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ON THE ALMOST EIGENVECTORS OF RANDOM
REGULAR GRAPHS

BY ÁGNES BACKHAUSZ1,2,∗,† AND BALÁZS SZEGEDY1,2,∗

Alfréd Rényi Institute of Mathematics∗ and ELTE Eötvös Loránd University†

Let d ≥ 3 be fixed and G be a large random d-regular graph on n ver-
tices. We show that if n is large enough then the entry distribution of every
almost eigenvector of G (with entry sum 0 and normalized to have length

√
n)

is close to some Gaussian distribution N(0, σ ) in the weak topology where
0 ≤ σ ≤ 1. Our theorem holds even in the stronger sense when many entries
are looked at simultaneously in small random neighborhoods of the graph.
Furthermore, we also get the Gaussianity of the joint distribution of several
almost eigenvectors if the corresponding eigenvalues are close. Our proof
uses graph limits and information theory. Our results have consequences for
factor of i.i.d. processes on the infinite regular tree.

In particular, we obtain that if an invariant eigenvector process on the in-
finite d-regular tree is in the weak closure of factor of i.i.d. processes then it
has Gaussian distribution.

1. Introduction. Let d ≥ 3 and let G(n, d) denote the random d-regular
graph on n vertices (with nd even, chosen uniformly at random over all d-regular
graphs on the vertex set {1, . . . , n}; see, for example, the monograph [12]). Equiv-
alently, we can think of G(n, d) as a random model of symmetric 0 − 1 matrices
(with zeros in the diagonal) in which the row sums are conditioned to be d . It is ex-
pected that the spectral properties of G(n, d) are closely related to random matrix
theory; however, many questions in the area are still open. It is well known that the
spectral measure of G(n, d) converges to the so-called Kesten–McKay measure
in the weak topology as n goes to infinity. This gives an approximate semicircle
law if d is large. A famous result by J. Friedman solves Alon’s second eigenvalue
conjecture showing that G(n, d) is almost Ramanujan [25]. Much less is known
about the scaled eigenvalue spacing and about the structure of the eigenvectors.
Recent results in the area include [14, 38] on the second eigenvalue; [8, 9, 22, 23]
on eigenvalue spacing, local semicircle law and functional limit theorems; [2, 3, 7,
18, 29] on the delocalization of the eigenvectors.

In the present paper, we study approximate eigenvectors or shortly: almost
eigenvectors of G(n, d) that is, vectors that satisfy the eigenvector equation
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(A − λI)v = 0 with some small error. Almost eigenvectors are not necessar-
ily close to proper eigenvectors. They are much more general objects. For ex-
ample, any linear combination of eigenvectors with eigenvalues in the interval
[λ − ε,λ + ε] is an almost eigenvector with error depending on ε. In general, a
vector is an almost eigenvector if and only if its spectral measure is close to a
Dirac measure in the weak topology.

We show that despite of this generality, almost eigenvectors of G(n, d) have a
quite rigid structure if n is big. Our main result implies that every almost eigen-
vector (with entry sum 0 and normalized to have length

√
n) has an entry distri-

bution close to some Gaussian distribution N(0, σ ) in the weak topology where
0 ≤ σ ≤ 1. Note that if σ = 0, then the �2-weight of the vector is concentrated
on a small fraction of the vertices. We call such vectors localized. Our main result
holds even in a stronger sense where joint distributions are considered using the lo-
cal structure of the graph. In some sense, our result is best possible since there are
examples for both localized and delocalized almost eigenvectors (see Section 3).
Note that proper eigenvectors are conjectured to be delocalized.

The issue of eigenvector Gaussianity goes back to random matrix theory. It is
not hard to show that in the Gaussian Unitary Ensemble (GUE) random matrix
model every eigenvector has a near Gaussian entry distribution. It is much harder
to analyze the random model when the elements of the matrix are chosen from a
non-Gaussian distribution. Nevertheless, Gaussianity of the eigenvectors is proved
under various conditions for generalized Wigner matrices [16, 33, 41] and also for
various other models (see, e.g., [11] and [10, 37] for recent surveys). Note that
there is some ambiguity about the meaning of eigenvector Gaussianity in the lit-
erature. What we consider in this paper is usually called the empirical distribution
of an arbitrary eigenvector (or more generally, almost eigenvector). On the other
hand, eigenvector Gaussianity often refers to the distribution of given entries of
given eigenvectors (chosen according to the position of the corresponding eigen-
value in the ordered list of the spectrum). The exchangeability property of most
random matrix models creates a close connection between the two Gaussianity
notions. If the empirical distribution is standard normal, then the Gaussianity with
respect to the other also follows. However, we are not aware of any implications
in the other direction. Another advantage of the empiricial distribution is that it is
meaningful in the more general framework of almost eigenvectors.

Sparser models are harder to analyze [32]. Bourgade, Huang and Yau [15]
recently proved a version of eigenvector Gaussianity corresponding to the bulk
eigenvalues for the Erdős–Rényi graph model in which the average degree is a
positive power of the number of vertices. Our paper deals with the sparsest case,
where the matrix is the adjacency matrix of a random d-regular graph with some
fixed d . In this case, there is a stronger meaning of eigenvector Gaussianity. For
example, it is natural to ask about the Gaussianity of the joint distribution of the
entries at the two endpoints of a randomly chosen edge in the graph. More gener-
ally, one can look at the joint distribution of the entries in random balls of radius r .
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Our Gaussianity results for almost eigenvectors are established in this strong sense.
Furthermore, it makes sense to study the joint distribution of the entries of several
almost eigenvectors. More precisely, a k-tuple of almost eigenvectors can be inter-
preted as a function from the vertices to R

k . This function evaluated at a randomly
chosen vertex gives a probability distribution on R

k that we define as the joint
distribution of the entries. It is an interesting question whether such joint distri-
butions are Gaussian. We prove this if k is fixed, n is large and the eigenvalues
corresponding to the almost eigenvectors are close to each other. Moreover, we
also prove this result when the joint distribution of many eigenvectors is consid-
ered in random neighborhoods.

The proof of our main theorem is based on the so-called local-global graph lim-
its [13, 31]. However, to keep the paper self-contained, we use a slightly simpli-
fied framework (see Section 5) optimized for this particular problem. We relate the
properties of random regular graphs to random processes on the infinite d-regular
tree Td . Most of the work is done in this convenient limiting framework. An in-
variant process on Td is a joint distribution of random variables {Xv}v∈Td

labeled
by the vertices of Td such that it is invariant under the automorphism group of
Td . A special class of invariant processes, called typical processes, was introduced
in [4]. Roughly speaking, an invariant process is typical if it can be obtained as
the Benjamini–Schramm limit of colored random regular graphs. There is a corre-
spondence between the properties of typical processes on Td and the properties of
large random d-regular graphs.

Our main theorem is equivalent to the statement that if a typical process satis-
fies the eigenvector equation at every vertex of Td and has finite variance (at every
vertex), then the process is jointly Gaussian. Note that such Gaussian eigenvector
processes on Td are completely characterized and there is a unique one for each
possible eigenvalue. A key ingredient in our proof is a general entropy inequality
for typical processes. It implies that typical eigenvector processes obey another
inequality involving differential entropy. From here we complete the proof using
heat propagation on the space of typical eigenvector processes combined with De-
Brujin’s identity for Fisher information. Gaussianity will follow from the fact that
heat propagation converges to a Gaussian distribution.

A well-studied subclass of typical processes is the class of factor of i.i.d. pro-
cesses. These processes appeared first in ergodic theory but they are also relevant in
probability theory, combinatorics, statistical physics and in computer science. Not
every typical process is factor of i.i.d.; this follows from the results of Gamarnik
and Sudan [28]; see also Rahman and Virág [40]. Despite of recent progress in the
area [5, 6, 17, 19, 21, 27, 30, 31, 35, 36, 39], a satisfying understanding of factor
of i.i.d. processes is only available in the case d = 2 [26], which is basically equiv-
alent to the framework of classical ergodic theory of Z actions. Our results imply
that if an invariant process (with finite variance) is in the weak closure of factor of
i.i.d. processes and satisfies the eigenvector equation then the process is Gaussian.
This answers a question of B. Virág.



1680 Á. BACKHAUSZ AND B. SZEGEDY

Outline of the paper. In Section 2, we formulate the main results for finite ran-
dom d-regular graphs. Sections 3 and 4 contain general statements about invariant
processes, eigenvector processes, entropy and almost eigenvectors. Section 5 pro-
vides the translation of our main result to the infinite setting using typical eigenvec-
tor processes on the infinite d-regular tree. In Section 6, we prove a necessary con-
dition for a process to be typical in the form of an entropy inequality. In Section 7,
we reduce the limiting form of the main theorem to a special family of eigenvector
processes called smooth eigenvector processes. Section 8 gives a differential en-
tropy inequality for smooth eigenvector processes. In Section 9, we calculate the
eigenvalues of special submatrices of the covariance matrices of eigenvector pro-
cesses corresponding to balls around vertices and edges on the tree. In Section 10,
we use the results from Section 9 to prove that among smooth typical eigenvector
processes the Gaussian minimizes the differential entropy formula from Section 8.
On the other hand, in Section 11, we show that the Gaussian eigenvector process
maximizes the same formula. Moreover, we complete the proof of the main result
in Section 11.

2. The main theorem. In this section, we state the main theorem first in a
simpler but weaker form and later in the strong form. An ε-almost eigenvector of
a matrix A ∈ R

n×n with eigenvalue λ is a vector v ∈ R
n such that ‖v‖2 = 1 and

‖Av − λv‖2 ≤ ε. If λ is not specified, then an ε-almost eigenvector is a vector
v with ‖v‖2 = 1 such that infλ∈R ‖Av − λv‖2 ≤ ε. To every vector v in R

n, we
associate a probability distribution distr(v) on R obtained by choosing a uniform
random entry from v, that is, distr(v) = 1

n

∑n
j=1 δvj

. If ‖v‖2 = 1, then the second
moment of distr(v) is 1/n. Thus, to avoid degeneracy in this case, it is more natural
to consider distr(

√
nv) whose second moment is 1. For a vector v ∈ R

n, let us
define its distance to Gaussianity as

D(v) := inf
0≤σ≤1

dLP

(
distr

(√
n

v

‖v‖2

)
,N

(
0, σ 2))

,

where dLP denotes the Lévy–Prokhorov distance and N (0, σ 2) the normal distri-
bution with mean 0 and variance σ 2. Our theorem in a weak form says the follow-
ing.

THEOREM 2.1 (Weak form of main theorem). For every ε > 0, there are con-
stants N,δ such that if G is a random d-regular graph on n ≥ N vertices, then
with probability at least 1 − ε the following holds. We have that every δ-almost
eigenvector v of G (with entry sum 0) has the property that D(v) ≤ ε.

A special case of Theorem 2.1 for proper eigenvectors can be stated in terms of
stochastic convergence. For a d-regular graph G, we measure the Gaussian nature
of its eigenvectors through the quantity

N(G) := max
{
D(v) : v nonconstant eigenvector of G

}
.
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COROLLARY 2.1. Let d ≥ 3 be fixed. Then N(G(n, d)) converges to 0 in
probability as n → ∞.

Note that if distr(
√

nv) is close to the degenerate distribution N(0,0) then most
of the �2 weight of v is concentrated on o(n) points. We call such vectors localized.
In general, if σ is smaller than 1, then some of the �2 weight is concentrated on
o(n) vertices and the rest is Gaussian.

We can use Theorem 2.1 to determine the joint entry distributions of several
almost eigenvectors if the corresponding eigenvalues are sufficiently close to each
other. To formulate the statement, we need the following extension of the empirical
entry distribution. Let Q = (v(1), v(2), . . . , v(k)) be a k × n matrix. Then distr(Q)

denotes the empirical distribution of a random column of Q. That is, distr(Q) =
1
n

∑k
j=1 δ

(v
(1)
j ,v

(2)
j ,...,v

(k)
j )

.

COROLLARY 2.2. For every ε > 0 and k ∈ N, there exists constants N,δ such
that if G is a random d-regular graph on n ≥ N vertices, then with probabil-
ity at least 1 − ε the following holds. For every k-tuple of δ-almost eigenvectors
Q = (v(1), v(2), . . . , v(k)) of G (with entry sum 0) corresponding to eigenvalues
λ1, . . . , λk with the property |λi − λj | < δ there exists a k-dimensional Gaussian
distribution N such that distr(

√
nQ,G) is at most ε-far (in the weak topology)

from N .

To see this, observe that that any fixed linear combination of the the vectors
(v(1), v(2), . . . , v(k)) is either small or can be scaled to an almost eigenvector which
has near Gaussian entry distribution by Theorem 2.1. This implies by a standard
limit argument that the joint entry distribution is also Gaussian.

To formulate our main theorem in the strong form, we need some more no-
tation. Recall that Td denotes the infinite d-regular tree and o is a distinguished
vertex called root in Td . We will denote the vertex set V (Td) of Td by Vd . For
two vertices in a graph we write v ∼ w if they are neighbors of each other. Let [n]
denote the set {1,2, . . . , n} and let G be a d-regular graph on the vertex set [n].
We denote by Hom∗(Td,G) the set of all covering maps from Td to G. In other
words, Hom∗(Td,G) is the set of maps φ : Vd → V (G) such that for every vertex
v ∈ Vd the neighbors of v are mapped bijectively to the neighbors of φ(v). The
set Hom∗(Td,G) has a natural probability measure. We first choose the image of o

uniformly at random in V (G). Then we recursively extend the map φ to larger and
larger neighborhoods of o in a random (conditionally independent) way preserving
the local bijectivity. It is easy to see that the probability distribution of a random
element of Hom∗(Td,G) chosen this way is independent from the choice of o.

Let X be a topological space and f : [n] → X be a function. We define the
probability distribution distr∗(f,G) on XVd as the distribution of the XVd -valued
random variable f ◦ φ where φ is a random covering in Hom∗(Td,G) (chosen
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according to the natural probability distribution defined above). In other words,
distr∗(f,G) is a random lift of f to Td using a random covering of G with Td .
By regarding vectors v ∈ R

n as functions form [n] to R, it makes sense to use
distr∗(v,G).

To formulate our main theorem, we need the concepts of eigenvector processes
and Gaussian waves on Td (see [24]). An eigenvector process with eigenvalue λ is
the joint distribution of a collection of jointly-defined random variables {Xv}v∈Vd

of real valued random variables with variance 1 such that it is Aut(Td) invariant
and satisfies the eigenvector equation

(2.1)
∑
v∼o

Xv = λXo

with probability 1. Here, Aut(Td) invariance means that the natural action induced
by Aut(Td) on R

Vd fixes the joint distribution of {Xv}v∈Vd
. Note that the group

invariance implies that the eigenvector equation is satisfied at every vertex on Td .
We call an eigenvector process trivial if E(Xo) �= 0. Notice that the triviality of an
eigenvector process implies that λ = d . This follows by taking expectation in (2.1)
and using the invariance of the process. Furthermore, trivial eigenvector processes
are constants in the sense that Xv = Xw holds with probability one for every pair
of vertices v, w in Vd . Note that although the variance condition excludes the
degenerate case, for example, the process which takes constant 0 with probability
1/2 and constant 2 with probability 1/2 provides a trivial eigenvector process.

A Gaussian wave is an eigenvector process with all finite marginal distributions
being Gaussian. It is proved in [24] that for every −d ≤ λ ≤ d there is a unique
Gaussian wave �λ with eigenvalue λ.

Let us choose a fix metrization of the weak topology on R
Vd . Our main theorem

on random d-regular graphs is the following.

THEOREM 2.2 (Main theorem). For every ε > 0 there exist constants N , δ

such that if G is a random d-regular graph on n ≥ N vertices then with probability
at least 1 − ε the following holds. For every δ-almost eigenvector v of G (with
entry sum 0) has the property that for some 0 ≤ σ ≤ 1 and |λ| ≤ 2

√
d − 1, the

distribution distr∗(
√

nv,G) is at most ε-far (in the weak topology) from the scaled
Gaussian wave σ · �λ.

REMARK 1. Similarly to Corollary 2.2, Theorem 2.2 can be extended to the
joint distribution of several almost eigenvectors if the corresponding eigenvalues
are sufficiently close to each other.

