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BIPOLAR ORIENTATIONS ON PLANAR MAPS AND SLE12
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We give bijections between bipolar-oriented (acyclic with unique source
and sink) planar maps and certain random walks, which show that the uni-
formly random bipolar-oriented planar map, decorated by the “peano curve”
surrounding the tree of left-most paths to the sink, converges in law with
respect to the peanosphere topology to a

√
4/3-Liouville quantum gravity

surface decorated by an independent Schramm–Loewner evolution with pa-
rameter κ = 12 (i.e., SLE12). This result is universal in the sense that it holds
for bipolar-oriented triangulations, quadrangulations, k-angulations and maps
in which face sizes are mixed.

1. Introduction.

1.1. Planar maps. A planar map is a planar graph together with an embedding
into R2 so that no two edges cross. More precisely, a planar map is an equivalence
class of such embedded graphs, where two embedded graphs are said to be equiv-
alent if there exists an orientation preserving homeomorphism R2 → R2 which
takes the first to the second. The enumeration of planar maps started in the 1960s
in work of Tutte [70], Mullin [57] and others. In recent years, new combinatorial
techniques for the analysis of random planar maps, notably via random matrices
and tree bijections, have revitalized the field. Some of these techniques were mo-
tivated from physics, in particular from conformal field theory and string theory.

There has been significant mathematical progress on the enumeration and scal-
ing limits of random planar maps chosen uniformly from the set of all rooted
planar maps with a given number of edges, beginning with the bijections of Cori–
Vauquelin [10] and Schaeffer [59] and progressing to the existence of Gromov–
Hausdorff metric space limits established by Le Gall [43] and Miermont [45].

There has also emerged a large literature on planar maps that come equipped
with additional structure, such as the instance of a model from statistical physics,
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for example, a uniform spanning tree, or an Ising model configuration. These “dec-
orated planar maps” are important in Euclidean 2D statistical physics. The reason
is that it is often easier to compute “critical exponents” on planar maps than on
deterministic lattices. Given the planar map exponents, one can apply the KPZ
formula to predict the analogous Euclidean exponents.4 In this paper, we consider
random planar maps equipped with bipolar orientations.

1.2. Bipolar and harmonic orientations. A bipolar (acyclic) orientation of a
graph G with specified source and sink (the “poles”) is an acyclic orientation of its
edges with no source or sink except at the specified poles. (A source (resp., sink) is
a vertex with no incoming (resp., outgoing) edges.) For any graph G with adjacent
source and sink, bipolar orientations are counted by the coefficient of x in the
Tutte polynomial TG(x, y), which also equals the coefficient of y in TG(x, y); see
[12] or the overview in [19]. In particular, the number of bipolar orientations does
not depend on the choice of source and sink as long as they are adjacent. When
the source and sink are adjacent, there are bipolar orientations precisely when the
graph is biconnected, that is, remains connected after the removal of any vertex
[44]. If the source and sink are not adjacent, adjoining an edge between the source
and sink does not affect the number of bipolar orientations, so bipolar orientations
are counted by these Tutte coefficients in the augmented graph.

Let G be a finite connected planar map, with no self-loops but with multiple
edges allowed, with a specified source and sink that are incident to the same face.
It is convenient to embed G in the disk so that the source is at the bottom of the
disk (and is denoted S, for south pole), the sink is at the top (and is denoted N,
for north pole), and all other vertices are in the interior of the disk (see Figure 1).
Within the disk there are two faces that are boundary faces, which can be called W
(the west pole) and E (the east pole). Endowing G with a bipolar orientation is a
way to endow it and its dual map G∗ with a coherent notion of “north, south, east
and west”: one may define the directed edges to point north, while their opposites
point south. Each primal edge has a face to its west (left when facing north) and its
east (right), and dual edges are oriented in the westward direction (Figure 1).

Given an orientation of a finite connected planar map G, its dual orientation
of G∗ is obtained by rotating directed edges counterclockwise. If an orientation
has a sink or source at an interior vertex, its dual has a cycle around that vertex.
Suppose an orientation has a cycle but has no source or sink at interior vertices.
If this cycle surrounds more than one face, then one can find another cycle that
surrounds fewer faces, so there is a cycle surrounding just one face, and the dual
orientation has either a source or sink at that (interior) face. Thus an orientation of

4This idea was used by Duplantier to derive the so-called Brownian intersection exponents [14],
whose values were subsequently verified mathematically by Lawler, Schramm and Werner [39–41]
in an early triumph of Schramm’s SLE theory [60]. An overview with a long list of references can be
found in [16].
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FIG. 1. Left: A planar map embedded in a disk with two boundary vertices, with a north-going
bipolar orientation. Right: The dual bipolar-oriented planar map, which has two boundary dual
vertices on the disk. Middle: Primal and dual bipolar-oriented maps together. The dual orientations
are obtained from the primal orientations by rotating the arrows left.

G is bipolar acyclic precisely when its dual orientation of G∗ is bipolar acyclic.
The east and west poles of G∗ are the source and sink respectively of the dual
orientation (see Figure 1).

One way to construct bipolar orientations is via electrical networks. Suppose ev-
ery edge of G represents a conductor with some generic positive conductance, the
south pole is at 0 volts, and the north pole is at 1 volt. The voltages are harmonic
except at the boundary vertices, and for generic conductances, provided every ver-
tex is part of a simple path connecting the two poles, the interior voltages are all
distinct. The harmonic orientation orients each edge toward its higher-voltage end-
point. The harmonic orientation is clearly acyclic, and by harmonicity, there are no
sources or sinks at interior vertices. In fact, for any planar graph with source and
sink incident to the same face, any bipolar orientation is the harmonic orientation
for some suitable choice of conductances on the edges [1], Theorem 1, so for this
class of graphs, bipolar orientations are equivalent to harmonic orientations.

Suppose that a bipolar-oriented planar map G has an interior vertex incident
to at least four edges, which in cyclic order are oriented outwards, inwards, out-
wards, inwards. By the source-free sink-free acyclic property, these edges could
be extended to oriented paths which reach the boundary, and by planarity and
the acyclic property, the paths would terminate at four distinct boundary vertices.
Since (in this paper) we are assuming that there are only two boundary vertices,
no such interior vertices exist. Thus at any interior vertex, its incident edges in
cyclic order consist of a single group of north-going edges followed by a single
group of south-going edges, and dually, at each interior face the edges in cyclic
order consist of a single group of clockwise edges followed by a single group of
counterclockwise edges.

In particular, each vertex (other than the north pole) has a unique “west-most
north-going edge,” which is its NW edge. The NW tree is the directed tree which
maps each vertex (other than the north pole) to its NW edge, and maps each edge to
the vertex to its north. Geometrically, the NW tree can be drawn so that each NW
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edge is entirely in the NW tree, and for each other edge, a segment containing the
north endpoint of the edge is in the NW tree (see Figure 2). We define southwest,
southeast and northeast trees similarly.

We will exhibit (see Theorems 2.1 and 2.2) a bijection between bipolar-oriented
planar maps (with given face-degree distribution) and certain types of random
walks in the nonnegative quadrant Z2≥0. This bijection leads to exact enumera-
tive formulae as well as local information about the maps such as degree distribu-
tions. For previous enumerative work on this model, including bijections between
bipolar-oriented planar maps and other objects see, for example, [6, 7, 18, 19].

1.3. SLE and LQG. After the bijections, our second main result is the identi-
fication of the scaling limit of the bipolar-oriented map with a Liouville quantum
gravity (LQG) surface decorated by a Schramm–Loewner evolution (SLE) curve;
see Theorem 4.1.

We will make use of the fact proved in [15, 21, 48] that an SLE-decorated LQG
surface can be equivalently defined as a mating of a correlated pair of continuum
random trees (a so-called peanosphere; see Section 4.2) where the correlation mag-
nitude is determined by parameters that appear in the definition of LQG and SLE
(namely γ and κ ′).

