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LARGEST ENTRIES OF SAMPLE CORRELATION MATRICES
FROM EQUI-CORRELATED NORMAL POPULATIONS

BY JIANQING FAN1 AND TIEFENG JIANG2

Princeton University and University of Minnesota

The paper studies the limiting distribution of the largest off-diagonal en-
try of the sample correlation matrices of high-dimensional Gaussian popu-
lations with equi-correlation structure. Assume the entries of the population
distribution have a common correlation coefficient ρ > 0 and both the popu-

lation dimension p and the sample size n tend to infinity with logp = o(n
1
3 ).

As 0 < ρ < 1, we prove that the largest off-diagonal entry of the sample cor-
relation matrix converges to a Gaussian distribution, and the same is true for
the sample covariance matrix as 0 < ρ < 1/2. This differs substantially from
a well-known result for the independent case where ρ = 0, in which the above
limiting distribution is an extreme-value distribution. We then study the phase
transition between these two limiting distributions and identify the regime of
ρ where the transition occurs. If ρ is less than, larger than or is equal to the
threshold, the corresponding limiting distribution is the extreme-value distri-
bution, the Gaussian distribution and a convolution of the two distributions,
respectively. The proofs rely on a subtle use of the Chen–Stein Poisson ap-
proximation method, conditioning, a coupling to create independence and a
special property of sample correlation matrices. An application is given for a
statistical testing problem.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3322
2. Main results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3324

2.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3324
2.2. Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3326
2.3. An application to a high-dimensional test . . . . . . . . . . . . . . . . . . . . . . . . . 3328

3. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3329
3.1. Some technical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3329
3.2. Proofs of Theorems 2.1 and 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3337
3.3. The proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3349
3.4. The proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3358

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3373
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3373

Received September 2017; revised January 2019.
1Supported by NSF Grants DMS-1406266 and DMS-1712591.
2Supported by NSF Grant DMS-1406279.
MSC2010 subject classifications. Primary 62H10, 62E20; secondary 60F05.
Key words and phrases. Maximum sample correlation, phase transition, multivariate normal dis-

tribution, Gumbel distribution, Chen–Stein Poisson approximation.

3321

http://www.imstat.org/aop/
https://doi.org/10.1214/19-AOP1341
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3322 J. FAN AND T. JIANG

1. Introduction. The correlation coefficient matrix is an important statistic
in the multivariate analysis. It plays pivotal roles in the statistical analysis of a
multivariate normal data. The maximum likelihood estimator is the sample corre-
lation matrix. This paper investigates the limiting distribution of the largest off-
diagonal entry of the sample correlation matrix in the high-dimensional setting
when the correlation matrix admits a compound symmetry structure, namely, is of
equi-correlation.

Let X1, . . . ,Xn be a random sample from a p-dimensional population. We have
the data matrix X = (X1, . . . ,Xn)

′. Write X = (xij )n×p = (x(1),x(2), . . . ,x(p)),
then the Pearson correlation coefficient between x(i) and x(j) is given by

(1.1) ρ̂ij =
∑n

k=1(xki − x̄i)(xkj − x̄j )√∑n
k=1(xki − x̄i)2

√∑n
k=1(xkj − x̄j )2

, 1 ≤ i, j ≤ p,

where x̄i = n−1 ∑n
k=1 xki . In particular, ρ̂ii = 1 for all 1 ≤ i ≤ p. The sample cor-

relation matrix R̂ is then defined by R̂ = (ρ̂ij )p×p . In contrast, X′X/n is refereed
to as the sample covariance matrix. Define the largest magnitude of off-diagonal
entries of the sample correlation matrix by

(1.2) L0n = max
1≤i<j≤p

|ρ̂ij |.

Assuming that xij ’s are independent and identically distributed but not necessar-
ily Gaussian-distributed, the asymptotic distribution of L0n have been extensively
studied as both p and n tend to infinity. The first result on the topic is due to Jiang
[9], who uses the Chen–Stein Poisson approximation method to get the limiting
distribution of the L0n as follows.

Assume E|x11|30+ε < ∞ for some ε > 0. Let p = pn and n/p → γ ∈ (0,∞) as
n → ∞, then

P
(
nL2

0n − 4 logn + log logn ≤ t
) → exp

(
− γ 2

√
8π

e−t/2
)

for any t ∈ R, or equivalently,

(1.3) P
(
nL2

0n − 4 logp + log logp ≤ t
) → exp

(
− 1√

8π
e−t/2

)
.

Zhou [20] relaxes the moment condition to that limx→∞ x6P(|x11x12| > x) = 0
and that lim supn→∞ p/n < ∞. Li and Rosalsky [14] consider the strong limit of
L0n under some more relaxed assumption. Li et al. [12, 13] have further improved
the assumption of the result, under the assumption that p/n bounded away from
zero or infinity. They actually obtain some necessary and sufficient conditions un-
der which (1.3) holds. As p/n → ∞, Liu et al. [16] establish similar results to (1.3)
under the assumption p = O(nα) where α is a constant. Cai and Jiang [3] consider
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the ultra-high-dimensional case where p can be as large as enα
for some 0 < α ≤ 1

and they extend the result to dependent case. Can and Jiang [4] derive the limiting
distribution of L0n under the assumption that the population has a spherical dis-
tribution. In fact, a phase transition phenomenon occurs at three different regimes:
logp/n → 0, logp/n → α ∈ (0,∞) and logp/n → ∞. By using the limiting
distribution of L0n, Cai et al. [2] work on the asymptotic behavior of the pairwise
geodesic distances among n random points that are independently and uniformly
distributed on the unit sphere in the p-dimensional spaces. The same phase transi-
tion phenomenon is also understood. Without the Gaussian assumption, Shao and
Zhou [19] obtain similar results to (1.3) as logp = o(nα) for some 0 < α ≤ 1.

Assuming the p entries of x are independent, most of the aforementioned work
mainly focus on the improvement of the moment assumption on x11 from the data
matrix X = (xij )n×p as well as relaxing the range of p relative to n. The question
of how dependence impacts on the limiting distribution of the largest correlations
remains largely unknown.

In this paper, we will consider a case that all the entries of x are very dependent.
In fact, we assume x ∼ Np(μ,�), where Np(μ,�) stand for a p-variate normal
population with the correlation matrix R = (ρij )p×p , and the corresponding cor-
relation matrix R has the compound symmetry structure, which is also referred to
as the intraclass covariance or equi-correlation structure in literature, that is,

(1.4) R =

⎛
⎜⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
...

ρ ρ · · · 1

⎞
⎟⎟⎟⎠ .

It is easy to see that R is positive definite if and only if 1 > ρ > −1/(p − 1). Since
we will be in the scenario that p = pn → ∞, we will always assume ρ ≥ 0 later.

When ρ > 0, the sample correlations ρ̂ij , 1 ≤ i < j ≤ p are highly dependent
and new technical challenges arise in deriving the limiting distribution of the maxi-
mum value of these entries. In addition, we found somewhat surprisingly that such
a limiting distribution is Gaussian. This is in sharp contrast to the independence
case (ρ = 0) in which the limiting distribution is a Gumbel distribution. Where
does the phase transition occur? In what way the limiting distribution changes
over the regime of correlation ρ? We provide sharp asymptotic results to describe
these regimes of ρ and their associated limiting distributions of the maximum cor-
relation.

Related to our study is the maximum spurious correlation between each variable
in X and an independent variable Y in which the variables in X are correlated. Fan
et al. [8] derive the asymptotic distribution of such a maximum spurious correla-
tion using Gaussian approximation techniques of Chernozhukov et al. [6]. Unless
the correlation matrix of X is of a specific form, such a limiting distribution can
not be analytically derived and they require a multiplier bootstrap method to es-
timate the limiting distribution. Their setting relates to our case with the last row
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of off-diagonal correlation equal to zero and only computes the maximum sample
correlation in the last row, albeit these sample correlations are also dependent due
to the dependence of X.

Some notation will be used in the paper. The symbol
d−→ means convergence in

distribution, ξ d= η implies that ξ and η have the same distribution. For two nonran-
dom sequences an and bn, bn = o(an) means bn/an → 0, and bn = O(an) means
lim supn→∞ |bn/an| < ∞. For a random sequence ξn and a nonrandom sequence
an, ξn = op(an) means ξn/an → 0 in probability as n → ∞, and ξn = Op(an)

means limC→∞ lim supn→∞ P(|ξn/an| > C) = 0. In addition, we denote C and
C1 positive constants independent of n or p, and their values may be different
from line to line.

The rest of the paper is organized as follows. Section 2 gives the main results,
discussions and an application. The proofs are relegated to Section 3, where we
develop necessary technical tools for our quests.

2. Main results and discussions. Let X1, . . . ,Xn be a random sample from
the population Np(μ,�) with the population correlation matrix R defined as in
(1.4). The data matrix is given by X = (X1, . . . ,Xn)

′ = (xij )n×p .
We will study the following two statistics in this paper:

(2.1) Jn = max
1≤i<j≤p

1

n

n∑
k=1

xkixkj and Ln = max
1≤i<j≤p

ρ̂ij ,

where ρ̂ij is defined as in (1.1). The first statistic is the maximum off-diagonal
entry of normalized sample covariances when μ = 0, whereas the second statistic
is the maximum off-diagonal entry of the sample correlations. The purpose of
having the normalization in Jn is such that Jn and Ln have the same scale. To
make our analysis thorough, we allow ρ to depend on n. It will be seen from
Corollaries 2.1 and 2.2 later on that Jn and Ln behave differently as ρ is a constant.

2.1. Main results. We first consider the limiting distribution for the statistic
Jn.

THEOREM 2.1. Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1/2. Assume μ =
0 and � = R, where R is given by (1.4). Suppose p = pn → ∞ and logp =
o(n1/3) as n → ∞. Set

μ1 = √
nρn +

(
2
√

logp − log logp

4
√

logp

)√
1 − ρ2

n.

The following holds as n → ∞:

(i) If ρn

√
logp → 0, then

4
√

logp(
√

nJn − μ1)
d−→ φ,

where φ has distribution function F(x) = e−Ke−x/2
, x ∈ R with K = 1

4
√

2π
.
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(ii) If ρn

√
logp → λ ∈ (0,∞), then√

nJn − μ1√
2ρn

d−→ ξ + λ0φ,

where ξ ∼ N(0,1), λ0 = 1
4
√

2λ
, φ is as in (i) and φ is independent of ξ .

(iii) If ρn

√
logp → ∞, then√

nJn − μ1√
2ρn

d−→ N(0,1).

The above theorem has the following implication.

COROLLARY 2.1. Let ρ ∈ (0,1/2) be fixed, μ = 0 and � = R, where R is as
in (1.4). Suppose p = pn → ∞ and logp = o(n1/3) as n → ∞. Then√

nJn − μ1√
2ρ

d−→ N(0,1)

as n → ∞, where μ1 = √
nρ + 2

√
(1 − ρ2) logp.

For the largest entry of the sample correlation matrix R̂, we have the following.

THEOREM 2.2. Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1. Assume � = R,
where R is as in (1.4). Let p = pn → ∞ satisfying logp = o(n1/3) as n → ∞. Set

μ2 = √
n − 1ρn + (1 − ρn) ·

√
1 + 2ρn − ρ2

n ·
(

2
√

logp − log logp

4
√

logp

)
.

The following holds as n → ∞:

(i) If ρn

√
logp → 0, then

4
√

logp(
√

n − 1Ln − μ2)
d−→ φ,

where φ has the distribution function F(x) = e−Ke−x/2
, x ∈ R with K = 1

4
√

2π
.

(ii) If ρn

√
logp → λ ∈ (0,∞), then√

n − 1Ln − μ2√
2ρn

d−→ ξ + λ0φ,

where ξ ∼ N(0,1), λ0 = 1
4
√

2λ
and φ is the same as in (i) and φ is independent

of ξ .
(iii) If ρn

√
logp → ∞, then√

n − 1Ln − μ2√
2ρn(1 − ρn)

d→ N(0,1).
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If ρ is close to zero, presumably the behavior of Ln is close to an extreme-value
distribution as in (1.3); if ρ is relatively large, Ln is asymptotically the normal
distribution as stated in Theorem 2.2. Part (ii) of the above theorem actually gives
the phase transition between the two cases. The following is an easy consequence
of Theorem 2.2.

COROLLARY 2.2. Let ρ ∈ (0,1) be fixed and � = R, where R is as in (1.4).
Suppose p = pn → ∞ and logp = o(n1/3) as n → ∞. Then, (

√
n − 1Ln −

μ2)/σ2
d−→ N(0,1) as n → ∞, where

μ2 = ρ
√

n − 1 + 2(1 − ρ) ·
√

1 + 2ρ − ρ2 ·
√

logp and σ2 = √
2ρ(1 − ρ).

The above two results are totally different from Jiang [9], Zhou [20], Liu et al.
[16], Li et al. [12, 13], Cai and Jiang [3], Can and Jiang [4], Cai et al. [2], Shao and
Zhou [19]. They all end up with the Gumbel distribution by arguing that ρ̂ij ’s are
roughly independent random variables. In Theorems 2.1 and 2.2, the appearance
of ρ creates a strong dependency among the terms

∑n
k=1 xkixkj ,1 ≤ i < j ≤ p, in

the definition of Jn from (2.1). This is also true for the terms ρ̂ij ,1 ≤ i < j ≤ p.
The occurrence of ρ makes the situation so delicate that, if ρ is a constant, the
limiting distributions of Jn and Ln are no longer the Gumbel distribution, they are
the normal distribution instead.

For Jn (similarly for Ln), a key difference between the case ρ = 0 and the case
ρ > 0 is explained as follows. When ρ > 0, each term of the denominator in (1.1)
can no longer be regarded as roughly

√
n as that in the case ρ = 0. In particular, if

ρ > 0 is a constant, the dependence really matters, and the difference can be seen
from Corollary 2.2 by comparing the means and the variances.

2.2. Discussions. The paper investigates the limiting distributions of the
largest off-diagonal entry of sample covariance/correlation matrices generated by
a random sample from a high-dimensional normal distribution. We assume the
normal distribution has the structure of equi-correlation (1.4). Under the assump-
tion that p → ∞ and logp = o(n1/3), the asymptotic distributions of the largest
off-diagonal entries of both matrices are established. Their behaviors depend on
the value of ρ. The limits are the normal distribution if ρ is reasonably large; the
limiting distributions are the extreme-value distribution if ρ is very small. We also
figure out the regime to differentiate the two scenarios. In particular, for ρ in the
regime, the limiting distribution is the convolution of the Gaussian distribution and
the extreme-value distribution.

We make a few remarks as follows.

REMARK 2.1. For the sample correlation matrix R̂, we get the limiting distri-
bution of its largest off-diagonal entry for each ρ ∈ [0,1). The same result holds for
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the sample covariance matrix but under the more stringent restriction 0 ≤ ρ < 1/2,
which is required in Lemma 3.11. This difference will be easily understood by the
fact that the sample correlation matrix can be regarded as a type of self-normalized
statistics. It is known that self-normalized statistics are more “tamed” (see, e.g.,
Shao and Wang [18]), and hence the range of ρ is more relaxed in the case of the
sample correlation matrix than that in the case of the sample covariance matrix.
We do not know whether or not Theorem 2.1 is still true for the case ρ ∈ [1/2,1).
It is an interesting project for future.

