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STRONG CONVERGENCE OF EIGENANGLES AND
EIGENVECTORS FOR THE CIRCULAR UNITARY ENSEMBLE
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Universität Zürich∗ and University of Cincinnati†

It is known that a unitary matrix can be decomposed into a product of
complex reflections, one for each dimension, and that these reflections are in-
dependent and uniformly distributed on the space where they live if the initial
matrix is Haar-distributed. If we take an infinite sequence of such reflections,
and consider their successive products, then we get an infinite sequence of
unitary matrices of increasing dimension, all of them following the circular
unitary ensemble.

In this coupling, we show that the eigenvalues of the matrices converge
almost surely to the eigenvalues of the flow, which are distributed accord-
ing to a sine-kernel point process, and we get some estimates of the rate of
convergence. Moreover, we also prove that the eigenvectors of the matrices
converge almost surely to vectors which are distributed as Gaussian random
fields on a countable set.

Notation. If v ∈ Cn is a vector, then we write v[m] for the image of v under
the canonical projection map Cn →Cm onto the first m standard basis vectors and
we write (v)k for its kth coordinate.

We write O(n) for the orthogonal group of dimension n, that is, the group of
invertible operators on Rn which preserve the standard real inner product. We write
U(n) for the unitary group of dimension n which preserves the standard complex
inner product. For any vector space V , real or complex, we write GL(V ) for the
group of invertible transformations. We always write 1 for the identity operator in
every space.

We write U= U(1) for the unit circle in C, that is, those complex numbers with
modulus 1.

Calligraphic characters denote σ -algebras, that is, A, B, C, etc. If A and B are
σ -algebras on a common set, then A∨B denotes the smallest σ -algebra containing
both A and B.

We also write a ∨ b, for a, b ≥ 0, to mean max(a, b) and a ∧ b to mean
min(a, b).

We employ asymptotic notation for inequalities where precise constants are
not important. In particular, we write X = O(Y ) to mean that there exists a
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constant C > 0 such that |X| ≤ CY . All constants are assumed to be absolute
unless indicated otherwise by an appropriate subscript; for example, we write
fn(x) = On(gn(x)) to mean that there are constants Cn, one for each value of
n, such that |fn(x)| ≤ Cngn(x) for all x. We also use (modified) Vinogradov nota-
tion, where X � Y means X = O(Y ), for convenience.

If t is a real number, we write 	t
 its integer part.
If H is a Hilbert space with scalar product 〈·, ·〉, and if F ⊂ H , then F⊥ = {x ∈

H ; 〈x, y〉 = 0 ∀y ∈ F }. If H is a complex Hilbert space, then we will always use
the scalar product which is linear in the first variable and conjugate linear in the
second, that is, 〈ax, by〉 = ab〈x, y〉.

1. Introduction. It has been observed that for many models of random ma-
trices, the eigenvalues have a limiting short-scale behavior when the dimension
goes to infinity which depends on the global symmetries of the model, but not on
its detailed features. For example, the Gaussian Orthogonal Ensemble (GOE), for
which the matrices are real symmetric with independent Gaussian entries on and
above the diagonal, corresponds to a limiting short-scale behavior for the eigen-
values that is also obtained for several other models of random real symmetric
matrices. Similarly, the limiting spectral behavior of a large class of random her-
mitian and unitary ensembles, including the Gaussian Unitary Ensemble (GUE,
with independent, complex Gaussians above the diagonal), and the Circular Uni-
tary Ensemble (CUE, corresponding to the Haar measure on the unitary group of
a given dimension), involves a remarkable random point process, called the deter-
minantal sine-kernel process. It is a point process for which the k-point correlation
function is given by

ρk(x1, . . . , xk) = det
(

sin(π(xp − xq))

π(xp − xq)

)
1≤p,q≤k

.

From an observation of Montgomery in 1972, it has also been conjectured that the
limiting short-scale behavior of the imaginary parts of the zeros of the Riemann
zeta function is also described by a determinantal sine-kernel process. This similar
behavior supports the conjecture of Hilbert and Pólya, who suggested that the non-
trivial zeros of the Riemann zeta functions should be interpreted as the spectrum
of an operator 1

2 + iH with H an unbounded Hermitian operator.
In 1999, Katz and Sarnak [6] gave a proof of the Montgomery conjecture in the

function field case. It appears from this work (which relies, among other things,
on existing work developed for the proof of Weil’s conjectures, most notably
Deligne’s equidistribution theorems) that the classical compact groups (e.g., the
unitary group, the orthogonal group, the symplectic group, etc.) endowed with the
Haar measure play a central role in the corresponding spectral interpretation. The
regime studied by Katz and Sarnak (fixed genus, and number of elements of the
base field going to infinity) does not contain arithmetic in the limiting spectral
interpretation (this is an effect of equidistribution theorems when the number of
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elements of the base field goes to infinity). On the other hand, the problem is still
open in the problematic regime where the number of elements of the field is fixed
and the genus goes to infinity. There it is not clear how random matrix statistics
and arithmetic mix together in the limit (see [5] and [9] for more discussion on
this particular aspect). A similar phenomenon occurs for the Riemann zeta func-
tion. Inspired by the work of Katz and Sarnak, Keating and Snaith [7] suggest to
use the characteristic polynomial of random unitary matrices to model the distri-
bution of values of the Riemann zeta function on the critical line and propose a
conjecture for the moments of the Riemann zeta function on the critical line where
again random matrix statistics and arithmetic mix in a mysterious way.

Following this body of work, several questions have naturally emerged. In par-
ticular, Katz and Sarnak asked whether it is possible to give a meaning to strong
convergence (i.e., almost sure convergence) for the eigenvalues of random unitary
matrices to the determinantal sine kernel point process. This problem was first
solved by Borodin and Olshanski in [1] and then together with Paul Bourgade, the
second and third authors of this paper proposed in [3] an alternative solution with
the so called virtual isometries (see below for more details on the construction of
virtual isometries). Our approach was probabilistic (we used coupling techniques
ideas) and also quantitative: we were able to quantify the rate of convergence to
the sine kernel point process. The goal of this paper is twofold:

• to improve on our estimates in the rate of convergence to the sine-kernel point
process by refining several other estimates;

• to give a complete panorama of the spectral analysis of virtual isometries by
establishing quantitative strong convergence for the eigenvectors as well.

We believe that these new and/or refined estimates can be very useful in tack-
ling other problems at the interface of random matrix theory and analytic number
theory. For instance, in the companion paper [4], we provide a new approach to
ratios of characteristic polynomials and solve a conjecture on the limit of ratios
of characteristic polynomials, where we use the estimates of this paper. In another
companion paper, we use the spectral analysis of this paper to construct a flow
of operators, constructed from virtual isometries, and whose spectrum is the sine-
kernel point process.

We now briefly recall the notion of virtual isometry, which has been introduced
in [3], generalizing both the notion of virtual permutation studied by Kerov, Ol-
shanski and Vershik [8], and the previous notion of virtual unitary group intro-
duced by Neretin [11]. A virtual isometry is a sequence of random unitary matrices
(un)n≥1 constructed in the following way:

1. One considers a sequence (xn)x≥1 of independent random vectors, xn being
uniform on the unit sphere of Cn.

2. Almost surely, for all n ≥ 1, xn is different from the last basis vector en of
Cn, which implies that there exists a unique rn ∈ U(n) such that rn(en) = xn and
rn − In has rank one.
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3. We define (un)n≥1 by induction as follows: u1 = x1 and for all n ≥ 2,

un = rn

(
un−1 0

0 1

)
.

It was proven in [2] that with this construction, un follows, for all n ≥ 1, the
Haar measure on U(n). From now on, we always assume that the sequence (un)n≥1
is defined with this coupling.

For each value of n, let λ
(n)
1 , . . . , λ

(n)
n be the eigenvalues of un, ordered counter-

clockwise, starting from 1: they are almost surely pairwise distinct and different
from 1. If 1 ≤ k ≤ n, we denote by θ

(n)
k the argument of λ

(n)
k , taken in the inter-

val (0,2π): θ
(n)
k is the kth strictly positive eigenangle of un. If we consider all

the eigenangles of un, taken not only in (0,2π) but in the whole real line, we get
a (2π)-periodic set with n points in each period. If the eigenangles are indexed
increasingly by Z, we obtain a sequence

· · · < θ
(n)
−1 < θ

(n)
0 < 0 < θ

(n)
1 < θ

(n)
2 < · · · ,

for which θ
(n)
k+n = θ

(n)
k + 2π for all k ∈ Z.

It is also convenient to extend the sequence of eigenvalues as a n-periodic se-
quence indexed by Z, in such a way that for all k ∈ Z,

λ
(n)
k = exp

(
iθ

(n)
k

)
.

Note that in the notion of virtual isometry defined here, the vectors of the canon-
ical basis of Cn play a particular role. One could attempt to generalize the notion
of virtual isometries by considering sequences of unitary operators on En, n ≥ 1,
where (En)n≥1 is a sequence of complex inner product spaces, En being of dimen-
sion n. However, this reduces to the particular case En = Cn by a change of basis
and so we have chosen to use the standard basis for simplicity.

Next, for 1 ≤ k ≤ n, let f
(n)
k ∈ Cn denote a unit length representative of the

eigenspace for λ
(n)
k . Then if we expand rn+1(en+1) in the basis of eigenvectors

rn+1(en+1) =
n∑

j=1

μ
(n)
j f

(n)
j + νnen+1

then the eigenvalues of un+1 are precisely the zeros of the rational equation

n∑
j=1

∣∣μ(n)
j

∣∣2 λ
(n)
j

λ
(n)
j − z

+ |1 − νn|2
1 − z

= 1 − νn

and the eigenvectors of un+1 are given by the n + 1 equations

Ckf
(n+1)
k =

n∑
j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

f
(n)
j + νn − 1

1 − λ
(n+1)
k

en+1
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for 1 ≤ k ≤ n + 1; here, Ck ∈ R+ is a constant so that f
(n+1)
k has unit length. As

above, we will also extend, when needed, the notation f
(n)
k , μ

(n)
j , in such a way

that the sequences (f
(n)
k )k∈Z and (μ

(n)
j )j∈Z are n-periodic.

In [3], it is shown that if (un)n≥1 follows this distribution, then for all k, the kth
positive (resp., negative) eigenangle θ

(n)
k (resp. θ

(n)
1−k) of un, multiplied by n/2π

(i.e., the inverse of the average spacing between eigenangles for any matrix in
U(n)), converges almost surely to a random variable yk (resp., y1−k). The random
set (yk)k∈Z is a determinantal sine-kernel process, and for each k, the convergence
holds with a rate dominated by some negative power of n. In the present paper, we
improve our estimate of this rate, and more importantly, we prove that almost sure
convergence not only holds for the eigenangles of un, but also for the components
of the corresponding eigenvectors. More precisely, we show that, for all k, � ≥ 1,
the �th component of the eigenvector of un associated to the kth positive (resp.,
negative) eigenangle converges almost surely to a nonzero limit when n goes to
infinity, if the norm of the eigenvector is taken equal to

√
n and if the phases are

suitably chosen. Note that taking a norm equal to
√

n is natural in this setting: with
this normalization, the expectation of the squared modulus of each coordinate of a
given eigenvector of un is equal to 1, so we can expect a convergence to a nontrivial
limit. If the norm of the eigenvectors is taken equal to 1 instead of

√
n, then the

coordinates converge to zero when n goes to infinity.
The precise statement of our main results are given as follows.

THEOREM 1.1. With the notation above, the following estimate holds almost
surely:

n

2π
θ

(n)
k = yk +O

((
1 + k2)n− 1

3 +ε),
for all n ≥ 1, |k| ≤ n1/4 and ε > 0, where the implied constant may depend on
(um)m≥1 and ε, but not on n and k.

