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INVARIANT MEASURE FOR RANDOM WALKS
ON ERGODIC ENVIRONMENTS ON A STRIP

BY DMITRY DOLGOPYAT AND ILYA GOLDSHEID

University of Maryland and Queen Mary University of London

Environment viewed from the particle is a powerful method of analyzing
random walks (RW) in random environment (RE). It is well known that in this
setting the environment process is a Markov chain on the set of environments.
We study the fundamental question of existence of the density of the invariant
measure of this Markov chain with respect to the measure on the set of en-
vironments for RW on a strip. We first describe all positive subexponentially
growing solutions of the corresponding invariant density equation in the de-
terministic setting and then derive necessary and sufficient conditions for the
existence of the density when the environment is ergodic in both the transient
and the recurrent regimes. We also provide applications of our analysis to the
question of positive and null recurrence, the study of the Green functions and
to random walks on orbits of a dynamical system.

1. Introduction.

1.1. Brief historic remarks and motivations. The approach to the study of the
asymptotic behaviour of random walks in random environments (RWRE) known
under the name environment viewed from the particle was initiated by S. Kozlov
[21, 22], as well as by Papanicolau–Varadhan [26]. In the case of the RWRE in
Z

d , the idea is to move, after each jump of the particle, the environment and the
particle in the direction opposite to the jump. The particle thus remains at its initial
position but does “see” the same environments it would be seeing while performing
the usual random walk.

The corresponding random process is a Markov chain (MC) on the space of
environments. It turns out [22] that if the random environment is stationary and
ergodic with respect to the standard shift and if this MC has an invariant mea-
sure which is absolutely continuous with respect to the measure on the space of
environments then:

(a) the absolutely continuous invariant measure is unique;
(b) this invariant measure and the measure on the space of environments are

absolutely continuous with respect to each other;
(c) the stationary MC on the set of environments whose initial distribution is

the said invariant measure is ergodic (see [5, 22] or [34] for a more comprehensive
discussion and proofs of these properties).
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The main model we consider in this work is the RWRE on a strip introduced
in [3]. Our main goal is to obtain a complete classification of the solutions to the
invariant density equation and to describe the necessary and sufficient conditions
for the existence of an invariant density of the MC on the space of ergodic random
environments on the strip in both the transient and the recurrent regimes. (Here
and below, we often use the expression “invariant density” instead of “the density
of the invariant measure.”)

In many papers concerned with the study of the RWRE, establishing the exis-
tence of the invariant density has been a crucial (if not the major) part of the work
(see [2, 5–8, 17, 18, 23, 29–31, 33] and references therein). As a fundamental prob-
lem of the theory of RWRE, this question is interesting and important in its own
right. But our motivation is also due to two more sources.

One is Sinai’s paper [33] where he considers a random walk on a torus generated
by an irrational shift satisfying certain diophantine conditions. In Section 6 of [33],
Sinai lists several open problems. We quote those that will be solved in this paper:

Let T be a measure preserving automorphism acting on a measure space (M,M,μ)

and p < 1 be positive μ-a.e. on M . Consider a Markov chain where a point x ∈ M

jumps to T x with probability p(x) and to T −1x with probability 1 − p(x). Problem:
does this MC have an invariant measure equivalent to μ? We believe that in the case of
T with strong mixing properties like Anosov transitive diffeomorphisms the answer is
negative. Probably this case is connected with random walks in random environments
(see [32]). It would be interesting to extend the results of this paper to Markov chains
where a point can jump from x to T ix, |i| ≤ i0.

The first of these questions was, to a large extent, answered by Kaloshin and
Sinai in [17] and [18]. As will be seen in Section 6, our results allow us to answer
a question which includes as a particular case the second of the above questions
and also to complement the results obtained in [17, 18].

The other motivation is due to our papers [9, 12] where we came across the
necessity to control the behavior of the variance of a recurrent RWRE on a strip
in a bounded potential. The only way to do that in the recurrent case that we are
aware of is via constructing the invariant density for the walk on the space of
environments. In [12], this construction was carried out under the assumption that
a particular function of the environment satisfies the homological equation (see
(5.6) below). This prompts a natural question: is (5.6) also necessary? As will be
shown below, the answer is positive.

Let us mention previous results related to our work. The existence of the invari-
ant density in the ballistic regime (positive speed of escaping to infinity) was first
proved in [30]. The corresponding formula for the density under the same con-
ditions was found in [16]. RWRE with bounded jumps on Z were studied in [7]
where the solutions to the invariant density equation for this model were described.
The RW with bounded jumps on Z is a particular case of the RWRE on a strip and
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in this sense we recover here the results from [7]. The way in which the study of
the RW on a line is reduced to the study of the RW on a strip was explained in [3,
4, 15].

1.2. Informal discussion of the main results and of the approach. The precise
statements of our main results require some preparation and will be given later.
Here, we discuss them informally. To do that, we have to introduce some notation
which will be discussed in detail in Section 2.

Let (�,F,P) be a probability space with � being the space of environments
and let T be an ergodic automorphism of � preserving measure P. The invariant
density equation can be viewed in two ways.

First, it is derived as a functional equation for the density function ρ : � �→R
m.

It has the form

(1.1) ρ(ω) = ρ(T ω)Q(T ω) + ρ(ω)R(ω) + ρ
(
T −1ω

)
P

(
T −1ω

)
,

where ω ∈ � is an environment, ρ is a row-vector, P(ω), Q(ω), R(ω) are m × m

matrices with nonnegative entries and such that their sum is a stochastic matrix:
(P (ω) + Q(ω) + R(ω))1 = 1. (Throughout the paper, 1 ∈ R

m is a column vector
whose all components are 1.)

Second, for a given ω we consider the restriction of ρ(·) to the points of the
trajectory T nω,−∞ < n < ∞. Namely, we set

(1.2) πn = ρ
(
T nω

)
, (Pn,Qn,Rn) = (

P
(
T nω

)
,Q

(
T nω

)
,R

(
T nω

))
and obtain from (1.1) the equation

(1.3) πn = πn+1Qn+1 + πnRn + πn−1Pn−1, −∞ < n < ∞.

Since ρ ≥ 0, we are interested only in nonnegative solutions. Next, it is easy to
see (cf. inequality (2.12)) that πn may grow at most linearly in n. However, our
technique allows us (at no additional cost) to classify sub-exponentially growing
solutions and we shall do exactly that. We call such solutions tempered. The idea
now is to describe all nonnegative tempered solutions to (1.3) as functions of the
sequence (Pn,Qn,Rn) and then to extract from this description the information
required for the control of (1.1). Accordingly, our analysis consists of two parts.

In the first part, we view equation (1.3) as deterministic in the sense that we
solve it for a fixed sequence (Pn,Qn,Rn). This sequence is supposed to satisfy
ellipticity assumptions (2.6) but the second relation in (1.2) plays no role in the
deterministic analysis. Our deterministic results are as follows:

• Equation (1.3) admits the first integral c = πnPn1 − πn+1Qn+11.

This fundamental property of equation (1.3) was not known before. Lemma 4.6
proves this statement and also contains another, more technical definition of c. Both
definitions play a crucial role in the proofs of our main results. It is remarkable that
the existence of c does not need any positivity assumption on the solution.
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• We describe all nonnegative tempered solutions to (1.3) as explicit functions
of certain auxiliary vectors and matrices which can be efficiently computed from
the sequence (Pn,Qn,Rn).

Theorem 4.12 is the exact, extended and quite technical version of this statement.

• Equation (1.3) has at most 3 linearly independent positive solutions.

This statement is not particularly intuitive since under mild nondegeneracy as-
sumptions the space of solutions to (1.3) is 2m-dimensional.

The second, probabilistic part of our analysis is mainly concerned with the ex-
istence of the invariant density. This time the stationarity in the form of the second
relation in (1.2) plays a very important role. We still work with (1.3) but with its
stationary version. The results for (1.1) follow since ρ(ω) = π0(ω). Under (2.6)
and ergodicity of T , the following properties hold with probability 1:

• If a solution to (1.3) is a stationary process, then the first integral c considered
as a function of ω is a constant (does not depend on ω).

• The RW on a strip is transient iff (1.3) has a nonnegative tempered stationary
solution with c �= 0. This solution is unique and can be normalized to become the
invariant density iff ρ(ω) ≡ π0(ω) is integrable.

• The RW is recurrent iff equation (1.3) has a unique nonnegative tempered
solution with c = 0. This solution (properly normalized) is the invariant density iff
the related homological equation is solvable.

REMARK 1.1. (a) The exact, extended and more technical versions of these
statements are contained in Lemmas 5.2, 5.3 and Theorems 5.4, 5.5.

(b) Note the contrast with the deterministic case: a tempered nonnegative solu-
tion is always unique (up to a multiplication by a positive constant).

(c) A positive solution to (1.3) with c = 0 always exists but it grows exponen-
tially in the transient case.

(d) The results from [33] and [12], which use the solvability of the homological
equation for constructing the invariant density, do now get an important final touch:
in the absence of this condition the invariant density simply does not exist.

Checking the existence of solutions to the homological equation may not be
a straightforward task. However, this was done for at least two important cases.
Namely, if (Pn,Qn,Rn) is an i.i.d. sequence then the related homological equa-
tion is equivalent to a certain system of algebraic equations ([4, 12]). And if this
sequence is generated by a diophantine quasi-periodic shift on a torus then it can
be verified for a smooth enough generating function (as in [1, 12, 33]).

(e) The above results can also be viewed as a new criteria for the recurrence
and transience of the walk. Previously, these were stated in [3] in terms of the
sign of the Lyapunov exponent λ+ (defined by (3.19)). The two criteria are of
course equivalent since sign(c) = − sign(λ+) as we shall see later. We note that
the interplay between c and λ+ is an important part of our analysis.
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1.3. Some applications. We turn to a brief discussion of some applications of
our main results.