REMARK 2. Random d-regular graphs are almost Ramanujan according to a
celebrated result of Friedman [25]. One may ask whether the almost Ramanujan
property is enough to guarantee the Gaussianity of eigenvectors (almost eigen-
vectors). This, however, is false. A sequence of counterexamples is given by the
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famous Lubotzky–Phillip–Sarnak result [34]. This can be seen from the fact that
these graphs form a covering tower, and thus eigenvectors lifted from the lower
levels of the tower are clearly not Gaussian.

3. Preliminaries.

Invariant processes. For a separable metric space Y , we denote by Id(Y ) the
set of Borel probability measures on YVd that are invariant under the automor-
phisms of the tree. More precisely, for every τ ∈ Aut(Td) (not necessarily fixing
the root), the probability measure on YVd is required to be invariant under the nat-
ural YVd → YVd map induced by τ . Note that eigenvector processes are in Id(R).
If μ ∈ Id(Y ) and F ⊆ Vd , then we denote by μF the marginal distribution of μ

at F . We can equivalently think of μ ∈ Id(Y ) as the distribution of the collection
of jointly-defined Y -valued random variables {Xv}v∈Vd

that is invariant under the
automorphism group of Td . In this language, μF is the same as the distribution of
the collection of jointly-defined random variables {Xv}v∈F . If both F and Y are
finite, then μF is a probability distribution on the finite set YF . In this case, we
denote the entropy of μF by H(F ) [throughout the paper, the entropy of a finitely
supported probability distribution ν is H(ν) = −∑

y logν({y})ν({y}), where the
sum is over the support of ν, while the entropy of a finite-valued variable is the
entropy of its distribution]. By invariance of μ, the quantity H(F ) depends only
on the isomorphism class of F .

We will consider convergence in Id(Y ) with respect to the weak topology. Since
the weak topology is metrizable, we can always choose a fixed metrization of it in
advance.

Almost eigenvectors. Recall the definition of almost eigenvectors from the be-
ginning of Section 2.

LEMMA 3.1. Let A be the adjacency matrix of a d-regular graph on n ver-
tices. Let λ2(A) denote the second largest (in absolute value) eigenvalue of A. Let
v be an ε-almost eigenvector with eigenvalue λ such that the entry sum of v is 0.
Then |λ| ≤ λ2(A) + ε.

PROOF. Since v has 0 entry sum, we can write v = ∑
aivi , where each vi is

a nonconstant eigenvector of A with eigenvalue λi . It follows that (A − λI)v =∑
ai(λi − λ)vi , where |λi | ≤ λ2(A). Thus, ε2 ≥ ‖(A − λI)v‖2

2 = ∑
a2
i (λi − λ)2.

Suppose that |λ| ≥ λ2(A) (otherwise the statement is trivial). Then |λi − λ| ≥
|λ| − λ2(A). Therefore ε2 ≥ (

∑
a2
i )(|λ| − λ2(A))2, which completes the proof by

using that
∑

a2
i = ‖v‖2

2 = 1. �

As we mentioned in the Introduction, we will give examples for both localized
and delocalized almost eigenvectors on essentially large girth d-regular graphs.
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(Note that a graph is called essentially large girth if most vertices are not contained
in short cycles.) The purpose of these examples is to show that our results on the
almost eigenvectors of random regular graphs are best possible in the sense that all
0 ≤ σ ≤ 1 can indeed occur in the statement.

We will need some preparation. For k ≥ 1 and x ∈ [−1,1], let

(3.1) f (k, x) = 1√
d(d − 1)k−1

qk(x),

where

(3.2)
qk(x) =

√
d − 1

d
Uk(x) − 1√

d(d − 1)
Uk−2(x);

Uk(cosϑ) = sin((k + 1)ϑ)

sinϑ
.

[Uk(x) is the Chebyshev polynomial of the second kind.] Let gλ : Vd → R be the
function defined by

gλ(v) = f
(|v|, λ/(2

√
d − 1)

)
,

where |v| denotes the distance of v and the root o. It is easy to see (and well known)
that gλ satisfies the eigenvector equation with eigenvalue λ at every vertex v (for
λ ∈ [−2

√
d − 1,2

√
d − 1]).

Now let G be a d-regular graph such that there is a vertex w ∈ V (G) with the
property that the shortest cycle containing w has length at least 2n. We define
the function g′

λ : V (G) → R by g′
λ(v) = f (d(w,v), λ/(2

√
d − 1)) if d(v,w) < n

and 0 otherwise. It is easy to see that u = g′
λ/‖g′

λ‖2 is an almost eigenvector with
eigenvalue λ with error tending to 0 as n → ∞. Furthermore, if |V (G)| is much
larger than n, then u is close to the δ0 distribution in the weak topology. Thus we
obtain examples for completely localized almost eigenvectors for d-regular graphs
(for all λ ∈ [−2

√
d − 1,2

√
d − 1]), which corresponds to the case σ = 0.

We switch to the delocalized example. In [30], the authors construct eigenvector
processes on Td for every λ ∈ [−2

√
d − 1,2

√
d − 1] that are weak limits of factor

of i.i.d. processes. These processes have the property that they can be arbitrarily
well approximated on any essential large girth d-regular graph. It is easy to see that
these approximations are almost eigenvectors that are completely delocalized. This
corresponds to the case σ = 1. Finally, every σ occurs by mixing completely local-
ized and completely delocalized almost eigenvectors corresponding to the same λ.

4. Eigenvectors and eigenvector processes on the tree. For a vertex set F ⊆
Vd , we denote by Bk(F ) the neighborhood of radius k around F . Let F ⊆ Vd be
a subset of the vertices of the tree, and let f ∈ R

F . We say that f satisfies the
eigenvector equation with eigenvalue λ if for every v ∈ F with B1(v) ⊆ F we
have that λf (v) = ∑

w∼v f (w). It is clear that for a fixed λ these vectors form
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D

v

F

FIG. 1. Extension of basis in Lemma 4.1 with d = 4.

a linear subspace of R
F that we denote by Wλ(F). We will need a formula for

dimWλ(F) for a family of special finite sets F .
Given F , we say that F0 ⊆ F is a basis if for all f ∈ R

F0 and λ ∈ R the subspace
Wλ(F) contains exactly one extension of f to F . It is clear that if F0 is a basis in
F , then dimWλ(F) = |F0| for all λ ∈ R.

LEMMA 4.1. Let F ⊆ Vd be the vertex set of a connected finite subgraph F̃

of Td , and let v ∈ F be a leaf (vertex of degree 1) of F̃ (see Figure 1). Assume that
D ⊆ B1(v) such that |D| = d − 2 and D ∩ F = ∅. Then for every basis F0 of F

the set F0 ∪ D is a basis of F ∪ B1(v).

PROOF. Let f be a function from F0 ∪ D to R. By assumption, we have that
f |F0 extends to a unique function f̃ on F satisfying the eigenvalue equation. Now
using the eigenvector equation at v, we obtain a unique value for B1(v) \ (D ∪F).
Note that the connectivity of F implies that the function constructed this way is in
Wλ(F ∪ B1(v)). �

We will use C to denote the star B1(o) and we will use e to denote a distin-
guished edge in Td . It is clear that if v is a neighbor of o, then C \ {v} is a basis
of C. Similarly, e is a basis of itself. Using Lemma 4.1 and induction, we obtain
that

(4.1)
dimWλ

(
Bk(C)

) = ∣∣∂Bk(C)
∣∣ = d(d − 1)k;

dimWλ

(
Bk(e)

) = ∣∣∂Bk(e)
∣∣ = 2(d − 1)k

holds for every λ ∈ R and k ∈ N, where ∂F = F \ intF denotes the boundary of a
set F .

Recall that an invariant process {Xv}v∈Vd
is an eigenvector process with eigen-

value λ if it satisfies the eigenvector equation (2.1) with probability 1 and
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Av,w

w

v

op
Bk(C)

FIG. 2. Definition of the set D of edges (v,w).

Var(Xv) = 1. Notice that if F is any vertex set in Td , then {Xv}v∈F is supported
on Wλ(F). In the rest of this section, we investigate the joint distribution of the
collection of random variables {Xv}v∈S in a nontrivial eigenvector process where
S is one of Bk(C) or Bk(e) for some k ∈ N. Our goal is to find uncorrelated linear
combinations of the variables {Xv}v∈S with the property that they linearly gener-
ate every random variable in {Xv}v∈S . Observe that since the covariance matrix
of {Xv}v∈S has rank at most dim(Wλ(S)) = |∂S|, it is enough to find that many
uncorrelated linear combinations with nontrivial variance to guarantee that they
generate everything.

Let Y = (Y1, Y2, . . . , Yn) be an n-dimensional multivariate random variable with
0 mean such that the covariance matrix is of full rank. We can always find a linear
transformation T : Rn → R

n with the property that the covariance matrix of T Y

is the identity matrix. We say that T Y is a standardized version of Y for such a
linear transformation T . This is not unique, but its distribution is unique up to an
orthogonal transformation on R

n.
Let μ ∈ Id(R) be represented by an invariant family of random variables

{Xv}v∈Vd
. Assume that E(Xo) = 0. With every directed edge (v,w) of Td we as-

sociate a collection of random variables. Let {vi}d−1
i=1 be the set of neighbors of

w different from v (see Figure 2). We denote by Av,w the standardized version
of {Xvi

− Xvd−1}d−2
i=1 whenever these random variables have a full-rank covari-

ance matrix (we will see that this is the case for eigenvector processes for which
|λ| < d). It is easy to see that (the orthogonal equivalence class of) the distribution
of the collection of jointly-defined random variables Av,w does not depend on the
labeling of the vectors vi .

We introduce the symmetric relation R on directed edges of Td defined as fol-
lows: ((x, y), (v,w)) ∈ R if and only if the unique shortest path connecting y and
w contains at least one of x and v (i.e., the two directed edges are not facing one
another). The next lemma implies that if ((x, y), (v,w)) ∈ R then Ax,y and Av,w

are uncorrelated and so if μ is Gaussian then Ax,y and Av,w are independent.
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LEMMA 4.2. Let (v,w) be a directed edge in Td . Let {vi}d−1
i=1 be the set of

neighbors of w different from v. Let X = ∑k
j=1 ajXuj

be a linear combination
such that the shortest path connecting v1 and uj contains w for every 1 ≤ j ≤ k.
Then E(X(Xvi

− Xvd−1)) = 0 holds for 1 ≤ i ≤ d − 2.

PROOF. The condition on the vertices uj guarantees that for every fixed j the
distance of uj from vi does not depend on i. Using this and the automorphism
invariance of μ it follows that E(Xuj

(Xvi
−Xvd−1)) = 0 holds for every 1 ≤ j ≤ k

and 1 ≤ i ≤ d − 2. By linearity of expected value the proof is complete. �

From now on, we assume that μ is an eigenvector process with eigenvalue λ.
Let S ⊂ Vd be either Bk(C) or Bk(e) for some k ∈ N. Let p ∈ S be such that
B1(p) ⊆ S. Let D denote the set of directed edges (v,w) inside S with the follow-
ing two properties (see Figure 2): (a) the unique shortest path connecting p and w

contains v, (b) B1(w) ⊆ S. We denote by Q(S,p,μ) the collection of jointly de-
fined random variables (Xv − Xp)v∼p and {Av,w}(v,w)∈D . Notice that the number
of these random variables is d + (d − 2)|D| = d + (d − 2)(|S| − |∂S| − 1), which
is equal to the dimension of Wλ(S) in both cases.

Lemma 4.2 implies that the components of Q(S,p,μ) are uncorrelated multi-
dimensional random variables. In addition, these random variables have positive
variance unless |λ| = d . Namely, for p ∼ v, by the eigenvector equation we have
that cov(Xp,Xv) = λ/d , and hence the variance of Xv − Xp = 0 only if λ = d .
As for a random variable in Av,w , the eigenvector equation for w implies that

λ2 = λ2 Var(Xw) = Var(Xv + Xv1 + · · · + Xvd−1)

= d + d(d − 1) cov(Xvi
,Xvd−1).

We get that cov(Xvi
,Xvd−1) = λ2−d

d(d−1)
, and hence Xvi

− Xvd−1 has variance 0
if and only if |λ| = d . We conclude that if |λ| < d , then the covariance matrix
of Q(S,p,μ) has positive numbers in the diagonal and zero everywhere else.
Hence this covariance matrix has full rank, and the collection of random variables
(Xv −Xp)v∼p and {Av,w}(v,w)∈D provides a linear basis for {Xv}v∈S . By counting
dimensions, this yields the following corollary.

COROLLARY 4.1. Let either S = Bk(C) or S = Bk(e) and μ an eigenvector
process with eigenvalue |λ| < d . Then we have that〈

supp(μS)
〉
R

= Wλ(S).

5. Typical processes and the limiting form of the main theorem. Now we
describe a limiting form of our main theorem using typical processes on Td . Typ-
ical processes on Td were first introduced in [4] to study the properties of random
regular graphs via ergodic theory. Here we use a slightly different definition which
extends the original notion to processes that take values in a separable, metrizable
space Y .
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DEFINITION 5.1. Let Y be separable, metrizable topological space and let μ

be a Borel probability distribution on YVd . We say that μ is a typical process if
there is a growing sequence of natural numbers {ni} with the following property.
Assume that {Gi}ni=1 is a random graph sequence whose elements Gi are inde-
pendently chosen random d-regular graphs on ni vertices. Then with probability 1
there are maps fi : V (Gi) → Y such that the distributions distr∗(fi,Gi) are con-
verging to μ in the weak topology.

Our main theorem in the limit setting is the following.

THEOREM 5.2 (Limiting form of the main theorem). If μ is a nontrivial typi-
cal eigenvector process with eigenvalue λ, then |λ| ≤ 2

√
d − 1 and μ is the Gaus-

sian wave �λ.

Using the fact that weak limits of factor of i.i.d processes are typical (see [4])
we obtain the next corollary which answers a question of B. Virág (personal com-
munication related to [30]).

COROLLARY 5.1. If μ is a nontrivial eigenvector process that is a weak
limit of factor of i.i.d. processes, then μ is a Gaussian wave with eigenvalue
|λ| ≤ 2

√
d − 1.

Note that Corollary 5.1 implies that if many eigenvector processes correspond-
ing to the same eigenvalue are coupled in a way that the coupling is a weak limit
of factor of i.i.d. processes, then its distribution is jointly Gaussian.

We emphasize that the first part of the statement in Theorem 5.2, namely that
|λ| ≤ 2

√
d − 1 is a consequence of Friedman’s theorem [25]. We prove this im-

plication in Lemma 5.3. In addition, the main goal of this section is to show that
Theorem 5.2 implies Theorem 2.2.

LEMMA 5.3. If μ is a nontrivial typical eigenvector process with eigenvalue
λ, then |λ| ≤ 2

√
d − 1.

PROOF. Our first goal is to prove that there exists a sequence of d-regular
graphs {Gi}∞i=1 and vectors {fi : V (Gi) → R}∞i=1 such that (a) |λ2(Gi)| →
2
√

d − 1, where λ2(G) denotes the second largest (in absolute value) eigenvalue
of a finite graph G; (b) distr∗(fi,Gi) → μ in the weak topology. Using that μ is
typical, there exists a sequence {ni}∞i=1 of growing natural numbers such that with
probability 1, if {G′

i}∞i=1 is a sequence of independent random d-regular graphs
with |V (G′

i )| = ni , then there exists a sequence of functions {f ′
i }∞i=1 satisfying

(b). Friedman’s theorem [25] implies that we can choose a further subsequence
satisfying (a) with probability 1.
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The next step is to show that for vi = ([fi]k − ci,k)/‖[fi]k − ci,k‖2 we have

(5.1) lim inf
k→∞ lim sup

i→∞
∥∥(Gi − λI)vi

∥∥
2 = 0,

where we use the notation [x]k = max(min(x, k),−k) for real numbers x, and ci,k

is the average of the entries of [fi]k . First notice that if Xo is a random variable with
distribution μo, then (i) limk→∞ k2

P(|Xo| > k) = 0, (ii) limk→∞E([Xo]k) = 0
and (iii) limk→∞E([Xo]2

k) = 1 hold due to the finite variance of Xo.
Given ε, k, i, let mi(k, ε) be the number of entries of (Gi −λI)fi with absolute

value at least ε plus the number of entries where (Gi − λI)fi and (Gi − λI)[fi]k
differ from each other. The fact ‖(Gi − λI)[fi]k‖∞ ≤ (d + |λ|)k then implies that∥∥(Gi − λI)

([fi]k − ci,k

)∥∥
2

≤
√

ε2 · ni + mi(k, ε) · (
d + |λ|)2

k2 + |d − λ|ci,k

√
ni.