THEOREM 1.2. Let (un)n≥1 be a virtual isometry, following the Haar mea-
sure. For k ∈ Z and n ≥ 1, let v

(n)
k be a unit eigenvector corresponding to the kth

smallest nonnegative eigenangle of un for k ≥ 1, and the (1 − k)th largest strictly
negative eigenangle of un for k ≤ 0. Then for all k ∈ Z, there almost surely exist
some complex numbers (ψ

(n)
k )n≥1 of modulus 1, and a sequence (tk,�)�≥1, such

that for all � ≥ 1,
√

n
〈
ψ

(n)
k v

(n)
k , e�

〉 −→
n→∞ tk,�.

Almost surely, for all k ∈ Z, the sequence (tk,�)�≥1 depends, up to a multiplica-
tive factor of modulus one, only on the virtual rotation (un)n≥1. Moreover, if
(ψk)k∈Z is a sequence of i.i.d., uniform variables on U, independent of (tk,�)�≥1,
then (ψktk,�)k∈Z,�≥1 is an i.i.d. family of standard complex Gaussian variables
(E[|ψktk,�|2] = 1).
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REMARK 1.3. The vectors v
(n)
k are equal to f

(n)
k , up to a multiplicative factor

of modulus 1. The independent phases ψk introduced in the last part of the theorem
are needed in order to get i.i.d. complex Gaussian variables. This is not the case,
for example, if we normalize (tk,�)�≥1 in such a way that tk,1 ∈ R+.

In Section 3, we make the following key observation: the sequence of eigenval-
ues λ

(n)
k , with 1 ≤ k ≤ n and n ≥ 1, is independent of the argument of the coeffi-

cients μ
(n)
j , with 1 ≤ j ≤ n and n ≥ 1. Therefore, we can consider the sequence of

eigenvalues of the virtual isometry and prove that it converges almost surely, and
then, conditioning on the eigenvalues of every matrix in the virtual isometry, con-
sider the sequence of eigenvectors and show that they also converge in a suitable
sense.

The first part of this plan is carried out in Section 4, where Theorem 1.1 is
proven.

Next, in Section 5 we condition on the eigenangles of the entire sequence of
matrices. We show that for each fixed k there is a renormalization factor D

(n)
k so

that for each � ≥ 1 the sequence 〈D(n)
k f

(n)
k , e�〉 is a martingale which converges in

L2 and almost surely to a limiting value gk,�. In Section 6, Theorem 1.2 is deduced
from this convergence.

2. Spectral analysis of the virtual isometries. It is classical that if un is a
random unitary matrix following the Haar measure on U(n), then the distribution
of the eigenangles of un, multiplied by n/2π , converges in law to a determinantal
sine-kernel process. In fact, this result can be found in the literature under the form
of the convergence of the correlation functions against a suitably chosen family
of test functions. However, we were not able to find a statement with its proof
on the fact that the convergence takes place in the sense of weak convergence of
point processes, using Laplace functionals. So for completeness, we give such a
statement below and postpone its proof until Appendix B.

PROPOSITION 2.1. Let En denote the set of eigenvalues taken in (−π,π ]
and multiplied by n/2π of a random unitary matrix of size n following the Haar
measure. Let us also define for y �= y′,

K(∞)(y, y′) = sin[π(y′ − y)]
π(y′ − y)

and

K(∞)(y, y) = 1.

Then there exists a point process E∞ such that for all r ≥ 1, and for all Borel
measurable and bounded functions F with compact support from Rr to R, we
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have

E

( ∑
x1 �=···�=xr∈E∞

F(x1, . . . , xr)

)
=

∫
Rr

F (y1, . . . , yr)ρ
(∞)
r (y1, . . . , yr) dy1 · · · dyr,

where

ρ(∞)
r (y1, . . . , yr) = det

((
K(∞)(yj , yk)

)
1≤j,k≤r

)
.

Moreover, the point process En converges to E∞ in the following sense: for all
Borel measurable bounded functions f with compact support from R to R,∑

x∈En

f (x) −→
n→∞

∑
x∈E∞

f (x),

where the convergence above holds in law.

In [3], it was proven that the eigenangles of a virtual isometry, taken according
to Haar measure and renormalizing the eigenangles by the dimension n, converge
almost surely to a point process with this determinantal distribution. Precisely, we
have the following.

PROPOSITION 2.2. Let (un)n≥1 be a random virtual isometry following the
Haar measure. The eigenvalues of un are almost surely distinct and different from
1, and then, as explained before, it is possible to order the eigenangles as an in-
creasing sequence indexed by Z:

· · · < θ
(n)
−2 < θ

(n)
−1 < θ

(n)
0 < 0 < θ

(n)
1 < θ

(n)
2 < · · · .

Moreover, almost surely, for all m ∈ Z, there exists ym such that

n

2π
θ(n)
m = ym +O

(
n−ε),

when n goes to infinity, ε > 0 being some universal constant, and the process
(ym)m∈Z is a determinantal sine-kernel process.

REMARK 2.3. In this proposition, the periodic extension of the sequence
(θ

(n)
k )1≤k≤n is needed to define ym for nonpositive values of m. We also note that

ym depends only on the behavior of θ
(n)
m for a fixed value of m. Informally, the lim-

iting sine-kernel process (ym)m∈Z depends only on the behavior of the eigenvalues
of un which are close to 1.

We want to understand the behavior of the eigenvectors of un as n goes to
infinity. Our method will give a formula for the spectrum and eigenvectors of un+1
in terms of the spectrum and eigenvectors of un.
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We assume throughout that for each n ≥ 1, the n eigenvalues of un are distinct;
this holds almost surely for virtual isometries constructed according to the Haar
measure.

We recall that the eigenvalues of un, λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n , are ordered in such a

way that λ
(n)
k = eiθ

(n)
k , and

0 < θ
(n)
1 < · · · < θ(n)

n < 2π.

Moreover, the eigenangles enjoy a property of periodicity: for all k ∈ Z, θ
(n)
k+n =

θ
(n)
k + 2π .

As all the eigenvalues are distinct, each eigenvalue corresponds to a one-
dimensional eigenspace. We can therefore write f

(n)
1 , . . . , f

(n)
n for the family of

unit length eigenvectors of un, which are well defined up to a complex phase: the
notation f

(n)
k is then extended n-periodically to all k ∈ Z.

Let xn = un(en) and let rn denote the unique reflection on Cn mapping en to xn.
Therefore, we have un+1 = rn+1 ◦ (un ⊕ 1). It is natural to decompose xn+1 into
the basis given by ι(f

(n)
1 ), . . . , ι(f

(n)
n ), en+1, where ι :Cn → Cn+1 is the inclusion

which maps (x1, . . . , xn) to (x1, . . . , xn,0). Identifying f
(n)
k and ι(f

(n)
k ), we then

have

xn+1 =
n∑

k=1

μ
(n)
k f

(n)
k + νnen+1

for some μ
(n)
k (1 ≤ k ≤ n) and νn such that |μ(n)

1 |2 + · · · + |μ(n)
n |2 + |νn|2 = 1.

Again, it can be convenient to consider μ
(n)
k for all k ∈ Z, by a n-periodic extension

of the sequence. The following result gives the spectral decomposition of un+1 in
function of the decomposition of un and xn+1.

THEOREM 2.4 (Spectral decomposition). On the event that the coefficients
μ

(n)
1 , . . . ,μ

(n)
n are all different from zero and that the n eigenvalues of un are all

distinct (which holds almost surely under the uniform measure on U∞), the eigen-
values of un+1 are the unique roots of the rational equation

n∑
j=1

∣∣μ(n)
j

∣∣2 λ
(n)
j

λ
(n)
j − z

+ |1 − νn|2
1 − z

= 1 − νn

on the unit circle. Furthermore, they interlace between 1 and the eigenvalues of un

0 < θ
(n+1)
1 < θ

(n)
1 < θ

(n+1)
2 < · · · < θ(n)

n < θ
(n+1)
n+1 < 2π,

and it is possible to choose the unit eigenvectors f
(n)
k so that they satisfy the rela-



LIMIT OPERATORS FOR CIRCULAR ENSEMBLES 2425

tion

(
h

(n+1)
k

) 1
2 f

(n+1)
k =

n∑
j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

f
(n)
j + νn − 1

1 − λ
(n+1)
k

en+1,

where h
(n+1)
k is real and strictly positive.

PROOF. Let f be an eigenvector of un+1 with corresponding eigenvalue z.
Then we have

f =
n∑

j=1

ajf
(n)
j + ben+1,

where a1, . . . , an, b are (as yet unknown) complex numbers, not all zero. Our goal
is to write these coefficients in terms of xn+1 and the eigenvalues of un.

We have

zf = un+1f

= un+1

(
n∑

j=1

ajf
(n)
j + ben+1

)

=
n∑

j=1

ajun+1f
(n)
j + bun+1en+1

=
n∑

j=1

ajλ
(n)
j rn+1f

(n)
j + bxn+1.

We recall that for all t ∈ Cn+1, rn+1(t) is given by

rn+1(t) = t + 〈t, xn+1 − en+1〉
〈en+1, xn+1 − en+1〉(xn+1 − en+1)

so that

zf =
n∑

j=1

ajλ
(n)
j

(
f

(n)
j + 〈f (n)

j , xn+1 − en+1〉
〈en+1, xn+1 − en+1〉(xn+1 − en+1)

)
+ bxn+1.

Now we decompose

xn+1 =
n∑

k=1

μ
(n)
k f

(n)
k + νnen+1
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and

zf =
n∑

j=1

ajλ
(n)
j

(
f

(n)
j + μ

(n)
j

νn − 1
(xn+1 − en+1)

)
+ bxn+1

=
n∑

j=1

ajλ
(n)
j f

(n)
j +

(
n∑

�=1

a�λ
(n)
�

μ
(n)
�

νn − 1

)
(xn+1 − en+1) + bxn+1.

Because f
(n)
1 , . . . , f

(n)
n , en+1 is a basis for Cn+1, we deduce the system of n + 1

equations

zaj = ajλ
(n)
j + μ

(n)
j

n∑
�=1

a�λ
(n)
�

μ
(n)
�

νn − 1
+ bμ

(n)
j

for j = 1, . . . , n and

zb = b + (νn − 1)

n∑
�=1

a�λ
(n)
�

μ
(n)
�

νn − 1
+ b(νn − 1).

For z /∈ {λ(n)
1 , . . . , λ

(n)
n ,1}, let us consider the linear transform Q : Cn+1 → Cn+1

whose matrix representation in the basis f
(n)
1 , . . . , f

(n)
n , en+1 is

Q = I + wvt ,

where

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ
(n)
1

λ
(n)
1 − z

...

μ
(n)
n

λ
(n)
n − z
νn − 1

1 − z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

vt =
(
λ

(n)
1

μ
(n)
1

νn − 1
, . . . , λ(n)

n

μ
(n)
n

νn − 1
,1
)
.

Then, the above system can be written

Qf = 0.

Clearly, rankQ ∈ {n,n + 1}. If it has full rank then f = 0, but we assume a priori
that z is an eigenvalue for un+1 and so has a nontrivial eigenspace. Thus we must
have rankQ = n and

0 = Qf = f + w
(
vtf

)
.
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The right-hand side can only vanish if f is proportional to w, so f = αw for some
complex constant α ∈C \ {0} and vtw = −1. In particular,

n∑
j=1

λ
(n)
j |μ(n)

j |2

λ
(n)
j − z

+ |νn − 1|2
1 − z

= 1 − νn,

as required.
Conversely, if z /∈ {λ(n)

1 , . . . , λ
(n)
n ,1} satisfies this equation, then

Qw = w + w
(
vtw

) = w + w(−1) = 0,

which implies that w is an eigenvector of un+1 for the eigenvalue z.
Let us now show that the eigenvalues z /∈ {λ(n)

1 , . . . , λ
(n)
n ,1} of un+1 strictly

interlace between 1 and the eigenvalues of un: since un+1 has at most n+ 1 eigen-
values, this implies that λ

(n)
1 , . . . , λ

(n)
n ,1 are not eigenvalues of un+1.

Define the rational function  : S1 → C∪ {∞} by

(z) =
n∑

j=1

λ
(n)
j |μ(n)

j |2

λ
(n)
j − z

+ |νn − 1|2
1 − z

− (1 − νn).