In Section 6.1, we provide necessary and sufficient conditions for positive re-
currence of the walk on a strip. This result makes use of the fact that invariant
measure of the walk on a strip (not on environments) satisfies the deterministic
version of (1.3) and the relevant solution is always the one with c = 0.

In Section 6.3, we consider the Green function (GF) at −∞ for a RW which
escapes to +∞. By definition, the GF is the limit of the expected number of visits
to a given site when the starting point of the walk tends to −∞. We prove that this
GF is the unique monotone increasing (see Definition 4.7) solution to (1.3) with
c = 1. It plays an important role in the study of the limit theorems since the sites
where it is large serve as traps. The traps for RWRE were studied in many papers
starting from [20]. For the state of art picture in this area see [10, 11, 14, 27, 28,
34] and references therein. We also note that the Green function described above
plays an important role in the recent work on local limit theorems for transient
RWRE ([2, 9, 12, 24]).

Sections 6.2 and 6.4 deal with application of the random version of (1.3). In Sec-
tion 6.2, we discuss the generalization of Sinai’s model mentioned above. Apart
of the answer to Sinai’s question, we also explain what happens in the so-called
nonsymmetric case. In particular, we prove that if T is a uniquely ergodic trans-
formation of a compact metric space then the invariant density always exists in the
nonsymmetric case. Note that the ergodic shift on a torus considered in [33] is a
particular case of this class of transformations.

Finally, in Section 6.4, we show that in the transient case the existence of
nonzero velocity of the walk is equivalent to the existence of the invariant den-
sity. Moreover, we show that the nonzero velocity of the walk is c.

1.4. Organization of the paper. The RW on the strip is defined in Section 2.1.
In Section 2.2, we explain the exact definition of the walk on the space of en-
vironments and state the invariant density equation for this walk in Lemma 2.3
(its derivation is given in Appendix A). Section 3 contains preparatory results:
we recall several definitions and facts known from previous work and also state a
new recurrence criteria for a RW in the deterministic setting. Exact statements and
proofs of the main results concerned with the deterministic version of the invari-
ant density equation are in Section 4. In Section 5, we use these results to derive
the necessary and sufficient conditions for the existence of the invariant density
in the transient and in the recurrent case. In Section 6, we consider some appli-
cations of our main results; the structure and the content of this section has been
explained above. Appendix B gives the proof of the recurrence criterion sated in
Theorem 3.5. Apart of being used in the proofs, this criterion is important in its
own right; we prove it in the Appendix since it is outside the main topic of the
present paper.
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2. The walks on the strip and on the space of environments.

2.1. The model. Let S
def= Z × {1, . . . ,m} be a strip and denote by Ln

def=
{(n, i) : 1 ≤ i ≤ m} the nth layer of the strip. The random walks on S with jumps to
nearest layers were introduced in [3]: the walk is allowed to jump from any point
(n, i) ∈ Ln only to points in Ln−1, or Ln, or Ln+1. To describe the corresponding
transition kernel consider a sequence of triples of m × m nonnegative matrices,

ω
def= (Pn,Qn,Rn)−∞<n<∞, such that for all n ∈ Z the sum Pn + Qn + Rn is a

stochastic matrix,

(2.1) (Pn + Qn + Rn)1 = 1,

where 1 is a column vector whose components are all equal to 1. The matrix ele-
ments of Pn are denoted Pn(i, j), 1 ≤ i, j ≤ m, and similar notation are used for
Qn and Rn. The transition kernel Q(·, ·) is now defined as follows:

(2.2) Q(z, z1)
def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pn(i, j) if z = (n, i), z1 = (n + 1, j),

Rn(i, j) if z = (n, i), z1 = (n, j),

Qn(i, j) if z = (n, i), z1 = (n − 1, j),

0 otherwise.

For a given ω and a starting point z = (n, i) ∈ S, we define a random walk ξt =
(Xt , Yt ), t ∈N, on S with transition kernel (2.2) in the usual way. Namely, the law
Pω,z for the Markov chain ξ with ξ0 = z is given by

(2.3) Pω,z(ξ1 = z1, . . . , ξt = zt )
def= Qω(z, z1)Qω(z1, z2) · · ·Qω(zt−1, zt ).

We say that ω is the environment on the strip S and the walk ξ is the walk in the
environment ω.

In this definition, ω is a fixed environment and, as mentioned before, some of
our results are deterministic.

In the random setting, we suppose that (�,F,P, T ) is a dynamical system,
where � is the space of all the sequences ω = ((Pn,Qn,Rn))

∞
n=−∞ described

above, F is the natural σ -algebra of subsets of �, P denotes a probability mea-
sure on (�,F), and T is the shift operator on � defined by T (Pn,Qn,Rn) =
(Pn+1,Qn+1,Rn+1) and preserving the measure P. In this context, we say that ω

is a random environment on the strip S.
Denote by �z the set of trajectories ξt , t ≥ 0 starting at z. Pω,z is the so called

quenched probability measure on �z. The semidirect product P(dω)Pω,z(dξ) of
P and Pω,z is defined on the direct product � × �z and is called the annealed
measure. The corresponding expectations are denoted E, Eω,z, and E(Eω,z(·)),
respectively.

Denote by J the following set of triples of m × m matrices:

(2.4) J def= {
(P,Q,R) : P ≥ 0,Q ≥ 0,R ≥ 0 and (P + Q + R)1 = 1

}
.
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Let J0 = J0(P) ⊂ J be the support of the probability distribution of the random
triple (Pn,Qn,Rn) defined above (obviously, this support does not depend on n).

Throughout the paper, we shall use the following conventions concerning vec-
tors and matrices. Given a vector x = (xi) and a matrix A = (a(i, j)) we set

‖x‖ def= maxi |xi |, which implies ‖A‖ = sup‖x‖=1 ‖Ax‖ = maxi

∑
j |a(i, j)|. We

say that A is strictly positive (and write A > 0) if all its matrix elements satisfy
a(i, j) > 0. A is called nonnegative (and we write A ≥ 0), if all a(i, j) are non-
negative. A similar convention applies to vectors. Note that if A is a nonnegative
matrix then ‖A‖ = ‖A1‖.

Since � = J Z, it can be endowed with a metric (in many ways). We shall make
use of a metric defined as follows. If ω′ = {(P ′

n,Q
′
n,R

′
n)}, ω′′ = {(P ′′

n ,Q′′
n,R

′′
n)}

set

(2.5) d
(
ω′,ω′′) def= ∑

n∈Z

‖P ′
n − P ′′

n ‖ + ‖Q′
n − Q′′

n‖ + ‖R′
n − R′′

n‖
2|n| .

Below, whenever we say that a function defined on � is continuous, we mean
that it is continuous with respect to the topology induce on � by the metric d(·, ·).

The assumptions C1 and C2 listed below will be called Condition C.

CONDITION C. C1. (Pn,Qn,Rn), −∞ < n < ∞, is an ergodic sequence
(equivalently, T is an ergodic transformation of �).

C2. There is an ε > 0 and a positive integer number k0 < ∞ such that for any
(P,Q,R) ∈ J0 and all i, j ∈ [1,m],
(2.6)

∥∥Rk0
∥∥ ≤ 1 − ε,

(
(I − R)−1P

)
(i, j) ≥ ε,

(
(I − R)−1Q

)
(i, j) ≥ ε.

REMARK 2.1. The ellipticity condition (2.6) is sufficient for our purposes. It
can be weakened but then many statements and proofs become more technical and
less transparent which we prefer to avoid. So, C2 is always supposed to be satisfied
by all the environments considered in this paper.

Unlike C2, condition C1 is needed only when random environments are consid-
ered and in all such cases it is supposed to be satisfied.

2.2. Environment viewed from the particle and the invariant density equation.

DEFINITION 2.2. The environment viewed from the particle is a random pro-
cess (ω̄t , Yt ) taking values in � × [1, . . . ,m] and defined by

(2.7) (ω̄t , Yt ) = (
T Xt ω,Yt

)
, t ≥ 0,

where Xt ∈ Z, Yt ∈ [1, . . . ,m] are the coordinates of the process ξt = (Xt , Yt )

defined in Section 2.1.
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(ω̄t , Yt ) is a Markov chain with the phase space �̄
def= � × [1, . . . ,m] and the

transition kernel

(2.8) (Kf )(ω, i)
def= ∑

k∈{−1,0,1},1≤j≤m

Qω

(
(0, i), (k, j)

)
f

(
T kω, j

)
,

where Qω(·, ·) is defined by (2.2) and f is a bounded measurable function on �̄.
Note that our notation emphasizes the dependence of the kernel on ω which is
important (as in (2.3)).

We can now explain more precisely the main goal of this work: we want to es-
tablish, in terms of the parameters of the environment, the necessary and sufficient
conditions for the existence of an invariant measure for the Markov chain (2.7)

which is absolutely continuous with respect to the measure P̄
def= P× {m−1} on �̄

where {m−1} is the uniform distribution on [1, . . . ,m].
So, suppose that the Markov chain (ω̄t , Yt ) has an absolutely continuous in-

variant measure and let ρ : �̄ �→ R be the density function of this measure. It is
convenient to introduce a row vector ρ = ρ(ω) = (ρ(ω,1), . . . , ρ(ω,m)), where
the component ρ(ω, i) is the value of the density at (ω, i).