The scaling limit result can thus be formulated as the statement that a certain
pair of discrete random trees determined by the bipolar orientation (namely the
northwest and southeast trees; see Section 1.2) has, as a scaling limit, a certain
correlated pair of continuum random trees. Although LQG and SLE play a ma-
jor role in our motivation and intuition (see Section 4.2), we stress that no prior
knowledge about these objects is necessary to understand either the main scaling
limit result in the current paper or the combinatorial bijections behind its proof
(Sections 2 and 3).

Before we move on to the combinatorics, let us highlight another point about
the SLE connection. There are several special values of the parameters κ and
κ ′ = 16/κ that are related to discrete statistical physics models. (SLEκ with
0 < κ ≤ 4 and SLE16/κ are closely related [13, 50, 55, 72], which is known as
SLE-duality.) These special {κ, κ ′} pairs include {2,8} (for loop-erased random
walk and the uniform spanning tree) [42], {8/3,6} (for percolation and Brown-
ian motion) [38, 68], {3,16/3} (for the Ising and FK-Ising model) [9, 69] and
{4,4} (for the Gaussian free field contours) [61, 62]. The relationships between
these special {κ, κ ′} values and the corresponding discrete models were all dis-
covered or conjectured within a couple of years of Schramm’s introduction of
SLE, building on earlier arguments from the physics literature. We note that all
of these relationships have random planar map analogs, and that they all corre-
spond to {κ, κ ′} ⊂ [2,8]. This range is significant because the so-called conformal
loop ensembles CLEκ [63, 66] are only defined for κ ∈ (8/3,8], and the discrete
models mentioned above are all related to random collections of loops in some
way, and hence have either κ or κ ′ in the range (8/3,8]. Furthermore, it has long
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been known that ordinary SLEκ does not have time reversal symmetry when κ > 8
[58] (see [55] for the law of the time-reversal of such an SLEκ process), and it was
thus widely assumed that discrete statistical physics systems would not converge
to SLEκ for κ > 8 [8].

In this paper, the relevant {κ, κ ′} pair is {4/3,12}. This special pair is interest-
ing in part because it lies outside the range [2,8]. It has been proposed, based
on heuristic arguments and simulations, that “activity-weighted” spanning trees
should have SLE scaling limits with κ anywhere in the range [4/3,4) and κ ′ any-
where in the range (4,12] [36]. In more recent work, subsequent to our work on
bipolar orientations, using a generalization of the inventory accumulation model in
[65], the activity-weighted spanning trees on planar maps were shown to converge
to SLE-decorated LQG in the peanosphere topology for this range of κ , κ ′ [23].

We will further observe that if one modifies the bipolar orientation model by a
weighting that makes the faces more or less balanced (in terms of their number of
clockwise and counterclockwise oriented boundary edges), one can obtain any κ ∈
(0,2) and any κ ′ ∈ (8,∞). In a companion to the current paper [37], we discuss
a different generalization of bipolar orientations that we conjecture gives SLE for
κ ∈ [12 − 8

√
2,4) and κ ′ ∈ (4,12 + 8

√
2].

In this article, we consider an opposite pair of trees (NW-tree and SE-tree). It
is also possible to consider convergence of all four trees (NW, SE, NE and SW)
simultaneously: this is done in the recent article [22].

1.4. Outline. In Sections 2 and 3, we establish our combinatorial results and
describe the scaling limits of the NW and SE trees in terms of a certain two-
dimensional Brownian excursion. In Section 4, we explain how this implies that
the uniformly random bipolar-oriented map with n edges, and fixed face-degree
distribution, decorated by its NW tree, converges in law as n → ∞ to a

√
4/3-

Liouville quantum gravity sphere decorated by space-filling SLE12 from ∞ to ∞.
This means that, following the curve which winds around the NW tree, the dis-
tances to the N and S poles scale to an appropriately correlated pair of Brownian
excursions. We also prove a corresponding universality result: the above scaling
limit holds for essentially any distribution on face degrees (or, dually, vertex de-
grees) of the random map.

2. Bipolar-oriented maps and lattice paths.

2.1. From bipolar maps to lattice paths. For the bipolar-oriented planar map
in Figure 1, Figure 2 illustrates its NW tree (in red), SE tree (in blue) and the
interface path (in green) which winds between them from the south pole to the
north pole. The interface path has two types of steps:

1. Steps that traverse an edge (between red and blue sides).



BIPOLAR ORIENTATIONS ON PLANAR MAPS AND SLE12 1245

FIG. 2. Left: A map with a bipolar orientation, embedded so each edge is oriented “upward” (i.e.,
in the direction along which the vertical coordinate increases). Middle: Set of oriented edges can be
understood as a tree, the northwest tree, where the parent of each edge is the leftmost upward oriented
edge it can merge into. If we reverse the orientations of all edges, we can define an analogous tree
(blue) and embed both trees (using the British convention of driving on the left side) so that they don’t
cross each other. Right: We then add a green path tracing the interface between the two trees. Each
edge of the interface moves along an edge of the map or across a face of the map. For illustration
purposes, faces are numbered by the order they are traversed by the green path, but it is the traversals
of the edges of the green path that correspond to steps of the lattice path.

2. Steps that traverse an interior face from its maximum to its minimum. Face
steps can be subcategorized according to the number of edges on the west and east
sides of the face, where the maximum and minimum vertex of a face separate its
west from its east. If a face has i + 1 edges on its west and j + 1 edges on its east,
we say that it is of type (i, j).

Observe that each face step has edge steps immediately before and after it.
Let E be the set of edges of the planar map, which we order e0, . . . , e|E|−1

according to the green path going from the south pole S to the north pole N. For
each edge et , let Xt be distance in the blue tree from the blue root (S) to the lower
endpoint of et , and let Yt be the distance in the red tree from the red root (N) to
the upper endpoint of et . Suppose the west outer face has m+ 1 edges and the east
outer face has n + 1 edges. Then the sequence {(Xt , Yt )}0≤t≤|E|−1 defines a walk
or lattice path that starts at (0,m) when t = 0 and ends at (n,0) when t = |E| − 1,
and which remains in the nonnegative quadrant. If there is no face step between et

and et+1, then the walk’s increment (Xt+1, Yt+1)− (Xt , Yt ) is (1,−1). Otherwise,
there is exactly one face step between et and et+1; if that face has i +1 edges on its
west and j +1 edges on its east, then the walk’s increment is (−i, j); see Figure 3.

For the example in Figure 2, the walk starts at (0,2) and ends at (3,0).

2.2. From lattice paths to bipolar maps. The above construction can be re-
versed, constructing a bipolar-oriented planar map from a lattice path of the above
type.
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FIG. 3. Lattice path increments.

We construct the bipolar-oriented planar map by sewing edges and oriented
polygons according to the sequence of steps of the path. Let mi,j denote a step of
(−i, j) with i, j ≥ 0, and me denote a step of (1,−1).

It is convenient to extend the bijection, so that it can be applied to any sequence
of these steps, not just those corresponding to walks remaining in the quadrant.
These steps give sewing instructions to augment the current “marked bipolar map,”
which will be a slightly more general object.

A marked bipolar map is a bipolar-oriented planar map together with a “start
vertex” on its western boundary which is not at the top, and an “active vertex” on
its eastern boundary which is not at the bottom, such that the start vertex and every
vertex below it on the western boundary has at most one downward edge, and
the active vertex and every vertex above it on the eastern boundary has at most one
upward edge. We think of the edges on the western boundary below the start vertex
and on the eastern boundary above the active vertex as being “missing” from the
marked bipolar map: they are boundaries of open faces that are part of the map,
but are not themselves in the map. See Figure 4.

Initially, the marked bipolar map consists of an oriented edge whose lower end-
point is the start vertex and whose upper endpoint is the active vertex. Each me

FIG. 4. The process of sewing oriented polygons and edges to obtain a bipolar-oriented planar
map. The intermediate structures are marked bipolar-oriented planar maps, which may have some
edges missing on the boundaries. The sequence of steps is: me , m0,2, m1,0, m0,1, me , me , m1,1,
m0,1, me , me , me , me , m1,0, m2,1, me .
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and mi,j move adds exactly one edge to the marked bipolar map. The mi,j moves
also add an open face incident to the new edge.

