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LOCAL SINGLE RING THEOREM ON OPTIMAL SCALE

BY ZHIGANG BAO1,2, LÁSZLÓ ERDŐS1 AND KEVIN SCHNELLI1,3

HKUST, IST Austria and KTH Royal Institute of Technology

Let U and V be two independent N by N random matrices that are dis-
tributed according to Haar measure on U(N). Let � be a nonnegative de-
terministic N by N matrix. The single ring theorem [Ann. of Math. (2) 174
(2011) 1189–1217] asserts that the empirical eigenvalue distribution of the
matrix X :=U�V ∗ converges weakly, in the limit of large N , to a determin-
istic measure which is supported on a single ring centered at the origin in C.
Within the bulk regime, that is, in the interior of the single ring, we establish
the convergence of the empirical eigenvalue distribution on the optimal local
scale of orderN−1/2+ε and establish the optimal convergence rate. The same
results hold true when U and V are Haar distributed on O(N).
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1. Introduction and main result. Consider the N ×N random matrix of the
form

(1.1) X ≡XN =U�V ∗,
where U ≡ UN and V ≡ VN are two independent sequences of random matrices,
which are both Haar distributed on either the unitary group, U(N), of degree N or
on the orthogonal group,O(N), of degreeN . Moreover, let� ≡�N be a sequence
ofN×N deterministic nonnegative definite diagonal matrices. Note that in general
X is not Hermitian and most of its eigenvalues are genuinely complex numbers. In
fact, almost surely the matrix X is not normal. Let λj (X), j = 1,2, . . . ,N , be the
eigenvalues of X and let

(1.2) μX := 1

N

N∑
j=1

δλj (X)

be the (normalized) empirical spectral distribution of X. We define μ� analo-
gously.

ASSUMPTION 1.1. We assume that the sequence (�N) is uniformly bounded,
that is, there exists a finite constant S+ such that

(1.3) 0 ≤�N ≤ S+.

From this assumption, it follows that there is a constant 0< s+ <∞ such that,
for all N ∈N,

(1.4) suppμ� ⊂ [0, s+].
We first consider the situation where there exists a limiting measure μσ 4 of μ� ,

that is,

(1.5) dL(μ�,μσ )→ 0,

as N → ∞, where dL denotes the Lévy distance. Given such a μσ on [0,∞), we
define

(1.6) r− :=
(∫

R+
x−2 dμσ (x)

)− 1
2
, r+ :=

(∫
R+
x2 dμσ (x)

) 1
2
,

4We will often use the convention that capital letters indicate random matrices and the correspond-
ing small letters indicate their limiting objects.
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where we set r− = 0 in case the integral in its definition diverges. Note that if μσ
is supported more than one point, we have r− < r+ as follows from Schwarz’s
inequality. We let

(1.7) Rσ ≡R(μσ ) := {
w ∈ C : r− < |w|< r+

}
be the ring in C with radii r− and r+. In case r− = 0, Rσ is the punctuated disc of
radius r+.

For a probability measure μ on R, we denote by μsym its symmetrization, that
is, μsym(A) := 1

2 [μ(A)+μ(−A)] for any Borel set A⊂R. For r ∈ R
+, set

μσ,r := μsym
σ � δsym

r ,(1.8)

where � denotes the free additive convolution of probability measures on R; see
Section 2.1.

Given a probability measureμ on R, its Stieltjes’ transform,mμ, on the complex
upper half-plane C

+ := {z ∈ : Im z > 0} is defined by

(1.9) mμ(z) :=
∫
R

dμ(x)

x − z
, z ∈ C

+.

THEOREM 1.2 (Single ring theorem, [26]). Assume that Assumption 1.1 holds
and that there is a compactly supported probability measure μσ on [0,∞), which
is supported at more than one point, such that (1.5) holds. Assume in addition that
there are constants k, k1 > 0 such that

(1.10) Immμ�(z)≤ k1

on {z ∈ C
+ : Im z > N−k}. Then the empirical spectral distribution μX converges

weakly (in probability) to a deterministic probability measure ρσ supported on
Rσ . The limiting measure is absolutely continuous with respect to Lebesgue mea-
sure and given by

(1.11) ρσ (w)d2w = 1

2π

w

(∫
R

log |s|μσ,|w|(ds)
)

d2w, w ∈ Rσ ,

where 
w = 4∂w∂w is the Laplacian on C and d2w ≡ dw ∧ dw is Lebesgue mea-
sure on C.

REMARK 1.3. In Theorem 1.2, U and V may be both Haar distributed on
U(N) or on O(N).

REMARK 1.4. In its original form, Theorem 1.2 was proved by Guionnet,
Krishnapur and Zeitouni in [26] under a further assumption on the smallest singu-
lar value of the matrix X − z, z ∈ C. This hard-to-check condition was removed
by Rudelson and Vershynin in [33] (cf. Theorem 2.6 below), which yields Theo-
rem 1.2.
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REMARK 1.5. The measure ρσ was first computed in [28]. It has a direct
interpretation in free probability theory. In fact, it is the Brown measure of the
free product of a Haar unitary and an element σ on a noncommutative probability
space; see [28] for more details.

1.1. Local single ring law. To state our results, we use the following defini-
tion on high-probability estimates from [20]. In Appendix A of the Supplementary
Material [5], we collect some of its properties.

DEFINITION 1.6. Let X ≡ X (N), Y ≡ Y(N) be two sequences of nonnegative
random variables. We say that Y stochastically dominates X if, for all (small)
ε > 0 and (large) D > 0,

(1.12) P
(
X (N) > NεY(N)) ≤N−D,

for sufficiently large N ≥ N0(ε,D), and we write X ≺ Y . When X (N) and Y(N)

depend on a parameter v ∈ V (typically an index label or a spectral parameter),
then X (v)≺ Y(v), uniformly in v ∈ V , means that the threshold N0(ε,D) can be
chosen independently of v.

Motivated by (1.11), we introduce a probability measure ρ� on C by requiring

(1.13) dρ�(w)= 1

2π

w

(∫
R

log |s|dμ�,|w|(s)
)

d2w, w ∈ C,

where

(1.14) μ�,r := μ
sym
� � δsym

r , r ≥ 0,

and 
w is the Laplacian on C in the sense of distributions.

REMARK 1.7. The fact that formula (1.13) defines a probability measure fol-
lows from previous work on the subject which we shortly summarize here.

Consider a noncommutative W ∗-probability space (M, τ ), with τ a trace. Let
u be a Haar unitary element and let t = t∗ be ∗-free from u and such that the distri-
bution of t , that is, its spectral measure, is given by μ� . Let μ̃�,w be the spectral
measure of |ut −wid|, with id the unit in M and w ∈ C. Then the Brown measure
for the product ut is given by the Riesz measure associated to the subharmonic
function

(1.15) C �w →
∫
R

log |s|dμ̃�,w(s);
cf. Section 2 of [28]. Haagerup and Larsen showed in Proposition 3.5 in [28] that
μ̃�,w = μ�,|w|. Hence ρ� in (1.13) can be characterized as the Brown measure of
ut which by construction is a probability measure.
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The main result of this paper is the following local single theorem in the bulk.
Notice that (1.5) is not assumed, we only require that dL(μ�,μσ ) ≤ b, for some
small constant b > 0, for N sufficiently large.

THEOREM 1.8. Suppose that Assumption 1.1 holds. Let μσ be a compactly
supported probability measure on [0,∞) which is supported at more than one
point. Fix any (small) τ > 0 and define

(1.16) Rτ
σ := {

w ∈ C : r− + τ ≤ |w| ≤ r+ − τ
} ⊂ Rσ ,

where r± ≡ r±(μσ ) are given in (1.10). Then there exists a (small) constant b0 > 0
and N0 ∈ N, depending only on μσ and S+, such that whenever the Lévy distance
dL(μ�,μσ ) satisfies

(1.17) sup
N≥N0

dL(μ�,μσ )≤ b,

for some b ≤ b0, then the following holds. Choose any w0 ∈ Rτ
σ . Let f :C →R be

a smooth function such that ‖f ‖∞ ≤ C0 and f (z) = 0 for all |z| ≥ C0, for some
positive constant C0. For α ∈ (0,1/2), set

(1.18) fw0(w) :=N2αf
(
Nα(w−w0)

)
.

Then we have for any α ∈ (0,1/2) that the estimate

(1.19)

∣∣∣∣∣ 1

N

N∑
i=1

fw0

(
λi(X)

) −
∫
Rσ

fw0(w)dρ�(w)

∣∣∣∣∣ ≺N−1+2α‖
f ‖L1(C)

holds uniformly in f and in w0 ∈ Rτ
σ , for N sufficiently large, depending on τ ,

S+, μσ and C0.

REMARK 1.9. Note that we can choose α in (1.19), almost as large as 1/2
in order to have an effective bound on the error term. Since the typical distance
between the eigenvalues in the bulk of the ring Rσ is of order N−1/2, our result is
optimal, both in terms of range of the exponent α and the error term on the right-
hand side of (1.19). In particular, this improves the recent local single ring theorem
of Benaych–Georges in [11] from scale (logN)−1/4 to the optimal scale N−1/2+ε ,
for any small ε > 0.

REMARK 1.10. Theorem 1.8 holds withU , V being Haar distributed on either
U(N) or on O(N).

REMARK 1.11. Note that w0 in Theorem 1.8 is chosen to be the (open) single
ring Rσ , in particular w0 stays away from the boundary of Rσ . In case r− = 0,
Rσ is a punctuated disc. It has been proved in [10, 27] that there are no outliers at
an order one distance from Rσ .
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Let f : C → R be smooth and supported on Rτ
σ , for some (small) τ > 0. Fol-

lowing the proof of Theorem 1.8, it is straightforward to verify that (1.19) also
holds with α = 0 and fw0 replaced with f , provided that the support of the func-
tion f stays away from the spectral edges, that is, is contained in Rτ

σ .

The following corollary of Theorem 1.8 expresses the speed of convergence in
the single ring theorem on the macroscopic scale.

COROLLARY 1.12. Under the conditions and with the notation of Theo-
rem 1.8, we have that

(1.20)

∣∣∣∣∣ 1

N

N∑
i=1

f
(
λi(X)

) −
∫
Rσ

f (w)dρσ (w)

∣∣∣∣∣ ≺ ‖
f ‖L1(C)

(
1

N
+ b

)
,

uniformly for any function f supported in Rτ
σ with a bound ‖f ‖∞ ≤ C0, for N

sufficiently large, depending on τ , S+, μσ and C0.

REMARK 1.13. In (1.20), the measure ρσ is given by (1.11). By Theorem 4.4
and Corollary 4.5 of [28], the measure ρσ is absolutely continuous on C \ {0} with
respect to Lebesgue measure. Moreover, it satisfies ρσ ({0}) = μσ ({0}). [In case
μσ ({0}) > 0, we have r− = 0.] Note, however, that we have to exclude the point
w = 0 in our results since it is outside Rσ .

REMARK 1.14. Note that in Theorem 1.8 and Corollary 1.12 we do not re-
quire any regularity assumption on the measureμσ ; we even allow for atoms inμσ .
In particular, sending b→ 0, asN → ∞, Corollary 1.12 also implies that Assump-
tion 1.1 and (1.5) together imply dL(ρ�,ρσ )→ 0, as N → ∞, thus removing the
regularity condition (1.10) in the bulk from the single ring theorem, this answers a
question in [26], Remark 2.

1.2. Summary of previous results. The first single ring theorem was estab-
lished by Feinberg and Zee for a class of unitary invariant ensemble in [24], but
without full rigor. The complete mathematical proof was given by Guionnet, Kr-
ishnapur and Zeitouni [26]; see also Remarks 1.4 and 1.14 for relaxing some con-
ditions.

In spirit of the Wigner ensemble for the Hermitian case, the Ginibre ensem-
ble can also be naturally extended by considering arbitrary i.i.d. entries; how-
ever, the unitary invariance property is lost in this generalization. Starting from
the work of Girko [25], until the final result of Tao and Vu [34] with the least
moment assumption, there have been many works devoted in proving circular law
for general distribution. We refer to the survey [14] for more references in this di-
rection. A prominent idea called Hermitization was introduced by Girko in [25].
This method translates spectral distribution problems of a non-Hermitian matrix to
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those of a Hermitian matrix (of double dimension), whose spectral properties can
be studied with more established techniques.

Similar to Wigner’s original semicircle law, the single ring theorem establishes
weak convergence of the spectral distribution, that is, it captures the density of
eigenvalues on the global scale. Since the typical distance between nearby eigen-
values is very small, of order N−1/2, it is natural to ask whether the empirical
density can also be approximated by the deterministic limit density on some local
scale. Ideally, such local law should hold on the smallest possible scale, that is,
just above the scale N−1/2. In the Hermitian case, the local laws for Wigner and
related ensembles have been extensively studied in the recent years (see, e.g. [19]
for a survey and references therein), the optimal local scale has been first achieved
in [21].

With the aid of Girko’s Hermitization, local laws for non-Hermitian matrices
can be obtained via studying the local law for certain Hermitian matrices. With
this strategy, the local circular law on optimal scale was established in the series
of works Bourgade, Yau and Yin [15, 16] and Yin [37]. The first local single ring

theorem was obtained by Benaych–Georges in [11], down to the scale (logN)− 1
4 ,

by proving the matrix subordination for Girko’s Hermitization of X in (1.1); cf.
(2.14). The strategy of matrix subordination was originally introduced by Kargin
in [29] for proving a local law in the additive matrix model A+UBU∗, where A
and B are deterministic Hermitian matrices and U is a Haar unitary. This additive
model shares certain similarities with the Hermitization of the model X =U�V ∗,
but the latter has a block structure, and thus we call it block additive model (cf.
(4.2)). Recently, in [3, 4, 6], we obtained the local law of the additive model A+
UBU∗ on the optimal scale. The approach developed in these works opens up a
path to treat the optimal local law in the block additive model, hence also sheds
light on the optimal local single ring theorem. The key difference is that in the
block additive model the Haar unitary matrices provide only a randomizedU(N)×
U(N) symmetry instead of the full U(2N) symmetry. In particular, the coupling
between the blocks is deterministic, so the mixing mechanism is much weaker.
A more detailed overview of the proof strategy and the difficulties will be given in
Section 4.2.

1.3. Notational conventions. We use the symbols O(·) and o(·) for the stan-
dard big-O and little-o notation. We use c and C to denote strictly positive con-
stants that do not depend on N . Their values may change from line to line.

We denote by MN(C) the set of N × N matrices over C. For A ∈ MN(C),
we denote by ‖A‖ its operator norm and by ‖A‖2 its Hilbert–Schmidt norm. The
matrix entries of A are denoted by Aij .

Let g = (g1, . . . , gN) be a real or complex Gaussian vector. We write g ∼
NR(0, σ 2IN) if g1, . . . , gN are independent and identically distributed (i.i.d.)
N(0, σ 2) normal variables; and we write g ∼ NC(0, σ 2IN) if g1, . . . , gN are i.i.d.
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NC(0, σ 2) variables, where gi ∼ NC(0, σ 2) means that Regi and Imgi are inde-
pendent N(0, σ

2

2 ) normal variables.
We use double brackets to denote index sets, that is, for n1, n2 ∈ R, �n1, n2� :=

[n1, n2] ∩Z.

2. Preliminaries and main technical task.

2.1. Free additive convolution. We recall some basic notions and results for
the free additive convolution. We follow the notational conventions in our previous
paper [2].

Let μ be a Borel probability measure on R and recall its Stieltjes’ transform mμ

defined in (1.9). Note that mμ :C+ →C
+ is an analytic function such that

(2.1) lim
η↗∞ iηmμ(iη)= −1.

Conversely, if m : C+ → C
+ is an analytic function such that limη↗∞ iηm(iη)=

−1, then m is the Stieltjes’ transform of a probability measure μ.
Given a Borel probability measure μ on R, let Fμ be the negative reciprocal

Stieltjes transform of μ,

(2.2) Fμ(z) := − 1

mμ(z)
, z ∈ C

+.

Observe that

(2.3) lim
η↗∞

Fμ(iη)

iη
= 1,

as follows from (2.1). Note that Fμ is analytic on C
+ with nonnegative imaginary

part.
The free additive convolution is the symmetric binary operation on Borel prob-

ability measures on R characterized by the following result.

THEOREM 2.1 (Theorem 4.1 in [9], Theorem 2.1 in [17]). Given two Borel
probability measures, μ1 and μ2, on R, there exist unique analytic functions,
ω1,ω2 :C+ →C

+, such that:

(i) for all z ∈ C
+, Imω1(z), Imω2(z)≥ Im z and

(2.4) lim
η↗∞

ω1(iη)

iη
= lim

η↗∞
ω2(iη)

iη
= 1;

(ii) for all z ∈ C
+,

(2.5) Fμ1

(
ω2(z)

) = Fμ2

(
ω1(z)

)
, ω1(z)+ω2(z)− z= Fμ1

(
ω2(z)

)
.
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It follows from (2.4) that the analytic function F :C+ →C
+ defined by

(2.6) F(z) := Fμ1

(
ω2(z)

) = Fμ2

(
ω1(z)

)
,

satisfies the analogue of (2.3). Thus F is the negative reciprocal Stieltjes’ trans-
form of a probability measure μ, called the free additive convolution of μ1 and
μ2, denoted by μ≡ μ1 �μ2. The functions ω1 and ω2 are referred to as the sub-
ordination functions and F is said to be subordinated to Fμ1 , respectively, to Fμ2 .
The subordination phenomenon was first noted by Voiculescu [36] in a generic
situation and extended to full generality by Biane [13]. To exclude trivial shifts of
measures, we henceforth assume that both, μ1 and μ2, are supported at more than
one point. Then the analytic functions F , ω1 and ω2 extend continuously to the
real line; see Theorem 2.3 [7] or Theorem 3.3 [8]. We use the same notation for
their extensions to C

+ ∪R.

2.2. The limiting measure μσ,r . Recall the definitions μ�,r := μ
sym
� � δ

sym
r

and μσ,r := μ
sym
σ � δ

sym
r from (1.8). In this subsection, we will always assume

that μ� and μσ satisfy Assumption 1.1. For the sake of simplicity of notation, we
abbreviate in this subsection

(2.7) μ1 ≡ μsym
σ , μ2 ≡ δsym

r .

The negative reciprocal Stieltjes’ transform of μ2 = δ
sym
r is found to be

(2.8) Fμ2(z)= z− r2

z
, z ∈ C

+.

Substituting (2.8) into (2.5), we obtain

Fμ1

(
ω2(z)

) = Fμ2

(
ω1(z)

) = Fμ1

(
ω2(z)

) −ω2(z)+ z− r2

Fμ1(ω2(z))−ω2(z)+ z
.

Solving the above equation for Fμ1(ω2(z)) we conclude that the subordination
function ω2(z) is the unique solution to

(2.9) Fμ1

(
ω2(z)

) −ω2(z)= −z− r2

ω2(z)− z
, z ∈ C

+,

subject to the condition Imω2(z) ≥ Im z. Comparing once more with (2.5) we
immediately find that the other subordination function is given by

(2.10) ω1(z)= − r2

ω2(z)− z
, z ∈ C

+.

