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THE WIENER CONDITION AND THE CONJECTURES OF
EMBRECHTS AND GOLDIE

BY TOSHIRO WATANABE

University of Aizu

We show that the class of convolution equivalent distributions and the
class of locally subexponential distributions are not closed under convolution
roots. It gives a negative answer to the classical conjectures of Embrechts
and Goldie. Moreover, we establish two sufficient conditions in order that
the class of convolution equivalent distributions is closed under convolution
roots.

1. Introduction and main results. In what follows, we denote by R the real
line and by R+ the half-line [0,∞). Let N be the totality of positive integers.
The symbol δa(dx) stands for the delta measure at a ∈ R. Let μ and ρ be finite
measures on R. We denote the convolution of μ and ρ by μ ∗ ρ and denote the
nth convolution power of ρ by ρn∗ with the understanding that ρ0∗(dx) = δ0(dx).
For positive functions f (x) and g(x) on [a,∞) for some a ∈ R, we define the
relation f (x) ∼ g(x) by limx→∞ f (x)/g(x) = 1 and the relation f (x) � g(x)

by 0 < lim infx→∞ f (x)/g(x) ≤ lim supx→∞ f (x)/g(x) < ∞. The tail of a finite
measure η on R is denoted by η̄(x), that is, η̄(x) := η((x,∞)) for x ∈ R. Let
γ ∈ R. The γ -exponential moment of η is denoted by η̂(γ ), namely,

η̂(γ ) :=
∫ ∞
−∞

eγ xη(dx).

If η̂(γ ) < ∞, we define the Fourier–Laplace transform η̂(γ + iz) for z ∈ R as

η̂(γ + iz) :=
∫ ∞
−∞

e(γ+iz)xη(dx).

We use the words “increase” and “decrease” in the wide sense allowing flatness.
A distribution always means a probability distribution.

DEFINITION 1.1. Let γ ≥ 0.

(i) A distribution ρ on R belongs to the class L(γ ) if ρ̄(x) > 0 for every x ∈ R

and if

ρ̄(x + a) ∼ e−γ aρ̄(x) for every a ∈R.
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(ii) A distribution ρ on R belongs to the class S(γ ) if ρ ∈ L(γ ) with ρ̂(γ ) <

∞ and if

ρ2∗(x) ∼ 2ρ̂(γ )ρ̄(x).

(iii) Let γ1 ∈ R. A distribution ρ on R belongs to the class M(γ1) if ρ̂(γ1) <

∞.

DEFINITION 1.2. Let G be the totality of nonnegative measurable functions
g(x) on R satisfying g(x) > 0 for all sufficiently large x > 0. Let g(x) ∈ G:

(i) We say that g(x) ∈ L if g(x + a) ∼ g(x) for every a ∈ R.
(ii) We say that g(x) ∈ AD if, for every a ≥ 0,

lim sup
x→∞

g(x + a)

g(x)
≤ 1.

DEFINITION 1.3. (i) Let � := (0, c] with c > 0. A distribution ρ on R belongs
to the class L� if ρ((x, x + c]) ∈ L.

(ii) Let � := (0, c] with c > 0. A distribution ρ on R belongs to the class S� if
ρ ∈ L� and ρ2∗((x, x + c]) ∼ 2ρ((x, x + c]).

(iii) A distribution ρ on R belongs to the class Lloc if ρ ∈ L� for each � :=
(0, c] with c > 0.

(iv) A distribution ρ on R belongs to the class Sloc if ρ ∈ S� for each � := (0, c]
with c > 0.

Rogozin [16] in the one-sided case and Pakes [14] in the two-sided case proved
that ρ ∈ S(γ ) with γ ≥ 0 if and only if ρ ∈ L(γ ) and there exists M > 0 such that
ρ2∗(x) ∼ Mρ̄(x). Distributions in the class S(0) are called subexponential. Those
in the class S(γ ) are called convolution equivalent and those in the class Sloc are
called locally subexponential. The class S(0) was introduced by Chistyakov [6]
for applications to branching processes. The study of the class S(γ ) goes back to
Chover et al. [4, 5]. The class S� was introduced by Asmussen et al. [1] and the
class Sloc was by Borovkov and Borovkov [3] and Watanabe and Yamamuro [22];
see also Foss et al. [12]. Applications of those classes include renewal theory, ran-
dom walks, queues, branching processes, Lévy processes and infinite divisibility.
We extend the notion of the Wiener condition for a function in L1(R) to that for a
finite measure as follows.