The me moves will sew an edge to the current marked bipolar map upwards
from the active vertex and move the active vertex to the upper endpoint of the new
edge. If the eastern boundary had a vertex above the active vertex, the new edge
gets sewn to the southernmost missing edge on the eastern boundary, and otherwise
there is a new vertex which becomes the current top vertex.

The mi,j moves will sew an open face with i + 1 edges on its west and j + 1
edges on its east, sewing the north of the face to the active vertex and the west of
the face to the eastern boundary of the marked bipolar map, and then sew an edge
to the southernmost east edge of the new face; the new active vertex is the upper
vertex of this edge. We can think of mi,j as being composed of two submoves,
a move fi,j which sews the open polygon to the structure, with the top of the
polygon at the old active vertex, and with the new active vertex at the bottom of
the polygon, followed by a regular me move. If there are fewer than i + 1 edges
below the (old) active vertex, then the new face gets sewn to as many of them as
there are, the start vertex is no longer at the bottom, and the remaining western
edges of the face are missing from the map. As seen in the proof of Theorem 2.2
below, this happens when the walk goes out of the positive quadrant; these western
edges will remain missing for any subsequent steps.

The final marked bipolar map is considered a (unmarked) bipolar-oriented pla-
nar map if the start vertex is at the south and the active vertex is at the north, or
equivalently, if there are no missing edges.

THEOREM 2.1. The above mapping from sequences of moves from {me} ∪
{mi,j : i, j ≥ 0} to marked bipolar maps is a bijection.

PROOF. Consider a marked bipolar map obtained from a sequence of moves.
The number of edges present in the structure determines the length of the sequence.
If that length is positive, then the easternmost downward edge from the active ver-
tex was the last edge adjoined to the structure. If this edge is the southernmost edge
on the eastern boundary of a face, then the last move was one of the mi,j ’s, and
otherwise it was me. Since the last move and preceding structure can be recovered,
the mapping is an injection.

Starting from an arbitrary marked bipolar map, we can inductively define a se-
quence of moves as above by considering the easternmost downward edge from
the active vertex. This sequence of moves yields the original marked bipolar map,
so the mapping is a surjection. �

Next, we restrict this bijection to sequences of moves which give valid bipolar-
oriented planar maps. A sequence of moves can of course be encoded as a path.

THEOREM 2.2. The above mapping gives a bijection from length-(� − 1)

paths from (0,m) to (n,0) in the nonnegative quadrant having increments (1,−1)
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and (−i, j) with i, j ≥ 0, to bipolar-oriented planar maps with � total edges and
m + 1 and n + 1 edges on the west and east boundaries, respectively. A step of
(−i, j) in the walk corresponds to a face with degree i + j + 2 in the planar map.

Note that for triangulations, the relevant increments are (1,−1), (−1,0) and
(0,1). In this case, for a path of length �, the number of steps of each type is
determined (and equal to �/3 + O(1)).

PROOF OF THEOREM 2.2. When we make a walk (Xt , Yt )t≥0 in Z2 started
from (X0, Y0) using these moves, not necessarily confined to the quadrant, by in-
duction

Xt − X0 = −1 + (# nonmissing edges on the eastern boundary)

− (# missing edges on the western boundary)

and

Yt − Y0 = 1 + (# missing edges on the eastern boundary)

− (# nonmissing edges on the western boundary).

When the walk is started at (0,m), the start vertex remains at the south pole
precisely when the first coordinate always remains nonnegative. In this case, there
are no missing edges on the western boundary, so the final number of nonmissing
edges on the eastern boundary is n + 1.

Suppose that we reverse the sequence of moves, and replace each mi,j with
mj,i , to obtain a new sequence. Write each mi,j as the face move fi,j fol-
lowed by me. Recall that the initial structure was an edge; we may instead
view the initial structure as a vertex followed by an me move. Written in this

way, if the old sequence is m
k0+1
e fi1,j1m

k1+1
e fi2,j2 · · ·mkq+1

e , the new sequence

is m
kq+1
e · · ·fj2,i2m

k1+1
e fj1,i1m

k0+1
e . We then see that the structure obtained from

the new sequence is the same as the structure obtained from the old sequence but
rotated by 180◦, and with the roles of start and active vertices reversed.

Using this reversal symmetry with our previous observation, it follows that the
active vertex is at the north pole precisely when the second coordinate achieves
its minimum on the last step (it may also achieve its minimum earlier), and the
number of (nonmissing) edges on the western boundary is m + 1. �

If we wish to restrict the face degrees, the bijection continues to hold simply by
restricting the set of allowed steps of the paths.

We can use the bijection to prove the following result.

THEOREM 2.3. Any finite bipolar-oriented planar map which has no self-
loops or pairs of vertices connected by multiple edges has a straight-line planar
embedding such that edges are oriented upwards, that is, in the direction of in-
creasing y-coordinate, as in Figure 2.
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PROOF. If the bipolar-oriented planar map has a face with more than 3 sides,
then let v1, . . . , v4 denote four of its vertices in cyclic order. The map could contain
the edges (v1, v3) or (v2, v4), embedded outside the face, but it cannot contain
both of them without violating planarity. We may adjoin an edge which the graph
does not already contain, embed it within the face and then orient it so that the
augmented planar map is bipolar-oriented. By repeating this process, we see that
we may assume that the map is a triangulation.

Given a bipolar-oriented triangulation without multiple edges between vertices,
we can convert it to a walk using the bijection, and then convert it back to a bipo-
lar triangulation again using the bijection. When converting the walk back to a
triangulation, we do so while maintaining the following geometric property: We
require that every edge, missing or nonmissing, be embedded as a straight line ori-
ented upwards. We also require that every pair of vertices on the right boundary of
the closure of the structure have a “line-of-sight” to each other, unless the structure
contains an edge (missing or nonmissing) connecting them. By “having a line-of-
sight,” we mean that the open line segment connecting the vertices is disjoint from
the closure of the structure.

It is trivial to make the initial structure satisfy the geometric property. Edge
moves trivially maintain the geometric property. Since the graph does not contain
multiple edges connecting vertices, the move m1,0 (adjoining a leftward triangle)
connects two vertices that are within line-of-site, so it also maintains the geometric
property. The move m0,1 adjoins a rightward triangle and necessarily makes the
right boundary nonconcave. However, for any pair of vertices on the right boundary
that are within line-of-sight of each other, we may place the new vertex of the
triangle sufficiently close to its left edge that the line-of-sight is not obstructed,
and since there are only finitely many pairs of vertices on the right boundary, we
may embed the new triangle so that the geometric property is maintained.

By induction the final structure satisfies the geometric property, so it is a
straight-line embedding with edges oriented upwards. �

2.3. Path scaling limit. What happens if we consider a random bipolar-
oriented planar map such as the one in Figure 2, where we fix the left boundary
length (3 in Figure 2), the right boundary length (4 in Figure 2) and the total num-
ber � of edges (16 in Figure 2)? We consider the limiting case where the boundary
lengths are fixed and � → ∞. What can one say about the limiting joint law of the
pair of trees in Figure 2 in this situation?

In light of Theorem 2.2, understanding this limiting law amounts to understand-
ing the limiting law of its associated lattice path. For example, if the map is re-
quired to be a triangulation, we should consider a random walk of length � − 1
with steps (1,−1), (−1,0) and (0,1), each chosen with probability 1/3 (by the
comment after the statement of Theorem 2.2) conditioned to start and end at cer-
tain fixed values, and to stay in the nonnegative quadrant.
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It is reasonable to expect that if a random walk on Z2 converges to Brownian
motion with some nondegenerate diffusion matrix, then the same random walk
conditioned to stay in a quadrant (starting and ending at fixed locations when the
number of steps gets large) should scale to a form of the Brownian excursion, that
is, a Brownian bridge constrained to stay in the same quadrant (starting and ending
at 0). The recent work [17], Theorem 4, contains a precise theorem of this form,
and Proposition 2.4 below is a special case of this theorem. (The original theorem
is for walks with a diagonal covariance matrix, but supported on a generic lattice,
which implies Proposition 2.4 after applying a linear transformation to the lattice.)