Note that  vanishes precisely on the eigenvalues of un+1 which are different

from λ
(n)
1 , . . . , λ

(n)
n ,1. Recalling that |μ(n)

1 |2 + · · · + |μ(n)
n |2 + |νn|2 = 1, we can

rearrange the expression of  to the equivalent form

(z) = 1

2

(
n∑

j=1

∣∣μ(n)
j

∣∣2 λ
(n)
j + z

λ
(n)
j − z

+ |1 − νn|2 1 + z

1 − z
− νn + νn

)
.

Hence,  takes values only in iR∪{∞}, since for all z �= z′ ∈ S1, (z+ z′)/(z− z′)
is purely imaginary (the triangle (−z′, z, z′) has a right angle at z). Note that for
z ∈ {λ(n)

1 , . . . , λ
(n)
n ,1}, a unique term of the sum defining  is infinite, since by

assumption, μ
(n)
1 , . . . ,μ

(n)
n ,1 − νn are nonzero and λ

(n)
1 , . . . , λ

(n)
n ,1 are distinct:

(z) = ∞.
Next, we consider t �→ (eit ) in a short interval (θ

(n)
j − δ, θ

(n)
j + δ). Then, for

t = θ
(n)
j + u in this interval,

λ
(n)
j + λ

(n)
j eiu

λ
(n)
j − λ

(n)
j eiu

= 1 + eiu

1 − eiu
= 2iu−1 +O(1)

while the other terms in (eit ) are uniformly bounded as δ → 0; likewise for the
interval (−δ, δ). In particular,  → i∞ as u → 0 from the right and  → −i∞
as u → 0 from the left. We therefore conclude, as  is continuous, that on each
interval of the partition(

0, θ
(n)
1

)∪ (
θ

(n)
1 , θ

(n)
2

)∪ · · · ∪ (
θ(n)
n ,2π

)



2428 K. MAPLES, J. NAJNUDEL AND A. NIKEGHBALI

of the unit circle into n + 1 parts, t �→ (eit ) must assume every value on the
line iR, and in particular must have at least one root. But we know that  has
only n + 1 roots on the circle so there must be exactly one root in each part of the
partition, which proves the interlacing property.

It remains to check the expression of the eigenvectors (f
(n+1)
k )1≤k≤n+1 given in

the theorem, but this expression is immediately deduced from the expression of the
vector w involved in the operator Q defined above, and the fact that ‖f (n+1)

k ‖ = 1.
�

3. A filtration adapted to the virtual isometry. In our proof of convergence
of eigenvalues and eigenvectors, we will use some martingale arguments. That is
why in this section, we introduce a filtration related to our random virtual isometry.
For n ≥ 1, we define the σ -algebra An = σ {λ(m)

j | 1 ≤ m ≤ n,1 ≤ j ≤ m} and its
limit A = ∨∞

n=1 An.

LEMMA 3.1. For all n ≥ 1, the σ -algebra An is equal, up to completion, to
the σ -algebra generated by u1 the variables |μ(m)

j | and νm for 1 ≤ m ≤ n − 1 and
1 ≤ j ≤ m.

PROOF. By Theorem 2.4, the eigenvalues of un+1 are almost surely the roots
of the equation

n∑
j=1

∣∣μ(n)
j

∣∣2 λ
(n)
j

λ
(n)
j − z

+ |1 − νn|2
1 − z

= 1 − νn.

This equation depends only on |μ(n)
j |, λ

(n)
j for j = 1, . . . , n, and νn. By induction,

we deduce that λ
(n+1)
j is a measurable function of u1, {|μ(m)

j |}1≤j≤m,1≤m≤n and
{νm}1≤m≤n.

Conversely, the above equation with z specialized to λ
(n+1)
1 , . . . , λ

(n+1)
n+1 can be

written in the form

Rv = w.

Here, w is a column vector of 1s, v is the column vector with entries

vt =
( |μ(n)

1 |2
1 − νn

, . . . ,
|μ(n)

n |2
1 − νn

,1 − νn

)
and R is an (n + 1) × (n + 1) matrix with entries

Rk,j = λ
(n)
j

λ
(n)
j − λ

(n+1)
k
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for 1 ≤ j ≤ n and

Rk,n+1 = 1

1 − λ
(n+1)
k

.

If we write R̃ = RS, where S is the diagonal matrix with entries Sjj =
(μ

(n)
j λ

(n)
j )−1 (1 ≤ j ≤ n) and Sn+1,n+1 = νn − 1, then we see that the rows

of R̃ are the representations of the eigenvectors f
(n+1)
1 , . . . , f

(n+1)
n+1 in the basis

f
(n)
1 , . . . , f

(n)
n , en+1 up to constants and, therefore, orthogonal. We conclude that

R̃, and thus R, are invertible, so Rv = w has a unique solution, which can be
written in terms of the eigenvalues λ

(m)
j for 1 ≤ j ≤ m and m ≤ n + 1. Thus we

conclude that |μ(n)
j | and νn are measurable functions of λ

(m)
j for 1 ≤ j ≤ m and

m ≤ n + 1 as was to be shown. �

For 1 ≤ j ≤ n, we define the phase φ
(n)
j by μ

(n)
j = φ

(n)
j |μ(n)

j |, and the σ -algebras

Bn =A∨ σ {φ(m)
j | 1 ≤ m ≤ n − 1,1 ≤ j ≤ m} and B = ∨∞

n=1 Bn.

LEMMA 3.2. The σ -algebra Bn is equal, up to completion, to the σ -algebra
generated by A and the eigenvectors f

(m)
j for 1 ≤ j ≤ m and 1 ≤ m ≤ n.

PROOF. Again by Theorem 2.4, we can write the eigenvectors of un+1 as func-
tions of μ

(n)
j = φ

(n)
j |μ(n)

j | (1 ≤ j ≤ n), νn, λ
(m)
j (1 ≤ j ≤ m, m ∈ {n,n + 1}), and

the eigenvectors of un. Clearly, |μ(n)
j |, νn, and λ

(m)
j for m ∈ {n,n + 1} are A-

measurable and φ
(n)
j is Bn+1-measurable.

Conversely, we write

〈(
h

(n+1)
k

)1/2
f

(n+1)
k , f

(n)
j

〉 = φ
(n)
j |μ(n)

j |
λ

(n)
j − λ

(n+1)
k

to find each φ
(n)
j as a function of the other variables. �

4. Convergence of the eigenangles. In order to prove the convergence of
the normalized eigenangles of un when n goes to infinity, we need the following
lemma.

LEMMA 4.1. Let ε > 0. Then, almost surely under the Haar measure on U∞,
for n ≥ 1 and 0 < k ≤ n1/4, we have

θ
(n+1)
k |μ(n)

k |2

θ
(n)
k − θ

(n+1)
k

= 1 +O
(
kn− 1

3 +ε)
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and for n ≥ 1 and −n1/4 ≤ k ≤ 0,

θ
(n+1)
k |μ(n)

k |2

θ
(n)
k − θ

(n+1)
k

= θ
(n+1)
k |μ(n)

k+n|
2

θ
(n)
k − θ

(n+1)
k

= 1 +O
((

1 + |k|)n− 1
3 +ε).

REMARK 4.2. The implied constant in the O(·) notation depends on (um)m≥1
and ε: in particular, it is a random variable. However, for given (um)m≥1 and ε, it
does not depend on k and n.

PROOF. By symmetry of the situation, we can assume k > 0. Moreover, let us
fix ε ∈ (0,0.01). We will suppose that the event E := E0 ∩ E1 ∩ E2 ∩ E3 holds,
where

E0 = {
θ

(1)
0 �= 0

}∩ {∀n ≥ 1, νn �= 0} ∩ {∀n ≥ 1,1 ≤ k ≤ n,μ
(n)
k �= 0

}
,

E1 = {∃n0 ≥ 1,∀n ≥ n0, |νn| ≤ n− 1
2 +ε},

E2 = {∃n0 ≥ 1,∀n ≥ n0,1 ≤ k ≤ n,
∣∣μ(n)

k

∣∣ ≤ n− 1
2 +ε},

E3 = {∃n0 ≥ 1,∀n ≥ n0, k ≥ 1, n− 5
3 −ε ≤ θ

(n)
k+1 − θ

(n)
k ≤ n−1+ε}.

It is possible to do this assumption, since by the result proven in Appendix A of the
present paper, the event E occurs almost surely. As we will see now, this a priori
information on the distribution of the eigenvalues of the random virtual isome-
try implies strong quantitative bounds on the change in eigenvalues of successive
unitary matrices.

Recall from Theorem 2.4 that

n∑
j=1

λ
(n)
j |μ(n)

j |2

λ
(n)
j − λ

(n+1)
k

+ |1 − νn|2
1 − λ

(n+1)
k

= 1 − νn.

By using the n-periodictiy of λ
(n)
j , μ

(n)
j , f

(n)
j with respect to j , we can write

(1)
∑
j∈J

λ
(n)
j |μ(n)

j |2

λ
(n)
j − λ

(n+1)
k

+ |1 − νn|2
1 − λ

(n+1)
k

= 1 − νn,

where J is the random set of n consecutive integers, such that θ
(n+1)
k −π < θ

(n)
j ≤

θ
(n+1)
k + π . Iterating the lower bound on the distance between adjacent eigenval-

ues, given by the definition of the event E3, we get, for j ∈ J \ {k − 1, k},∣∣θ(n)
j − θ

(n+1)
k

∣∣� |k − j |n− 5
3 −ε,

and then ∣∣λ(n)
j − λ

(n+1)
k

∣∣� |k − j |n− 5
3 −ε,

since |θ(n)
j − θ

(n+1)
k | ≤ π .
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Likewise, we have by E3, 1 − λ
(n+1)
k = O(kn−1+ε), and by E2, |μ(n)

j |2 =
O(n−1+2ε), which gives, for j ∈ J \ {k − 1, k},

λ
(n)
j (1 − λ

(n+1)
k )|μ(n)

j |2

λ
(n)
j − λ

(n+1)
k

� k

|k − j |n
− 1

3 +4ε.

Summing for j in J \{k−1, k}, which is included in the interval [k−1−n, k+n],
gives

∑
j∈J\{k−1,k}

λ
(n)
j (1 − λ

(n+1)
k )|μ(n)

j |2

λ
(n)
j − λ

(n+1)
k

=O
(
kn− 1

3 +4ε logn
) = O

(
kn− 1

3 +5ε).
Now, subtracting this equation from the product of (1) by 1−λ

(n+1)
k , and bounding

νn = O(n− 1
2 +ε) (by the property E1) gives us the resulting equation

λ
(n)
k (1 − λ

(n+1)
k )|μ(n)

k |2

λ
(n)
k − λ

(n+1)
k

1k∈J + λ
(n)
k−1(1 − λ

(n+1)
k )|μ(n)

k−1|
2

λ
(n)
k−1 − λ

(n+1)
k

1k−1∈J

= −1 +O
(
kn− 1

3 +5ε).
Next, we estimate the first two terms in terms of the eigenangles. We find

1 − λ
(n+1)
k = −iθ

(n+1)
k +O

((
θ

(n+1)
k

)2)
and

λ
(n)
j − λ

(n+1)
k = i

(
θ

(n)
j − θ

(n+1)
k

)
λ

(n)
j +O

((
θ

(n)
j − θ

(n+1)
k

)2)
for j = k − 1, k. Collecting terms and using the trivial bounds give

θ
(n+1)
k |μ(n)

k |2

θ
(n)
k − θ

(n+1)
k

(
1 +O

(
kn−1+ε))1k∈J

+ θ
(n+1)
k |μ(n)

k−1|
2

θ
(n)
k−1 − θ

(n+1)
k

(
1 +O

(
kn−1+ε))1k−1∈J = 1 +O

(
kn− 1

3 +5ε).
(2)

From Theorem 2.4, the eigenvalues of un and un+1 interlace, so for n sufficiently
large the real part of the first term is positive and the real part of the second term
is negative. The real part of the right-hand side tends to 1 as n grows with k fixed,
so the first term has real part bounded below for n sufficiently large. In particular,

θ
(n+1)
k |μ(n)

k |2

θ
(n)
k − θ

(n+1)
k

� 1.
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Using the a priori bounds for θ
(n+1)
k and |μ(n)

k |2, we find

θ
(n)
k − θ

(n+1)
k � kn−2+3ε.