REMARK 2.2. Under the Gaussian assumption and that for the equi-corre-
lation R in (1.4), the decomposition structure of (3.21), that is,

(2.2) X1 = √
ρ(ξ, . . . , ξ)′ +√

1 − ρ(ξ1, . . . , ξp)′,
where ξ, ξ1, . . . , ξp are independent standard Gaussian random variables, and
plays a key role in the proofs. Now let us remove the Gaussian assumption. Instead,
we assume the decomposition (2.2) continues to hold with ξ, ξ1, . . . , ξp relaxed to
be i.i.d. random variables. Then Theorems 2.1 and 2.2 may also hold.

REMARK 2.3. The paper deals with the equi-correlation matrix. If R =
(rij ) has another special structure, one may like to work on max1≤i<j≤p ρ̂ij or
max1≤i<j≤p ρ̂ij /ρij . It seems that, to get good properties for these two quantities,
R cannot be arbitrary.

REMARK 2.4. Recall the notation Jn in (2.1). Let Ĵn = n−1 ∑n
k=1 xk1xk2 be

the sample mean of i.i.d. random variables. Assuming ρ is fixed. It is easy to check

that (
√

nĴn − √
nρ)/

√
1 + ρ2 d−→ N(0,1). Corollary 2.1 asserts that

(2.3)

√
nJn − √

nρ − 2
√

(1 − ρ2) logp√
2ρ

d−→ N(0,1).

Comparing the two limiting results, we see Jn has a larger mean and a smaller
standard deviation than those of Ĵn, respectively. However, the two means are on
the same scale and so are the two standard deviations. This concludes that the
correlation, instead of independence, dominates Jn such that Jn, as the maximum
of many random variables, is more or less like a single term Ĵn.

REMARK 2.5. Assuming ρ = 0, Jiang [10] obtains the limiting spectral dis-
tribution of the sample correlation matrix R̂. When n/p → c ∈ (0,∞), the au-
thor proves that the empirical spectral distribution of R̂ asymptotically obeys the
Marchenko–Pastur law. If 0 < ρ < 1, by using the decomposition (3.21), it can
be shown easily that the spectral distribution of the sample covariance matrix also
takes the Marchenko–Pastur law as its limit. A similar result is expected for corre-
lation matrix R̂ for the case ρ > 0 by employing the approximation method from
Jiang [10].



3328 J. FAN AND T. JIANG

REMARK 2.6. Review the limiting distribution in Corollary 2.2 is normal.
This does not mean the convergence rate is similar to that of the standard CLT.
The convergence rate of CLT is much faster than that of maximum of i.i.d. Gaus-
sian random variables which converges to the Gumbel distribution. This can be
seen easily from the following example. Let {xi;1 ≤ i ≤ n} be N(0,1)-distributed
random variables with Cov(xi, xj ) = ρ > 0 for all i 
= j . Then we can write
xi = √

ρη+√
1 − ρηi for each i, where η,η1, . . . , ηn are i.i.d. N(0,1)-distributed

random variables. Obviously, max1≤i≤n xi = √
ρη + √

1 − ρ max1≤i≤n ηi . It is
known that

(2.4) max
1≤i≤n

ηi =
√

2 logn − log logn + log(4π)

2
√

2 logn
+ Un√

2 logn
,

where Un
d−→ e−e−x

(see, e.g., Leadbetter et al. [11]). This concludes that

max
1≤i≤n

xi −
√

2(1 − ρ) logn = √
ρη + εn,

where εn ∼
√

1−ρ√
8

· log logn√
logn

in probability. So, max1≤i≤n xi − √
2(1 − ρ) logn

d−→
N(0, ρ) with speed log logn√

logn
, which is even slower than the convergence rate 1√

logn

appeared in the coefficient of Un from (2.4).

2.3. An application to a high-dimensional test. Let X1, . . . ,Xn be a random
sample from the population Np(μ,�). We are interested in testing whether �

is diagonal. A natural nonparametric test is to use the test statistic Ln, which is
powerful for sparse alternatives. The null distribution of such a test statistic cor-
responds to the limiting distribution for case ρ = 0 in regime (i) of Theorem 2.2.
A question arises naturally how powerful it is under the dense alternatives. The
specific alternative of interest is

H0 : ρ = 0 v.s. H1 : ρ = ρ1,

where ρ1 ∈ (0,1) is given.
Assume the dimension p and sample size n are all very large such that logp =

o(n1/3). By part (i) of Theorem 2.2, under H0,

4
√

logp(
√

n − 1Ln − μ20)
d−→ φ,

where μ20 = 2
√

logp − log logp

4
√

logp
and φ has distribution function F(x) = e−Ke−x/2

,

x ∈ R and K = 1
4
√

2π
. For 0 < α < 1, denote qα the (1 − α)-quantile of the distri-

bution F(x), that is,

(2.5) qα = − log(32π) − 2 log log(1 − α)−1.
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Then a rejection region of the asymptotic size-α test is given by

(2.6) X0 =
{√

n − 1Ln ≥ 2
√

logp + qα − log logp

4
√

logp

}
.

Using part (i) of Theorem 2.2 again, when ρ1 = o(1/
√

logp), the asymptotic
power is still α, like a random guess, as the asymptotic distribution under such
a contiguous alternative hypothesis is the same as that under the null hypothesis.
Now the power starts to emerge when ρ1 = λ/

√
logp for λ ∈ (0,∞) as in case (ii)

of Theorem 2.2. In this case, μ2 can be calculated as

μ22 := λ

√
n − 1

logp
+
[
1 − 2λ2

logp
+ O

(
1

(logp)3/2

)]
μ20.

The power function is

β(ρ1) = P
{√

n − 1Ln ≥ μ20 + qα/(4
√

logp)|ρ1
}

= P
{
4
√

logp(
√

n − 1Ln − μ22) ≥ qα − 4λ
√

n − 1 + 16λ2 + o(1)|ρ1
}
.

According to part (ii) of Theorem 2.2, the power tends to 1 for each fixed λ. By
using a similar argument, it is easy to show that the power in case (iii) has also
asymptotic power 1.

3. Proofs. The proofs of Theorems 2.1 and 2.2 are quite involved. We break
them into Sections 3.1, 3.2, 3.3 and 3.4. In Section 3.1, we provide some prelim-
inary results; In Section 3.2, we prove the main results; in Section 3.3 and Sec-
tion 3.4, we prove some key technical steps used in the proofs of Theorem 2.1 and
Theorem 2.2, respectively.

3.1. Some technical tools. In this section, we will collect and prove some tech-
nical tools toward the proofs of Theorems 2.1 and 2.2.

We first present Lemma 3.2, a special property of the sample correlation matrix
R̂ as defined below (1.1). An auxiliary fact has to be derived first.

LEMMA 3.1. Let X1, . . . ,Xn be i.i.d. random vectors and X1 ∼ Np(0,�),
where � is a p × p positive semidefinite matrix. Set X = (X1, . . . ,Xn)

′. Then, for
any n × n orthogonal matrix O, we have OX d= X.

PROOF. Let Y1, . . . , Yn be i.i.d. and Y1 ∼ Np(0, Ip). Then Xi and �1/2Yi have
the same distribution for each i. By independence,

(3.1) X = (X1, . . . ,Xn)
′ d= (Y1, . . . , Yn)

′�1/2.

As a consequence,

OX d= O(Y1, . . . , Yn)
′�1/2
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for any n × n orthogonal matrix O. Write (Y1, . . . , Yn)
′ = (yij )n×p . Then yij ’s are

i.i.d. N(0,1)-distributed random variables. Hence O(Y1, . . . , Yn)
′ d= (Y1, . . . , Yn)

′
by the orthogonal invariance of independent Gaussian random variables. From
(3.1), it follows that

OX d= (Y1, . . . , Yn)
′�1/2 d= X. �

The following lemma provides a simple expression for the sample correlation
matrix.

LEMMA 3.2. Let X1, . . . ,Xn be i.i.d. random vectors and X1 ∼ Np(μ,�)

where μ ∈ R
p and � is a positive definite matrix. Let ρ̂ij be as in (1.1).

Suppose Y1, . . . , Yn−1 are i.i.d. and Y1 ∼ Np(0,�). Write (Y1, . . . , Yn−1)
′ =

(V1, . . . , Vp)(n−1)×p. Then

(ρ̂ij )p×p
d=
(

V ′
i Vj

‖Vi‖ · ‖Vj‖
)

p×p

.

PROOF. Since ρ̂ij is invariant under translation and scaling of the vectors
X1, . . . ,Xn, we assume μ = 0 without loss of generality.

Denotes 1 = (1,1, . . . ,1)′ ∈ R
n×1 and An×n = In − 1

n
11′. Trivially, A is an

idempotent matrix with tr(A) = n−1, then there exists an n×n orthogonal matrix
O such that

A = O′
(

In−1 0
0 0

)
O.

Write

(3.2)

⎛
⎜⎜⎜⎝

x1j − x̄j

x2j − x̄j

...

xnj − x̄j

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

cx1j

x2j

...

xnj

⎞
⎟⎟⎟⎠

for each 1 ≤ j ≤ p. Write X = (X1, . . . ,Xn)
′ = (xij )n×p . Then

H :=

⎛
⎜⎜⎜⎝

x11 − x̄1 x12 − x̄2 · · · x1p − x̄p

x21 − x̄1 x22 − x̄2 · · · x2p − x̄p

...
...

...

xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p

⎞
⎟⎟⎟⎠

= O′
(

In−1 0
0 0

)
OX d= O′

(
In−1 0

0 0

)
X

by Lemma 3.1. Then

X̃ :=
(

In−1 0
0 0

)
X =

(
(xij )(n−1)×p

0

)
,
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where 0 above is a p-dimensional row vector with all entries equal to zero. There-

fore, H d=O′X̃, and hence

H′H d= X̃′X̃ = (xij )
′
(n−1)×p(xij )(n−1)×p.

Define (xij )(n−1)×p = (V1, . . . , Vp)(n−1)×p . The above implies

(3.3) H′H d= (
V ′

i Vj

)
p×p.

For a positive definite matrix M = (mij )p×p , define h(M) to be a p × p ma-

trix such that its (i, j)-entry is equal to mijm
−1/2
ii m

−1/2
jj . Let Mp×p be the set

of all p × p positive definite matrices. Then h : Mp×p → Mp×p is contin-
uous map and, therefore, is Borel-measurable map. From (3.3), we conclude

h(H′H)
d= h((V ′

i Vj )p×p). The desired conclusion then follows. �

The next one is the Chen–Stein Poisson approximation method, which is a spe-
cial case of Arratia, Goldstein and Gordon [1], Theorem 1.

LEMMA 3.3. Let {ηα,α ∈ I } be random variables on an index set I and
{Bα,α ∈ I } be a set of subsets of I , that is, for each α ∈ I , Bα ⊂ I . For any
t ∈ R, set λ = ∑

α∈I P (ηα > t), Then we have∣∣∣P (
max
α∈I

ηα ≤ t
)

− e−λ
∣∣∣ ≤ (

1 ∧ λ−1)(b1 + b2 + b3),

where

b1 = ∑
α∈I

∑
β∈Bα

P (ηα > t)P (ηβ > t),

b2 = ∑
α∈I

∑
α 
=β∈Bα

P (ηα > t, ηβ > t),

b3 = ∑
α∈I

∣∣P {
ηα > t |σ(ηβ,β /∈ Bα)

}− P(ηα > t)
∣∣,

and σ(ηβ,β /∈ Bα) is the σ -algebra generated by {ηβ,β /∈ Bα}. In particular, if ηα

is independent of {ηβ,β /∈ Bα} for each α, then b3 vanishes.

The next lemma is on the moderation deviation of the partial sum of i.i.d. ran-
dom variables. It can be seen, for instance, from Linnik [15].

LEMMA 3.4. Suppose {ζ, ζ1, ζ2, . . .} is a sequence of i.i.d. random variables
with Eζ1 = 0 and Eζ 2

1 = 1. Define Sn = ∑n
i=1 ζi . If Eet0|ζ |α < ∞ for some 0 <

α ≤ 1 and t0 > 0, then

lim
n→∞

1

x2
n

logP

(
Sn√
n

≥ xn

)
= −1

2

for any xn → ∞, xn = o(n
α

2(2−α) ).
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The following lemma studies the moderation deviation of the partial sum of the
independent but not necessarily identically distributed random variables; see Chen
et al. [5], Proposition 4.5.

LEMMA 3.5. Let ηi , 1 ≤ i ≤ n be independent random variables with Eηi = 0
and Eehn|ηi | < ∞ for some hn > 0 and 1 ≤ i ≤ n. Assume that

∑n
i=1 Eη2

i = 1.
Then

P(
∑n

i=1 ηi ≥ x)

1 − �(x)
= 1 + Cn

(
1 + x3)γ e4x3γ

for all 0 ≤ x ≤ hn and γ = ∑n
i=1 E(|ηi |3ex|ηi |), where supn≥1 |Cn| ≤ C and C is

an absolute constant.

In our framework, ηi above is a quadratic form of two independent normal vari-
ables for each i. We first need to control E(|ηi |3ex|ηi |).

LEMMA 3.6. Let U and V be i.i.d. N(0,1)-distributed random variables. Let
a, b, c, d , e, f be real numbers. Set η = aU2 +bUV + cV 2 +dU + eV +f . Then

E
(|η|3ex|η|) ≤ C · (|a|3 + |b|3 + |c|3 + |d|3 + |e|3 + |f |3) · e2(d2+e2)x2+|f |x

as 0 < x ≤ 1
12(|a|+|b|+|c|) , where C is constant not depending on a, b, c, d , e or f .

PROOF. First, use |UV | ≤ U2 + V 2 to see

(3.4) |η| ≤ (|a| + |b|)U2 + (|b| + |c|)V 2 + |dU + eV | + |f |.
In particular,

E|η|9 ≤ 48 · E[(|a| + |b|)9
U18 + (|b| + |c|)9

V 18 + |dU + eV |9 + |f |9]
≤ C1

[(|a| + |b|)9 + (|b| + |c|)9 + (
d2 + e2)9/2 + |f |9]

≤ C1
[(|a| + |b| + |c|)9 + (|d| + |e|)9 + |f |9],

where C1 is a constant not depending on a, b, c, d , e or f . We also use the facts

E(U18 + V 18) < ∞ and dU + eV
d= √

d2 + e2U . It follows that

(3.5)
(
E|η|9)1/3 ≤ C

1/3
1

(|a| + |b| + |c| + |d| + |e| + |f |)3
.

From (3.4),

E
(|η|3ex|η|) ≤ (

E|η|9)1/3 · [E exp
(
3x

(|a| + |b|)U2 + 3x
(|b| + |c|)V 2)]1/3

· [E exp
(
3x|dU + eV |)]1/3 · ex|f |.
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First,

Ee3x·|dU+eV | = Ee3x
√

d2+e2|U |

≤ Ee3x
√

d2+e2U + Ee−3x
√

d2+e2U = 2e9x2(d2+e2)/2

by using the identity EetN(0,1) = et2/2 for all t ∈ R. Second, setting α = 3x(|a| +
|b|) and β = 3x(|b| + |c|), and reviewing EesU2 = (1 − 2s)−1/2 for all s < 1

2 , we
have

E exp
(
3x

(|a| + |b|)U2 + 3x
(|b| + |c|)V 2) = (1 − 2α)−1 · (1 − 2β)−1 ≤ 4

if α ≤ 1
4 and β ≤ 1

4 by independence. Finally, combining the above, we see

E
(|η|3ex|η|) ≤ C · (|a| + |b| + |c| + |d| + |e| + |f |)3

e2(d2+e2)x2+|f |x

as 0 < x ≤ 1
12(|a|+|b|+|c|) . The conclusion then comes from an inequality on convex

function f (x) := x3 for x ≥ 0. �

In our setting, the parameter γ from Lemma 3.5 needs a special care. This will
be done below with the help of Lemma 3.6.