Recall that the period of a random walk on Z2 is the smallest integer p ≥ 1 such
that the random walk has a positive probability to return to zero after kp steps for
all sufficiently large integers k > 0.

PROPOSITION 2.4. Let ν be a probability measure supported on Z2 with ex-
pectation zero and moments of all orders. Let p ≥ 1 denote the period of the ran-
dom walk on Z2 with step distribution ν. Suppose that for given zstart, zend ∈ Z2≥0,
for some � there is a positive probability path in Z2≥0 from zstart to zend with � steps

from ν. Suppose further that for any R > 0 there is a point z ∈ Z2≥0 that is distance
at least R from the boundary of the quadrant, such that there is a path from zstart to
z to zend with steps from ν that remains in the quadrant Z2≥0. For sufficiently large
n with n ≡ � mod p, consider a random walk zstart = S0, S1, . . . , Sn = zend from
zstart to zend with increments chosen from ν, conditioned to remain in the quadrant
Z2≥0. Then the law of S�nt�/

√
n converges weakly w.r.t. the L∞ norm on [0,1] to

that of a Brownian excursion (with diffusion matrix given by the second moments
of ν) into the nonnegative quadrant, starting and ending at the origin, with unit
time length.

In fact, in this statement we do not need ν to have moments of all orders; it
suffices that | · |α has ν-finite expectation, for a positive constant α defined in [17].
The constant α depends on the angle of the cone L(R2≥0), where L : R2 → R2

is a linear map for which L(Sn) scales to a constant multiple of standard two-
dimensional Brownian motion. In the setting of Theorems 2.5 and 2.6 below, L

can be the map that rescales the (1,−1) direction by 1/
√

3 and fixes the (1,1)

direction. In this case, the cone angle is π/3 and α = 3.
The correlated Brownian excursion (X,Y ) in R2≥0 referred to in the statement

of Proposition 2.4 is characterized by the Gibbs resampling property, which states
that the following is true. For any 0 < s < t < 1, the conditional law of (X,Y ) in
[s, t] given its values in [0, s] and [t,1] is that of a correlated Brownian motion of
time length t − s starting from (X(s), Y (s)) and finishing at (X(t), Y (t)) condi-
tioned on the positive probability event that it stays in R2≥0. The existence of this
process follows from the results of [67]; see also [20].

Now let us return to the study of random bipolar-oriented planar triangulations.
By Theorem 2.2, these correspond to paths in the nonnegative quadrant from the
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y-axis to the x-axis which have increments of (1,−1) and (0,1) and (−1,0).
Fix the boundary lengths m + 1 and n + 1, that is, fix the start (0,m) and end
(n,0) of the walk, and let the length � get large. Note that if ν is the uniform
measure on the three values (1,−1) and (0,1) and (−1,0), then the ν-expectation
of an increment (X,Y ) of the (unconstrained) walk is (0,0). Furthermore, (in the
unconstrained walk) the variance of X −Y is 2 while the variance of X +Y is 2/3,
and the covariance of X − Y and X + Y is zero by symmetry. Thus the variance
in the (1,−1) direction is 3 times the variance in the (1,1) direction. The scaling
limit of the random walk will thus be a Brownian motion with the corresponding
covariance structure. We can summarize this information as follows.

THEOREM 2.5. Consider a uniformly random bipolar-oriented triangulation,
sketched in the manner of Figure 2, with fixed boundary lengths m + 1 and n + 1
and with the total number of edges given by �. Let S0, S1, . . . , S�−1 be the corre-
sponding lattice walk. Then S��t�/

√
� converges in law (weakly w.r.t. the L∞ norm

on [0,1]), as � → ∞ with � ≡ −m − n + 1 mod 3, to the Brownian excursion in
the nonnegative quadrant starting and ending at the origin, with covariance matrix( 2/3 −1/3
−1/3 2/3

)
. (This is the covariance matrix such that if the Brownian motion were

unconstrained, the difference and sum of the two coordinates at time 1 would be
independent with respective variances 2 and 2/3.)

In particular, Theorem 2.5 holds when the lattice path starts and ends at the
origin, so that the left and right sides of the planar map each have length 1. In
this case, the two sides can be glued together and treated as a single edge in the
sphere, and Theorem 2.5 can be understood as a statement about bipolar maps on
the sphere with a distinguished south to north pole edge.

Next, we consider more general bipolar-oriented planar maps. Suppose we al-
low not just triangles, but other face sizes. Suppose that for nonnegative weights
a2, a3, . . . , we weight a bipolar-oriented planar map by

∏∞
k=2 a

nk

k where nk is the
number of faces with k edges, and we use the convention 00 = 1. (Taking ak = 0
means that faces with k edges are forbidden.) For maps with a given number of
edges, this product is finite. Then we pick a bipolar-oriented planar map with �

edges with probability proportional to its weight; the normalizing constant is fi-
nite, so this defines a probability measure if at least one bipolar map has positive
weight.

To ensure that such bipolar maps exist, there is a congruence-type condition
involving the number of edges � and the set of face sizes k with positive weight ak .
We also use an analytic condition on the set of weights ak to ensure that random
bipolar maps are not concentrated on maps dominated by small numbers of large
faces. When both these conditions are met, we obtain the limiting behavior as
� → ∞.
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THEOREM 2.6. Suppose that nonnegative face weights a2, a3, . . . are given,
and ak > 0 for at least one k ≥ 3. Let

(1) b = gcd
({k ≥ 1 : a2k > 0} ∪ {2k + 1 ≥ 3 : a2k+1 > 0}).

Consider a bipolar-oriented planar map with fixed boundary lengths m + 1 and
n + 1 and with the total number of edges given by �, chosen with probability pro-
portional to the product of the face weights. If m + n is odd and ak = 0 for each
odd k, then there are no such maps for any �. Otherwise, (m + n)(b + 1) is even;
and if

(2) � ≡ (m + n)(b + 1)/2 + 1 mod b

does not hold, then again there are no such maps; while for all sufficiently large
� satisfying (2) there are such maps. Let S0, S1, . . . , S�−1 be the corresponding
lattice walk.

Suppose
∑

k akz
k has a positive radius of convergence R, and

(3) 1 ≤
∞∑

k=2

(k − 1)(k − 2)

2
akR

k.

Then for some finite λ with 0 < λ ≤ R,

(4) 1 =
∞∑

k=2

(k − 1)(k − 2)

2
akλ

k.

Suppose further λ < R, or λ = R but also
∑

k k4akR
k < ∞. Then as � → ∞

while satisfying (2), the scaled walk S��t�/
√

� converges in law (weakly w.r.t. the
L∞ norm on [0,1]), to the Brownian excursion in the nonnegative quadrant start-
ing and ending at the origin, with covariance matrix that is a scalar multiple of( 2/3 −1/3
−1/3 2/3

)
.

Furthermore, the walk is locally approximately i.i.d. in the following sense: fix
J > 0 and suppose that for some � > J we sample M uniformly from {1, . . . , � −
J }, and consider the sequence given by the first J moves after the M th step; then
as � → ∞ the law of this sequence converges in total variation to that of an i.i.d.
sequence, in which move mi,j occurs with probability ai+j+2λ

i+j /C and move me

occurs with probability λ−2/C, and C is a normalizing constant.

