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DYNKIN ISOMORPHISM AND MERMIN–WAGNER THEOREMS
FOR HYPERBOLIC SIGMA MODELS AND RECURRENCE OF

THE TWO-DIMENSIONAL VERTEX-REINFORCED JUMP PROCESS

BY ROLAND BAUERSCHMIDT∗, TYLER HELMUTH†,1 AND ANDREW SWAN∗,2

University of Cambridge∗ and University of Bristol†

We prove the vertex-reinforced jump process (VRJP) is recurrent in two
dimensions for any translation invariant finite-range initial rates. Our proof
has two main ingredients. The first is a direct connection between the VRJP
and sigma models whose target space is a hyperbolic space H

n or its super-
symmetric counterpart H2|2. These results are analogues of well-known re-
lations between the Gaussian free field and the local times of simple random
walk. The second ingredient is a Mermin–Wagner theorem for these sigma
models. This result is of intrinsic interest for the sigma models and also im-
plies our main theorem on the VRJP. Surprisingly, our Mermin–Wagner the-
orem applies even though the symmetry groups of Hn and H

2|2 are nona-
menable.

1. Introduction and results.

1.1. Introduction. Our results have motivation from two different perspec-
tives, that of sigma models with hyperbolic symmetry and their relevance for the
Anderson transition, and that of a model of reinforced random walks known as the
vertex-reinforced jump process (VRJP).

The VRJP was originally introduced by Werner and has attracted a great deal of
attention recently [6–8, 23, 24]. The VRJP on a vertex set � is a continuous-time
random walk that jumps from a vertex i to a neighbouring vertex j at time t with
rate βij (1+L

j
t ), where L

j
t is the local time of j at time t and βij ≥ 0 are the initial

rates. One should view � as the vertex set of an undirected graph with edge set
E = {〈ij 〉 | βij > 0}. The dependence of the jump rates on the local time leads the
VRJP to be attracted to itself.

One of our new results is the following theorem.

THEOREM 1.1. Consider a vertex-reinforced jump process (Xt) on the vertex
set Zd with initial rates β that are finite-range and translation invariant. If d = 1,2
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then (Xt) is recurrent in the sense that the expected time (Xt) spends at the origin
is infinite.

As the VRJP is not a Markov process, different notions of recurrence are not a
priori equivalent. For example, another natural notion of recurrence would be to
ask if the VRJP visits the origin infinitely often almost surely. For non-Markovian
processes, neither of these definitions of recurrence implies the other: there may
be infinitely many visits to the origin with the increments of the local time being
summable. To the best of our knowledge, neither implication is known for the
VRJP.

For sufficiently small initial rates, recurrence results for the VRJP have previ-
ously been established [1, 9, 23]. These results are for recurrence in the sense of
visiting the origin infinitely often almost surely. See [1] for a discussion and pre-
cise statements. It has also been shown that the linearly edge-reinforced random
walk (ERRW) with constant initial weights is recurrent in two dimensions [19, 24],
but the recurrence of the VRJP for all initial rates was an open problem until the
present work. The relation between the ERRW and VRJP is discussed below.

Theorem 1.1 is in fact a consequence of our proof of a Mermin–Wagner theorem
for hyperbolic sigma models and a new and very direct relation between VRJPs
and hyperbolic sigma models that parallels the well-known relationship between
simple random walks and Gaussian free fields (the BFS–Dynkin isomorphism the-
orem).

Before giving precise definitions of our models and stating our results, we
briefly indicate the motivations behind hyperbolic sigma models, and their rela-
tions with reinforced random walks. We also explain some consequences of our
results for hyperbolic sigma models. Readers primarily interested in the VRJP
may wish to skip ahead to Section 1.2.

Hyperbolic sigma models were introduced as effective models to understand the
Anderson transition [10, 27–29, 32]. In Efetov’s supersymmetric method [13], the
expected absolute value squared of the resolvent of random band matrices, that
is, E|(H − z)−1(i, j)|2 where z ∈ C+ and H is a random band matrix, can be ex-
pressed as a correlation function of a supersymmetric spin model. The spins of this
model are invariant under the hyperbolic symmetry OSp(2,1|2). Extended states
correspond to spontaneous breaking of this noncompact symmetry. The supersym-
metric hyperbolic sigma model, or H2|2 model, was introduced by Zirnbauer [32]
and first studied by Disertori, Spencer and Zirnbauer [10]. It is an approximation
of the random band matrix model above where radial fluctuations are neglected.
This is similar to how the O(n) model is an approximation of models of Rn-valued
spins with rotational symmetry such as |ϕ|4-theories. More detailed motivation for
hyperbolic spin models is given in [27, 29].

The H
2|2 model is believed to capture the physics of the Anderson transition.

As is expected for the Anderson model, it was proved in [10] that the OSp(2,1|2)

symmetry of the H
2|2 model is spontaneously broken in d ≥ 3 for sufficiently
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small disorder—consistent with the existence of extended states. Furthermore, it
was proved [9] that for sufficiently large disorder this is not the case—consistent
with Anderson localisation. In dimension d ≤ 2, it is conjectured that extended
states do not exist for any disorder strength. Equation (16) below is the corre-
sponding statement for the H

2|2 model, and we have thus completed the expected
qualitative picture for the phase diagram of the H

2|2 model; see Remark 1.9 for a
discussion of the conjectured optimal bounds. Equation (16) can be considered as
a version of the Mermin–Wagner theorem. For recent and extremely precise results
in dimension one, see [26].

Based on the similarity of certain explicit formulas, it was suggested that there
is a connection between the H

2|2 model and linearly edge-reinforced random
walks [10]. This connection was first confirmed in [23] by relating marginals of
the H

2|2 model to the limiting local time profile of a time change of the VRJP.
It was also shown there that the linearly edge reinforced walk is obtained from
the VRJP when averaging over random initial rates. Further marginals of the H

2|2
model were explored in [7]. For a discussion of the history of the VRJP, see [23].