LEMMA 3.7. Let {ξk;k ≥ 1} be i.i.d. N(0,1)-distributed random variables.
Set τ = E(|ξ1|3) + 1. Assume p = pn satisfies that p → ∞ and logp = o(n1/3).
Let {yn > 0;n ≥ 1} be real numbers such that yn = O(logp). Then,

P

(
1

n

n∑
k=1

(
1 + |ξk|3)eynξ2

k /n ≥ 2τ

)
≤ exp

(
−1

4
n1/2(logn)−2

)

as n is sufficiently large.

PROOF. By assumption, we assume yn ≤ N0 logp for all n ≥ 1, where N0 >

0 is a constant. For ε > 0, set �ε = {max1≤k≤n ξ2
k ≤ εn/yn}. By the inequality

P(N(0,1) ≥ y) ≤ 1√
2πy

e−y2/2 ≤ e−y2/2 for all y ≥ 1, there exists a constant n1 ≥
1 such that

P
(
�c

ε

) ≤ nP
(|ξ1| > (εn/yn)

1/2) ≤ n · exp
(
−ε

2
· n

yn

)

as n ≥ n1, which is again bounded by

n · exp
(
− ε

2N0
· n

logp

)
≤ n · e−n2/3
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as n ≥ nε ≥ n1, where nε ≥ 1 is an integer depending on ε. It follows that

P

(
1

n

n∑
k=1

(
1 + |ξk|3)eynξ2

k /n ≥ 2τ

)

≤ P

(
1

n

n∑
k=1

(
1 + |ξk|3)eε ≥ 2τ

)
+ n · e−n2/3

as n ≥ nε . Take ε = log(4/3). Then 2e−ετ = 3τ/2. Consequently,

P

(
1

n

n∑
k=1

(
1 + |ξk|3)eε ≥ 2τ

)

= P(
1

n

n∑
k=1

(
|ξk|3 − E

(|ξk|3) ≥ 1

2
τ

)
≤ P

(
1√
n

n∑
k=1

ζk ≥ xn

)

as n is sufficiently large, where ζk = (|ξk|3 − E(|ξk|3))/
√

Var(ξ3
1 ) and xn =

n1/4/ logn. Set σ =
√

Var(ξ3
1 ). Observe that σ 2/3 · |ζk|2/3 ≤ |ξk|2 + (E|ξk|3)2/3.

This implies E exp(σ 2/3|ζk|2/3/4) < ∞ since ξk ∼ N(0,1). Take α = 2/3 in
Lemma 3.4 to see

P

(
1√
n

n∑
k=1

ζk ≥ xn

)
≤ exp

(
−1

4
n1/2(logn)−2

)

as n is sufficiently large. In summary,

P

(
1

n

n∑
k=1

(
1 + |ξk|3)eynξ2

k /n ≥ 2τ

)
≤ exp

(
−1

4
n1/2(logn)−2

)
+ n · e−n2/3

.

This implies the desired inequality. �

The following result provides us with an equivalent expression on a limit the-
orem. It will be applied to the proofs of Propositions 3.1 and 3.2 later, in which
F(x) is an extreme-value distribution.

LEMMA 3.8. Let Mn be a random variable for each n ≥ 1 satisfying

lim
n→∞P(Mn ≤

√
4 logp − log logp + x) = F(x)

for any x ∈ R, where F(x) is a continuous distribution function on R. Then

Mn = 2
√

logp − log logp

4
√

logp
+ 1

4
√

logp
Un,

where Un converges weakly to a probability measure with distribution function
F(x).
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PROOF. Easily, (1 + t)1/2 = 1 + 1
2 t + r(t) where sup|t |<ε |r(t)| ≤ t2 for some

ε > 0. Fix x0 ∈R. Let A0 > 0 be given. For any x ∈ [x0 − A0, x0 + A0],√
4 logp − log logp + x = 2

√
logp

(
1 − log logp

4 logp
+ x

4 logp

)1/2

= 2
√

logp

[
1 − log logp

8 logp
+ x

8 logp
+ r(p, x)

]
,

where

sup
|x−x0|≤A0

∣∣r(p, x)
∣∣ ≤ sup

|x−x0|≤A0

(
log logp

4 logp
− x

4 logp

)2
≤ (log logp)2

15(logp)2

as n is large enough. By the given condition,

(3.6) lim
n→∞P

(
Mn ≤ 2

√
logp − log logp

4
√

logp
+ x

4
√

logp
+ s(p, x)

)
= F(x)

as n → ∞, where s(p, x) := 2r(p, x)
√

logp and

(3.7) sup
|x−x0|≤A0

∣∣s(p, x)
∣∣≤ (log logp)2

7(logp)3/2

as n is sufficiently large. Define

(3.8) Un = 4
√

logp

(
Mn − 2

√
logp + log logp

4
√

logp

)
.

Then (3.6) implies that

(3.9) lim
n→∞P

(
Un ≤ x + t (p, x)

) = F(x),

where t (p, x) := 4s(p, x)
√

logp. Easily, from (3.7),

sup
|x−x0|≤A0

∣∣t (p, x)
∣∣ ≤ (log logp)2

logp

as n is sufficiently large. Therefore, for any δ > 0,

P(Un ≤ x − δ) ≤ P
(
Un ≤ x + t (p, x)

) ≤ P(Un ≤ x + δ)

as n is sufficiently large. From (3.9),

lim sup
n→∞

P(Un ≤ x − δ) ≤ F(x) ≤ lim inf
n→∞ P(Un ≤ x + δ)

for any x ∈ [x0 − A0, x0 + A0]. For δ ∈ (0,A0), taking x = x0 + δ and x = x0 − δ,
respectively, we have

lim sup
n→∞

P(Un ≤ x0) ≤ F(x0 + δ);
lim inf
n→∞ P(Un ≤ x0) ≥ F(x0 − δ).
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Letting δ ↓ 0, we obtain limn→∞ P(Un ≤ x0) = F(x0). Since x0 ∈ R is arbitrary,
this limiting result together with (3.8) concludes the proof. �

The next lemma is a coupling result, enabling us to prove that the two random
variables appearing in parts (ii) of Theorems 2.1 and 2.2 are asymptotically in-
dependent. Now we assume {ξk, ξki;1 ≤ k ≤ n,1 ≤ i < j ≤ p} are i.i.d. random
variables with the distribution N(0,1).

LEMMA 3.9. Suppose p = pn → ∞ as n → ∞. For all 1 ≤ i < j ≤ p, let
Cnij = n−1/2 ∑n

k=1 ξk(ξki + ξkj ). For any real numbers {λn;n ≥ 1} and any set of
random variables {Hij ;1 ≤ i < j ≤ p}, we have

max
1≤i<j≤p

{Hi,j + λnCnij } = max
1≤i<j≤p

{
Hi,j + λn ·

√
n

‖ξ‖Cnij

}
+ Op

(
λn

√
logp√
n

)

as n → ∞. The above statement also holds if “Cnij ” is replaced by “Cmij ” with
m = n − 1.

PROOF. Recall ‖ξ‖ = (ξ2
1 + · · · + ξ2

n )1/2. Then

(3.10)

∣∣∣∣
√

n

‖ξ‖ − 1
∣∣∣∣ = |‖ξ‖2 − n|

‖ξ‖ + √
n

· 1

‖ξ‖

≤ 1√
n

·
√

n

‖ξ‖ ·
∣∣∣∣∣ 1√

n

n∑
k=1

(
ξ2
k − 1

)∣∣∣∣∣ = Op

(
n−1/2)

as n → ∞ since
√

n/‖ξ‖ → 1 in probability and n−1/2 ∑n
k=1(ξ

2
k −1) converges to

N(0,2) weakly. For any real numbers {λn;n ≥ 1} and any set of random variables
{Hij ;1 ≤ i < j ≤ p}, by a triangle inequality,

(3.11)

∣∣∣∣ max
1≤i<j≤p

{Hi,j + λnCnij } − max
1≤i<j≤p

{
Hi,j + λn ·

√
n

‖ξ‖Cnij

}∣∣∣∣
≤ λn ·

∣∣∣∣
√

n

‖ξ‖ − 1
∣∣∣∣ · max

1≤i<j≤p
|Cnij |.

Note that

max
1≤i<j≤p

|Cnij | ≤ 2 · max
1≤i≤p

1√
n

∣∣∣∣∣
n∑

k=1

ξkξki

∣∣∣∣∣.
Observe that E(ξ1ξ11) = 0, that Var(ξ1ξ11) = 1 and that E exp(|ξ1ξ11|/2) < ∞.
By Lemma 3.4 and the assumption that logp = o(n1/3), we have

(3.12)
P
(

max
1≤i<j≤p

|Cnij | ≥ 2A
√

logp
)

≤ p · P
(

1√
n

∣∣∣∣∣
n∑

k=1

ξkξk1

∣∣∣∣∣ ≥ A
√

logp

)

≤ p · e−A2(logp)/3 → 0
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as long as A >
√

3. So max1≤i<j≤p |Cnij | = Op(
√

logp). This together with
(3.10) and (3.11) implies the desired result. Reviewing the arguments above, we
see the assertion is still true if “n” is replaced by “m.” �

3.2. Proofs of Theorems 2.1 and 2.2. The key elements in our proofs are a
special property for sample correlation matrices under Gaussian assumptions, the
Chen–Stein Poisson approximation method, conditioning arguments and a cou-
pling to create independence. To make it clear, we take Ln from Theorem 2.2 to
elaborate this point through a few steps:

(a) The special property (Lemma 3.2) for sample correlation matrices allows
us to remove x̄i and x̄j from the expression ρ̂ij in (1.1); so we get an easier form
of the target to work with.

(b) With some efforts, we are able to write

(3.13) Ln = αn + βnQn + γnRn,

where αn, βn, γn are constants, Qn goes to N(0,1), Rn (the quantity M ′
n from

Proposition 3.2) is the maximum of sums of independent but nonidentically dis-
tributed random variables; see (3.46).

(c) We use the Chen–Stein Poisson approximation method to work on Rn.
However, due to the strong dependency, we are not able to apply the method di-
rectly. In particular, the methods for deriving the limiting distribution of Rn under
the assumption ρ = 0 in all earlier literature are no longer valid. We will use a
conditioning trick. In fact, conditioning on certain event, we obtain the asymptotic
distribution of Rn by the Chen–Stein method. After taking the expectation of the
conditional probability, we finally derive the limiting distribution of Rn (Proposi-
tion 3.2).

(d) We construct R′
n such that it is independent of Qn in (3.13) by Lemma 3.9

and R′
n has the same asymptotic distribution as that of Rn. Furthermore, we show

that the difference between Ln and L′
n := αn + βnQn + γnR

′
n is negligible. So,

basically speaking, Ln is reduced to a linear combination of two independent ran-
dom variables such that one goes to the normal distribution and another goes to
the extreme-value distribution.

Now we start to prove the main results. The following notation will be used
throughout the rest of the paper. The random variables

(3.14)
{
ξk, ξ

′
k, ξki;k, i = 1,2, . . .

}
are i.i.d. as N(0,1).

Given ρn ∈ [0,1) for each n ≥ 1, set

(3.15) an =
√

1 − ρn

1 + ρn

and bn =
√

ρn

1 + ρn

.

For x ∈ R and integer p ≥ 1, set

(3.16) sp =
√

4 logp − log logp + x.



3338 J. FAN AND T. JIANG

In our theorems, we assume p → ∞, so sp is well defined as p is large. This
clarification will not be repeated in the future. Let ξi ’s be as in (3.14), and write

(3.17) ξ = (ξ1, . . . , ξn)
′ and ‖ξ‖ = (

ξ2
1 + · · · + ξ2

n

)1/2
.

To prove Theorem 2.1, we need further notation as follows:

ηkij = anξkiξkj + bnξk(ξki + ξkj );(3.18)

Mnij = 1√
n

n∑
k=1

ηkij(3.19)

for all 1 ≤ i < j ≤ p. The quantity max1≤i<j≤p Mnij will serves as a key building
block to understand Jn, the largest entry of a sample covariance matrix. It will be
used in the proof of Theorem 2.1.

PROPOSITION 3.1. Let ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1/2. Let sp

be as in (3.16). Set Mn = max1≤i<j≤p Mnij . If p = pn → ∞ and logp = o(n1/3),
then

lim
n→∞P(Mn ≤ sp) = e−Ke−x/2

for any x ∈ R, where K = 1
4
√

2π
.

The proof of Proposition 3.1 will be presented in Section 3.3. Let Jn be as in
(2.1). Define

(3.20) Wn = nJn = max
1≤i<j≤p

n∑
k=1

xkixkj , n ≥ 2.

PROOF OF THEOREM 2.1. By assumption, μ = 0. Let {ξk, ξki, k, i = 1,2, . . .}
and ‖ξ‖ be as in (3.14)–(3.17). Write

(3.21) xki = √
ρnξk +√

1 − ρnξki, 1 ≤ k ≤ n,1 ≤ i ≤ p.

It is easy to check the n rows of the matrix (xij )n×p are i.i.d. random vectors, x1i ∼
N(0,1) for each 1 ≤ i ≤ p and Cov(x1i , x1j ) = ρn for 1 ≤ i < j ≤ p. That is, each
row follows Np(0,R). As a result, X and (xij )n×p have the same distribution. So
we assume X = (xij )n×p in the next. Denote

(3.22)

An = 1√
n

n∑
k=1

ξ2
k ,

Bnij = 1√
n

n∑
k=1

ξkiξkj ,

Cnij = 1√
n

n∑
k=1

ξk(ξki + ξkj )
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for all 1 ≤ i ≤ j ≤ p. Then it follows from the expression (3.21) that

(3.23)
1√
n

n∑
k=1

xkixkj = ρnAn + (1 − ρn)Bnij +√
ρn(1 − ρn)Cnij .

First, by the central limit theorem, we are able to write

An = √
n + √

2Un1,

where Un1 := 1√
2n

∑n
k=1(ξ

2
k − 1)

d−→ N(0,1). Define

Mnij := (1 − ρn)Bnij + √
ρn(1 − ρn)Cnij√

1 − ρ2
n

= 1√
n

n∑
k=1

[
anξkiξkj + bnξk(ξki + ξkj )

]
,

where an =
√

1−ρn

1+ρn
and bn =

√
ρn

1+ρn
. Denote Mn = max1≤i<j≤p Mnij . From these

notation, we have

(3.24)
1√
n

n∑
k=1

xkixkj = ρn

√
n + √

2ρnUn1 +
√

1 − ρ2
nMnij ,

and hence

(3.25) max
1≤i<j≤p

1√
n

n∑
k=1

xkixkj = √
nρn + √

2ρnUn1 +
√

1 − ρ2
nMn.

