LY)/L is bounded by a deterministic constant, the series in
(119) is uniformly convergent, and qH(LX,LY) − EqH(LX,LY) is the centered ver-
sion of the same series:

qEH(LX,LY)
∞∑

n=1

( [ln(q)(H(LX,LY) −EH(LX,LY))]n
n!Ln

− E[ln(q)(H(LX,LY) −EH(LX,LY))]n
n!Ln

)
.

(120)
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As L → ∞, the prefactor qEH(LX,LY) tends to 1, the first term in the series is

ln(q)

L

(
H(LX,LY) −EH(LX,LY)

)
,

and the following terms are of lower orders. Since ln(q) = β1 − β2, (118) now
implies

lim
L→∞L

1+δ
2

β1 − β2

L

(
H(LX,LY) −EH(LX,LY)

) = (β1 − β2)φ(X,Y ),

and the proof of Theorem 7.1 is complete.

APPENDIX B: THEOREM 6.1 THROUGH A VARIATIONAL PRINCIPLE
AND CONTOUR INTEGRALS

In this section, we provide an alternative arguments toward the validity of The-
orem 6.1. This is not a rigorous proof, only heuristics.

This approach to Theorem 6.1 was inspired by [8], Appendix. In a sense, we de-
velop (nonrigorously) a version of the local variational principle for the stochastic
six-vertex model in the limit regime (4). It would be interesting to see whether this
variational principle can be applied to other situations. For the computations, we
rely on contour integral formulas of [2].

We start by considering another integrable case of boundary conditions for the
stochastic six-vertex model that generalizes domain wall boundary conditions of
Section 2.

At each point of the y-axis we flip an independent coin. It comes heads with
probability p1, and in such a case we place a path entering from the left at this
point. Otherwise, there is no path. Similarly, for each point of the x-axis we flip a
coin which comes heads with probability p2 to create paths entering from the bot-
tom. [2] develops proves a multiple contour integral formula for the joint moments
of qH in this situation, generalizing the α = 0 case of Theorem 2.6. The formulas
are quite similar and only differ by simple rational factors.

In particular, [2], (3.13), (3.19), yields

Eqn·H(x,y)

= (
ρ−1

1 ρ2s
−1q−n;q)

n

qn(n−1)/2

(2π i)n

∮
. . .

∮ ∏
1≤i<j≤n

zi − zj

zi − qzj

×
n∏

i=1

[(1 + q−1 1−b
1−qb

zi

1 + 1−b
1−qb

zi

)x−1(
1 + zi

1 + q−1zi

)y

× 1

(1 − q−1ρ−1
1 zi)(zi − ρ2

1−qb
1−b

)
dzi

]
,

(121)
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where n ≥ 1, ρi = pi

1−pi
, and the contours have two parts: the first ones are nested

around {1−qb
1−b

ρ2}, and the second ones all coincide with a tiny circle around −q .

The contours avoid singularities at −1−qb
1−b

and at ρ1q . In [2], the formula (121) is

proven in the case ρ−1
1 ρ2s

−1q−n < 1; for other values of parameters, one needs to
make an analytic continuation in ρ1, ρ2 of both sides in (121).

The following statement is a simple corollary of (121), extending Theorem 2.1
and matching the computations of Section 5.2.

PROPOSITION B.1. In the regime (4), with the Bernoulli boundary conditions
as described above, 1

L
H(Lx,Ly) converges to h(x, y) given by

qh(x,y) = 1

2π i

∮
−1

exp
(

ln(q)

(
−x

sz

1 + sz
+ y

z

1 + z

))

×
(

1

ρ1 − z
+ 1

z − ρ2s
−1

)
dz

+ exp
(

ln(q)

(
−x

ρ2

1 + ρ2
+ y

ρ2s
−1

1 + ρ2s
−1

))
,

(122)

with positively oriented integration contour that encircles only the singularity at
z = −1.

REMARK B.2. When ρ1 = ρ2s
−1, the distribution of the system is transla-

tionally invariant; see [2]. This matches (122) turning into qh(x,y) = q−xp2+yp1 .

An important quantity for us is the second mixed derivative of (122) at 0:

(123) Mε(x, y) := qh(εx,εy) − qh(εx,0) − qh(0,εy) + qh(0,0).