Our hyperbolic analogue of the BFS–Dynkin isomorphism theorem, Theo-
rem 1.2 below, is a different relation between the H

2|2 model and the VRJP than
was found in [23], and it provides a more direct relation between the correlation
structures of the models. Moreover, our statement also applies without supersym-
metry, that is, when the spins take values in H

n. We will explain further extensions
of Theorem 1.2 in the case of H

n, for example, to multipoint correlations, in a
forthcoming publication.

1.2. Model definitions. We now define the VRJP and the hyperbolic sigma
models. The walk and the sigma models are both defined in terms of a set � of
vertices and nonnegative edge weights β = (βij )i,j∈�, where by edge weights we
mean that βij = βji . For our Mermin–Wagner theorem, we will make use of two
assumptions on β . We call β finite-range if for each i ∈ � we have βij = 0 for all
but finitely many j . If � = Z

d we call β translation invariant if βij = βT (i)T (j)

for all translations T of Zd .

1.2.1. Vertex-reinforced jump process. Let � be a finite or countable set. The
VRJP is a history-dependent continuous-time random walk (Xt) on � that takes
jumps from vertex i to vertex j with rate βij (1 + L

j
t ), where

(1) L
j
t ≡

∫ t

0
1Xs=j ds.

L
j
t is called the local time of the walk at vertex j up to time t . We will write

Lt ≡ (Li
t )i∈� for the collection of local times. It will also be useful to consider

the joint process (Xt ,Lt ), which is a Markov process with generator L acting on
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sufficiently nice functions g : � ×R
� →R by

(2) Lβg(i, �) =∑
j

βij (1 + �j )
(
g(j, �) − g(i, �)

)+ ∂

∂�i

g(i, �), i ∈ �,� ∈R
�.

We denote by E
β
i,� the expectation of the process (Xt ,Lt ) with initial condition

X0 = i and L0 = �. The VRJP is the marginal of Xt in the special case L0 = 0; by
a slight abuse of terminology we call (Xt ,Lt ) the VRJP as well.

1.2.2. Hyperbolic sigma models. Let R
n,1 denote (n + 1)-dimensional

Minkowski space. Its elements are vectors u = (x, y1, . . . , yn−1, z), and it is
equipped with the indefinite inner product u ·u = x2 + (y1)2 +· · ·+ (yn−1)2 − z2.
Note that although x plays the same role as the yi , we distinguish it in our nota-
tion for later convenience. Recall that n-dimensional hyperbolic space H

n can be
realized as

(3) H
n ≡ {

u ∈ R
n,1 | u · u = −1, z > 0

}
.

Suppose � is finite and h > 0. To each vertex i ∈ � we associate a spin ui ∈ H
n.

The energy of a spin configuration u = (ui)i∈� ∈ (Hn)� is

(4) H(u) = Hβ,h(u) ≡∑
〈ij 〉

βij (−ui · uj − 1) + h
∑
j

(zj − 1),

where the sum is over edges 〈ij 〉; since the summands are symmetric in i and j

this notation will not cause any confusion. The H
n sigma model is the measure

with density proportional to e−H(u) with respect to the |�|-fold product of the
measure μ on H

n induced by the Minkowski metric (see (23) and (25) for explicit
expressions), and we let 〈·〉Hn denote the expectation associated to this model:

(5)
〈
F(u)

〉
Hn ≡

∫
(Hn)� F (u)e−H(u)μ⊗�(du)∫

(Hn)� e−H(u)μ⊗�(du)
.

The energy (4) favours spin alignment because u ·v ≤ −1 for u, v ∈ H
n with equal-

ity if and only if u = v.

1.2.3. Supersymmetric hyperbolic sigma model. In this section, we will intro-
duce a probability measure which enables the computation of a special class of
observables of the full supersymmetric H

2|2 model. These restricted observables
will suffice for a description of a special, but interesting, case of our results. Our
most general results use the full supersymmetric formalism.

As will be explained further in Section 2, at each vertex i ∈ � there is a super-
spin ui = (xi, yi, zi, ξi, ηi) ∈ H

2|2 where ξi and ηi are Grassmann variables. For
the moment, all that is needed is that the expectation of a function F(y) of the
y ≡ (yi)i∈� coordinates can be written as

(6)
〈
F(y)

〉
H2|2 =

∫
(R2)�

F
(
et s
)
e−H̃ (s,t) dt ds,
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where dt ds ≡∏
i dti dsi , et s ≡ (eti si)i∈�,

H̃ (s, t) = H̃β,h(s, t) ≡ ∑
〈ij 〉

βij

(
cosh(ti − tj ) − 1 + 1

2
(si − sj )

2eti+tj

)

+ h
∑
i

(
cosh(ti) − 1 + 1

2
s2
i eti

)
+∑

i

(
ti + log(2π)

)− log detDβ,h(t),

(7)

and the matrix Dβ,h(t) on R
� is defined by the quadratic form(

v,Dβ,h(t)v
)≡∑

〈ij 〉
βij e

ti+tj (vi − vj )
2 + h

∑
i

eti v2
i , v ∈R

�.(8)

The determinant detDβ,h(t) does not depend on the s variables and it is positive

since Dβ,h(t) is positive definite. Thus e−H̃ (s,t) dt ds is a positive measure, and we
will show in Section 2 that it is in fact a probability measure, that is, 〈1〉H2|2 = 1.

1.3. Results. We now state our main results and show how Theorem 1.1 is a
consequence.

1.3.1. Hyperbolic BFS–Dynkin isomorphism. The following theorem is a hy-
perbolic analogue of the Dynkin isomorphism theorem, which relates the local
times of a simple random walk to the square of a Gaussian free field. As the
Dynkin isomorphism theorem was proved by Brydges–Fröhlich–Spencer in [4],
Theorem 2.2, and later expressed in a better form by Dynkin [12], we prefer to
call it the BFS–Dynkin isomorphism. The general idea of relating Gaussian fields
to simple random walks is due to Symanzik [30]. For recent discussions of these
ideas, see [16, 31]. Supersymmetric versions of these results for simple random
walks go back to Luttinger and Le Jan [15, 17].