LEMMA 2.3. A nonnegative function ρ : �̄ �→ R is a density function of the
invariant measure of the Markov chain (ω̄t , Yt ) if and only if the following condi-
tions are satisfied. For all n ∈ Z,

(2.9) ρn(ω) = ρn+1(ω)Qn+1(ω) + ρn(ω)Rn(ω) + ρn−1(ω)Pn−1(ω),

where

(2.10) ρn(ω)
def= ρ

(
T nω

)
and

(2.11) E

(
m∑

i=1

ρ(ω, i)

)
= m.

REMARK 2.4. Let us extend the definition of the metric (2.5) to �̄ by setting

d̄((ω′, i ′), (ω′′, i ′′)) def= d(ω′,ω′′) + |i ′ − i ′′|. Since �̄ is a compact metric space,
the Markov chain (ω̄t , Yt ) has at least one invariant probability measure which,
however, may be singular with respect to the measure P. For example, in the tran-
sient case absolutely continuous invariant measure exists iff the walk has positive
speed (see Theorem 6.12 below). On the other hand, we will see in Section 6.3 (cf.
Remark 6.11) that in the transient case the invariant density equation (2.9) always
admits a stationary solution which, in general, may fail to be integrable.

REMARK 2.5. The invariant measure (not density!) of a Markov chain on
the strip in a fixed environment (not on the space of environments) also satisfies
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equation (2.9) which is a standard textbook statement. In that capacity, this equa-
tion was studied in [3] and played a major role in the proof of [3], Lemma 3,
(Lemma 3.4 below; see also the proof of Lemma 4.4).

The situation is very different when ρ is interpreted as a density. Namely, we
need the stationarity of the environment to derive (2.9) and (2.10). The idea of the
proof of Lemma 2.3 goes back to [22] and yet we prove this lemma because, first
of all, the proof is short; second, it makes our work more self-contained; finally
and mainly because it is natural to provide a derivation of an equation which is the
main subject of the work.

REMARK 2.6. By (2.10) and (2.11), the sequence ρn must be stationary and
integrable and, therefore, must satisfy the following standard estimate: for P-a.a.
ω there is a constant C(ω) such that for all n

(2.12)
∥∥ρn(ω)

∥∥ ≤ C(ω)
(|n| + 1

)
.

However, as has already been mentioned in Section 1.2, the method we use al-
lows us to describe a much wider class of solutions to (2.9), namely all tempered
solutions. This will now be done in Sections 3, 4, 5.

3. Some preparatory facts and results.

3.1. Matrices ζn, An, αn and related quantities. We recall the definitions of
several objects most of which were first introduced and studied in [3, 4, 15], and
which will play a crucial role also in this work.

For a given ω ∈ �, define a sequence of m×m stochastic matrices ζn as follows.
For an integer a, let ψa be a stochastic matrix. For n > a, define matrices ψn

recurrently:

(3.1) ψn = (I − Rn − Qnψn−1)
−1Pn, n = a + 1, a + 2, . . . .

It is easy to show ([3]) that matrices ψn are stochastic. Now for a fixed n set

(3.2) ζn = lim
a→−∞ψn.

By [3], Theorem 1, the limit (3.2) exists and is independent of the choice of the
sequence ψa . Moreover, this result implies that the sequence ζn, n ∈ Z, can be de-
fined as the unique sequence of stochastic matrices satisfying the following infinite
system of equations:

(3.3) ζn = (I − Rn − Qnζn−1)
−1Pn, n ∈ Z.

The following notation will be useful for the future references:

(3.4) γn
def= (I − Rn − Qnζn−1)

−1.
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Next, define probability row-vectors yn = yn(ω) = (yn(ω,1), . . . , yn(ω,m)) by

(3.5) yn
def= lim

a→−∞ ỹaζa · · · ζn−1,

where ỹa is any sequence of probability row-vectors (i.e., ỹa ≥ 0 and∑m
i=1 ỹa(i) = 1). By [15], Lemma 1, this limit exists and does not depend on

the choice of the sequence ỹa . This fact implies that yn is the unique sequence of
probability vectors satisfying the infinite system of equations

(3.6) yn = yn−1ζn−1, n ∈ Z.

Set

(3.7) αn = Qn+1γn, An = γnQn.

Two more sequences of vectors, vn and ln, are defined as follows. By [4], Theorem
4, for any sequence of (column) vectors ṽa ≥ 0, ṽa �= 0, the following limit exists
and does not depend on the sequence ṽa :

(3.8) vn
def= lim

a→−∞
AnAn−1 · · ·Aa+1ṽa

‖AnAn−1 · · ·Aa+1ṽa‖ .

Similarly, for any sequence of row-vectors l̃a ≥ 0 satisfying l̃aαa−1 �= 0, the fol-
lowing limit exists and does not depend on the choice of the sequence l̃a :

(3.9) ln
def= lim

a→∞
l̃aαa−1αa−2 · · ·αn

‖l̃aαa−1αa−2 · · ·αn‖
.

Set

(3.10) λn = ‖Anvn−1‖ and λ̃n = ‖ln+1αn‖
then obviously

(3.11) ln+1αn = λ̃nln, Anvn−1 = λnvn

and for any n ≥ k we have

(3.12) ‖AnAn−1 · · ·Akvk−1‖ = λn · · ·λk, ‖ln+1αnαn−1 · · ·αk‖ = λ̃n · · · λ̃k.

REMARK 3.1. It should be emphasized that the proofs provided in [3, 4] of the
existence of the limits (3.2) and (3.8) are in fact working for all (and not just almost
all) sequences ω satisfying (2.6). In particular, (3.8) is a deterministic statement
which follows from two facts:

(3.13) ‖An‖ ≤ Const and An(i, j) ≥ ε for all 1 ≤ i, j ≤ m,

where ε is the same as in (2.6) and the Const depends only on m and ε. For the
proof of these inequalities, see [4], Lemmas 1–4.
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Next, we define

(3.14)
ζ(ω) = ζ0(ω), A(ω) = A0(ω), α(ω) = α0(ω),

v(ω) = v0(ω), l(ω) = l0(ω), λ(ω) = λ0(ω), λ̃(ω) = λ̃0(ω)

then

(3.15)
ζn = ζ

(
T nω

)
, An = A

(
T nω

)
, αn = α

(
T nω

)
,

vn = v
(
T nω

)
, ln = l

(
T nω

)
, λn = λ

(
T nω

)
, λ̃n = λ̃

(
T nω

)
.

Moreover, the functions ζ(·), v(·), l(·) are continuous in ω. The continuity of all
other functions is implied by the continuity of ζ , v and l. In fact, a stronger result
was proved in [12]: the above functions are Hölder continuous with respect to the
metric d defined by (2.5). This regularity plays important role in our analysis.

REMARK 3.2. The case m = 1 corresponds to the RW on Z with jumps to the
nearest neighbours and the above formulae become very simple. Namely, ψn =
ζn = 1, vn = ln = 1, An = λn = qn

pn
, αn = λ̃n = qn+1

pn
, etc.

3.2. Matrices ζ−
n , A−

n , α−
n and related quantities. In the above considera-

tions, matrices Pn and Qn play asymmetric roles and it turns out to be useful to
“symmetrize” the situation. Namely, let us introduce stochastic matrices ζ−

n as the
unique sequence of stochastic matrices satisfying the system of equations which is
symmetric to (3.3):

(3.16) ζ−
n = γ −

n Qn, −∞ < n < +∞,

where

(3.17) γ −
n = (

I − Rn − Pnζ
−
n+1

)−1
.

Next, we set

(3.18) A−
n

def= γ −
n Pn, α−

n = Pn−1γ
−
n .

All other related objects are introduced similarly.
Matrices ζ−

n , α−
n , A−

n , etc. have properties which are similar to those of matrices
ζn, αn, An, etc. listed above. All these objects will be used below without further
explanations.

3.3. Lyapunov exponents and the recurrence and transience criteria revisited.
The top Lyapunov exponent of the products of matrices An and of matrices A−

n are
defined respectively by

(3.19)
λ+ def= lim

n→∞
1

n
log‖AnAn−1 · · ·A1‖ and

λ− def= lim
n→−∞

1

|n| log
∥∥A−

n A−
n+1 · · ·A−

−1

∥∥.
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It follows from (3.12) that

(3.20) λ+ = E
(
log‖Akvk−1‖) = E(logλ).

Next, note that

(3.21) αnαn−1 · · ·α1 = Qn+1AnAn−1 · · ·A2γ1

and, therefore,

(3.22)
λ+ = lim

n→∞
1

n
log‖αn · · ·α1‖ and similarly

λ− = lim
n→−∞

1

|n| log
∥∥α−

n · · ·α−
−1

∥∥.
REMARK 3.3. Formulae (3.20) and (3.22) are due to the following observa-

tion. The ellipticity condition (2.6) together with (3.21) imply that there exists a
constant K̄ such that for each n ∈ N the ratio of any two among the expressions
(i)–(iv) below is between 1/K̄ and K̄ ,

(i) ‖An · · ·A0‖, (ii) ‖αn · · ·α0‖, (iii)
n∏

k=0

λk, (iv)
n∏

k=0

λ̃k.

This equivalence will play an important role throughout the paper.

A very important symmetry property of Lyapunov exponents was proved in [3].

LEMMA 3.4 ([3], Lemma 3).

(3.23) λ+ + λ− = 0.

We need the following deterministic(!) recurrence criterion which we prove in
Appendix B.

THEOREM 3.5. Suppose that an environment ω = {(Pn,Qn,Rn)}n∈Z satisfies
(2.6) then:

(a) Pω,z(Xt → +∞ as t → +∞) > 0 iff

(3.24)
∞∑

n=1

‖An · · ·A1‖ < ∞.

(b) Pω,z(Xt → −∞ as t → +∞) > 0 iff
∑∞

n=0 ‖A−−n · · ·A−
0 ‖ < ∞.