The analysis of the measure μσ,r = μ1 � μ2 thus reduces to the analysis of
(2.9) for ω2. We first derive upper and lower bound on ω2(z). For the purpose
of proving Theorem 1.8, it will suffice to consider z ∈ {iη : η ≥ 0}. Since μ1 and
μ2 are symmetric, we have ω2(iη)= −ω2(iη), that is, ω2(iη) and ω1(iη) are both
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fully imaginary. This simplifies our analysis; while detailed quantitative properties
of the full measure μσ,r are still poorly understood, we now have a good control on
it near zero, hence on its Stieltjes’ transform along the imaginary axis. The main
result, formulated in Theorem 2.2 below, is that the subordination functions are
bounded from below and above on the imaginary axis without any condition on
μσ . This theorem is the key input that enables us to dispense with the regularity
condition in the single ring theorem; see Remark 1.14.

THEOREM 2.2 (Bounds on subordination functions). We assume that the sup-
port of μσ contains more than one point, equivalently, that r− < r+. Let μ1 = μ

sym
σ

and μ2 = δ
sym
r for some r > 0. Fix ηM <∞ and a (small) τ > 0. Set

J := [r− + τ, r+ − τ ].
There exist constants c≡ c(μ1, τ, ηM) > 0 and C ≡C(μ1, τ, ηM) <∞ such that

sup
r∈J

sup
η∈[0,ηM]

∣∣ω1(iη)
∣∣ ≤ C, sup

r∈J
sup

η∈[0,ηM]
∣∣ω2(iη)

∣∣ ≤ C,(2.11)

inf
r∈J inf

η∈[0,ηM] Imω1(iη)≥ c, inf
r∈J inf

η∈[0,ηM] Imω2(iη)≥ c(2.12)

and

(2.13) inf
r∈J inf

η∈[0,ηM]
∣∣mμ1�μ2(iη)

∣∣ ≥ c, sup
r∈J

sup
η∈[0,ηM]

∣∣mμ1�μ2(iη)
∣∣ ≤C.

REMARK 2.3. By (2.13), the measure μ1 � μ2 has a positive and bounded
density at E = 0. In particular, E = 0 is in the bulk of the measure μ1 � μ2, as
defined in Definition 4.2 below.

The proof of Theorem 2.2 is quite technical and independent of the main line
of the argument, so we give it in Section 7 of the Supplementary Material [5]. In
the subsequent sections, we will mainly rely on the following corollary of Theo-
rem 2.2. Let m�,r(z) be the Stieltjes’ transform of μ�,r ; see (1.8).

COROLLARY 2.4. Fix ηM <∞ and a (small) τ > 0. Then there are constants
C ≡ C(μ

sym
σ , τ, ηM), c ≡ (μ

sym
σ , τ, ηM) and a threshold N0 ≡ N0(μ

sym
σ , τ, ηM)

such that the conclusions in Theorem 2.2 hold with μ1 = μ
sym
� and μ2 = δ

sym
r ,

for N ≥N0.

PROOF. This follows directly from the continuity of the subordination func-
tions with respect to the Lévy distance (see Lemma 5.1 of [2]), from Theorem 2.2
and from (1.17). �
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2.3. Key technical inputs. Following Girko’s hermitization technique [25], we
introduce for any w ∈ C the 2N × 2N Hermitian matrix

(2.14) Hw :=
(

0 X−w

X∗ −w∗ 0

)
.

The main advantage of working with Hw is that it is self-adjoint and we thus have
a functional calculus at disposal. For any function g ∈ C2(C), an application of
Green’s theorem reveals that

(2.15)
1

N

N∑
i=1

g
(
λi(X)

) = 1

2π

∫
C

(
g)(w)

(
1

2N
Tr log

∣∣Hw
∣∣) d2w,

which is a manifestation of log | · | being the Coulomb potential in two dimensions.
The following identity, first used in this context by [35], allows us to efficiently
deal with the right-hand side of (2.15). For any (large) K > 0,

(2.16)
1

2N
Tr log

∣∣Hw
∣∣ = 1

2N
Tr log

∣∣(Hw − iK
)∣∣ − Im

∫ K

0
mw(iη)dη,

with |w| > 0, where mw(z), z ∈ C
+, is the Stieltjes’ transform of the spectral

distribution of Hw . For very large K the first term on the right-hand side of (2.16)
is elementary to control, we hence focus on the second term. Due to the block
structure of Hw , the eigenvalues come in pairs ±λwi , i ∈ �1,N�, where 0 ≤ λw1 ≤
· · · ≤ λwN are the nonnegative eigenvalues. With this notation, mw is given by

mw(z) := 1

2N

N∑
i=1

(
1

λwi − z
+ 1

−λwi − z

)
= 1

N

N∑
i=1

λwi
(λwi )

2 − z2 , z ∈C
+.

Recall the notation m�,|w| for the Stieltjes’ transform of μ�,|w|; cf. (1.8). The
following result is the main technical input for the proof of Theorem 1.8. Recall
Rτ
σ from (1.16).

THEOREM 2.5 (Local law for Hw). Under the conditions and with the nota-
tions of Theorem 1.8, the estimate

(2.17) sup
w∈Rτ

σ

∣∣mw(iη)−m�,|w|(iη)
∣∣ ≺ 1

Nη
,

holds uniformly in η > 0, for N sufficiently large, depending on τ , S+ and μσ .

This result controls |mw(iη) − m�,|w|(iη)| along the positive imaginary axis.
Note that the error estimate on the right-hand side of (2.17) is effective when η is
chosen just above the local scale, that is, when η > N−1+γ , for any small γ > 0.
For even smaller η > 0, (2.17) yields the upper bound |mw(iη)| ≺ (Nη)−1 which
improves the trivial deterministic bound |mw(iη)| ≤ η−1 by a factor N−1. Theo-
rem 2.5 is used to control the integrand in the second term on the right-hand side
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of (2.16) for η �N−1. On very short scales, the behavior of mw(iη), η �N−1, is
essentially random and determined by the smallest (in absolute value) eigenvalues
of Hw . The following estimate on λw1 , proved by Rudelson and Vershynin in [33],
is then used to control the integrand of the second term on the right-hand side of
(2.16) for very small η�N−1.

THEOREM 2.6 (Theorem 1.1 and Theorem 1.2 in [33]). There exist positive
numerical constants c > 0 and C <∞, such that

(2.18) P

(
λw1 ≤ t

|w|
)

≤
(
t

|w|
)c
NC,

uniformly in t > 0, for all N ∈N.

REMARK 2.7. In the orthogonal case, (2.18) holds, for N sufficiently large,
when the matrix � is away from the identity; see Theorem 1.2 in [33]. In this case,
the constants c, C and the threshold for N in (2.18) depend on S+ and μσ . Indeed,
(1.17) and the assumption that the support of μσ contains more than one point
imply that � is separated away from the identity.

In Section 3, we will choose g in (2.15) to be the rescaled function fw0(·) =
N2αf (Nα(· −w0); see (1.18). The local law in (2.17) together with (2.18) (with
t/|w| �N−1) will allow us to choose α ∈ (0,1/2) as is asserted in Theorem 1.8.
The details of the proof of Theorem 1.8, assuming Theorem 2.5, are carried out in
Section 3. Our main task then is to prove Theorem 2.5. Actually, we will establish
the local law in a more general setting; cf. Theorem 4.3. This will be accomplished
in Sections 4–6 and we will separately outline the main ideas of this proof in
Section 4.2. We begin with the proof of Theorem 2.2 in the next section.

3. Proof of Theorem 1.8 and Corollary 1.12. In this section we prove The-
orem 1.8 and Corollary 1.12, with the aid of Theorems 2.5 and 2.6. The use of
Girko’s hermitized matrices to derive local laws is a standard argument; see, for
example, [15, 35] for related models. Following [35], we use the identity (3.6)
below to link the log-determinant of Hw with the Stieltjes’ transform mw .

PROOF OF THEOREM 1.8. For any ζ ∈ C, we denote

(3.1) w ≡w(ζ ) :=w0 +N−αζ.

Given f : C → R satisfying the assumption of Theorem 1.8, we introduce the
domain

(3.2) Dw0(α)≡ Dw0(α,f ) := {
w̃ :Nα(w̃−w0) ∈ supp(f )

}
.
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According to (3.1), w ∈ Dw0(α) is equivalent to ζ ∈ supp(f ), in particular |ζ | ≤ C

as f is compactly supported. Recall the notation fw0(·) from Theorem 1.8. Using
(2.15), we rewrite

(3.3)
1

N

∑
i

fw0

(
λi(X)

) = 1

2π
N2α

∫
C

(
f )(ζ )

(
1

2N
Tr log

∣∣Hw
∣∣) d2ζ.

Recalling the definitions in (1.8) and (1.13), we also have∫
C

fw0(w)ρ�
(
d2w

) = 1

2π

∫
C

fw0(w)
w

(∫
R

log |u|μ�,|w|(du)
)

d2w

= 1

2π
N2α

∫
C

(
f )(ζ )

(∫
R

log |u|μ�,|w|(du)
)

d2ζ.

(3.4)

Hence, we can write

1

N

∑
i

fw0

(
λi(X)

) −
∫
C

fw0(w)ρ�
(
d2w

)
= 1

2π
N2α

∫
C

(
f )(ζ )

(
1

2N
Tr log

∣∣Hw
∣∣ − ∫

R

log |u|μ�,|w|(du)
)

d2ζ.

(3.5)

We next use the following observation due to [35], Section 8. For any (large)K > 0
and |w|> 0, we have

(3.6)
1

2N
Tr log

∣∣Hw
∣∣ = 1

2N
Tr log

∣∣(Hw − iK
)∣∣ − Im

∫ K

0
mw(iη)dη.

Analogously, we can also write, with the same K ,

(3.7)
∫
R

log |u|μ�,|w|(du)=
∫
R

log |u− iK|μ�,|w|(du)− Im
∫ K

0
m�,|w|(iη)dη.

Choosing K sufficiently large, say K =NL for some large constant L, it is easy
to see that

(3.8)
∣∣∣∣ 1

2N
Tr log

∣∣(Hw − iK
)∣∣ − ∫

R

log |u− iK|μ�,|w|(du)
∣∣∣∣ � 1

N

holds uniformly in w ∈ Dw0(α). Here, we used the fact that ‖Hw‖ ≤ C for some
positive constant C; cf. Assumption 1.1. The uniformity in w can be guaranteed
by the fact that Dw0(α) lies in a ball of finite (in fact, CN−α) radius since f is
compactly supported. Hence, it suffices to show

(3.9)
∣∣∣∣∫

C

(
f )(ζ )

(
Im

∫ NL

0

(
mw(iη)−m�,|w|(iη)

)
dη

)
d2ζ

∣∣∣∣ ≺ ‖
f ‖L1(C)

N
.

To show (3.9), we decompose the integral with respect to η into two parts:

(3.10)
∫ NL

0
=

∫ N−L1

0
+

∫ NL

N−L1
,
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for sufficiently large constants L1 > 1 and L > 0 to be chosen below. To control
the first part, we use (2.18), while for the second part we use (2.17).

First, using the upper bound of m�,|w|(iη) (cf. Corollary 2.4), we obtain

(3.11)
∣∣∣∣∫ N−L1

0
Imm�,|w|(iη)dη

∣∣∣∣ ≤ 1

N
,

for L1 > 1, uniformly in w ∈ Dw0(α). Hence, we have

(3.12)
∣∣∣∣∫

C

(
f )(ζ )

(∫ N−L1

0
Imm�,|w|(iη)dη

)
d2ζ

∣∣∣∣ ≤ C
‖
f ‖L1(C)

N
.

In addition, we observe that

P

(∣∣∣∣∫
C

(
f )(ζ )

(∫ N−L1

0
Immw(iη)dη

)
d2ζ

∣∣∣∣> ‖
f ‖L1(C)

N

)

≤ N

‖
f ‖L1(C)

E

∣∣∣∣∫
C

(
f )(ζ )

(∫ N−L1

0
Immw(iη)dη

)
d2ζ

∣∣∣∣
≤ N

‖
f ‖L1(C)

∫
C

∣∣(
f )(ζ )∣∣E(∫ N−L1

0

η

(λw1 )
2 + η2 dη

)
d2ζ.

(3.13)

Note that

E

(∫ N−L1

0

η

(λw1 )
2 + η2 dη

)

= 1

2
E log

(
1 + (

NL1λw1
)−2)

= 1

2

∫ ∞
0

P
(
log

(
1 + (

NL1λw1
)−2) ≥ s

)
ds

= 1

2

∫ ∞
0

P
(
λw1 ≤N−L1

(
es − 1

)− 1
2
)

ds

= 1

2

(∫ N−L1

0
+

∫ 1

N−L1
+

∫ ∞
1

)
P

(
λw1 ≤N−L1

(
es − 1

)− 1
2
)

ds.

For the first integral, we use the trivial bound P(·)≤ 1 to obtain

(3.14)
∫ N−L1

0
P

(
λw1 ≤N−L1

(
es − 1

)− 1
2
)

ds ≤N−L1 .

For the second part of the integral, using the crude bound (es − 1)− 1
2 ≤ s− 1

2 ≤
N

L1
2 , s ∈ [N−L1,1] and (2.18), we estimate∫ 1

N−L1
P

(
λw1 ≤N−L1

(
es − 1

)− 1
2
)

ds ≤
∫ 1

N−L1
P

(
λw1 ≤N−L1

2
)

ds ≤N− cL1
2 +C,
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for some constants c > 0 and C <∞, for N sufficiently large. For the third part,
using es − 1> 1

2es , s > 1, and (2.18), we have∫ ∞
1

P
(
λw1 ≤N−L1

(
es − 1

)− 1
2
)

ds

≤
∫ ∞

1
P

(
λw1 ≤ √

2N−L1e− s
2
)

ds

≤ N−cL1+C

2

∫ ∞
1

e− cs
2 ds ≤N−cL1+C,

(3.15)

for some constants c > 0 and C < ∞. Combining (3.14)–(3.15), we obtain that
there are positive constants c′ > 0 and C′, independent of L1 such that

(3.16) E

(∫ N−L1

0

η

(λw1 )
2 + η2 dη

)
≤N−c′L1+C′

,

for N sufficiently large. In fact, the bound (3.16) is uniform in w ∈ Dw0(α) since
the constants c and C in Theorem 2.6 are uniform in t and w. Plugging (3.16) into
(3.13), yields

P

(∣∣∣∣∫
C

(
f )(ζ )

(∫ N−L1

0
Immw(iη)dη

)
d2ζ

∣∣∣∣ ≥ ‖
f ‖L1(C)

N

)
≤N−c′L1+C′+1,

(3.17)

for N sufficiently large (independent of L1). Choosing L1 large enough, the con-
tribution of the first integral in (3.10) to (3.9) is within the claimed error.

To control the contributions from the second integral in (3.10), for any (large)
constant L1, we apply the local law for mw in (2.17), uniform in w, to find∣∣∣∣∫

C

(
f )(ζ )

(
Im

∫ NL

N−L1

(
mw(iη)−m�,|w|(iη)

)
dη

)
d2ζ

∣∣∣∣
≺

∫
C

∣∣(
f )(ζ )∣∣(∫ NL

N−L1

1

Nη
dη

)
d2ζ ≺ ‖
f ‖L1(C)

N
.

Combining (3.12) and (3.17), and choosing L1 sufficiently large, we get (3.9),
which together with (3.5)–(3.8) concludes the proof of Theorem 1.8. �

PROOF OF COROLLARY 1.12. Let f : C → R be smooth and supported on
Rτ
σ ; see (1.16). It is straightforward following the proof of Theorem 1.8 to verify

that (1.19) also holds with α = 0 and fw0 replaced with f provided that suppf ⊂
Rτ
σ ; cf. Remark 1.11. Thus under the assumptions of Corollary 1.12 it suffices to

show that ∣∣∣∣∫Rτ
σ

(
f )(w)

∫
R

log |u|(μ�,|w|(du)−μσ,|w|(du)
)

d2w

∣∣∣∣
≤ C‖
f ‖L1(C) dL(μ�,μσ ),
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for a constant C (depending on τ ), to conclude its proof. From (3.7), it is sufficient
to prove that

(3.18)
∣∣∣∣∫

R

log |u− i|(μ�,|w|(du)−μσ,|w|(du)
)∣∣∣∣ ≤ CdL(μ�,μσ )

and

(3.19)
∣∣∣∣∫ 1

0

(
m�,|w|(iη)−mσ,|w|(iη)

)
dη

∣∣∣∣ ≤ CdL(μ�,μσ ),

uniformly for all w ∈ Rτ
σ , for N sufficiently large.

Inequality (3.18) follows from the continuity of the additive-free convolution.
More precisely, from Theorem 4.13 of [12], we know that dL(μ�,|w|,μσ,|w|) ≤
dL(μ�,μσ ). Since log |u− i| is a smooth function andμ�,|w|,μσ,|w| are compactly
supported, (3.18) follows.

To establish (3.19), we note that, for N sufficiently large,∫ 1

0

∣∣m�,|w|(iη)−mσ,|w|(iη)
∣∣ dη ≤ max

η∈(0,1]
∣∣m�,|w|(iη)−mσ,|w|(iη)

∣∣
≤ CdL(μ�,μσ ),

for allw with r− +τ ≤ |w| ≤ r+ −τ , with a constant depending on τ . This follows
directly from Theorem 2.7 of [2]. This shows (3.19).

So far we proved (1.20) for smooth functions f . Since ρσ is a Borel probability
measure (see, e.g., Theorem 1.2), (1.20) extends to f ∈ C2(C) supported in Rτ

σ .
This completes the proof of Corollary 1.12. �

4. Local law for block additive model. In this section we derive a local law
for block additive random matrices in a slightly generalized setting; see Theo-
rem 4.3 below. Theorem 2.5 is a direct consequence of this result.

First note that the matrix Hw defined in (2.14) can be rewritten as

(4.1) Hw =
(
U 0
0 V

)(
0 �

� 0

)(
U∗ 0
0 V ∗

)
+

(
0 −w

−w∗ 0

)
,

where 0 is the N × N matrix filled with zeros. In the following, we consider a
slightly more general problem by looking at random matrices H defined by

(4.2) H :=
(
U 0
0 V

)(
0 �

�∗ 0

)(
U∗ 0
0 V ∗

)
+

(
0 �

�∗ 0

)
,

where

(4.3) � := diag(σ1, . . . , σN), � := diag(ξ1, . . . , ξN),

with σi, ξi ∈ C, i ∈ �1,N�. Here, � and � are deterministic diagonal matrices,
whileU and V are independent Haar unitary or Haar orthogonal matrices of degree
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N as before. Note that we allow in (4.3) for complex matrix elements in � and �.
In the sequel, we always assume that � and � are bounded,

(4.4) ‖�‖,‖�‖ ≤C,

for some constant C independent of N . Denote the empirical density of their sin-
gular values by

(4.5) μ� := 1

N

N∑
i=1

δ|σi |, μ� := 1

N

N∑
i=1

δ|ξi |.