Note that while we have not yet defined the meaning of 〈g〉H2|2 for a general
function g, we have given a meaning in the case that g is identically one by (6). It
is this case of g identically one that will be most relevant for the VRJP.

THEOREM 1.2. Suppose � is finite and β is a collection of nonnegative edge
weights. Let h > 0, let g : � × R

� → R be any bounded smooth function, and
let a, b ∈ �. Consider the H

n model, n ≥ 2, let y = (yi)i∈� = (yr
i )i∈� for some

r = 1, . . . , n − 1, and z = (zi)i∈�. Then

(9)
∑
b

〈
yaybg(b, z − 1)

〉
Hn =

〈
za

∫ ∞
0

E
β
a,z−1

(
g(Xt ,Lt )

)
e−ht dt

〉
Hn

.

For the H
2|2 model, we have

(10)
∑
b

〈
yaybg(b, z − 1)

〉
H2|2 =

∫ ∞
0

E
β
a,0

(
g(Xt ,Lt )

)
e−ht dt.
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REMARK 1.3. Theorem 1.2 also holds for the H
1 model, but as the proof

requires slightly different considerations we have not included it here.

Taking the function g to be identically one in (10) implies that

(11) 〈yayb〉H2|2 =
∫ ∞

0
E

β
a,0(1Xt=b)e

−ht dt.

The right-hand side can be interpreted as the two-point function of the VRJP with
a uniform killing rate h.

REMARK 1.4. Theorem 1.2 can be extended in a straightforward way to the
case in which h = (hi)i∈� is nonconstant, provided hi ≥ 0 and at least one value
is strictly positive.

1.3.2. Hyperbolic Mermin–Wagner theorem. In this section, we assume that
� = �L is the discrete d-dimensional torus Zd/(LZ)d of side length L ∈ N, and
that β is translation invariant and finite-range. We will write 〈·〉 = 〈·〉β,h in place
of 〈·〉Hn and 〈·〉H2|2 . Denote

(12) λ(p) ≡ ∑
j∈�

β0j

(
1 − cos(p · j)

)
, p ∈ ��,

where here · is the Euclidean inner product on R
d and �� is the Fourier dual of

the discrete torus �. Denote the two-point function and its Fourier transform by

Gβ,h(j) = GL
β,h(j) ≡ 〈y0yj 〉β,h,

Ĝβ,h(p) = ĜL
β,h(p) = ∑

j∈�

Gβ,h(j)ei(p·j).
(13)

The following theorem is an analogue of the Mermin–Wagner theorem for the
O(n) model, in the form presented in [14].

THEOREM 1.5. Let � = Z
d/(LZ)d , L ∈ N. For the H

n model, n ≥ 2, with
magnetic field h > 0,

(14) Ĝβ,h(p) ≥ 1

(1 + (n + 1)Gβ,h(0))λ(p) + h
.

Similarly, for the H
2|2 model with h > 0,

(15) Ĝβ,h(p) ≥ 1

(1 + Gβ,h(0))λ(p) + h
.

REMARK 1.6. By (11) the two-point function Gβ,h equals that of the VRJP in
the case of the H

2|2 model, and hence the two-point function of the VRJP satisfies
(15) as well.
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REMARK 1.7. For d ≥ 3, the bound (15) shows that f̃ can be replaced by f

in [10], Theorem 3, using the upper bound proved there for Gβ,h(0).

COROLLARY 1.8. Under the assumptions of Theorem 1.5, for d = 1,2,

(16) lim
h↓0

lim
L→∞Gβ,h(0) = ∞.

PROOF. Since (2πL)−d ∑
p∈�∗ ei(p·j) = 1j=0, summing the bounds (14) and

(15) over p ∈ �� and interchanging sums implies (with n = 0 for H2|2)

(17) Gβ,h(0) ≥ 1

(2πL)d

∑
p∈��

1

(1 + (n + 1)Gβ,h(0))λ(p) + h
.

The assumption of β being finite-range and nonnegative implies λ(p) ≤ C(β)|p|2.
If d ≤ 2 it follows that

(18) lim
L→∞

1

(2πL)d

∑
p∈��

1

λ(p) + h
↑ ∞ as h ↓ 0,

and, as Gβ,h ≥ 0, this implies (16). �

REMARK 1.9. In fact, the proof shows Gβ,h(0) ≥ cβ/
√

logh with cβ > 0
when h > 0 is small. For the H

2|2 model, we conjecture that the optimal bound is
Gβ,h(0) � cβ/h for h small, with cβ > 0 exponentially small as β becomes large.
This is consistent with Anderson localisation. On the other hand, for the Hn model
with n ≥ 2, localisation is not expected, that is, Gβ,h(0) � 1/h.

1.3.3. Consequences for the vertex-reinforced jump process. In contrast to
Corollary 1.8, it has been proven [10, 29] that when d ≥ 3 and βij = β1|i−j |=1,

(19) lim
h↓0

lim
L→∞Gβ,h(0) < ∞

for all β > 0 in the case of H2 and for all sufficiently large β > 0 for H2|2. In the
H

2|2 case, (19) corresponds to transience of the VRJP (in the sense of bounded
expected local time, see Corollary 1.10 below) and to the uniform boundedness (in
the spectral parameter z ∈ C+) of the expected square of the absolute value of the
resolvent for random band matrices in the sigma model approximation [27] (recall
Section 1.1). It also implies that the hyperbolic symmetry is spontaneously broken.

Due to the nonamenability of hyperbolic group actions, the question of spon-
taneous symmetry breaking for hyperbolic sigma models is, in general, subtle.
The usual formulations of the Mermin–Wagner theorem for models with compact
symmetries cannot hold in the nonamenable case [25], and, in fact, spontaneous
symmetry breaking appears to occur in all dimensions [11, 22]. Nonetheless, (16)
and (19) show that the two-point function—the observable of interest for the VRJP
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and the random matrix problem—does undergo a transition analogous to that oc-
curring in systems with compact symmetries.