Review the notation ξ = (ξ1, . . . , ξn)
′. Define

M̃n = max
1≤i<j≤p

1√
n

n∑
k=1

[
anξkiξkj + bn

√
n

‖ξ‖ξk(ξki + ξkj )

]

= max
1≤i<j≤p

{
Hi,j + bn ·

√
n

‖ξ‖Cnij

}
,

where Hi,j = n−1/2 ∑n
k=1 anξkiξkj . By Lemma 3.9 and the fact that 0 ≤ bn ≤ 1,

(3.26) Mn = M̃n + Op

(√
logp√

n

)
.

This together with (3.25) implies that

(3.27)

max
1≤i<j≤p

1√
n

n∑
k=1

xkixkj

= √
nρn + √

2ρnUn1 +
√

1 − ρ2
nM̃n + Op

(√
logp√

n

)
.
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By Eaton [7], Proposition 7.3, or Muirhead [17], Theorem 1.5.6, we know ‖ξ‖ and
ξ

‖ξ‖ are independent. Then Un1 = 1√
2n

(‖ξ‖2 − n) and M̃n, which is a function of
ξ

‖ξ‖ and ξki’s, are also independent. This is a crucial observation in the following
argument.

Now, it follows from Lemma 3.8 and Proposition 3.1 that

(3.28) Mn = 2
√

logp − log logp

4
√

logp
+ 1

4
√

logp
Un2,

where Un2
d−→ η with distribution function Fη(x) = e

− 1
4
√

2π
e
− x

2
for all x ∈ R. From

(3.26),

M̃n = 2
√

logp − log logp

4
√

logp
+ 1

4
√

logp
Un2 + Op

(√
logp√

n

)
.

Then

(3.29) Ũn2 := 4
√

logp ·
(
M̃n − 2

√
logp + log logp

4
√

logp

)
d−→ η.

Since Un1 and M̃n are independent, Un1 and Ũn2 are independent. Reviewing the
definition of Wn as in (3.20). Solve M̃n from the first identity in (3.29) and then
plug it into (3.27) to see

1√
n
Wn − μ1 = √

2ρnUn1 +
√

1 − ρ2
n

4
√

logp
Ũn2 + Op

(√
logp√

n

)

= √
2ρnUn1 +

√
1 − ρ2

n

4
√

logp
Ũn2 + op

(
1√

logp

)

by the assumption that logp = o(n1/3), where

μ1 = √
nρn +

(
2
√

logp − log logp

4
√

logp

)√
1 − ρ2

n.

We now derive the three conclusions by the above relation.
Case (i): ρn

√
logp → 0. From the Slutsky lemma, it follows that

4
√

logp√
1 − ρ2

n

(
n−1/2Wn − μ1

) d−→ φ,

where φ is the extreme-value distribution F(x) = e−Ke
− x

2 with K = 1
4
√

2π
. The

conclusion then follows by the assumption ρn → 0 and the Slutsky lemma again.
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Case (ii): ρn

√
logp → λ ∈ (0,+∞). By using the independence between Un1

and Ũn2 and the Slutsky lemma again, we have

n−1/2Wn − μ1√
2ρn

d−→ ξ + λ0φ,

where ξ ∼ N(0,1), λ0 = 1
4
√

2λ
and φ is as in case (i) and φ is independent of ξ .

Case (iii): ρn

√
logp → ∞. By the Slutsky lemma,

n−1/2Wn − μ1√
2ρn

d−→ N(0,1).

The proof is completed by using (3.20). �

Now we proceed to prove Theorem 2.2. Recall the notation from (3.14) and
(3.15). Define σ 2

n1 = (1 − ρn)
2 + 2ρna

2
n,

(3.30) a′
n = an

σn1
and b′

n = (1 − ρn)bn

σn1

for 1 ≤ k ≤ m := n − 1. With these notation, we further define

η′
kij = a′

n

[
ξkiξkj − ρn

2

(
ξ2
ki + ξ2

kj − 2
)]+ b′

nξk(ξki + ξkj ),

M ′
nij = 1√

m

m∑
k=1

η′
kij ,

for k = 1,2, . . . ,m.

PROPOSITION 3.2. Set M ′
n = max1≤i<j≤p M ′

nij . Let ρn ∈ (0,1) for each

n ≥ 1. Let sp be as in (3.16). If p → ∞ and logp = o(n1/3), then

lim
n→∞P

(
M ′

n ≤ sp
) = e−Ke−x/2

for any x ∈ R, where K = 1
4
√

2π
.

The proof of the above conclusion is arranged at Section 3.4. The major contri-
bution of Ln in Theorem 2.2 comes from the left-hand side of (3.31) next, which
is asymptotically the sum of two random variables well understood earlier.

LEMMA 3.10. Let ρn ∈ [0,1) for all n ≥ 1. Recall the notation in (3.14) and
(3.15). Define xki = √

ρnξk + √
1 − ρnξki for 1 ≤ k ≤ m and 1 ≤ i ≤ p, where
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m = n − 1. Assume logp = o(n
1
3 ) as n → ∞. Then

(3.31)

(
1√
m

m∑
k=1

xkixkj

)
·
[

1 − 1

4m

m∑
k=1

(
x2
ki + x2

kj

)]

= 1

2
ρn

√
m + 1√

2
ρn(1 − ρn)Um1 + 1

2

√
1 − ρ2

n · 1√
m

m∑
k=1

ψkij + �nij ,

where Um1 = 1√
2m

∑m
k=1(ξ

2
k − 1),

ψkij = an

[
ξkiξkj − ρn

2

(
ξ2
ki + ξ2

kj − 2
)]+ (1 − ρn)bnξk(ξki + ξkj )

and, as n → ∞,

(3.32) max
1≤i<j≤p

|�nij | = Op

(
logp√

m

)
.

PROOF. Define

Mmij = 1√
m

m∑
k=1

ηkij , 1 ≤ i ≤ j ≤ p,

where ηkij = anξkiξkj + bnξk(ξki + ξkj ), an =
√

1−ρn

1+ρn
and bn =

√
ρn

1+ρn
. From

(3.24), we have

1√
m

m∑
k=1

xkixkj = ρn

√
m + √

2ρnUm1 +
√

1 − ρ2
nMmij ,

where Um1 = 1√
2m

∑m
k=1(ξ

2
k − 1). In particular,

Mmii = 1√
m

m∑
k=1

(
anξ

2
ki + 2bnξkξki

)
.

We can write

1

4m

m∑
k=1

(
x2
ki + x2

kj

)

= 1

4
√

m
(2ρn

√
m + 2

√
2ρnUm1) + 1

4
√

m

√
1 − ρ2

n(Mmii + Mmjj )

= 1

2
ρn + 1

2
an

√
1 − ρ2

n + ρn√
2m

Um1 + 1

4
√

m

√
1 − ρ2

nTmij

= 1

2
+ ρn√

2m
Um1 + 1

4
√

m

√
1 − ρ2

nTmij ,
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where

(3.33) Tmij = 1√
m

m∑
k=1

[
an

(
ξ2
ki + ξ2

kj − 2
)+ 2bnξk(ξki + ξkj )

]
.

So the product on the left-hand side of (3.31) is equal to(
ρn

√
m + √

2ρnUm1 +
√

1 − ρ2
nMmij

)

·
(

1

2
− ρn√

2m
Um1 − 1

4
√

m

√
1 − ρ2

nTmij

)

= 1

2
ρn

√
m + 1√

2
ρn(1 − ρn)Um1 + 1

2

√
1 − ρ2

nMmij

− ρn

4

√
1 − ρ2

nTmij + �nij ,

where

�nij = − ρ2
n√
m

U2
m1 − ρn

√
1 − ρ2

n√
2m

(Um1Mmij )

− 1

4
√

m

√
1 − ρ2

nTmij

(√
2ρnUm1 +

√
1 − ρ2

nMmij

)
.

Observe that

1

2

√
1 − ρ2

nMmij − ρn

4

√
1 − ρ2

nTmij = 1

2

√
1 − ρ2

n · 1√
m

n∑
k=1

ψkij ,

where

ψkij = an

[
ξkiξkj − ρn

2

(
ξ2
ki + ξ2

kj − 2
)]+ (1 − ρn)bnξk(ξki + ξkj ).

Use the trivial bound 1 − ρ2
n ≤ 1 to see

(3.34) max
1≤i<j≤p

|�nij | ≤ ρ2
n√
m

U2
m1 + ρn√

m
(Mm + Tm)|Um1| + 1√

m
(MmTm),

where

Mm = max
1≤i<j≤p

|Mmij | and Tm = max
1≤i<j≤p

|Tmij |.

From Proposition 3.1, we know

(3.35)
Mm√
logp

→ 2
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in probability. Now, from (3.33) we have

(3.36)

Tm ≤ max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

(
ξ2
ki + ξ2

kj − 2
)∣∣∣∣∣

+ max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

ξk(ξki + ξkj )

∣∣∣∣∣
≤ 2 max

1≤i≤p

1√
m

∣∣∣∣∣
m∑

k=1

(
ξ2
ki − 1

)∣∣∣∣∣+ 2 max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

ξkξki

∣∣∣∣∣
:= 2In + 2I ′

n.

Let ζk = (ξ2
k1 − 1)/

√
2 for 1 ≤ k ≤ m. Then Eζk = 0, Var(ζk) = 1 and Ee|ζ1|/2 <

∞. By Lemma 3.4, from assumption
√

logp = o(n1/3), we see that

(3.37)
P(In ≥ 2A2

√
logp) ≤ p · P

(
1√
m

∣∣∣∣∣
m∑

k=1

ζk

∣∣∣∣∣ ≥ A2

√
logp

)

≤ p · e−A2
2(logp)/3 → 0

as long as A2 >
√

3. So In = Op(
√

logp). Furthermore, notice E(ξ1ξ11) = 0,
Var(ξ1ξ11) = 1 and E exp(1

2 |ξ1ξ11|) < ∞. By the same argument as obtaining
(3.37), we have I ′

n = Op(
√

logp). In summary, Tm = Op(
√

logp). This together
with (3.35) and the fact Um1 → N(0,1) implies that

max
1≤i<j≤p

|�nij | = Op

(
logp√

m

)

by using (3.34). We then get (3.32). �

PROOF OF THEOREM 2.2. As explained at the beginning of the proof of
Lemma 3.2, without loss of generality, we assume μ = 0.

Let {ξk, ξki, k, i = 1,2, . . .} be as in (3.14) and (3.15). As before, p = pn. Define

xki = √
ρnξk +√

1 − ρnξki, 1 ≤ k ≤ n − 1,1 ≤ i ≤ p.

Review the beginning of the proof of Theorem 2.1, we know that the n − 1
rows of the matrix (xij )(n−1)×p are i.i.d. random vectors, each of which fol-
lows Np(0,R). Write (xij )(n−1)×p = (V1, . . . , Vp) such that, for each 1 ≤ j ≤ p,
Vj = (x1j , . . . , xn−1,j )

′. By Lemma 3.2, we have

√
n − 1 max

1≤i<j≤p
ρ̂ij

d= max
1≤i<j≤p

1√
n−1

∑n−1
k=1 xkixkj√

1
n−1

∑n−1
k=1 x2

ki

√
1

n−1
∑n−1

k=1 x2
kj

.
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Denote m = n − 1, hi =
√

m−1 ∑m
k=1 x2

ki and

(3.38) �nij =
1√
m

∑m
k=1 xkixkj

hihj

.

So it suffices to prove the statements (i), (ii) and (iii) with “
√

n − 1Ln” replaced
by “max1≤i<j≤p �nij ”. Our proof consists of a few of steps.

Step 1: Reduction of Ln to a simple form. Write h−1
i = (1+ζni/

√
m)−1/2, where

ζni := m−1/2 ∑m
k=1(x

2
ki − 1). By the Taylor expansion, there exists δ ∈ (0,1) such

that (1+x)−1/2 = 1−x/2+φ(x), where |φ(x)| ≤ x2 for all x ∈ [−δ, δ]. It follows
that

(3.39)

1

hihj

=
[
1 − ζni

2
√

m
+ φ

(
ζni√
m

)]
·
[
1 − ζnj

2
√

m
+ φ

(
ζnj√
m

)]

= 1 − ζni

2
√

m
− ζnj

2
√

m
+ εij ,

where

εij = ζniζnj

4m
+
(

1 − ζni

2
√

m

)
· φ

(
ζnj√
m

)

+
(

1 − ζnj

2
√

m

)
· φ

(
ζni√
m

)
+ φ

(
ζni√
m

)
φ

(
ζnj√
m

)
.

Obviously, if |ζni/
√

m| < δ and |ζnj /
√

m| < δ, then maxk=i,j |1−ζnk/(2
√

m)| < 2
because δ ∈ (0,1), and hence

|εij | ≤ |ζni | · |ζnj |
4m

+ 2ζ 2
ni

m
+ 2ζ 2

nj

m
+ ζ 2

ni

m
· ζ 2

nj

m
≤ 4(ζ 2

ni + ζ 2
nj )

m
.

This gives that

(3.40) max
1≤i<j≤p

|εij | ≤ 8

m
· max

1≤i≤m
ζ 2
ni

provided max1≤i≤p |ζni/
√

m| < δ. Let ζk = (ξ2
k1 − 1)/

√
2 for 1 ≤ k ≤ m. Then

Eζk = 0, Var(ζk) = 1 and Ee|ζ1|/2 < ∞. By assumption, (x1i , x2i , . . . , xmi)
d=

(ξ1, ξ2, . . . , ξk) for each 1 ≤ i ≤ p. Set

�n =
{

max
1≤i≤p

|ζni | < 3
√

logp
}
.

Then it follows from (3.37) that

(3.41) lim
n→∞P(�n) = 1.
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Now we see from (3.38) and (3.39) that

(3.42)

�nij =
(

1√
m

m∑
k=1

xkixkj

)
·
(

1 − ζni

2
√

m
− ζnj

2
√

m
+ εij

)

=
(

2√
m

m∑
k=1

xkixkj

)
·
[

1 − 1

4m

(
m∑

k=1

x2
ki +

m∑
k=1

x2
kj

)]
+ ε′

ij ,

where

ε′
ij :=

(
1√
m

m∑
k=1

xkixkj

)
· εij .

Proceed to estimate max1≤i<j≤p m−1/2|∑m
k=1 xkixkj |. To this end, (3.2) implies

that

max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

xkixkj

∣∣∣∣∣
≤ √

m + |Um1| + max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

[
anξkiξkj + bnξk(ξki + ξkj )

]∣∣∣∣∣
≤ √

m + |Um1| + max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

ξkiξkj

∣∣∣∣∣+ 2 max
1≤i≤p

1√
m

∣∣∣∣∣
m∑

k=1

ξkξki

∣∣∣∣∣,
where Um1 = (2m)−1/2 ∑m

k=1(ξ
2
k − 1). Observe that the last two maxima above

have the same distribution. By the estimate of I ′
n from (3.36), each of them has

size Op(
√

logp). Using the assumption logp = o(n1/3), we see

ϒn := max
1≤i<j≤p

1√
m

∣∣∣∣∣
m∑

k=1

xkixkj

∣∣∣∣∣ = Op(
√

n)

as n → ∞. Therefore, by (3.40),

max
1≤i<j≤p

∣∣ε′
ij

∣∣ ≤ ϒn · max
1≤i<j≤p

|εij | ≤ 8

m
· ϒn · max

1≤i≤m
ζ 2
ni

provided max1≤i<j≤p | ζni√
m

| < δ. By assumption, 3
√

logp√
m

→ 0. This enables us to
see

(3.43) I�n · max
1≤i<j≤p

∣∣ε′
ij

∣∣ = 8

m
· Op(

√
n) · (3

√
logp)2 = O

(
logp√

n

)
.
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By Lemma 3.10 and (3.42),

(3.44)

�nij = ρn

√
m + √

2ρn(1 − ρn)Um1

+
√

1 − ρ2
n · 1√

m

n∑
k=1

ψkij + 2�nij + ε′
ij

= ρn

√
m + √

2ρn(1 − ρn)Um1

+ σn1

√
1 − ρ2

n · 1

σn1
√

m

n∑
k=1

ψkij + ε′′
ij ,

where ψkij and �nij are defined as in the lemma, ε′′
ij = 2�nij + ε′

ij and σ 2
n1 =

(1 − ρn)
2 + 2ρna

2
n. Easily

I�n · max
1≤i<j≤p

∣∣ε′′
ij

∣∣ ≤ 2 · max
1≤i<j≤p

|�nij | + I�n · max
1≤i<j≤p

∣∣ε′
ij

∣∣ = Op

(
logp√

n

)

by (3.32) and (3.43). Let f (i, j) and g(i, j) be real functions defined on
{(i, j);1 ≤ i < j ≤ m}. It is easy to see that∣∣∣ max

1≤i<j≤p
f (i, j) − max

1≤i<j≤p
g(i, j)

∣∣∣≤ max
1≤i<j≤p

∣∣f (i, j) − g(i, j)
∣∣.