Note that μ� and μ� are probability measures on [0,∞). We assume that there
are compactly supported probability measures μσ and μξ such that

(4.6) sup
N≥N0

(
dL(μ�,μσ )+ dL(μ�,μξ )

) ≤ 2b,

for a sufficiently small constant b > 0 and sufficiently large N0.
The following general regularity result is of interest.

LEMMA 4.1 (Theorem 4.1 in [8]). Let μ1 and μ2 be Borel probability mea-
sures on R, neither of them a point mass. Then the singular continuous part of
μ1 � μ2 vanishes. A point x ∈ R is an atom of μ1 � μ2 if and only if there are
x1, x2 ∈ R such that x = x1 + x2 and μ1({x1})+μ2({x2}) > 1. Moreover, the ab-
solutely continuous part of μ1 � μ2 is always nonzero, and its density is analytic
wherever positive and finite.

DEFINITION 4.2. For two Borel probability measures μ1 on μ2 on R satisfy-
ing the assumptions of Lemma 4.1, we set

(4.7) Bμ1�μ2 := {
x ∈ R : 0< fμ1�μ2(x) <∞,μ1 �μ2

({x}) = 0
}
,

where fμ1�μ2 denotes the density function of μ1 �μ2. We call Bμ the bulk of μ.

Let G≡G(z) := (H − z)−1 be the Green function of H at parameter z ∈ C
+,

and let

(4.8) mH(z) := trG(z)= 1

2N
TrG(z)

be the normalized trace of G(z), which by the functional calculus agrees with the
Stieltjes’ transform of the empirical eigenvalue distribution of H .

Given an interval I ⊂R and 0 ≤ a ≤ b, we introduce the domain

(4.9) SI(a, b) := {
z=E + iη ∈ C

+ :E ∈ I, a < η ≤ b
}
.

As before, we denote for a measure μ on R its symmetrization by μsym. The
following is a key result of this paper.
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THEOREM 4.3 (Strong law for H ). Suppose that (4.4) holds. Let μσ and μξ
be two compactly supported probability measures on [0,∞) such that neither μsym

σ

nor μsym
ξ is a single point mass and at least of one of them is supported at more

than two points. Fix some L > 0 and let I be any compact interval of the bulk
Bμsym

σ �μsym
ξ

. Then there exists a (small) constant b0 > 0 and N0 ∈ N, depending
only on μσ , μξ , I and the constant C in (4.4), such that whenever

(4.10) sup
N≥N0

(
dL(μ�,μσ )+ dL(μ�,μξ )

) ≤ 2b,

for some b ≤ b0, then

(4.11)
∣∣mH(z)−mμ

sym
� �μsym

�
(z)

∣∣ ≺ 1

Nη(1 + η)

holds uniformly on SI(0,NL), for N sufficiently large depending only on μσ ,
μξ , I , L and the constant C in (4.4). Moreover, there exists a constant ηM ≥
1, independent of N , such that (4.11) holds uniformly on SI(ηM,NL), for any
compact interval I ⊂ R, for N sufficiently large depending only on μσ , μξ , L and
the constant C in (4.4).

Theorem 4.3 is proved in Sections 5–6 and Section 8 of the Supplementary
Material [5]. In fact in [5], we prove Theorem 4.3 for spectral parameters z ∈
C

+ with large imaginary parts, η. Here, large η means η ≥ ηM, for some ηM ≥ 1
independent of N to be chosen below. The proof for large η relies on the Gromov–
Milman concentration inequality for the full Haar measure in conjunction with
identities for expectations of the Green functions originating in the global U(N)-
symmetry. These arguments are independent of the main line followed here and are
hence postponed to Section 8 of the Supplementary Material [5]. The results for
large η serve as initial estimates in a boostrap argument carried out in Sections 5–6
where we prove Theorem 4.3 in the complementary regime where η < ηM.

PROOF OF THEOREM 2.5. Theorem 2.5 follows from Theorem 4.3 by choos-
ing I = {0}. The conditions of Theorem 4.3 require that the density of μsym

σ �μsym
ξ

is uniformly bounded from below on the compact interval I . For E = 0, this con-
dition was verified in Theorem 2.2. This yields (2.17) uniformly for 0< η ≤NL,
with L> 1 as in Theorem 4.3 for fixed w with |w| ∈ [r− + τ, r+ − τ ].

Next we show that (2.17) can be strengthened to a uniform bound in w ∈ Rτ
σ :=

{w ∈ C : |w| ∈ [r− + τ, r+ − τ ]}. We introduce the lattice

R̂τ
σ (L1) := Rτ

σ ∩N−L1{Z× iZ},
for some sufficiently large positive constant L1 such that L1 ≥ 2L (say). Using
the definition of stochastic domination in Definition 1.6 and (2.17) for fixed w, we
obtain

max
w∈R̂τ

σ (L1)

∣∣mw(z)−m�,|w|(z)
∣∣ ≺ 1

Nη
,
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uniformly in 0 < η ≤ NL. To extend this bound to all of Rτ
σ , it suffices to show

Lipschitz continuity of these quantities in w. We need that, for any w1,w2 ∈ Rτ
σ

with |w1 −w2| ≤N−L1 for sufficiently large L1, one has

(4.12)
∣∣mw1(z)−mw2(z)

∣∣ ≤ 1

Nη
,

∣∣m�,|w1|(z)−m�,|w2|(z)
∣∣ ≤ 1

Nη
,

uniformly in 0< η ≤NL. To show the first deterministic bound in (4.12), we use
the bound ∣∣mw1(z)−mw2(z)

∣∣ ≤ |w1 −w2|
2N

Tr
∣∣Hw1 − z

∣∣−1∣∣Hw2 − z
∣∣−1

≤ |w1 −w2|
2η2 ≤ 1

2η
N−L1+L ≤ 1

Nη
,

where |A| := √
A∗A, for any square matrix A.

To show the second bound in (4.12), we use the stability of the Stieltjes’ trans-
form of free additive convolution. Here it suffices to use the following bound (cf.
(2.20) in [2] for instance):∣∣m�,|w1|(z)−m�,|w2|(z)

∣∣ ≤ C

η

(
1 + 1

η

)
dL

(
δ

sym
|w1|, δ

sym
|w2|

) ≤ C

η

(
1 + 1

η

)
|w1 −w2|,

for all z=E+ iη ∈ C
+, where C is a constant uniform in z. Using the assumptions

|w1 − w2| ≤ N−L1 and L1 ≥ 2L, we get (4.12), which in turn establishes the
desired uniformity of (2.17) in w ∈ Rτ

σ .
To complete the proof of (2.17), it remains to deal with the large η regime, i.e.,

when η ≥NL. For that we use the elementary (deterministic) estimates

(4.13) mH(iη)= − 1

iη
+O

(
1

|η|3
)
, m�,|w|(iη)= − 1

iη
+O

(
1

|η|3
)
,

as η ↗ ∞, where we used a resolvent expansion of G together with trH = 0 and
‖H‖ ≤ S+ [see (1.3)], and the large η expansion of the Stieltjes’ transform together
with the fact that μ�,|w| is symmetric and compactly supported. Thus for η ≥NL,
(2.17) follows from (4.13). Uniformity in w ∈ Rτ

σ is immediate. �

4.1. Approximate subordination for block additive models. In this subsection,
we establish the matrix subordination for the Green function of H . To simplify
notation, we introduce the block matrices

(4.14) A :=
(

0 �

�∗ 0

)
, B :=

(
0 �

�∗ 0

)
, U :=

(
U 0
0 V

)
.

Then we write (4.2) as

(4.15) H =A+ B̃, B̃ := UBU∗.
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As before, we let G(z) := (H − z)−1 be the Green function of H at spectral pa-
rameter z ∈ C

+. A simple consequence of the definition of G are the identities

(4.16) B̃G(z)= I2N − (A− z)G(z), G(z)B̃ = I2N −G(z)(A− z).

Inspired by [32] (see also [3, 11, 29]), we introduce the approximate subordination
functions

(4.17) ωcA(z) := z− trAG

trG
, ωcB(z) := z− tr B̃G

trG
.

By these definitions and (4.16), we have

(4.18) ωcA(z)+ωcB(z)− z= − 1

mH(z)
.

Recall the measures μ� and μ� of (4.5) as well as μσ and μξ of (4.6). For their
symmetrizations we introduce, hinting at (4.14), the shorthand

(4.19) μA ≡ μ
sym
� , μB ≡ μ

sym
� , μα ≡ μ

sym
ξ , μβ ≡ μsym

σ .

Note thatμA andμB are the empirical spectral distributions ofA andB . We denote
by ωA(z),ωB(z),ωα(z),ωβ(z) the subordination functions defined via (2.5) with
the choices (μ1,μ2)= (μA,μB) and (μα,μβ), respectively.

The next result shows that the approximate subordination functions ωcA and ωcB
are indeed good approximations to the subordination functions ωA and ωB . More-
over, it establishes the subordination for the diagonal Green function entries.

THEOREM 4.4. Under the conditions and with the notation of Theorem 4.3,
the estimates

(4.20)
∣∣ωcA(z)−ωA(z)

∣∣ ≺ 1

Nη
,

∣∣ωcB(z)−ωB(z)
∣∣ ≺ 1

Nη
,

hold uniformly on SI(0, ηM), for N sufficiently large depending only on μα , μβ ,
I , L and the constant C in (4.4). Moreover, we have∣∣∣∣Gii(z)− ωB(z)

|ξi |2 − (ωB(z))2

∣∣∣∣ ≺ 1√
Nη

,∣∣∣∣Gîî(z)
− ωB(z)

|ξi |2 − (ωB(z))2

∣∣∣∣ ≺ 1√
Nη

,∣∣∣∣Giî
(z)− ξi

|ξi |2 − (ωB(z))2

∣∣∣∣ ≺ 1√
Nη

,

∣∣∣∣Gîi
(z)− ξ̄i

|ξi |2 − (ωB(z))2

∣∣∣∣ ≺ 1√
Nη

,

(4.21)

uniformly in i ∈ �1,N� and in z ∈ SI(0, ηM), where î := i +N , for N sufficiently
large depending only on μα , μβ , I , L and the constant C in (4.4).
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REMARK 4.5. Some crucial properties of the subordination functions ωA and
ωB are collected in Lemma A.2 in the Supplementary Material [5]. Here, we men-
tion that under the assumptions of Theorem 4.4, forN sufficiently large, the imagi-
nary parts of the subordination functions, ImωA(z) and ImωB(z) are both bounded
from below on z ∈ SI(0, ηM). This follows from Lemma A.2 and the assumption
that I is a compact interval in the bulk of μα � μβ . It then follows from (4.21)
that |Gii(z)| ≺ 1 and |G

îî
(z)| ≺ 1 uniformly on SI(N−1+γ , ηM), for any γ > 0,

and all i ∈ �1,N�. A direct consequence of this result is that the eigenvectors as-
sociated with eigenvalues in the bulk are fully delocalized. More precisely, letting
(uk) denote the �2-normalized eigenvectors associated with the eigenvalues (λk),
k ∈ �1,2N�, we have

(4.22) max
k:λk∈I

‖uk‖∞ ≺ 1√
N
,

for any compact interval I in the bulk of μα � μβ . For a proof of (4.22) from
Theorem 4.4, we refer to the proof of Theorem 2.6 in [3].

4.2. Outline of the strategy of proof. The proof of the local law of Theorem 4.3
is carried out in three steps. In Step 1, we consider the large η regime, that is, we
establish (4.11) on SI(ηM,N

L), for some sufficiently large, but N -independent,
ηM. In Step 2, we establish a weak local law for mw in the small η regime, that is,
we establish (4.11) with a weaker error bound on SI(N−1+γ , ηM), for some small
γ > 0; see Theorem 5.1 below for the statement of the weak law. The extension
to SI(0, ηM) will follow directly from monotonicity of the Green function. This
second step is based on a bootstrapping argument to reduce the spectral parameter
Im z. Step 1 will provide the initial estimate to get the bootstrapping started. In
Step 3, we use a fluctuation averaging argument together with the weak local law
established in the second step to get (4.11) in its strong form.

Step 1 is carried out in Section 8. It builds on the celebrated Gromov–Milman
concentration inequality whose application to random matrix theory is fairly
standard [1]. For additive models of the form X + UYU∗, with deterministic
X,Y ∈ MN(C) and U Haar distributed on U(N) or on O(N) it was used in [2,
29, 32], and for the model block-additive model considered in this section in [11].

Step 2 is carried out in Section 5, where we prove Theorem 5.1. This proof has
three major ingredients. First we use a partial randomness decomposition of the
Haar measure [see (5.2)] that enables us to take partial expectations of functions
of the diagonal Green function entries Gii , Gîî

. Exploiting concentration only
for this partial randomness surpasses the more general but less flexible Gromov–
Milman technique used in Step 1. Second, to compute the partial expectations of
Gii , we establish a system of self-consistent equations involving only two aux-
iliary quantities (Sij ) and (Tij ); see (5.16). In our previous work [3], we used a
similar approach to derive the local law for X+UYU∗. For the model considered
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in this paper, we face with a new phenomenon causing several substantial difficul-
ties. The main point is that for block additive models, we have less randomness
originating in the Haar measure on U(N) × U(N) than for the additive models
with Haar measure on U(2N). As a consequence, we have to control more quanti-
ties in the two blocks separately. Even more importantly, the coupling between the
two blocks is provided solely by the diagonal matrix � without any randomness;
see (4.2). Our proof shows that the randomness in the diagonal blocks and the
deterministic off-diagonal blocks effectively make up for the lacking off-diagonal
randomness.

To derive the aforementioned system of equations for (Sij ), (Tij ) and (Gii),
we use the partial decomposition of Haar measure in combination with recursive
moment estimates; see, for example, Lemma 5.3 for such a statement. Recursive
moment estimates were used first in [30] to derive local laws for sparse Wigner ma-
trices. They allow us to pass on cumbersome partial concentration estimates used
in Section 5 of [3], and provide a conceptually clear approach to the weak local
law for both models. Third, to connect the diagonal Green function entries with the
subordination functions from Theorem 2.1, we rely on the optimal stability result
for the subordination equations obtained in [2].

Step 3 is carried out in Section 6. In this section we exploit the so-called fluc-
tuation averaging mechanism to improve the estimates of Step 2. While the fluc-
tuation averaging mechanism is, thanks to the independence of the matrix entries,
well understood for Wigner type matrices (see e.g., [20, 22]), dependencies among
the entries of the Haar matrices mask this mechanism and its current understand-
ing for matrix ensembles involving Haar matrices is still rather poor. We gave a
first result in [4] for additive models. In the present paper, we approach the fluc-
tuation mechanics for block-additive models by first deriving a set of so-called
“Ward identities” which will enable us to complete the proof of Theorem 4.3.
Ward identities are relations among tracial quantities involving the Green function
and the matrices A and B . In expectation, these relations can be derived using
the invariance of Haar measure (see, e.g., (8.11) for a first example), yet we will
require optimal estimates that hold with high probability; see, for example, (5.21)
and (6.3). These estimates are obtained using recursive moment estimates for care-
fully chosen quantities; see (5.19). Since we have less randomness coming from
U(N)× U(N) in the setup of block-additive models, more quantities need to be
simultaneously controlled than in the additive models, resulting in a more sophis-
ticated analysis.

4.3. Notation. We introduce some more notation used in the proof of Theo-
rem 4.3.

Notation for matrices: In our analysis, we also use the matrices

(4.23) H = B + U∗AU =: B + Ã, G(z)= (H− z)−1,



1292 Z. BAO, L. ERDŐS AND K. SCHNELLI

which are the analogues of H in (4.15) and of its Green function G(z), obtained
by switching the roles of A and B , and also the roles of U and U∗. Note that by
cyclicity TrG(z)= TrG(z).

Vector space notation: For any index i ∈ �1,N�, we let î ≡ i + N . We make
the convention hereafter that the index i always runs from 1 to N , unless said
otherwise. Thus the index î runs from N + 1 to 2N . We denote by

∑(k)
i the sum

over i ∈ �1,N� \{k}. We denote by {ei} the canonical basis of CN while we denote
by {êi} the canonical basis of C2N . We let 0 denote the zero vector in either space.
We use bold font for vectors and denote the components as v = (vi).

The identity matrix in MN(C), respectively, M2N(C), is denoted by

(4.24) I ≡ IN, Î ≡ I2N,

and we let

(4.25) Î1 := I ⊕ 0, Î2 := 0 ⊕ I

denote the block identities in MN(C)⊕MN(C), where 0 represents the N × N

zero matrix.
For any matrix D ∈Mn(C), n≥ 1, we let

trD := 1

n
TrD

denote the normalized trace of D. For D ∈M2N(C), we introduce the normalized
partial traces

(4.26) τ1(D) := 1

N

N∑
i=1

Dii, τ2(D) := 1

N

N∑
i=1

D
îî
.

Using the block structure of H , it is easy to check that the Green function G(z)
satisfies

(4.27) τ1
(
G(z)

) = τ2
(
G(z)

)
, z ∈ C

+.

�-system: For our purposes, it is convenient to recast (2.5) in a compact form:
For generic probability measures μ1,μ2 on R, let the function �μ1,μ2 : (C+)3 →
C

2 be given by

(4.28) �μ1,μ2(ω1,ω2, z) :=
(
Fμ1(ω2)−ω1 −ω2 + z

Fμ2(ω1)−ω1 −ω2 + z

)
.

Considering μ1, μ2 as fixed, the equation

(4.29) �μ1,μ2(ω1,ω2, z)= 0,

is equivalent to (2.5) and, by Theorem 2.1, there are unique analytic functions
ω1,ω2 : C+ → C

+, z → ω1(z),ω2(z) satisfying (2.4) that solve (4.29) in terms
of z.
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Control parameters: For z ∈ C
+, we will use the following deterministic control

parameter:

(4.30) � ≡�(z) := 1√
Nη(1 + η)

, η= Im z.

We further introduce, for z ∈ C
+ and i ∈ �1,N�, the random control parameters

�d;ii(z) :=
∣∣∣∣Gii − ωB(z)

|ξi |2 − (ωB(z))2

∣∣∣∣,
�d;î î (z) :=

∣∣∣∣Gîî
− ωB(z)

|ξi |2 − (ωB(z))2

∣∣∣∣,
�d;iî (z) :=

∣∣∣∣Giî
− ξi

|ξi |2 − (ωB(z))2

∣∣∣∣,
�d;îi (z) :=

∣∣∣∣Gîi
− ξ̄i

|ξi |2 − (ωB(z))2

∣∣∣∣,
�d(z) := max

i∈�1,N�
max

k,l=i or î
�d;kl(z).