Direct computation shows that, as ε → 0,

Mε(x, y) = ε2xy ln2(q)
p1s− p2

1 − s
+ o

(
ε2)

= ε2xy(β2 − β1)(p1β1 − p2β2) + o
(
ε2)

.

(124)

The computation (121) admits an extension to joint q-moments for several
points (x, y), that lie on the same vertical or same horizontal line, similar to The-
orem 2.6. We can even reach the collections of points on more general monotone
paths:

(125) (x1, y1), (x2, y2), . . . , (xk, yk) : x1 ≥ x2 ≥ · · · ≥ xk, y1 ≤ y2 ≤ · · · ≤ yk;
for the domain wall boundary conditions this was done in [11], and here the situa-
tion is analogous.

It is very plausible that arguing similarly to the proof of CLT in Section 2, one
can reach the following statement.
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CLAIM B.3. For the stochastic six-vertex model with Bernoulli boundary
conditions as described above, as L → ∞ in the regime (4), L1/2(qH(Lx,Ly) −
EqH(Lx,Ly)) converges to a Gaussian random variable (jointly over monotone sec-
tions (125)) with variance given for x1 ≥ x2, y1 ≤ y2 by

lim
L→∞L

(
E

(
qH(Lx1,Ly)qH(Lx2,Ly) −EqH(Lx1,Ly1)EqH(Lx2,Ly2)

))

= ln(q)

(2π i)2

∮ ∮
z1ρ1 − z2ρ2s

−1

(z1 − z2)(ρ1 − ρ2s
−1)

×
2∏

i=1

[
exp

(
ln(q)

(
−xi

szi

1 + szi

+ yi

zi

1 + zi

))

×
(

1

ρ1 − zi

+ 1

zi − ρ2s
−1

)
dzi

]
,

(126)

where the integration goes in positive direction around the singularities at −1 and
at ρ2s

−1, and z1 is inside z2.

REMARK B.4. The right-hand side of (126) depends on ρ1, ρ2 in an analytic
way; in order to continue through the line ρ1 = ρ2s

−1, one should split z1 and
z2 integrals into two parts: enclosing −1 and enclosing ρ2s

−1. The latter part can
then be explicitly computed.

Let h̃(x, y) denote the limiting Gaussian field of Claim B.3. We are interested
in the following mixed difference:

(127) Dε(x, y) := h̃(εx, εy) + h̃(0,0) − h̃(εx,0) − h̃(0, εy).

Note that h̃(0,0) = 0, but we still add it to the formula in order to emphasize the
structure. Claim B.3 implies that Dε(x, y) is Gaussian, and we would like to find
its variance as ε → 0. We compute

Var
(
Dε(x, y)

)
= Cov

(
h̃(εx, εy), h̃(εx, εy)

)
+ Cov

(
h̃(εx,0), h̃(εx,0)

) + Cov
(
h̃(0, εy), h̃(0, εy)

)
− 2 Cov

(
h̃(εx, εy), h̃(εx,0)

) − 2 Cov
(
h̃(εx, εy), h̃(0, εy)

)
+ 2 Cov

(
h̃(εx,0), h̃(0, εy)

)
,

(128)

where the last term vanishes, as the boundary values are independent. We use the
expression of Claim B.3 for each term of (128), expand the exponentials in series
in ε, and compute the integrals as residues. Simplifying the result and expressing
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it in terms of p1, p2 we get

Var
[
Dε(x, y)

]
= −ε2xy ln3(q)

−p1p2(s+ 1) + p1s+ p2

1 − s
+ o

(
ε2)

= ε2xy(β2 − β1)
2(−p1p2(β1 + β2) + p1β1 + p2β2

) + o
(
ε2)

.

(129)

Note that the individual terms in the definition of Dε(x, y) have much greater
variance. For instance, Var h̃(εx,0) = εxp2(1 − p2) due to the conventional CLT
for sums of independent Bernoulli random variables. However, mixed difference
leads to cancelations, and (129) has variance of order ε2 rather than ε.

HEURISTIC PROOF OF THEOREM 6.1. Fix small ε > 0 and consider the
values of the height function H at points (εi, εj), i, j = 1,2, . . . inside a fixed
[0,A] × [0,B] rectangle.