For fixed ε, suppose that k is a continuity point of the of the cumulative distri-
bution function of |Xo| and k2

P(|Xo| > k) < ε/3 (the latter holds for every large
enough k). Since distr∗(fi,Gi) converges to the eigenvector process μ, we obtain
that

mi(k, ε) ≤ (2d + 3)ε/k2 · ni

holds for every i large enough. To see this, notice that the proportion of entries with
absolute value at least ε tends to zero as i → ∞ due to the eigenvector property. On
the other hand, using (i) and the convergence in distribution again, for large enough
i we have that the proportion of entries of fi with absolute value larger than k is at
most 2ε/k2, which implies that the proportion of entries where (Gi − λI)fi and
(Gi − λI)[fi]k are different is at most (d + 1) · 2ε/k2.

Furthermore, we have limk→∞ limi→∞ ci,k = 0, because of (ii) and the con-
vergence of distr∗(fi,Gi) to the eigenvector process μ. Similarly, by (iii) we
have limk→∞ limi→∞ ‖[fi]k‖2

2/ni = 1, and hence limk→∞ limi→∞ ‖[fi]k −
ci,k‖2/ni > 0.

Putting this together, we conclude that equation (5.1) holds for vi = ([fi]k −
ci,k)/‖[fi]k − ci,k‖2. By using (a) and Lemma 3.1, we get that |λ| ≤ 2

√
d − 1. �

PROPOSITION 5.1. Theorem 5.2 implies Theorem 2.2.

We need a few notions and lemmas. Let P denote the set of Borel probability
distributions μ on R

Vd which have a second moment bounded from above by 1
at each coordinate. By tightness of P , we have that P is compact with respect to
the weak topology of measures. Let m be a fixed metrization of the weak topology
on P . Let us define the distance m∗ for d-regular graphs in the following way. If G1
and G2 are d-regular graphs then m∗(G1,G2) is the infimum of the numbers δ with
the property that if f1 : V (G1) → R, f2 : V (G2) → R are arbitrary functions with
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‖f1‖2
2/|V (G1)| ≤ 1, ‖f2‖2/|V (G2)| ≤ 1 then there are functions f ′

1 : V (G2) →
R, f ′

2 : V (G1) → R with ‖f ′
1‖2

2/|V (G2)| ≤ 1, ‖f ′
2‖2

2/|V (G1)| ≤ 1 such that

m
(
distr∗(f1,G1),distr∗

(
f ′

1,G2
)) ≤ δ,

m
(
distr∗(f2,G2),distr∗

(
f ′

2,G1
)) ≤ δ.

Let us denote by T the set of closed subsets in P , and by dH the the Hausdorff
metric on T . We have that dH induces a compact topology on T . We can describe
the metric m∗ in terms of the metric dH as follows. For a graph G, let

S(G) = {
distr∗(f,G)|f ∈ R

V (G),‖f ‖2
2/

∣∣V (G)
∣∣ ≤ 1

}
.

We have that m∗(G1,G2) = dH (S(G1), S(G2)).

DEFINITION 5.4. We say that a finite d-regular graph G is ε-typical for some
ε > 0 if with probability at least 1 − ε a random d-regular graph G′ on |V (G)|
vertices has the property that m∗(G,G′) < ε.

LEMMA 5.5. For every fixed d ≥ 3 and T ∈ T , the sequence

dH

(
S
(
G(n, d)

)
, T

) −E
(
dH

(
S
(
G(n, d)

)
, T

))
tends to 0 in probability as n → ∞. That is, for every ε > 0 there exists n(ε) such
that for all n > n(ε) we have

(5.2) P
(∣∣dH

(
S
(
G(n, d)

)
, T

) −E
(
dH

(
S
(
G(n, d)

)
, T

))∣∣ > ε
)
< ε.

PROOF. The proof relies on a certain continuity property of the metric m∗ with
respect to small changes in a graph. More precisely, we show that for every ε2 if
N is large enough, then for every pair G,G′ of d-regular graphs on the vertex set
[N] satisfying |E(G)
E(G′)| ≤ 4 we have that m∗(G,G′) < ε2. The significance
of the number 4 comes from the fact that d-regular graphs can be transformed
into each other through a sequence of operations in which two independent edges
(u1, v1), (u2, v2) are replaced by (u1, v2), (u2, v1). To prove the continuity prop-
erty, we show that if N is large enough, then the inequality

m
(
distr∗(f,G),distr∗

(
f,G′)) < ε2

holds for every function f : [N] → R with E(f 2) ≤ 1. Let k be an arbitrary inte-
ger. Observe that the marginal distribution distr∗(f,G)|Bk(o) can be obtained from
the distribution of R-colored neighborhoods of radius k of a random vertex in G

(and the analogous statement holds for G′). Since E(G)
E(G′) intersects such a
neighborhood with probability tending to 0 (uniformly in G,G′) as |V (G)| → ∞,
we have that the distance between distr∗(f,G)|Bk(o) and distr∗(f,G′)|Bk(o) con-
verges to 0 in any metrization of the weak topology of RBk(o). This implies the
desired continuity property.
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We obtain by the above statement and the triangle inequality that if |E(G) ×

E(G′)| ≤ 4 and N is large enough, then |dH (S(G),T ) − dH (S(G′), T )| < ε2. It
is well known that graph parameters on random d-regular graphs that satisfy this
Lipschitz property are concentrated around their mean; see [42], Theorem 2.19.

�

LEMMA 5.6. For every ε > 0, there exists n(ε) such that for every N > n(ε)

with probability at least 1−ε a random d-regular graph on N vertices is ε-typical.

PROOF. Let M be a finite ε/2-net in T . If G is a random d-regular graph on
N vertices, then there exists T ∈ M with the property that

(5.3) P
(
dH

(
S(G),T

)
< ε/2

) ≥ 1/|M|.
We apply Lemma 5.5 with ε′ ≤ ε/4. Combining inequalities (5.2) and (5.3), we
obtain that for ε′ < 1/|M| and N large enough |c| ≤ 3/4ε. Then applying (5.2)
again, the proof is complete. �

Now we enter the proof of Proposition 5.1.

PROOF. We go by contradiction. If Theorem 2.2 fails then there is a grow-
ing sequence of natural numbers {ni}∞i=1, ε > 0 and a sequence {δi}∞i=1 with
limi→∞ δi = 0 such that the following holds. If G is a random d-regular graph
on ni vertices, then we have with probability at least ε that there is an δi-almost
eigenvector v of G (with entry sum 0) such that distr∗(v,G) is at least ε-separated
from any Gaussian wave in the weak topology.

From Lemma 5.6, we obtain that there is a sequence {ε′
i}∞i=1 with limi→∞ ε′

i = 0
such that a random d-regular graph on ni vertices is ε′

i-typical with probability at
least 1 − ε′

i for every i. There exists an index j such that for all i ≥ j we have
ε′
i < ε. This implies that for all i ≥ j we can choose a graph Gi on ni vertices such

that Gi is ε′
i -typical and there exists a δi-almost eigenvector fi of Gi (with entry

sum 0) satisfying that distr∗(√nifi,Gi) is at least ε-separated from any Gaussian
wave in the weak topology.

By choosing a subsequence, we can assume (by abusing the notation) that the
sequence of probability distributions distr∗(√nifi,Gi) weakly converges to some
measure μ ∈ P . It is clear that μ is a nontrivial eigenvector process which is at least
ε-separated from any Gaussian wave in the weak topology. To get a contradiction,
it remains to show that μ is typical.

Again by choosing a subsequence we can assume that
∑∞

i=1 ε′
i < ∞. Let

{G′
i}∞i=1 be such that G′

i is a random d-regular graph on ni vertices and the terms
of the sequence are independent. It follows from the Borel–Cantelli lemma that
almost surely all but finitely many indices i satisfy that m∗(G′

i ,Gi) ≤ ε′
i . For such

indices, we can find f ′
i with

m
(
distr∗

(
f ′

i ,G
′
i

)
,distr∗(√nifi,Gi)

) ≤ ε′
i .

We obtain that distr∗(f ′
i ,G

′
i) converges to μ showing that μ is typical. �
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6. Entropy inequality for typical processes. Let X be a separable metric
space; let F be a finite set and let P(F ) denote the set of probability distributions
on F equipped with the topology generated by total variation distance. A contin-
uous discretization of X is a continuous function φ : X → P(F ). If α ∈ XV is
an X-coloring of a finite or countable set V , then we denote by φ ∗ α the proba-
bility distribution on FV obtained as the product measure of φ(α(v)) for v ∈ V .
By slightly abusing notation, if μ is a probability distribution on XV , then φ ∗ μ

will be a probability distribution on FV , namely, the distribution of the following
random variable. First we take a μ-random element α : V → X and then in a sec-
ond round of randomization we take φ ∗ α. The main result of this section is the
following entropy inequality for typical processes.

THEOREM 6.1. If μ ∈ Id(X) is a typical process and φ : X → P(F ) is a
continuous discretization, then the process φ ∗ μ satisfies the following entropy
inequality:

H
(
Bk(C)

) − (d/2)H
(
Bk(e)

) ≥ Eμo

(
H

(
φ(x)

))
,

where on the right-hand side, in the expectation x is chosen with distribution μo,
and H(φ(x)) is the entropy of the probability distribution φ(x) ∈ P(F ) for each
fixed x ∈ X.

Before proving Theorem 6.1, we need some preparation. Let us fix a metrization
of the weak topology on Id(X). For a finite d-regular graph G, let ω(G) denote
the infimum of the numbers ε > 0 for which it is true that at least 1 − ε fraction of
the vertices of G are not contained in a cycle of length at most �1/ε�. The quantity
ω(G) measures how different the graph G is to the tree Td in the Benjamini–
Schramm metric. Throughout this section, G is always assumed to be finite.

The operator distr∗ maps X-colored d-regular graphs (α ∈ XV (G),G) to in-
variant processes in Id(X). Using this correspondence and the metric on Id(X),
we define the distance of an X-colored graph (α,G) and a process μ ∈ Id(X) as
ω(G) plus the distance of distr∗(α,G) and μ in Id . Note that if (α ∈ XV (G),G) is
an X-colored d-regular graph, then (φ ∗ α,G) is a probability distribution on F -
valued colorings of the vertices of G. In this case by distr∗(φ ∗ α,G), we mean
a probability distribution on Id(F ). Namely, this is the push forward measure
of (φ ∗ α,G) with respect to the map distr∗ : FV → Id(F ). That is, we have
distr∗(φ ∗ α,G)(A) = (φ ∗ α,G)((distr∗)−1(A)) for A ⊆ Id(F ) measurable. On
the other hand, since distr∗(α,G) ∈ Id(X), we have φ ∗ distr∗(α,G) ∈ Id(F ).

PROPOSITION 6.1. Let μ ∈ Id(X) be an invariant process and φ be a contin-
uous discretization of X. Then for every ε > 0 there is δ > 0 such that if a colored
d-regular graph (α ∈ XV (G),G) is at distance at most δ from μ, then with proba-
bility at least 1 − ε we have that (φ ∗ α,G) is at distance at most ε from φ ∗ μ.
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The proof of Proposition 6.1 relies on the following technical lemma.

LEMMA 6.2. Let μ ∈ Id(X) be an invariant process. Let r ∈ N, B = Br(o) ⊂
Vd and let β : FB → R be any function which is invariant under the induced
(coordinate-wise) action of the automorphism group of B on FB . Then for ev-
ery ε > 0 there is δ > 0 such that if a colored d-regular graph (α ∈ XV (G),G) is
at most at distance δ from μ then with probability at least 1 − ε we have that∣∣∣∣|W |−1

∑
v∈W

β(γ |Br(v)) −E
(
β(φ ∗ μB)

)∣∣∣∣ ≤ ε,

where γ = φ ∗ α and W = {v : v ∈ V (G),Br(v) � B}.
PROOF. Assume first that (α ∈ XV (G),G) is an arbitrary d-regular X-colored

graph whose distance is δ′ from μ and let γ,W as in the statement of the lemma.
For a vertex v ∈ W , let Yv be the random variable with value β(γ |Br(v)). Let g :
XB → R be the function defined by g(h) = E(β(φ ∗ h)). We have for v ∈ W that
E(Yv) is equal to g(α|Br(v)). Let Y = |W |−1 ∑

v∈W Yv . It follows that

(6.1) E(Y ) = |W |−1
∑
v∈W

g(α|Br(v)) =
∫
XB

g dνG,

where νG describes the probability distribution of the isomorphism classes of
α|Br(v) where v ∈ W is a uniform random point. Using the fact that g is a continu-
ous function, we obtain that if δ′ is small enough then the right-hand side of (6.1)
is at most ε/2 far from

∫
XB g dμB = E(β(φ ∗μB)). Observe that Yv and Yw are in-

dependent if v and w have distance at least 2r + 1 in G. It follows that there are at
most |B2r+1(o)||W | correlated pairs in {Yv}v∈W . We obtain that the standard devia-
tion of Y is at most |B2r+1(o)|1/2|W |−1/2 max |β|. We use that ω(G) goes to 0 as δ′
goes to 0, and thus |W | tends to infinity. This implies that if δ′ is sufficiently small
then the variance of Y is at most ε2/3. Now by Chebyshev’s inequality, we have
that P(|Y − E(Y )| ≥ ε/2) ≤ ε2. It follows that P(|Y − E(β(φ ∗ μB))| ≥ ε) ≤ ε2

which completes the proof. �

We continue with the proof of Proposition 6.1.

PROOF. Let δ′ be an arbitrary positive number. Let (α ∈ XV (G),G) be an
X-colored d-regular graph at distance δ′ from μ. Let (γ ∈ FV (G),G) be cho-
sen according to the probability distribution (φ ∗ α,G). Let ε′ > 0, r = �1/ε′�
and W = {v : v ∈ V (G),Br(v) � B}. It follows from Lemma 6.2 that there is
c = c(ε′) > 0 such that if δ′ < c then the condition of Lemma 6.2 holds for (γ,G)

simultaneously for every 0 − 1 valued β with probability at least 1 − ε′. (Here we
use the fact that there are finitely many such functions β .) If c is small enough,
then it also guarantees that |W |/|V (G)| ≥ 1 − ε′. Now it is clear that if ε′ is small
enough, then these properties imply that (γ,G) is at most ε far from φ ∗ μ. �
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For the next lemma, let R(d,n) denote the number of d-regular graphs on the
vertex set [n].

LEMMA 6.3. Let F be a finite set and μ ∈ Id(F ). Let N(n, ε) denote the
number of d-regular F -colored graphs on the vertex set [n] whose distance from
μ is at most ε. Assume that {ni}∞i=1 is a growing sequence of natural numbers.
Then for every ε > 0 and k ∈ N we have that

(6.2)
H

(
Bk(C)

) − (d/2)H
(
Bk(e)

)
≥ lim

ε→0

(
lim sup
i→∞

n−1
i log

(
N(ni, ε)/R(d,ni)

))
.

PROOF. First we prove the statement for k = 0. In this case, we use a formula
from [4] that approximates the number N ′(n, ε) of F -colored graphs on [n] in
which the statistics of colored 1-neighborhoods is ε-close to μC . We have that

N ′(n, ε) = R(d,n)H(C)(n(1+o(1))
H(e)−(dn/2)(1+o(1)),

where o(1) is a quantity which goes to 0 when first n → ∞ and then ε → 0. This
implies that the right-hand side of (6.2) is equal to the left-hand side when N(ni, ε)

is replaced by N ′(ni, ε). Now we use that for every ε > 0 there exists ε′ > 0 such
that N ′(ni, ε) ≥ N(ni, ε

′) holds for all i. This completes the proof of the first part.
The idea of the proof in case of k > 0 is to generate a new process from μ in

which the color of every vertex v ∈ Vd is replaced by the isomorphism type of
the colored neighborhood of v of radius k. The main difficulty in this approach is
that the isomorphism type describes the neighborhood only up to automorphisms
which leads to extra constants in the entropy formulas. To control these constants
(and to eventually get rid of them), we add some extra randomness to the process.