For stationary ergodic environment, we recover the following result from [3].

THEOREM 3.6 ([3], Theorem 2). Suppose that Condition C is satisfied. Then
for P-almost all ω the following holds:
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RW is recurrent, that is, Pω,z(lim inft→∞ Xt = −∞ and lim supt→∞ Xt =
∞) = 1, iff λ+ = 0,

RW is transient to the right, that is, Pω,z(Xt → +∞ as t → ∞) = 1, iff λ+ < 0,
RW is transient to the left, that is, Pω,z(Xt → −∞ as t → ∞) = 1, iff λ+ > 0.

Indeed, if λ+ < 0 then the terms of the first series in Theorem 3.5 decay expo-
nentially and the terms of the second series grow exponentially. Hence Xt → +∞
with probability 1. Likewise, if λ+ > 0 then Xt → −∞ with probability 1. Finally
if λ+ = 0 then the terms of either series do not tend to 0 due to [19].

4. The deterministic analysis of the invariant measure equation. As has
been mentioned above, we start with the deterministic environment. Namely, con-
sider the equation

(4.1) πn = πn+1Qn+1 + πnRn + πn−1Pn−1, −∞ < n < ∞,

where the sequence (Pn,Qn,Rn) is fixed.
We have changed the notation ρn in (2.9) to πn in (4.1) in order to distinguish

the properties of the deterministic solutions to (4.1) from those where the depen-
dence on ω is important. We need the following definition.

DEFINITION 4.1. A solution πn is tempered if lim|n|→∞ ln‖πn‖
|n| = 0.

To an extent, equations (4.1) were analyzed in [3], Section 3, and the determin-
istic result of Lemma 4.4 below, though not stated explicitly in [3], is hidden inside
the proof of Lemma 3 from this work. We shall prove some parts of Lemma 4.4
and hint on how to do the rest. This makes our paper more self-contained and the
parts we prove are useful for what follows.

LEMMA 4.2. If ω satisfies (2.6) and πn is a sequence of vectors such that for
all n, πn = πn+1αn (or for all n, πn+1 = πnα

−
n+1) then πn solves (4.1).

REMARK 4.3. Condition (2.6) is not used in the proof of this (and the next)
lemma in any explicit way. However, it is needed to ensure the existence of the
matrices αn and their properties on which the proof depends.

PROOF. It follows from (3.3) and (3.7) that

(4.2) αnPn = Qn+1γnPn = Qn+1ζn,

and hence

(4.3) αn = Qn+1γn.
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Let us now substitute πn = πn+1αn and πn−1 = πn+1αnαn−1 into (4.1). We get

πn+1Qn+1 + πnRn + πn−1Pn−1

= πn+1(Qn+1 + αnRn + αnαn−1Pn−1) = πn+1αn = πn,

where we use Qn+1 + αnRn + αnαn−1Pn−1 = αn which is equivalent to (4.3).
Similarly, if πn+1 = πnα

−
n+1 then the sequence of vectors πn solves (4.1). �

LEMMA 4.4. If ω satisfies (2.6), then equations (4.1) have a unique positive
solution which has the following properties:

(i) ‖π0‖ = 1,
(ii) for all n one has

(4.4) πn = πn+1αn, πn+1 = πnα
−
n+1.

PROOF. Step 1. Let us show that nonnegative solutions satisfying (4.4) exist
and are unique. Obviously, we need to do that only for one of these relations, say
πn = πn+1αn. Set

(4.5) πn =
⎧⎪⎨
⎪⎩

ln

‖lnαn−1 · · ·α0‖ if n ≥ 0,

l0α−1 · · ·αn if n < 0,

where ln is defined in (3.9). Note that then π0 = l0 and for n ≥ 0 we have

πn+1αn = ln+1αn

‖ln+1αnαn−1 · · ·α0‖ = λ̃nln

λ̃nλ̃n−1 · · · λ̃0
= ln

‖lnαn−1 · · ·α0‖ = πn,

where the above equalities follow from (3.11) and (3.12). In the case n < 0, the
relation (4.4) for πn is straightforward.

Step 2. The proof of uniqueness of πn. Note first that the πn defined in (4.5) is
collinear to ln. Indeed, if n ≥ 0 then this is obvious and if n < 0 then l0α−1 · · ·αn =
λ̃−1 · · · λ̃nln by (3.11). Hence ln = πn/‖πn‖.

Suppose now that π̃n is another sequence of positive vectors such that π̃n =
π̃n+1αn for all n ∈ Z and ‖π̃0‖ = 1. Then π̃n = π̃aαa−1 · · ·αn for any a > n, and
hence

π̃n/‖π̃n‖ = π̃aαa−1 · · ·αn

‖π̃aαa−1 · · ·αn‖ .

According to (3.9), the limit of the right-hand side of this equality as a → ∞ is ln.
Hence π̃n/‖π̃n‖ = ln. But then π̃n = πn.

Similar argument applied to matrices α−
n proves the existence and uniqueness

of a nonnegative sequence π−
n such that ‖π−

0 ‖ = 1 and π−
n+1 = π−

n α−
n+1.

Step 3. To complete the proof of Lemma 4.4, it remains to check that πn = π−
n .
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The detailed proof of this fact can be found in [3]. Here, we briefly explain a
slightly modified version of the proof from this work.

Restrict the original Markov chain ξt to the box a ≤ n ≤ b with reflecting
boundary conditions. To do this, replace the triples (Pa,Qa,Ra) and (Pb,Qb,Rb)

by (P̃a, Q̃a, R̃a) = (ζa,0,0) and (P̃b, Q̃b, R̃b) = (0, ζ−
b ,0). Present the invari-

ant measure of this chain as a sequence of vectors (π̂n)a≤n≤b, where π̂n =
(π̂n(i))1≤i≤m and π̂n(i) = Pω(ξ0 = (n, i)).

Vectors π̂n satisfy (4.1) with boundary conditions π̂a = π̂a+1Qa+1, π̂b =
π̂b−1Pb−1. Next, show that there is a solution π̂n for the invariant measure of
the Markov chain such that π̂n = π̂n+1αn for a ≤ n ≤ b − 1. Since the Markov
chain on a finite box has a unique invariant measure, this solution also satisfies
π̂n+1 = π̂nα

−
n+1 when a + 1 ≤ n ≤ b. Finally, consider the sequence π̃n = π̂n‖π̂0‖

and pass to the limit a → −∞, b → ∞. It is easy to see that such a limit exists
and the obtained sequence coincides with πn and π−

n . �

Our next lemma is purely algebraic.

LEMMA 4.5. Suppose that a sequence πn,n ∈ Z, solves (4.1). Define vectors
hn and h−

n by

(4.6) hn
def= πn − πn+1αn, h−

n
def= πn − πn−1α

−
n .

Then the following equations hold:

(4.7) hn = hn−1Pn−1γn, h−
n = h−

n+1Qn+1γ
−
n .

PROOF. Due to (4.3), we can present Qn+1 = αn−αnRn−αnαn−1Pn−1. Then
(4.1) implies

πn = πn+1(αn − αnRn − αnαn−1Pn−1) + πnRn + πn−1Pn−1

which can be rearranged as

πn − πn+1αn

= (πn − πn+1αn)Rn + (πn − πn+1αn)αn−1Pn−1 + (πn−1 − πnαn−1)Pn−1.

We thus have

hn = hnRn + hnαn−1Pn−1 + hn−1Pn−1.

By (4.2), αn−1Pn−1 = Qnζn−1 and so hn(I − Rn − Qnζn−1) = hn−1Pn−1. Hence
hn = hn−1Pn−1(I − Rn − Qnζn−1)

−1 = hn−1Pn−1γn.
The second relation is proved similarly. �

The following lemma describes a fundamental property of equation (4.1): this
equation has a first integral.
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LEMMA 4.6. The quantities

(4.8) c = hnPn1 and c− = h−
n Qn1

do not depend on n (are preserved by equations (4.1)). Moreover,

(4.9) c = πnPn1 − πn+1Qn+11 and c = −c−.

PROOF. We have

(4.10) hnPn = hn−1Pn−1γnPn = hn−1Pn−1ζn,

where the first equality follows by (4.7) and the second equality follows by (3.3).
Since ζn is a stochastic matrix, we get

hnPn1 = hn−1Pn−1ζn1 = hn−1Pn−11

which proves the first statement in (4.8). Similarly, γ −
n Qn = ζ−

n is stochastic, and
hence

(4.11) h−
n Qn1 = h−

n+1Qn+1γ
−
n Qn1 = h−

n+1Qn+11.

Let us now turn to (4.9). It follows from (4.6) and (4.2) that

(4.12)
c = hnPn1 = πnPn1 − πn+1αnPn1

= πnPn1 − πn+1Qn+1ζn1 = πnPn1 − πn+1Qn+11.

This proves the first relation in (4.9).
Next, by (4.6), h−

n+1 = πn+1 − πnα
−
n+1, and hence

c− = h−
n+1Qn+11 = πn+1Qn+11 − πnα

−
n+1Qn+11.

It follows from (3.16) and (3.18) that α−
n+1Qn+1 = Pnζ

−
n+1. Therefore,

c− = πn+1Qn+11 − πnPnζ
−
n+11 = πn+1Qn+11 − πnPn1 = −c. �

DEFINITION 4.7. A solution πn is monotone increasing if hnPn ≥ 0 and it is
monotone decreasing if hnPn ≤ 0. If these inequalities are strict, then we say that
πn is strictly monotone increasing or strictly monotone decreasing.

LEMMA 4.8. Suppose that condition (2.6) is satisfied and that vectors πn,

n ∈ Z, solve (4.1) and πn is either tempered or monotone. Then

(4.13) hn = cynγn, h−
n = c−y−

n γ −
n .