Hence,

θ
(n+1)
k − θ

(n)
k−1 = (

θ
(n)
k − θ

(n)
k−1

)− (
θ

(n)
k − θ

(n+1)
k

)
� n− 5

3 −ε −O
(
kn−2+3ε)� n− 5

3 −ε,

since kn−2+3ε/n− 5
3 −ε =O(n1/4−2+0.03+5/3+0.01) = o(1). We deduce that the sec-

ond term of (2) is dominated by kn−1/3+4ε , and then

θ
(n+1)
k |μ(n)

k |2

θ
(n)
k − θ

(n+1)
k

= 1 +O
(
kn− 1

3 +5ε).
Changing the value of ε appropriately gives the desired result. �

This lemma is enough for us to estimate the change in θ
(n)
k as n grows, and

in particular to find a limit for the renormalized angle. We can now complete the
proof of Theorem 1.1.

PROOF OF THEOREM 1.1. The proof proceeds exactly as in [3]. It is sufficient
to prove the result for ε equal to the inverse of an integer: hence, it is enough to
show the estimate for fixed ε. By symmetry, one can take k > 0. We rearrange the
equation in Lemma 4.1 to find

∣∣μ(n)
k

∣∣2 =
(

θ
(n)
k

θ
(n+1)
k

− 1
)(

1 +O
(
kn− 1

3 +ε)).
Because almost surely, |μ(n)

k |2 =O(n−1+2ε), we get

∣∣μ(n)
k

∣∣2 = θ
(n)
k

θ
(n+1)
k

− 1 +O
(
kn− 4

3 +3ε).
Using the asymptotic log(1 − δ) = −δ +O(δ2) for δ = o(1), we conclude, if ε is
small enough,

log
θ

(n)
k

θ
(n+1)
k

= ∣∣μ(n)
k

∣∣2 +O
(
kn− 4

3 +3ε).
Define the random variable L

(n)
k = log θ

(n)
k + ∑n−1

j=1 |μ(j)
k |2; we have just shown

L
(n+1)
k −L

(n)
k = O(kn− 4

3 +3ε) so for k fixed, L
(n)
k converges to a limit L

(∞)
k almost
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surely as n → ∞, with |L(n)
k − L

(∞)
k | =O(kn− 1

3 +3ε). Now,

expL
(n)
k = θ

(n)
k exp

n−1∑
j=k

∣∣μ(j)
k

∣∣2

= nθ
(n)
k exp

(
− logn +

n−1∑
j=1

1

j
+

n−1∑
j=1

(∣∣μ(j)
k

∣∣2 − 1

j

))
.

Recall − logn + ∑n−1
j=1

1
j

= γ + O(n−1) where γ is the Euler–Mascheroni con-
stant. Next, we define

M
(n)
k :=

n−1∑
j=1

(∣∣μ(j)
k

∣∣2 − 1

j

)
and observe that each term of the sum is an independent mean-zero random vari-
able. Therefore, for k fixed, (M

(n)
k )n≥k is a martingale. We claim that M

(n)
k is

bounded in L2; in fact,

E

(∣∣μ(n)
k

∣∣2 − 1

n

)2
= O

(
n−2),

so that

E
((

M
(∞)
k − M

(n)
k

)2) = ∑
j≥n

E

(∣∣μ(j)
k

∣∣2 − 1

j

)2
=O

(
n−1),

where M
(∞)
k is the claimed limit of M

(n)
k (this limit exists since M

(n)
k is a sum

of centered and independent random variables with summable variances). To see

this, we observe that |μ(n)
k |2 is a Beta random variable of parameters 1 and n − 1,

whose variance can be explicitly computed, and is easily checked to be dominated
by n−2. Now, by the triangle inequality and Doob’s maximal inequality, for q

positive integer, k ≤ 2q ,

E
(

sup
n≥2q

(
M

(∞)
k − M

(n)
k

)2
)
� E

((
M

(∞)
k − M

(2q)
k

)2)+E
(

sup
n≥2q

(
M

(n)
k − M

(2q)
k

)2
)

� E
(
M

(∞)
k − M

(2q )
k

)2

= O
(
2−q).

Hence,

E
[

sup
2q≤n≤2q+1

sup
k≤n1/4

(
M

(∞)
k − M

(n)
k

)2
]
≤ E

[
sup

k≤2(q+1)/4
sup

2q≤n≤2q+1

(
M

(∞)
k − M

(n)
k

)2
]

≤ ∑
k≤2(q+1)/4

E
[

sup
2q≤n≤2q+1

(
M

(∞)
k − M

(n)
k

)2
]

� 2(q+1)/42−q =O
(
2−3q/4)
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and

E
[

sup
n≥2q

sup
k≤n1/4

(
M

(∞)
k − M

(n)
k

)2
]
≤ ∑

r≥q

E
[

sup
2r≤n≤2r+1

sup
k≤n1/4

(
M

(∞)
k − M

(n)
k

)2
]

�
∑
r≥q

2−3r/4 = O
(
2−3q/4).

By Markov’s inequality, we get

P
(

sup
n≥2q

sup
k≤n1/4

∣∣M(∞)
k − M

(n)
k

∣∣ ≥ 2−q/3
)

≤ 22q/3E
(

sup
n≥2q

sup
k≤n1/4

(
M

(∞)
k − M

(n)
k

)2
)

= O
(
2−q/12),

which, by the Borel–Cantelli lemma, shows that almost surely for some q0 ≥ 1, all
q ≥ q0, n ≥ 2q and k ≤ n1/4 satisfy |M(∞)

k − M
(n)
k | ≤ 2−q/3. Hence,∣∣M(∞)

k − M
(n)
k

∣∣ = O
(
n− 1

3
)

almost surely. Collecting these estimates and applying them to the equation

expL
(n)
k = nθ

(n)
k exp

(
γ +O

(
n−1)+ M

(n)
k

)
gives us

exp
(
L

(∞)
k +O

(
kn− 1

3 +3ε)) = nθ
(n)
k exp

(
γ + M

(∞)
k +O

(
n− 1

3
))

Rearranging,

nθ
(n)
k = exp

(
L

(∞)
k − M

(∞)
k − γ

)(
1 +O

(
kn− 1

3 +3ε)) =: 2πyk(1 +O
(
kn− 1

3 +3ε).
Now, by [3], (yk)k∈Z is a determinantal sine-kernel process, so we have almost
surely the estimate yk = O(1 + |k|), which proves Theorem 1.1. �

5. Weak convergence and renormalization of the eigenvectors. We are
now ready to show that the eigenfunctions f

(n)
k of un converge in a suitable sense.

We assume that for a given value of ε, the event E from Section 4 holds, which
happens almost surely. Recall from Theorem 2.4 that we can choose representa-
tives f

(n)
k for the eigenvectors of each un in such a way that

(
h

(n+1)
k

) 1
2 f

(n+1)
k =

n∑
j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

f
(n)
j + νn − 1

1 − λ
(n+1)
k

en+1,

where

h
(n+1)
k =

n∑
j=1

|μ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

+ |νn − 1|2
|1 − λ

(n+1)
k |2

.
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For n = 1, we adopt the convention f
(1)
1 = −e1. We deduce, for n ≥ �,

〈
f

(n+1)
k , e�

〉 = (
h

(n+1)
k

)− 1
2

n∑
j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈
f

(n)
j , e�

〉
.

The invariance by conjugation of the Haar measures implies that each eigenvector
f

(n+1)
k , multiplied by an independent random phase of modulus 1, is a uniform

vector on the complex sphere Sn+1. Hence, the scalar product 〈f (n+1)
k , e�〉 con-

verges to zero in probability. In order to get a limit which is different from zero,
we need to consider a suitable normalization. We introduce the following eigen-
vectors, for n ≥ k:

g
(n)
k := D

(n)
k f

(n)
k ,

where D
(n)
k ∈ C is the random variable

D
(n)
k =

n−1∏
s=k

(
h

(s+1)
k

) 1
2
λ

(s)
k − λ

(s+1)
k

μ
(s)
k

.

We claim that for each renormalized eigenvector g
(n)
k , the scalar product 〈g(n)

k , e�〉
converges.

THEOREM 5.1. For each k ≥ 1 and � ≥ 1, there exists an increasing sequence
(Hj )j≥1 of events in A, with probability tending to 1, such that for all j ≥ 1,

(1Hj
〈g(n)

k , e�〉)n≥k∨� is a martingale with respect to the filtration (Bn)n≥k∨�, and

the conditional expectation of 1Hj
|〈g(n)

k , e�〉|2, given A, is almost surely bounded
when n varies.

REMARK 5.2. We introduce the events Hj in order to avoid to define condi-
tional expectation of variables which are not necessarily integrable or nonnegative.

PROOF. From the equation above,

〈
g

(n+1)
k , e�

〉 = D
(n+1)
k

(
h

(n+1)
k

)− 1
2

n∑
j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈
f

(n)
j , e�

〉

= D
(n)
k

λ
(n)
k − λ

(n+1)
k

μ
(n)
k

n∑
j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈
f

(n)
j , e�

〉

= 〈
g

(n)
k , e�

〉+ D
(n)
k

λ
(n)
k − λ

(n+1)
k

μ
(n)
k

∑
1≤j≤n
j �=k

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈
f

(n)
j , e�

〉
.

(3)



2436 K. MAPLES, J. NAJNUDEL AND A. NIKEGHBALI

Now, recall from Lemma 3.2 that the sequence of eigenvectors (f
(n)
k )n≥k is

adapted to the filtration of σ -algebras (Bn)n≥k . If we decompose

μ
(n)
j = φ

(n)
j

∣∣μ(n)
j

∣∣
then for n fixed, {φ(n)

j }1≤j≤n is a family of i.i.d. random phases uniformly dis-
tributed on the unit circle, independent of the σ -algebra Bn. Indeed, Bn is the
σ -algebra generated by A and {φ(m)

j }1≤m≤n−1,1≤j≤m, and then, by Lemma 3.1,

it is the σ -algebra generated by u1, (νm)m≥1, (|μ(m)
j |)m≥1,1≤j≤m, and

(φ
(m)
j )1≤m≤n−1,1≤j≤m. All these variables are independent of (φ

(n)
j )1≤j≤n, which

are i.i.d. uniform on the unit circle, since the vectors ((μ
(m)
j )1≤j≤m, νm) are inde-

pendent, uniform on the unit complex sphere of Cm+1.
Now, since h

(n+1)
k is real, we have


(n)
k := D

(n)
k

|D(n)
k | =

n−1∏
s=k

(
φ

(s)
k

)−1 λ
(s)
k − λ

(s+1)
k

|λ(s)
k − λ

(s+1)
k |

for 1 ≤ k ≤ n, and we can write

〈
g

(n+1)
k − g

(n)
k , e�

〉 = 
(n)
k

∣∣D(n)
k

∣∣λ(n)
k − λ

(n+1)
k

|μ(n)
k |

∑
1≤j≤n
j �=k

φ
(n)
j

φ
(n)
k

|μ(n)
j |

λ
(n)
j − λ

(n+1)
k

〈
f

(n)
j , e�

〉
.

We would like to compute the conditional expectation of the difference
Hj 〈g(n+1)

k − g
(n)
k , e�〉, given the σ -algebra Bn, for suitable events Hj . We first

verify the measurability of each quantity on the right; in particular:

1. |D(n)
k |, λ

(n)
k −λ

(n+1)
k

|μ(n)
k | ,

|μ(n)
j |

λ
(n)
j −λ

(n+1)
k

are A-measurable.

2. 
(n)
k and 〈f (n)

j , e�〉 are Bn-measurable.