Let us introduce new processes μr,m on Td for every k,m ∈ N. If r = 0, then
μ0,m denotes the F × [m] valued process in which we generate a μ-random col-
oring on Td and then we add a second coordinate from [m] to every vertex inde-
pendently and uniformly. In general, μr,m denotes the process obtained from μ0,m

by coloring v ∈ Vd with the isomorphism class of the coloring of Br(v) in μ0,m.
Let ar,m,k denote the left-hand side (resp., br,m denote the right-hand side) of (6.2)
evaluated for μr,m and k.

We claim that br,m does not depend on r . We denote by Qn
r,m,ε the set of colored

d-regular graphs on n vertices which are at distance at most ε from μr,m. The proof
of our claim relies on the following inequality:

n−1 log
∣∣Qn

0,m,ε

∣∣ ≤ n−1 log
∣∣Qn

r,m,δ1(ε)

∣∣ ≤ n−1 log
∣∣Qn

0,m,δ2(ε)

∣∣ + δ3(n, ε)

for some functions δ1(ε), δ2(ε), δ3(n, ε) such that

lim
ε→0

δ1(ε) = 0, lim
ε→0

δ2(ε) = 0 and lim
ε→0

lim sup
n→∞

δ3(n, ε) = 0.
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The first inequality follows from the fact that if we replace the colors in an approx-
imation of μ0,m with the isomorphism class of r-neighborhoods, then the resulting
coloring approximates μr,m. For the second inequality, observe that isomorphism
classes of colored r-neighborhoods are assigned to the vertices of the graphs in
Qn

r,m,ε . The map which keeps only the color of the root in any such colored neigh-
borhood induces a map from Qn

r,m,ε to Qn
0,m,δ(ε) such that limε→0 δ(ε) = 0. We

claim that this map is “almost” invertible. More precisely, the map that we used
for the first inequality provides an almost inverse in the sense that the composition
of the two maps differs from the original coloring at most at c(n, ε) · n vertices,
where limε→0 lim supn→∞ c(n, ε) = 0. By standard arguments, this implies the
proof of the claim.

The independence of the two coordinates implies that b0,m = b0,1 + logm. All
together this means that br,m = b0,1 + logm. It is clear that a0,m,k = a0,1,k + logm.
From the case k = 0, we have that ar,m,0 ≥ br,m. We can write this as

a0,1,r + (a0,m,r − a0,1,r ) + (ar,m,0 − a0,m,r ) ≥ b0,1 + logm,

and thus a0,1,r + cr,m ≥ b0,1 holds for every m where cr,m = ar,m,0 − a0,m,r . Since
the inequality a0,1,r ≥ b0,1 is equivalent to the statement of the lemma for k = r it
remains to show that limm→∞ cr,m = 0 holds for every r .

Let tr denote the size of the automorphism group of the rooted d − 1-regular
tree of depth r . We claim that Hμ0,m

(Br(C))−Hμr,m(C) = d log tr + o(1) and that
Hμ0,m

(Br(e)) − Hμr,m(e) = 2 log tr + o(1) as m → ∞. It is clear that this claim
implies cr,m = o(1). We show the proof of the first claim. (The proof of the second
one is almost identical.) If m is large enough, then in the process μ0,m restricted
to Br+1(o) all labels are different with probability converging to 1. In such a case,
knowing the isomorphism classes of the colored neighborhoods of radius r − 1
of vertices in C is equivalent with knowing the colored version of Br+1(o) up to
an isomorphism that fixes C. The stabilizer of C in the automorphism group of
Br+1(o) is the dth power of the automorphism group of the rooted d − 1 regular
tree of depth r . Thus the entropy loss of Hμr,m(C) compared to Hμ0,m

(Br(C)) is
converging to d log tr . �

Now we arrived to the proof of Theorem 6.1.

PROOF. According to Lemma 6.3, it is enough to show that the process φ ∗ μ

satisfies

lim
ε→0

(
lim sup
i→∞

n−1
i log

(
N(ni, ε)/R(d,n)

)) ≥ Eμo

(
H

(
φ(x)

))
for some growing sequence {ni}∞i=1 of natural numbers. For n ∈ N, ε > 0, let
a(n, ε) denote the number of d-regular graphs G on [n] with the property that there
exists an X-coloring α of [n] such that (G,α) is of distance at most ε from μ. The
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fact that μ is typical is equivalent to the fact that there is a sequence {ni}∞i=1 such
that limi→∞ a(ni, ε)/R(d,ni) = 1 holds for every ε > 0.

From Proposition 6.1, we obtain that for every ε2 > 0 there is ε > 0 such
that if a graph G has an X coloring α of distance at most ε from μ, then with
probability at least 1 − ε2 we have that (φ ∗ α,G) is of distance ε2 from φ ∗ μ.
It follows that G has at least exp(H(φ ∗ α,G) + o(1)) F -colorings of distance
at most ε2 from φ ∗ μ. On the other hand, we have |V (G)|−1

H(φ ∗ α,G) =
|V (G)|−1 ∑

v∈V (G)H(φ(α(v))), which converges to Eμo(H(φ(x))) as α con-
verges to μ.

Now let N(n, ε) be defined as in Lemma 6.3 for the process φ ∗ μ. From the
above observations, we obtain that n−1

i log(N(ni, ε)/R(d,ni)) can be estimated
from below by Eμo(H(φ(x))) − o(1) as ni goes to infinity. Then Lemma 6.3 com-
pletes the proof. �

7. Smooth eigenvector processes. Let ν be an absolutely continuous proba-
bility distribution on R

n with density function f . We denote by D(ν) the differen-
tial entropy of ν, which is computed by

D(ν) := −
∫
Rn

f (x) logf (x) dx.

If (X1, . . . ,Xn) are jointly defined R-valued random variables, then we define
D(X1, . . . ,Xn) as the differential entropy of their joint distribution. For more de-
tails, see Definition B.1 in Appendix B.

Let μ be an eigenvector process. If F ⊆ Vd is a finite set then the distribution
of μ, when restricted to F , is concentrated on the subspace Wλ(F) (recall Sec-
tion 4). Since Wλ(F) is usually a proper subspace of RF , this distribution is not
absolutely continuous in general, and so the differential entropy cannot be defined
this way. However, we introduce a modified version of the differential entropy, as
follows. We denote by Dsp(F,μ) the differential entropy of μF measured inside
the subspace Wλ(F) using the Euclidean structure inherited from R

F . We say that
μ is smooth if Dsp(Bk(C)) and Dsp(Bk(e)) are finite for every k. In this section,
we reduce Theorem 5.2 to smooth eigenvector processes. The reduction will rely
on the following statement.

PROPOSITION 7.1. Let {Xv}v∈Vd
be a typical eigenvector process with eigen-

value λ and {Yv}v∈Vd
the unique Gaussian wave �λ with eigenvalue λ. Then the

independent sum {Xv + aYv}v∈Vd
is smooth for a > 0.

PROOF. Let S be one of Bk(C) and Bk(e). Both {Xv}v∈S and {Yv}v∈S are
supported on Wλ(S). Moreover, by Corollary 4.1, we obtain that the support of
�λ|S is equal to Wλ(S). Using Lemma A.3 inside the space Wλ(S), we get that the
differential entropy of the collection of random variables {Xv + aYv}v∈S is finite.

�
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Assume that Theorem 5.2 holds for smooth typical eigenvector processes. Using
Proposition 7.1, we obtain that if {Xv}v∈Vd

is an arbitrary typical eigenvector pro-
cess then {Xv + aYv}v∈Vd

is smooth for all a > 0. In addition, by Proposition C.1
and Proposition C.2, {Xv + aYv}v∈Vd

is typical. By our assumption, we obtain
the Gaussianity of {Xv + aYv}v∈Vd

for all a > 0. This implies the Gaussianity of
{Xv}v∈Vd

by going to 0 with a.

8. Entropy inequality for typical eigenvector processes. In this section, we
prove the following theorem.

THEOREM 8.1. Let μ ∈ Id(R) be a smooth typical eigenvector process. Then

Dsp
(
Bk(C)

) − d

2
Dsp

(
Bk(e)

) ≥ 0

holds for every k ≥ 0 integer.

To prove the above theorem, we will need some preparation. For a ∈ N, let us
define the continuous discretization t0,a of R in the following way. If x > a (resp.,
x < −a), then t0,a(x) = a [resp., t0,a(x) = −a] with probability 1. Otherwise, let
t0,a(x) be a random variable that takes �ax�/a with probability 1 + �ax� − ax

and takes 1/a + �ax�/a with probability ax − �ax�. For σ > 0, we define the
discretization tσ,a by tσ,a(x) = t0,a(x + σN) where N is a random variable with
standard normal distribution. We denote by tnσ,a the continuous discretization of
R

n obtained by the coordinate-wise independent application of tσ,a .

LEMMA 8.2. Let X be a random variable with values in R
n with finite vari-

ance, that is, E(‖X‖2
2) < ∞. Then we have for every fixed σ > 0 that

H
(
tnσ,a(X)

) = n loga +D(X + σM) + o(1)

as a → ∞, where M is independent of X and has standard normal distribution
on R

n.

The main difficulty of the proof of Lemma 8.2 comes from the fact that the
support of X is not necessarily compact. We have to treat a situation where we
refine and increase the interval of discretization simultaneously.

PROOF. By Lemma A.3, the finite variance of X guarantees that D(X + σM)

exists and is a finite quantity. Let Sa = {r/a|r ∈ Z
n,‖r‖∞ ≤ a2} and let S′

a =
{x|x ∈ Sa,‖x‖∞ < a}. For x ∈ Sa , let pa(x) denote the probability that tnσ,a(X) is
equal to x. We have that

H
(
tnσ,a(X)

) = ∑
x∈Sa

−pa(x) logpa(x).
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Let qa denote the quantity P(tnσ,a(X) ∈ Sa \ S′
a) = ∑

x∈Sa\S′
a
pa(x). The con-

struction of tnσ,a shows that

qa ≤ P
(‖X + σM‖∞ ≥ a − a−1)

.

By Chebyshev’s inequality, we have that

P
(‖X + σM‖∞ ≥ a − a−1) = O

(
a−2)

and so qa = O(a−2). It follows that∑
x∈Sa\S′

a

−pa(x) logpa(x) ≤ −qa logqa + qa log
∣∣Sa \ S′

a

∣∣
≤ −qa logqa + qa log |Sa|
= −qa logqa + qan log

(
2a2 + 1

) = o(1).

For x = (x1, x2, . . . , xn) ∈ R
n, let ga(x) = ∏n

i=1 max{1 − a|xi |,0}. For every
x ∈ S′

a , we have that pa(x) = ∫
z∈Rn ga(z)f (x − z) where f is the density function

of X + σM on R
n. Using that an

∫
Rn ga = 1, we have that anpa(x) is a weighted

average of the values of f in an L∞-ball of radius 1/a. It follows that for every x ∈
S′

a there is α(x) ∈ R
n with the property that ‖x − α(x)‖∞ ≤ 1/a and anpa(x) =

f (α(x)) (using that f is continuous). Now we have that

(8.1)

∑
x∈S′

a

−pa(x) logpa(x)

= (n loga)
∑
x∈S′

a

pa(x) − a−n
∑
x∈S′

a

f
(
α(x)

)
logf

(
α(x)

)
.

It follows from qa = O(a−2) that

(n loga)
∑
x∈S′

pa(x) = n(loga)(1 − qa) = n loga + o(1).

It remains to bound the second part of (8.1). From the equation,

(8.2)
∫
z∈[−a+a−1,a]n

−f (z) logf (z) =
∫
z∈[0,a−1]n

∑
x∈S′

a

−f (x + z) logf (x + z)

we obtain that there is a fixed γ ∈ [0, a−1]n such that

(8.3) a−n
∑
x∈S′

a

−f (x + γ ) logf (x + γ )

is equal to the left-hand side of (8.2). On the other hand, the left-hand side of (8.2)
is equal to D(X + σM) + o(1). It remains to show that

(8.4) a−n
∑
x∈S′

a

(
f

(
α(x)

)
logf

(
α(x)

) − f
(
β(x)

)
logf

(
β(x)

)) = o(1),
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where β(x) = x +γ . (Note that α, β , γ all depend on a.) We will use that ‖α(x)−
β(x)‖∞ ≤ 2/a holds for every x ∈ S′

a , and thus r(x) := ‖α(x)−β(x)‖2 ≤ 2
√

n/a.
Let tx = f (α(x))/f (β(x)). We have by Lemma A.4 that for every ε > 0 if a is big
enough, then tx ≥ 1 − ε (resp., t−1

x ≥ 1 − ε) provided that f (β(x)) > c [resp.,
f (α(x)) > c] where c = σ−n/2 exp(−a/(32nσ 2)). This implies that for every a >

0 we can choose ε = ε(a) such that lima→∞ ε(a) = 0 and the previous property
holds with ε. We will assume that a is so large that ε(a) < 1/3.

Let T1 denote the sum of the terms in (8.4) where f (β(x)) ≤ 2c and let T2
denote the sum of the remaining terms. According to Lemma A.4 either f (α(x)) <

c or t−1
x ≥ 1−ε. If f (β(x)) ≤ 2c, then we have f (α(x)) ≤ 2c/(1−ε) ≤ 3c in both

cases. It follows that T1 ≤ 3c log(3c)(2a2 + 1)n/an = o(1).
Now we estimate T2. From now on we assume that f (β(x)) > 2c. By

Lemma A.4, we obtain tx ≥ 1 − ε holds, and thus f (α(x)) ≥ (1 − ε)2c > c. This
implies again by Lemma A.4 that t−1

x ≥ 1 − ε and so |1 − tx | ≤ 2ε. We have that

f
(
α(x)

)
logf

(
α(x)

) − f
(
β(x)

)
logf

(
β(x)

)
= f

(
α(x)

)
log tx − (1 − tx)f

(
β(x)

)
logf

(
β(x)

)
.

Using that f (α(x)) = anpa(x) and | log tx | ≤ − log(1 − 2ε), we get that∣∣∣∣a−n
∑

x∈S′
a,f (β(x))>2c

f
(
α(x)

)
log tx

∣∣∣∣
≤ ∑

x∈Sa

pa(x)
(− log(1 − 2ε)

) = − log(1 − 2ε) = o(1).

It is now clear that the following claim completes the proof of the lemma.

CLAIM. a−n ∑
x∈S′

a
|f (β(x)) logf (β(x))| = O(1).

By Lemma A.2, there is b ∈ R
+ such that f (x) < 1 whenever ‖x‖∞ > b − 1.

Let B = [−b, b]n. By the finiteness of B , we have that

(8.5) a−n
∑

x∈S′
a∩B

−β(x) log
(
β(x)

) =
∫
B

−f logf + o(1)

and that

(8.6) a−n
∑

x∈S′
a∩B

∣∣β(x) log
(
β(x)

)∣∣ =
∫
B

|f logf | + o(1)

It follows from (8.5) and the property that the left-hand side of (8.2) is equal to
(8.3) that

(8.7) a−n
∑

x∈S′
a\B

−β(x) log
(
β(x)

) =
∫
B

−f logf + o(1).
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By (8.6) and (8.7), we get that

a−n
∑
x∈S′

a

∣∣β(x) log
(
β(x)

)∣∣ =
∫
Rn

|f logf | + o(1) = O(1).
�

In the following lemma, first we calculate the entropy of the random variable
tσ,a(x) for every fixed x, and then we take the expectation of this quantity with
respect to the distribution of a random variable X.

LEMMA 8.3. Let X be a real valued random variable with finite variance and
with distribution ν. Then Eν(H(tσ,a(x))) = loga + D(N(0, σ )) + o(1) for every
fixed σ > 0 as a → ∞.