PROOF. (a) Suppose that πn is tempered. Iterating (4.7), we obtain for any
k ≥ 1 that

hn = hn−kPn−kζn−k+1 · · · ζn−1γn.
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It follows from (3.5) that ζn−k+1 · · · ζn−1 = (yn(1)1, . . . , yn(m)1) + rk , where rk
is an m × m matrix with ‖rk‖ ≤ Cθk with C and θ < 1 depending only on the ε

from condition (2.6). Hence

(4.14)

hn = hn−kPn−k

((
yn(1)1, . . . , yn(m)1

) + rk
)
γn

= (
yn(1)hn−kPn−k1, . . . , yn(m)hn−kPn−k1

)
γn + hn−kPn−krkγn

= cynγn + hn−kPn−krkγn = cynγn +O
(
e(|n|+k)εθk).

Here, the term cynγn is due to the equality hn−kPn−k1 = c and the estimate O(·)
follows from (4.6) and the fact that πn is tempered which imply that

‖hn−k‖ = ‖πn−k − πn−k+1αn−k‖ ≤ ‖πn−k‖ + ‖πn−k+1‖‖αn−k‖ ≤ C(ε)e(|n|+k)ε.

We now choose ε > 0 such that θeε < 1 and pass in (4.14) to the k → ∞ limit.
This gives hn = cynγn.

(b) Suppose that πn is, say, monotone increasing. By (4.10), hnPn =
hn−1Pn−1ζn. Since hnPn1 = c, this together with the positivity of hnPn implies
that hnPn = cz̃n where z̃n is a probability vector and z̃n = z̃n−1ζn. Since there
is only one sequence of probability vectors satisfying (3.6), we conclude that
z̃n = yn+1. Hence, by (4.7), we have that hn = cynγn. �

REMARK 4.9. In (4.14), neither hn nor ynγn depend on k. This proves that
in fact hn−kPn−krkγn = 0 for all k ≥ 1 (note that rk depends also on n but our
notation ignores this fact as it is not essential for our purposes).

Lemma 4.8 implies the following.

COROLLARY 4.10. If a sequence πn,n ∈ Z is a tempered solution to (4.1)
and hn = πn − πn+1αn then either all hn > 0, or all hn < 0, or all hn = 0.

REMARK 4.11. The relation c = πnPn1 − πn+1Qn+11 (and similarly for c−)
shows that c and c− are linear functionals on the space of solutions to (4.1). Since
these functionals play symmetric roles, we shall suppose from now on, without
loss of generality, that c ≥ 0.

We are now in a position to describe all tempered solutions to (4.1).

THEOREM 4.12. Suppose that πn,n ∈ Z, is a tempered sequence of positive
vectors solving (4.1). Set c = πnPn1 − πn+1Qn+11 ≥ 0. Then:

(i) either c = 0 and the solution πn satisfies

πn = πn+1αn
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(ii) or c > 0 and (4.1) has a solution of the form

(4.15) π̄n = c(h̄n + h̄n+1αn + · · · + h̄n+kαn+k−1 · · ·αn + · · · ),
where h̄n = ynγn with yn defined by (3.5).

(iii) The following conditions are equivalent:

(A) (4.1) admits a solution of the form (4.15);
(B) the following series converges:

(4.16)
∞∑

k=0

‖αk · · ·α0‖ < ∞;

(C) Pω,z(Xt → +∞ as t → ∞) > 0.

PROOF. (i) If c = 0, then all hn = 0 by Lemma 4.8 and the first statement
follows.

(ii) Suppose now that c > 0. Due to Lemma 4.8, we can rewrite (4.6) as

(4.17) πn = πn+1αn + hn = πn+1αn + cynγn.

Iterating (4.17) gives

(4.18)
πn = hn + hn+1αn + · · · + hn+kαn+k−1 · · ·αn

+ πn+k+1αn+kαn+k−1 · · ·αn,

and hence, because πn+k+1αn+kαn+k−1 · · ·αn ≥ 0, we have

(4.19) πn ≥ hn + hn+1αn + · · · + hn+kαn+k−1 · · ·αn.

Thus the existence of a positive solution πn implies that series (4.15) converges.
But then π̄n − αnπ̄n+1 = hn (direct computation), and hence the sequence π̄n,

n ∈ Z, solves (4.1).
(iii) The equivalence of (B) and (C) follows from Theorem 3.5 and Remark 3.3.

Therefore, it is sufficient to prove that (A) is equivalent to (B).
Suppose first that series (4.16) converges. Then for k ≥ 0

(4.20) ‖h̄n+kαn+k−1 · · ·αn‖ ≤ ‖h̄n+k‖‖αn+k−1 · · ·αn‖ ≤ Cn‖αn+k−1 · · ·αn‖,
where the constant Cn depends only on the ε. The convergence of (4.15) follows.

Suppose now that c > 0 and (4.15) converges. Since h̄n+k = yn+kγn+k ≥
yn+k ≥ ε1∗, where 1∗ is a row vector whose all components are 1, we have

(4.21) ‖h̄n+kαn+k−1 · · ·αn‖ ≥ ε
∥∥1∗αn+k−1 · · ·αn

∥∥ = ε‖αn+k−1 · · ·αn‖∗.

We use the notation ‖B‖∗ def= ‖B∗‖, where B is a matrix. Since all norms in a
finite-dimensional space are equivalent, the convergence of (4.16) follows. �
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REMARK 4.13. (a) Inequality (4.19) implies that πn ≥ π̄n. In this sense, π̄n

from (4.15) is the smallest possible positive solution corresponding to the given
c > 0.

(b) Denote δn = πn − π̄n. Since δn = δn+1αn, we have

δn = δn+2αn+1αn = δn+2Qn+2γn+1Qn+1γn = δn+2Qn+2An+1γn.

Since An+1 > 0 and γn ≥ I , we conclude that if δn ≥ 0 and δn �= 0 then δn > 0 (for
all n ∈ Z).

Next, (4.15) and (4.18) imply that for k ≥ 0 (and any n)

πn − π̄n = πn+k+1αn+kαn+k−1 · · ·αn − c

∞∑
j=k

h̄n+j+1αn+j · · ·αn.

Sending k → ∞ and taking into account the fact that the series in (4.15) converges
we obtain

πn − π̄n = lim
k→∞πn+k+1αn+kαn+k−1 · · ·αn.

Note that ‖αn+kαn+k−1 · · ·αn‖ → 0 as k → ∞. If now πn − π̄n > 0, then
we must have that ‖πn+k+1‖ → ∞ as k → ∞, and moreover, ‖πn+k+1‖ ∼

‖αn+kαn+k−1 · · ·αn‖−1. So, if we know that ‖αn+kαn+k−1 · · ·αn‖ decays expo-
nentially in k then the only tempered solution to (4.1) is given by (4.15) (if it
exists).

5. Probabilistic analysis of the invariant density equation. We now return
to the study of the invariant density equation (2.9) in random environment. In par-
ticular, condition C is assumed throughout this section.

5.1. Positive tempered solutions to (2.9).

LEMMA 5.1. If λ+ < 0, then for P a.e. ω, the series (3.24) converges and the
solution given by (4.15) is tempered.

PROOF. The convergence of (3.24) follows from the fact that the nth term
of this sum is exponentially small. To show that the solution given by (4.15) is
tempered, we consider two cases.

(I) On the left from 0, we use the identity (4.18)

ρ−n =
n−1∑
k=0

h−(n−k)α−(n−k+1) · · ·α−n + ρ0α−1 · · ·α−n,

where n > 0 and we use the convention α−n−1α−n = I . By Remark 3.3, we can
write

‖ρ−n‖ ≤ C

n∑
k=0

exp

(
n∑

j=k

lnλ−j

)
.
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By the ergodic theorem, the expression in the parenthesis equals to
n∑

j=0

lnλ−j −
k∑

j=0

lnλ−j = λ+(n − k) + rk + rn,

where, for any given ε̄ > 0, both |rn| and |rk| are less than ε̄n provided that n is
large enough. It follows that ‖ρ−n‖ ≤ C(n + 1)e2εn. Since ε̄ we can choose to be
arbitrarily small, we conclude that limn→∞ n−1 ln‖ρ−n‖ = 0 as needed.

(II) On the right from 0, we use (4.15) to see that

‖ρn‖ ≤ C

∞∑
k=0

exp

(
n+k∑
j=n

lnλj

)
.

The expression in the parenthesis equals to kλ+ +rn +rn+k where, for any given ε̄,
both |rn| ≤ ε̄n and |rn+k| ≤ ε̄(n + k) provided that n is large enough. Considering
separately the cases k < n and k > n, we get ‖ρn‖ ≤ Ce3ε̄nn. Since ε̄ can be
chosen to be arbitrarily, small limn→∞ n−1 ln‖ρn‖ = 0 as needed. �

Our next lemma provides classification of all solutions to (2.9) for general er-
godic environments by establishing the relation between the sign of the constant c
and the sign of the Lyapunov exponent λ+. Relations (3.23) and (4.9) allow us to
consider only the case c ≥ 0.

LEMMA 5.2 (The classification lemma). (a) For P a.e. ω there exists a unique,
up to multiplication by a positive constant, tempered positive solution to (2.9).

(b) sign(c) = − sign(λ+).
(c) If c �= 0, then there exists a sequence of functions ρn(ω) satisfying both (2.9)

and (2.10). In particular, if c > 0 then this solution is given by

(5.1) ρn(ω) = hn + hn+1αn + · · · + hn+kαn+k−1 · · ·αn + · · · .