(4.31)

We also define �c
d(z) analogously by replacing ωB by ωcB (cf. (4.17)) in the def-

inition of �d(z). We will often omit the variable z from the above notation when
there is no confusion.

For notational simplicity, we do not follow the threshold N for which the esti-
mates apply. Following the dependence of this threshold on the other parameters
along the proofs, one may easily verify the dependences stated in Theorem 4.3 and
Theorem 4.4.

5. Green function subordination for small η. Let ηM > 0 be some suffi-
ciently large constant, and for any given (small) γ > 0, we set

(5.1) ηm ≡ ηm(γ ) :=N−1+γ .
In this section we prove a Green function subordination property in the regime
ηm ≤ η ≤ ηM. The formal statement is given in Theorem 5.1 below. For definite-
ness, we work with the unitary setup in this section. The necessary modifications
for the orthogonal case are stated in Appendix C of the Supplementary Material
[5]. We start with the partial randomness decomposition of the Haar measure on
U(N)×U(N) announced in Section 4.2.

5.1. Partial randomness decomposition of the Haar measure. Let ui =
(ui1, . . . , uiN)

′ and vi = (vi1, . . . , viN)
′ be the ith columns of U and V , respec-

tively. Let θui and θvi be the arguments of uii and vii , respectively, and let φai = eiθai

for a = u, v. Our approach relies on the partial randomness decomposition of the
Haar measure from [18, 31]:

(5.2) U = −φui Rui U 〈i〉, V = −φvi Rvi V 〈i〉.
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Here, U 〈i〉 and V 〈i〉 are unitary matrices with (i, i)th entry equal 1, and their (i, i)-
minors are independent, Haar distributed on U(N − 1). In particular, U 〈i〉ei =
V 〈i〉ei = ei and e∗

i U
〈i〉 = e∗

i V
〈i〉 = e∗

i , where ei is the ith coordinate vector. In
addition, U 〈i〉 is independent of ui , and V 〈i〉 is independent of vi . Here Rui and Rvi
are reflections, defined as

(5.3) Rai := I − rai
(
rai

)∗
, a = u, v,

where

(5.4) rui := √
2

ei + φ̄ui ui

‖ei + φ̄ui ui‖2
, rvi := √

2
ei + φ̄vi vi

‖ei + φ̄vi vi‖2
.

Note that Rui is independent of U 〈i〉 and Rvi is independent of V 〈i〉.
Set the (2N)× (2N) matrices

(5.5) �i := (
φui I

) ⊕ (
φvi I

)
, Ri :=Rui ⊕Rvi , Ui :=U 〈i〉 ⊕ V 〈i〉.

With the above notation and the decompositions in (5.2), we have

(5.6) U = −RiUi�i.

Hence, for each i ∈ �1,N�, we can write

(5.7) H =A+ B̃ =A+RiUi�iB�
∗
i U∗

i Ri :=A+Ri B̃
〈i〉Ri ,

where we introduced the notation

(5.8) B̃〈i〉 := Ui�iB�
∗
i U∗

i .

We further define the matrices

(5.9) H 〈i〉 :=A+ B̃〈i〉, G〈i〉 := (
H 〈i〉 − z

)−1
.

Since ui and vi are independent, uniformly distributed complex unit vectors, there
exist independent normal vectors, g̃ui , g̃

v
i ∼ NC(0,

1
N
IN) such that

ui = g̃ui
‖g̃ui ‖2

, vi = g̃vi
‖g̃vi ‖2

.

We further define

(5.10) gui := φ̄ui g̃
u
i , hui := gui

‖gui ‖2
= φ̄ui ui , �ui :=

√
2

‖ei + hui ‖2
,

and define gvi , hvi and �vi analogously by replacing ui by vi . Note that for
a = u or v, gaik’s for k �= i are NC(0,

1
N
) variables and gaii is χ -distributed with

E[(gaii)2] = 1
N

. In addition, the components of gai are independent, and they are
all independent of φai . Hence, gai and hai are independent of B̃〈i〉 (cf. (5.8)), for
a = u, v. With this notation we can write

(5.11) rai = �ai
(
ei + hai

)
, a = u, v,
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where rai is defined in (5.4). Using Lemma A.1, it is elementary to check that, for
a = u, v, ∥∥gai ∥∥2 = 1 + 1

2

(∥∥gai ∥∥2
2 − 1

) +O≺
(

1

N

)
,

(
�ai

)2 = 1

1 + e∗
i h

a
i

= 1 − gaii +O≺
(

1

N

)
,

(5.12)

where in the first estimate we used the fact |‖gai ‖2
2 − 1| ≺ 1√

N
. In addition, by

definition, Rai is a reflection sending ei to −hai , that is,

(5.13) Rai ei = −hai , Rai h
a
i = −ei , a = u, v.

We also denote by g̊ai the vector obtained from gai by replacing gaii by 0, that is,

g̊ai := gai − gaiiei , a = u, v.

Correspondingly, we set

(5.14) h̊
a

i := g̊ai
‖gai ‖2

, a = u, v.

Recall the notation 0 for the N × 1 null vector. Finally, for brevity, we set

(5.15) kui :=
(
hui
0

)
, kvi :=

(
0
hvi

)
, k̊

u

i :=
(
h̊
u

i

0

)
, k̊

v

i :=
(

0
h̊
v

i

)
.

We move on to the formal statement of the Green function subordination.

5.2. Green function subordination. Recall the notation {êi} for the standard
basis of C2N , and also the notation î ≡ i +N for any i ∈ �1,N�. We introduce the
following quantities for j = i, î, i ∈ �1,N�,

Sij := (
kui

)∗
B̃〈i〉Gêj , Tij := (

kui
)∗
Gêj ,

S
îj

:= (
kvi

)∗
B̃〈i〉Gêj , T

îj
:= (

kvi
)∗
Gêj

(5.16)

and

S̊ii := (
k̊
u

i

)∗
B̃〈i〉Gêi = Sii − σ̃ih

u
iiGîi

,

T̊ii := (
k̊
u

i

)∗
Gêi = Tii − huiiGii,

(5.17)

where σ̃i = φui φ̄
v
i σi , and σi is the ith diagonal entry of �; cf. (4.3). Here, in (5.17)

we used

(5.18) ê∗
i B̃

〈i〉 = σ̃i ê
∗
î
, B̃〈i〉ê

î
= σ̃i êi , i ∈ �1,N�,

which is checked from the definitions of B̃〈i〉 in (5.8), Ui and �i in (5.5), and also
B in (4.14).
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Recall from (4.26) the notations for normalized partial traces τ1 and τ2 on
M2N(C). Moreover, recall from (4.31) the definition of the control parameters
�d;ii(z), �d;î î (z), �d;iî (z), �d;îi (z) and �d(z). We further introduce �c

d(z) anal-
ogously by replacing ωB by ωcB (cf. (4.17)) in the definition of �d(z). We will
often omit the variable z from this notation.

In this section we will show that �d(z), �c
d(z) and �T are of order � with

high probability; that is, matrix elements of the Green function can be expressed
in terms of the subordination functions, up to a small random fluctuations of order
� . We will refer to these results as Green function subordination. The main tool is
a high moment calculation and Gaussian integration by parts. However, we cannot
directly estimate the high moments of Tkl and the formulas |Gij − [. . .]| defining
�d;ij (z). Instead, we introduce the following auxiliary quantities. For each i ∈

�1,N� and j = i or î, let

Pij ≡Pij (z) := (B̃G)ij τ1(G)−Gijτ1(B̃G)+ (Gij + Tij )ϒ1,

P
îj

≡P
îj
(z) := (B̃G)

îj
τ2(G)−G

îj
τ2(B̃G)+ (G

îj
+ T

îj
)ϒ2,

Kij ≡Kij (z) := Tij + τ1(G)
(
σ̃iTîj + (B̃G)ij

) − τ1(GB̃)(Gij + Tij ),

K
îj

≡K
îj
(z) := T

îj
+ τ2(G)

(
σ̃ ∗
i Tij + (B̃G)

îj

) − τ2(GB̃)(Gîj
+ T

îj
),

(5.19)

where, with a = 1,2,

(5.20) ϒa ≡ϒa(z) := τa(B̃G)+ τa(G)τa(B̃GB̃)− τa(GB̃)τa(B̃G).

Using the invariance of the Haar measure, the following Ward identities

(5.21) Eϒa = 0, a = 1,2,

can be checked. However, we will also need to know that ϒa are small with high
probability and not only in expectation in the following; see, for example, (5.29)
in Theorem 5.2 below.

We will compute their high moments of these auxiliary quantities P and K
and from them we will conclude the estimates on the �’s. The careful choice of
these auxiliary quantities P and K is essential for the proof. They have a built-
in cancellation mechanism that makes the high moment calculation tractable; see
(5.53)–(5.55) later.

Moreover, we recall the following matrices introduced in (4.23)

H = B + U∗AU =: B + Ã, G(z)= (H− z)−1, z ∈ C
+,

which are the analogue of H in (4.15) and its Green function G(z), obtained via
swapping the roles of A and B , and also the roles of U and U∗. Note that the
structure of H is exactly the same as H , so we can define the H-counterparts of all
quantities we have introduced so far for H . We will not repeat the heavy notation
of the partial randomness decomposition for H as well, since we will not need all
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these details. We will only need to know that, accordingly, we can define Gij , Sij
and Tij by applying the same switching in the definitions of Gij , Sij and Tij .

Also note the following alternative definition of ωcA and ωcB in (4.17):

(5.22) ωcA(z) := z− tr ÃG
trG , ωcB(z) := z− trBG

trG ,

and the trivial fact trG= trG.
In addition, replacing ξi , ωB ,Gij by σi , ωA, Gij respectively in (4.31), we define

�̃d;ij (z) and �̃d(z) as the analogues of �d;ij (z) and �d(z). For example,

(5.23) �̃d;ii(z)=
∣∣∣∣Gii − ωA(z)

|σi |2 − (ωA(z))2

∣∣∣∣
and

(5.24) �̃d(z) := max
i∈�1,N�

max
k,l=i or î

�̃d;kl(z).

Similarly, we can also define �̃c
d(z) and �̃T (z) as the analogue of �c

d(z) and
�T (z), respectively. The analysis of the operator H is very similar to that of H ,
but at some point it will be useful to work with them in tandem, so we will need to
control both.

Our main aim in this section is to prove the following Green function subordi-
nation property. Recall the definition of the control parameter �(z) from (4.30).

THEOREM 5.1. Suppose that the assumptions in Theorem 4.3 hold. Then

�d(z)≺�(z), �̃d(z)≺�(z),

�T (z)≺�(z), �̃T (z)≺�(z)
(5.25)

uniformly on SI(ηm, ηM), for any (large) constant ηM > 0 and (small) constant
γ > 0, in the definition of ηm (cf. (5.1)). Moreover, the estimates∣∣ωcA(z)−ωA(z)

∣∣ ≺�(z),
∣∣ωcB(z)−ωB(z)

∣∣ ≺�(z),∣∣mH(z)−mμA�μB (z)
∣∣ ≺�(z)

(5.26)

also hold uniformly on SI(ηm, ηM).

The estimates on the tracial quantities and the subordination functions in (5.26)
are weaker than the final result in Theorem 4.3 and Theorem 4.4. Later in Sec-
tion 6, we will improve them. The estimates in (5.25) are, however, (believed to
be) optimal.

In what follows, we will mainly work with �d(z). The discussion on �̃d(z) is
the same. First we show the analogous estimate for �c

d by assuming an a priori
bound on �d and �T , for a fixed z ∈ SI(ηm, ηM). This is the content of Theo-
rem 5.2 below. A continuity argument in Section 5.5 then allows us to conclude
Theorem 5.1 from Theorem 5.2.
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THEOREM 5.2. Suppose that the assumptions in Theorem 4.3 hold. Let
ηM > 0 be a (large) constant and γ > 0 be a (small) constant in (5.1). Fix a
z ∈ SI(ηm, ηM). Assume that

(5.27) �d(z)≺N− γ
4 , �̃d(z)≺N− γ

4 , �T (z)≺ 1, �̃T (z)≺ 1.

Then we have ∣∣Pij (z)∣∣ ≺�(z),
∣∣P

îj
(z)

∣∣ ≺�(z),∣∣Kij (z)
∣∣ ≺�(z),

∣∣K
îj
(z)

∣∣ ≺�(z),
(5.28)

for all i ∈ �1,N� and j = i or î. In addition, under (5.27) we also have

(5.29)
∣∣ϒ1(z)

∣∣ ≺�(z),
∣∣ϒ2(z)

∣∣ ≺�(z)

and

(5.30) �c
d(z)≺�(z), �T (z)≺�(z).

The same statements hold if we switch the roles of A and B , and also the roles of
U and U∗, in all the conclusions from (5.28) to (5.30).

Note that, since ηm ≤ η ≤ ηM, we have �(z)∼ 1√
Nη

.
The proof of Theorem 5.2 proceeds in two steps. In the first step, we establish

in Section 5.3 recursive moment estimates for the quantities Pii and Kii . In the
second step, carried out in Section 5.4, we use a local stability analysis to conclude
Theorem 5.2 from the estimates established in Section 5.3.

5.3. Recursive moment estimates for Pii and Kii . In the proof of Theorem 5.2,
assumption (5.27) is used to conclude that various Gkl and Tkl with k, l = i or î
are finite. More specifically, with the aid of assumption (5.27) and with the upper
bound of |ωB | and the lower bound on ImωB in (A.4) that together imply that ω2

B

is away from the positive real axis so the denominators in the definition of �d,ij
do not vanish, we have

(5.31) max
i∈�1,N�

max
k,l=i or î

|Gkl| ≺ 1, max
i∈�1,N�

max
k,l=i or î

|Tkl| ≺ 1.

In addition, using the identities in (4.16), we can further get the bound

(5.32) max
i∈�1,N�

max
k,l=i or î

∣∣(XGY)kl∣∣ ≺ 1, X,Y = Î or B̃.

Observe that

(5.33)
1

N

∑
i

ωB(z)

|ξi |2 − (ωB(z))2
=mμA

(
ωB(z)

) =mμA�μB (z),

where the first step follows from the definition of μA in (4.19), and the second
step follows from (2.5) with the choice (μ1,μ2)= (μA,μB). Then (5.33) together
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with the first estimate in (5.27), (4.16) and the upper bound of |ωB | and the lower
bound of ImωB in (A.4) leads to the following estimates for tracial quantities:

τa(G)=mμA�μB +O≺
(
N− γ

4
)
, a = 1,2,

τa(B̃G)= (z−ωB)mμA�μB +O≺
(
N− γ

4
)
,

τa(GB̃)= (z−ωB)mμA�μB +O≺
(
N− γ

4
)
,

τa(B̃GB̃)= (ωB − z)
(
1 + (ωB − z)mμA�μB

) +O≺
(
N− γ

4
)
.

(5.34)

Then, using the upper bound on |ωB | and the lower bound on ImωB in (A.4), and
the second identity in (5.33), we see that all these tracial quantities are stochasti-
cally dominated by 1, under assumption (5.27). Recalling ϒa from (5.20), we thus
have under assumption (5.27) that

(5.35)
∣∣ϒa(z)∣∣ ≺ 1.

For (5.28), we only handle the estimate of Pii and Kii in detail. The others are
similar. It suffices to show the high order moment estimate: for any fixed integer
p ≥ 1, we have

(5.36) E
[|Pii |2p] ≺�2p, E

[|Kii |2p] ≺�2p.

Let us introduce the notation

(5.37) mi (k, l) :=Pk
iiP l

ii , ni(k, l) := Kk
iiKl

ii .

We will use the following notational conventions in the statement of the recur-
sive moment estimates. The notation O≺(�k) for any given positive integer k,
represents a generic (possibly) z-dependent random variable X ≡X(z) that satis-
fies

(5.38) X ≺�k, E
[|X|q] ≺�qk,

for any given positive integer q . In the sequel, we only check the first bound in
(5.38) for variousX’s, then the second bound is valid as well. Indeed, since theX’s
we will encounter below are analogous to those in [4], we refer to the paragraph
below (6.2) of [4] for a general reasoning why the second bound in (5.38) follows
from the first one. Additionally, sometimes X will be of the form 1/|g| where g is
an N -dimensional Gaussian random variable [see, e.g., (5.56)–(5.57)], whose qth
moments are also integrable for any fixed q if N is large enough.

The main technical task in the proof of (5.36) is the following recursive moment
estimate.

LEMMA 5.3 (Recursive moment estimate for Pii and Kii). Suppose the as-
sumptions of Theorem 5.2 hold. For any fixed integer p ≥ 1, and for any i ∈ �1,N�,



1300 Z. BAO, L. ERDŐS AND K. SCHNELLI

we have

E
[
mi (p,p)

] = E
[
O≺(�)mi(p− 1,p)

] +E
[
O≺

(
�2)

mi (p− 2,p)
]

+E
[
O≺

(
�2)

mi(p− 1,p− 1)
]
,

E
[
ni (p,p)

] = E
[
O≺(�)ni(p− 1,p)

] +E
[
O≺

(
�2)

ni (p− 2,p)
]

+E
[
O≺

(
�2)

ni(p− 1,p− 1)
]
,

(5.39)

where we made the convention mi(0,0) = ni (0,0) = 1 and mi (−1,1) =
ni(−1,1)= 0 if p = 1.

PROOF. According to the decomposition in (5.7), for i ∈ �1,N�, we have

(B̃G)ii = ê∗
iRi B̃

〈i〉RiGêi = −((
hui

)∗
,0∗)

B̃〈i〉RiGêi

= −(
kui

)∗
B̃〈i〉RiGêi ,

(5.40)

where in the second step we used (5.13), and in the last step we used the notation
in (5.15). Using (5.40), the definition in (5.3), and also the identity in (5.11), one
can check

(B̃G)ii = −(
kui

)∗
B̃〈i〉(Î − rui

(
rui

)∗ ⊕ rvi
(
rvi

)∗)
Gêi

= −Sii + (
kui

)∗
B̃〈i〉(rui (rui )∗ ⊕ rvi

(
rvi

)∗)
Gêi

= −Sii + (
kui

)∗
B̃〈i〉(0 ⊕ rvi

(
rvi

)∗)
Gêi

= −Sii + (
�vi

)2(
kui

)∗
B̃〈i〉(ê

î
+ kvi

)(
ê
î
+ kvi

)∗
Gêi

= −Sii + (
�vi

)2(
σ̃ih

u
ii +

(
kui

)∗
B̃〈i〉kvi

)
(G

îi
+ T

îi
)

=: −S̊ii + εi1,

(5.41)

where 0 in the third line is the N ×N zero matrix, and

εi1 := (((
�vi

)2 − 1
)
σ̃ih

u
ii +

(
�vi

)2(
kui

)∗
B̃〈i〉kvi

)
G
îi

+ (
�vi

)2(
σ̃ih

u
ii +

(
kui

)∗
B̃〈i〉kvi

)
T
îi
.