PROOF. Let νa denote the conditional distribution of X when |X| < a/2 and
let ν′

a denote the conditional distribution when |X| ≥ a/2. We have that

Eν

(
H

(
tσ,a(x)

)) = P
(|X| < a/2

)
Eνa

(
H

(
tσ,a(x)

))
+ P

(|X| ≥ a/2
)
Eν′

a

(
H

(
tσ,a(x)

))
.

By Chebyshev’s inequality, we obtain that P(|X| ≥ a/2) = O(a−2). It follows
from the trivial uniform bound H(tσ,a(x)) ≤ log(a2 + 1) that

P
(|X| ≥ a/2

)
Eν′

a

(
H

(
tσ,a(x)

)) = o(1).

Similarly, by P(|X| < a/2) = 1 − O(a−2), we obtain that

P
(|X| < a/2

)
Eν

(
H

(
tσ,a(x)

)) = Eνa

(
H

(
tσ,a(x)

)) + o(1).

It is now enough to prove that if |x| ≤ a/2 then H(tσ,a(x)) = loga+D(N(0, σ ))+
o(1), where the o(1) error term does not depend on x but tends to 0 as a → ∞.

Lemma 8.2 implies that H(tσ,a(0)) = loga+D(N(0, σ ))+o(1); this is the X =
0 case. Next, suppose that x ∈ Sa = {r/a|r ∈ Z,‖r‖∞ ≤ a2} and 0 < x ≤ a/2. No-
tice that if y ∈ Sa and −a < y < a − x, then P(tσ,a(0) = y) = P(tσ,a(x) = y + x),
because the distance of 0 and x is a multiple of the distance of the points in the grid
Sa that we used for discretization. Hence the difference H(tσ,a(x)) − H(tσ,a(0))

contains only terms corresponding to |y − x| > a/2, y ∈ Sa in the first entropy ex-
pression (for x) and |y| > a/2, y ∈ Sa in the second one (for 0). The facts that tσ,a

is supported on a set of at most a2 +1 elements and that the probability that a Gaus-
sian random variable is farther from its expectation than a/2 is O(exp(−a2)/2)

imply that H(tσ,a(x)) − H(tσ,a(0)) = o(1) uniformly in 0 < x < a/2 as a → ∞,
when x ∈ Sa . A similar argument works for −a/2 < x < 0 if x is an element
of Sa .

Finally, let x ∈ [−a/2, a/2] arbitrary, and x be the closest element of Sa to x.
As it is well known (e.g., as a consequence of Pinsker’s inequality), the total vari-
ation distance of N(x, σ ) and N(x, σ ) is of order O(1/a) provided |x − x| ≤ 1/a.
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By choosing an appropriate coupling of these two distributions and applying the
same discretization, it follows that dTV(tσ,a(x), tσ,a(x)) = O(1/a). Applying The-
orem 17.3.3. of [20], we obtain that∣∣H(

tσ,a(x)
) −H

(
tσ,a(x)

)∣∣
≤ −dTV

(
tσ,a(x), tσ,a(x)

)
log

dTV(tσ,a(x), tσ,a(x))

a2 + 1
= o(1),

and the error term does not depend on x. This concludes the proof. �

We finish this section with the proof of Theorem 8.1. Let μσ,a denote the pro-
cess in which we pointwise discretize μ using tσ,a (using the notation of Sec-
tion 5, we have μσ,a = tσ,a ∗ μ) and let μσ denote the process obtained from
μ by adding σ times the i.i.d. standard normal distribution. By Lemma 8.2 and
|Bk(C)| − (d/2)|Bk(e)| = 1, we obtain that

H
(
Bk(C),μσ,a

) − d

2
H

(
Bk(e),μσ,a

)
= loga +D

(
Bk(C),μσ

) − d

2
D

(
Bk(e),μσ

) + o(1).

By Theorem 6.1 and the typicality of μ, we get that

H
(
Bk(C),μσ,a

) − d

2
H

(
Bk(e),μσ,a

) ≥ Eμo

(
H

(
tσ,a(x)

))
.

Using the previous formulas, Lemma 8.3 and the limit a → ∞, we obtain that

(8.8) D
(
Bk(C),μσ

) − d

2
D

(
Bk(e),μσ

) ≥ D
(
N(0, σ )

)
for every σ > 0.

Let S ⊂ Vd be either Bk(C) or Bk(e). We denote by μS,σ the probability mea-
sure obtained by convolving the measure μS with the standard normal distribu-
tion on Wλ(S) [for the definition of Wλ(S) see Section 4], where λ is the eigen-
value corresponding to μ. Observe that the standard normal distribution on R

S

is the convolution (independent sum of the corresponding random variables) of
the standard normal distribution on Wλ(S) and on Wλ(S)⊥. Then by using that
dimWλ(S)⊥ = |S| − |∂S|, we have

D(S,μσ ) = Dsp(μS,σ ) + (|S| − |∂S|)D(
N(0, σ )

)
.

Using this formula for S = Bk(C) and S = Bk(e) in (8.8) together with |∂Bk(C)| =
(d/2)|∂Bk(e)|, we obtain that

Dsp(μBk(C),σ ) − d

2
Dsp(μBk(e),σ ) ≥ 0.

If σ → 0, then we obtain the statement of Theorem 8.1.
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9. Eigenvalues of the covariance operator. The main goal of this section is
to prove the following statement on the differential entropies of Gaussian waves.
Recall the definition of Dsp from Section 7.

THEOREM 9.1. Let �λ be a Gaussian wave on the d-regular tree with λ ∈
[−2

√
d − 1,2

√
d − 1]. Then we have

Dsp
(
Bk(C),�λ

) − d

2
Dsp

(
Bk(e),�λ

) → 0 (k → ∞).

Let �k be the covariance matrix of the joint distribution of �λ restricted to the
ball Bk(C), and �′

k be the similar covariance matrix on Bk(e). By detsp, we mean
the product of the nonzero eigenvalues of a matrix. The differential entropy of a
multivariate normal random variable with covariance matrix � of rank m is given
by 1

2 log((2πe)m detsp �)) if we measure differential entropy inside the support of
the variable. Equation (4.1) and Corollary 4.1 imply that the rank of �k is d/2
times the rank of �′

k . Hence we need to prove that

(9.1) log detsp�k − d

2
log detsp�

′
k → 0 (k → ∞).

Notice that if s is an eigenvalue of both �k and �′
k , and its multiplicity in

the first case is d/2 times its multiplicity in the second case, then it is canceled
out in the difference. In order to find the eigenvalues that do not cancel out, we
decompose both R

|Bk(C)| and R
|Bk(e)| as a union of orthogonal subspaces that are

invariant under the corresponding covariance operators.
First we need some notation. We will use the genealogical labeling of the ver-

tices in Bk(C) and in Bk(e) (in this section, we will not distinguish vertices and
labels). In Bk(C), the root gets label ∅, and we put the labels on the vertices such
that the labels of neighbors differ only in the last coordinate [i.e., 1,2, . . . , d are
the neighbors of the root; 11,12, . . . ,1(d − 1) are the further neighbors of 1, and
so on]. For a vertex v the length of its label is denoted by |v|, which is its dis-
tance from ∅. For a vertex v and a sequence y, by vy we mean the vertex with
the label obtained by concatenating v and y. We say that v is an ancestor of w

(denoted by v → w), if w = vy for some y �= ∅. As for Bk(e), we use a similar
notation, but keeping track of symmetry with respect to the central edge e. The end-
points of e have labels ∅ and ∅

′. The descendants of ∅ have labels 1, . . . , d − 1,
their descendants have labels 11,12, . . . ,1(d − 1),21, . . . and so on. Similarly,
the descendants of ∅′ have labels 1′, . . . , (d − 1)′, their descendants have labels
11′,12′, . . . ,1(d − 1)′,21′, . . . and so on. Note that |v| still denotes the length of
the label.

We assign a linear subspace to each vertex in Bk(C) \ ∂Bk(C) and Bk(e) \
∂Bk(e). Fix v ∈ Bk(C) \ ∂Bk(C). Let Ev be the elements α ∈ R

Bk(C) for which the
following hold. (i) αw = 0 if v is not an ancestor of w. (ii) Suppose that 1 ≤ j ≤
(d − 1) and y, z are labels with |y| = |z|. Then αvjy = αvjz. (To put it in another
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way, for descendants of v, the value of α depends only on the first coordinate after
v and the distance from v.) (iii) We have

∑
y:|y|=r αvy = 0 for r ≥ 1.

In addition, we introduce the following subspace:

G = {
α ∈ R

Bk(C) : αv = αw if |v| = |w|}.
We will also refer to E ′

v [when v ∈ Bk(e) \ ∂Bk(e)], which are linear subspaces of
R

Bk(e) defined similarly. The definition of the complement subspace is somewhat
different:

G′
1 = {

α ∈ R
Bk(e) : αv = αw if |v| = |w|}.

G′
2 = {

α ∈ R
Bk(e) : αv = αw if ∅ → v,∅ → w, |v| = |w|;

αv′ = −αv if v = ∅ or ∅ → v
}
.

LEMMA 9.2. The following hold for the linear subspaces defined above:

(a) Ev, v ∈ Bk(C) \ ∂Bk(C) and G are invariant under �k . Similarly, E ′
v, v ∈

Bk(e) \ ∂Bk(e) and G′
1,G′

2 are invariant under �′
k .

(b) Ev, v ∈ Bk(C) \ ∂Bk(C) and G are pairwise orthogonal. Similarly, E ′
v, v ∈

Bk(e) \ ∂Bk(e) and G′
1,G′

2 are pairwise orthogonal.
(c) R

Bk(C) = G + ∑
v∈Bk(C) Ev and R

Bk(e) = G′
1 + G′

2 + ∑
v∈Bk(e)

E ′
v .

PROOF. Before going into the proof, we note that we will only use the property
that every entry (i, j) of �k depends only on the distance of i and j . (a) First
observe G consists of all vectors that are invariant under the full automorphism
group of Bk(C). This property is preserved by �k and thus G is invariant under �k .

Take any α ∈ Ev . For �kα, property (ii) is preserved because the entries of
�k depend only on the distance of the two corresponding vertices (as it is the
covariance matrix of an invariant random process). Putting this together with the
third property, we get that (i) also holds for �kα. Property (iii) means orthogonality
to G; using the invariance of G, this will also be satisfied by �kα, which is thus in
Ev . Similar arguments work for the other two linear subspaces. �

(b) Fix v1, v2 ∈ Bk(C). If none of them is an ancestor of the other one, then the
support of any vector of Ev1 is disjoint from the support of any vector in Ev2 , which
implies orthogonality. If v1 → v2, then the value of a vector in Ev1 is the same at
all vertices of type v2y with |y| fixed. Multiplying this by the values of a vector
in Ev2 and summing this up for different ys (of fixed length) we get 0, because of
property (iii). This implies the orthogonality. The other cases are similar; we omit
the details.

(c) The dimensions of these subspaces are as follows:

dimEv = (k − |v| + 1)(d − 2) for ∅ �= v ∈ Bk(C) \ ∂Bk(C);
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dimE∅ = (k + 1)(d − 1); dimG = k + 2;
dimE ′

v = (k − |v| + 1)(d − 2) for ∅ �= v ∈ Bk(e) \ ∂Bk(e);
dimG′

1 = k + 1; dimG′
2 = k + 1.

The following equalities are easy to check by induction on k:

1 + (k + 1)d +
k∑

j=1

d(d − 1)j−1(k + 1 − j)(d − 2) = ∣∣Bk(C)
∣∣;

2(k + 1) + 2
k−1∑
j=1

(d − 1)j−1(k − j)(d − 2) = ∣∣Bk(e)
∣∣.

Hence the sum of the dimension of the linear subspaces Ev and G is equal to the
dimension of the space R

Bk(C). Since the subspaces are pairwise orthogonal by
part (b) of the lemma, this implies that the sum must be equal to R

Bk(C). A similar
argument works for Bk(e).

For the following lemma, recall the definition of f (k, x) from equation (3.1).
Furthermore, the calculation about this recurrence relation in [1] imply that if we
take λ = 2

√
d − 1x, then the covariance of the values at distance k in the Gaussian

wave �λ is equal to f (k, x).

LEMMA 9.3. Let f (k, x) be defined by equation (3.1). We define

l(k, x) = 1 +
k−1∑
j=1

(d − 2)(d − 1)j−1f (2j, x).

Then the eigenvalues of �k corresponding to E∅ and G are as follows:

s1(k, x) = 1 +
k∑

j=1

(d − 1)jf (2j, x) +
k∑

j=1

l(j, x) with multiplicity 1;

s2(k, x) =
(

1 − s1(k, x) +
k∑

j=1

dl(j, x)

)/
(d − 1) with multiplicity d − 1.

The eigenvalues of �′
k corresponding to G′

1 and G′
2 are as follows:

s3(k, x) =
k∑

j=1

l(j, x) + (d − 1)j−1f (2j − 1, x) with multiplicity 1;

s4(k, x) =
k∑

j=1

l(j, x) − (d − 1)j−1f (2j − 1, x) with multiplicity 1.
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PROOF. Using the notation of Section 4, let Sk = Wλ(Bk(C)) and S ′
k =

Wλ(Bk(e)). First we consider G. Since f (k, x) is the covariance of the values
at distance k in a (nontrivial) Gaussian wave, we have by linearity that every row
of �k is in Sk . It follows that Im(�k) ⊆ Sk . On the other hand, by the previous
lemma, G is invariant under �k . Notice that G ∩ Sk is one dimensional: given
the value at the root, the common value of its neighbors is determined (even for
λ = 0), and this can be continued. It follows that �k|G has rank one, and the eigen-
value corresponding to G can be obtained by calculating the trace of the matrix
of �k|G in an arbitrary basis. By choosing the basis of the indicator functions of
the spheres of radius 0,1, . . . , k around the root, elementary calculation shows that
this eigenvalue is equal to s1(k, x).

The three eigenvalues corresponding to the invariant subspaces E∅, G′
1 and G′

2
can be obtained by similar arguments, by identifying the image of �k (or �′

k)
restricted to the given subspace and calculating the trace of its matrix. In the second
case, E ′

∅ ∩ Sk has dimension d − 1: 0 is assigned to the root; the values of the d

neighbors of ∅ have to sum up to 0, but there are no other conditions; given these
values, all the others are uniquely determined. The only nonzero eigenvalue has
multiplicity d − 1, which makes it possible to calculate it based on the trace of
the matrix. As for the last two cases, G′

1 ∩ S ′
k and G′

2 ∩ S ′
k both have dimension

1 again: given the value at ∅, the value at ∅′ has to be the same or the opposite.
Then the eigenvalue equation and the equality conditions in G′

1 and G′
2 uniquely

determine all the other values. By choosing appropriate bases in these subspaces,
it is straightforward to obtain the eigenvalues in the lemma. �

LEMMA 9.4. Using the notation of the previous lemma, for every x ∈ [−1,1],
we have

log s1(k, x) + (d − 1) log s2(k, x) − d

2
log s3(k, x) − d

2
log s4(k, x)

→ 0 (k → ∞).

PROOF. First we calculate the middle term of s1(k, x). Using equation (3.1),
we obtain that

T (k, x) :=
k∑

j=1

(d − 1)jf (2j, x) =
k∑

j=1

(d − 1)j√
d(d − 1)2j−1

q2j (x),

where the polynomials q are defined by equation (3.2). Straightforward calculation
shows that with x = cosϑ we have

T (k, x) = d − 1

d
U2k(x) + d − 2

d sinϑ
Im

e3iϑ (e(2k−2)iϑ − 1)

e2iϑ − 1
− 1

d
,
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if sinϑ �= 0 and e2ϑ �= 1. (We deal with the exceptional cases at the end of the
proof.) Using this formula, we obtain that

l(k, x) = 1 − d − 2

(d − 1)d
+ d − 2

d
U2k−2(x)

+ (d − 2)2

d(d − 1) sinϑ
Im

e3iϑ (e(2k−4)iϑ − 1)

e2iϑ − 1

holds for k ≥ 2. Notice that the last term is bounded in k for every fixed x. From
now on, O(1) will denote a quantity which depends both on x and k such that for
every fixed x it is bounded in k. We emphasize that in Theorem 9.1 the limit is
taken for fixed λ (which is equal to x · √d − 1). Thus in the proofs of this section
we always think of x as a fixed quantity while tending to infinity with k.