PROOF. By Theorem 4.12, if there is a positive tempered solution to (2.9)
with c > 0, then ξ escapes to +∞ with positive probability. By Theorem 3.6, this
is only possible if λ+ < 0. Conversely, if λ+ < 0 then by Lemma 5.1, (2.9) admits
a positive tempered solution. Thus a positive tempered solution to (2.9) with c > 0
exists iff λ+ < 0. The uniqueness follows from part (ii) of Theorem 4.12.

Likewise, a positive tempered solution to (2.9) with c < 0 exists iff λ+ > 0.
Also by Theorem 4.12, the solution with c = 0 must satisfy

(5.2)
ρn(ω) = ρn+1(ω)αn(ω),

ρn+1(ω) = ρn(ω)α−
n+1(ω) for all n and P-a.a. ω.

This solution is tempered iff the Lyapunov exponents of both α and α− are non-
positive, that is, iff λ+ = 0.

This proves parts (a) and (b). To prove part (c) (for c > 0), we observe that the
solution given by (5.1) is stationary. �
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5.2. The existence of the invariant density. In Section 4, there was no necessity
to emphasize the dependence of the constant c on the sequence ω. But for the study
of the invariant density the control of the dependence on ω of the sequence ρn(ω)

solving (2.9) is crucial. In principle, also c, as a function of the whole sequence,
could depend on ω in a nontrivial way. However, the following simple observation
shows that for stationary solutions of (2.9) this is not so.

LEMMA 5.3. Suppose that an m-dimensional vector ρ(ω) : � → R
m is mea-

surable and for P-almost all ω the sequence ρn(ω) = ρ(T nω),n ∈ Z, solves (2.9).
Then there is a constant c such that hn(ω)Pn(ω)1 = c for P-almost all ω.

PROOF. We know from Lemma 4.6 that hn(ω)Pn(ω)1 does not depend on n

for all those ω for which the sequence ρn(ω) = ρ(T nω),n ∈ Z solves (2.9). On
the other hand,

hn(ω) = ρn(ω) − ρn+1(ω)αn(ω) = ρ0
(
T nω

) − ρ1
(
T nω

)
α0

(
T nω

) = h0
(
T nω

)
.

We thus have h0(ω)P0(ω)1 = h1(ω)P1(ω)1 = h0(T ω)P0(T ω)1. Since T is er-
godic, there exists a constant c such that h0(ω)P0(ω)1 = c for P-almost all ω. �

We are now ready to describe the necessary and sufficient conditions for the
existence of the invariant density. We consider the transient and the recurrent cases
separately.

THEOREM 5.4. Suppose that condition C is satisfied and that λ+ < 0 (so that
ξ is transient to the right). Then:

(i) The Markov chain (ω̄t , Yt ) has the invariant density if and only if

(5.3)
∞∑

n=0

E
(‖αnαn−1 · · ·α0‖)

< ∞.

(ii) The invariant density is unique and is given by

(5.4) ρ(ω) = c
(
h̄0(ω) + h̄1(ω)α0(ω) + · · · + h̄k(ω)αk−1(ω) · · ·α0(ω) + · · · ),

where h̄k(ω) = yk(ω)γk(ω) = y0(T
kω)γ0(T

kω), αk(ω) = α0(T
kω) and

(5.5) c−1 = E(h̄01 + h̄1α01 + · · · + h̄kαk−1 · · ·α01 + · · · ).
PROOF. If λ+ < 0 then, by the classification Lemma 5.2, (2.9) has a unique,

up to a multiplication by a positive constant, solution which is stationary (satisfies
(2.10)). This solution is given by (5.1). The invariant density exists iff this solution
is also integrable, E(ρ) < ∞. By (5.1), (4.20), (4.21)

ε

∞∑
n=0

‖αnαn−1 · · ·α0‖(ω) ≤ ρ(ω) < C

∞∑
n=0

‖αnαn−1 · · ·α0‖(ω).
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Thus integrability of ρ is equivalent to (5.3). This proves part (i). Part (ii) is a direct
consequence of Lemma 5.2. �

Finally, the recurrent case is characterized as follows. We set λ̃(ω)
def= λ̃0(ω)

(see (3.10)).

THEOREM 5.5. Suppose that λ+ = 0 (so that ξ is recurrent). Then the Markov
chain (ω̄t , Yt ) has an invariant density if and only if there is a positive function
β̃ : � �→R such that

(5.6) λ̃(ω) = β̃(ω)

β̃(T ω)
for P-a.a. ω and E(β̃) < ∞.

PROOF. Suppose that (5.6) holds. Then it follows from (3.11) and condition
(5.6) that

(5.7) ln+1αn = λ̃nln = β̃(T nω)

β̃(T n+1ω)
ln and so β̃

(
T n+1ω

)
ln+1αn = β̃

(
T nω

)
ln.

Remember that ln = l(T nω) (see (3.9)). Set

(5.8) ρ(ω) = Z−1β̃(T ω)l(ω) where Z = E

[
β̃(T ω)

m∑
i=1

l(ω, i)

]
.

Then the second equation in (5.7) can be written, for all n, as ρn−1 = ρnαn−1,
where ρn = ρ(T nω). Hence, the sequence ρn, n ∈ Z, solves (2.9) and hence ρ
defined by (5.8) is the density of the invariant measure of our Markov chain.

Suppose now that ρ(ω) is an invariant density and the random walk is recurrent.
Set ρn = ρ(T nω). Then the sequence {ρn, n ∈ Z} is a positive tempered solution
to (2.9). Since λ = 0 we have, by Lemma 5.2(iii) that ρn = ρn+1αn. Rewrite this
as

ρn+1

‖ρn+1‖
αn = ‖ρn‖

‖ρn+1‖
ρn

‖ρn‖
.

The last relation is just the same as (3.11) and since there is only one sequence ln
satisfying (3.11) we have that

ln = ρn

‖ρn‖
, λ̃n = ‖ρn‖

‖ρn+1‖
.

We can now set

β̃(ω) = ∥∥ρ0
(
T −1ω

)∥∥ = max
i

{
ρ

(
T −1ω, i

)}
.

(We could have set β̃(ω) = ‖ρ0(ω)‖ = maxi{ρ(ω, i)} but this would be inconsis-
tent with (5.8).) �
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6. Applications.

6.1. Positive and null recurrence. Recall that an irreducible Markov chain
(MC) is positive recurrent if it satisfies the following equivalent conditions.

(i) There is an invariant probability measure for ξ (i.e., (4.1) admits a positive
solution with

∑
n∈Z,1≤j≤m πn(j) = 1);

(ii) The expected return time to each site is finite.

There is a vast literature on recurrence of random walks with bounded jumps, see
e.g. [25] and references therein.

THEOREM 6.1. ξ(t) is positive recurrent iff

(6.1)
∞∑

n=1

∥∥α−
1 · · ·α−

n

∥∥ < ∞ and
∞∑

n=1

‖α−1 · · ·α−n‖ < ∞.

PROOF. (I) Suppose that ξ is positive recurrent and let π = (πn,−∞ < n <

∞) be the corresponding invariant measure. We claim that then

(6.2) πnPn1 = πn+1Qn1.

Denote Pπ(·) the distribution of the walk ξ with initial distribution π . Let p(n, t) =
Pπ(Xt ≤ n). Since π is invariant, p(n, t) does not depend on t . Thus

0 = p(n, t + 1) − p(n, t) = πn+1Qn1 − πnPn1

proving (6.2). Hence, by (4.12), c = 0 and by Theorem 4.12(i) we have πn =
πn−1α

−
n . Iterating we obtain

(6.3) πn = π0α
−
1 · · ·α−

n .

Since πn ∈ l1, we must have
∞∑

n=1

∥∥α−
1 · · ·α−

n

∥∥ < ∞.

Likewise
∞∑

n=1

‖α−1 · · ·α−n‖ < ∞.

(II) Let π be the unique positive solution to (4.1) with c = 0. Then it satisfies
(6.3) as well as π−n = π0α−1 · · ·α−n. Hence if (6.1) holds then πn ∈ l1(S) and
ξ(t) is positive recurrent. �

It is a standard fact that the walk on a strip is positive recurrent iff its restrictions
to both positive and negative semistrips are positive recurrent. Therefore, we obtain
the following result.
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COROLLARY 6.2. (a) The restriction of ξ(t) to the positive semistrip is posi-
tive recurrent iff

∞∑
n=1

∥∥α−
1 · · ·α−

n

∥∥ < ∞.

(b) The restriction of ξ(t) to the negative semistrip is positive recurrent iff

∞∑
n=1

‖α−1 · · ·α−n‖ < ∞.

PROOF. We prove (a), the proof of (b) is similar.
Consider a modified MC, where the transition probabilities for n ≥ 0 are the

same as for the original walk, and for n < 0 the modified transition probabilities
Q̃n do not depend on n and have a drift to the right. Then for the modified walk∑∞

n=1 ‖α̃−1 · · · α̃−n‖ < ∞. Hence the positive recurrence is equivalent to the con-
vergence of

∑∞
n=1 ‖α−

1 · · ·α−
n ‖ < ∞. On the other hand, since the restriction of the

modified walk to the negative semistrip is obviously positive recurrent, the positive
recurrence on the strip is equivalent to the positive recurrence of the restriction of
our original walk on the positive semistrip. �

COROLLARY 6.3. Suppose that an environment ω = {(Pn,Qn,Rn)}n∈Z+ sat-
isfies (2.6). Then the restriction of the walk to the positive semistrip is null recurrent
iff

∞∑
n=1

(∥∥α−
1 · · ·α−

n

∥∥)−1 = ∞ and
∞∑

n=1

∥∥α−
1 · · ·α−

n

∥∥ = ∞.