Therefore, from (3.44) we have

(3.45)

I�n · max
1≤i<j≤p

�nij

= I�n · [ρn

√
m + √

2ρn(1 − ρn)Um1
]

+ σn1

√
1 − ρ2

n · max
1≤i<j≤p

{
1

σn1
√

m
·

n∑
k=1

ψkij

}
· I�n + Op

(
logp√

n

)
.

Observe that the last maximum is exactly M ′
n appeared in Proposition 3.2. Writing

I�n = 1 − I�c
n
, we eventually get

(3.46)

max
1≤i<j≤p

�nij = ρn

√
m + √

2ρn(1 − ρn)Um1

+ σn1

√
1 − ρ2

nM ′
n + Op

(
logp√

m

)
+ I�c

n
· �n,

for some random variable �n.
Step 2: Asymptotic independence between Um1 and M ′

n. Review the definition
of ψkij in Lemma 3.10. Set

η̃′
kij = an

[
ξkiξkj − ρn

2

(
ξ2
ki + ξ2

kj − 2
)]+ (1 − ρn)bn

√
m

‖ξ‖ ξk(ξki + ξkj ),

M̃ ′
n = max

1≤i<j≤p

{
1

σn1
√

m
·

m∑
k=1

η̃′
kij

}
.
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From the definitions of a′
n and b′

n in (3.30), it is easy to see that (1 + ρ2
n)a′2

n +
2b′2

n = 1. Since b′
n = (1−ρn)bn

σn1
, we get | (1−ρn)bn

σn1
| ≤ 1

2 . By Lemma 3.9,

(3.47) M̃ ′
n − M ′

n = Op

(
(1 − ρn)bn

σn1
·
√

logp√
n

)
= Op

(√
logp√

n

)
.

By Lemma 3.8 and Proposition 3.2,

M ′
n = 2

√
logp − log logp

4
√

logp
+ 1

4
√

logp
Vn,

where Vn
d−→ φ with distribution function F(x) = e−Ke

− x
2 for all x ∈ R, where

K = 1
4
√

2π
. The above two assertions tell us that

M̃ ′
n = 2

√
logp − log logp

4
√

logp
+ 1

4
√

logp
Vn + op

(
1√

logp

)
.

Then

(3.48) Ũn2 := 4
√

logp ·
(
M̃ ′

n − 2
√

logp + log logp

4
√

logp

)
d−→ φ.

Since Um1 = (2m)−1/2 ∑m
k=1(ξ

2
k − 1) and M̃ ′

n are independent by the same argu-
ment as that after (3.27), Um1 and Ũn2 are independent. Evidently,

σn1

√
1 − ρ2

n =
(
(1 − ρn)

2 + 2ρn · 1 − ρn

1 + ρn

)1/2
·
√

1 − ρ2
n

= (1 − ρn) ·
√

1 + 2ρn − ρ2
n.

In particular, σn1

√
1 − ρ2

n ≤ 2. Combining (3.46), (3.47) and (3.48), we obtain

max
1≤i<j≤p

�nij − ρn

√
m − √

2ρn(1 − ρn)Um1

= σn1

√
1 − ρ2

nM̃ ′
n + Op

(
logp√

n

)
+ I�c

n
· �n

= σn1

√
1 − ρ2

n

(
2
√

logp − log logp

4
√

logp
+ Ũn2

4
√

logp

)
+ Op

(
logp√

n

)
+ I�c

n
· �n.

Set

μ2 = ρn

√
m + (1 − ρn) ·

√
1 + 2ρn − ρ2

n ·
(

2
√

logp − log logp

4
√

logp

)
.

Then

max
1≤i<j≤p

�nij − μ2 = √
2ρn(1 − ρn)Um1 + (1 − ρn) ·

√
1 + 2ρn − ρ2

n · Ũn2

4
√

logp

+ op

(
1√

logp

)
+ I�c

n
· �n,
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where the equality Op(logp/
√

m) = op(1/
√

logp) holds due to the assumption
logp = o(n1/3). Notice that P(|I�c

n
· �n| · √

logp ≥ ε) ≤ P(�c
n) → 0 for any

ε > 0 by (3.41), hence I�c
n
· �n = op(1/

√
logp). It follows that

max
1≤i<j≤p

�nij − μ2 = √
2ρn(1 − ρn)Um1 + (1 − ρn) ·

√
1 + 2ρn − ρ2

n · Ũn2

4
√

logp

+ op

(
1√

logp

)
.

Step 3: Derivation of conclusions (i), (ii) and (iii). Recall the assumption that
ρn ≥ 0 for each n ≥ 1 and supn≥1 ρn < 1.

Case (i): ρn

√
logp → 0. For this case, by the Slutsky lemma,

4

(1 − ρn) ·
√

1 + 2ρn − ρ2
n

·
√

logp ·
(

max
1≤i<j≤p

�nij − μ2

)
d−→ φ,

where φ has distribution function F(x) = e−Ke
− x

2 with K = 1
4
√

2π
. The conclusion

follows by the assumption ρn → 0 and the Slutsky lemma again.
Case (ii): ρn

√
logp → λ ∈ (0,∞). By the Slutsky lemma and independence,

max1≤i<j≤p �nij − μ2√
2ρn(1 − ρn)

d−→ ξ + λ0φ,

where ξ ∼ N(0,1), λ0 = 1
4
√

2λ
and φ is the same as in case (i) and φ is independent

of ξ . The conclusion is yielded by the assumption ρn → 0 and the Slutsky lemma
again.

Case (iii): ρn

√
logp → ∞. In this situation, by the Slutsky lemma,

max1≤i<j≤p �nij − μ2√
2ρn(1 − ρn)

= Um1 + op(1)
d−→ N(0,1).

The proof is complete. �

3.3. The proof of Proposition 3.1. In this section, we will use the Chen–Stein
Poisson approximation method (Lemma 3.3) with conditioning argument to get
the asymptotical distribution of Mn defined in Proposition 3.1. The conditioning
procedure is employed because Lemma 3.3 asks more independence than what the
structure behind Mn has.

LEMMA 3.11. Recall the notation in (3.14)–(3.16). Assume ρn ≥ 0 for all
n ≥ 1 and supn≥1 ρn < 1/2. Define Zn = n−1/2bn

∑n
k=1 ξkξ

′
k . If p = pn → ∞ and

logp = o(n1/3) as n → ∞, then there exists a constant δ ∈ (0,1) such that

E exp
[
−1 + ρn

1 + δ
(Zn − sp)2

]
= o

(
1

p3

)
as n → ∞.
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PROOF. If ρn = 0 for some n ≥ 1, then Zn = 0 and the expectation in the
lemma is identical to exp(−(4 logp − log logp + x)/(1 + δ)), which, by taking
δ ∈ (0,1) small enough, is bounded by p−3.5 as n is sufficiently large. Therefore,
to prove the lemma, w.l.o.g., we assume ρn > 0 for all n ≥ 1.

First, we show

(3.49) Ee−α1(ξ1−β1)
2 = 1√

2α1 + 1
exp

(
− α1β

2
1

2α1 + 1

)

for any α1 > 0 and β1 ∈ R. In fact

Ee−α1(ξ1−β1)
2 = 1√

2π

∫ ∞
−∞

e−α1(x−β1)
2− x2

2 dx.

Write

−α1(x − β1)
2 − x2

2
= −

(√
α1 + 1

2
x − α1β1√

α1 + 1
2

)2
− α1β

2
1

2α1 + 1
.

Now, define y such that

y√
2

=
√

α1 + 1

2
x − α1β1√

α1 + 1
2

.

It follows that

1√
2π

∫ ∞
−∞

e−α1(x−β1)
2− x2

2 dx = e
− α1β2

1
2α1+1 · 1√

2π

∫ ∞
−∞

e−y2/2 dy · 1√
2α1 + 1

.

Thus, (3.49) holds.
Recall the notation (3.17). By Eaton [7], Proposition 7.3, or Muirhead [17], The-

orem 1.5.6, we know ‖ξ‖ and ξ/‖ξ‖ are independent. Also, ‖ξ‖−1 ∑n
k=1 ξkξ

′
k ∼

N(0,1) by independence. Consequently,

Zn
d= bn · ‖ξ‖√

n
· ξ ′

1.

In particular, ‖ξ‖/√n and ξ ′
1 are independent. Let τ = 1+δ

1+ρn
. Observe

(3.50) E exp
[
−(Zn − sp)2

τ

]
= Ee−α1(ξ

′
1−β1)

2 = E
[
E1e

−α1(ξ
′
1−β1)

2]
,

where E1 stands for the conditional expectation given ‖ξ‖,

α1 = b2
n‖ξ‖2

nτ
and β1 =

√
nsp

bn‖ξ‖ .
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By using (3.49), we obtain

(3.51)

E1e
−α1(ξ

′
1−β1)

2 ≤ exp
(
− s2

p

τ + 2b2
n

‖ξ‖2

n

)

≤ exp
{
− s2

p

(1 + δ)[(1 + ρn)−1 + 2b2
n]
}

if ‖ξ‖2/n < 1 + δ. Observe that (1 + ρn)
−1 + 2b2

n = 1+2ρn

1+ρn
≤ 1+2ρ

1+ρ
< 4/3 for

all n ≥ 1, where ρ := supn≥1 ρn < 1/2 by assumption. Take δ ∈ (0,1) such that

θ := (1 + δ)
1+2ρ
1+ρ

< 4/3. Hence, given ‖ξ‖2/n < 1 + δ,

E1e
−α1(ξ

′
1−β1)

2 ≤ (logp)5/θ

p4/θ

as n is sufficiently large. By the large deviations for i.i.d. random variables, there

exists a constant C > 0 depending on τ only such that P(
‖ξ‖2

n
≥ 1+ δ) < e−nC for

all n ≥ 1. Combining the above inequality, (3.50) and (3.51), we arrive at

E exp
[
−(Zn − sp)2

τ

]

= E

[
E1e

−α1(ξ
′
1−β1)

2
I

(‖ξ‖2

n
< 1 + δ

)]
+ P

(‖ξ‖2

n
≥ 1 + δ

)

≤ (logp)5/θ

p4/θ
+ e−nC = o

(
1

p3

)
,

where the last equality follows from the assumption logp = o(n1/3). �

PROOF OF PROPOSITION 3.1. In the next section, we will assume p is large
enough such that sp > 0. Set I = {(i, j);1 ≤ i < j ≤ p}. For α = (i, j) ∈ I , define
Xα = Mnij and

Bα = {
(k, l) ∈ I ; either k ∈ {i, j} or l ∈ {i, j},but (k, l) 
= α

}
.

Let P2 and E2 stand for the conditional probability and the conditional expectation
given {ξk;1 ≤ k ≤ n}, respectively. The crucial point is that, given {ξk;1 ≤ k ≤
n}, random variable Xα is independent of {Xβ;β /∈ Bα}. Since {Xα,α ∈ I } are
identically distributed under P2, by Lemma 3.3, we have

(3.52)
∣∣∣P2

(
max
α∈I

Xα ≤ sp

)
− e−λp1

∣∣∣ ≤ w1 + w2,

where

λp1 = p(p − 1)

2
P2

(
1√
n

n∑
k=1

ηk12 > sp

)
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and

w1 = ∑
α∈I

∑
β∈Bα

P2(Xα > sp)P2(Xβ > sp)

≤ p(p − 1)

2
· (2p) · P2

(
1√
n

n∑
k=1

ηk12 > sp

)2

and

w2 = ∑
α∈I

∑
β∈Bα

P2(Xα > sp,Xβ > sp)

≤ p(p − 1)

2
· (2p) · P2

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk13 > sp

)
.

Note that P(maxα∈I Xα ≤ sp) = EP2(maxα∈I Xα ≤ sp). From (3.52),∣∣∣P (
max
α∈I

Xα ≤ sp

)
− Ee−λp1

∣∣∣ ≤ E
∣∣∣P2

(
max
α∈I

Xα ≤ sp

)
− e−λp1

∣∣∣
≤ Ew1 + Ew2.

Now,

Ee−λp1 = E exp

[
−p(p − 1)

2
P2

(
1√
n

n∑
k=1

ηk12 > sp

)]
;

Ew1 ≤ p3 · E
[
P2

(
1√
n

n∑
k=1

ηk12 > sp

)2]
;

Ew2 ≤ p3 · P
(

1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk13 > sp

)
.

The following three lemmas say that Ee−λp1 → exp(− 1
4
√

2π
e−x/2), Ew1 → 0 and

Ew2 → 0. The proof is then complete. �

LEMMA 3.12. Let the assumptions in Proposition 3.1 hold. Review that P2

stands for the conditional probability given {ξk;1 ≤ k ≤ n}. Then

E exp

[
−p(p − 1)

2
P2

(
1√
n

n∑
k=1

ηk12 > sp

)]
→ exp

(
− 1

4
√

2π
e−x/2

)

as n → ∞ for all x ∈ R.
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LEMMA 3.13. Let the assumptions in Proposition 3.1 hold. Review that P2

stands for the conditional probability given {ξk;1 ≤ k ≤ n}. Then

E

[
P2

(
1√
n

n∑
k=1

ηk12 > sp

)2]
= o

(
1

p3

)

as n → ∞.

LEMMA 3.14. Let the assumptions in Proposition 3.1 hold. Then

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk13 > sp

)
= o

(
1

p3

)

as n → ∞.

Now we start to prove the three results one by one.

PROOF OF LEMMA 3.12. Write

(3.53)
n∑

k=1

ηk12 =
n∑

k=1

[
anξk1ξk2 + bnξk(ξk1 + ξk2)

]
.

Given {ξk;1 ≤ k ≤ n}, it is the sum of independent random variables with mean
E2[anξk1ξk2 + bnξk(ξk1 + ξk2)] = 0 and variance Var2[anξk1ξk2 + bnξk(ξk1 +
ξk2)]2 = a2

n + 2b2
nξ

2
k . Thus,

(3.54) Var2

(
n∑

k=1

ηk12

)
= na2

n + 2b2
n

n∑
k=1

ξ2
k .