DEFINITION 1.4. We say that a finite measure η on R satisfies the Wiener con-
dition if η̂(iz) 
= 0 for every z ∈R. We denote by W the totality of finite measures
on R which satisfy the Wiener condition.
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REMARK 1.1. (i) For every a ∈ R, δa(dx) ∈W . If η1, η2 ∈ W , then η1 ∗ η2 ∈
W .

(ii) Define, for a complex number z, φ(z) := ∑∞
n=0 pnz

n where pn ≥ 0 for all
n ≥ 0 and 0 <

∑∞
n=0 pn(1 + ε)n < ∞ for some ε > 0. Let η := ∑∞

n=0 pnρ
n∗ for a

distribution ρ on R. Assume that φ(z) has no zero in a unit disc {z ∈ C : |z| ≤ 1}
in the complex plane C. Then η ∈W for every distribution ρ.

DEFINITION 1.5. We say that a class C of distributions on R is closed under
convolution roots if μn∗ ∈ C for some n ∈ N implies that μ ∈ C.

Embrechts et al. [10] in the one-sided case and Watanabe [21] in the two-sided
case proved that the class S(0) is closed under convolution roots. Embrechts and
Goldie stated in [9] that a crucial point for proving limit theorems using S(γ ) is
the convolution roots closure of S(γ ). Further, they gave the following conjectures
in [8, 9], respectively.

CONJECTURE I. The class L(γ ) with γ ≥ 0 is closed under convolution roots.

CONJECTURE II. The class S(γ ) with γ > 0 is closed under convolution
roots.

Embrechts and Goldie [9] in the one-sided case and Pakes [15] in the two-sided
case obtained the following.

THEOREM A. Let γ > 0 and let μ be a distribution on R. If μ ∈ L(γ ) and
μn∗ ∈ S(γ ) for some n ∈ N, then μ ∈ S(γ ).

Moreover, Watanabe showed in Theorem 1.1 of [21] the following.

THEOREM B. Let γ > 0 and let μ be an infinitely divisible distribution on R.
If μn∗ ∈ S(γ ) for some n ∈N, then μ ∈ S(γ ).

We see from Theorem A that if Conjecture I is true for every γ > 0, then so
is Conjecture II. However, Shimura and Watanabe [19] disproved Conjecture I
for every γ ≥ 0 and, recently, Xu et al. [26] also did for γ = 0. On the other
hand, Conjecture II was unsolved for over 30 years. In this paper, we disprove
Conjecture II for every γ > 0 and extend Theorems A and B. Celebrated Wiener’s
approximation theorem plays a key role for the resolution. We discover an idea
that the Wiener condition fails for a finite measure eγ xμ(dx) of a counterexample
μ to Conjecture II. Our main results are as follows.

THEOREM 1.1. The class S(γ ) with γ > 0 is not closed under convolution
roots.
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By using exponential tilts, we have the following corollary.

COROLLARY 1.1. Let � := (0, c] with c > 0 and let γ > 0. We have the fol-
lowing:

(i) The class Sloc is not closed under convolution roots.
(ii) The class S� is not closed under convolution roots.

(iii) The class L(γ ) ∩M(γ ) is not closed under convolution roots.
(iv) The class Lloc is not closed under convolution roots.
(v) The class L� is not closed under convolution roots.

Next, we establish an extension of Theorem A. Note that μ ∈ L(γ ) with γ ≥ 0
if and only if eγ xμ̄(x) ∈ L. The condition eγ xμ̄(x) ∈ AD is found in Theorem 7
of Foss and Korshunov [11] in the one-sided case.

THEOREM 1.2. Let γ ≥ 0 and let μ be a distribution on R. Assume that
eγ xμ̄(x) ∈ AD. Then μn∗ ∈ S(γ ) for some n ∈ N implies that μ ∈ S(γ ).