3. {φ(n)
j (φ

(n)
k )−1}1≤j≤n

j �=k

are i.i.d. and independent of Bn.

We also have

∣∣〈g(n+1)
k − g

(n)
k , e�

〉∣∣ ≤ ∣∣D(n)
k

∣∣ |λ(n)
k − λ

(n+1)
k |

|μ(n)
k |

∑
1≤j≤n
j �=k

|μ(n)
j |

|λ(n)
j − λ

(n+1)
k |

which gives an A-measurable bound for the scalar product 〈g(n+1)
k − g

(n)
k , e�〉,

which is almost surely finite. Let us denote this bound by Xn, and let us define the
event Hj as the intersection of the events {Xn ≤ Rn,j } for n ≥ k ∨ �, Rn,j being
increasing in j and chosen in such a way that P[Xn > Rn,j ] ≤ j−12−n, which
implies that the probability of Hj tends to 1 when j goes to infinity.
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By Fubini’s theorem, measurability and the fact that the quantity inside the ex-
pectation is uniformly bounded by Rn,j ,

E
[
1Hj

〈
g

(n+1)
k − g

(n)
k , e�

〉|Bn

] = 1Hj


(n)
k

∣∣D(n)
k

∣∣λ(n)
k − λ

(n+1)
k

|μ(n)
k |

× ∑
1≤j≤n
j �=k

E

[φ
(n)
j

φ
(n)
k

∣∣∣Bn

] |μ(n)
j |

λ
(n)
j − λ

(n+1)
k

〈
f

(n)
j , e�

〉
.

However, by independence,

E

[φ
(n)
j

φ
(n)
k

∣∣∣Bn

]
= E

[φ
(n)
j

φ
(n)
k

]
= 0,

so (1Hj
〈g(n)

k , e�〉)n≥k∨� is a (Bn)n≥k∨�-martingale.
To check its conditional boundedness in L2, given A, it is sufficient to show

E
[
1Hj

∣∣〈g(k∨�)
k , e�

〉∣∣2|A]+ ∑
n≥k∨�

E
[
1Hj

∣∣〈g(n+1)
k − g

(n)
k , e�

〉∣∣2|A]
< ∞

almost surely. In fact, we will prove this inequality without the event Hj (here, the
conditional expectations are well defined since the variables are nonnegative). The
first term is smaller than or equal to ‖g(k∨�)

k ‖2 = |D(k∨�)
k |2, which is A-measurable

and almost surely finite. Hence, it is sufficient to bound the sum. Expanding it gives

(4) E
[∣∣〈g(n+1)

k − g
(n)
k , e�

〉∣∣2|A] = ∣∣D(n)
k

∣∣2 |λ(n)
k − λ

(n+1)
k |2

|μ(n)
k |2

S,

where

S = ∑
1≤i,j≤n
i,j �=k

|μ(n)
i |

λ
(n)
i − λ

(n+1)
k

|μ(n)
j |

λ
(n)
j − λ

(n+1)
k

E
[
φ

(n)
i φ

(n)
j

〈
f

(n)
i , e�

〉〈
f

(n)
j , e�

〉|A]
.

In order to show this equality even if some of the variables involved in S are not
integrable, we observe that the equality is true if we multiply all the variables by
the indicator of the A-measurable event∣∣D(n)

k

∣∣2 |λ(n)
k − λ

(n+1)
k |2

|μ(n)
k |2

∑
1≤i,j≤n
i,j �=k

|μ(n)
i |

|λ(n)
i − λ

(n+1)
k |

|μ(n)
j |

|λ(n)
j − λ

(n+1)
k | ≤ R,

for any R > 0. Then we can let R → ∞. Now

E
[
φ

(n)
i φ

(n)
j

〈
f

(n)
i , e�

〉〈
f

(n)
j , e�

〉|A] = E
[
E
[
φ

(n)
i φ

(n)
j |Bn

]〈
f

(n)
i , e�

〉〈
f

(n)
j , e�

〉|A]
= δi,jE

[〈
f

(n)
i , e�

〉〈
f

(n)
j , e�

〉|A]
,
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where δi,j is the Kronecker delta. Thus

(5) S = ∑
1≤j≤n
j �=k

|μ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

E
[∣∣〈f (n)

j , e�

〉∣∣2|A]
.

In order to effectively bound this sum, we need a posteriori information from the
convergence of the eigenvalues in Section 4. We define the event Fk to be

Fk := {∃n0 ≥ 1,∀n ≥ n0,
(
θ

(n)
k+1 − θ

(n)
k

)∧ (
θ

(n)
k − θ

(n)
k−1

) ≥ n−1−ε}.
LEMMA 5.3. Fk is A-measurable and holds with probability one.

PROOF. Fk depends only on the eigenangles (hence eigenvalues) and is there-
fore clearly A-measurable. By Theorem 1.1 applied to k − 1, k, k + 1, we see that
each of the associated eigenangles satisfies

nθ
(n)
j = 2πyj +O

(
n− 1

4
)
.

In particular,

θ
(n)
k − θ

(n)
k−1 = 2πn−1(yk − yk−1) +O

(
n− 5

4
)
.

Since {yj }j∈Z is a sine-kernel point process yk − yk−1 � 1 almost surely and sim-
ilar for k + 1 and k. �

Now we assume that Fk holds and estimate the quantities involved in

E[|〈g(n+1)
k − g

(n)
k , e�〉|2|A]. We will begin by estimating D

(n)
k . By Lemma 4.1,

almost surely, ∣∣θ(n+1)
k − θ

(n)
k

∣∣ = θ
(n+1)
k

∣∣μ(n)
k

∣∣2(1 +O
(
n− 1

3 +ε)),
hence

(6)
∣∣λ(n+1)

k − λ
(n)
k

∣∣ = θ
(n+1)
k

∣∣μ(n)
k

∣∣2(1 +O
(
n− 1

3 +ε)).
Similarly,

|νn − 1|2
|1 − λ

(n+1)
k |2

= (
θ

(n+1)
k

)−2(1 +O
(
n− 1

2 +ε)).
Now, as in the proof of convergence of the eigenangles, let us consider the set J

of indices j such that θ
(n+1)
k − π < θ

(n)
j ≤ θ

(n+1)
k + π . From the event Fk , we see

that for j ∈ J \ {k}, and n large enough,∣∣θ(n)
j − θ

(n+1)
k

∣∣ ≥ ∣∣θ(n)
k − θ

(n)
j

∣∣− ∣∣θ(n)
k − θ

(n+1)
k

∣∣
≥ n−1−ε −O

(
θ

(n+1)
k

∣∣μ(n)
k

∣∣2(1 +O
(
n− 1

3 +ε)))
≥ n−1−ε −O

(
n−2+ε)� n−1−ε,
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and then

(7)
∣∣λ(n)

j − λ
(n+1)
k

∣∣� n−1−ε,

if ε is taken small enough. We can get a stronger estimate for |j − k| sufficiently
large. In fact, since E3 holds, we have

(8)
∣∣λ(n)

j − λ
(n+1)
k

∣∣� |j − k|n− 5
3 −ε.

These two lower bounds let us estimate

∑
1≤j≤n
j �=k

|μ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

� n−1+ε
∑
j∈J
j �=k

∣∣λ(n)
j − λ

(n+1)
k

∣∣−2

� n−1+ε(n2+εn
2
3 + n

10
3 +εn− 2

3
)

� n
5
3 +ε,

where we split the sum into the interval with |j − k| ≤ n
2
3 and its complement.

Now we can estimate h
(s+1)
k . In fact,

h
(s+1)
k

|λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

= 1 + |λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

( ∑
1≤j≤n
j �=k

|μ(s)
j |2

|λ(s)
j − λ

(s+1)
k |2

+ |νs − 1|2
|1 − λ

(s+1)
k |2

)

= 1 + |λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

(
O
(
s

5
3 +ε)+ (

θ
(s+1)
k

)−2(1 +O
(
s− 1

2 +ε))).
Since almost surely, θ

(s+1)
k =O(1/s), s

5
3 +ε =O((θ

(s+1)
k )−2s− 1

3 +ε), and then

h
(s+1)
k

|λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

= 1 + (θ
(s+1)
k )−2|λ(s)

k − λ
(s+1)
k |2

|μ(s)
k |2

(
1 +O

(
s− 1

3 +ε)).
Now, ∣∣λ(s)

k − λ
(s+1)
k

∣∣2 = ∣∣θ(s)
k − θ

(s+1)
k

∣∣2(1 +O
(|θ(s)

k − θ
(s+1)
k |))

= ∣∣θ(s)
k − θ

(s+1)
k

∣∣2(1 +O
(
s−1)).
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Using Lemma 4.1, one obtains

h
(s+1)
k

|λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

= 1 + (θ
(s+1)
k )−2|θ(s)

k − θ
(s+1)
k |2

|μ(s)
k |2

(
1 +O

(
s− 1

3 +ε))
= 1 + ∣∣μ(s)

k

∣∣2(1 +O
(
s− 1

3 +ε)).
Applying the bound on |μ(s)

k |2 given by E2 and changing the value of ε gives

h
(s+1)
k

|λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

= 1 + ∣∣μ(s)
k

∣∣2 +O
(
s− 4

3 +ε).
Thus from the expression

∣∣D(n)
k

∣∣2 =
n−1∏
s=k

h
(s+1)
k

|λ(s)
k − λ

(s+1)
k |2

|μ(s)
k |2

,

we deduce

∣∣D(n)
k

∣∣2 =
n−1∏
s=k

(
1 + ∣∣μ(s)

k

∣∣2 +O
(
s− 4

3 +ε))

= exp

(
n−1∑
s=k

1

s

)
exp

(
n−1∑
s=k

∣∣μ(s)
k

∣∣2 − 1

s

)
exp

n−1∑
s=k

O
(
s− 4

3 +ε).
As before,

exp
n−1∑
s=k

1

s
= k−1n exp

[
γ
(
1 +O

(
n−1))],

where γ is the Euler–Mascheroni constant,

exp
n−1∑
s=k

(∣∣μ(s)
k

∣∣2 − 1

s

)

is equal to exp(M
(n−1)
k − M

(k)
k ) from Section 4, and the last term converges to a

limit N∞ with error O(n− 1
3 +ε).

Thus, we have∣∣D(n)
k

∣∣2 = k−1n exp
(
γ + M

(∞)
k − M

(k)
k + N∞

)(
1 +O

(
n− 1

3 +ε))
=: Dkn

(
1 +O

(
n− 1

3 +ε)),(9)

where Dk is a nonzero random variable that depends only on k.
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We are now ready to estimate E[|〈g(n+1)
k − g

(n)
k , e�〉|2|A]. In fact we have, using

(6), (9), the estimate θ
(n+1)
k =O(1/n) and the bound on |μ(n)

k |2 given by E2,

E
[∣∣〈g(n+1)

k − g
(n)
k , e�

〉∣∣2|A] = ∣∣D(n)
k

∣∣2 |λ(n)
k − λ

(n+1)
k |2

|μ(n)
k |2

S

� n
∣∣μ(n)

k

∣∣2(θ(n+1)
k

)2
S

� n−2+εS

and using (7) and (8),

S = ∑
1≤j≤n
j �=k

|μ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

E
[∣∣〈f (n)

j , e�

〉∣∣2|A]

� n−1+ε
∑

1≤j≤n
j �=k

∣∣λ(n)
j − λ

(n+1)
k

∣∣−2
E
[∣∣〈f (n)

j , e�

〉∣∣2|A]

� n−1+ε
∑

j∈J,0<|j−k|<n
2
3

n2+εE
[∣∣〈f (n)

j , e�

〉∣∣2|A]

+ n−1+ε
∑

j∈J,|j−k|≥n
2
3

|j − k|−2n
10
3 +εE

[∣∣〈f (n)
j , e�

〉∣∣2|A]
.