PROOF OF THEOREM 1.1. We must prove that for any translation invariant
finite-range β

(20)
∫ ∞

0
E

β,Zd

0,0 (1Xt=0) dt = ∞,

where the expectation refers to that of the VRJP on Z
d and d = 1,2. This is true

since, for any finite-range β , one has∫ ∞
0

E
β,Zd

0,0 (1Xt=0) dt = lim
h↓0

∫ ∞
0

E
β,Zd

0,0 (1Xt=0)e
−ht dt

= lim
h↓0

lim
L→∞

∫ ∞
0

E
β,�L

0,0 (1Xt=0)e
−ht dt = ∞.

(21)

The first equality is by monotone convergence, and the final equality is obtained
by combining (16) for the H

2|2 model and (11).
For the second equality, it suffices, by using the tail of the exponential e−ht , to

verify that the integrand converges for t ≤ T for any bounded T . Since the jump
rate 1 + Li

t is bounded by 1 + T , the walk is exponentially unlikely to take more
than O(T 3) jumps to new vertices up to time T . VRJPs on �L and Z

d can be
coupled to be the same until they exit a ball of radius less than 1

2L, an event which
requires at least L/R jumps to occur, where R is the radius of the finite-range step
distribution. This completes the proof. �

The analogue of Theorem 1.1 for the ERRW with constant initial weights was
established in [19, 24], but not for the VRJP. Mermin–Wagner-type theorems have
also been proven for the ERRW in one and two dimensions [18, 19]. The tech-
niques used deal directly with ERRWs, and hence are rather different from those
employed in this paper.

Our relation between the two-point functions of the H
2|2 model and the VRJP

also yields a transience result.

COROLLARY 1.10. The vertex-reinforced jump process (Xt) on Z
d , d ≥ 3,

with initial rates βij = β1|i−j |=1 and β sufficiently large is transient, in the sense
that the expected time (Xt) spends at the origin is finite.

PROOF. The argument mirrors the proof of Theorem 1.1, using (19) in place
of (16). �

Transience in the sense of visiting the origin finitely often almost surely when
β is sufficiently large was established in [23], Corollary 4; this result also makes
use of [10]. As with recurrence, see the discussion following the statement of The-
orem 1.1, there is in general no relation between the two notions of transience.
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2. Supersymmetry and horospherical coordinates. In this section, we de-
fine horospherical coordinates for H

n and then define the supersymmetric H
2|2

model precisely. We also collect Ward identities and relations between derivatives
that will be used in the proofs of Theorems 1.2 and 1.5.

2.1. Horospherical coordinates. As observed in [29, 32], the hyperbolic
spaces H

n are naturally parametrised by horospherical coordinates that are use-
ful for the analysis of the corresponding sigma models. For Hn, these are global
coordinates t ∈ R, s̃ ∈ R

n−1, in terms of which

x = sinh t − 1

2
|s̃|2et , yi = et si (i = 1, . . . , n − 1),

z = cosh t + 1

2
|s̃|2et .

(22)

Both x, z are scalars while ỹ = (y1, . . . , yn−1) and s̃ = (s1, . . . , sn−1) ∈ R
n−1 are

n − 1 dimensional vectors and |s̃|2 =∑n−1
i=1 (si)2. By this change of variables, one

has (see the Appendix)

(23)
∫
(Hn)�

F (u)μ⊗�(du) =
∫
(Rn)�

F
(
u(s̃, t)

)∏
i

e(n−1)ti dti ds̃i .

By a short calculation,

(24) −ui · uj = cosh(ti − tj ) + 1

2
|s̃i − s̃j |2eti+tj , zi = cosh ti + 1

2
|s̃i |2eti .

Thus in horospherical coordinates,

H(s̃, t) = ∑
〈ij 〉

βij

(
cosh(ti − tj ) − 1 + 1

2
|s̃i − s̃j |2eti+tj

)

+ h
∑
i

(
cosh(ti) − 1 + 1

2
|s̃i |2eti

)
,

(25)

where by a slight abuse of notation we have re-used the symbol H . Moreover,
the following relations, in which we set si = sr

i and yi = yr
i for some fixed r =

1, . . . , n − 1, hold:

(26)
∂zi

∂si
= yi,

∂yi

∂si
= xi + zi,

∂(ui · uj )

∂si
= yj (xi + zi) − yi(xj + zj ).

Furthermore,

∂2

∂s2
j

zj = etj = xj + zj ,

∂2

∂si ∂sl
(−1 − uj · ul) =

⎧⎪⎪⎨⎪⎪⎩
−etj+tl = −(xj + zj )(xl + zl) i = j,

+etj+tl = +(xj + zj )(xl + zl) i = l,

0 else.

(27)
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2.2. Supersymmetry. Let � be a finite set. We will define an algebra �� of
forms (which generalise random variables) that constitute the observables on the
superspace (R2|2)�. The superspace itself only has meaning through this algebra
of observables. We also define an integral associated to this algebra. We then intro-
duce the supersymmetry generator and the localisation lemma. For a more detailed
introduction to the mathematics of supersymmetry, see, for example, [3, 5, 10].

2.2.1. Supersymmetric integration. For each vertex i ∈ �, let xi, yi be real
variables and ξi, ηi be two Grassmann variables. Thus by definition all of the xi

and yi commute with each other and with all of the ξi and ηi and all of the ξi and
ηi anti-commute. The way in which the anti-commutation relations are realized is
unimportant, but concretely, we can define an algebra of 4|�| ×4|�| matrices ξi and
ηi realising the required anti-commutation relations for the Grassmann variables.
To fix signs in forthcoming expressions, fix an arbitrary order i1, . . . , i|�| of the
vertices in �.