REMARK 2.7. The constraint (3) is to ensure that (4) can be satisfied, which
will imply that the lattice walk has a limiting step distribution that has zero drift.
The constraint that λ < R, or λ = R but also

∑
k k4akR

k < ∞ implies that the
limiting step distribution has finite third moment. When the weights a2, a3, . . .

do not satisfy these constraints, the random walk excursion does not in general
converge to a Brownian motion excursion. Can one characterize bipolar-oriented
planar maps in these cases? Can the inequality

∑
k k4akλ

k < ∞ be replaced with∑
k k3akλ

k < ∞ (finite second moment for the step distribution)?
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REMARK 2.8. Theorem 2.6 applies to triangulations (giving Theorem 2.5
except for the scalar multiple in the covariance matrix), quadrangulations or k-
angulations for any fixed k, or more generally when one allows only a finite set
of face sizes. The bound (3) is trivially satisfied in these cases since the radius of
convergence is R = ∞.

REMARK 2.9. In the case where 1 = a2 = a3 = · · · , that is, the uniform dis-
tribution on bipolar-oriented planar maps, the radius of convergence is R = 1, and
λ = 1/2, so Theorem 2.6 applies. The step distribution ν of the walk is

ν
{
(−i, j)

} =
{

2−i−j−3 i, j ≥ 0 or i = j = −1,

0 otherwise.

In this case, it is also possible to derive the distribution ν for uniformly random
bipolar-oriented planar maps using a different bijection, one to noncrossing triples
of lattice paths [19].

REMARK 2.10. Under the hypotheses of Theorem 2.6, with pk defined as in
(6) below, dividing (5) by C shows that in a large random map a randomly chosen
face has degree k with limiting probability

P(face has degree k) → (k − 1)pk

1 − p0
.

PROOF OF THEOREM 2.6. Since the right-hand side of (4) increases mono-
tonically from 0 and is continuous on [0,R), (3) implies the existence of a solution
λ ∈ (0,R] to (4). Since ak > 0 for some k ≥ 3, λ < ∞.

Next, let a0 = 1 and define

(5) C = a0

λ2 +
∞∑

k=2

(k − 1)akλ
k−2,

which by our hypotheses is finite, and define

(6) pk = akλ
k−2

C
.

Then (dividing (5) by C) the pk’s define a random walk (Xt , Yt ) in Z2, which
assigns probabilities p0 and pi+j+2 to steps me and mi,j , respectively. (Recall that
there are k − 1 types of step that produce a k-gon, namely those mi,j for which
k = i + j + 2.)

If we pick a random walk of length � − 1 from zstart to zend weighted by the
ak’s, it has precisely the same distribution as it would have if we weighted it by
the pk’s instead, because the total exponent of λ for a walk from zstart to zend
is yend − xend − ystart + xstart, and because the total exponent of C is � − 1. The
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advantage of working with the pk’s rather than the ak’s is that they define a random
walk, which, as we verify next, has zero drift.

The drift of Xt + Yt is zero by symmetry.
Consider the antidiagonal direction Yt − Xt . A move of type me decreases this

by 2, and a move of type mi,j , corresponding to a k-gon with k = i + j + 2,
increases it by k − 2. Thus the drift of Yt − Xt is

(7) −2p0 + ∑
k≥2

(k − 2)(k − 1)pk

which is zero by the definition of pk and (4).
Next, we determine the period of the walk in Z2. We start by exhibiting some

sequences of moves that return the walk to its start. For even k, a move of type
mk/2−1,k/2−1 followed by k/2 − 1 moves of type me returns the walk to its start
after k/2 total moves. For odd k, a move of type mk−2,0 and a move of type m0,k−2
followed by k −2 moves of type me returns the walk to its start after k total moves.
So we see that the period of the walk is a divisor of b as defined in (1).

If the period were smaller than b, then we could consider a minimal nonempty
set of t moves for which Yt − Xt = Y0 − X0 and b � t . Such a minimal set would
contain no k-gon moves for even k (since we could remove a k-gon move and
k/2−1 type me moves to get a smaller set of moves), and at most one k-gon move
for any given odd k (since for odd k we can remove k-gon moves in pairs along
with k − 2 type me moves to get a smaller set of moves). Let k1, . . . , kr be these
odd k’s. There are (k1 +· · ·+ kr − 2r)/2 me moves, for a total of (k1 +· · ·+ kr)/2
moves. Then 2t = k1 + · · · + kr , and since b | k1, . . . , b | kr , we have b | 2t . Since
r ≥ 1, b | k1, so b is odd, and so, in fact, b | t . Hence both the walk (Xt , Yt ) and its
projection Yt − Xt are periodic with period b.

Let q(k) = k/2 if k is even and q(k) = k if k is odd. The period b is an integer
linear combination of finitely many terms q(k1) < · · · < q(ks) where aki

> 0. We
claim that any multiple of b which is at least (s −1)q(ks)

2 is a nonnegative-integer
linear combination of q(k1), . . . , q(ks). To see this, let c be a multiple of b that is
at least (s − 1)q(ks)

2. We may write c = ∑s
i=1 βiq(ki) where βi ∈ Z; suppose

that we choose the coefficients β1, . . . , βs to maximize the sum of the negative
coefficients. If some coefficient βi is negative, then there is another coefficient βj

for which βjq(kj ) ≥ c/(s − 1) ≥ q(ks)
2 > q(ki)q(kj ), in which case we could

decrease βj by q(ki) and increase βi by q(kj ) to increase the sum of the negative
coefficients. This completes the proof of the claim.

For even k, let wk be the walk mk/2−1,k/2−1m
k/2−1
e , and for odd k let wk =

mk−2,0mk−2,0m
k−2
2 , where here the step order is from left to right. Let B = (s −

1)q(ks)
2 + ks . Let c be any multiple of b which is at least B . Then c − ks =∑s

i=1 βiq(ki) where βi ≥ 0. The walk m0,ks−2m
ks−2
e

∏s
i=1 w

βi

i mks−2,0 is a walk of
length c from the origin to the origin that remains within the quadrant.
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Suppose a walk in Z2 starts at (0,m) and goes to (n,0) after t = � − 1 steps.
Consider the walk’s projection in the antidiagonal direction: (Yt − Xt) − (Y0 −
X0) = −m − n. If m + n is even, then the projected walk can reach its destination
after (m + n)/2 me moves, and since b is the period, it follows that � − 1 ≡ (m +
n)/2 ≡ (m+n)(b+1)/2 mod b. If m+n is odd, then for the walk to have positive
probability there must be some odd k with ak > 0. The projected walk can reach
its destination after an mk−2,0 move and (m + n + k − 2)/2 me moves, and since
b is the period of the walk, � − 1 ≡ (m + n + k)/2 mod b. Since k is a multiple
of b, this implies both 2(� − 1) ≡ m + n mod b and that b is odd, so � − 1 ≡
2(� − 1)(b + 1)/2 ≡ (m + n)(b + 1)/2 mod b. Thus any positive probability walk
satisfies (2).

If there are only even face sizes and m+n is odd, there are no walks from (0,m)

to (n,0). Otherwise, whether m+n is even or there is an odd face size, we can first
choose face moves to change the Xt + Yt coordinate from m to n, and then follow
them by some number of me moves to change the Yt − Xt coordinate to −n. We
may then follow these moves by a path from (n,0) to itself with length given by
any sufficiently large multiple of b. Thus, for any sufficiently large � satisfying the
congruence condition (2), there is a walk within Z2 (not confined to the quadrant)
from (0,m) to (n,0).

Next, pick a face size k ≥ 3 for which ak > 0. For s ≥ 0, the above walk in Z2

from (0,m) to (n,0) can be prepended with (m2
0,k−2m

k−2
e )s and postpended with

(mk−2
e m2

k−2,0)
s , and it will still go from (0,m) to (n,0). For some sufficiently

large s, the walk will not only remain in the quadrant but will also travel arbi-
trarily far from the boundary of the quadrant, which gives the paths required by
Proposition 2.4.