COROLLARY 1.2. Let μ be a distribution on R. Assume that μ̂(−γ ) < ∞ for
some γ > 0 and that μ((x, x +c]) ∈ AD for every c > 0. Then μn∗ ∈ Sloc for some
n ∈ N implies that μ ∈ Sloc.

REMARK 1.2. Let μ be a distribution on R. The condition eγ xμ̄(x) ∈ AD
necessarily holds for γ = 0. If μ is unimodal with a density p(x) ∈ G, then the
condition μ((x, x + c]) ∈ AD holds for every c > 0.

Finally, we present an extension of Theorem B. Note that every infinitely divis-
ible distribution on R satisfies the Wiener condition and that if μ̂(γ ) < ∞ for an
infinitely divisible distribution μ on R, then eγ xμ(dx) ∈ W ; see Theorem 25.17
of Sato [17].

THEOREM 1.3. Let γ > 0 and let μ be a distribution on R. Assume that
μ̂(γ ) < ∞ and eγ xμ(dx) ∈ W , that is, μ̂(γ + iz) 
= 0 for every z ∈ R. Then
μn∗ ∈ S(γ ) for some n ∈N implies that μ ∈ S(γ ).

COROLLARY 1.3. Let μ be a distribution on R. Assume that μ̂(−γ ) < ∞ for
some γ > 0 and μ ∈ W . Then μn∗ ∈ Sloc for some n ∈ N implies that μ ∈ Sloc.

REMARK 1.3. We see from Theorems 1.2 and 1.3 that each counterexample
μ on R to Conjecture II must satisfy that μ̂(γ ) < ∞ and μ̂(γ + iz0) = 0 for some
z0 ∈ R and that lim supx→∞ eγ a0μ̄(x + a0)/μ̄(x) > 1 for some a0 > 0.



CONJECTURES OF EMBRECHTS AND GOLDIE 1225

Nonclosure under convolution roots for the other distribution classes was shown
by Shimura and Watanabe [18] for the class OS of O-subexponential distributions,
and by Watanabe and Yamamuro [24] for the class Sac of distributions with subex-
ponential densities. The organization of this paper is as follows. In Section 2, we
give preliminaries for the proofs of the main results. In Sections 3, 4 and 5, we
prove Theorems 1.1, 1.2 and 1.3 and their corollaries, respectively.

2. Preliminaries. The following lemma is a direct consequence of Corol-
lary 2 of Cline [7].

LEMMA 2.1. Let γ > 0 and μ be a distribution on R+. If μ̄(x) ∼ ce−γ xx−α

with c > 0 and α > 1, then μ ∈ S(γ ).

LEMMA 2.2. Let γ ≥ 0. We have the following:

(i) Let μ ∈ L(γ ) with μ̂(γ ) < ∞. Then μ ∈ S(γ ) if and only if

lim
A→∞ lim sup

x→∞

∫ (x−A)+
A+ μ(x − u)μ(du)

μ(x)
= 0.

(ii) Let μ1 and μ2 be distributions on R. If μ1 ∈ S(γ ) and μ2(x) ∼ cμ1(x)

with c > 0, then μ2 ∈ S(γ ).

PROOF. First, we prove assertion (i). Let μ ∈ L(γ ) with μ̂(γ ) < ∞ and let
A > 0. We have, for x > 2A,

μ2∗(x) =
3∑

j=1

Hj(x),

where

H1(x) := 2
∫ A+
−∞

μ(x − u)μ(du), H2(x) := μ(x − A)μ(A),

and

H3(x) :=
∫ (x−A)+
A+

μ(x − u)μ(du).

Since we see that

sup
u∈(−∞,A]

μ(x − u)

μ(x)
≤ μ(x − A)

μ(x)
and lim

x→∞
μ(x − A)

μ(x)
= eγA,

we obtain from the dominated convergence theorem that

(2.1) lim
x→∞

H1(x)

μ(x)
= 2

∫ A+
−∞

lim
x→∞

μ(x − u)

μ(x)
μ(du) = 2

∫ A+
−∞

eγuμ(du).