Therefore, it is now sufficient to prove that for some ε > 0, and almost surely,∑
n≥k

n−3+ε

( ∑
j∈J,0<|j−k|<n

2
3

n2+εE
[∣∣〈f (n)

j , e�

〉∣∣2|A]

+ ∑
j∈J,|j−k|≥n

2
3

|j − k|−2n
10
3 +εE

[∣∣〈f (n)
j , e�

〉∣∣2|A])
< ∞.

It is then sufficient to prove that the expectation of the left-hand side is finite. Since
J ⊂ [k − n − 1, k + n], one deduces that it is enough to have∑

n≥k

n−3+ε

( ∑
0<|j−k|<n

2
3

n2+εE
[∣∣〈f (n)

j , e�

〉∣∣2]

+ ∑
j∈J,n

2
3 ≤|j−k|≤n+1

|j − k|−2n
10
3 +εE

[∣∣〈f (n)
j , e�

〉∣∣2]) < ∞.
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Now, since f
(n)
j is, up to a phase of modulus 1, uniform on the sphere of Cn, one

has

E
[∣∣〈f (n)

j , e�

〉∣∣2] = 1/n,

and then one needs only to check∑
n≥k

n−3+ε

( ∑
0<|j−k|<n

2
3

n1+ε + ∑
j∈J,n

2
3 ≤|j−k|≤n+1

|j − k|−2n
7
3 +ε

)
< ∞,

which is easy. �

The result we have proven has the following consequence.

COROLLARY 5.4. Almost surely, for all k ∈ Z and � ≥ 1, the scalar product
〈g(n)

k , e�〉 converges to a limit gk,� when n goes to infinity.

PROOF. We can fix k and �. Then, for j ≥ 1, R > 0 we consider the sequence
of variables (

1Hj ,Yj≤R

〈
g

(n)
k , e�

〉)
n≥k∨�,

where Yj denotes the supremum in n of the conditional expectation of 1Hj
|〈g(n)

k ,

e�〉|2 given A. Since Yj is A-measurable, this sequence is a martingale in the fil-
tration (Bn)n≥k∨�, and this martingale is bounded in L2 by construction. Hence, it
a.s. converges, and 〈g(n)

k , e�〉 converges with probability at least 1−P[Hj,Yj ≤ R].
Since we have shown that Yj is a.s. finite, we let R → ∞ and deduce a conver-
gence with probability at least 1 − P[Hj ], and then we let j → ∞. �

For each k ∈ Z, the infinite sequence gk := (gk,�)�≥1 ∈ C∞ can be considered
as the weak limit of the eigenvector g

(n)
k of un, when n goes to infinity. We will

study the behavior of a suitable renormalization of gk in the next section.

6. The law of the coefficients of the limiting eigenvector. In the previous
section, we have proven the almost sure convergence of each coordinate of the
eigenvectors of un, after normalization by a factor D

(n)
k . Using the estimate (9),

we see that almost surely, |D(n)
k |/√n tends to a nonzero random limit when n goes

to infinity. It is then more elegant to formulate the result of convergence by taking
eigenvectors of norm exactly

√
n. Moreover, such a normalization provides the dis-

tribution of the limiting coordinates of the eigenvectors, as stated in Theorem 1.2
proven just below.
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PROOF OF THEOREM 1.2. For fixed k ∈ Z, let us first show the existence of
the sequence (tk,�)�≥1. By symmetry, one can assume k ≥ 1: in this case, for all
n ≥ k, there exists τ

(n)
k of modulus 1 such that f

(n)
k = τ

(n)
k v

(n)
k . Hence,∣∣D(n)

k

∣∣〈(n)
k τ

(n)
k v

(n)
k , e�

〉
almost surely converges when n goes to infinity. Now, by the estimate (9),
|D(n)

k |/√n converges almost surely to a strictly positive constant. One deduces
the existence of (tk,�)�≥1, by taking

ψ
(n)
k := 

(n)
k τ

(n)
k .

Let us now check the uniqueness, by supposing that two sequences (tk,�)�≥1 and
(t ′k,�)�≥1 can be constructed from the same virtual rotation (un)n≥1. In this case,

there exist, for all n ≥ 1, two unit eigenvectors w
(n)
k and w

(n)′
k corresponding to the

same eigenvalue, and such that for all � ≥ 1,

(10)
√

n
〈
w

(n)
k , e�

〉 −→
n→∞ tk,�

and
√

n
〈
w

(n)′
k , e�

〉 −→
n→∞ t ′k,�.

Since the eigenvalues are almost surely simple, for all n ≥ 1, there exists χ
(n)
k ∈ U

such that w
(n)′
k = χ

(n)
k w

(n)
k , which implies

(11) χ
(n)
k

√
n
〈
w

(n)
k , e�

〉 −→
n→∞ t ′k,�.

By comparing (10) and (11), one deduces that t ′k,� = χktk,�, where χk ∈ U denotes

the limit of any converging subsequence of (χ
(n)
k )n≥1.

Moreover, let us choose the random vectors (w
(n)
k )k∈Z,n≥1 and the random vari-

ables (tk,�)k∈Z,�≥1 as measurable functions of (un)n≥1, in such a way that (10)
is satisfied almost surely. Let (ψk)k∈Z be i.i.d. random variables, independent of
(un)n≥1. For all n ≥ 1, the invariance by conjugation of the Haar measure on
U(n) implies that the family of eigenvectors (ψkw

(n)
k )1≤k≤n of un forms a Haar-

distributed unitary matrix in U(n). One deduces that if L is a finite set of strictly
positive integers, and if K is a finite set of integers, then

√
n
(〈
ψkw

(n)
k , e�

〉)
k∈K,�∈L

converges in law to a family of i.i.d. standard complex Gaussian variables. Since
this family of variables also converges almost surely, one deduces that the limiting
variables (ψktk,�)k∈K,�∈L are i.i.d. standard complex and Gaussian. Since the finite
sets K and L can be taken arbitrarily, we are done. �

From Theorem 1.2, one deduces immediately the following.
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COROLLARY 6.1. The limiting coordinates gk,� introduced in Corollary 5.4
are almost surely different from zero.

PROOF. We know that for a suitable normalization of tk,�,

gk,� = lim
n→∞

∣∣D(n)
k

∣∣〈(n)
k f

(n)
k , e�

〉
,

tk,� = lim
n→∞

√
n
〈


(n)
k f

(n)
k , e�

〉
,

and by (9), √
Dk = lim

n→∞
∣∣D(n)

k

∣∣/√n.

Combining these limits gives

(12) gk,� = √
Dktk,�,

which is almost surely nonzero, since tk,� is a standard complex Gaussian variable
up to multiplication by an independent uniform random variable on the unit circle.

�

The eigenspaces of un, generated by the vectors f
(n)
k , can also be considered as

elements of the projective space Pn−1(C). Moreover, one can define the infinite-
dimensional projective space P∞(C), as the space of nonzero infinite sequences of
complex numbers, quotiented by scalar multiplication. The convergence of renor-
malized eigenvectors proven above can be viewed as a convergence of the corre-
sponding points on the projective spaces.

There exists a uniform measure on all these projective spaces, obtained by tak-
ing the equivalence class of a sequence of i.i.d. standard complex Gaussian vari-
ables. For n ≥ 1 finite, the uniform measure on Pn(C) can also be obtained from
a uniform point on the sphere in Cn+1. For m < n ∈ N ∪ {∞}, there exists a nat-
ural projection �n,m from Pn(C) to Pm(C), obtained by taking only the m + 1
first coordinates of the sequences, and this projection is well defined when these
coordinates are not all vanishing: in particular, almost surely under the uniform
measure on Pn(C). Note that the image of this measure by �n,m is the uniform
measure on Pm(C). Moreover, we can define the notion of weak convergence on
the projective spaces as follows. Let (xn)n≥1 be a sequence such that xn ∈ Pn(C)

for all n ≥ 1 and let x∞ ∈ P∞(C). We say that (xn)n≥1 weakly converges to x∞ if
and only if the following holds: for all m ≥ 1 such that the m + 1 first coordinates
of x∞ are not all vanishing, the projection �n,m(xn) ∈ Pm(C) is well defined for n

large enough and tends to �∞,m(x∞) when n goes to infinity. From Theorem 1.2,
we can easily deduce the following.

THEOREM 6.2. Let (un)n≥1 be a virtual rotation, following the Haar measure.
For k ∈ Z and n ≥ 1, let x

(n)
k ∈ Pn−1(C) be the eigenspace corresponding to the
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kth smallest nonnegative eigenangle of un for k ≥ 1, and the (1 − k)th largest
strictly negative eigenangle of un for k ≤ 0 (this eigenspace is almost surely one-
dimensional). Then there almost surely exists some random points (x

(∞)
k )k∈Z in

P∞(C) such that for all k ∈ Z, x
(n)
k weakly converges to x

(∞)
k when n goes to

infinity. The points (x
(∞)
k )k∈Z are represented by the sequences (tk,�)�≥1, k ∈ Z

given above: they are independent and uniform on P∞(C).

APPENDIX A: A PRIORI ESTIMATES FOR UNITARY MATRICES

Let us fix ε > 0. The goal of this section is the proof that the event E := E0 ∩
E1 ∩ E2 ∩ E3 holds almost surely under the Haar measure on the space of virtual
isometries, for

E0 = {
θ

(1)
0 �= 0

}∩ {∀n ≥ 1, νn �= 0} ∩ {∀n ≥ 1,1 ≤ k ≤ n,μ
(n)
k �= 0

}
,

E1 = {∃n0 ≥ 1,∀n ≥ n0, |νn| ≤ n− 1
2 +ε},

E2 = {∃n0 ≥ 1,∀n ≥ n0,1 ≤ k ≤ n,
∣∣μ(n)

k

∣∣ ≤ n− 1
2 +ε},

E3 = {∃n0 ≥ 1,∀n ≥ n0, k ≥ 1, n− 5
3 −ε ≤ θ

(n)
k+1 − θ

(n)
k ≤ n−1+ε}.

REMARK A.1. In [3], an analogous event was defined: in the present paper,
we choose the exponents more carefully to sharpen our results.

We begin by showing that for any fixed basis of Cn, the coefficients of a uniform

random vector on the unit sphere are almost surely O(n− 1
2 +ε) for any ε > 0.

LEMMA A.2. Suppose v1, . . . , vn ∈ Cn is an orthonormal basis and x ∈ Cn,
‖x‖ = 1 is chosen uniformly from the unit sphere. Then if we write x = x1v1 +
· · · + xnvn, we have bound

P
(|xj |2 > δ

) = O
(
exp(−δn/2)

)
,

for all δ > 0 and j = 1, . . . , n.

REMARK A.3. We will prove this statement for deterministic vectors v1, . . . ,

vn ∈ Cn. However, by conditioning, one deduces that the result remains true if the
vectors v1, . . . , vn are random, as soon as they are independent of x.

PROOF. The random variable |xj |2 is Beta distributed with parameters 1 and
n − 1, and then the probability that it is larger than δ is

(n − 1)

∫ 1

δ∧1
(1 − x)n−2 dx = (1 − δ)n−1+ ≤ e−δ(n−1),



2446 K. MAPLES, J. NAJNUDEL AND A. NIKEGHBALI

which shows the result for all n ≥ 2. For n = 1, the probability is 0 for δ ≥ 1 and
1 for δ ∈ (0,1), and then smaller than 2e−δ/2. �

From this estimate, we deduce the following bound on the coordinates of the
eigenvectors f

(n)
k .

LEMMA A.4. Let ε > 0. Then, almost surely, we have

sup
1≤j,�≤n

∣∣〈f (n)
j , e�

〉∣∣2 = O
(
n−1+ε)

and

sup
1≤j,�≤n

E
[∣∣〈f (n)

j , e�

〉∣∣2|A] =O
(
n−1+ε),

where the implied constant may depend on ε and (um)m≥1.

PROOF. Consider the vector f
(n)
j for each fixed j and n. By the invariance by

conjugation of the Haar measure on U(n), this eigenvector is, up to multiplication
by a complex number of modulus 1, a uniform vector on the unit sphere of Cn.
More precisely, if ξ ∈ C is uniform on the unit circle, and independent of f

(n)
j ,

then ξf
(n)
j is uniform on the unit sphere. One deduces that for all n, j , �,

P
(∣∣〈f (n)

j , e�

〉∣∣2 > n−1+ε) =O
(
exp

(−nε/2
))

.