PROOF. Combining Theorem 3.5, Remark 3.3 and Corollary 6.2, we see that
the null recurrence property is equivalent to

∞∑
n=1

‖αn · · ·α1‖ = ∞ and
∞∑

n=1

∥∥α−
1 · · ·α−

n

∥∥ = ∞.

It remains to observe that the product ‖αn · · ·α1‖‖α−
1 · · ·α−

n ‖ is uniformly
bounded from above and below, see [3], equation (3.19) (note that [3] uses the
notation α̂n, β̂n instead of our αn and α−

n ). �

For strips of width 1, Remark 3.2 shows that the null recurrence condition is
equivalent to the divergence of both

∞∑
n=1

n∏
j=1

(
qj

pj

)
and

∞∑
n=1

n∏
j=1

(
pj

qj

)
.
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Namely, the divergence of the first series is equivalent to recurrence and the con-
vergence of the second series is equivalent to positive recurrence. Thus we recover
the well-known criterion for null recurrence of birth and death chains (see [13],
Sections 6.4 and 6.5).

COROLLARY 6.4. In a stationary ergodic environment, the restriction of the
walk to the positive semistrip is positive recurrent iff λ+ > 0.

We omit the derivation of Corollary 6.4 from Corollary 6.2 as it is the same as
the derivation of Theorem 3.6 from Theorem 3.5.

6.2. Answers to some questions from [33]. The following model generalizes
the one studied by Ya. Sinai in [33]. Let (as in the Introduction) T be a measure
preserving ergodic automorphism acting on a measure space (M,M,μ). (Here
and throughout this section, the notation are as in [33]. In particular, elements of
M are denoted by x.)

Suppose that we are given a function on M taking values in J (see (2.4)): x �→
(P (x),Q(x),R(x)). Define a random walk on M̄

def= M × [1, . . . ,m] as follows:
if at time t the particle is at (x, i) ∈ M̄ then at time t + 1 it jumps to (T x, j) with
probability P(x, i, j), to (T −1x, j) with probability Q(x, i, j), and to (x, j) with
probability R(x, i, j).

To transform this RW into a RW on the strip S = Z× [1, . . . ,m], we set(
P0(x),Q0(x),R0(x)

) = (
P(x),Q(x),R(x)

)
(and thus (Pn(x),Qn(x),Rn(x)) = (P (T nx),Q(T nx),R(T nx))). The RW start-
ing from (x, i) ∈ M̄ is thus mapped into a walk starting from (0, i). The ergodicity
condition is automatically satisfied but in addition we have to impose on our ma-
trices the ellipticity condition (2.6).

After that, all the results about the existence of the invariant density on the space
of environments on the strip are automatically translated into the statements about
the invariant density on M̄ .

The above construction also answers the more general question from [33]. We
state it now in a form which is slightly more precise than in the Introduction.
Consider a random walk on M where a particle can jump from x ∈ M to T ix

(|i| ≤ m) with probability p(x, i),
∑m

i=−m p(x, i) = 1. This walk transforms into
a walk on R with jumps of length ≤ m in exactly the same way as above. As we
have already mentioned before, the latter walk is reduced to a walk on a strip of
width m and this answers the question.

Let us return to the model considered in [17, 18, 33]. This model is obtained
from the above model on M̄ by setting m = 1.

As in [33], we shall consider two cases.
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6.2.1. The symmetric (recurrent) case. In [33], the RW on M is called sym-
metric if ∫

M
ln

1 − p(x)

p(x)
μ(dx) = 0.

Since λ+ = 0 (as it is equal to this integral), Theorem 3.6 implies that the corre-
sponding random walk on Z is recurrent. Recall that, according to Remark 3.2,
λ̃(x) = q(T x)

p(x)
. Theorem 5.5 implies the following statement.

COROLLARY 6.5. Consider the Markov chain on M with p satisfying strong
ellipticity condition: there is ε > 0 such that ε ≤ p ≤ 1 − ε. Suppose also that
λ+ = 0. Then the invariant measure of the Markov chain on M has a density with
respect to μ if and only if there exists a nonnegative function β̃ : M �→R such that

(6.4)
q(T x)

p(x)
= β̃(x)

β̃(T x)
for μ-a.a. x ∈ M and

∫
M

β̃(x)μ(dx) < ∞.

REMARK 6.6. The homological equation considered in [33], equation (2),
reads p(x)

1−p(x)
= h(x)

h(T −1x)
. This equation and (6.4) are equivalent in the sense that

whenever one of them has a solution so does the other. A more general equivalence
of (5.6) and the equation λ(ω) = β(T ω)

β(ω)
(where λ(ω) is as in (3.14)) was shown in

[12], Lemma 3.2.

6.2.2. The nonsymmetric (transient) case. In [33], the RW on M is said to be
nonsymmetric if ∫

M
ln

p(x)

1 − p(x)
μ(dx) > 0.

This inequality implies that λ+ < 0 and by Theorem 3.6 the corresponding walk
on Z is transient to the right. By Theorem 5.4, the invariant density now exists if
and only if

(6.5)
∫
M

1

p(x)

( ∞∑
n=0

n∏
k=1

1 − p(T kx)

p(T kx)

)
μ(dx) < ∞

and has the form

(6.6) ρ(x) = c
1

p(x)

( ∞∑
n=0

n∏
k=1

1 − p(T kx)

p(T kx)

)
.

REMARK 6.7. The fact that the finiteness of the expectation (6.5) implies the
existence of the invariant density of the form (6.6) (the if direction of this state-
ment) was first proved in [1], Theorem 3.1, and later (and independently) in [17].
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As has been shown above, the only if direction follows from the fact that the in-
variant density has to satisfy the invariant density equation and the only “relevant”
solution it has is given by (6.6). In other words, if the expectation (6.5) is infinite
then the walk on the space of environments does not have an absolutely continuous
invariant measure.

6.2.3. Nonsymmetric (transient) walks generated by a uniquely ergodic T .
The random walks on a d-dimensional torus generated by irrational rotations (as
in [33]) are a very particular case of the walks on compact metric spaces generated
by uniquely ergodic automorphisms.

So suppose now that M is a compact metric space and T is a uniquely ergodic
automorphism of M . We recall that T is said to be uniquely ergodic if there is
only one T -invariant measure μ on M . Uniquely ergodic automorphisms have the
following important property: if f : M �→R is a continuous function then

1

n

n−1∑
j=0

f
(
T jx

) →
∫
M

f (y)μ(dy) uniformly in x ∈ M.

Consider again the RW on M̄ and suppose that the triple (P (x),Q(x),R(x)) is
continuous in x and satisfies the ellipticity conditions (2.6). Then also the function
λ̃(x) (see (3.14)) is continuous in x. We suppose now that the corresponding walk
on the strip is transient to the right:

λ+ =
∫
M

ln λ̃(x)μ(dx) < 0.

Now, due to (3.12) and to unique ergodicity, the following sequence converges
uniformly in x and n:

1

k
ln‖ln+kαn+k−1 · · ·αn‖ = 1

k

k−1∑
i=0

ln λ̃n+i → λ+ as k → ∞.

This uniform convergence together with Remark 3.3 imply that also the series in
(5.1) converges uniformly in x, and hence ρ(x) is a continuous function of x and
in particular is integrable. We thus proved that in the asymmetric (transient) case
the MC on M̄ generated by a uniquely ergodic automorphism T always has an
invariant density. Moreover, this density is continuous.

6.3. The Green function. Consider the case where the random walk escapes
to the right, that is, Xt → +∞ as t → ∞. In this case, each site is visited only
finitely many times with probability one and one can consider the Green function
g((l, i); (n, j)) which is the expected number of visits to the site (n, j) given that
the walk starts from (l, i).
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LEMMA 6.8. The following limit exists and does not depend on i

gn(j) = lim
l→−∞g

(
(l, i), (n, j)

)
.

PROOF. Let σn be the time of the first visit by the walker to level n. (If the
walker starts from (l, i) with l < n then σn is finite with probability one since the
walk escapes to the right.) Then

g
(
(l, i); (n, j)

) =
m∑

k=1

P
(
ξ(σn) = (n, k)|ξ(0) = (l, i)

)
g
(
(n, k); (n, j)

)
.

Since the second factor in the last expression does not depend on l and the first one
converges as l → −∞ to yn(k) where yn is given by (3.5), the result follows. �

LEMMA 6.9. Let gn be the vector with components gn(i). Then gn is a mono-
tone solution to (2.9) and the corresponding value of c = 1.

PROOF. Let τk be the time of the kth visit to the set Ln ∪ Ln+1 (see the defi-
nitions in Section 2.1). Then ξ̄k := ξ(τk) is a Markov chain. Let

Un(i, j) := P
(
ξ̄k+1 = (n, j)|ξ̄k = (n, i)

)
(6.7)

= Rn(i, j) +
m∑

s=1

Qn(i, s)ζn−1(s, j),

Vn(i, j) := P
(
ξ̄k+1 = (n, j)|ξ̄k = (n + 1, i)

) = Qn+1(i, j).(6.8)

Thus

gn

(
(l, s); (n, j)

) =P
(
ξ(σn) = (n, j)|ξ(0) = (l, s)

)
+

∞∑
k=1

P
(
ξ̄k+1 = (n, j)|ξ(0) = (l, s)

)
.

Using (6.7) and (6.8), we can rewrite the last sum as

∞∑
k=1

m∑
i=1

[
P

(
ξ̄k = (n, i)|ξ(0) = (l, s)

)
Un(i, j)

+P
(
ξ̄k = (n + 1, i)|ξ(0) = (l, s)

)
Vn(i, j)

]
.