We define the algebra �� to be the algebra of smooth functions on (R2)� with
values in the algebra of 4|�| × 4|�| matrices that have the form

(28) F = ∑
I,J⊂�

FI,J (x, y)(ηξ)I,J ,

where the coefficients FI,J are smooth functions on (R2)�, and (ηξ)I,J is given
by the ordered product

∏
i∈I∩J ηiξi

∏
i∈I\J ξi

∏
j∈J\I ηj . This ordering has been

chosen so that (ηξ)�,� is η1ξ1 . . . η�ξ�. We call elements of �� forms because
the forms of differential geometry are instances [5, 15]. The integral (sometimes
called a superintegral) of a form F ∈ �� is defined by

(29)
∫
(R2|2)�

F ≡
∫
(R2)�

F�,�(x, y)
∏
i∈�

dxi dyi

2π
,

where R
2|2 refers to the number of commuting and anti-commuting variables.

The degree of a coefficient FI,J is |I | + |J |. Thus the integral of a form F is
a constant multiple of the usual Lebesgue integral of the top degree part of F .
A form F ∈ �� is even if the degree of all nonvanishing coefficients FI,J is even
in (28). Even forms commute. For even forms F 1, . . . ,Fp and a smooth func-
tion g ∈ C∞(Rp), the form g(F 1, . . . ,Fp) ∈ �� is defined by formally Taylor
expanding g about the degree-0 part (F 1

∅,∅(x, y), . . . ,F
p
∅,∅(x, y)). This is well-

defined as there is no ambiguity in the ordering if the F i are all even, and the
anti-commutation relations satisfied by the ξi and ηi imply the expansion is finite.

2.2.2. Localisation. Temporarily set x = xi , y = yi , ξ = ξi , and η = ηi . De-
fine an operator ∂η : �� → �� by linearity, ∂η(ηF ) = F , and ∂ηF = 0 if F does
not contain a factor η. Define ∂ξ in the same manner. Define Qi by its action on
forms F by

(30) QiF ≡ ξ∂xF + η∂yF + x∂ηF − y∂ξF.
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The supersymmetry generator Q acts on a form F ∈ �� by QF ≡∑
i∈� QiF .

DEFINITION 2.1. F ∈ �� is supersymmetric if QF = 0.

The supersymmetry generator acts as an anti-derivation on the algebra of forms,
see, for example, [5], Section 6. This implies that the forms

(31) τji = τij ≡ xixj + yiyj + ξiηj − ηiξj , i, j ∈ �,

are supersymmetric. Moreover, any smooth function of the τij is supersymmetric
as Q obeys a chain rule, see [5], equation (6.5). The following localisation lemma
is fundamental. For a proof, see [10], Lemma 16.

LEMMA 2.2 (Localisation lemma). Let F ∈ �� be a smooth form with suffi-
cient decay that is supersymmetric, that is, satisfies QF = 0. Then

(32)
∫
(R2|2)�

F = F∅,∅(0,0).

2.3. The H2|2 model. We can now define the H2|2 sigma model and justify our
earlier claim that its y marginal is the probability measure (6). Given (xi, yi, ξi, ηi)

as above define an even variable zi by

(33) zi ≡
√

1 + x2
i + y2

i + 2ξiηi =
√

1 + x2
i + y2

i + ξiηi√
1 + x2

i + y2
i

,

where the equality is by the definition of a function of a form. We will write ui =
(xi, yi, zi, ξi, ηi). Define the “inner product”

(34) ui · uj ≡ xixj + yiyj − zizj + ξiηj − ηiξj ,

generalising the Minkowski inner product above (3); we have written “inner prod-
uct” as this is only terminology, since (34) is not a quadratic form in the classical
sense. Then by a short calculation

(35) ui · ui = −1,

which we interpret as meaning that ui is in the supermanifold H
2|2. Since zi =√

1 + τii and ui · uj = τij − zizj , the forms ui · uj and zi are supersymmetric for
all i, j ∈ �.

The H
2|2 integral of a form F ∈ �� is defined by

(36)
∫
(H2|2)�

F ≡
∫
(R2|2)�

F
∏
i∈�

1

zi

,

and the H2|2 model is defined by the following action (which is now a form in ��)

(37) H ≡ Hβ,h =∑
〈ij 〉

βij (−ui · uj − 1) + h
∑
i

(zi − 1) ∈ ��.
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Lastly, we define the superexpectation of an observable F ∈ �� in the H2|2 model
by

(38) 〈F 〉H2|2 ≡
∫
(H2|2)�

Fe−H .

Lemma 2.2 implies that 〈1〉H2|2 = 1, as promised in Section 1.2.3.

2.4. Supersymmetric horospherical coordinates. The H
2|2 model can also be

reparametrised in a supersymmetric version of horospherical coordinates [10],
Section 2.2. For the convenience of the reader, the explicit change of variables
is computed in the Appendix. In this parametrisation, t and s are two real variables
and ψ̄ and ψ are two Grassmann variables. As in the previous section, we denote
the algebra of such forms by �̃�. The tilde refers to horospherical coordinates. We
write

x = sinh t − et

(
1

2
s2 + ψ̄ψ

)
, y = et s,

z = cosh t + et

(
1

2
s2 + ψ̄ψ

)
,

ξ = et ψ̄, η = etψ.

(39)

There is a generalisation of the change of variables formula from standard inte-
gration to superintegration. We only require the following special case given in
[10], Section 2.2, and Appendix. Forms F ∈ �� are in correspondence with forms
F̃ ∈ �̃� obtained by substituting the relations (39) into (28) using the definition of
functions of forms. Moreover, expanding

(40) F̃ = ∑
I,J⊂�

F̃I,J (t, s)(ψψ̄)I,J

the superintegral over F can expressed as

(41)
∫
(H2|2)�

F =
∫
(R2)�

F̃�,�(t, s)
∏
i

e−ti
dti dsi

2π
.