(5.42)

In the third step of (5.41), we used the fact (kui )
∗B̃〈i〉(rui (rui )∗ ⊕ 0) = 0 which

follows from the definition of kui and B̃〈i〉 in (5.15) and (5.8); in the fifth step we
used the second identity in (5.18); and in the last step, we used (5.17). We note that

(5.43) |εi1| ≺�,

where we used (5.31) and the large deviation bound (A.1) to show that (kui )
∗B̃〈i〉 ×

kvi ≺N−1/2.
Using integration by parts, we note that

(5.44)
∫
C

ḡf (g, ḡ)e−|g|2
σ2 d2g = σ 2

∫
C

∂gf (g, ḡ)e
−|g|2

σ2 d2g,
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for differentiable functions f : C2 → C (recall that d2g is the Lebesgue measure
on C).

According to the definitions in (5.3), (5.10) and the identity (5.11), one can
check for k �= i,

(5.45)
∂Rai
∂gaik

= − (�ai )
2

‖gai ‖2
ek

(
ei + hai

)∗ +
a
R(i, k), a = u, v.

where


a
R(i, k) := (�ai )

2

2‖gai ‖2
2

ḡaik
(
ei

(
hai

)∗ + hai e
∗
i + 2hai

(
hai

)∗)
− (�ai )

4

2‖gai ‖3
2

gaii ḡ
a
ik

(
ei + hai

)(
ei + hai

)∗
, a = u, v.

(5.46)

The 
a
R(i, k)’s are irrelevant error terms. Their estimates will be presented sepa-

rately in Appendix B of the Supplementary Material [5]. For convenience, we set
for a = u, v,

cai := (�ai )
2

‖gai ‖2
= 1

‖gai ‖2
− haii +O≺

(
1

N

)

= ∥∥gai ∥∥2 − haii −
(∥∥gai ∥∥2

2 − 1
) +O≺

(
1

N

)
,

(5.47)

where the last step follows from (5.12). Using (5.7), we have for k �= i,

(5.48)
∂G

∂guik
= −G ∂B̃

∂guik
G= −G∂Ri

∂guik
B̃〈i〉RiG−GRi B̃

〈i〉 ∂Ri

∂guik
G.

According to (5.45) and the fact Ri =Rui ⊕Rvi , we have

(5.49)
∂Ri

∂guik
= −cui êk

(
êi + kui

)∗ +
a
R(i, k)⊕ 0,

where 0 is the N × N zero matrix. We also used that ∂Rvi /∂g
u
ik = 0. Plugging

(5.49) into (5.48), for k �= i, we can write

∂G

∂guik
= cui Gêk

(
ê∗
i + (

kui
)∗)
B̃〈i〉RiG

+ cui GRi B̃
〈i〉êk

(
ê∗
i + (

kui
)∗)
G+
u

G(i, k),

(5.50)

where we set

(5.51) 
u
G(i, k) := −G(


u
R(i, k)⊕ 0

)
B̃〈i〉RiG−GRi B̃

〈i〉(
u
R(i, k)⊕ 0

)
G.
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With the above derivatives, we are ready to apply the integration by parts formula
in (5.44). We start with the following:

E
[
mi (p,p)

] = E
[
Piimi (p− 1,p)

]
= E

[
(B̃G)iiτ1(G)mi(p− 1,p)

]
(5.52)

+E
[(−Giiτ1(B̃G)+ (Gii + Tii)ϒ1

)
mi(p− 1,p)

]
,

E
[
ni(p,p)

] = E
[
Kiini (p− 1,p)

]
= E

[
Tiini (p− 1,p)

]
(5.53) +E

[(
τ1(G)

(
σ̃iTîj + (B̃G)ij

) − τ1(GB̃)(Gij + Tij )
)

× ni(p− 1,p)
]
,

which follow from the definitions in (5.19) and (5.37) directly. From (5.41) and
(5.17), we have

E
[
(B̃G)iiτ1(G)mi (p− 1,p)

] = −E
[
S̊iiτ1(G)mi (p− 1,p)

]
(5.54) +E

[
εi1τ1(G)mi (p− 1,p)

]
,

E
[
Tiini (p− 1,p)

] = E
[
T̊iini (p− 1,p)

]
(5.55) +E

[
O≺(�)ni(p− 1,p)

]
,

where we used the fact |hii | ≺N− 1
2 , and also (5.31).

Now we will carefully compute the first terms in the right-hand side of (5.54)
and (5.55) with the integration by parts formula since both S̊ii and T̊ii explicitly
contain a multiplicative Gaussian factor. We will then find that the leading term
of the result of this calculation will exactly cancel the last quantities in the right-
hand side of equations in (5.52) and (5.53). This cancellation is the key point of
the following tedious calculation and this is the main reason for defining the key
quantities Pii and Kii in the form they are given in (5.19).

For the first term on the right-hand side of (5.54), using the definition of S̊ii in
(5.17) and the integration by parts formula in (5.44), we have

E
[
S̊iiτ1(G)mi (p− 1,p)

]
=

(i)∑
k

E

[
ḡuik

1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)mi(p− 1,p)
]

= 1

N

(i)∑
k

E

[
1

‖gui ‖2

∂(ê∗
kB̃

〈i〉Gêi )

∂guik
τ1(G)mi (p− 1,p)

]

+ 1

N

(i)∑
k

E

[
∂‖gui ‖−1

2

∂guik
ê∗
kB̃

〈i〉Gêiτ1(G)mi(p− 1,p)
]

(5.56)
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+ 1

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêi
∂τ1(G)

∂guik
mi (p− 1,p)

]

+ p− 1

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)
∂Pii
∂guik

mi (p− 2,p)
]

+ p

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)
∂Pii
∂guik

mi(p− 1,p− 1)
]
.

Analogously, we have

E
[
T̊iini(p− 1,p)

]
= 1

N

(i)∑
k

E

[
1

‖gui ‖2

∂(ê∗
kGêi )

∂guik
ni(p− 1,p)

]

+ 1

N

(i)∑
k

E

[
∂‖gui ‖−1

2

∂guik
ê∗
kGêini(p− 1,p)

]

+ p− 1

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kGêi

∂Kii

∂guik
ni(p− 2,p)

]

+ p

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kGêi

∂Kii

∂guik
ni (p− 1,p− 1)

]
.

(5.57)

We start from the first term on the right-hand side of (5.56). Using (5.50), we
have

1

N

(i)∑
k

∂(ê∗
kB̃

〈i〉Gêi )

∂guik
= cui

1

N

(i)∑
k

ê∗
kB̃

〈i〉Gêk
(
êi + kui

)∗
B̃〈i〉RiGêi

+ cui
1

N

(i)∑
k

ê∗
kB̃

〈i〉GRi B̃
〈i〉êk

(
êi + kui

)∗
Gêi

+ 1

N

(i)∑
k

ê∗
kB̃

〈i〉
u
G(i, k)êi .

(5.58)

Let

(5.59) εi2 := 1

N

(i)∑
k

ê∗
kB̃

〈i〉
u
G(i, k)êi .
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Note that

(5.60)
1

N

(i)∑
k

ê∗
kB̃

〈i〉Gêk = τ1
(
B̃〈i〉G

) − 1

N

(
B̃〈i〉G

)
ii = τ1(B̃G)+O≺

(
�2)

,

where in the last step we used the second estimate in Corollary A.4 with the choice
Q= Î1 (cf. (4.25)), (B̃〈i〉G)ii = σ̃iGîi

(cf. (5.18)), and the bound in (5.31). Anal-
ogously, one shows

(5.61)
1

N

(i)∑
k

ê∗
kB̃

〈i〉GRi B̃
〈i〉êk = τ1(B̃GB̃)+O≺

(
�2)

.

Moreover, using (5.18), (5.13) and the fact R2
i = Î , we also have the following

observations:

ê∗
i B̃

〈i〉RiGêi = σ̃i ê
∗
î
RiGêi = −σ̃i(kvi )∗Gêi = −σ̃iTîi ,(

kui
)∗
B̃〈i〉RiGêi = (

kui
)∗Ri B̃Gêi = −ê∗

i B̃Gêi = −(B̃G)ii .
(5.62)

Plugging (5.60), (5.61) and (5.62) into (5.58), we obtain

1

N

(i)∑
k

∂(ê∗
kB̃

〈i〉Gêi )

∂guik
= −cui τ1(B̃G)

(
σ̃iTîi + (B̃G)ii

)
+ cui τ1(B̃GB̃)(Gii + Tii)+ εi2 +O≺

(
�2)

.

(5.63)

Analogously to (5.63), we also have

1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik
= −cui τ1(G)

(
σ̃iTîi + (B̃G)ii

)
+ cui τ1(GB̃)(Gii + Tii)+ εi3 +O≺

(
�2)

,

(5.64)

where

εi3 := 1

N

(i)∑
k

ê∗
k


u
G(i, k)êi .

The following estimates on εi2 and εi3 will be proved in Lemma B.1 in Appendix B
of the Supplementary Material [5]:

(5.65) |εi2| ≺�2, |εi3| ≺�2.

Combining (5.63), (5.64) with an appropriate linear combination and using (5.65),
we get

1

N

(i)∑
k

∂(ê∗
kB̃

〈i〉Gêi )

∂guik
τ1(G)− 1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik
τ1(B̃G)

= −cui (Gii + Tii)
(
τ1(B̃G)−ϒ1

) +O≺
(
�2)

.

(5.66)
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Here we also used that the tracial quantities τ1(G), τ1(B̃G) and ϒ1 are stochasti-
cally dominated by 1, in light of (5.34). Applying (5.47), the fact T̊ii = Tii−huiiGii

from (5.17), we can write

1

N

(i)∑
k

∂(ê∗
kB̃

〈i〉Gêi )

∂guik
τ1(G)

= −cui (Gii + Tii)
(
τ1(B̃G)−ϒ1

)
+ 1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik
τ1(B̃G)+O≺

(
�2)

= −cui (Gii + Tii)
(
τ1(B̃G)−ϒ1

) + T̊iiτ1(B̃G)

+
(

1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik
− T̊ii

)
τ1(B̃G)+O≺

(
�2)

= −∥∥gui ∥∥2

(
Giiτ1(B̃G)− (Gii + Tii)ϒ1

)
+

(
1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik
− T̊ii

)
τ1(B̃G)+ εi4 + εi5 +O≺

(
�2)

,

(5.67)

where

εi4 := ((
1 − ∥∥gui ∥∥2

2

)
τ1(B̃G)+ (

1 − ∥∥gui ∥∥2
2 − hii

)(
τ1(B̃G)−ϒ1

))
Tii

(5.68)
+ (

1 − ∥∥gui ∥∥2
2 − hii

)
Giiϒ1,

εi5 := (∥∥gui ∥∥2
2 − 1

)
Giiτ1(B̃G).(5.69)

Using ‖gui ‖2 = 1+O≺( 1√
N
), the estimates (5.31), (5.32) and (5.34), and Corollary

A.4, we get

(5.70) |εi4| ≺ 1√
N
, |εi5| ≺ 1√

N
.

Notice that the first term in the right-hand side of (5.67) will exactly cancel the
explicit last term in the right-hand side of (5.52). This cancellation is one of the
main reasons behind the choice of the auxiliary quantity P . Combining the first
equation of (5.53), (5.54), (5.56) with (5.67), we get

E
[
mi (p,p)

] = E

[
1

‖gui ‖2

(
T̊ii − 1

N

(i)∑
k

∂(ê∗
kGêi)

∂guik

)
τ1(B̃G)mi (p− 1,p)

]

− 1

N

(i)∑
k

E

[
∂‖gui ‖−1

2

∂guik
ê∗
kB̃

〈i〉Gêiτ1(G)mi(p− 1,p)
]
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− 1

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêi
∂τ1(G)

∂guik
mi (p− 1,p)

]

− p− 1

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)
∂Pii
∂guik

mi (p− 2,p)
]

(5.71)

− p

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)
∂Pii
∂guik

mi (p− 1,p− 1)
]

+E

[(
εi1τ1(G)− εi4 + εi5

‖gui ‖2

)
mi(p− 1,p)

]
+E

[
O≺

(
�2)

mi (p− 1,p)
]
.

Note that the sixth term on the right-hand side can be estimated by E[O≺(�)×
mi(p − 1,p)], according to (5.43) and (5.70). This estimate is sufficient for the
proof of Lemma 5.3. But here we keep the ε-terms explicit for further use.

In order to estimate the first term in the right-hand side, similar to (5.57), we
can apply the integration by parts formula (5.44) to obtain

E

[
1

‖gui ‖2

(
T̊ii − 1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik

)
τ1(B̃G)mi (p− 1,p)

]

= 1

N

(i)∑
k

E

[
∂‖gui ‖−2

2

∂guik
ê∗
kGêiτ1(B̃G)mi(p− 1,p)

]

+ p− 1

N

(i)∑
k

E

[
1

‖gui ‖2
2

ê∗
kGêi

∂τ1(B̃G)

∂guik
mi(p− 1,p)

]

+ p− 1

N

(i)∑
k

E

[
1

‖gui ‖2
2

ê∗
kGêiτ1(B̃G)

∂Pii
∂guik

mi (p− 2,p)
]

+ p

N

(i)∑
k

E

[
1

‖gui ‖2
2

ê∗
kGêiτ1(B̃G)

∂Pii
∂guik

mi (p− 1,p− 1)
]
.

(5.72)

Notice the cancellation between the two terms in the bracket in the first line.
Next we consider the estimate of ni(p,p); especially we control the first term in

the right-hand side of (5.57). In addition, using (5.64), (5.65) and the facts ‖gui ‖2 =
1 +O≺( 1√

N
) and cui = 1 +O≺( 1√

N
), we have

1

N

1

‖gui ‖2

(i)∑
k

∂(ê∗
kGêi )

∂guik

= −τ1(G)
(
σ̃iTîi + (B̃G)ii

) + τ1(GB̃)(Gii + Tii)+O≺(�).

(5.73)
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Note that the result of this calculation exactly cancels the second term in the right-
hand side of (5.53). Hence, analogously to (5.71), combining (5.57), (5.65), (5.55),
(5.53) and (5.73), we get

E
[
ni(p,p)

] = 1

N

(i)∑
k

E

[
∂‖gui ‖−1

2

∂guik
ê∗
kGêini (p− 1,p)

]

+ p− 1

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kGêi

∂Kii

∂guik
ni (p− 2,p)

]

+ p

N

(i)∑
k

E

[
1

‖gui ‖2
ê∗
kGêi

∂Kii

∂guik
ni(p− 1,p− 1)

]
+E

[
O≺(�)ni (p− 1,p)

]
.

(5.74)

Hence, to prove the second equation of (5.39) it suffices to estimate the first
three terms on the right-hand side of (5.74). For the first equation of (5.39), with
(5.43) and (5.70), it suffices to estimate the second to the fifth terms on the right-
hand side of (5.71), and the terms on the right-hand side of (5.72). All these esti-
mates can be derived from the following lemma.

LEMMA 5.4. Suppose that the assumptions in Theorem 5.2 hold. Set Xi = Î

or B̃〈i〉. LetQ be any deterministic diagonal matrix satisfying ‖Q‖ ≤ C andX = Î

or A. We have the following estimates:

1

N

(i)∑
k

∂‖gui ‖−1
2

∂guik
ê∗
kXiGêi =O≺

(
1

N

)
,

1

N

(i)∑
k

ê∗
i X

∂G

∂guik
êi ê

∗
kXiGêi =O≺

(
�2)

,

1

N

(i)∑
k

∂Tji

∂guik
ê∗
kXiGêi =O≺

(
�2)

,

1

N

(i)∑
k

∂ trQXG

∂guik
ê∗
kXiGêi =O≺

(
�4)

,

(5.75)

where j = i or î in the third equation.

Assuming the validity of Lemma 5.4, we continue with the proof of Lemma 5.3.
Recall that our task is to bound the terms on the right-hand sides of (5.71), (5.72),
(5.74). The second term in (5.71), the first term in (5.72) and the first term in
(5.74) can all be estimated with the aid of first bound in (5.75). The estimates for
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the third term in (5.71) and the second term in (5.72) follow from the last bound
in (5.75). Finally, the fourth term in (5.71), the third term in (5.72) and the second
term in (5.74) together with their complex conjugate analogues can be estimated in
a similar way, so we only present the details for the fourth term on the right-hand
side of (5.71) in the sequel.

Recall the definition of Pii from (5.19),

Pii = (B̃G)iiτ1(G)−Giiτ1(B̃G)+ (Gii + Tii)ϒ1.

Using (4.16), and recalling the definition of ϒ1 in (5.20), we can see that Pii is a
combination of the terms of the following forms: Tii , (XG)ii and tr(QXG), for
X = Î or A, and Q is certain deterministic diagonal matrix with ‖Q‖ ≤ C for
some positive constant C. For example, (B̃G)ii = 1 + zGii − (AG)ii , and

τ1(GB̃)= τ1
(
Î −G(A− z)

) = 1 + zτ1(G)− τ1(GA)

= 1 + 2z tr(Î1G)− 2 tr(AÎ1G)= 1 + 2z tr(Î1G)− 2 tr(Î2AG).

Then, by the product rule for derivative, and the boundedness of all the partial
traces (cf. (5.34)) and entries (cf. (5.31), (5.32)), we can apply the last three
bounds in (5.75) to conclude that the fourth term on the right-hand side of (5.71)
is E[O≺(�2)mi(p− 2,p)].

This completes the proof of Lemma 5.3, up to Lemma 5.4. �

PROOF OF LEMMA 5.4. Since the sums in (5.75) are over k �= i, it will be
convenient to work in this proof with the following notation:

(5.76) I 〈i〉 := I − eie
∗
i , Î

〈i〉
1 := I 〈i〉 ⊕ 0,

where 0 is the N ×N zero matrix. We check the estimates in (5.75) one by one.
For the first estimate, we have

1

N

(i)∑
k

∂‖gui ‖−1
2

∂guik
ê∗
kXiGêi = − 1

2N

1

‖gui ‖3
2

(i)∑
k

ḡuik ê
∗
kXiGêi

= − 1

2N

1

‖gui ‖2
2

(
k̊
u

i

)∗
XiGêi =O≺

(
1

N

)
,

where in the last step we used that

(5.77)
(
k̊
u

i

)∗
XiGêi ≺ 1,

which would follow once we show |S̊ii | ≺ 1 and |T̊ii | = |Tii − huiiGii | ≺ 1 by
(5.17). Since S̊ii = −(B̃G)ii + O≺(�) by (5.41), (5.43) and |(B̃G)ii | ≺ 1 from
(5.32), we get |S̊ii | ≺ 1. The estimate |T̊ii | ≺ 1 follows from (5.31) and the fact
|huii | ≺ 1√

N
.
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Next we show the second estimate in (5.75). Using (5.50), we have

1

N

(i)∑
k

ê∗
i X

∂G

∂guik
êi ê

∗
kXiGêi

= cui
1

N

(i)∑
k

ê∗
i XGêk

(
êi + kui

)∗
B̃〈i〉RiGêi ê

∗
kXiGêi

+ cui
1

N

(i)∑
k

ê∗
i XGRi B̃

〈i〉êk
(
ê∗
i + (

kui
)∗)
Gêi ê

∗
kXiGêi

+ 1

N

(i)∑
k

ê∗
i X


u
G(i, k)êi ê

∗
kXiGêi

= cui
1

N
ê∗
i XGÎ

〈i〉
1 XiGêi

(
êi + kui

)∗
B̃〈i〉RiGêi

+ cui
1

N
ê∗
i XGRi B̃

〈i〉Î 〈i〉
1 XiGêi

(
êi + kui

)∗
Gêi

+ 1

N

(i)∑
k

ê∗
i X


u
G(i, k)êi ê

∗
kXiGêi ,

(5.78)

where we have used the notation introduced in (5.76).
From Lemma B.1 in Appendix B of the Supplementary Material [5] we see that

the last term on the right-hand side of (5.78) is of order O≺(�2). For the first two
terms, we first claim that

(5.79)
∣∣ê∗
i XGÎ

〈i〉
1 XiGêi

∣∣ ≺ 1

η
,

∣∣ê∗
i XGRi B̃

〈i〉Î 〈i〉
1 XiGêi

∣∣ ≺ 1

η
.