Using the Borel–Cantelli lemma gives the first result. Moreover,

E
[∣∣〈f (n)

j , e�

〉∣∣8/ε] =
∫ ∞

0
P
[∣∣〈f (n)

j , e�

〉∣∣2 ≥ δε/4]dδ

�
∫ ∞

0
e−nδε/4/2 dδ

=
∫ ∞

0
e−zε/4/2 d

(
z/n4/ε) =O

(
n−4/ε).

We deduce

P
(
E
[∣∣〈f (n)

j , e�

〉∣∣8/ε|A] ≥ n4− 4
ε
) ≤ n

4
ε
−4E

[
E
[∣∣〈f (n)

j , e�

〉∣∣8/ε|A]]
= n

4
ε
−4E

[∣∣〈f (n)
j , e�

〉∣∣8/ε] =O
(
n−4).

By the Borel–Cantelli lemma, for all but finitely many n ≥ 1, 1 ≤ j, � ≤ n,

E
[∣∣〈f (n)

j , e�

〉∣∣8/ε|A] ≤ n4− 4
ε .
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By the Hölder inequality applied to the conditional expectation, for ε sufficiently
small,

E
[∣∣〈f (n)

j , e�

〉∣∣2|A] ≤ (
E
[∣∣〈f (n)

j , e�

〉∣∣8/ε|A])ε/4 ≤ n−1+ε. �

Another consequence of Lemma A.2 is the following.

PROPOSITION A.5. The events E0, E1, E2 all hold almost surely.

PROOF. We apply Lemma A.2 to the decomposition

xn+1 =
n∑

j=1

μ
(n)
j f

(n)
j + νnen+1,

which gives

P
(∣∣μ(n)

k

∣∣2 > n−1+ε) = O
(
exp

(−nε/2
))

so, in particular, ∑
n≥1

∑
1≤k≤n

P
(∣∣μ(n)

k

∣∣2 > n−1+ε) = O(1).

Therefore, by the Borel–Cantelli lemma, almost surely only a finite number of

the events {|μ(n)
k |2 > n−1+ε} hold simultaneously. A similar argument controls the

coefficients νn. �

Before we can control E3, we require some estimates on the eigenvalues of a
Haar unitary random matrix. Recall that if un is distributed according to the Haar
measure, then one can define, for 1 ≤ p ≤ n, the p-point correlation function ρ

(n)
p

of the eigenangles, as follows: for any bounded, measurable function φ from Rp

to R,

E

[ ∑
1≤j1 �=···�=jp≤n

φ
(
θ

(n)
j1

, . . . , θ
(n)
jp

)]

=
∫
[0,2π)p

ρ(n)
p (t1, . . . , tp)φ(t1, . . . , tp) dt1 · · · dtp.

Moreover, if the kernel K is defined by

K(t) := sin(nt/2)

2π sin(t/2)

then the p-point correlation function can be given by

ρ(n)
p (t1, . . . , tn) = det

(
K(tj − tk)

)p
j,k=1.

Let us first show that the gaps between eigenvalues cannot be asymptotically
much larger than average.
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LEMMA A.6. Let I ⊆ [0,2π) be Lebesgue measurable. Then

P(all of the eigenvalues of un are in I ) ≤ exp
(
−|I c|

2π
n

)
.

PROOF. We recall the Andreiev–Heine identity, which says that

P(all of the eigenvalues of un are in I ) = detMI,

where MI is an n × n matrix with entries

MI
j,k =

∫
I

exp
(
i(j − k)t

) dt

2π

for j , k between 1 and n. Note that the matrix (exp(i(j − k)t))nj,k=1 is hermitian
and positive, MI is also; likewise MIc

. Moreover, by computing the entries of
MI + MIc

, one checks that this sum is the identity matrix: hence, MI , MIc
have

the same eigenvectors and, if we denote by (τj )1≤j≤n the eigenvalues of MIc
, then

(1 − τj )1≤j≤n are the eigenvalues of MI . The eigenvalues of each matrix must lie
in the interval [0,1], as otherwise one of the eigenvalues of the other matrix would
be negative. Now,

detMI =
n∏

j=1

(1 − τj ) ≤ exp

(
−

n∑
j=1

τj

)
= exp

(−TrMIc) = exp
(
−|I c|

2π
n

)
as was to be shown. �

Note that the previous lemma applies to all measurable subsets, although we
will only need to apply it to intervals.

Next, we control the gaps between eigenvalues from below.

LEMMA A.7. Suppose t1, . . . , tp ∈ I lie in an interval of length |I | = δ ≤ 1/n.
Then we have the estimate

ρ(n)
p (t1, . . . , tp) =Op

(
δ2p−2n3p−2).

PROOF. We have

ρ(n)
p (t1, . . . , tp) = det

(
K(ti − tj )

)p
i,j=1.

The Taylor series for the sine function shows that for |t | ≤ 1/n,

K(t) = n

2π

(
1 − 1

24

(
n2 − 1

)
t2 +O

(
n4t4)).

Thus, we have

ρ(n)
p (t1, . . . , tp) = np

(2π)p
det

(
1 − 1

24

(
n2 − 1

)
(ti − tj )

2 +O
(
n4(ti − tj )

4))p

i,j=1
.
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Let A denote the p × p matrix in the last display, let 1 denote the column vector
of all ones and let wj denote the column vector whose ith entry is

(wj )i = 1 − Aij = 1

24

(
n2 − 1

)
(ti − tj )

2 +O
(
n4(ti − tj )

4).
Then by multilinearity and the inclusion-exclusion principle,

detA = ∑
σ⊂[p]

(−1)|σ | det
(
v1 · · · vp

)
where vj =

{
wj , j ∈ σ,

1, otherwise.

Clearly, each term is zero if more than one of the columns is equal to 1, so we get

detA = (−1)p−1
p∑

j=1

detMj + (−1)p detM,

where M is the matrix with columns w1, . . . ,wp and Mj is M with the j th column
replaced with 1. Then in the expansion of each determinant we can bound each
term by Op((n2δ2)p−1), and the conclusion follows. �

PROPOSITION A.8. The event E3 holds almost surely.

PROOF. Fix n ≥ 1. The probability that two adjacent eigenvalues of un differ
by at least 2δ is bounded above by the probability that one of the parts of the
partition

(0, δ) ∪ (δ,2δ) ∪ · · · ∪ (⌊
2πδ−1⌋δ, ⌊2πδ−1 + 1

⌋
δ
)

contains no eigenvalue. This, by Lemma A.6, is bounded by⌊
2πδ−1 + 1

⌋
exp(−δn/2π).

Now we let δ = n−1+ε/2 and apply the Borel–Cantelli lemma to show that at most
a finite number of the un have gaps larger than n−1+ε .

Next, we see by Lemma A.7 that the probability that two adjacent eigenvalues
of un differ by at most δ ≤ 1/n is bounded by∫∫

|t1−t2|<δ
ρ

(n)
2 (t1, t2) dt1 dt2 =O

(
n4δ3)

which, when we specialize δ = n− 5
3 −ε , is O(n−1−ε); summing over n and applying

the Borel–Cantelli lemma shows that these events occur at must a finite number of
times as well. �
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APPENDIX B: PROOF OF PROPOSITION 2.1

For all r ≥ 1, the r-point correlation function of the point process En given in
Proposition 2.1 is uniformly bounded by 1 and converges pointwise to the correla-
tion function of the determinantal sine-kernel process. The convergence is a clas-
sical consequence of the determinantal structure of the eigenvalues of the CUE:
see Mehta [10], Section 11.1, for example. The uniform bound is due to the fact
that the determinant involved in the correlation functions of the CUE can be writ-
ten as a Gram determinant, necessarily smaller than or equal to the product of its
diagonal entries: for all θ1, θ2 ∈ [0,2π ],

sin(n(θ2 − θ1)/2)

sin((θ2 − θ1)/2)
=

〈
n−1∑
p=0

eiθ1(p−(n−1)/2)vp,

n−1∑
p=0

eiθ2(p−(n−1)/2)vp

〉
,

where (vp)0≤p≤n−1 are orthonormal vectors in a complex Hilbert space.
Proposition 2.1 is then a consequence of the following result.

PROPOSITION B.1. Let En denote a point process such that for all r ≥ 1, its
r-point correlation function is well defined, bounded by 1, and converges pointwise
to a function ρ

(∞)
r from Rr to R+. Then there exists a point process E∞ whose r-

point correlation function is ρ
(∞)
r for all r ≥ 1, and the point process En converges

to E∞ in the following sense: for all Borel measurable bounded functions f with
compact support from R to R,∑

x∈En

f (x) −→
n→∞

∑
x∈E∞

f (x),

where the convergence above holds in law.

PROOF. We first note the following identity: for any integer p ≥ 1,( ∑
x∈En

f (x)

)p

=
up∑

m=1

∑
x1 �=x2 �=···�=xrp,m∈En

Gf,p,m(x1, . . . , xrp,m),

where up depends only on p, rp,m and m ≤ up , and Gf,p,m being a measurable,
bounded function with compact support from Rrp,m to R, and depending only on
f , p and m. For instance,( ∑

x∈En

f (x)

)3
= ∑

x1∈En

(
f (x1)

)3 + 3
∑

x1 �=x2∈En

(
f (x1)

)2
f (x2)

+ ∑
x1 �=x2 �=x3∈En

f (x1)f (x2)f (x3),
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with

u3 = 3, r3,1 = 1, r3,2 = 2, r3,3 = 3,

Gf,3,1(x1) = (
f (x1)

)3
,

Gf,3,2(x1, x2) = 3
(
f (x1)

)2
f (x2),

Gf,3,3(x1, x2, x3) = f (x1)f (x2)f (x3).

We can hence write

E

[( ∑
x∈En

f (x)

)p]

=
up∑

m=1

∫
Rrp,m

Gf,p,m(y1, . . . , yrp,m)ρ(n)
rp,m

(y1, . . . , yrp,m) dy1 · · · dyrp,m,

where ρ
(n)
r denotes the r-point correlation function of En, provided that the above

expression converges absolutely, which we now check. Since Gf,p,m is measur-
able, bounded with compact support, we can find Af,p,m > 0 such that∣∣Gf,p,m(y1, . . . , yrp,m)

∣∣ ≤ Af,p,m1|y1|,...,|yrp,m |≤Af,p,m

for y1, . . . , yrp,m ∈ R. Moreover, we have∣∣ρ(n)
rp,m

(y1, . . . , yrp,m)
∣∣ ≤ 1

by assumption. Consequently, the expression we are dealing with can be bounded
from above by

up∑
m=1

∫
[−Af,p,m,Af,p,m]rp,m

Af,p,m ≤
up∑

m=1

(2Af,p,m)rp,m+1,

which is finite. Moreover, our upper bound is independent of n. Now, we also have
by assumption:

ρ(n)
rp,m

(y1, . . . , yrp,m) −→
n→∞ ρ(∞)

rp,m
(y1, . . . , yrp,m),

and we can apply the dominated convergence theorem to obtain, for all p ≥ 0,

E
[(

X
(n)
f

)p] −→
n→∞ M

(∞)
f,p ,

where

X
(n)
f = ∑

x∈En

f (x),

M
(∞)
f,p =

up∑
m=1

∫
Rrp,m

Gf,p,m(y1, . . . , yrp,m)ρ(∞)
rp,m

(y1, . . . , yrp,m) dy1 · · · dyrp,m
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if p ≥ 1, and M
(∞)
f,0 = 1. We also note that

E
[∣∣X(n)

f

∣∣p] ≤ E
[(

X
(n)
|f |

)p] ≤ E

[(∑
x∈N

∣∣f (x)
∣∣)p]

,

where N is a Poisson point process defined on R with intensity 1 (the last inequal-
ity follows from the fact that the correlation functions of En are smaller or equal
than 1, and hence smaller or equal than the correlation functions of N ).