If a function F(y) depends only on the y coordinates then F has degree 0, and
a computation (see [10], Section 2.2, and Appendix) shows that〈

F(y)
〉
H2|2 =

∫
(H2|2)�

F (y)e−H =
∫
(R2)�

F
(
et s
)(

e−H )
�,�

∏
i

e−ti
dti dsi

2π

(42)
=
∫
(R2)�

F
(
et s
)
e−H̃ (t,s)

∏
i

dti dsi,

with the function H̃ given by (6).
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Analogously to (24) a calculation gives the expressions

−ui · uj = cosh(ti − tj ) + 1

2
(si − sj )

2eti+tj

+ (ψ̄i − ψ̄j )(ψi − ψj)e
ti+tj

(43)

zi = cosh ti +
(

1

2
s2
i + ψ̄iψi

)
eti .(44)

We again check that

(45)
∂zi

∂si
= yi,

∂yi

∂si
= xi + zi,

∂(ui · uj )

∂si
= yj (xi + zi) − yi(xj + zj )

and

∂2

∂s2
j

zj = etj = xj + zj ,

∂2

∂si∂sl
(−1 − uj · ul) =

⎧⎪⎪⎨⎪⎪⎩
−etj+tl = −(xj + zj )(xl + zl) i = j,

+etj+tl = +(xj + zj )(xl + zl) i = l,

0 else.

(46)

2.5. Ward identities. In this section, we establish some useful Ward identities.
These Ward identities are a reflection of the underlying symmetries of the target
spaces H

n and H
2|2; see [10], Appendix B. Note that these identities are most

easily seen in the ambient coordinates (x, y1, . . . , yn−1, z).

2.5.1. H
n. For the H

n model, we have the identities

(47)
〈
xjg(z)

〉
Hn = 0

for any smooth function g. This identity follows simply from the invariance of the
measure under x �→ −x (see (4)–(5)). Moreover, by rotational symmetry, we have
〈g(yr)〉Hn = 〈g(x)〉Hn for r = 1, . . . , n − 1.

2.5.2. H
2|2. For the H

2|2 model, we have identities analogous to (47):

(48)
〈
xjg(z)

〉
H2|2 = 0

for any smooth function g. This identity again follows from the symmetry x �→ −x

(see (37)–(38)). We also have 〈g(x)〉H2|2 = 〈g(y)〉H2|2 by rotational symmetry. The
following identities arise from (48):〈

etj+tl
〉
H2|2 = 〈

(xj + zj )(xl + zl)
〉
H2|2 = 〈xjxl + zj zl〉H2|2,〈

etj
〉
H2|2 = 〈xj + zj 〉H2|2

(49)
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and hence by supersymmetry and rotational invariance〈
etj+tl

〉
H2|2 = 1 + 〈yjyl〉H2|2,〈

etj
〉
H2|2 = 1.

(50)

Indeed, the evaluations 〈zizj 〉H2|2 = 〈zi〉H2|2 = 1 are by Lemma 2.2, which implies
more generally that for any smooth function g with rapid decay,

(51)
∫
(H2|2)�

e−Hβ,0g(z) = g(1).

3. Proof of Theorem 1.2. In this section, for the H
n model, we will let ya

denote the component y1
a of ua ∈ H

n and sa the corresponding component s1
a in

horospherical coordinates. By symmetry (recall Section 2.5), the results of this
section are valid if we replace y1

a by any of the first n − 1 components of ua .
We will prove that for the H

n model, n ≥ 2,∑
b

∫
(Hn)�

e−Hβ,hyaybg(b, z − 1)

=
∫
(Hn)�

e−Hβ,hza

∫ ∞
0

E
β
a,z−1

(
g(Xt ,Lt )

)
e−ht dt.

(52)

In (52), and in the rest of this section, we omit the measure μ⊗�(du) for integrals
over (Hn)� from the notation. For the H

2|2 model, we prove that

(53)
∑
b

∫
(H2|2)�

e−Hβ,hyaybg(b, z − 1) =
∫ ∞

0
E

β
a,0

(
g(Xt ,Lt )

)
e−ht dt.

Theorem 1.2 in the case of H2|2 is precisely (53), and Theorem 1.2 in the case of
H

n follows by normalising (52). The identities (52) and (53) are a result of the
following integration by parts formulas. Recall that Lβ denotes the generator (2)
of the joint position and local time process (Xt ,Lt ) of the VRJP.

LEMMA 3.1. Let � be finite, let a ∈ � and let g : � ×R
� → R be a smooth

function with rapid decay. For the H
n model, n ≥ 2,

(54) −∑
b

∫
(Hn)�

e−Hβ,0yaybLβg(b, z − 1) =
∫
(Hn)�

e−Hβ,0zag(a, z − 1).

For the H
2|2 model,

(55) −∑
b

∫
(H2|2)�

e−Hβ,0yaybLβg(b, z − 1) = g(a,0).
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PROOF. The proofs are essentially the same for Hn and H
2|2, so we carry them

out in parallel.
We write L for Lβ , H for Hβ,0, and the integral

∫
for

∫
(Hn)� and, respectively,∫

(H2|2)� . By (26) (resp., (45)) we have yb
∂

∂�b
g(b, z−1) = ∂

∂sb
g(b, z−1) where ∂

∂�b

denotes the derivative with respect to the bth component of the second argument.
Therefore, ∑

b

∫
e−HyaybLg(b, z − 1)

=
∫

e−Hya

(∑
b,c

βbcybzc

(
g(c, z − 1) − g(b, z − 1)

)
+∑

b

∂

∂sb
g(b, z − 1)

)
.

(56)

Recall (23) (resp., (41)) and integrate the second term in the equation above by
parts. This produces two terms; by the rapid decay of g there are no boundary
terms. For the first term produced by the integration by parts, using (26) (resp.,
(45)) again, ∑

b

∫
e−Hya

(
−∂H

∂sb

)
g(b, z − 1)

=∑
b

∫
e−Hya

(∑
c

βbc

∂(ub · uc)

∂sb

)
g(b, z − 1)(57)

=∑
b,c

∫
e−Hyaβbcybzc

(
g(c, z − 1) − g(b, z − 1)

)
.