The variances of X − Y and X + Y are respectively

(8) Var[X − Y ] = 4p0 + ∑
k≥2

(k − 2)2(k − 1)pk

and

(9)

Var[X + Y ] = ∑
k≥2

pk

(
(k − 2)2 + (k − 4)2 + · · · + (−k + 2)2)

= ∑
k≥2

pk × 2

(
k

3

)
,

which are both positive and finite by our hypotheses. Using the zero-drift condition
(7), we may combine (8) and (9) to obtain

Var[X − Y ] = ∑
k≥2

(k − 2)(k − 1)kpk = ∑
k≥2

pk6

(
k

3

)
= 3 Var[X + Y ].
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Then we apply Proposition 2.4. Since the ratio of variances is 3, we need the
walk’s step distribution to have a finite third moment (see the comments after
Proposition 2.4). Since there are |k − 1| steps of type pk , the third moment of
the step distribution is finite when∑

k≥2

pkk
4 = 1

C

∑
k≥2

akλ
k−2k4 < ∞

which is implied by our hypotheses. Hence by Proposition 2.4, the scaling limit of
the walk is a correlated Brownian excursion in the quadrant.

The local approximate i.i.d. nature of the walk follows from a standard entropy
maximization argument. Cramér’s theorem implies that if the steps were i.i.d. the
probability that the empirical pattern density for length-J blocks of moves differs
from its expectation by any fixed amount would decay exponentially; however,
under this i.i.d. law the probability that the walk stays in the quadrant and has
the desired starting and ending points has a power law decay, which means that
even conditioned on staying in the quadrant, the pattern density is sufficiently well
concentrated in the � → ∞ limit. �

REMARK 2.11. If one relaxes the requirement that the probabilities assigned
by the step distribution ν be the same for all increments corresponding to a given
face size, one can find a ν such that the expectation is still (0,0) and when (X,Y )

is sampled from ν, the law is still symmetric w.r.t. reflection about the line y = −x

but the variance ratio Var[X −Y ]/Var[X +Y ] assumes any value strictly between
1 and ∞. Indeed, one approaches one extreme by letting (X,Y ) be (close to being)
supported on the y = −x antidiagonal, and the other extreme by letting (X,Y ) be
(close to being) supported on the x- and y-axes far from the origin (together with
the point (1,−1)). The former corresponds to a preference for nearly balanced
faces (in terms of the number of clockwise and counterclockwise oriented edges)
while the latter corresponds to a preference for unbalanced faces.

REMARK 2.12. In each of the models treated above, it is natural to consider an
“infinite-volume limit” in which lattice path increments indexed by Z are chosen
i.i.d. from ν. The standard central limit theorem then implies that the walks have
scaling limits given by a Brownian motion with the appropriate covariance matrix.

3. Bipolar-oriented triangulations.

3.1. Enumeration. The following corollary is an easy consequence of the bi-
jection. The formula itself goes back to Tutte [71]; Bousquet-Mélou gave another
proof together with a discussion of the bipolar orientation interpretation [7], Propo-
sition 5.3, equation (5.11) with j = 2.
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COROLLARY 3.1. The number of bipolar-oriented triangulations of the
sphere with � edges in which S and N are adjacent and marked is (with � = 3n)

B� = 2(3n)!
(n + 2)!(n + 1)!n!

(and zero if � is not a multiple of 3).

PROOF. In a triangulation 2E = 3F , so the number of edges is a multiple of 3.
Since S and N are adjacent, there is a unique embedding in the disk so that the west
boundary has length 1 and the east boundary has length 2. The lattice walks as dis-
cussed there go from (0,0) to (1,0). It is convenient to concatenate the walk with
a final m1,0 step, so that the walks are from (0,0) to (0,0) of length � and remain
in the first quadrant; moreover the number of steps of each type must be equal.
Applying a shear

( 1 0
1 1

)
, the walks with steps me, m0,1, m1,0 become walks with

steps (1,0), (0,1), (−1,−1) which remain in the domain y ≥ x ≥ 0. Replacing
these steps by (1,0,0), (0,1,0), (0,0,1), respectively, this is the number of walks
from (0,0,0) to (n,n,n) with steps (1,0,0), (0,1,0), (0,0,1) remaining in the
domain y ≥ x ≥ z. These are the so-called 3D Catalan numbers; see A005789 in
the OEIS. �

3.2. Vertex degree. Using the bijection between paths and bipolar-oriented
maps, we can easily get the distribution of vertex degrees of a large bipolar-
oriented triangulation.

PROPOSITION 3.2. In a large bipolar-oriented planar triangulation with fixed
boundary lengths m + 1 and n + 1, as the number of edges � tends to ∞ with
� + m + n ≡ 1 mod 3, the limiting in-degree and out-degree distributions of a
random vertex are independent and geometrically distributed (starting at 1) with
mean 3.

PROOF. We examine the construction of bipolar-oriented planar maps when
the steps give triangles. Any new vertex or new edge is adjoined to the marked
bipolar map on its eastern boundary, which we also call the frontier.

A new vertex is created by an m0,1 move, or an me move if there are currently
no frontier vertices above the active vertex, and when a vertex is created it is the
active vertex. Each subsequent move moves frontier vertices relative to the active
vertex, so let us record their position with respect to the active vertex by integers,
with positive integers recording the position below the active vertex and negative
integers recording the position above it; see Figure 5.

The following facts are easily verified:

1. A vertex moves off the frontier exactly when it is at position 1 and an m1,0
move takes place.

https://oeis.org/A005789
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FIG. 5. Action of the three moves me , m1,0, m0,1 on the frontier. The vertex positions (relative to
the active vertex) are shown.

2. me moves increase the index of vertices by 1.
3. m0,1 moves decrease the index of a vertex by 1 if it is nonpositive, else leave

it fixed.
4. m1,0 moves decrease the index by 1 if it is ≥ 2, else leave it fixed (if the

index is 1 it is moved off of the frontier).
5. Except for the start vertex of the initial structure, whenever a vertex is cre-

ated, its in-degree is 1 and its out-degree is 0.
6. The in-degree of a vertex increases by 1 each time it visits position 0, the

out-degree increases each time it visits position 1.

The transition diagram is summarized here:

For the purposes of computing the final in-degree and out-degree of a vertex,
we can simply count the number of visits to 0 before its index becomes positive,
and then count the number of visits to 1 before it is absorbed in the interior of the
structure.

Since m and n are held fixed as � → ∞, almost all vertices in the bipolar map
are created by m0,1 moves. By the local approximate i.i.d. property of the walk
proved in Theorem 2.6, we see that the moves in the transition diagram above
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converge weakly to a Markov chain where each transition occurs with probability
1/3.

The Markov chain starts at 0, and on each visit to 0 there is a 1/3 chance of
going to 1 and a 2/3 chance of eventually returning to 0. On each visit to 1, there
is a 1/3 chance of exiting and a 2/3 chance of eventually returning to 1. In the
Markov chain, the number of visits to 0 and 1 are a pair of independent geometric
random variables with minimum 1 and mean 3, which in view of fact 6 above,
implies the proposition. �

4. Scaling limit.

4.1. Statement. In order to prove that random discrete objects converge to ran-
dom continuous objects, one has to specify what that convergence means. Typi-
cally, one begins by describing a topological space that includes both the discrete
objects and the continuous objects as elements.

As we discuss in Section 4.2 below, many kinds of discrete and continuum tree-
decorated surfaces can be naturally encoded by pairs of interface functions, such
as the (Xt , Yt ) process in this paper.

Let C = C([0,1],R2) be the space of continuous functions from [0,1] to R2

with the uniform metric (sup-norm metric). Let C be the corresponding weak topol-
ogy on the set SC of probability measures on C. One way to say that a sequence
of random discrete tree-decorated surfaces converges to a random continuum tree-
decorated surface is to say that the laws of the corresponding interface functions
converge as elements of (SC,C). This property, in fact, defines a topology on the
space of tree-decorated surfaces (with parameterized interface functions), called
the peanosphere topology: We define in Section 4.2 a map g that takes a (discrete
or continuous) tree-decorated surface of the type we consider here to an element
of C. The g−1 pullback of the sup-norm topology on C is the peanosphere topol-
ogy on a space that includes both discrete and continuous tree-decorated surfaces.
Theorem 4.1 below is a statement about convergence in law w.r.t. this topology.
Note that (since C is a topology on measures) it is not necessary that g be de-
fined for every conceivable tree-decorated surface, as long as it is defined for a.a.
tree-decorated surfaces that arise in the random models we are considering.