Define

Fn =
{

max
1≤k≤n

|ξk| ≤ √
n and

6

7
≤ 1

n

n∑
k=1

ξ2
k ≤ 15

14

}
.

Set τ = E(|ξ1|3) + 1. For v > 0, set

Gn(v) =
{

1

n

n∑
k=1

(
1 + |ξk|3)evξ2

k (logp)/n ≤ 2τ

}
.

The parameter v will be chosen later. By the fact P(|N(0,1)| ≥ x) ≤ 2√
2πx

e−x2/2

for all x > 0, the large deviations for i.i.d. random variables and Lemma 3.7, we
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have

(3.55)

P
((

Fn ∩ Gn(v)
)c) ≤ nP

(|ξ1| ≥ √
n
)+ P

(
1

n

n∑
k=1

ξ2
k ∈

[
6

7
,

15

14

]c
)

+ P

(
1

n

n∑
k=1

(
1 + |ξk|3)evξ2

k (logp)/n > 2τ

)

≤ 3 exp
(
−1

4
n1/2(logn)−2

)
,

as n ≥ nv , where nv ≥ 1 is a constant depending on v. Define σ 2
n0 = a2

n +
2b2

n(
1
n

∑n
k=1 ξ2

k ). Then, on Fn,

(3.56)
1

2
= 1

2

(
a2
n + 2b2

n

) ≤ σ 2
n0 ≤ a2

n + 15

14

(
2b2

n

) ≤ 8

7
,

where the last inequality follows from the identity a2
n + 2b2

n = 1.
Next, we will use Lemma 3.5 to get a precise estimate on P2(

1√
n

∑n
k=1 ηk12 >

sp). To do so, Lemma 3.6 will be applied to control γ defined in Lemma 3.5.
Reviewing (3.53), we take a = an/

√
nσn0, b = bnξk/

√
nσn0. Set ηk = aξk1ξk2+

b(ξk1 + ξk2). Then it follows from (3.54) that

(3.57) E2ηk = 0 and
n∑

k=1

Var2(ηk) = 1

for each k. Furthermore, by (3.56) we have

(3.58) |a| ≤ 2√
n

and |b| ≤ 2|ξk|√
n

≤ 2

on Fn. Then, on Fn, use the Hölder inequality, the facts that 2|ξ11ξ12| ≤ ξ2
11 + ξ2

12
and ξ11 + ξ12 ∼ √

2N(0,1), and independence to see

(3.59)

Eeh|ηk | ≤ E exp
(

2h√
n
|ξ11ξ12| + 2h|ξ11 + ξ12|

)

≤
[
E exp

(
2h√

n

(
ξ2

11 + ξ2
12
))]1/2

· [E exp
(
4
√

2hN(0,1)
)]1/2

= E exp
(

2h√
n
N(0,1)2

)
· e16h2

< ∞,

for all h, k, n satisfying 0 < h ≤ hn := 1
8

√
n and 1 ≤ k ≤ n. Now, on Fn, by

Lemma 3.6 and (3.58) we have

(3.60) E2
(|ηk|3ex|ηk |) ≤ C

n3/2

(
1 + |ξk|3)e4b2x2 ≤ C

n3/2

(
1 + |ξk|3)e16x2ξ2

k /n
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for all x ∈ (0, 1
12|a|). Observe that (0,

√
n

24 ) ⊂ (0, 1
12|a|) on Fn by (3.58). Thus, (3.60)

particularly holds for all x ∈ (0,
√

n/24). Now take x0 = sp/σn0. Then

(3.61) x0 ≤ 2sp <
√

n/24

on Fn by the assumption logp = o(n1/3). We then have

γ :=
n∑

k=1

E2
(|ηk|3ex0|ηk |)

≤ C

n3/2

n∑
k=1

(
1 + |ξk|3)e16x2

0ξ2
k /n

≤ C

n3/2

n∑
k=1

(
1 + |ξk|3)e256ξ2

k (logp)/n

on Fn. Thus, γ ≤ 2Cτ/
√

n on Fn ∩ Gn(256) := Hn. The inequality in (3.55) im-
plies

(3.62) P
(
Hc

n

) ≤ 3 exp
(−n1/2(logn)−2/4

)
as n is sufficiently large. From (3.57), (3.59) and Lemma 3.5, we conclude

(3.63)
P2

(
1√
n

n∑
k=1

ηk12 > sp

)
= P2

(
n∑

k=1

ηk > x0

)

= [
1 − �(x0)

] · [1 + O(1)
(
1 + x3

0
)
γ e4x3

0γ ]
on Hn since x0 < hn = √

n/8 by (3.61). Finally, x3
0γ = O(s3

pn−1/2) → 0 on Hn

by the assumption logp = o(n1/3). Reviewing (3.56), we have sp/2 ≤ sp/σn0 ≤
2sp on Hn. Hence, from the formula P(N(0,1) ≥ x) = 1√

2πx
e−x2/2(1 + o(1)) as

x → ∞ we obtain that, on Hn,

(3.64)

P2

(
1√
n

n∑
k=1

ηk12 > sp

)
=

[
1 − �

(
sp

σn0

)]
·
[
1 + O

(
log3/2 p√

n

)]

= σn0√
2πsp

· e−s2
p/(2σ 2

n0) · (1 + o(1)
)

as n → ∞, where the last term “o(1)” does not depend on ξk’s.
To prove the lemma, it is enough to show

p2

2
· P2

(
1√
n

n∑
k=1

ηk12 > sp

)
→ 1

4
√

2π
e−x/2
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in probability as n → ∞. Since P(Hn) → 1, to complete the proof, it suffices to
check

p2

2
· P2

(
1√
n

n∑
k=1

ηk12 > sp

)
· IHn → 1

4
√

2π
e−x/2

in probability as n → ∞. Now σn0 → 1 in probability as n → ∞ and sp ∼
2
√

logp, comparing this with (3.64), it suffices to show

(3.65)
p2

4
√

2π logp
· e−s2

p/(2σ 2
n0) · IHn → 1

4
√

2π
e−x/2

in probability. By the central limit theorem for i.i.d. random variables, σ 2
n0 = 1 +

Op(1/
√

n). Hence σ−2
n0 = 1 + Op(1/

√
n). It follows that

s2
p

2σ 2
n0

=
(

2 logp − 1

2
log logp + 1

2
x

)
·
[
1 + Op

(
1√
n

)]

= 2 logp − 1

2
log logp + 1

2
x + op(1)

by the condition logp/n1/3 → 0. This implies (3.65). �

PROOF OF LEMMA 3.13. Review the proof of Lemma 3.12. Let Hn be defined
as above (3.62). By (3.63), there exists a constant n1 ≥ 1 not depending on ξk’s
such that

P2

(
1√
n

n∑
k=1

ηk12 > sp

)
· IHn ≤ 2

[
1 − �

(
sp

σn0

)]
· IHn

as n ≥ n1 since x0 = sp/σn0. Recall the inequality 1 − �(x) ≤ 1√
2πx

e−x2/2 for all
x > 0. Then, from (3.56) we have[

P2

(
1√
n

n∑
k=1

ηk12 > sp

)]2

· IHn ≤ C · σ 2
n0

s2
p

· e−s2
p/σ 2

n0 · IHn ≤ C

logp
· e−7s2

p/8

as p ≥ n2, where n2 is a constant not depending on ξk’s. Therefore, combining this
with (3.62), we see

E

[
P2

(
1√
n

n∑
k=1

ηk12 > sp

)2]
≤ E

[
P2

(
1√
n

n∑
k=1

ηk12 > sp

)2

· IHn

]
+ P

(
Hc

n

)

≤ p−3.4 + 3 exp
(
−1

4
n1/2(logn)−2

)

as n is sufficiently large since logp = o(n1/3). This proves the lemma. �
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PROOF OF LEMMA 3.14. Let P3 and E3 stand for the conditional probability
and the conditional expectation given {ξk, ξk1;1 ≤ k ≤ n}, respectively. By inde-
pendence,

(3.66)

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk13 > sp

)

= E

[
P3

(
1√
n

n∑
k=1

ηk12 > sp

)2]
.

Recall the notation in (3.18) and (3.19). Write
∑n

k=1 ηk12 = (bn

∑n
k=1 ξkξk1) +∑n

k=1(anξk1 + bnξk)ξk2. Then, given {ξk, ξk1;1 ≤ k ≤ n}, we have from indepen-
dence that

(3.67)
1√
n

n∑
k=1

ηk12 ∼ N
(
μ0n, σ

2
0n

)
,

where

μ0n = bn√
n

n∑
k=1

ξkξk1 and σ 2
0n = 1

n

n∑
k=1

(anξk1 + bnξk)
2.

Trivially, b2
n = ρn

1+ρn
≤ supn≥1

ρn

1+ρn
:= κ2 < 1

3 and a2
n + b2

n = 1
1+ρn

∈ (1
2 ,1] for all

ρn ∈ [0,1). Define

A = {|μ0n| <
√

3sp/2
}

and Bδ =
{

1 − δ <
σ 2

0n

a2
n + b2

n

< 1 + δ

}

for δ ∈ (0,1). Observe anξ11 + bnξ1
d=
√

a2
n + b2

n · ξ1 since ξ11 and ξ1 are i.i.d.

N(0,1)-distributed random variables. Thus,
σ 2

0n

a2
n+b2

n

d= n−1 ∑n
k=1 ξ2

k . Then, by the

large deviations for the sum of i.i.d. random variables, we obtain

(3.68) P
(
Bc

δ

) = P

(
1

n

n∑
k=1

ξ2
k ∈ [1 − δ,1 + δ]c

)
≤ e−nCδ

for all δ ∈ (0,1) where Cδ > 0 for each δ ∈ (0,1). Similarly, {ξkξk1;1 ≤ k ≤ n}
are i.i.d. with mean zero and variance one. Notice |ξ1ξ11| ≤ 1

2(|ξ1|2 + |ξ11|2).
Therefore, E exp(1

2 |ξ1ξ11|) < ∞. From Lemma 3.4 and the fact sp ∼ 2
√

logp =
o(n1/6), we see that, for any ε ∈ (0,1),

P
(
Ac) ≤ P

(
1√
n

∣∣∣∣∣
n∑

k=1

ξkξk1

∣∣∣∣∣ ≥
√

3sp

2κ

)
= 2P

(
1√
n

n∑
k=1

ξkξk1 ≥
√

3sp

2κ

)

≤ 2 exp
(
−1 − ε

2
· 3s2

p

4κ2

)
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as long as n is large enough. Since κ2 < 1/3, we choose ε = 1/2 − κ2. Then
1−ε
2κ2 = 1

2 + 1
4κ2 > 1. This implies that

P
(
Ac) ≤ 2 exp

(
−1 − ε

2κ2 · 3s2
p

4

)
= o

(
1

p3

)
as n → ∞.

It is easy to see that sp − μ0n → ∞ on A. By the inequality P(N(0,1) ≥ y) ≤
1√
2πy

e−y2/2 ≤ 1
2e−y2/2 for all y ≥ 1, we have from (3.67) that, on A ∩ Bδ ,

P3

(
1√
n

n∑
k=1

ηk12 ≥ sp

)
= P3

(
N
(
μ0n, σ

2
0n

) ≥ sp
) = P3

(
N(0,1) ≥ sp − μ0n

σ0n

)

≤ exp
(
−1

2

(sp − μ0n)
2

σ 2
0n

)
.

Note that σ 2
0n < (1 + δ)(a2

n + b2
n) = 1+δ

1+ρn
on Bδ . Therefore, on A ∩ Bδ ,

P3

(
1√
n

n∑
k=1

ηk12 > sp

)
≤ exp

(
− 1 + ρn

2(1 + δ)
· (sp − μ0n)

2
)
.

Review (3.66). We then have

P

(
1√
n

n∑
k=1

ηk12 > sp,
1√
n

n∑
k=1

ηk13 > sp

)

≤ E

[
P3

(
1√
n

n∑
k=1

ηk12 > sp

)2

IAc∪Bc
δ

]
+ E exp

(
−1 + ρn

1 + δ
· (sp − μ0n)

2
)

≤ P
(
Ac)+ P

(
Bc

δ

)+ E exp
(
−1 + ρn

1 + δ
· (sp − μ0n)

2
)

≤ o

(
1

p3

)
+ e−nCδ + E exp

(
−1 + ρn

1 + δ
· (μ0n − sp)2

)
.

By Lemma 3.11, choosing δ > 0 small enough, we know the last expectation is
identical to o(1/p3). The desired conclusion follows from the assumption logp =
o(n1/3). �

3.4. The proof of Proposition 3.2. The major building block of Ln in Theo-
rem 2.2 is M ′

n, as seen in the statement of Proposition 3.2. Now we prove this
proposition. First, we need an analogue of Lemma 3.11. Review the notation from
(3.14), (3.15) and (3.30). Set

(3.69) γk = −1

2
ρna

′
n

(
ξ2
k1 − 1

)+ b′
nξkξk1

for 1 ≤ k ≤ m := n − 1 and Vn = (γ1 + · · · + γm)/
√

m.
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LEMMA 3.15. Let ρn ∈ [0,1) be constants. Suppose p = pn → ∞ and
logp = o(n1/3) as n → ∞. Let sp be as in (3.16). Then there exists δ ∈ (0,1)

such that

(3.70) E

{
IK ′

n
· exp

[
− 1 − δ

1 − ω2
n

(Vn − sp)2
]}

= o

(
1

p3

)

as n → ∞, where K ′
n := {0 < Vn <

√
7ωnsp/2} and ωn := √

Var(γ1).

PROOF. First, if ρn = 0 for some n ≥ 1, then γk = 0 for all 1 ≤ k ≤ m. Hence
Vn = 0 and the expectation in (3.70) is zero by the definition of K ′

n. So it is enough
to prove the conclusion by assuming ρn > 0 for all n ≥ 1. The proof is divided into
a few of steps.

Step 1. Reduction of K ′
n to a smaller set. From the definitions of a′

n and b′
n in

(3.30), it is easy to check that

(3.71)
(
1 + ρ2

n

)
a′2
n + 2b′2

n = 1.

Trivially, we have ω2
n = ρ2

na′2
n /2 + b′2

n . Therefore,

ω2
n = 1

2
− a′2

n

2

= 1

2
− 1

2
·

1−ρn

1+ρn

(1 − ρn)2 + (2ρn)
1−ρn

1+ρn

= 1

2

(
1 − 1

1 + 2ρn − ρ2
n

)
<

1

4

(3.72)

because 1 + 2x − x2 < 2 for all x ∈ [0,1). In particular,

1

1 − ω2
n

(
1 − 1

5
ωn

)2
>

(
1 − 1

5
ωn

)2
≥
(

19

20

)2
> 0.8.

This implies that

E

{
I

(
0 < Vn ≤ 1

5
ωnsp

)
· exp

[
− 1 − δ

1 − ω2
n

(Vn − sp)2
]}

≤ exp
[
− 1 − δ

1 − ω2
n

(
1 − 1

5
ωn

)2
s2
p

]

≤ exp
[−3.2(1 − 2δ) logp

] = o

(
1

p3

)

as n → ∞ if δ > 0 is small enough. Therefore, it is enough to prove (3.70) with
K ′

n being replaced by K ′′
n = {ωnsp/5 < Vn <

√
7ωnsp/2}.
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Step 2. The tail probability of Vn. By the formula ω2
n = 1

2ρ2
na′2

n + b′2
n again,

(−1
2ρna

′
n

ωn

)2
= 1

2
·
(

1 + 2b′2
n

ρ2
na′2

n

)−1
≤ 1

2

and (
b′
n

ωn

)2
=

(
1 + 1

2
ρ2

n

a′2
n

b′2
n

)−1
≤ 1.