This term cancels the first term on the right-hand side of (56). For the second
term produced by the integration by parts, we use that

∫
xae

−Hg(b, z) = 0 by (47)
(resp., (48)):∫

e−H ∂ya

∂sb
g(b, z − 1) = δab

∫
e−H (xa + za)g(b, z − 1)

= δab

∫
e−Hzag(a, z − 1).

(58)

In the supersymmetric case, the localisation lemma in the special case (51) further
implies that the last right-hand side can be evaluated as

(59) δab

∫
e−Hzag(a, z − 1) = δabg(a,0).

Altogether, we have shown (54) (resp., (55)). �
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PROOF OF THEOREM 1.2. It suffices to show (52) and (53) with h = 0, by
replacing g(b, z − 1) by g(b, z − 1)e−h(z−1). Therefore, from now on, assume
h = 0. To get (53) from (55), we apply (55) with g(i, �) replaced by gt (i, �) =
Ei,�(g(Xt ,Lt )). By the definition of the generator, we have Lgt (i, �) = ∂

∂t
gt (i, �),

so (55) gives

(60) Ea,0
(
g(Xt ,Lt )

)= − ∂

∂t

(∑
b

∫
e−Hyaybgt (b, z − 1)

)
.

Note that the process (Xt ,Lt ) is transient even if the marginal (Xt) is recurrent
because

∑
i L

i
t → ∞ as t → ∞. Therefore, integrating both sides over t and using

that gt (x, �) → 0 as t → ∞, which follows from the transience of (Xt ,Lt ) and the
rapid decay of g = g0, we get

(61)
∫ ∞

0
Ea,0

(
g(Xt ,Lt )

)
dt =∑

b

∫
e−Hyaybg(b, z − 1).

The proof of (52) from (54) is entirely analogous. �

4. Proof of Theorem 1.5. The proof of the hyperbolic Mermin–Wagner fol-
lows that of the usual Mermin–Wagner theorem closely [20, 21]; see also the pre-
sentation in [14]. We begin with the nonsupersymmetric case. Due to the noncom-
pact target space, differences occur in the bound of the term 〈|DH |2〉 and in the
role of the coordinate in the direction of the magnetic field. As in the previous
section, we write H for Hβ,h. We will write Ā to denote the complex conjugate
of A.

PROOF OF (14). As in the previous section, we write yj for y1
j . We also write

〈·〉 for 〈·〉Hn , and we use horospherical coordinates throughout the proof. Through-
out the proof, H will denote the energy of a spin configuration in horospherical
coordinates; recall (25).

Let

(62) S(p) = 1√|�|
∑
j

ei(p·j)yj , D = 1√|�|
∑
j

e−i(p·j) ∂

∂sj
.

By the Cauchy–Schwarz inequality,

(63)
〈∣∣S(p)

∣∣2〉≥ |〈S(p)DH 〉|2
〈|DH |2〉 .

In the following, we compute the terms on the left- and right-hand sides of the
above inequality. Note that we have the integration by parts identity 〈FDH 〉 =
〈DF 〉 for any smooth F : (Hn)� → R that does not grow too fast; the vanishing
of boundary terms can be seen by looking at the expression for H (i.e., by (25)).
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By the assumed translation invariance of β ,〈∣∣S(p)
∣∣2〉= 1

|�|
∑
j,l

eip·(j−l)〈yjyl〉 = 1

|�|
∑
j,l

eip·(j−l)〈y0yj−l〉

=∑
j

ei(p·j)〈y0yj 〉,
(64)

〈
S(p)DH

〉= 〈
DS(p)

〉= 1

|�|
∑
j,l

eip·(j−l)

〈
∂yj

∂sl

〉
= 1

|�|
∑
j

〈xj + zj 〉

= 〈z0〉,
(65)

〈|DH |2〉= 〈DD̄H 〉 = 1

|�|
∑
j,l

eip·(j−l)

〈
∂2H

∂sj∂sl

〉
.(66)

In (65), we have used 〈xj 〉 = 0; recall Section 2.5. By 〈xj zk〉 = 0, Cauchy–
Schwarz, translation invariance, that 〈x2

0〉 = 〈y2
0〉 (recall the symmetries from Sec-

tion 2.5.1), and the constraint u0 · u0 = −1, observe that

(67)
〈
(xj + zj )(xl + zl)

〉= 〈xjxl + zj zl〉 ≤ 〈
x2

0
〉+ 〈

z2
0
〉= 1 + (n + 1)

〈
y2

0
〉
.

Thus, using (27) and 〈xj 〉 = 0 once more, (66) can be rewritten and bounded above
by 〈|DH |2〉= 1

|�|
∑
j,l

βjl

〈
(xj + zj )(xl + zl)

〉(
1 − eip·(j−l))

+ h

|�|
∑
j

〈xj + zj 〉

≤ 1

|�|
∑
j,l

βjl

(
1 + (n + 1)

〈
y2

0
〉)(

1 − cos
(
p · (j − l)

))+ h〈z0〉.

(68)

In summary, we have shown (recall (12))〈|DH |2〉≤ (
1 + (n + 1)

〈
y2

0
〉)
λ(p) + h〈z0〉.(69)

Using (64) and substituting the above bounds into (63) gives∑
j

ei(p·j)〈y0yj 〉 ≥ |〈S(p)DH 〉|2
〈|DH |2〉 ≥ 〈z0〉2

(1 + (n + 1)〈y2
0〉)λ(p) + h〈z0〉

≥ 1

(1 + (n + 1)〈y2
0〉)λ(p) + h

.

(70)

The last inequality follows from h ≥ 0 and 1 ≤ 〈z0〉, which holds by the definition
of Hn. �
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PROOF OF (15). We use that the expectation of a function F(y) can be written
using horospherical coordinates in terms of the probability measure (6). Through-
out this proof, we denote the expectation with respect to this probability measure
by 〈·〉. By the Cauchy–Schwarz inequality, and since S(p) is a function of the y,

(71)
〈∣∣S(p)

∣∣2〉
H2|2 = 〈∣∣S(p)

∣∣2〉≥ |〈S(p)DH̃ 〉|2
〈|DH̃ |2〉 .