We prove the first estimate (5.79) as follows. Note that

ê∗
i XGÎ

〈i〉
i XiGêi ≤ ê∗

i X|G|2Xêi + ê∗
i G

∗X∗
i Î

〈i〉
1 XiGêi

≤ 1

η
Im(XGX)ii + ‖Xi‖2 1

η
ImGii.

(5.80)

Recall X = Î or A, and the fact (AGA)ii = |σi |2Gîî
. This together with (5.31)

and the fact ‖Xi‖ ≤C since Xi = Î or B̃〈i〉 implies the first estimate in (5.79). The
second estimate can be derived in a similar way.

Then we recall from (5.62) that (êi + kui )
∗B̃〈i〉RiGêi = −σ̃iTîi − (B̃G)ii , and

from the definition of Tij in (5.16) that (êi + kui )
∗Gêi =Gii + Tii , which together

with (5.31), (5.32) and (5.79) imply that the first two terms on the right-hand side
of (5.78) are also of order O≺(�2). This completes the second estimate in (5.75).
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For the third estimate in (5.75) we present the details for j = i in the sequel.
The case of j = î is similar but simpler and we omit it. According to the definition
of Tii in (5.16), it suffices to show

1

N

(i)∑
k

∂(kui )
∗

∂guik
Gêi ê

∗
kXiGêi =O≺

(
1

N

)
,

1

N

(i)∑
k

(
kui

)∗ ∂G
∂guik

êi ê
∗
kXiGêi =O≺

(
�2)

.

(5.81)

For the first estimate in (5.81) we have

1

N

(i)∑
k

∂(kui )
∗

∂guik
Gêi ê

∗
kXiGêi = − 1

2‖gui ‖2
2

1

N

(i)∑
k

h̄uik ê
∗
kXiGêi

(
kui

)∗
Gêi

= − 1

2‖gui ‖2
2

1

N

(
k̊
u

i

)∗
XiGêi

(
kui

)∗
Gêi =O≺

(
1

N

)
,

where in the last step we used (5.31) and (5.77). The proof of the second estimate
in (5.81) is similar to that for the second estimate in (5.75). It suffices to go through
the discussion from (5.78) to (5.80) again, with the vector ê∗

i X replaced by (kui )
∗.

The main differences are: instead of the last term of (5.78), we have

(5.82)
1

N

(i)∑
k

(
kui

)∗

u
G(i, k)êi ê

∗
kXiGêi ,

and instead of the first term on the right-hand side of (5.80), we have

(5.83)
1

η
Im

(
kui

)∗
Gkui .

The bound on (5.82) is stated in (B.3). For (5.83), we recall the identity (5.13)
which implies kui = −Ri êi , the fact G = UGU∗, together with (5.6) and the fact
R2
i = Î . Then we have

(5.84)
(
kui

)∗
Gkui = ê∗

iRiUGU∗Ri êi = ê∗
i Ui�iG�∗

i U∗
i êi = Gii .

Similar to (5.31), with the second bound in assumption (5.27), we can also show
that

(5.85) max
k,l

|Gkl| ≺ 1.

With these bounds for (5.82) and (5.83), we can show the second estimate of (5.81),
which together with the first estimate in (5.81) implies the third bound in (5.75).
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At the end, we show the last bound in (5.75). Applying (5.50) we have

∂ trQXG

∂guik
= 1

N
cui

(
êi + kui

)∗
B̃〈i〉RiGQXGêk

+ 1

N
cui

(
êi + kui

)∗
GQXGRi B̃

〈i〉êk + trQX
u
G(i, k).

(5.86)

Summing over k and using the notation in (5.76) we can write

1

N

(i)∑
k

∂ trQXG

∂guik
ê∗
kXiGêi = cui

N2

(
êi + kui

)∗
B̃〈i〉RiGQXGÎ

〈i〉
1 XiGêi

+ cui

N2

(
êi + kui

)∗
GQXGRi B̃

〈i〉Î 〈i〉
1 XiGêi

+ 1

N

(i)∑
k

trQX
u
G(i, k)ê

∗
kXiGêi .

(5.87)

The bound for the last term of the right-hand side of (5.87) can be found in (B.4).
In the sequel, we bound the first two terms on the right-hand side of (5.87). We

only present the details for the first one; the second is estimated analogously. First,
similar to (5.62), we have(

êi + kui
)∗
B̃〈i〉Ri = −(

σ̃i
(
kvi

)∗ + ê∗
i B̃

)
.

Then we can write

cui
N2

(
êi + kui

)∗
B̃〈i〉RiGQXGÎ

〈i〉
1 XiGêi

= − cui

N2

(
σ̃i

(
kvi

)∗ + ê∗
i B̃

)
GQXGÎ1XiGêi

+ cui
N2

(
σ̃i

(
kvi

)∗ + ê∗
i B̃

)
GQXGêi ê

∗
i XiGêi .

(5.88)

For the second term on the right-hand side of (5.88), we use the bounds

(5.89)
∣∣(σ̃i(kvi )∗ + ê∗

i B̃
)
GQXGêi

∣∣ ≺ η−2,
∣∣ê∗
i XiGêi

∣∣ ≺ 1,

where in the first inequality we used the trivial bound ‖G‖ ≤ η−1, while in the
second inequality we used the fact that Xi = Î or B̃〈i〉, together with (5.18), and
the first bound in (5.31). Using the bounds in (5.89), we see that the second term
on the right-hand side of (5.88) is of order O≺(�4).
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Now we turn to the first term on the right-hand side of (5.88). Note that∣∣∣∣ 1

N2

(
σ̃i

(
kvi

)∗ + ê∗
i B̃

)
GQXGÎ1XiGêi

∣∣∣∣
≤ C

N2η

(∥∥(
kvi

)∗
G

∥∥
2 + ∥∥ê∗

i B̃G
∥∥

2

)‖Gêi‖2

≤ C

N2η

(∥∥(
kvi

)∗
G

∥∥2
2 + ∥∥ê∗

i B̃G
∥∥2

2 + ‖Gêi‖2
2
)

≤ C

N2η2

(
Im

(
kvi

)∗
Gkvi + Im ê∗

i B̃GB̃ êi + Im ê∗
i Gêi

)
.

(5.90)

Similar to (5.84), we have

(5.91)
(
kvi

)∗
Gkvi = ê∗

î
RiUGU∗Ri êî = ê∗

î
Ui�iG�∗

i U∗
i ê

î
= G

î î
.

Combining (5.90) and (5.91), we obtain∣∣∣∣ 1

N2

(
σ̃i

(
kvi

)∗ + ê∗
i B̃

)
GQXGÎ1XiGêi

∣∣∣∣ ≤ C

N2η2

(
ImG

î î
+ Im(B̃GB̃)ii + ImGii

)
=O≺

(
�4)

,

where we also used (5.32) and (5.85). Hence the first term on the right-hand side
of (5.87) is O≺(�4). The second term on the right-hand side of (5.87) is bounded
similarly. These bounds together with (B.4) yield the other estimates in (5.75).
This completes the proof of Lemma 5.4. �

5.4. Local stability analysis: Proof of Theorem 5.2. Having established
Lemma 5.3, we move on to the local stability analysis in order to conclude the
proof of Theorem 5.2.

PROOF OF THEOREM 5.2. Applying Young’s inequality, we obtain from
(5.39) that for any given (small) ε > 0,

E
[
mi (p,p)

] ≤ 3
1

2p
E

[
N2pε�2p] + 3

2p− 1

2p
N

− 2pε
2p−1E

[
mi(p,p)

]
,

which implies E[mi(p,p)] ≺�2p . Hence, we conclude the proof of the first esti-
mate of (5.36).

The second estimate of (5.36) can be proved in the same way, with the aid of
the second equation in (5.39). Then, applying Markov’s inequality we get the first
and the third estimates of (5.28) with j = i. The others in (5.28) are proved in an
analogous way. We omit the details.

Next we show that (5.28) together with the assumption (5.27) imply (5.29). To
this end, we first show the following crude bound:

(5.92) �T (z)≺N− γ
4
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under the assumption (5.27). We need the following equations for j = i, î:

Tij = −τ1(G)
(
σ̃iTîj + (B̃G)ij

) + τ1(GB̃)(Gij + Tij )+O≺(�),

T
îj

= −τ2(G)
(
σ̃ ∗
i Tij + (B̃G)

îj

) + τ2(GB̃)(Gîj
+ T

îj
)+O≺(�),

(5.93)

which is just a rewriting of the second line of (5.28), according to the definition in
(5.19).

Using the first identity in (4.16) and the definition of A in (4.14), we have

(B̃G)ii = 1 + zGii − ξiGîi
, (B̃G)

iî
= −ξiGîî

+ zG
iî
,

(B̃G)
îi

= −ξ̄iGii + zG
îi
, (B̃G)

îî
= 1 + zG

îî
− ξ̄iGiî

.
(5.94)

Applying the assumption on �d in (5.27), and also the lower bound of ImωB and
the upper bound on |ωB | in (A.4), we can get from (5.94) that

(B̃G)ii = (z−ωB)ωB

|ξi |2 −ω2
B

+O≺
(
N− γ

4
)
,

(B̃G)
iî

= (z−ωB)ξi

|ξi |2 −ω2
B

+O≺
(
N− γ

4
)
,

(B̃G)
îi

= (z−ωB)ξ̄i

|ξi |2 −ω2
B

+O≺
(
N− γ

4
)
,

(B̃G)
îî

= (z−ωB)ωB

|ξi |2 −ω2
B

+O≺
(
N− γ

4
)
.

(5.95)

This together with (5.34) leads to the following estimates for j = i, î:

−τ1(G)(B̃G)ij + τ1(GB̃)Gij =O≺
(
N− γ

4
)
,

−τ2(G)(B̃G)îj + τ2(GB̃)Gîj
=O≺

(
N− γ

4
)
,

which together with (5.93) implies(
1 − τ1(GB̃)

)
Tij + τ1(G)σ̃iTîj =O≺

(
N− γ

4
)
,(

1 − τ2(GB̃)
)
T
îj

+ τ2(G)σ̃
∗
i Tij =O≺

(
N− γ

4
)
, j = i, î.

(5.96)

Solving Tij from the equations in (5.96), we get

(5.97)
((

1 − τ1(GB̃)
)(

1 − τ2(GB̃)
) − |σi |2τ1(G)τ2(G)

)
Tij =O≺

(
N− γ

4
)
.

Using the assumption on �T in (5.27), and also (5.34), we obtain from (5.97) that

(5.98)
((

1 + (ωB − z)mμA�μB
)2 − |σi |2m2

μA�μB
)
Tij =O≺

(
N− γ

4
)
.



1314 Z. BAO, L. ERDŐS AND K. SCHNELLI

Further, observe that(
1 + (ωB − z)mμA�μB

)2 − |σi |2m2
μA�μB

=m2
μA�μB

(
ωA − |σi |)(ωA + |σi |),(5.99)

which follows from the second equation in (2.5) with (μ1,μ2)= (μA,μB). Then
by (A.4) and the fact mμA�μB =mμA(ωB), we see that |Tij | ≺ N− γ

4 for j = i, î.

Analogously, one can show |T
îj

| ≺ N− γ
4 . This completes the proof of the crude

bound (5.92).
With (5.92), we can now proceed to the proof of (5.29). We consider the average

of Pii over i ∈ �1,N�, and use (5.28) to obtain

(5.100) ϒ1 · 1

N

N∑
i=1

(Gii + Tii)= 1

N

N∑
i=1

Pii =O≺(�).

By the first estimate in (5.34), the fact mμA�μB =mμA(ωB), the lower bound on
ImωB in (A.4), and also the crude bound (5.92), we can see that

(5.101)
∣∣∣∣ 1

1
N

∑N
i=1(Gii + Tii)

∣∣∣∣ =
∣∣∣∣ 1

mμA(ωB)+O≺(N− γ
4 )

∣∣∣∣ ≺ 1.

Then the first estimate in (5.29) follows from (5.100) and (5.101) immediately.
The second one can be verified similarly.

Finally, using (5.28) and (5.29), we can prove (5.30) as follows. Recall the def-
inition in (5.19). Applying (5.27)–(5.29), we obtain, for j = i, î,

(5.102) (B̃G)ij =Gij

τ1(B̃G)

τ1(G)
+O≺(�), (B̃G)

îj
=G

îj

τ2(B̃G)

τ2(G)
+O≺(�).

Using (5.94) and (5.102), we get the following system of equations:

1 − ξiGîi
+ωcB,1Gii =O≺(�), −ξiGîî

+ωcB,1Giî
=O≺(�),

−ξ̄iGii +ωcB,2Gîi
=O≺(�), 1 − ξ̄iGiî

+ωcB,2Gîî
=O≺(�),

(5.103)

where we used the notation introduced in (8.20). Solving (5.103), we find

Gii =
ωcB,2

|ξi |2 −ωcB,1ω
c
B,2

+O≺(�),

G
iî

= ξi

|ξi |2 −ωcB,1ω
c
B,2

+O≺(�),

G
îi

= ξ̄i

|ξi |2 −ωcB,1ω
c
B,2

+O≺(�),

G
îî

= ωcB,1

|ξi |2 −ωcB,1ω
c
B,2

+O≺(�).

(5.104)
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From (5.34), we see that

(5.105) ωcB,a = ωB +O≺
(
N− γ

4
)
, a = 1,2.

The first estimate of (5.30) could be verified from (5.104), if we could show

(5.106) ωcB,a = ωcB +O≺(�), a = 1,2.

To this end, we use τ1(G(z)) = τ2(G(z)); cf. (4.27). From (8.20) and (4.27), we
also have

(5.107) ωcB,1 +ωcB,2 = 2ωcB.

Then, averaging the first and the fourth equations of (5.104) over i ∈ �1,N�, we
get

(5.108) ωcB,2
1

N

N∑
i=1

1

|ξi |2 −ωcB,1ω
c
B,2

= ωcB,1
1

N

N∑
i=1

1

|ξi |2 −ωcB,1ω
c
B,2

+O≺(�),

where we also used (4.27). We further claim that

(5.109)

(
1

N

N∑
i=1

1

|ξi |2 −ωcB,1ω
c
B,2

)−1

≺ 1,

which together with (5.108) implies that

(5.110) ωcB,2 = ωcB,1 +O≺(�).
Combining (5.110) with (5.107), we get (5.106). Hence, it suffices to show (5.109).
To this end, we use (5.105). Then we have

1

N

N∑
i=1

1

|ξi |2 −ωcB,1ω
c
B,2

= 1

N

N∑
i=1

1

|ξi |2 −ω2
B +O≺(N− γ

4 )

= 1

N

N∑
i=1

1

|ξi |2 −ω2
B

+O≺
(
N− γ

4
)

= ω−1
B mμA(ωB)+O≺

(
N− γ

4
)
,

where in the first step above, we used the upper bound of |ωB | in (A.4); in the
second step, we used again the fact that |ξi |2 − ω2

B is away from 0 due to the
lower bound of ImωB in (A.4); and the last step follows from (5.33). Then the
fact ‖A‖ ≤ C (cf. (4.4)), the lower bound of ImωB and the upper bound on |ωB |
in (A.4), we can get (5.109). Hence, we conclude the proof of the first estimate of
(5.30).

For the second estimate in (5.30), we need to go through the proof of (5.92)
again, but this time with the a priori input (5.27) replaced by the first estimate of
(5.30). Therefore, with (5.30), we can get

(5.111)
((

1 + (
ωcB − z

)
mA

(
ωcB

))2 − |σi |2(
mA

(
ωcB

))2)
Tij =O≺(�),
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which is the analogue of (5.98). Then, by the estimates in (5.34) and the defini-
tion in (5.22), it is not difficult to check that the coefficient of Tij above can be
approximated by (5.99), up to an error O≺(N− γ

4 ). Hence, we can improve the es-
timate to |Tij | ≺ � for j = i, î. Similarly, we can prove the same bound for T

îj
.

This completes the second estimate of (5.30). Hence, we conclude the proof of
Theorem 5.2. �

5.5. Continuity argument: Proof of Theorem 5.1. Having derived Theo-
rem 5.2, we prove Theorem 5.1 using a continuity argument similar to [23].

PROOF OF THEOREM 5.1. First we show that �c
d(z) in (5.30) can be replaced

by �d(z). This means, we have to control the difference between (ωA,ωB) and
(ωcA,ω

c
B) as described in (5.26); this estimate will follow from the stability of the

system�μA,μB (ωA,ωB, z)= 0 (cf. (4.29) with (μ1,μ2)= (μA,μB)). We will use
the dual pair of subordination equations, that is, when we analyze H instead of H .
Recall the notation introduced in (4.23), and also �̃d and �̃T as the analogue of
�d and �T , respectively, see the explanation around (5.23). For any δ ∈ [0,1] and
z ∈ SI(ηm, ηM), we introduce the following event:

(5.112) �(z, δ) := {
�d(z)≤ δ, �̃d(z)≤ δ,�T (z)≤ 1, �̃T (z)≤ 1

}
.

With the above notation, we have the following lemma.

LEMMA 5.5. Suppose that the assumptions in Theorem 4.3 hold. Let ηM > 0
be a sufficiently large constant and γ > 0 be a small constant in the definition
(5.1). For any ε with 0< ε ≤ γ

8 and for any D > 0, there exists a positive integer
N2(D, ε) such that the following holds: For any fixed z ∈ SI(ηm, ηM) there exists
an event �(z)≡�(z,D, ε) with

(5.113) P
(
�(z)

) ≥ 1 −N−D ∀N ≥N2(D, ε),

such that if the estimate

(5.114) P
(
�

(
z,N− γ

4
)) ≥ 1 −N−D(

1 +N5(ηM − η)
)
, η= Im z,

holds for all D > 0 and N ≥ N1(D,γ, ε), for some threshold N1(D,γ, ε), then
we also have

(5.115) �
(
z,N− γ

4
) ∩�(z)⊂�

(
z,

Nε

√
Nη

)
,

for all N ≥N3(D,γ, ε) := max{N1(D,γ, ε),N2(D, ε)}.