Recall γk in (3.69). Set γ ′
k = γk/(

√
mωn) for 1 ≤ k ≤ m. The above implies that

√
m · ∣∣γ ′

k

∣∣ ≤ 1

2

(
ξ2
k1 + 1

)+ |ξkξk1| ≤ ξ2
k1 + ξ2

k + 1.

In addition, γ ′
k’s are i.i.d. with mean zero and satisfy

∑m
k=1 Var(γ ′

k) = 1. Also,
Eet |γ ′

k | < ∞ if 0 < t <
√

m/4. Observe

γ :=
m∑

i=1

E
(∣∣γ ′

k

∣∣3ex|γ ′
k |) ≤ 1√

m
E
[(

ξ2
11 + ξ2

1 + 1
)3

e
x√
m

(ξ2
11+ξ2

1 +1)] ≤ C√
m

for all 0 ≤ x ≤ √
m/4, where C = E[(ξ2

11 + ξ2
1 + 1)3e

1
4 (ξ2

11+ξ2
1 +1)] < ∞. By

Lemma 3.5,

(3.73) P(Vn ≥ x) = P

(
m∑

i=1

γ ′
k ≥ x

ωn

)
≤ 2

[
1 − �

(
x

ωn

)]

provided (x/ωn)
3/

√
m → 0 and 0 ≤ x/ωn ≤ √

m/4. In particular, by the assump-
tion logp = o(n1/3) and the fact P(N(0,1) ≥ t) ≤ 1√

2πt
e−t2/2 for all t > 0 again,

we have

(3.74) P(Vn ≥ x) ≤ e−x2/(2ω2
n)

for all 1
5ωnsp < x <

√
7

2 ωnsp .
Step 3. The estimate of the expectation from (3.70). Let A1, B1 and α2 > 0

be constants. Assume [A1,B1] ⊂ [0, sp]. Notice de−α2(x−sp)2

dx
= 2α2(sp − x) ·

e−α2(x−sp)2
, we have

e−α2(v−sp)2 = e−α2(A1−sp)2 + 2α2

∫ v

A1

(sp − x) · e−α2(x−sp)2
dx

≤ e−α2(A1−sp)2 + 2α2sp

∫ ∞
0

e−α2(x−sp)2
I (A1 ≤ x ≤ v) dx
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for any sp > v > A1. Replacing v with Vn, then multiplying both sides of the above
by I (A1 < Vn < B1), we get

e−α2(Vn−sp)2
I (A < Vn < B)

≤ e−α2(A1−sp)2 + 2α2sp

∫ ∞
0

e−α2(x−sp)2
I (A1 ≤ x ≤ Vn < B1) dx

≤ e−α2(A1−sp)2 + 2α2sp

∫ B1

A1

e−α2(x−sp)2
I (Vn ≥ x)dx.

Set A1 = ωnsp/5 and B1 = √
7ωnsp/2. By taking expectations on both sides of

the above, we obtain from (3.74) that

(3.75)

E
[
e−α2(Vn−sp)2

I (A1 < Vn < B1)
]

≤ e−α2(A1−sp)2 + 2α2sp

∫ B1

A1

e−α2(x−sp)2
P(Vn ≥ x)dx

≤ e−α2(A1−sp)2 + 2α2sp

∫ B1

A1

exp
(
−α2(x − sp)2 − x2

2ω2
n

)
dx.

Now we evaluate the integral. Write

−α2(x − sp)2 − x2

2ω2
n

= −
(√

α2 + 1

2ω2
n

x − α2sp√
α2 + 1

2ω2
n

)2
− α2s

2
p

2α2ω2
n + 1

.

Now, define y such that

(3.76)
y√
2

=
√

α2 + 1

2ω2
n

x − α2sp√
α2 + 1

2ω2
n

.

It follows that

2α2sp

∫ B1

A1

exp
(
−α2(x − sp)2 − x2

2ω2
n

)
dx

= (2α2sp) · exp
(
− α2s

2
p

2α2ω2
n + 1

)
·
∫ B ′

A′
e−y2/2 dy · 1√

2α2 + 1
ω2

n

≤
√

8πα2√
2α2 + 1

ω2
n

sp · exp
(
− α2s

2
p

2α2ω2
n + 1

)
· 1√

2π

∫ ∞
−∞

e−y2/2 dy,
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where A′ and B ′ are the corresponding values of y in (3.76) as x = A1 and B1,
respectively. This combining with (3.75) implies

E
[
e−α2(Vn−sp)2

I (A1 < Vn < B1)
]

≤ e−α2(A1−sp)2 +
√

4πα2s2
p · exp

(
− s2

p

2ω2
n + α−1

2

)
,

where the inequality α2(2α2 + ω−2
n )−1/2 ≤ √

α2/2 is used. Take α2 = 1−δ
1−ω2

n
. Then

1 − δ < α2 < 4/3 by (3.72). Note

2ω2
n + α−1

2 = 2ω2
n + 1 − ω2

n

1 − δ
≤ 1 + ω2

n

1 − δ
≤ 1 + ω2

1 − δ
,

where ω2 := supn≥1 ω2
n ≤ 1/4. From (3.72), we know A1 ≤ sp/10. This concludes

E

{
IK ′′

n
· exp

[
− 1 − δ

1 − ω2
n

(Vn − sp)2
]}

≤ exp
[
−(1 − δ)

(
1

10
sp − sp

)2]
+ 2

√
6π(logp) · exp

(
− 1 − δ

1 + ω2 s2
p

)
.

The first term on the right-hand side is o(p−3) if (1 − δ)( 9
10)2 · 4 > 3, which is

true if 0 < δ < 2/27; the second term is o(p−3) as long as 1−δ
1+ω2 > 3/4, which is

equivalent to that 0 < δ < 1 − 3(1 + ω2)/4. The desired conclusion then follows
from the fact ω2 ≤ 1/4. �

PROOF OF PROPOSITION 3.2. The strategy of the proof is similar to that of
Proposition 3.1. However, the technical details are more involved. Let I , sp and Bα

be as in the proof of Proposition 3.1. For α = (i, j) ∈ I , define Xα = M ′
nij . Let P2

and E2 stand for the conditional probability and the conditional expectation given
{ξk;1 ≤ k ≤ m}, respectively. Again, the key observation is that, given {ξk;1 ≤
k ≤ m}, random variable Xα is independent of {Xβ;β /∈ Bα}. Since {Xα,α ∈ I }
are identically distributed under P2, by Lemma 3.3, we have

(3.77)
∣∣∣P2

(
max
α∈I

Xα ≤ sp

)
− e−λp2

∣∣∣ ≤ w′
1 + w′

2,

where

λp2 = p(p − 1)

2
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)

and

w′
1 = ∑

α∈I

∑
β∈Bα

P2(Xα > sp)P2(Xβ > sp)

≤ p(p − 1)

2
· (2p) · P2

(
1√
m

m∑
k=1

η′
k12 > sp

)2
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and

w′
2 = ∑

α∈I

∑
β∈Bα

P2(Xα > sp,Xβ > sp)

≤ p(p − 1)

2
· (2p) · P2

(
1√
m

m∑
k=1

η′
k12 > sp,

1√
m

m∑
k=1

η′
k13 > sp

)
.

Note that P(maxα∈I Xα ≤ sp) = EP2(maxα∈I Xα ≤ sp). From (3.77),∣∣∣P (
max
α∈I

Xα ≤ sp

)
− Ee−λp2

∣∣∣ ≤ E
∣∣∣P2

(
max
α∈I

Xα ≤ sp

)
− e−λp2

∣∣∣
≤ Ew′

1 + Ew′
2.

Obviously,

Ee−λp2 = E exp

[
−p(p − 1)

2
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)]
;

Ew′
1 ≤ p3 · E

[
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)2]
;

Ew′
2 ≤ p3 · P

(
1√
m

m∑
k=1

η′
k12 > sp,

1√
m

m∑
k=1

η′
k13 > sp

)
.

The following three lemmas say that Ee−λp2 → exp(− 1
4
√

2π
e−x/2), Ew′

1 → 0 and

Ew′
2 → 0. The proof is then complete. �

LEMMA 3.16. Let the assumptions in Proposition 3.2 hold. Review m = n−1
and P2 stands for the conditional probability given {ξk;1 ≤ k ≤ m}. Then

(3.78) E exp

[
−p(p − 1)

2
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)]
→ exp

(
− 1

4
√

2π
e−x/2

)

as n → ∞ for all x ∈ R.

LEMMA 3.17. Let the assumptions in Proposition 3.2 hold. Review m = n−1
and P2 stands for the conditional probability given {ξk;1 ≤ k ≤ m}. Then

(3.79) E

[
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)2]
= o

(
1

p3

)

as n → ∞.
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LEMMA 3.18. Let the assumptions in Proposition 3.2 hold. Review m = n−1.
Then

P

(
1√
m

m∑
k=1

η′
k12 > sp,

1√
m

m∑
k=1

η′
k13 > sp

)
= o

(
1

p3

)

as n → ∞.

Now we start to prove the three statements one by one.

PROOF OF LEMMA 3.16. We will get a sharp estimate on P2(
1√
m

∑m
k=1 η′

k12 >

sp) first by using Lemma 3.5. To carry on this, we have to check the required
conditions.

Step 1: the behaviors of η′
k12. Write

(3.80)
m∑

k=1

η′
k12 =

m∑
k=1

{
a′
n

[
ξk1ξk2 − ρn

2

(
ξ2
k1 + ξ2

k2 − 2
)]+ b′

nξk(ξk1 + ξk2)

}
.

Given {ξk;1 ≤ k ≤ m}, it is the sum of independent random variables. It is easy to
check that

(3.81) E2η
′
k12 = 0, Var2

(
η′

kij

) = a′2
n

(
1 + ρ2

n

)+ 2b′2
n ξ2

k .

So the conditional variance

(3.82) Var2

(
m∑

k=1

η′
k12

)
= m

(
1 + ρ2

n

)
a′2
n + 2b′2

n

m∑
k=1

ξ2
k .

Set

Fn =
{

max
1≤k≤n

|ξk| ≤ √
mand

6

7
≤ 1

m

m∑
k=1

ξ2
k ≤ 15

14

}
.

Recall the notation τ = E(|ξ1|3) + 1 defined earlier. For v > 0, define

(3.83) Gn(v) =
{

1

m

m∑
k=1

(
1 + |ξk|3)evξ2

k (logp)/m ≤ 2τ

}
.

The parameter v will be chosen later. The inequality (3.55) says that

(3.84) P
((

Fn ∩ Gn(v)
)c) ≤ 3 exp

(
−1

4
n1/2(logn)−2

)

as n ≥ nv , where nv ≥ 1 is a constant depending on v only. Define

(3.85) σ 2
n2 = (

1 + ρ2
n

)
a′2
n + 2b′2

n

1

m

m∑
k=1

ξ2
k .
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Note (3.71). Then, on Fn,

(3.86)
1

2
= 1

2

[
1 + ρ2

n)a′2
n + 2b′2

n

] ≤ σ 2
n2 ≤ (

1 + ρ2
n

)
a′2
n + 2b′2

n · 15

14
≤ 15

14
.

Next, we will use Lemma 3.5 to get a precise estimate on P2(
1√
m

∑m
k=1 η′

k12 >

sp). To do so, set

a′ = c′ = − a′
nρn

2
√

mσn2
; b′ = a′

n√
mσn2

;

d ′ = e′ = b′
nξk√
mσn2

; f ′ = a′
nρn√
mσn2

and η′
k = a′ξ2

k1 +b′ξk1ξk2 + c′ξ2
k2 +d ′ξk1 + e′ξk2 +f ′. Then it follows from (3.82)

that

(3.87) E2η
′
k = 0 for each 1 ≤ k ≤ n and

n∑
k=1

Var2
(
η′

k

) = 1.

Furthermore, from (3.85), σn2 ≥ max{a′
n, b

′
n} on Fn. Then

(3.88) max
{∣∣a′∣∣, ∣∣b′∣∣, ∣∣c′∣∣, ∣∣f ′∣∣} ≤ 1√

m
and

∣∣d ′∣∣ = ∣∣e′∣∣ ≤ |ξk|√
m

≤ 1

on Fn. Hence, on Fn, |η′
k| ≤ 2√

m
(ξ2

k1 + ξ2
k2) + |ξk1 + ξk2| + 1√

m
. By the fact ξk1 +

ξk2 ∼ √
2N(0,1) and independence,

Eeh|η′
k | ≤ eh/

√
m · E exp

(
2h√
m

(
ξ2
k1 + ξ2

k2
)+ h|ξ11 + ξ12|

)

≤ e1/16 ·
[
E exp

(
4h√
m

(
ξ2
k1 + ξ2

k2
))]1/2

· [E exp
(
2
√

2hN(0,1)
)]1/2

= 2 · E exp
(

4h√
m

N(0,1)2
)

· e2h2
< ∞

(3.89)

for all h, k, n satisfying 0 < h ≤ hn := √
m/16 and 1 ≤ k ≤ m. Now, on Fn, by

Lemma 3.6, (3.86) and (3.88) we have

(3.90)
E2

(∣∣η′
k

∣∣3ex|η′
k |) ≤ C

m3/2

(
1 + |ξk|3)e4x2ξ2

k /m · ex/
√

m

≤ C

m3/2

(
1 + |ξk|3)e4x2ξ2

k /m

if 0 < x ≤ 1
12(|a′|+|b′|+|c′|) ∧ √

m, where C here and later in the proof is a con-
stant not depending on ξk’s and may be different from line to line. Observe that



3366 J. FAN AND T. JIANG

(0,
√

m
36 ) ⊂ (0, 1

12(|a′|+|b′|+|c′|) ) on Fn by (3.88). Thus, (3.90) particularly holds for

all x ∈ (0,
√

m/36). Now we take x1 = sp/σn2. Then, by (3.86),

(3.91) x1 ≤ 2sp <
√

m/36

on Fn by the assumption logp = o(n1/3). We then have

γ :=
m∑

k=1

E2
(∣∣η′

k

∣∣3ex1|η′
k |) ≤ C

m3/2

m∑
k=1

(
1 + |ξk|3)e4x2

1ξ2
k /m

≤ C

m3/2

m∑
k=1

(
1 + |ξk|3)e64ξ2

k (logp)/m

on Fn as n is sufficiently large. Thus, γ ≤ 2Cτ/
√

m on Fn ∩ Gn(64) := Hn by
(3.83). The inequality in (3.84)) implies

(3.92) P
(
Hc

n

) = o

(
1

p3

)

as n is sufficiently large since logp = o(n1/3) by assumption.
Step 2: a sharp estimate on P2(m

−1/2 ∑m
k=1 η′

k12 > sp) by Lemma 3.5. By
(3.91), we see that x1 <

√
m/36 <

√
m/16 = hn. From (3.87), (3.89) and

Lemma 3.5, we conclude

P2

(
1√
m

m∑
k=1

η′
k12 > sp

)
= P2

(
m∑

k=1

η′
k >

sp

σn2

)

= [
1 − �(x1)

] · [1 + O(1)
(
1 + x3

1
)
γ e4x3

1γ ]
on Hn. Just notice |O(1)| is bounded by an absolute constant. Finally, by (3.91),
x3