Now for every λ ∈ R, each term of the series∑
p≥0

(iλ)p

p! E
[(

X
(n)
f

)p]
is uniformly dominated in absolute value and independently of n, by the corre-
sponding term in the series∑

p≥0

|λ|p
p! E

[(∑
x∈N

∣∣f (x)
∣∣)p]

= E

[
exp

(
|λ| ∑

x∈N

∣∣f (x)
∣∣)].

If we choose Af > 0 in such a way that |f | ≤ Af and such that the support of f

is contained in [−Af ,Af ], we have

E

[
exp

(
|λ| ∑

x∈N

∣∣f (x)
∣∣)] ≤ E

[
exp

(|λ|Af Card
(
N ∩ [−Af ,Af ]))]

= E
[
e
|λ|Af Y2Af

]
,

Y2Af
standing for a Poisson random variable with parameter 2Af . The latter is

finite and we can thus apply the dominated convergence theorem to obtain

E
[
e
iλX

(n)
f
] −→

n→∞
∑
p≥0

(iλ)p

p! M
(∞)
f,p ,

the last series in display being absolutely convergent and bounded from above by∣∣∣∣1 − ∑
p≥0

(iλ)p

p! M
(∞)
f,p

∣∣∣∣ ≤ ∑
p≥1

|λ|p
p! M

(∞)
|f |,p ≤ ∑

p≥1

|λ|p
p! sup

n≥1
E
[∣∣X(n)

f

∣∣p]

≤ ∑
p≥1

|λ|p
p! E

[(∑
x∈N

∣∣f (x)
∣∣)p]

= E

[
exp

(
|λ| ∑

x∈N

∣∣f (x)
∣∣)]− 1

≤ E
[
e
|λ|Af Y2Af

]− 1 = e2Af (e
|λ|Af −1) − 1.
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Consider now a finite number f1, f2, . . . , fq of measurable and bounded functions
with compact support, let A > 0 be such that |fj | ≤ A1[−A,A] for j ∈ {1, . . . , q},
and take λ,λ1, . . . , λq ∈ R. It follows from the definition of X

(n)
f that

q∑
j=1

λjX
(n)
fj

= X(n)
g ,

where

g :=
q∑

j=1

λjfj ,

which implies that

E
[
e
iλ

∑q
j=1 λjX

(n)
fj
] −→

n→∞
∑
p≥0

(iλ)p

p! M(∞)
g,p .

Now since g is bounded by A
∑q

j=1 |λj | and since the support of g is included in
[−A,A], we have∣∣∣∣1 − ∑

p≥0

(iλ)p

p! M(∞)
g,p

∣∣∣∣ ≤ e
2A(1+∑q

j=1 |λj |)(e|λ|A(1+∑q
j=1 |λj |)−1) − 1.

If ν1, . . . , νq are real numbers not all equal to zero, we set

λ =
q∑

j=1

|νj |, λj = νj/λ,

which implies
∑q

j=1 |λj | = 1, and

E
[
e
i
∑q

j=1 νjX
(n)
fj
] −→

n→∞ Q(f1, . . . , fq, ν1, . . . , νq),

where ∣∣Q(f1, . . . , fq, ν1, . . . , νq) − 1
∣∣ ≤ e4A(e2|λ|A−1) − 1.

For fixed f1, . . . , fq , the quantity Q(f1, . . . , fq, ν1, . . . , νq) hence tends to 1 when
(ν1, . . . , νq) tends to zero. It follows from Lévy’s convergence theorem that the

vector (X
(n)
f1

, . . . ,X
(n)
fq

) converges in law, when n goes to infinity, to a random
variable with values in Rq and with characteristic function given by

(ν1, . . . , νq) �→ Q(f1, . . . , fq, ν1, . . . , νq).

Consequently, we have shown that there exists a family of random variables
(X

(∞)
f )f ∈A indexed by the set A of bounded and measurable functions with com-

pact support from R to R, satisfying(
X

(n)
f

)
f ∈A −→

n→∞
(
X

(∞)
f

)
f ∈A,
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in the sense of finite dimensional distributions. Now for x ≥ 0, define

X(n)(x) = X
(n)
1[0,x], X(∞)(x) = X

(∞)
1[0,x],

and for x < 0,

X(n)(x) = −X
(n)
1(x,0)

, X(∞)(x) = −X
(∞)
1(x,0)

.

Note that for y ≥ x, X(n)(y) − X(n)(x) represents the number of points of En in
the interval (x, y]. Moreover, we saw that (X(n)(x))x∈Q converges in law (in the
sense of finite dimensional distributions) to (X(∞)(x))x∈Q. It follows from Sko-
rokhod’s representation theorem that there exist random variables (Y (n)(x))x∈Q
and (Y (∞)(x))x∈Q, with respectively the same distributions as (X(n)(x))x∈Q and
(X(∞)(x))x∈Q, such that almost surely, Y (n)(x) converges to Y (∞)(x) for all
x ∈ Q. By construction, (Y (n)(x))x∈Q is almost surely integer valued and increas-
ing as a function of x: the same thing holds for (Y (∞)(x))x∈Q. Moreover, by taking
the limits from the right, we can extend (Y (n)(x))x∈Q et (Y (∞)(x))x∈Q to càdlàg
functions defined on R. It is clear that (Y (n)(x))x∈R has then the same law as
(X(n)(x))x∈R, because (X(n)(x))x∈R is also càdlàg, with the same law when re-
stricted to Q. We can thus conclude that like for (X(n)(x))x∈R, (Y (n)(x))x∈R is
also the distribution function of some σ -finite measure Mn, with the same law as
the sum of the Dirac measures taken at the points of En. Almost surely, for x ∈ Q,
(Y (n)(x)) converges to (Y (∞)(x)): hence this convergence also holds at all conti-
nuity points of (Y (∞)(x)). Consequently, Mn converges weakly, in the sense of
convergence in law on compact subsets, to a limiting random measure M∞, with
distribution function Y (∞). On can thus write

Mn = ∑
k∈Z

δ
t
(n)
k

, M∞ = ∑
k∈Z

δ
t
(∞)
k

,

where {t (n)
k , k ∈ Z} is a set of points with the same distribution as En. The weak

convergence of Mn to M∞ implies that for r ≥ 0, F continuous with compact
support from Rr to R,∑

k1 �=k2 �=···�=kr

F
(
t
(n)
k1

, . . . , t
(n)
kr

) −→
n→∞

∑
k1 �=k2 �=···�=kr

F
(
t
(∞)
k1

, . . . , t
(∞)
kr

)
.

Indeed the left-hand side can be written as

ur∑
m=1

∫
Rsr,m

HF,r,m(y1, . . . , ysr,m) dMn(y1) · · · dMn(ysr,m),

where ur depends only on r , sr,m on r and on m and HF,r,m depends on F, r,m,
and the right-hand side can be written in similar way with Mn replaced with M∞.
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For instance,∑
k1 �=k2 �=k3

F
(
t
(n)
k1

, . . . , t
(n)
k3

)
=

∫
R3

F(y1, y2, y3) dMn(y1) dMn(y2) dMn(y3)

−
∫
R2

[
F(y1, y2, y2) + F(y2, y1, y2) + F(y1, y2, y2)

]
dMn(y1) dMn(y2)

+ 2
∫
R

F(y1, y1, y1) dMn(y1).

If we assume that F is positive, it follows from Fatou’s lemma that

E

[ ∑
k1 �=k2 �=···�=kr

F
(
t
(∞)
k1

, . . . , t
(∞)
kr

)]

≤ lim inf
n→∞ E

[ ∑
k1 �=k2 �=···�=kr

F
(
t
(n)
k1

, . . . , t
(n)
kr

)]

= lim inf
n→∞

∫
Rr

F (y1, . . . , yr)ρ
(n)
r (y1, . . . , yr) dy1 · · · dyr

=
∫
Rr

F (y1, . . . , yr)ρ
(∞)
r (y1, . . . , yr) dy1 · · · dyr .

Reproducing the same computations as in the beginning of our proof yields, for f

continuous and positive with compact support, and p a positive integer:

N
(∞)
f,p := E

[(∑
k∈Z

f
(
t
(∞)
k

))p]
≤ M

(∞)
f,p .

The bounds that we previously obtained for M
(∞)
f,p , and which obviously apply to

N
(∞)
f,p as well, allow us to deduce that for all λ ∈ R,

E

[
exp

(
iλ

∑
k∈Z

f
(
t
(∞)
k

))] = ∑
p≥0

(iλ)p

p! N
(∞)
f,p .

Moreover, an application of the dominated convergence theorem yields

E

[
exp

(
iλ

∑
k∈Z

f
(
t
(∞)
k

))] = lim
n→∞E

[
exp

(
iλ

∑
k∈Z

f
(
t
(n)
k

))]

= lim
n→∞E

[
e
iλX

(n)
f
] = ∑

p≥0

(iλ)p

p! M
(∞)
f,p .

We can hence conclude that the coefficients of both series in λ are equal, that is,
M

(∞)
f,p = N

(∞)
f,p . Going back to the expression of the expansion of the moment of
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order p that we gave earlier in the proof, we see that the equality can hold only if

E

[ ∑
k1 �=k2 �=···�=kr

F
(
t
(∞)
k1

, . . . , t
(∞)
kr

)]

=
∫
Rr

F (y1, . . . , yr)ρ
(∞)
r (y1, . . . , yr) dy1 · · · dyr,

for all F , r such that r = rp,m, F = Gf,p,m, with 1 ≤ m ≤ up . Indeed the left-
hand side is always smaller or equal than the right-hand side, and if one of the
inequalities were a strict inequality, we would obtain by summing up all terms that
N

(∞)
f,p < M

(∞)
f,p . The only term for which rp,m = p gives

E

[ ∑
k1 �=k2 �=···�=kp

F
(
t
(∞)
k1

, . . . , t
(∞)
kp

)]

=
∫
Rp

F (y1, . . . , yp)ρ(∞)
p (y1, . . . , yp) dy1 · · · dyp,

where

F(y1, . . . , yp) = f (y1) · · ·f (yp).

This then extends to all functions F which are measurable, positive and continuous
with compact support: indeed there always exists an f which is continuous with
compact support on R such that F ≤ G, with

G(y1, . . . , yp) = f (y1) · · ·f (yp).

Since we have inequalities for both functions F and G − F and an equality for
their sum G, we in fact have an equality everywhere.

We see that with a monotone class argument the previous equality then extends
to functions F which are measurable, bounded and with compact support. This
shows the existence of a point process E∞ with the same correlation functions
as those given in the statement of the proposition, provided we do not exclude a
priori point processes with multiple points. More precisely, we take for E∞ the set
of points t

(∞)
k of the support of the measure M∞, taken with their multiplicities.

Going back to our earlier computations, we see that for functions f which are
measurable, bounded with compact support from R to R, and taking into account
multiplicities, we have

E

[( ∑
x∈E∞

f (x)

)p]
= M

(∞)
f,p

and

E

[
exp

(
iλ

∑
x∈E∞

f (x)

)]
= ∑

p≥0

(iλ)p

p! M
(∞)
f,p .
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Consequently,

E
[
e
iλX

(n)
f
] −→

n→∞ E

[
exp

(
iλ

∑
x∈E∞

f (x)

)]
,

which corresponds to the convergence in law stated in the proposition.
It only remains to show that E∞ does not have multiple points. Indeed, if E∞

is the set of points (t
(∞)
k )k∈Z, taken with multiplicities, then for any measurable

bounded function F with compact support from R2 in R,

E

( ∑
k1 �=k2

F
(
t
(∞)
k1

, t
(∞)
k2

)) =
∫
R2

F(y1, y2)ρ
(∞)
2 (y1, y2) dy1 dy2.

Taking F(y1, y2) = 1y1=y2 above yields

E
[
Card

{
(k1, k2) ∈ Z2, k1 �= k2, t

(∞)
k1

= t
(∞)
k2

}] = 0,

which shows that E∞ does almost surely not have multiple points. �
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