PROOF. In this proof we fix z ∈ SI(ηm, ηM). According to the definition of ≺
in Definition 1.6, we see from the assumption (5.114) that

(5.116) �d(z)≺N− γ
4 , �̃d(z)≺N− γ

4 , �T (z)≺ 1, �̃T (z)≺ 1.
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We apply Theorem 5.2; by the estimates on �c
d and on �T in (5.30) and their

analogues for �̃c
d and �̃T , we have

(5.117) �c
d(z)≺�, �̃c

d(z)≺�, �T (z)≺�, �̃T (z)≺�.

Now we state the conclusions in (5.117) in a more explicit quantitative form,
with the quantitative assumption (5.114). To this end, we need a more quantitative
version of Lemma 5.3. Let ϕ :R →R be a smooth cutoff function s.t.

(5.118)
ϕ(x)= 1 if |x| ≤K, ϕ(x)= 0 if |x| ≥ 2K,

sup
x∈R

∣∣ϕ′(x)
∣∣ ≤ CK−1

for some sufficiently large constant K > 0. Let

(5.119)

 i ≡  i(z)

:= ∑
a,b=i,î

(|Gab|2 + |Gab|2 + |Tab|2 + |Tab|2)
+ ∑
a=1,2

(∣∣τa(G)∣∣2 + ∣∣τa(B̃G)∣∣2 + ∣∣τa(GB̃)∣∣2 + ∣∣τa(B̃GB̃)∣∣2)
.

Note that for a given i, all the a priori bounds we needed in the proof of Lemma 5.3
are the O≺(1) bound for Gab, Gab, Tab, Tab with a, b = i, î and the tracial quan-
tities in (5.119). The O≺(1) bound for (XGY)ab with X,Y = Î or B̃ were also
used (see (B̃XB̃)ii in (5.90) for instance), but they can be derived from the bound
of Gab’s by using (4.16). Recall the definitions of mi and ni in (5.37). We now
introduce modifications of mi and ni by setting

m̃i (p, q) := mi (p, q)(ϕ( i))
p+q, ñi (p, q) := ni (p, q)(ϕ( i))

p+q .

In addition, for any ε′ > 0, let �̂(z) = �̂(z, ε′) be the event that all the concen-
tration estimates of the components or quadratic forms of hui and hvi in the proof
of Lemma 5.3 hold with precision Nε′ . For instance, we used the large devia-

tion bound (A.1) to bound (kui )
∗B̃〈i〉kvi in (5.41) by O≺(N− 1

2 ), in the proof of

Lemma 5.3. Now we can bound it more quantitatively by Nε′√
N

on �̂(z). Now we
claim that

(5.120)
E[m̃i (p,p)] = E

[
c1m̃i (p− 1,p)

] +E
[
c2m̃i (p− 2,p)

]
+E

[
c3m̃i (p− 1,p− 1)

]
with some random variables c1, c2, c3, satisfying

(5.121) |c1| ≤ C
Nε′

√
Nη

, |c2| ≤ C
N2ε′

Nη
, |c3| ≤ C

N2ε′

Nη
on �̂(z),
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for some positive constant C which may depend on K in (5.118). In addition, the
ci’s also admit trivial deterministic bounds of order η−k , for some constant k > 0.
Moreover, for any D′ > 0, there exists N(D′, ε′), such that if N ≥N(D′, ε′)

P
(
�̂(z)

) ≥ 1 −N−D′
.

Observe that (5.120) is just a more explicit version of (5.39), considering that �̂(z)
holds with high probability. The proof of the more quantitative estimate (5.120)
with (5.121) is basically the same as the proof of the nonquantitative one in (5.39).

The price for introducing ϕ( i) into m̃i is that it creates additional terms in the
integration by parts. However, they are absorbed into the first term in the right side
of (5.120). For instance, in the analogue of the step (5.56), except for replacing mi

by m̃i , we will have an additional term

1

N

(i)∑
k

E

[
1

‖gui ‖2

(
ê∗
kB̃

〈i〉Gêi
)∂ϕ( i)
∂guik

τ1(G)m̃i (p− 1,p)
]
.

For example, one term of ∂ϕ( i)
∂guik

is

ϕ′( i)
∂|Gii |2
∂guik

= ϕ′( i)
∂Gii

∂guik
Gii + ϕ′( i)

∂Gii

∂guik
Gii .

Using the second estimate in (5.75),

1

N

(i)∑
k

ê∗
kB̃

〈i〉Gêi
∂|Gii |2
∂guik

=O(
Nε′

√
Nη

) on
{
ϕ′( i) �= 0

} ∩ �̂(z).

It is also easy to check that the other terms in ∂ϕ( i)
∂guik

give the same bound.

Therefore, we have (5.120).
Using Young’s inequality to (5.120), we can get

E
[
m̃i (p,p)

] ≤ CpN
2pε′(

E
[|c1|2p] +E

[|c2|p] +E
[|c3|p])

≤ CpN
2pε′

((
Nε′

√
Nη

)2p
+N−D′

η−2kp
)
,

which implies by Markov’s inequality that

(5.122)

P

(∣∣Piiϕ( i)∣∣ ≥ N
ε
4√
Nη

)

≤ Cp

(
N

ε
4√
Nη

)−2p
N2pε′

((
Nε′

√
Nη

)2p
+N−D′

η−2kp
)
.

For the given ε > 0 in Lemma 5.5, by first choosing ε′ = ε′(ε) to be smaller than
ε
8 , and then choosing p = p(ε,D) to be sufficiently large, we get

(5.123) Cp

(
N

ε
4√
Nη

)−2p
N2pε′

(
Nε′

√
Nη

)2p
≤ 1

2
N−D.
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Then, by further choosing D′ =D′(ε,D) sufficiently large, we can guarantee

(5.124) Cp

(
N

ε
4√
Nη

)−2p
N2pε′N−D′

η−2kp ≤ 1

2
N−D.

With these choices of ε′ and D′, we now set N2(D, ε) :=N(D′, ε′).
Further, by (5.122)–(5.124), there exists an event �(z), such that

P(�(z))≥ 1 −N−D, N ≥N2(D, ε)

and

∣∣Piiϕ( i)∣∣ ≤ N
ε
4√
Nη

on �(z).

This now implies that |Pii | ≤ N
ε
4√
Nη

on �(z,N− γ
4 ) ∩�(z). Similarly, by working

on ñi , we can get |Kii | ≤ N
ε
4√
Nη

on �(z,N− γ
4 )∩�(z).

The same bound can be obtained for Pij , P
îj

, Kij and K
îj

for j = i, î. The
remaining argument is the same as the proof of (5.30) in Theorem 5.2. The only
change is, instead of the notation ≺, we use the deterministic ≤, but restricting
onto the event �(z,N− γ

4 )∩�(z).
More specifically, the quantitative proof of (5.117) yields that

(5.125)

�c
d(z)≤ N

ε
2√
Nη

, �̃c
d(z)≤ N

ε
2√
Nη

,

�T (z)≤ N
ε
2√
Nη

, �̃T (z)≤ N
ε
2√
Nη

hold on the event �(z,N− γ
4 )∩�(z), for all N ≥N3(D,γ, ε).

Therefore, by the definitions of �c
d and �̃c

d, we have∣∣∣∣Gii − ωcB
|ξi |2 − (ωcB)

2

∣∣∣∣ ≤ N
ε
2√
Nη

,

∣∣∣∣Gii − ωcA
|σi |2 − (ωcA)

2

∣∣∣∣ ≤ N
ε
2√
Nη

,

∣∣∣∣Gîî
− ωcB

|ξi |2 − (ωcB)
2

∣∣∣∣ ≤ N
ε
2√
Nη

,

∣∣∣∣Gî î − ωcA
|σi |2 − (ωcA)

2

∣∣∣∣ ≤ N
ε
2√
Nη

,

(5.126)
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for all i ∈ �1,N�, on the event �(z,N− γ
4 ) ∩�(z) for all N ≥N3(D,γ, ε). Aver-

aging the above estimates over i, we obtain the system of equations

mH(z)=mA

(
ωcB(z)

) + rA(z),

mH (z)=mB

(
ωcA(z)

) + rB(z),

ωcA(z)+ωcB(z)= z− 1

mH(z)
,

(5.127)

where the error terms rA(z) and rB(z) satisfy∣∣rA(z)∣∣ ≤ CN
ε
2√

Nη
,

∣∣rB(z)∣∣ ≤ CN
ε
2√

Nη
,

on the event �(z,N− γ
4 )∩�(z) for all N ≥N3(D,γ, ε). Here, the last equation in

(5.127) follows from the definition (4.17) or (5.22). From the definition of �(z, δ)
in (5.112), (4.17) or (5.22), and the equations in (2.5) with (μ1,μ2)= (μA,μB),
it is not difficult to check that∣∣ωcA −ωA

∣∣ ≤ CN− γ
4 ,

∣∣ωcB −ωB
∣∣ ≤CN− γ

4

hold on �(z,N− γ
4 ). In particular, with the help of (A.4), this guarantees that the

imaginary parts of ωcA and ωcB are separated away from zero, hence so are mA(ω
c
B)

and mB(ω
c
B). This allows us to rewrite (5.127) as

(5.128)
∥∥�μA,μB

(
ωcA,ω

c
B, z

)∥∥ = r̃(z),

where r̃(z)= (̃rA(z), r̃B(z))
′ satisfy∣∣̃rA(z)∣∣ ≤ CN

ε
2√

Nη
,

∣∣̃rB(z)∣∣ ≤ CN
ε
2√

Nη
,

on the event �(z,N− γ
4 )∩�(z) for all N ≥N3(D,γ, ε). Applying the stability of

the system �μA,μB (ωA,ωB, z)= 0 (see Theorem 4.1 of [2]), we obtain

(5.129)
∣∣ωcA −ωA

∣∣ ≤ CN
ε
2√

Nη
,

∣∣ωcB −ωB
∣∣ ≤ CN

ε
2√

Nη
,

on the event �(z,N− γ
4 )∩�(z) for all N ≥N3(D,γ, ε). Substituting (5.129) into

the definition of �c
d and �̃c

d, we see that the first two inequalities in (5.125) imply
similar bounds for �d and �̃d. This completes the proof of Lemma 5.5. �

With Lemma 5.5, the remaining proof of Theorem 5.1 closely follows that for
Theorem 2.5 in [3], so we will only sketch the argument. We start with the result
with large η= ηM for some large but fixed positive constant ηM. More specifically,
from Lemma 8.1, we see that

(5.130) �d(E + iηM)≺ 1√
Nη4

M

, �̃d(E + iηM)≺ 1√
Nη4

M

,
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for any fixed E ∈ R. The second estimate in (5.130) can be obtained from
Lemma 8.1 since one can apply this lemma to H as well. In addition, using the
trivial bound ‖G‖ ≤ 1

η
and inequality |x∗Gy| ≤ ‖G‖‖x‖2‖y‖2, we also have

(5.131) �T (E + iηM)≤ 1

ηM
, �̃T (E + iηM)≤ 1

ηM
,

for any fixed E ∈ Bμα�μβ . According to the definition of �(z, δ) in (5.112),
(5.130) and (5.131), we see that for any fixed E ∈ Bμα�μβ and D > 0,

(5.132) P
(
�

(
E + iηM,N

− 3γ
8

)) ≥ 1 −N−D,

holds for all N ≥N0(D,γ ) for some positive integer N0(D,γ ).
Starting with (5.132), we conduct a standard continuity argument, whose setup

is best suited to our problem in the form presented in [3]. Specifically, we do
a bootstrap by reducing η in very small steps, N−5 (say), starting from ηM and
successively control the probability of the “good” events �. Recall the event �(z)
in Lemma 5.5. The main task is to show for any fixed E ∈ I and any η ∈ [ηm, ηM],
(5.133) �

(
E + iη,N− 3γ

8
) ∩�(

E + i
(
η−N−5)) ⊂�

(
E + i

(
η−N−5)

,N− 3γ
8

)
,

which is the analogue of (7.20) of [3]. To see this inclusion, one first uses the
Lipschitz continuity of the Green function, ‖G(z)−G(z′)‖ ≤ N2|z− z′|, and of
the subordination functions (cf. (A.4)) to obtain

(5.134) �
(
E + iη,N− 3γ

8
) ⊂�

(
E + i

(
η−N−5)

,N− γ
4
)
.

Then (5.134) together with (5.115) implies (5.133). Using (5.133) recursively, one
goes from ηM down to ηm, step by step. The remaining proof of (5.25), based on
(5.133) and Lemma 5.5, is the same as the counterpart in [3] (cf. (7.20)–(7.25)
therein). We omit the details.

With (5.25), we can prove (5.26) in the sequel. The first two inequalities in
(5.26) have already been proved in (5.129) with a fixed η, under (5.116). The uni-
formity then follows from (5.25) which holds uniformly on SI(ηm, ηM). Then the
last inequality in (5.26) follows from the first two, together with the last equa-
tion in (5.127) and the second equation in (2.5) with (μ1,μ2) = (μA,μB). This
completes the proof of Theorem 5.1. �

6. Strong law for small η. In this section we prove the strong law, that is,
Theorem 4.3, for z ∈ SI(0, ηM). It suffices to work on the regime z ∈ SI(ηm, ηM)

at first. The extension to z ∈ SI(0, ηM) will be easy. Our main task is to establish
the fluctuation averaging for the quantities Pij defined in (5.19).

LEMMA 6.1 (Fluctuation averaging). Suppose that the assumptions in Theo-
rem 4.3 hold. Let ηM > 0 be any (large) constant and γ > 0 be any (small) constant
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in the definition of ηm (cf. (5.1)). For any fixed integer p ≥ 1, and deterministic
numbers d1, . . . , dN ∈ C satisfying maxi∈�1,N� |di | ≤ 1, we have∣∣∣∣∣ 1

N

N∑
i=1

diPii
∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

diPîi

∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

diPiî

∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

diPî î

∣∣∣∣∣
2

≺�2

(6.1)

uniformly on SI(ηm, ηM).

We will often use the following improvement of (5.34):

τa(G)=mμA�μB +O≺(�),

τa(B̃G)= (z−ωB)mμA�μB +O≺(�),

τa(GB̃)= (z−ωB)mμA�μB +O≺(�),

τa(B̃GB̃)= (ωB − z)
(
1 + (ωB − z)mμA�μB

) +O≺(�), a = 1,2,

(6.2)

which can be proved in the same way as (5.34), but with the first inequality in
(5.27) replaced by the first inequality in (5.25), as the input of the proof.

In the next Section 6.1, we will show how to prove Theorem 4.3 on SI(0, ηM)

with the aid of Lemma 6.1. Then, in Section 6.2 we will prove Lemma 6.1.

6.1. Proof of Theorem 4.3 on SI(0, ηM). To prove the strong law from
Lemma 6.1, first of all, we need to derive that the estimates

(6.3) |ϒ1| ≺�2, |ϒ2| ≺�2

hold uniformly on SI(ηm, ηM). These are the strongest high probability bounds
related to the Ward identities in (5.29). To see (6.3), we choose di = 1 for all
i ∈ �1,N� in (6.1). From the definition of Pii in (5.19), we get

1

N

N∑
i=1

Pii = ϒ1

N

N∑
i=1

(Gii + Tii)=ϒ1

(
τ1(G)+ 1

N

N∑
i=1

Tii

)

=ϒ1
(
mμA�μB +O≺(�)

)
,

(6.4)

where in the last step we used (6.2) and the third inequality in (5.25). Then, using
the lower bound of ImmμA�μB = ImmμA(ωB) inherited from the lower bound of
ImωB in (A.4), and also the first bound in (6.1), we can easily see |ϒ1| ≺�2 from
(6.4). Similarly, we can also show |ϒ2| ≺ �2. Notice that a posteriori we could
have defined Pij in (5.19) without the last term involving ϒa with a = 1,2, since
we are interested only up to O≺(�2) precision. We do not, however, know how
to prove directly that ϒa =O≺(�2) without first proving a fluctuation averaging
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result (6.1) involving the quantity Pij with ϒa . The correct choice of Pij is the
essential idea of the entire proof.

Plugging (6.3) back to the definition of Pii , Pîi , Piî and P
î î

in (5.19), we obtain
from (6.1) ∣∣∣∣∣ 1

N

N∑
i=1

di
(
Gijτ1(B̃G)− (B̃G)ij τ1(G)

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di
(
G
îj
τ2(B̃G)− (B̃G)

îj
τ2(G)

)∣∣∣∣∣ ≺�2, j = i, î,

(6.5)

for any deterministic numbers d1, . . . , dN ∈ C satisfying |di |� 1, which is a short-
hand notation for |di | ≤ C with some constant C. While Lemma 6.1 was formu-
lated for |di | ≤ 1, it clearly holds as long as |di |� 1. Recall the notation introduced
in (8.20). We claim that the following estimates can be derived from (5.94) and
(6.5): ∣∣∣∣∣ 1

N

N∑
i=1

di

(
Gii −

ωcB,2

|ξi |2 −ωcB,1ω
c
B,2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
îi

− ξ̄i

|ξi |2 −ωcB,1ω
c
B,2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
îî

− ωcB,1

|ξi |2 −ωcB,1ω
c
B,2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
iî

− ξi

|ξi |2 −ωcB,1ω
c
B,2

)∣∣∣∣∣ ≺�2.

(6.6)

We derive the first estimate in (6.6), the others are proven similarly. We write

1

N

N∑
i=1

di

(
Gii −

ωcB,2

|ξi |2 −ωcB,1ω
c
B,2

)

= 1

N

N∑
i=1

di

|ξi |2 −ωcB,1ω
c
B,2

(
Gii

(|ξi |2 −ωcB,1ω
c
B,2

) −ωcB,2
)
.

Applying Theorem 5.1 and (5.106) along its proof, it is easy to check that

(6.7) ωcB,a = ωB +O≺(�), a = 1,2,

hence

(6.8) ωcB,1ω
c
B,2 = ω2

B +O≺(�), Gii

(|ξi |2 −ωcB,1ω
c
B,2

) −ωcB,2 =O≺(�).



1324 Z. BAO, L. ERDŐS AND K. SCHNELLI

Moreover, from the lower bound on ImωB from (A.4) and the first estimate of
(6.8), we have

(6.9)
1

|ξi |2 −ωcB,1ω
c
B,2

= 1

|ξi |2 −ω2
B

+O≺(�).

Then, in light of (A.4), (6.8) and (6.9), it suffices to check

(6.10)
1

N

N∑
i=1

di
(
Gii

(|ξi |2 −ωcB,1ω
c
B,2

) −ωcB,2
) =O≺

(
�2)

,

for any deterministic numbers d1, . . . , dN ∈ C satisfying |di | � 1 (here we rede-
fined di to di/(|ξi |2 −ω2

B)). Using (5.94), we can write

Gii

(|ξi |2 −ωcB,1ω
c
B,2

) −ωcB,2

= − ωcB,2

τ1(G)

(
(B̃G)iiτ1(G)−Giiτ1(B̃G)

)
− ξi

τ2(G)

(
(B̃G)

îi
τ2(G)−G

îi
τ2(B̃G)

)
.