Theorem 4.1 is in essence a statement about the scaling limits of random in-
terface functions; it may seem like an unnecessary bit of semantics to interpret it
as a statement about the convergence of the random tree-decorated surfaces them-
selves (in the peanosphere topology). On the other hand, there are good mathe-
matical reasons to consider this interpretation. This is because there are various
other topologies (involving Gromov–Hausdorff metrics, conformal embeddings,
etc.) w.r.t. which discrete tree-decorated surfaces have been conjectured to con-
verge to their continuous counterparts, and it is often the case in this subject that
once one has convergence in one topology, one can extend the convergence to
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other topologies without having to start from scratch (and some specific examples
of results along these lines are cited below).

The proof of Theorem 4.1 is an easy computation upon application of the
infinite-volume tree-mating theory introduced in [15], a derivation of the relation-
ship between the SLE/LQG parameters and a certain variance ratio in [15, 21]
and a finite volume elaboration in [48]. As mentioned above, we will explain this
further in Section 4.2 just below.

THEOREM 4.1. The scaling limit of the bipolar-oriented planar map with its
interface curve, with fixed boundary lengths m+1 and n+1, and number of edges
� → ∞ (with a possible congruence restriction on �, m and n to ensure such maps
exist), with respect to the peanosphere topology, is a

√
4/3-LQG sphere decorated

by an independent SLE12 curve.

We remark that the peanosphere topology is neither coarser nor finer than other
natural topologies, including in particular those that we discuss in the Section 4.2.

PROOF OF THEOREM 4.1. In Section 2.3, it was shown that the interface
function for the bipolar-oriented random planar map converges as � → ∞ to a
Brownian excursion (X,Y ) in the nonnegative quadrant having covariance ma-
trix (up to scale)

( 2/3 −1/3
−1/3 2/3

)
, that is X − Y and X + Y are independent, and

Var[X − Y ] = 3 Var[X + Y ].
The fact that the limit is a Brownian excursion implies, by [15], Theorem 1.13,

and the finite volume variant in [48] and [21], Theorem 1.1, that the scaling limit
in the peanosphere topology is a peanosphere, that is, a γ -LQG sphere decorated
by an independent space-filling SLEκ ′ , for a certain γ , κ ′. The values γ , κ ′ are
determined by the covariance structure of the limiting Brownian excursion. The
ratio of variances Var[X − Y ]/Var[X + Y ] takes the form

(10)
(
1 + cos

[
4π/κ ′])/(

1 − cos
[
4π/κ ′]).

This relation was established for κ ′ ∈ (4,8] in [15], and more generally for κ ′ ∈
(4,∞) in [21].5 Setting it equal to 3 and solving we find κ ′ = 12. For this value of
κ ′, we have γ = √

16/κ ′ = √
4/3. �

REMARK 4.2. If the covariance ratios vary as in Remark 2.11, then the κ ′
values varies between 8 and ∞. In other words, one may obtain any κ ′ ∈ (8,∞),
and corresponding γ = √

16/κ ′, by introducing weightings that favor faces more
or less balanced.

5There is as yet no analogous construction corresponding to the limiting case κ ′ = 4, where (10) is
zero so that Var(X − Y ) = 0 and X = Y a.s. It is not clear what such a construction would look like,
given that space-filling SLEκ ′ has only been defined for κ ′ > 4, not for κ ′ = 4, and the peanosphere
construction in Section 4.2 is trivial when the limiting Brownian excursion is supported on the diag-
onal x = y.
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REMARK 4.3. The infinite-volume variant described in Remark 2.12 corre-
sponds to the mated pair of infinite-diameter trees first described in [15], which in
turn corresponds to the so-called γ -quantum cone described in the next subsection.

4.2. Peanosphere background. The purpose of this section is to give a brief
description of how Liouville quantum gravity (LQG) surfaces [16] decorated by
independent SLE processes can be viewed as matings of random trees which
are related to Aldous’ continuum random tree (CRT) [2–4]. The results that un-
derlie this perspective are established in [15, 48], building on prior results from
[16, 50–52, 55, 63, 64].

Recall that if h is an instance of the Gaussian free field (GFF) on a planar do-
main D with zero-boundary conditions and γ ∈ (0,2), then the γ -LQG surface
associated with h of parameter γ is described by the measure μh on D which for-
mally has density eγh with respect to Lebesgue measure. As h is a distribution
and does not take values at points, this expression requires interpretation. One can
construct this measure rigorously by considering approximations hε to h (by av-
eraging the field on circles of radius ε) and then take μh to be the weak limit as
ε → 0 of εγ 2/2ehε(z) dz where dz denotes Lebesgue measure on D; see [16]. If
one has two planar domains D1, D2, a conformal transformation ϕ : D1 → D2, an
instance of the GFF h2 on D2, and lets

(11) h1 = h2 ◦ ϕ + Q log
∣∣ϕ′∣∣ where Q = 2

γ
+ γ

2

then the γ -LQG measure μh2 associated with h2 is a.s. the image under ϕ of the γ -
LQG measure μh1 associated with h1. A quantum surface is an equivalence class
of fields h where we say that two fields are equivalent if they are related as in (11).

This construction generalizes to any law on fields h which is absolutely contin-
uous with respect to the GFF. The results in this article will be related to two such
laws [15, 64]:

1. The γ -quantum cone (an infinite-volume surface).
2. The γ -LQG sphere (a finite-volume surface).

We explain how they can both be constructed with the ordinary GFF h as the
starting point.

The γ -quantum cone can be constructed by the following limiting procedure
starting with an instance of the GFF h as above. Fix a constant C > 0 and note
that adding C to h has the effect of multiplying areas as measured by μ by the
factor eγC . If one samples z ∈ D according to μ and then rescales the domain so
that the mass assigned by μh+C to B(z,1) is equal to 1, then the law one obtains
in the C → ∞ limit is that of a γ -quantum cone. (The construction given in [15,
64] is more direct in the sense that a precise recipe is given for sampling from the
law of the limiting field.) That is, a γ -quantum cone is the infinite-volume γ -LQG
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surface which describes the local behavior of an γ -LQG surface near a μh-typical
point.

The (unit area) γ -LQG sphere can also be constructed using a limiting proce-
dure using the ordinary GFF h as above as the starting point. This construction
works by first fixing C > 0 large, ε > 0 small and then conditioning on the event
that the amount of mass that μ assigns to D is in [eγC, eγ (C+ε)], so that the amount
mass assigned to D by μh−C is in [1, eγ ε], then sends first C → ∞ and then
ε → 0. (The constructions given in [15, 48] are more direct because they involve
precise recipes for sampling from the law of the limiting h.) One can visualize this
construction by imagining that conditioning the area to be large (while keeping
the boundary values of h constrained to be 0) leads to the formation of large a
bubble. In the C → ∞ limit, the opening of the bubble (which is the boundary of
the domain) collapses to a single point, and it turns out that this point is typical
(i.e., conditioned on the rest of the surface its law is given by that of the associated
γ -LQG measure).

In [15, 48], it is shown that it is possible to represent various types of γ -LQG
surfaces (cones, spheres and disks) decorated by an independent SLE as a glu-
ing of a pair of continuous trees. We first explain a version of this construction in
which γ = √

2 and the surface is a unit-area LQG sphere decorated with an inde-
pendent SLE8. Let X and Y be independent one-dimensional Brownian excursions
parameterized by [0,1]. Let C be large enough so that the graphs of X and C − Y

are disjoint, as illustrated in Figure 6. We define an equivalence relation ∼ on the
rectangle R = [0,1] × [0,C] by declaring to be equivalent points which lie on
either:

1. horizontal chords either entirely below the graph of X or entirely above
graph of C − Y (green lines in Figure 6), or

FIG. 6. Gluing together a pair of CRTs to obtain a topological sphere. Illustration of the
peanosphere construction. (This figure first appeared in [15].)
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2. vertical chords between the graphs of X and C − Y (red lines in Figure 6).