The probability measure 〈·〉 obeys the integration by parts 〈FDH̃ 〉 = 〈DF 〉 iden-
tity for any function F = F(s, t) that does not grow too fast. Therefore, by trans-
lation invariance we find that, as in the case of Hn,

〈∣∣S(p)
∣∣2〉= 1

|�|
∑
j,l

eip·(j−l)〈yjyl〉 = 1

|�|
∑
j,l

eip·(j−l)〈y0yj−l〉

=∑
j

ei(p·j)〈y0yj 〉,
(72)

〈
S(p)DH̃

〉= 〈
DS(p)

〉= 1

|�|
∑
j,l

eip·(j−l)

〈
∂yj

∂sl

〉
= 1

|�|
∑
j

〈
etj
〉= 1,(73)

where the last identity uses (50). By (50), Cauchy–Schwarz, and translation invari-
ance we have

(74)
〈
etj+tl

〉= 1 + 〈yjyl〉 ≤ 1 + 〈
y2

0
〉
.

Using (74) and the integration by parts identity, it follows that

〈|DH̃ |2〉= 〈DD̄H̃ 〉 = 1

|�|
∑
j,l

βjl

〈
etj+tl

〉(
1 − cos

(
p · (j − l)

))+ h

|�|
∑
j

〈
etj
〉

≤ 1

|�|
∑
j,l

βjl

(
1 + 〈

y2
0
〉)(

1 − cos
(
p · (j − l)

))+ h(75)

= (
1 + 〈

y2
0
〉)
λ(p) + h.

In summary, we have proved

(76)
∑
j

ei(p·j)〈y0yj 〉 = 〈∣∣S(p)
∣∣2〉≥ |〈S(p)DH̃ 〉|2

〈|DH̃ |2〉 ≥ 1

(1 + 〈y2
0〉)λ(p) + h

as claimed. �
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APPENDIX: HOROSPHERICAL COORDINATES

A.1. H
n. Under the change of variables,

(77) x = sinh t − 1

2
|s̃|2et , yi = et si, z = cosh t + 1

2
|s̃|2et ,

the measure transforms as

(78)
1

z
dx ∧ dy1 ∧ · · · ∧ dyn−1 �→ detJ

cosh t + 1
2 |s̃|2et

dt ∧ ds1 ∧ · · · ∧ dsn−1,

where the Jacobian matrix in block form is

(79) J =
[

A1×1 B1×n−1
Cn−1×1 Dn−1×n−1

]
with

A = ∂x

∂t
= cosh t − 1

2
|s̃|2et , Bj = ∂x

∂sj
= −sj e

t ,(80)

Ci = ∂yi

∂t
= siet , Dij = ∂yi

∂sj
= δij e

t .(81)

Noting that D = et I , the determinant is easily computed using the Schur comple-
ment formula,

detJ = (detD)det
(
A − BD−1C

)
= e(n−1)t

(
cosh t − 1

2

∣∣s̃2∣∣et −
n−1∑
i=1

(−sie
t )e−t (siet ))(82)

= e(n−1)t

(
cosh t + 1

2
|s̃|2et

)
,

giving the transformed measure as

(83)
detJ

cosh t + 1
2 |s̃|2et

dt ∧ ds1 ∧ · · · ∧ dsn−1 = e(n−1)t dt ∧ ds1 ∧ · · · ∧ dsn−1.

A.2. H
2|2. The calculation for H

2|2 is similar to the previous case, but the
Jacobian is replaced by the Berezinian. The notation in (29) corresponds to the
following notation in [10] (resp., [2]):

(84)
∫
R2|2

F =
∫

dx ∧ dy ◦ ∂ξ ∂ηF =
∫

F dηdξ dx dy.

Applying [2], Theorem 2.1, to the change of variables

x = sinh t − 1

2

(
s2 + 2ψ̄ψ

)
et , y = set ,

z = cosh t + 1

2

(
s2 + 2ψ̄ψ

)
et , η = ψet , ξ = ψ̄et ,

(85)



3394 R. BAUERSCHMIDT, T. HELMUTH AND A. SWAN

the Berezin measure transforms as

(86)
1

z
dηdξ dx dy �→ sdetM

cosh t + 1
2(s2 + 2ψ̄ψ)et

dψdψ̄ dt ds,

where M is the Berezinian supermatrix

(87) M =
[
A B

C D

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂t

∂y

∂t

∂η

∂t

∂ξ

∂t
∂x

∂s

∂y

∂s

∂η

∂s

∂ξ

∂s
∂x

∂ψ

∂y

∂ψ

∂η

∂ψ

∂ξ

∂ψ
∂x

∂ψ̄

∂y

∂ψ̄

∂η

∂ψ̄

∂ξ

∂ψ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and sdetM = (detD)−1 det (A − BD−1C) is its Berezinian (superdeterminant).
The four blocks are then

A =
⎡⎣cosh t − 1

2

(
s2 + 2ψ̄ψ

)
et set

−set et

⎤⎦ , B =
[
ψet ψ̄et

0 0

]
,(88)

C =
[

ψ̄et 0
−ψet 0

]
, D =

[
et 0
0 et

]
.(89)

The first term in the Berezinian is simply (detD)−1 = e−2t , whilst the second is

det
(
A − BD−1C

)
= det

⎛⎝⎡⎣cosh t − 1

2

(
s2 + 2ψ̄ψ

)
et set

−set et

⎤⎦+
[

2ψ̄ψet 0
0 0

]⎞⎠(90)

= et

(
cosh t + 1

2

(
s2 + 2ψ̄ψ

)
et

)
,

giving the transformed Berezin measure as

(91)
sdetM

cosh t + 1
2(s2 + 2ψ̄ψ)et

dψdψ̄ dt ds = e−t dψdψ̄ dt ds,

which corresponds to (41).
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