(6.11)

Then, from (6.2) and (6.7), we see that

ωcB,2

τ1(G)
= ωB

mμA�μB
+O≺(�),

ξi

τ2(G)
= ξi

mμA�μB
+O≺(�),

(B̃G)iiτ1(G)−Giiτ1(B̃G)=O≺(�),

(B̃G)
îi
τ2(G)−G

îi
τ2(B̃G)=O≺(�),

(6.12)

where the second line follows from (5.102). Thus combining (6.11), (6.12) and
(6.5) yields (6.10), which implies (6.6) according to the discussion above.

Notice that in this argument it was essential that Gii was approximated in (6.6)
not by ωB/(|ξi |2 −ω2

B) or by ωcB/(|ξi |2 − (ωcB)
2) but by

Gii ≈
ωcB,2

|ξi |2 −ωcB,1ω
c
B,2

,

since this latter approximation is precise up to O≺(�2) after averaging, while the
previous ones are a priori correct only with an error O≺(�).

Next we show that (6.6) nevertheless holds if we approximateGii by ωcB/(|ξi |2−
(ωcB)

2). Choosing all di = 1 in the first and third inequalities in (6.6) and applying
(4.27), we note that

ωcB,a = ωcB +O≺
(
�2)

, a = 1,2,
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so the first approximation in (6.7) is actually one order better. Thus we get from
(6.6) that ∣∣∣∣∣ 1

N

N∑
i=1

di

(
Gii − ωcB

|ξi |2 − (ωcB)
2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
îi

− ξ̄i

|ξi |2 − (ωcB)
2

)∣∣∣∣∣ ≺�2,(6.13)

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
îî

− ωcB
|ξi |2 − (ωcB)

2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
iî

− ξi

|ξi |2 − (ωcB)
2

)∣∣∣∣∣ ≺�2.

Further, recalling the definitions of H and G in (4.23). Switching the roles of A
and B , and also the roles of U and U∗ in the above discussions, we have∣∣∣∣∣ 1

N

N∑
i=1

di

(
Gii − ωcA

|σi |2 − (ωcA)
2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
îi

− σ̄i

|σi |2 − (ωcA)
2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
î î

− ωcA
|ξi |2 − (ωcA)

2

)∣∣∣∣∣ ≺�2,

∣∣∣∣∣ 1

N

N∑
i=1

di

(
G
iî

− σi

|σi |2 − (ωcA)
2

)∣∣∣∣∣ ≺�2.

(6.14)

Applying (6.13) and (6.14) to average over the diagonal entries of the Green
functions G and G, and also using the fact trG(z)= trG(z)=mH(z), we see that

mH(z)=
∫
R

ωcB
x2 − (ωcB)

2 dμ�(x)+O≺
(
�2)

=
∫
R

ωcA
x2 − (ωcA)

2 dμ�(x)+O≺
(
�2)

.

From this, using

ωcB
x2 − (ωcB)

2 = 1

2

[
1

x −ωcB
+ 1

−x −ωcB

]
,

we can get

(6.15) mH(z)=mA

(
ωcB(z)

) +O≺
(
�2) =mB

(
ωcA(z)

) +O≺
(
�2)

,
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where we used the fact μA ≡ μ
sym
� and μB ≡ μ

sym
� , in light of (4.14). In addition,

we also have (4.18). Summarizing these estimates, we have �μA,μB (ω
c
A,ω

c
B, z)=

O≺(�2), that is, compared with (5.128), we improved the error in the approximate
subordination equations.

Similar to the proof of Lemma 5.5, we use the stability of the system
�μA,μB (ωA,ωB, z)= 0 again, but with the improved error �2. We also note that
the estimates from Theorem 5.1 and Lemma 6.1 used in the above discussion hold
uniformly on SI(ηm, ηM). Hence, we can conclude the proof of Theorem 4.3 on
SI(ηm, ηM).

At the end, we extend (4.11) from SI(ηm, ηM) to SI(0, ηM). The extension
relies on a standard use of the monotonicity of the Green function: For all i ∈

�1,N� and j = i or î, we have

∣∣G′
jj (z)

∣∣ =
∣∣∣∣∣

2N∑
k=1

Gjk(z)Gkj (z)

∣∣∣∣∣ ≤
2N∑
k=1

∣∣Gjk(z)
∣∣2 = ImGjj (z)

η
,

where the last step follows from the spectral decomposition. In addition, note that
the function s → s ImGjj (E + is) is monotonically increasing. This implies that
for any η ∈ (0, ηm],∣∣Gjj (E + iη)−Gjj (E + iηm)

∣∣ ≤
∫ ηm

η

s ImGjj (E + is)

s2 ds

≤ 2
ηm

η
ImGjj (E + iηm)

≤ C
Nγ

Nη
≤ CNγ�2,

(6.16)

with high probability, for any E ∈ I . Here, we used |Gjj (E + iηm)| ≺ 1 which
follows from the first bound in (5.25). On the other hand, for any i ∈ �1,N�, we
also have

(6.17)
∣∣∣∣ ωB(E + iη)

|ξi |2 −ω2
B(E + iη)

− ωB(E + iηm)

|ξi |2 −ω2
B(E + iηm)

∣∣∣∣ ≤ C(ηm − η)≤�2,

η ∈ (0, ηm], E ∈ I , for sufficiently small γ , which follows from the upper bound
of ω′

B(z), the lower bound of |ξi |2 − ω2
B(z) which follows from the lower bound

of ImωB , and also the upper bound of ωB , in Lemma A.2. Combining (6.16) and
(6.17), and using (5.33), we conclude that (4.11) holds uniformly on SI(0, ηM).
This completes the proof of Theorem 4.3 on SI(0, ηM).

Hence, what remains is to prove Lemma 6.1.

6.2. Proof of Lemma 6.1. Since the proofs for the four estimates in (6.1) are
nearly the same, we only present the details for the first one. First of all, from
(5.25) and (5.29) we have

(6.18) |Tiiϒ1| ≺�2.
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Hence, it suffices to bound the weighted average of the following slight modifica-
tions of Pii’s:

(6.19) Qii ≡Qii(z) := (B̃G)iiτ1(G)−Giiτ1(B̃G)+Giiϒ1, i ∈ �1,N�.

Then we introduce the notation

m(k, l) :=
(

1

N

N∑
i=1

diQii

)k(
1

N

N∑
i=1

diQii

)l
.

Similar to Lemma 5.3, the main technical task is the following recursive moment
estimate.

THEOREM 6.2 (Recursive moment estimate). Suppose that the assumptions
in Theorem 4.3 hold. Let ηM > 0 be any (large) constant and γ > 0 in (5.1) be any
(small) constant. For any fixed integer p ≥ 1, we have

E
[
m(p,p)

] = E
[
O≺

(
�2)

m(p− 1,p)
] +E

[
O≺

(
�4)

m(p− 2,p)
]

+E
[
O≺

(
�4)

m(p− 1,p− 1)
]
,

(6.20)

uniformly on SI(ηm, ηM), where we made the convention m(0,0) = 1 and
m(−1,1)= 0 if p = 1.

The reason why we prefer to work with Qii instead of Pii = Qii + Tiiϒi is as
follows. To prove Theorem 6.2, we will follow a similar strategy as the proof of
Lemma 5.3. In Lemma 5.3 and its proof, we worked on Pii directly. The derivative
∂Tii
∂guik

was necessary for the proof of Lemma 5.3; cf. (5.75). However, in the proof

of Theorem 6.2, we would need to consider the derivative ∂Tii
∂gjk

for all j �= i if we
carry the term Tiiϒ1 from Pii in the discussion. Unfortunately, the dependence of
the factor (kui )

∗ in Tii (cf. (5.16)) on gujk for j �= i is difficult to capture. On the
other hand, at this stage of the proof we already have the bound (6.18) available
and this allows us to drop the term Tiiϒ1 from the beginning.

With the aid of Theorem 6.2, one can prove Lemma 6.1.

PROOF OF LEMMA 6.1. Similar to the proof of (5.28) for Pii from Lem-
ma 5.3, one can apply Young’s inequality to (6.20) and get | 1

N

∑N
i=1 Qii | ≺ �2,

which together with (6.18) implies the first bound in (6.1). The other three in (6.1)
can be verified analogously. Hence, we completed the proof of Lemma 6.1. �

PROOF OF THEOREM 6.2. Hence, we start with the averaged analogue of
(5.71), but with Pii’s replaced by Qii’s. In particular, the term Tii is missing.
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Following the proof of (5.71) with these modifications, we obtain

E
[
m(p,p)

]
= 1

N

∑
i

diE

[
1

‖gui ‖2

(
T̊ii − 1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik

)

× τ1(B̃G)m(p− 1,p)

]

− 1

N2

∑
i

(i)∑
k

diE

[
∂‖gui ‖−1

2

∂guik
ê∗
kB̃

〈i〉Gêiτ1(G)m(p− 1,p)
]

− 1

N2

∑
i

(i)∑
k

diE

[
∂τ1(G)

∂guik

1

‖gui ‖2
ê∗
kB̃

〈i〉Gêim(p− 1,p)
]

− p− 1

N2

∑
i

(i)∑
k

diE

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)(6.21)

×
(

1

N

∑
j

dj
∂Qjj

∂guik

)
m(p− 2,p)

]

− p

N2

∑
i

(i)∑
k

diE

[
1

‖gui ‖2
ê∗
kB̃

〈i〉Gêiτ1(G)

×
(

1

N

∑
j

d̄j
∂Qjj

∂guik

)
m(p− 1,p− 1)

]

+ 1

N

∑
i

diE

[(
εi1τ1(G)− εi4 + εi5

‖gui ‖2

)
m(p− 1,p)

]
+E

[
O≺

(
�2)

m(p− 1,p)
]
.

In addition, we also have the averaged analogue of (5.72):

1

N

∑
i

diE

[
1

‖gui ‖2

(
T̊ii − 1

N

(i)∑
k

∂(ê∗
kGêi )

∂guik

)
τ1(B̃G)m(p− 1,p)

]

= 1

N2

∑
i

(i)∑
k

diE

[
∂‖gui ‖−2

2

∂guik
ê∗
kGêiτ1(B̃G)m(p− 1,p)

]

+ 1

N2

∑
i

(i)∑
k

diE

[
∂τ1(B̃G)

∂guik

1

‖gui ‖2
2

ê∗
kGêim(p− 1,p)

]
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+ p− 1

N2

∑
i

(i)∑
k

diE

[
1

‖gui ‖2
2

ê∗
kGêiτ1(B̃G)(6.22)

×
(

1

N

∑
j

dj
∂Qjj

∂guik

)
m(p− 2,p)

]

+ p

N2

∑
i

(i)∑
k

diE

[
1

‖gui ‖2
2

ê∗
kGêiτ1(B̃G)

×
(

1

N

∑
j

d̄j
∂Qjj

∂guik

)
m(p− 1,p− 1)

]
.

Hence, to show (6.20), it suffices to estimate the second to the fifth terms on the
right-hand side of (6.21), and the terms on the right-hand side of (6.22). First we
notice that

(6.23) εi4 =O≺
(
�2)

,

which can be seen from (5.25), (5.29) and the facts |‖gai ‖2
2 − 1| ≺ 1√

N
and |huii | ≺

1√
N

. All the other desired estimates can be derived from the following lemma.

LEMMA 6.3. Suppose that the assumptions in Theorem 4.3 hold. Let ηM >

0 be any (large) constant and γ > 0 in (5.1) be any (small) constant. Let
d̂1, . . . , d̂N ∈ C be deterministic numbers with the bound maxi |d̂i | � 1 and let
d̃1, . . . , d̃N ∈ C be (possibly random) numbers with the bound maxi |d̃i | ≺ 1 for all
i ∈ �1,N�. Let Q be any deterministic diagonal matrix satisfying ‖Q‖ ≤ C and
X = Î or A, set Xi = Î or B̃〈i〉, and let

xi ,yi =
(
g̊ui
0

)
or

(
0
g̊vi

)
.

We have the estimates

1

N2

N∑
i=1

(i)∑
k

d̃i
∂‖gui ‖−1

2

∂guik
ê∗
kXiGêi =O≺

(
1

N

)
,

1

N2

N∑
i=1

(i)∑
k

d̃i
∂ trQXG

∂guik
ê∗
kXiGêi =O≺

(
�4)

,

(6.24)

uniformly on SI(ηm, ηM). In addition, we also have

1

N

N∑
i=1

d̂iE
[(

x∗
i Xiyi −Ei

[
x∗
i Xiyi

])
m(p− 1,p)

]
= E

[
O≺

(
�2)

m(p− 1,p)
] +E

[
O≺

(
�4)

m(p− 2,p)
]

+E
[
O≺

(
�4)

m(p− 1,p− 1)
]
,

(6.25)
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uniformly on SI(ηm, ηM), where Ei denotes the expectation with respect to g̊ui
and g̊vi .

With Lemma 6.3, we can proceed to the proof of Theorem 6.2 as follows. First
of all, for any diagonal matrix Q = diag(q1, . . . , q2N), using the first estimate in
(5.25), we have

trQG= 1

2N

N∑
i=1

(qi + q
î
)

ωB(z)

|ξi |2 − (ωB(z))2
+O≺(�),

trQAG= 1

2N

N∑
i=1

(qi + q
î
)

|ξi |2
|ξi |2 − (ωB(z))2

+O≺(�).

Using the upper bound of ωB and the lower bound of ImωB in (A.4), we can see
that

(6.26) | trQXG| ≺ 1,

for diagonal Q with ‖Q‖ ≤ C and X = Î or A. Note that all partial traces such as
τ1(G), τ1(B̃G) can be written as a linear combination of terms of the form trQXG
with the aid of the identities in (4.16), and thus for these partial traces we have

τ1(G)=O≺(1), τ1(B̃G)=O≺(1).
These bounds together with the first estimate in (6.24), imply the desired estimates
for the second term on the right-hand side of (6.21) and the first term on the right-
hand side of (6.22).

Next notice that

1

N

N∑
j=1

djQjj = tr(DB̃G)τ1(G)− tr(DG)τ1(B̃G)+ tr(DG)ϒ1,

where we denoted the deterministic diagonal matrix D := diag(d1, . . . , dN)⊕ 0,
with 0 the N × N zero matrix. In addition, using (4.16), we can see that
1
N

∑
j djQjj is a polynomial of 1

N

∑
j djTjj and the terms of the form trQXG

for some diagonal Q with ‖Q‖ ≤ C and X = Î or A. Here, we also used the fact
that τa(D) = tr(ÎaD) for any D ∈ M2N(C) and a = 1,2, where Îa is defined in
(4.25). Then the last two estimates in (6.24), (6.26), together with the chain rule,
imply that

(6.27)
1

N3

N∑
i=1

(i)∑
k

d̃i ê
∗
kXiGêi

N∑
j=1

dj
∂Qjj

∂guik
=O≺

(
�4)

.

Similarly, we can prove the same bound if we replace Qjj ’s by Qjj ’s. Hence,
the desired estimates for the third to the fifth terms on the right-hand side of (6.21),
and the last three terms on the right-hand side of (6.22) can be obtained from the
second estimate in (6.24).
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Hence, what remains is to estimate the sixth term in (6.21). First, according to
(6.23), we can neglect εi4. Then we recall the definition of εi1 from (5.43). Using
the estimates of G

îi
and T

îi
from the first and the third inequalities in (5.25), and

the estimates

�vi = 1 +O≺
(

1√
N

)
,

∣∣huii ∣∣ ≺ 1√
N
,

∣∣(kui )∗B̃〈i〉kvi
∣∣ ≺ 1√

N
,

we see that

εi1 = ξ̄i

|ξi |2 −ω2
B

(
kui

)∗
B̃〈i〉kvi +O≺

(
�2)

= ξ̄i

|ξi |2 −ω2
B

(
�ui

)∗
B̃〈i〉�vi +O≺

(
�2)

,

(6.28)

where we introduced the notation:

�ui :=
(
g̊ui
0

)
, �vi :=

(
0
g̊vi

)
.

Then recall the definition of εi5 from (5.69). Applying the estimate of Gii from
the first inequality in (5.25), and the second formula in (6.2, and the fact ‖gui ‖2

2 =
‖�ui ‖2

2 +O≺( 1
N
)= 1 +O≺( 1√

N
), we also have

(6.29) εi5 = (z−ωB)mμA�μBωB
|ξi |2 −ω2

B

(∥∥�ui ∥∥2
2 − 1

) +O≺
(
�2)

.

Note that both of the first terms on the right-hand side of (6.28) and (6.29) are of
the form d̂i(x

∗
i Xiyi −Ei[x∗

i Xiyi]) for some deterministic d̂i with |d̂i |� 1. Hence,
using (6.25), we get the desired bound for the sixth term of (6.21). This completes
the proof of Theorem 6.2 up to the proof of Lemma 6.3. �

PROOF OF LEMMA 6.3. The first estimate in (6.24) follows directly from the
first estimate in (5.75). The second estimate of (6.24) is a weighted average of the
last estimate in (5.75).

Hence, what remains is to prove (6.25). We only show the details for the
case xi = �ui and yi = �vi . The others are similar. Notice that in this case,
Ei[x∗

i Xiyi] = 0. Using the integration by parts formula (5.44) again, we have

1

N

∑
i

d̂iE
[(

�ui
)∗
Xi�

v
im(p− 1,p)

]

= 1

N

∑
i

(i)∑
k

d̂iE
[
ḡuik ê

∗
kXi�

v
im(p− 1,p)

]
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= p− 1

N2

∑
i

(i)∑
k

d̂iE

[
ê∗
kXi�

v
i

1

N

∑
j

dj
∂Qjj

∂guik
m(p− 2,p)

]

+ p

N2

∑
i

(i)∑
k

d̂iE

[
ê∗
kXi�

v
i

1

N

∑
j

d̄j
∂Qjj

∂guik
m(p− 1,p− 1)

]
.

Hence, it suffices to show

(6.30)

∣∣∣∣∣ 1

N3

∑
i

(i)∑
k

d̂i ê
∗
kXi�

v
i

∑
j

dj
∂Qjj

∂guik

∣∣∣∣∣ ≺�4

and its complex conjugate analogue. The proof of (6.30) is nearly the same as that
of (6.27). Hence, we omit it. Therefore, we completed the proof of Lemma 6.3.

�
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SUPPLEMENTARY MATERIAL

Supplement to “Local single ring theorem on optimal scale” (DOI: 10.1214/
18-AOP1284SUPP; .pdf). We establish the proof of Theorem 2.2 and the proof of
Theorem 4.3 for large η. Moreover, in the appendices at the end we collect some
auxiliary information.
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