We would like to compute the conditional distribution of qH(εL(i+1),εL(j+1))

given qH(εLi,εLj), qH(εL(i+1),εLj), qH(εLi,εL(j+1)).
At this moment, we will make a nonrigorous step, approximating the system in

an εL × εL square by the system with Bernoulli boundary conditions as in Propo-
sition B.1, Claim B.3 in a similarly sized square. Therefore, we say that when ε

is small and L is large, the horizontal lines crossing the vertical segment between
points (εLi, εLj) and (εLi, εL(j + 1)) become Bernoulli-distributed with param-
eter

p1 ≈ H(εLi, εL(j + 1)) − H(εLi, εLj)

εL
.

The vertical lines crossing the horizontal segment between points (εLi, εLj) and
(εL(i + 1), εL(j)) also become Bernoulli-distributed with parameter

p2 ≈ H(εLi, εLj)) − H(εL(i + 1), εLj)

εL
.

At this point, we can use Claim B.3, which will give us the conditional distribu-
tion as a Gaussian law. Shortening the notation as hij = H(εLi, εLj), we write

Prob
(
qhi+1,j+1 | qhi,j , qhi+1,j , qhi,j+1

)
≈ 1√

2πε2LV [p2,p1]
(130)

× exp
(
−(qhi+1,j+1 − qhi+1,j − qhi,j+1 + qhi,j − Lε2M(p1,p2))

2

2ε2LV [p1,p2]
)
,

where ε2M(p1,p2) is qh multiplied by the leading ε → 0 term of the expression
(124) with x = y = 1, and ε2V [p1,p2] is q2h multiplied by the leading ε → 0
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term of the expression (129) with x = y = 1. The multiplication by qh and q2h

appears because of the height function at the origin was zero in Proposition B.1
and Claim B.3, while we need the value hij here.

At this point, we can multiply (130) over all i, j to get the joint law of hi,j ,
i, j = 1,2, . . . . Implicitly, we use the Markovian structure of the stochastic six-
vertex model here.

Now let us analyze various parts of (130). Recall that as L → ∞, qH(Lx,Ly)

approximates a smooth profile qh(x, y) plus 1√
L

multiplied by the fluctuation field
φ(x, y) as in Theorem 6.1. Then we have

p1 ≈ ∂

∂y

1

L
H(Lx,Ly) ≈ qh

y + L−1/2φy

ln(q)qh ,

p2 ≈ − ∂

∂x

1

L
H(Lx,Ly) ≈ −qh

x + L−1/2φx

ln(q)qh ,

qhi+1,j+1 − qhi+1,j − qhi,j+1 + qhi,j ≈ qh
xyε

2L + φxy(εi, εj)ε2L1/2.

Therefore, plugging in the expression for M[p1,p2], the joint law of all hi,j can
be approximated as

∏
i,j

(
2πε2LV

[
qh
y

ln(q)qh ,− qh
x

ln(q)qh

])−1/2

(131)

× exp
(
−Lε2 (qh

xy + β1q
h
y + β2q

h
x + L−1/2(φxy + β1q

h
y + β2q

h
x)

2

2V [ qh
y

ln(q)qh ,− qh
x

ln(q)qh ]

)
,

where in (i, j)th term all functions are evaluated at the point (x, y) = (εi, εj).
Theorem 5.1 says that qh

xy + β1q
h
y + β2q

h
x in (131) vanishes.6 Plugging in the

expression for V [·, ·], we further approximate the joint law of all hi,j by

∏
i,j

1√
2πε2L(qh

yq
h
x(β1 + β2) + qh

xq
hβ2(β2 − β1) − qh

yq
hβ1(β2 − β1))

(132)

× exp
(
−ε2 (φxy + β1q

h
y + β2q

h
x)

2

2(qh
yq

h
x(β1 + β2) + qh

xq
hβ2(β2 − β1) − qh

yq
hβ1(β2 − β1))

)
.

Note that informally the second line in (132) approximates as ε → 0 the exponen-
tial of a double integral, which shows that the scalings are chosen in the correct
way. On the other hand, it matches Theorem 6.1. Indeed, the numerator in the
exponential is the left-hand side of (82), and the denominator is the same as the

6Alternatively, one can use the leading exponential part of (131) to show that qh
xy +β1q

h
y +β2q

h
x =

0.
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(squared) coefficient in the right-hand side. The noise in (82) is Gaussian, as is den-
sity in (132). Finally, the noise is white (uncorrelated), and (132) has the product
structure over points of the plane manifesting the independence. �
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