Continuing our calculations, we obtain that

s1(k, x) = 1 + T (k, x) +
k∑

j=1

l(j, x)

=
(

1 − d − 2

d(d − 1)
− (d − 2)2

d(d − 1) sinϑ
Im

e3iϑ

e2iϑ − 1

)
k + O(1).

On the other hand, we have

s1(k, x) − s2(k, x) = d

d − 1
s1(k, x) − d

d − 1

k∑
j=1

l(j, x) − 1

d − 1
= O(1);

s1(k, x) − s3(k, x) = 1 +
k∑

j=1

(d − 1)jf (2j, x) − (d − 1)jf (2j − 1, x)

= O(1);

s3(k, x) − s4(k, x) = 2
k∑

j=1

(d − 1)jf (2j − 1, x) = O(1).

To put it in another way, with

A = 1 − d − 2

d(d − 1)
− (d − 2)2

d(d − 1) sinϑ
Im

e3iϑ

e2iϑ − 1

the expressions s1(k, x), s2(k, x), s3(k, x) and s4(k, x) are all in the form Ak +
O(1). If A > 0, then we get that

log sj (k, x) = logA + log k + o(1) (j = 1,2,3,4),

which implies the statement of the lemma. Hence, in the rest of the proof, we check
that A > 0 holds.
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First notice that 1 − d−2
d(d−1)

> (d−2)2

d(d−1)
is satisfied for all d . In addition, by using

elementary trigonometric identities we obtain

Im
e3iϑ

sinϑ(e2iϑ − 1)
= sinϑ − sin 3ϑ

2 sinϑ(1 − cos 2ϑ)

= 1 − cos 2ϑ − 2 cos2 ϑ

4 sin2 ϑ

= sin2 ϑ − cos2 ϑ

2 sin2 ϑ
≤ 1.

Putting this together, we get the positivity of A, which concludes the proof.
We have to deal with the remaining special cases. First, if |x| = 1, then sinϑ =

0, but we still have Uk(cosϑ) = k + 1. This implies that l(k, x) is a quadratic
polynomial, and s1(k, x) is a cubic polynomial [with positive leading coefficient
1 − (d − 2)2/d/(d − 1) > 0]. Moreover, the differences s1 − s2, s1 − s3, s1 − s4
are all of order O(k2), which implies the statement of the lemma.

The last case is when e2iϑ = 1. This implies Uk(cosϑ) = 1 for all k. That is, we
have qk(x) = (d − 2)/

√
d(d − 1), and l(k, x) is of the form Bk + O(1) for some

nonzero B . Now s1, s2, s3, s4 are all quadratic polynomials as a function of k,
while their differences are linear. It follows again that the expression in the lemma
goes to 0 as k → ∞. �

PROOF OF THEOREM 9.1. As we have discussed, it is sufficient to show that
(9.1) holds. First fix k, and recall Lemma 9.2. Notice that for every 1 ≤ r ≤ k − 1,
if we take two vertices v1, v2 in Bk(C) such that |v1| = |v2| = r , then the linear
transformation �k restricted to Ev1 is isomorphic to the linear transformation �k

restricted to Ev2 (we use again that the entries of the covariance matrix depend only
on the distance of the vertices). Hence the set of eigenvalues of �k corresponding
to the invariant subspaces Ev1 and Ev2 are the same. Furthermore, this linear trans-
formation is isomorphic to the linear transformation �′

k restricted to E ′
v , if |v| = r

holds. For every 1 ≤ r ≤ k − 1, we have∣∣{v : |v| = r, v ∈ Bk(C)
}∣∣ = d

2

∣∣{v : |v| = r, v ∈ Bk(e)
}∣∣.

This means that all eigenvalues belonging to the spaces Ev and E ′
v cancel out in the

expression in (9.1) for |v| > 0.
Therefore, only the eigenvalues corresponding to G, E ′

∅, G′
1 and G′

2 are left.
These are calculated with multiplicities in Lemma 9.3, and hence Lemma 9.4 com-
pletes the proof by showing that the difference goes to zero as k → ∞. �

10. Improved differential entropy inequality. In this section, we use a com-
bination of Theorem 8.1 and Theorem 9.1 to prove an improved version of Theo-
rem 8.1 for the case k = 0. We will use the notation from Section 4. If S is either
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Bk(C) or Bk(e) for some k ≥ 0 and p is in S \ ∂S, then we have for the Gaussian
wave �λ with distribution μ that

(10.1) D
(
Q(S,p,μ)

) = D(Qp) + ∑
(v,w)∈D

D(Av,w),

where Qp is the collection of random variables (Xv −Xp)v∼p [which is contained
in Q(S,p,μ)]. We obtain from (10.1) that the differential entropy D(Q(S,p,μ))

does not depend on p for a Gaussian wave μ. Observe that changing the vertex p to
p′ results in a linear transformation Tp,p′ in the system Q(S,p,μ). The invariance
of the differential entropy shows by Lemma B.2 that Tp,p′ has determinant 1.

Now applying Lemma B.2 for an arbitrary smooth eigenvector process ν with
eigenvalue λ we obtain that the value of D(Q(S,p, ν)) is independent of p since
the transformations Tp,p′ depend only on the quadruple p,p′, λ, S and can be cal-
culated from the eigenvector equation. For a general smooth eigenvector process
ν, we define D(S, ν) as this unique differential entropy of D(Q(S,p, ν)). We will
need the next definition.

DEFINITION 10.1. A process {Yv}v∈Vd
in Id(X) is called 2-Markov if for an

arbitrary edge e the collections of random variables {Yv}v∈W1 and {Yv}v∈W2 are
conditionally independent with respect to {Yv}v∈e where W1 and W2 are the set of
vertices on the two sides of e. (With this notation, Vd = W1 ∪ e ∪ W2.)

Note that the 2-Markov property implies that the distribution of YC = {Yv}v∈C

determines the whole process because we can build up the distribution of {Yv}v∈Vd

using iterated conditionally independent couplings of YC along edges. More pre-
cisely, if for some connected subgraph K of Td the distribution of {Yv}v∈V (K) is
already constructed and w ∈ Vd is a vertex such that the star B1(w) intersects K in
a single edge e, then the joint distribution of {Yv}v∈V (K)∪B1(w) is the conditionally
independent coupling of {Yv}v∈V (K) and {Yv}v∈B1(w) with respect to {Yv}v∈e. The
invariance of the process implies that {Yv}v∈B1(w) has the same distribution as YC .
By iterating this procedure, we can build up the marginal distribution on any finite
connected subgraph of Td , and thus the whole process in uniquely determined.

LEMMA 10.2. We have for every k ≥ 1 and smooth eigenvector process ν the
following three inequalities:

D
(
Bk(C), ν

) ≤ dD
(
Bk(e), ν

) − (d − 1)D
(
Bk−1(C), ν

)
,

D
(
Bk(e), ν

) ≤ 2D
(
Bk−1(C), ν

) −D
(
Bk−1(e), ν

)
,

D
(
Bk(C), ν

) − (d/2)D
(
Bk(e), ν

) ≤D
(
Bk−1(C), ν

) − (d/2)D
(
Bk−1(e), ν

)
.

If ν is Gaussian, then we have equality everywhere. Furthermore, if we have equal-
ity everywhere (for every k), then ν is 2-Markov.



EIGENVECTORS OF RANDOM REGULAR GRAPHS 1709

PROOF. The proof is based on the general fact (see Lemma B.3) that for
jointly-defined random variables (X,Y,Z) we have that D(X,Z) + D(Y,Z) −
D(Z) ≥D(X,Y,Z) holds with equality if and only if X and Y are conditionally in-
dependent with respect to Z. To see the first inequality, let us place p to the root of
Bk(C). We can cover Bk(C) in a rotational symmetric way by d copies of Bk(e) in
a way that all of them contain Bk−1(C) and they are disjoint outside of Bk−1(C).
Each copy of Bk(e) covers a subset of the variables Av,w and Qp such that the
joint differential entropy of this subset of variables is equal to D(Bk(e), ν). Now
Lemma B.3 completes the proof of the first inequality. The other two inequalities
can be seen in a similar way. If we have equality everywhere for every k, then by
lemma B.3 we get that the marginal distribution of ν on Bk(C) is the condition-
ally independent coupling of d copies of Bk(e) over Bk−1(C) and the marginal
distribution on Bk(e) is the conditionally independent coupling of two copies of
Bk−1(C) over Bk−1(e). By induction, the 2-markov property follows inside Bk(C)

for every k, and thus for the whole process. �

Let α(S, ν) denote the difference D(Q(S,p, ν)) − D(Q(S,p,μ)) where μ is
the Gaussian eigenvector process with the same eigenvalue as ν. If we apply the
same change of basis to both D(Q(S,p, ν)) and D(Q(S,p,μ)), they change with
the same additive constant by lemma B.2, and thus α(S, ν) remains unchanged.
This shows the basis independence of α(S, ν). In particular, we have that if ν is a
smooth eigenvector process then α(S, ν) = Dsp(S, ν) −Dsp(S,μ) and so

(10.2)

α
(
Bk(C), ν

) − (d/2)α
(
Bk(e), ν

)
= (

Dsp
(
Bk(C), ν

) − (d/2)Dsp
(
Bk(e), ν

))
− (

Dsp
(
Bk(C),μ

) − (d/2)Dsp
(
Bk(e),μ

))
.

Using Theorem 8.1 and Theorem 9.1, we get the following consequence.

PROPOSITION 10.1. If ν is a smooth typical eigenvector process, then

lim sup
k→∞

α
(
Bk(C), ν

) − d

2
α

(
Bk(e), ν

)
= lim sup

k→∞
Dsp

(
Bk(C), ν

) − d

2
Dsp

(
Bk(e), ν

) ≥ 0.

PROOF. By Theorem 8.1, the first term in (10.2) is nonnegative and by Theo-
rem 9.1 the second term converges to 0. This completes the proof. �

The main theorem of this section is the following.

THEOREM 10.3. If ν is a smooth typical eigenvector process, then

α(C, ν) − (d/2)α(e, ν) ≥ 0

and equality implies that ν is 2-Markov.
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PROOF. By iterating the third inequality in Lemma 10.2, we obtain that

D
(
Bk(C), ν

) − (d/2)D
(
Bk(e), ν

) ≤D
(
Bl(C), ν

) − (d/2)D
(
Bl(e), ν

)
holds for every k ≥ l ≥ 0. Furthermore, if we replace ν in the above formula by
the Gaussian wave μ then we get equality. This implies that

(10.3) α
(
Bk(C), ν

) − (d/2)α
(
Bk(e), ν

) ≤ α
(
Bl(C), ν

) − (d/2)α
(
Bl(e), ν

)
holds for every k ≥ l ≥ 0. By Proposition 10.1, we get the inequality of the
theorem by applying (10.3) with l = 0 and k → ∞. For the second statement,
assume that α(C, ν) − (d/2)α(e, ν) = 0. By (10.3), this is only possible if
α(Bk(C), ν) − (d/2)α(Bk(e), ν) = 0 holds for every k, and thus the inequalities
of Lemma 10.2 are all equalities. This implies that ν is 2-Markov. �

11. Heat equation and the proof of the main theorem.

DEFINITION 11.1. For λ ∈ [−2
√

d − 1,2
√

d − 1] and d ≥ 3, let Fd,λ denote
the set of probability distributions F on R

d+1, where F is the joint distribution of
real-valued random variables (X1,X2, . . . ,Xd,Z) such that:

1. E(XiXj ) = (λ2 − d)d−1(d − 1)−1, E(XiZ) = λ/d , E(Xi) = E(Z) = 0 and
E(X2

i ) = E(Z2) = 1 holds for 1 ≤ i, j ≤ d and i �= j ;
2. the joint distribution of (X1,X2, . . . ,Xd,Z) is symmetric under every per-

mutation that fixes Z;
3. for every 1 ≤ i ≤ d the joint distribution of (Xi,Z) is the same as the joint

distribution of (Z,Xi);
4. the quantities Dsp(X1,X2, . . . ,Xd,Z) and D(X1,Z) are both finite.

We define the function D : Fd,λ → R by D(F ) = Dsp(X1,X2, . . . ,Xd,Z) −
d
2D(X1,Z), where F is the joint distribution of (X1,X2, . . . ,Xd,Z).

Notice that the covariance conditions of Definition 11.1 guarantee that E((X1 +
· · ·+Xd −λZ)2) = 0 and thus X1 +X2 +· · ·+Xd = λZ holds with probability 1.
This implies that the joint distribution F is concentrated on the 1 co-dimensional
(d-dimensional) subspace Wλ(C) in R

d+1. The subspace differential entropy in
definition 11.1 is measured in this subspace.

In this section, we think of λ ∈ [−2
√

d − 1,2
√

d − 1] and d as fixed values and
most of the times our notation will not indicate the dependence on these values
even if there is such a dependence. Our goal is to solve the extremal problem of
maximizing D inside Fd,λ (see Theorem 11.2). This will provide the last step in
the proof of our main theorems (see Theorem 2.2 and Theorem 5.2) as we will
explain at the end of this section.

It will be important that there is a unique element F ∗ [the distribution of
(X∗

1,X∗
2, . . . ,X∗

d,Z∗)] in Fd,λ such that F ∗ is Gaussian. (The covariances define
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the Gaussian system uniquely, which clearly satisfies the symmetry conditions.)
Note that F ∗ depends on both d and λ. Most of this section deals with the proof of
the the next theorem which says that the entropy formula D in Fd,λ is maximized
by the Gaussian distribution F ∗.

THEOREM 11.2. For every F ∈ Fd,λ, we have that D(F ) ≤ D(F ∗) and equal-
ity holds if and only if F = F ∗.

To get rid of the subspace differential entropy, we apply a change of basis
to the systems in Fd,λ. We can choose a fix linear transformation T : Rd+1 →
R

d (depending on d and λ) such that for every F ∈ Fd,λ the system T (F ) =
(B1,B2, . . . ,Bd) satisfies E(BiBj ) = δi,j for 1 ≤ i, j ≤ d . Using that M = T (F ∗)
is Gaussian we obtain that M is the standard normal distribution on R

d . Using that
linear transformations change differential entropy with a fix constant (depending
on the transformation; see Lemma B.2), the statement of the theorem is equivalent
to the fact that

D
(
T (F )

) − (d/2)D(X1,Z) ≤D(M) − (d/2)D
(
X∗

1,Z∗)
and equality holds if and only if T (F ) = M . The proof of Theorem 11.2 relies on
the following proposition.

PROPOSITION 11.1. Let F ∈ Fd,λ be the joint distribution of the jointly-
defined random variables (X1,X2, . . . ,Xd,Z), and Ft = F + √

2tF ∗ (using con-
volution) for every t > 0. Then the function

�F (t) =D
(
T (Ft )

) − (d/2)D
(
X1 + √

2tX∗
1,Z + √

2tZ∗)
satisfies �′

F (0) ≥ 0. If F is not Gaussian, then �′
F (t) > 0 for some t ≥ 0.

Note that the choice of Ft comes from the heat equation in R
d (see Appendix A).

We first show that Proposition 11.1 implies Theorem 11.2. The joint distribution
Ft does not satisfy the covariance conditions of definition 11.1 but it is clear that
the scaled version Ft(1 + 2t)−1/2 is in Fd,λ. Notice that scaling does not change
the differential entropy formula because the extra additive constants coming from
scaling exactly cancel each other. By using the claim for G = Ft(1 + 2t)−1/2 we
obtain from �′

G(0) ≥ 0 that �′
F (t) ≥ 0 holds for F with every t ≥ 0. Since Ft(1 +

2t)−1/2 = F(1 + 2t)−1/2 + F ∗(2t/(1 + 2t))1/2 converges to F ∗ as t → ∞, we
obtain that F ∗ maximizes D. To see that only the Gaussian system F ∗ attains the
maximum assume that F attains the maximum. In this case, �′

F (t) ≥ 0 is only
possible if �′

F (t) = 0 holds for every t ≥ 0. This implies that F is Gaussian by the
second part of Proposition 11.1.