1γ = O(s3
pm−1/2) → 0 on Hn. Reviewing (3.86), we have sp/2 ≤ x1 ≤ 2sp on

Hn. Hence, from the formula P(N(0,1) ≥ x) = 1√
2πx

e−x2/2(1 + o(1)) as x → ∞
we obtain that, on Hn,

(3.93)

P2

(
1√
m

m∑
k=1

η′
k12 > sp

)
=

[
1 − �

(
sp

σn2

)]
· (1 + o(1)

)

= σn2√
2πsp

· e−s2
p/(2σ 2

n2) · (1 + o(1)
)

as n → ∞, where o(1) does not depend on ξk’s.
Step 3: proof of (3.78) by (3.93). By the bounded convergence theorem, to prove

the lemma, it is enough to show that

p2

2
· P2

(
1√
m

m∑
k=1

η′
k12 > sp

)
→ 1

4
√

2π
e−x/2
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in probability as n → ∞. Since P(Hn) → 1, to complete the proof, it is enough to
prove

p2

2
· P2

(
1√
m

m∑
k=1

η′
k12 > sp

)
· IHn → 1

4
√

2π
e−x/2

in probability as n → ∞. Recalling (3.71) and (3.85), it is trivial to see σn2 → 1
in probability as n → ∞. Also, sp ∼ 2

√
logp, comparing this with (3.93), it is

enough to prove

(3.94)
p2

4
√

2π logp
· e−s2

p/(2σ 2
n2) · IHn → 1

4
√

2π
e−x/2

in probability. By the central limit theorem for i.i.d. random variables, we know
σ 2

n2 = 1 + Op( 1√
n
) from (3.71) and (3.85). Hence σ−2

n2 = 1 + Op( 1√
n
). This leads

to that

s2
p

2σ 2
n2

=
(

2 logp − 1

2
log logp + 1

2
x

)
·
[
1 + Op

(
1√
n

)]

= 2 logp − 1

2
log logp + 1

2
x + op(1)

by the condition (logp)/n1/3 → 0. We then get (3.94). �

PROOF OF LEMMA 3.17. Review the proof of Lemma 3.16. Let Hn be defined
as above (3.92). By (3.93), there exists a constant n1 ≥ 1 not depending on ξk’s
such that

P2

(
1√
m

m∑
k=1

η′
k12 > sp

)
· IHn ≤ σn2√

2πsp
· e−s2

p/(2σ 2
n2) · IHn

as n ≥ n1. Then[
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)]2

· IHn ≤ C · σ 2
n2

s2
p

· e−s2
p/σ 2

n2 · IHn ≤ C

logp
· e−7s2

p/8

on Hn as n ≥ n2 by (3.86), where n2 is a constant not depending on ξk’s. Therefore,
combining this with (3.92), we see

E

[
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)2]
≤ E

[
P2

(
1√
m

m∑
k=1

η′
k12 > sp

)2

· IHn

]
+ P

(
Hc

n

)

≤ p−3.4 + o

(
1

p3

)

as n is sufficiently large. This proves the lemma. �
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PROOF OF LEMMA 3.18. Let P3 and E3 stand for the conditional probability
and the conditional expectation given {ξk, ξk1;1 ≤ k ≤ n}, respectively. By inde-
pendence,

(3.95)

P

(
1√
m

m∑
k=1

η′
k12 > sp,

1√
m

m∑
k=1

η′
k13 > sp

)

= E

[
P3

(
1√
m

m∑
k=1

η′
k12 > sp

)2]
.

Write

η′
k12 = αn

(
U2

k − 1
)+ βkUk + γk,

where Uk = ξk2,

αn = −1

2
ρna

′
n,

βk = (
a′
nξk1 + b′

nξk

)
,

and γk is defined in (3.69). Now,

(3.96)

P3

(
1√
m

m∑
k=1

η′
k12 > sp

)

= P3

(
1√
m

m∑
k=1

[
αn

(
U2

k − 1
)+ βkUk

]
> sp − 1√

m

m∑
k=1

γk

)
.

We will complete the proof with a couple of steps.
Step 1: the size of 1√

m

∑m
k=1 γk . Unconditionally, {γk;1 ≤ k ≤ m} are i.i.d. with

mean zero and variance ω2
n = 1

2ρ2
na′2

n + b′2
n mentioned below (3.71). By (3.72),

ω2
n < 1/4. From (3.73) and the fact P(N(0,1) ≥ t) ≤ 1√

2πt
e−t2/2 for all t > 0,

P

(
1√
m

m∑
k=1

γk ≥ θωnsp

)
≤ 2e−(θsp)2/2 ≤ p−2θ2

(logp)θ
2

as n is sufficiently large for all θ > 0. Review the short argument as in getting
(3.73), the above inequality also holds if “γk” is replaced by “−γk .” It follows that

P

(
1√
m

∣∣∣∣∣
m∑

k=1

γk

∣∣∣∣∣ ≥ θωnsp

)
≤ 2p−2θ2

(logp)θ
2

as n is sufficiently large for all θ > 0. Set

K̃n =
{

1√
m

∣∣∣∣∣
m∑

k=1

γk

∣∣∣∣∣ <
√

7

2
ωnsp

}
.
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Then

(3.97) P
(
K̃c

n

) = o

(
1

p3

)

as n → ∞. Let

s′
p = sp − 1√

m

m∑
k=1

γk.

Set Wk = αn(U
2
k − 1) + βkUk for 1 ≤ k ≤ m. Now we consider

P3

(
1√
m

m∑
k=1

[
αn

(
U2

k − 1
)+ βkUk

]
> s′

p

)
= P3

(
1√
m

m∑
k=1

Wk > s′
p

)
.

Step 2: the behaviors of Wk’s on typical sets. Observe

(3.98)
E3(Wk) = 0;

Var3(Wk) = 2α2
n + β2

k = 1

2

(
ρna

′
n

)2 + (
a′
nξk1 + b′

nξk

)2
.

It follows that

(3.99)

σ 2
n3 := Var3

(
1√
m

m∑
k=1

Wk

)
= 1

2

(
ρna

′
n

)2 + 1

m

m∑
k=1

(
a′
nξk1 + b′

nξk

)2

d= 1

2

(
ρna

′
n

)2 + (
a′2
n + b′2

n

) 1

m

m∑
k=1

ξ2
k .

Set

Fn(δ) =
{

max
1≤k≤n

|ξk| ≤ √
n and 1 − δ ≤ 1

n

n∑
k=1

ξ2
k ≤ 1 + δ

}

for n ≥ 1 and δ ∈ (0,1). By the fact P(N(0,1) ≥ t) ≤ 1√
2πt

e−t2/2 for all t > 0
again and (3.68), for any δ > 0, there is a constant Cδ > 0 such that

(3.100) P
(
Fn(δ)

c) ≤ e−nCδ

as n is sufficiently large. Review m = n − 1. Under Fm(δ), it is easy to see from
(3.71) that

(3.101)
∣∣σ 2

n3 − σ 2
03
∣∣ ≤ δ,

where σ 2
03 := (1

2ρ2
n + 1)a′2

n + b′2
n . Evidently,

(3.102) 1/2 ≤ σ 2
03 ≤ 1
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by (3.71). Now, review the notation τ = E(|ξ1|3) + 1 defined earlier. For v > 0,
define

Gm(v) =
{

1

m

m∑
k=1

(
1 + |βk|3)evβ2

k (logp)/m ≤ 2τ

}
.

The parameter v will be chosen later. Now (β1, . . . , βm)′ d=
√

a′2
n + b′2

n (ξ1, . . . , ξm).

From (3.71) we know a′2
n +b′2

n ≤ 1. Then, by Lemma 3.7, for all v > 0, there exists
nv > 0 such that

P
(
Gm(v)c

) ≤ P

(
1

m

m∑
k=1

(
1 + |ξk|3)evξ2

k (logp)/m > 2τ

)

≤ exp
(
−1

4
m1/2(logm)−2

)

for all n ≥ nv . Define Hn(δ, v) := Fm(δ)∩Gm(v)∩ K̃n. Join the above with (3.97)
and (3.100) to see

(3.103) P
(
Hn(δ, v)c

) = o

(
1

p3

)

as n → ∞ for all δ ∈ (0,1) and v > 0. By Hölder’s inequality,

(3.104)

E3e
h|Wk |/√m ≤ eh|αn|/√m · E3 exp

(
hm−1/2|αn|U2

k + hm−1/2|βk||Uk|)
≤ e|αn|h · [E3 exp

(
2hm−1/2|αn|U2

1
)]1/2

· [E3 exp
(
2hm−1/2|βk||U1|)]1/2

< ∞
as long as 0 < h ≤

√
m

8|αn| . From (3.71), we see |αn| ≤ 1. Therefore, (3.104) holds

for all 0 < h ≤ hn := √
m/8. Furthermore, by taking a = αn/

√
m, d = βk/

√
m,

f = −αn/
√

m and b = c = e = 0, we have from Lemma 3.6 that

(3.105)

E3

( |Wk|3√
m3

ex|Wk |/√m

)
≤ C

m3/2

(|αn|3 + |βk|3) · exp
(

2β2
k

m
x2

)
· e|αn|x/

√
m

≤ Ce

m3/2 · (1 + |βk|3) · exp
(

2β2
k

m
x2

)

for all 0 < x ≤ √
m/12 since 1

12|αn|
√

m ≥ √
m/12. Now take x3 = s′

p

σn3
. The asser-

tions (3.101) and (3.102) imply that 1/4 ≤ σ 2
n3 ≤ 2 on Fm(δ) for all δ ∈ (0,1/4].

Then x3 ≤ 2s′
p on Hn(δ, v) for all δ ∈ (0,1/4] and all v > 0. Moreover, due to the

fact 0 ≤ ωn < 1/2 we see that

(3.106) 0 < s ′
p ≤ sp + 1√

m

∣∣∣∣∣
m∑

k=1

γk

∣∣∣∣∣ ≤ sp +
√

7

2
ωnsp ≤ 2sp
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on K̃n. This says that 0 < x3 ≤ 2s′
p ≤ 4sp ≤ √

m/24 as n ≥ nv,δ ≥ nv for all δ ∈
(0,1/4] and all v > 0, where nv,δ > 0 is a constant depending on δ and v. This and
(3.105) yield

(3.107)

m∑
k=1

E3

( |Wk|3√
m3

e2x3|Wk |/√m

)
≤ C

m3/2

m∑
k=1

(
1 + |βk|3) · exp

(
128s2

p · β2
k

m

)

≤ 2τC√
m

on Hn(δ,128) as n ≥ nδ ≥ n128,δ for all δ ∈ (0,1/4], where nδ depends on δ. The
last step follows from the definition of Gm(v) and the fact s2

p ≤ 4 logp as n is
sufficiently large.

Step 3: a bound on P3(
1√
m

∑m
k=1 η′

k12 > sp). Review (3.96) and the definition
of Wk , we see

(3.108) P3

(
1√
m

m∑
k=1

η′
k12 > sp

)
= P3

(
1√
m

m∑
k=1

Wk

σn3
> x3

)

since x3 = s′
p/σn3. Set W ′

k = Wk/(
√

mσn3) for 1 ≤ k ≤ m. Then (3.98) and (3.99)
imply

EW ′
k = 0 and Var3

(
m∑

k=1

W ′
k

)
= 1

for each 1 ≤ k ≤ m. Since 1
4 ≤ σ 2

n3 ≤ 2 on Fm(δ) for all δ ∈ (0, 1
4 ], we see from

(3.104) that E3e
h|W ′

k | ≤ E3e
2h|Wk |/√m < ∞ for all 0 < h ≤ hn :=

√
m

16 . Moreover,
by (3.107),

γ :=
m∑

k=1

E
(∣∣W ′

k

∣∣3ex3|W ′
k |) =

m∑
k=1

E3

[ |Wk|3
σ 3

n3

√
m3

exp
(
x3

|Wk|√
mσn3

)]

≤ 8
m∑

k=1

E3

( |Wk|3√
m3

e2x3|Wk |/√m

)
≤ 16τC√

m

on Hn(δ,128) for all n ≥ nδ and δ ∈ (0,1/4]. Trivially, 0 < x3 ≤ √
m/24 < hn.

The inequality from (3.106) says that x3
3γ = O(s3

p/
√

m) → 0 on Hn(δ,128) by the
condition logp = o(n1/3). After verifying all conditions required in Lemma 3.5,
we conclude

P3

(
m∑

k=1

W ′
k > x3

)
≤ 2

[
1 − �(x3)

]
on Hn(δ,128) for all n ≥ nδ and δ ∈ (0,1/4]. The definition of s ′

p and (3.108)
yield that

P3

(
1√
m

m∑
k=1

η′
k12 > sp

)
≤ 2

[
1 − �

(
sp

σn3
− 1

σn3
√

m

m∑
k=1

γk

)]
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on Hn(δ,128) for all n ≥ nδ and δ ∈ (0,1/4]. On K̃n,

1√
mσn3

∣∣∣∣∣
m∑

k=1

γk

∣∣∣∣∣ ≤
√

7ωnsp

2σn3
≤

√
7

4
· sp

σn3

since 0 ≤ ωn < 1/2 by (3.72). By the fact 1/4 ≤ σ 2
n3 ≤ 2 on Hn(δ,128) with δ ∈

(0,1/4]. Therefore, sp
σn3

− 1
σn3

√
m

∑m
k=1 γk → ∞ on Hn(δ,128) as n → ∞. Since

P(N(0,1) ≥ x) ≤ e−x2/2 for x ≥ 1, we obtain that, given δ ∈ (0,1/4],

P3

(
1√
m

m∑
k=1

η′
k12 > sp

)2

≤ 4 · exp

[
−
(

sp

σn3
− 1

σn3
√

m

m∑
k=1

γk

)2]

on Hn(δ,128) as n is sufficiently large. By (3.101) and (3.103), given δ ∈ (0,1/4],

E

[
P3

(
1√
m

m∑
k=1

η′
k12 > sp

)2]

≤ 4 · E
{
IHn(δ,128) · exp

[
− 1

σ 2
n3

(
sp − 1√

m

m∑
k=1

γk

)2]}
+ o

(
1

p3

)

≤ 4 · E
{
I
K̃n

· exp
[
− 1

(σ 2
03 + δ)

(sp − Vn)
2
]}

+ o

(
1

p3

)

as n is sufficiently large, where Vn = m−1/2 ∑m
k=1 γk . Now

E

{
I (Vn ≤ 0) · exp

[
− 1

(σ 2
03 + 1

5)
(sp − Vn)

2
]}

≤ exp
[
− s2

p

(σ 2
03 + 1

5)

]
= o

(
1

p3

)

since 1/2 ≤ σ 2
03 ≤ 1 by (3.102). Denote

K ′
n =

{
0 <

1√
m

m∑
k=1

γk <

√
7

2
ωnsp

}
.

Then, for given δ ∈ (0,1/5],

E

[
P3

(
1√
m

m∑
k=1

η′
k12 > sp

)2]

≤ 4 · E
{
IK ′

n
· exp

[
− 1

(σ 2
03 + δ)

(sp − Vn)
2
]}

+ o

(
1

p3

)

as n is sufficiently large. By (3.71) and (3.72), σ 2
03 + ω2

n = 1. The desired conclu-
sion then follows from Lemma 3.15 and (3.95). �
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