Therefore,

g
(
(n, j); (l, s)) = P

(
ξ(σn) = (n, j)|ξ(0) = (l, s)

)
+

m∑
i=1

[
g
(
(n, i); (l, s))Un(i, j) + g

(
(n + 1, i); (l, s))Vn(i, j)

]
.
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Letting l → −∞, we obtain

gn(j) = yn(j) +
m∑

i=1

[
gn(i)Un(i, j) + gn+1(j)Vn(i, j)

]
.

Remembering (6.7) and (6.8), we obtain

gn = gnRn + gnQnζn−1 + gn+1Qn+1 + yn.

Hence

gn(I − Rn − Qnζn−1) = gn+1Qn+1 + yn.

Multiplying by γn on the right, we obtain gn = gn+1αn + ynγn. Thus letting hn =
gn − gn+1αn we obtain hn = ynγn. Now Lemma 4.8 gives c = 1. �

REMARK 6.10. Lemma 6.9 shows that gn is given by (4.15) with c = 1. The
same result was derived in [11] under slightly more restrictive assumptions. Here,
we see that this result follows immediately from the theory developed in this paper.

REMARK 6.11. If the environment is stationary and the random walk escapes
to the right (i.e., λ+ < 0), then the solution given by Lemma 6.9 is stationary by
construction. In contrast, Lemma 4.4 provides another solution with c = 0 but this
solution is not stationary, since it decays exponentially by the definition of λ+.

6.4. The speed of the random walk. We shall now consider the following ques-
tion: given that the RW ξ (defined in (2.3)) is transient to the right, what is the
speed at which it escapes to +∞?

In this section, it will be important to use a more complete notation for the RW,
namely we write ξω,(0,i)(t) = (Xω,i(t), Yω,i(t)) for the coordinates of the walk
starting from (0, i) in a given environment ω and evaluated at time t . We recall the
natural definition of the speed: v = limt→∞ Xω,i(t)

t
if this limit exists.

In the case of the RWRE on a strip, the answer to this question was found by a
different method in [15] and independently in [30]. Here, we shall show how one
can compute the speed in terms of the invariant density.

THEOREM 6.12. Suppose that the Markov chain (ω̄t , Yt ) defined by (2.7) has
the invariant density ρ. Then for any initial point (0, i), for P-a.a. ω, and for
Pω,(0,i)-a.a. trajectories ξω,i(·) the following limit exists:

v = lim
t→∞

Xω,i(t)

t
= c where c is the constant defined in (5.5).

PROOF. We shall use the following fact.
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LEMMA 6.13. If the Markov chain (ω̄t , Yt ) has the invariant density ρ then
for P-a.a. ω and all starting points (0, i), the speed v,

v = lim
t→∞

Xω,i(t)

t
= Eρ

(
X(1)

)
with Pω,(0,i)-probability 1,

where Eρ is the expectation with respect to the measure ρ(ω, i)P(dω)Pω,(0,i)(dξ)

and X(1) is the first coordinate of ξ(1).

For a beautiful proof of this lemma, we refer the reader to [5], page 14. The
proof presented there is explained in a somewhat different setting but the adjust-
ments needed for our case are routine.

So, for us it remains to compute the expectation. To this end, note first that

Eω,(0,i)

(
Xω,(0,i)(1)

) =
m∑

j=1

(
P0(i, j) − Q0(i, j)

)

and hence

Eρ

(
X(1)

) = E

(
m∑

i=1

ρ(ω, i)Eω,(0,i)

(
X(1)

))

= E

(
m∑

i=1

ρ(ω, i)

m∑
j=1

(
P0(i, j) − Q0(i, j)

))

= E
(
ρ(P0 − Q0)1

) = E(ρP01) −E(ρQ01).

Since E(ρQ01) = E(ρ(T ω)Q0(T ω)1) = E(ρ1Q11), we have

v = E(ρP01 − ρ1Q11) = c

because ρP01 − ρ1Q11 = c by (4.12). �

APPENDIX A: DERIVATION OF THE INVARIANT DENSITY EQUATION

PROOF OF LEMMA 2.3. By the definition of the invariant measure, we have
that for any continuous function f : �̄ �→R the following equality holds:

(A.1)

m∑
j=1

∫
�

f (ω, j)ρ(ω, j)P(dω)

=
m∑

i=1

∫
�
(Kf )(ω, i)ρ(ω, i)P(dω)

=
m∑

i=1

∫
�

( ∑
k∈{−1,0,1},1≤j≤m

Qω

(
(0, i), (k, j)

)
f

(
T kω, j

))
ρ(ω, i)P(dω).
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Rearranging the sums and taking into account that T is preserving P, we can
present the right-hand side of (A.1) as

m∑
j=1

m∑
i=1

∑
k∈{−1,0,1}

∫
�
Qω

(
(0, i), (k, j)

)
f

(
T kω, j

)
ρ(ω, i)P(dω)

=
m∑

j=1

m∑
i=1

∑
k∈{−1,0,1}

∫
�
QT −kω

(
(0, i), (k, j)

)
f (ω, j)ρ

(
T −kω, i

)
P(dω)

=
m∑

j=1

∫
�

( ∑
k∈{−1,0,1}

m∑
i=1

ρ
(
T −kω, i

)
QT −kω

(
(0, i), (k, j)

))
f (ω, j)P(dω).

Since f (ω, j) are arbitrary continuous functions, it follows that for P-almost all
ω,

ρ(ω, j) = ∑
k∈{−1,0,1}

m∑
i=1

ρ
(
T −kω, i

)
QT −kω

(
(0, i), (k, j)

)
.

By (2.2), we have QT −1ω((0, i), (1, j)) = P−1(i, j), Qω((0, i), (0, j)) = R0(i, j),
and QT ω((0, i), (−1, j)) = Q1(i, j), and thus

ρ(ω, j) =
m∑

i=1

ρ(T ω, i)Q1(i, j) +
m∑

i=1

ρ(ω, i)R0(i, j) +
m∑

i=1

ρ
(
T −1ω, i

)
P−1(i, j).

It remains to notice that the last equation can be re-written in the vector form as

(A.2) ρ(ω) = ρ(T ω)Q1 + ρ(ω)R0 + ρ
(
T −1ω

)
P−1.

Finally, replacing in this equation ω by T nω we obtain (2.9).
We thus proved that (A.1) implies (A.2) and (2.9).
Suppose now that we are given a sequence ρn(ω) which satisfies (2.9), (2.10),

and (2.11). This in particular means that (A.2) holds true and we obtain (A.1) by
reversing each step in the above proof. �

APPENDIX B: RECURRENCE OF GENERAL WALKS

Here, we prove Theorem 3.5.

PROOF. It suffices to prove part (a), the proof of part (b) is similar.
Given a, b ∈ Z and n ∈ [a, b], let ln be the vector with components

ln(j) = P
(
ξ visits level b before a|ξ0 = (n, j)

)
.

It is proven in [3] that

ln = ϕnϕn+1 · · ·ϕb−11,
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where ϕn is defined recursively by

ϕn = (I − Rn − Qnϕn−1)
−1Pn if n ≥ a + 1 starting with ϕa = 0.

(I) Suppose that series (3.24) converges. Set �n = ζn − ϕn, where ζn is as in
(3.2). Then ϕn = ζn − �n and

(B.1)
ln =(ζn − �n)(ζn+1 − �n+1) · · · (ζb−1 − �b−1)1

≥(
1 − ‖�n‖)(

1 − ‖�n+1‖) · · · (1 − ‖�b−1‖)
1.

Since

�n = [
(I − Rn − Qnζn−1)

−1 − (I − Rn − Qnϕn−1)
−1]

Pn

= (I − Rn − Qnζn−1)
−1Qn(ζn−1 − ϕn−1)(I − Rn − Qnϕn−1)

−1Pn

we see that �n = An�n−1ϕn−1, and hence

(B.2) �n = AnAn−1 · · ·Aa+1�aϕa+1 · · ·ϕn.

Thus, for a = 0 we get ‖�n‖ ≤ ‖An · · ·A1‖ and so if (3.24) converges then (B.1)
implies that there is a constant κ > 0 such that ln ≥ κ1 uniformly in b. Taking
b → +∞, we obtain that P(Xt → +∞) > 0.

(II) Suppose now that P(Xt → ∞) > 0. It follows that l0 > κ1 for some κ > 0.
We need the following.

LEMMA B.1. There is a constant ε̂ > 0 such that

�n1 ≥ ε̂‖�n‖1.

PROOF. Since �n1 = An�n−1ϕn−11 = Anu with u = �n−1ϕn−11 > 0, we
have ∑m

j=1 �n(i, j)∑m
j=1 �n(k, j)

=
∑m

j=1 An(i, j)uj∑m
j=1 An(k, j)uj

≥ min
j

An(i, j)

An(k, j)
≥ ε

Const
,

where the last inequality is due to (3.13). Hence∑m
j=1 �n(i, j)

‖�n‖ =
∑m

j=1 �n(i, j)

maxk

∑
j �n(k, j)

≥ ε

Const
≡ ε̂. �

Thus (ζn − �n)1 = 1 − �n1 ≤ (1 − ε̂‖�n‖)1 and we obtain by induction that

l0 = (ζ0 − �0) · · · (ζb−1 − �b−1)1 ≤ (
1 − ε̂‖�0‖) · · · (1 − ε̂‖�b−1‖)

1.

Hence
∞∏

n=0

(
1 − ε̂‖�n‖) ≥ κ
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and, therefore,

(B.3)
∞∑

n=0

‖�n‖ < ∞.

On the other hand (B.2) implies

‖�n‖ = ‖�n1‖ ≥ ‖An · · ·A11‖
n∏

k=1

(
1 − ‖�k‖) = c‖An · · ·A1‖,

where c = ∏∞
k=1(1 − ‖�k‖) > 0 because of (B.3). From the last two displays, we

obtain that (3.24) converges as needed. �
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