It remains to prove Proposition 11.1. We start with some notation and lem-
mas. Assume that the measure μ is the distribution and f is the density function
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of B = T (F ). We can choose a matrix Q ∈ R
(d+1)×d such that Xi = ∑

k Qi,kBk

holds for i = 1, . . . , d , and Z = ∑
k Qd+1,kBk is also satisfied. We define vi =

(Qi,1, . . . ,Qi,d) for i = 1, . . . , d and w = (Qd+1,1, . . . ,Qd+1,d). Notice that the
covariance matrix of F is QQT . Hence the vectors {vi}di=1 and w are unit vec-
tors such that (vi, vj ) = (λ2 − d)d−1(d − 1)−1 and (vi,w) = λ/d for every
1 ≤ i, j ≤ d . The joint distribution of ((v1,B), (v2,B), . . . , (vd,B), (w,B)) is the
same as F . We have that μ is invariant with respect to every orthogonal transforma-
tion permuting the system {vi}di=1 and fixing w. Furthermore, we have that μ pro-
jected to the space spanned by vi and w is invariant with respect to the reflection in-
terchanging vi and w. We can choose two real numbers α and β such that the vec-
tors ai = αw + βvi and bi = αvi + βw satisfy (ai, bi) = 0 and ‖ai‖2 = ‖bi‖2 = 1
for every 1 ≤ i ≤ d [in particular, we need that (α2 + β2)λ/d + 2αβ = 0, and
(α2 + β2) + 2αβλ/d = 1]. The choice of α and β is unique up to multiplying
both by −1 or switching them. Their values can be determined using elementary
geometry.

Note that construction of the vector system {vi}di=1,w, {ai}di=1, {bi}di=1 in R
d is

purely linear algebraic. Such systems, with the scalar products given above, can be
constructed for an arbitrary |λ| ≤ d; however, in the case of |λ| ≤ 2

√
d − 1, they

satisfy a useful geometric property expressed in the following lemma.

LEMMA 11.3. If |λ| ≤ 2
√

d − 1, then there are numbers t1, t2 with t1, t2 ≥ 0
and t1 + t2 = 1 such that for every u ∈ R

d we have

‖u‖2
2 =

d∑
i=1

(
t1(u, ai)

2 + t2(u, bi)
2)

.

PROOF. The proof follows from two observations. The first one is the fol-
lowing. Let {v′

i}di=1 be a system of unit vectors such that all pairwise scalar
products are equal and for all 1 ≤ i ≤ d we have (v′

i ,w) = c for some c ≤ 1.
(The system {ai}di=1 satisfies the conditions with c = α + βλ/d , and {bi}di=1 with
c = αλ/d + β .) Then

(11.1)
d∑

i=1

(
u, v′

i

)2 = (
1 − c2)

d(d − 1)−1∥∥u − (u,w)w
∥∥2

2 + c2d(u,w)2

holds for every u ∈ R
d . To see this, first notice that

∑
i v

′
i = cdw, which implies

that (v′
i , v

′
j ) = (c2d − 1)/(d − 1) for 1 ≤ i < j ≤ d . It follows that we can choose

γ ∈ R such that the equality (v′
i − γw,v′

j − γw) = 0 holds for 1 ≤ i < j ≤ d . On
the other hand, we have

∑
i (u − (u,w)w,v′

i ) = 0. Therefore,

d∑
i=1

(
u, v′

i

)2 =
d∑

i=1

((
u − (u,w)w,v′

i

)2 + (u,w)2(
w,v′

i

)2)
.



EIGENVECTORS OF RANDOM REGULAR GRAPHS 1713

The second term is equal to the second term of (11.1). In the first term, we can
replace v′

i with v′
i − γw. If the latter is equal to zero, then we are done. Otherwise,

since {v′
i − γw}di=1 is an orthogonal basis in w⊥, we obtain

d∑
i=1

(
u, v′

i

)2 = ∥∥v′
i − γw

∥∥2
2

∥∥u − (u,w)w
∥∥2

2 + c2d(u,w)2.

On the other hand, for symmetry reasons, ‖v′
i − γw‖2

2 does not depend on i. By
substituting u = v′

1 and using (v′
1, v

′
j ) = (c2d − 1)/(d − 1) again, we get that the

value of this constant is the same as in equation (11.1).
The second observation says that if |λ| ≤ 2

√
d − 1 then there exist constants

t1, t2 ≥ 0 with t1 + t2 = 1 such that t1(ai,w)2 + t2(bi,w)2 = 1/d . First of all, note
the symmetries of the vector system imply that (ai,w)2, (bi,w)2 are independent
from i. Elementary calculation shows that the two values (ai,w)2 and (bi,w)2 are

equal to (1 ±
√

1 − (λ/d)2)/2. This shows the existence of the constants t1, t2. We
get the statement of the lemma by taking the convex combination of (11.1) applied
for {ai}di=1 and {bi}di=1 with coefficients t1 and t2. �

Now we return to the proof of Proposition 11.1. For 1 ≤ i ≤ d , let fi denote
the orthogonal projection of f to the two-dimensional space Vi = 〈w,vi〉R. This
means that

fi(x) =
∫
z∈V ⊥

i

f (x + z)

for x ∈ Vi . Let T2 : R2 → R
2 denote the linear transformation T2(x, y) = (αx +

βy,αy + βx) with α and β defined above. We have that fi (when written in the
orthonormal basis ai, bi) is the density function of T2(Xi,Z). We can write �F (t)

as

(11.2) k +D
(
T (Ft )

) − (d/2)D
(
T2

(
X1 + √

2tX∗
1,Z + √

2tZ∗))
,

where the constant k comes from the change of basis T2. Then by the de Bruijn
identity [see equation (A.1) and Lemma A.2], we get

�′
F (0) =

∫
Rd

‖�f ‖2
2/f − (d/2)

∫
V1

‖�f1‖2
2/f1.

From Lemma 11.3, we have that

(11.3) ‖�f ‖2
2 =

d∑
i=1

(
t1(∂ai

f )2 + t2(∂bi
f )2)

holds for some t1, t2 ≥ 0 such that t1 + t2 = 1. Using

‖�f1‖2
2 = (∂a1f1)

2 + (∂b1f1)
2
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and the above equations it follows that

�′
F (0) =

d∑
i=1

∫
Rd

(
t1(∂ai

f )2 + t2(∂bi
f )2)

/f

− (d/2)

∫
V1

(
(∂a1f1)

2 + (∂b1f1)
2)

/f1.

By the symmetries of f , we have that the terms in the above sum are all the same,
and thus

(11.4)

�′
F (0) = d

∫
Rd

(
t1(∂a1f )2 + t2(∂b1f )2)

/f

− (d/2)

∫
V1

(
(∂a1f1)

2 + (∂b1f1)
2)

/f1.

LEMMA 11.4. If u ∈ V1, then∫
Rd

(∂uf )2/f ≥
∫
V1

(∂uf1)
2/f1.

Equality holds if and only if the function g = ∂uf (x)/f (x) = ∂u logf satisfies
g(x) = g(x + z) for every pair x ∈ R

d and z ∈ V ⊥
1 .

PROOF.∫
Rd

(∂uf )2/f =
∫
x∈V1

f1(x)

∫
z∈V ⊥

1

(
f (x + z)/f1(x)

)(
∂uf (x + z)/f (x + z)

)2

≥
∫
x∈V1

f1(x)

(∫
z∈V ⊥

1

(
f (x + z)/f1(x)

)(
∂uf (x + z)/f (x + z)

))2

=
∫
x∈V1

f1(x)

(∫
z∈V ⊥

1

(
∂uf (x + z)/f1(x)

))2
=

∫
V1

(∂uf1)
2/f1.

To see the inequality in the above calculation, notice that f (x + z)/f1(x) is the
density function of a probability measure on x + V1. We can apply the Cauchy–
Schwarz inequality using this density function to get the inequality. It also shows
that equality holds in the statement of the lemma if and only if ∂uf (x+z)/f (x+z)

is constant almost everywhere on x + V1 for almost every x. Since we work with
continuous functions the almost can be omitted. �

We apply Lemma 11.4 for a1 and b1 and (11.4) to obtain that

(11.5) �′
F (0) ≥ (dt1 − d/2)

∫
V1

(∂a1f1)
2/f1 + (dt2 − d/2)

∫
V1

(∂b1f1)
2/f1.

Using the symmetry of (X1,Z), we obtain that

(11.6)
∫
V1

(∂a1f1)
2/f1 =

∫
V1

(∂b1f1)
2/f1.
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It follows that �′
F (0) ≥ 0. The proof of the first part of Proposition 11.1 is now

complete.
We arrived to the second part of Proposition 11.1. Assume that F satisfies

�′
F (t) = 0 for every t ≥ 0. Using the notation from Lemma 11.3, we have by

t1 + t2 = 1 that at least one of t1 > 0 and t2 > 0 holds. Without loss of gener-
ality, we assume that t1 > 0. Let gt : Rd → R denote the logarithm of the den-
sity function of Bt = T (Ft). This implies by Lemma 11.4 that ∂a1gt satisfies the
property that ∂a1gt (x) = ∂a1gt (x + z) holds whenever x ∈ R

d and z ∈ V ⊥
1 . For

convenience, we will write every element x ∈ R
d as a triple (α(x), β(x), γ (x)),

where α(x) = (x, a1), β(x) = (x, b1) and γ (x) is the projection of x to V ⊥
1 . Us-

ing this notation, we have that ∂a1gt (x) = ht (α(x), β(x)). This means that there
exists a function ĥt : R2 → R such that ∂a1 ĥt (α(x), β(x)) = ∂a1gt (x). We have
by ∂a1(gt − ĥt ) = 0 that gt (x) − ĥt (α(x), β(x)) = st (β(x), γ (x)) for some func-
tion st . We obtain that the density function of Bt can be written in the following
form:

exp
(
ĥt

(
α(x),β(x)

)) · exp(st
(
β(x), γ (x)

)
.

In other words, this means that the random variables of α(Bt) and γ (Bt ) are condi-
tionally independent with respect to β(Bt). This implies by Lemma A.6 that one of
the following two possibilities holds: either α(B) is independent of (β(B), γ (B))

or γ (B) is independent of (α(B),β(B)). In the first case, we obtain (using the ter-
minology of Lemma A.5) that a1 is an independent direction for B . By symmetries
of B , we obtain that {ai}di=1 are all independent directions for B . If t1 < 1, then
(ai, aj ) �= 0 for every pair 1 ≤ i < j ≤ d and Lemma A.5 completes the proof. If
t1 = 1, then {ai}di=1 is an orthonormal basis in R

d and b1 = ∑d−1
i=2 ai(d − 1)−1/2.

We have that (B, ai) are identically distributed independent random variables and
that (B, b1) = ∑d−1

i=2 (B, ai)(d −1)−1/2 has the same distribution. This is only pos-
sible if this (B, ai) is normal for every i. We obtain that B is Gaussian.

In the case when γ (B) is independent of (α(B),β(B)), we have that ∂ug(x) =
∂ug(x + z) holds for every triple u ∈ V1, x ∈ R

d , z ∈ V ⊥
1 . The symmetries of f

imply that ∂ug(x) = ∂ug(x + z) holds for every triple u ∈ Vi , x ∈ R
d , z ∈ V ⊥

i .
Let ri denote the orthogonal projection of ai to w⊥ for 1 ≤ i ≤ d . Note that the
vector system {ri}di=1 is completely symmetric in the sense that the origin is the
center of a regular simplex whose vertices are given by these vectors. We have for
every 1 ≤ i ≤ d that ∂ri g(x) = hi((x, ri), (x,w)) for some two variable function
hi : R2 → R. The symmetries of f imply that hi does not depend on i, and thus
hi = h for some h for every i.

The next step is to prove that h(x, y) = xh∗(y) for some one variable func-
tion h∗. We have by

∑d
i=1 ri = 0 that

∑d
i=1 ∂ri g(x) = 0, and thus

∑d
i=1 hi((x, ri),

(x,w)) = 0 holds for every x ∈ R
d . For arbitrary numbers x1, x2, . . . , xd, y ∈ R

with
∑d

i=1 xi = 0, we can choose x ∈ R
d such that (x, ri) = xi and (x,w) = y.

It follows that
∑d

i=1 h(xi, y) = 0 holds for arbitrary numbers with
∑d

i=1 xi = 0.
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Assume first that all xi is 0 then we have that dh(0,w) = 0, and thus h(0,w) = 0
for every w. Then assume that x1 = a, x2 = −a and xi = 0 if i ≥ 3. We obtain
that h(a,w) + h(−a,w) = 0, and thus h(−a,w) = −h(a,w) holds for every a

and w. Finally, let x1 = a, x2 = b, x3 = −a − b and xi = 0 if i ≥ 4. We obtain that
h(a,w) + h(b,w) = −h(−a − b,w) = h(a + b,w). Since h is additive and con-
tinuous in the first coordinate, a well-known fact implies that h is a linear function
in the first coordinate, and thus we obtain h(x, y) = xh∗(y).

Now we have ∂ri g(x) = (x, ri)h
∗((x,w)) for every 1 ≤ i ≤ d . It is easy to

see that this implies that g(x) = ‖x − (x,w)w‖2
2h

∗((x,w)) + c∗((x,w)) where
c∗ : R → R is some function. We have ∂wg(x) = ‖x − w(x,w)‖2

2(h
∗)′((x,w)) +

(c∗)′((x,w)). On the other hand, we have that ∂wg(x) = ∂wg(x + z) holds when-
ever z ∈ V ⊥

i for every 1 ≤ i ≤ d . It follows that (h∗)′ = 0 everywhere and so
g(x) = c‖x − (x,w)w‖2

2 + c∗((x,w)) with some constant c. Now from the equa-
tion f (x) = exp(c‖x − (x,w)w‖2

2 + c∗((x,w))), we have that B − (B,w)w and
(B,w) are independent random variables. Furthermore, B − (B,w)w has a Gaus-
sian distribution concentrated on the orthogonal space of w. This means that the
pair (B, r1), (B,w) of random variables is independent and (B, r1) is Gaussian.
We know that (B, v1) is a linear combination of (B, r1) and (B,w) [with a nonzero
coefficient for (B, r1)] and its distribution is the same as the distribution of (B,w)

(here we use the symmetries of B). It follows that (B,w) is also Gaussian, and
thus c∗((x,w)) = c2(x,w)2 + c3 for some constants c2, c3. Thus we have that B

has a Gaussian joint distribution implying that F is also joint Gaussian, as it is a
linear function of B .

PROOF OF THEOREM 2.2 AND THEOREM 5.2. From Proposition 5.1, we have
that Theorem 5.2 implies Theorem 2.2. Let μ be a smooth typical eigenvector
process corresponding to eigenvalue λ represented by a system of random vari-
ables {Xv}v∈Vd

. According to the results in Section 7, it is enough to show that
μ is a Gaussian wave. We have by Lemma 5.3 that λ ∈ [−2

√
d − 1,2

√
d − 1].

Let F = {Xv}v∈C . It is clear that F ∈ Fd,λ. We have by Theorem 10.3 that
D(F ) ≥ D(F ∗), and thus by Theorem 11.2 we obtain that F = F ∗. Again by
Theorem 10.3 we have that μ is 2-Markov and so {Xv}v∈Vd

can be obtained by
iterating conditionally independent couplings of C along edges (see Section 10).
This shows the Gaussianity of the whole system {Xv}v∈V . �

APPENDIX A: ON HEATED RANDOM VARIABLES

Let X be a random variable with values in R
n and let M be a standard normal

random variable with values in the same space. Let ft denote the density function
of X + √

2tM and let μt denote the corresponding measure on R
n. The standard

heat equation says that ∂tft = �ft holds for every t > 0. It is useful to compute
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the variation of the differential entropy D(ft ). The de Bruijn identity (see, e.g.,
[20]) says that

(A.1) ∂t

(
D(ft )

) = ∂t

∫
Rn

−ft logft =
∫
Rn

−�ft (1 + logft ) =
∫
Rn

‖�ft‖2
2/ft .