We note that under ∼, all of ∂R is equivalent so we may think of ∼ as an equiv-
alence relation on the two-dimensional sphere S2. It is elementary to check using
Moore’s theorem [56] (as explained in [15], Section 1.1) that almost surely the
topological structure associated with R/∼ is homeomorphic to S2. This sphere
comes with additional structure, namely:

1. a space-filling path6 η′ (corresponding to the projection of the path which
follows the red lines in Figure 6 from left to right), and

2. a measure μ (corresponding to the projection of Lebesgue measure on
[0,1]).
We refer to this type of structure as a peanosphere, as it is a topological sphere
decorated with a path which is the peano curve associated with a space-filling tree.

The peanosphere associated with the pair (X,Y ) does not a priori come with
an embedding into the Euclidean sphere S2. However, it is shown in [15, 48] that
there is a canonical embedding (up to Möbius transformations) of the peanosphere
associated with (X,Y ) into S2, which is measurable with respect to (X,Y ). This
embedding equips the peanosphere with a conformal structure. The image of μ

under this embedding is a
√

2-LQG sphere (see [15, 48] as well as [5, 11]), and
the law of the space-filling path η′ is the following natural version of SLE8 in this
context [55]: If we parameterize the

√
2-LQG sphere by the Riemann sphere Ĉ,

then η′ is equal to the weak limit of the law of an SLE8 on B(0, n) from −in to
in with respect to the topology of local uniform convergence when parameterized
by Lebesgue measure. (The construction given in [55] is different and is based on
the GFF.) The random path η′ and the random measure μ are coupled together
in a simple way. Namely, given μ, one samples from the law of the path by first
sampling an SLE8 (modulo time parameterization) independently of μ and then
reparameterizing it according to μ-area (so that in t units of time it fills t units of
μ-area).

This construction generalizes to all values of κ ′ ∈ (4,∞). In the more general
setting, we have that γ = √

κ where κ = 16/κ ′ ∈ (0,4), and the pair of indepen-
dent Brownian excursions is replaced with a continuous process (X,Y ) from [0,1]
into R2≥0 which is given by the linear image of a two-dimensional Brownian ex-
cursion from the origin to the origin in the Euclidean wedge of opening angle

θ = πγ 2

4
= πκ

4
= 4π

κ ′ ;
see [15, 21, 48]. (In the infinite-volume version of the peanosphere construction,
the Brownian excursions (X,Y ) are replaced with Brownian motions, and the cor-
responding underlying quantum surface is a γ -quantum cone [15].)

6As explained just below, η′ is related to an SLEκ ′ curve with κ ′ > 4. We use the convention here
from [50–52, 55], which is to use a prime whenever κ ′ > 4.
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The main results of [15, 48] imply that the information contained in the pair
(X,Y ) is a.s. equivalent to that of the associated SLEκ ′ -decorated γ -LQG surface.
More precisely, the map f from SLEκ ′-decorated γ -LQG surfaces to Brownian
excursions is almost everywhere well defined and almost everywhere invertible,
and both f and f −1 are measurable.

The peanosphere construction leads to a natural topology on surfaces which can
be represented as a gluing of a pair of trees (a space-filling tree and a dual tree),
as illustrated in Figure 6. Namely, such a tree-decorated surface is encoded by a
pair of continuous functions (X,Y ) where X (resp., Y ) is given by the interface
function of the tree (resp., dual tree) on the surface. We recall that the interface
function records the distance of a point on the tree to the root when one traces its
boundary with unit speed. We emphasize that both continuum and discrete tree-
decorated surfaces can be described in this way. In the case of a planar map, we
view each edge as a copy of the unit interval and use this to define “speed.” Equiv-
alently, one can consider the discrete-time interface function and then extend it
to the continuum using piecewise linear interpolation. Applying a rescaling to the
planar map corresponds to applying a rescaling to the discrete pair of trees, hence
their interface functions. If we have two tree-decorated surfaces with associated
pairs of interface functions (X,Y ) and (X′, Y ′), then we define the distance be-
tween the two surfaces simply to be the sup-norm distance between (X,Y ) and
(X′, Y ′).

The peanosphere approach to SLE/LQG convergence (i.e., identifying a natu-
ral pair of trees in the discrete model and proving convergence in the topology
where two configurations are close if their tree interface functions are close) was
introduced in [15, 65] to deal with infinite-volume limits of FK-cluster-decorated
random planar maps, which correspond to κ ∈ [2,4) and κ ′ ∈ (4,8]. Extensions to
the finite volume case and a “loop structure” topology appear in [24, 26, 34, 35].

Since bipolar-oriented planar maps converge in the peanosphere topology to
SLE12-decorated

√
4/3-LQG, we conjecture that they also converge in other nat-

ural topologies, such as:

• The conformal path topology defined as follows. Assume we have selected a
method of “conformally embedding” discrete planar maps in the sphere. (This
might involve circle packing, Riemann uniformization, Tutte embedding or
some other method.) Then the green path in Figure 2 becomes an actual path:
a function ηn from [0,1] to the unit sphere (where n is the number of lattice
steps) parameterized so that at time k/n the path finishes traversing its kth edge.
An SLE12-decorated

√
4/3-LQG sphere can be described similarly by letting η

be the SLE path parameterized so that a t fraction of LQG volume is traversed
between times 0 and t . (Note that the parameterized path η encodes both the
LQG measure and the SLE path.) The conformal path topology is the uniform
topology on the set of paths from [0,1] to the sphere. The conjecture is that ηn
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converges to η weakly w.r.t. the uniform topology on paths. See [16, 64] for
other conjectures of this type. Recently, the first convergence statement of this
type was proved for the so-called “mated-CRT maps” using the Tutte embedding
in [33].

• The Gromov–Hausdorff–Prokhorov-uniform topology on metric measure
spaces decorated with a curve. So far, convergence in this topology has only
proved in the setting of a uniformly random planar map decorated by a self-
avoiding walk (SAW) to SLE8/3 on

√
8/3-LQG in [25, 27, 31] and also deco-

rated by a percolation to SLE6 on
√

8/3-LQG [28–30, 32]. These works use as
input the convergence of uniformly random planar maps to the Brownian map
[43, 45] and the construction of the metric space structure of

√
8/3-LQG [46–

49, 53, 54]. It is still an open problem to endow γ -LQG with a canonical metric
space structure for γ �= √

8/3 and to prove this type of convergence result for
random planar maps with other models from statistical physics.

An interesting problem which illustrates some of the convergence issues that
arise is the following: In the discrete setting, the interface functions between the
NW and SE trees determine the bipolar map which in turn determine the interface
functions between the NE and SW trees. Likewise, in the continuous setting, the
interface functions (a Brownian excursion) between the NW and SE trees a.s. de-
termine the SLE-decorated LQG which in turn a.s. determine the interface function
(another Brownian excursion) between the NE and SW trees.

CONJECTURE 4.4. The joint law of both NW/SE and NE/SW interface func-
tions of a random bipolar-oriented planar map converges to the joint law of both
NW/SE and NE/SW interface functions of SLE12-decorated

√
4/3-LQG.

One might expect to be able to approximate the discrete NW/SE interface func-
tion with a continuous function, obtain the corresponding continuous NE/SW func-
tion, and hope that this approximates the discrete NE/SW function. One problem
with this approach is that while the maps f −1 and f are measurable, they are
(presumably almost everywhere) discontinuous, so that even if two interface func-
tions are close, it does not follow that the corresponding measures and paths are
close. However, since Brownian excursions are random perturbations rather than
“worst case” perturbations of random walk excursions, we expect the joint laws to
converge despite the discontinuities of f and f −1.

Update: Conjecture 4.4 has been proven in [22].

5. Open question. In addition to questions regarding strengthening the topol-
ogy of convergence, which are discussed at the end of Section 4.2, it would be
interesting to extend the theory to other surface graphs, such as the torus, or a disk
with four boundary vertices which are alternately source, sink, source, sink.
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