However, the validity of (A.1) relies on the fact that both ∂ift and ∂ift logft

vanish at infinity for every 1 ≤ i ≤ n. This fact is proved in Lemma A.2. Notice
that if X has finite variance then also X + √

2tM has finite variance and if t > 0
then D(ft ) is a finite quantity (Lemma A.3).

In general, if σ > 0 then the density function f of X + σM is smooth, non-
vanishing and analytic restricted to every line in R

n. More precisely, if p,q ∈ R
n

then the real function λ �→ f (p + λ(q − p)) extends to an entire analytic function
on C. Furthermore every partial derivative of f has this property. In the rest of this
appendix, we prove several other facts about heated random variables.

LEMMA A.1. Let X be a random variable with values in R
n and let M be a

standard normal distribution random variable with values in the same space. Let f

be the density function of the independent sum X + σM for some σ > 0. Then for
every 1 ≤ i ≤ n and x ∈ R

n we have that |∂if (x)| ≤ f (x)a(1 + | log(bf (x))|1/2)

for some constants a, b depending on n and σ .

PROOF. Let � be the density function of σM and let μ be the distribution
of X. Let r ∈ R

+ the smallest positive real number such that ∂i�(z) ≤ |f (x)| for
every z satisfying |z| ≥ r . It can be shown that r ≤ c2(1 + | log(c1f (x))|1/2) for
some constants (depending on n and σ ). Let D = {z : |x − z| ≤ r}. We have that∫
z∈D ∂i�(x − z) dμ ≤ |f (x)|. On the other hand, by f (x) = ∫

z∈R �(x − z) dμ we
obtain that ∫

z∈D
∂i�(x − z) dμ ≤ ∣∣f (x)

∣∣ max|y|≤r
∂i�(y)/�(y).

Using that ∂if (x) = ∫
z ∂i�(x − z) dμ and that ∂i�(z)/�(z) = O(z), the proof is

complete. �

LEMMA A.2. Let X be a random variable with values in R
n and let M be

a random variable with standard normal distribution on R
n. Let f be the density

function of the independent sum X + σM for some σ > 0. Then for 1 ≤ i ≤ n the
functions f , ∂if and ∂if logf vanish at infinity.

PROOF. We start with f . For contradiction, assume that D = {x : f (z) ≥ c}
is unbounded for some c > 0. Let � be the density function of σM and let us
choose r ∈ R

+ such that �(x) ≤ c/2 whenever ‖x‖2 ≥ r . Let μ be the probability
distribution of X. We have that if f (x) ≥ c and Qx = {z : ‖z − x‖2 < r}, then∫
z∈Qx

�(z − x)dμ ≥ c/2 and thus μ(Qx) ≥ ‖�‖−1∞ c/2. From the unboundedness
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of D, we conclude that there is an infinite set of points {pi}∞i=1 in D such that
‖pi − pj‖2 > 2r holds for every pair i �= j in N. This contradicts the fact that μ is
finite. The statement for ∂if and ∂if logf follows from Lemma A.1. �

LEMMA A.3. Let X be a random variable with values in R
n with finite co-

variance matrix. Let M be independent of X, with standard normal distribution on
R

n. Then, for every σ > 0, X + σM has finite differential entropy.

PROOF. The random variable X + σM has finite covariance matrix. As it
is well known, among the distributions with a given covariance matrix, Gaus-
sian distribution maximizes differential entropy. Hence D(X + σM) < ∞. On the
other hand, as in the previous lemma, let f be the density function of X + σM .
Lemma A.2 implies that {t : f (t) > 1} is a compact set. The continuity of f im-
plies that

∫
Rn f (t) logf (t) dt < ∞. Thus we also have D(X + σM) > −∞. �

LEMMA A.4. Let X be a random variable with values in R
n and let M

be a random variable with standard normal distribution on R
n. Let f be the

density function of the independent sum X + σM for some σ > 0. Then for
every ε > 0 there is ε′ > 0 such that for every pair a, b ∈ R

n with ‖a −
b‖2 = r ≤ ε′ and f (b) > c we have that f (a)/f (b) ≥ 1 − ε, where c =
σ−(n−1)/2 exp(−r−1/(16σ 2)).

PROOF. We start by general estimates for a pair a, b ∈ R
n with r = ‖a−b‖2 ≤

1/4. We have that f (x) = ∫
y∈Rn �(x − y)dμ where μ is the distribution of

X and � is the density function of σM . Let D = {z : ‖z − a‖2 ≤ r−1/2}. Let
f1(x) = ∫

y∈Rn 1D�(x − y)dμ and f2(x) = f (x) − f1(x). We have that f2(x) ≤
supz∈D �(x − z). It follows that |f2(a)|, |f2(b)| ≤ (2πσ 2)−(n−1)/2�0(r

−1/2 − r)

where �0 is the density function of the one dimensional normal distribution
N(0, σ ). Thus using r−1/2 − r ≥ r−1/2/2 and 1/

√
2π < 1 we have

(A.2)
∣∣f2(a)

∣∣, ∣∣f2(b)
∣∣ ≤ (

2πσ 2)−(n−1)/2
�0

(
r−1/2/2

)
< c2.

To estimate f1(a)/f1(b), we use

min
z∈D

�(z − a)/�(z − b) ≤ f1(a)/f1(b).

From

�(z − a)/�(z − b) = exp
((‖z − b‖2

2/2 − ‖z − a‖2
2/2

)
/σ 2)

= exp
((

(a − z, b − a) + r2/2
)
/σ 2)(A.3)

it follows that

(A.4) f1(a)/f1(b) ≥ exp
((−r1/2 + r2/2

)
/σ 2) ≥ 1 − r1/2/σ 2.
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Inequality (A.2) implies that f (b) = f1(b) + f2(b) ≤ f1(b) + c2. Using this and
f1(a) ≤ f (a), we obtain

f (a)/f (b) ≥ f1(a)/
(
f1(b) + c2) = (

f1(a)/f1(b)
)(

1 + c2/f1(b)
)−1

.

If f (b) > c, then f1(b) = f (b) − f2(b) > c − c2, and thus by (A.4) we get

f (a)/f (b) >
(
f1(a)/f1(b)

)(
1 + c2/

(
c − c2))−1 ≥ (

1 − r1/2)
(1 − c).

The quantity c goes to 0 with r , and so if r is small enough, we have that
f (a)/f (b) ≥ 1 − ε. �

Let X be a random variable with values in R
d . We say that v ∈ R

d is an indepen-
dent direction for X if the R-valued random variable (X, v) is independent from
the projection of X to the d − 1 dimensional space v⊥. Note that every direction
is independent for the standard normal distribution.

LEMMA A.5. Let X be a random variable with values in R
d and with

E(X) = 0. Assume that {vi}di=1 is a basis in R
d such that each vi is an independent

direction for X, and furthermore, for every 1 ≤ i ≤ d there is 1 ≤ ji ≤ d such that
(vi, vji

) �= 0. Then X is Gaussian.

PROOF. Let N a random variable with values in R
d with standard normal dis-

tribution. It is clear that the independent sum X + εN has the same independence
property as X for every ε ≥ 0. Furthermore, it is enough to prove that the heated
version X + εN of X is Gaussian for every ε > 0. Let us fix ε > 0. The advantage
of working with X + εN is that it has a strictly positive smooth density function
f on R

d and so we can work with logarithms and with partial derivatives. The
independence property now says that ∂vi

logf (x) is equal to hi((x, vi)) for some
smooth function hi :R →R. We obtain that

∂vji
∂vi

f = (vi, vji
)h′′

i

(
(x, vi)

)
, ∂vi

∂vji
f = (vi, vji

)h′′
ji

(
(x, vji

)
)
,

and so h′′
i ((x, vi)) = h′′

ji
((x, vji

)). Since vi and vji
are independent for every pair

a, b ∈ R, there is x ∈ R
d such that (x, vi) = a and (x, vji

) = b. This implies that
h′′

i (a) = h′′
ji
(b) holds for every a, b and so each h′′

i is a constant function for ev-

ery i. Consequently, hi is linear for every i, and thus (using that {vi}di=1 is a ba-
sis) ∂u logf is a linear function for every u ∈ R

d . It follows that logf satisfies
∂u1∂u2∂u3 logf = 0 for every u1, u2, u3 ∈ R

d . This means that logf is given by a
quadratic d-variate polynomial Q on R

d . We obtain that f = c exp(Q(x)) holds,
and thus f is the density function of some Gaussian distribution. �

LEMMA A.6. Let (X,Y,Z) be a jointly-defined random variables with X,Y ∈
R and Z ∈R

d−2. Let (Xt , Yt ,Zt ) be the triple obtained by running the heat equa-
tion for time t with X0 = X, Y0 = Y and Z0 = Z. Assume that for every t ≥ 0 we
have that Xt and Zt are conditionally independent with respect to Yt . Then either
(X,Y ) is independent from Z or (Y,Z) is independent from X.
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PROOF. We parametrize R
d with triples (x, y, z) where the coordinates x and

y are real numbers and z is a d − 2-dimensional vector. By 
z, we mean the sum
of the second partial derivates with respect to the coordinates belonging to z. We
denote by ft , ht , gt and mt the density functions of (Xt , Yt ,Zt ), (Xt , Yt ), (Zt , Yt )

and Yt , respectively. We also introduce st (z, y) = gt (z, y)/mt(y). Using the con-
ditional independence and the heat equation, we obtain the following equations:

ft (x, y, z) = ht (x, y)gt (z, y)/mt(y) = ht (x, y)st (z, y).

∂tft = 
ft ; ∂tht = 
ht ;
∂tgt = 
gt = ∂yygt + 
zgt ; ∂tmt = 
mt.

By abusing the notation, we will omit t from ft , ht , gt , mt and st in the follow-
ing calculations. We start from the first equality, and use the other three one after
the other:

(A.5)

∂xxf + ∂yyf + 
zf = ∂th · s + h · ∂t s.

∂xxh · s + ∂yyf + 
zf = ∂xxh · s + ∂yyh · s + h · ∂t s.

∂yyf + h · 
zg/m = ∂yyh · s + h · (
(∂tg)/m − (g · ∂tm)/m2)

.

∂yyh · s + 2∂yh · ∂ys + h · ∂yys

= ∂yyh · s + (h · ∂yyg)/m − (gh · ∂yym)/m2.

Before continuing this, we calculate the partial derivatives of s with respect to y,

∂ys = (∂yg)/m − (g · ∂ym)/m2,

∂yys = (∂yyg)/m − 2(∂yg · ∂ym)/m2 − (g · ∂yym)/m2 + 2g · (∂ym)2/m3.

Now we substitute this into equation (A.5):

2(∂yh · ∂yg)/m − 2g(∂yh · ∂ym)/m2 + (h · ∂yyg)/m

− 2h(∂yg · ∂ym)/m2 − (gh · ∂yym)/m2 + 2hg(∂ym)2/m3

= (h · ∂yyg)/m − (gh · ∂yym)/m2,

(∂yh · ∂yg)/m − (g · ∂yh + h · ∂yg) · (∂ym)/m2 + gh(∂ym)2/m3 = 0,

(∂yh · ∂yg)/m2 − (g · ∂yh + h · ∂yg) · (∂ym)/m3 + gh(∂ym)2/m4 = 0,(
(∂yh)/m − (h · ∂ym)/m2)(

(∂yg)/m − (g · ∂ym)/m2) = 0,(
∂y(h/m)

) · (
∂y(g/m)

) = 0.

We obtain that at least one of ∂y(h/m) = 0 and ∂y(g/m) = 0 holds on an open
set. Assume that (without loss of generality) ∂y(h/m) = 0 holds on an open set
U of the domain D of h/m which is R2. This is equivalent to m∂yh − h∂ym = 0
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on U . Let p ∈ U and q ∈ D be arbitrary. Let us define the function r : R → R by
r(λ) = (m∂yh − h∂ym)(p + λ(q − p)). Then r has an analytic extension to C. In
addition, r = 0 in a small neighborhood of 0 in R. It follows that r is constant 0,
and thus ∂y(h/m) is 0 at every q ∈ D. This implies that Xt is independent of Yt .
Similarly, if ∂y(g/m) = 0 holds on an open set, we obtain that Zt is independent
of Yt . The conditional independence of Xt and Zt with respect to Yt completes the
proof. �

APPENDIX B: DIFFERENTIAL ENTROPY

Differential entropy is defined as follows for absolutely continuous random vec-
tors. Some properties of the discrete entropy are preserved (e.g., it is additive if we
put together independent random variables), others do not hold any more; an es-
sential difference is that differential entropy does not have to be nonnegative.

DEFINITION B.1. Let (X1,X2, . . . ,Xn) be a family of random variables.
Suppose that their joint distribution is absolutely continuous, and their joint den-
sity function is f . Then their differential entropy is defined as follows (provided
that the integral exists):

D(X1,X2, . . . ,Xn) = −
∫
Rn

f (t1, . . . , tn) logf (t1, . . . , tn) dt1 · · · dtn.

To see the connection between entropy in the discrete case and differential en-
tropy, recall Theorem 9.3.1 from [20]. This says that if we divide the range of X

into bins of length δ, and Xδ denotes the quantized version of X with respect to
this grid, then

H
(
Xδ) + log δ →H(X)

as δ → 0, assuming that the density of X is Riemann integrable.
The following well-known lemma shows how the differential entropy is modi-

fied when we apply a linear transformation to the random vector (see, e.g., corol-
lary to Theorem 9.6.4 in [20].

LEMMA B.2. Let X = (X1, . . . ,Xn) be a family of random variables, and let
A ∈ R

n×n be an invertible matrix. Then

D(AX) = D(X) + log
∣∣det(A)

∣∣.
The following lemma is equivalent to the fact that the nonnegativity of condi-

tional mutual information holds for differential entropy as well. We include a proof
for completeness.
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LEMMA B.3. Let X, Y , Z be random variables such that their differential
entropy exist. Then we have

D(X,Y,Z) ≤D(X,Z) +D(Y,Z) −D(Z).

PROOF. Let g(x, y) = f (x, y, z)/f (z) on the support of Z and 0, otherwise.
Then g is a density function on R

2. As the nonnegativity of mutual information
is satisfied for differential entropy (see, e.g., Corollary to Theorem 9.6.1. in [20]),
we have

−
∫

g(x, y) logg(x, y) dx dy

≤ −
∫

g1(x) logg1(x) dx −
∫

g2(y) logg2(y) dy,

where g1 and g2 are the marginal densities of g. Multiplying both sides by f (z)

and integrating with respect to z, we get the statement of the lemma. �

APPENDIX C: FACTOR OF I.I.D. PROCESSES

Let f : [0,1]Vd → Y be a measurable function such that it is invariant under root
preserving automorphisms. We can use f to construct an invariant process in the
following way. First we put independent uniformly random elements from [0,1] on
the vertices of Td . Then, at each vertex v, we evaluate f for this random labeling
such that the root is placed to v. If f depends only on finitely many coordinates,
then the corresponding process is called a block factor of i.i.d. process.

PROPOSITION C.1. If {Xv}v∈Vd
is a real-valued typical process and {Yv}v∈Vd

is a weak limit of factor of i.i.d. processes, then their independent sum {Xv +
Yv}v∈Vd

is a typical process.

PROOF. Notice that the family of typical processes is closed with respect to
the weak topology. On the other hand, every process that is a weak limit of factor
i.i.d. processes is also a weak limit of block factor of i.i.d. processes [35]. Hence it
is enough to prove the statement in the case when {Yv}v∈Vd

is a block factor of i.i.d.
process. It is well known that block factor of i.i.d. processes can be approximated
with the corresponding local algorithm computed on graphs with sufficiently large
(essential) girth. Since large random d-regular graphs have large essential girth,
the independent sum of the approximation of {Xv}v∈Vd

and the local algorithm
approximating {Yv}v∈Vd

is an approximation of the process {Xv + Yv}v∈Vd
. �

The next proposition was proved by Harangi and Virág in [30].

PROPOSITION C.2. For |λ| ≤ 2
√

d − 1, the unique Gaussian wave �λ is a
weak limit of factor of i.i.d. processes (but not a factor of i.i.d. process itself).
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