1226 T. WATANABE

We have

(2.2) lim
A→∞ lim

x→∞
H2(x)

μ(x)
= lim

A→∞ eγAμ(A) ≤ lim
A→∞

∫ ∞
A+

eγ xμ(dx) = 0.

Thus, we see from (2.1) and (2.2) that

0 = lim
A→∞ lim

x→∞
H1(x)

μ(x)
− 2μ̂(γ ) ≤ lim inf

x→∞
μ2∗(x)

μ(x)
− 2μ̂(γ )

≤ lim sup
x→∞

μ2∗(x)

μ(x)
− 2μ̂(γ )

= lim
A→∞ lim sup

x→∞
H3(x)

μ(x)
.

Thus, we find that μ ∈ S(γ ), that is,

lim
x→∞

μ2∗(x)

μ(x)
= 2μ̂(γ )

if and only if

lim
A→∞ lim sup

x→∞
H3(x)

μ(x)
= 0.

The proof of assertion (ii) is due to Lemma 2.4 of Pakes [14]. �

Let γ ∈ R. For μ ∈ M(γ ), we define the exponential tilt μ〈γ 〉 of μ as

μ〈γ 〉(dx) := 1

μ̂(γ )
eγ xμ(dx).

Exponential tilts preserve convolutions, that is, (μ ∗ ρ)〈γ 〉 = μ〈γ 〉 ∗ ρ〈γ 〉 for dis-
tributions μ,ρ ∈ M(γ ). Let C be a distribution class. For a class C ⊂ M(γ ), we
define the class Eγ (C) by

Eγ (C) := {μ〈γ 〉 : μ ∈ C}.
It is obvious that Eγ (M(γ )) = M(−γ ) and that (μ〈γ 〉)〈−γ 〉 = μ for μ ∈ M(γ ).
The class Eγ (S(γ )) is determined by Watanabe and Yamamuro as follows.

LEMMA 2.3 (Theorem 2.1 of [22]). Let γ > 0. We have the following:

(i) We have Eγ (L(γ ) ∩ M(γ )) = Lloc ∩ M(−γ ). Moreover, if ρ ∈ L(γ ) ∩
M(γ ), then we have

ρ〈γ 〉((x, x + c]) ∼ cγ

ρ̂(γ )
eγ xρ̄(x) for all c > 0.

(ii) We have Eγ (S(γ )) = Sloc ∩M(−γ ).
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A straightforward consequence of the above lemma is the following.

LEMMA 2.4. Let γ > 0. We have the following:

(i) The class S(γ ) is closed under convolution roots if and only if so is the
class Sloc ∩M(−γ ).

(ii) The class L(γ ) ∩M(γ ) is closed under convolution roots if and only if so
is the class Lloc ∩M(−γ ).

The following lemma is Wiener’s approximation theorem in [25].

LEMMA 2.5 (Theorem 4.8.4 of [2] or Theorem 8.1 of [13]). For f (x) ∈
L1(R), the following are equivalent:

(1) Linear combinations of the translates of f (x) are dense in L1(R).
(2)

∫ ∞
−∞ exp(izx)f (x) dx 
= 0 for every z ∈ R.

(3) If, for a bounded measurable function g(x) on R,∫ ∞
−∞

g(x − t)f (t) dt = 0 for every x ∈ R,

then g(x) = 0 for almost every x ∈ R.

We shall use the following extension of the above lemma for a finite measure.

LEMMA 2.6. Let η be a finite measure on R. The following are equivalent:

(1) η ∈W .
(2) If, for a bounded measurable function g(x) on R,∫ ∞

−∞
g(x − t)η(dt) = 0 for almost every x ∈ R,

then g(x) = 0 for almost every x ∈ R.

PROOF. Suppose that η ∈W and, for a bounded measurable function g(x) on
R,

(2.3)
∫ ∞
−∞

g(x − t)η(dt) = 0 for almost every x ∈R.

Define f (x) := 2(1 − x)1[0,1)(x) and an absolutely continuous finite measure η1
as η1 := (f (x) dx) ∗ η. Note that

(2.4)
∫ ∞
−∞

exp(izx)f (x) dx 
= 0 for every z ∈ R.

Then we have η1 ∈ W and see from (2.3) that, for every y ∈ R,∫ ∞
−∞

g(y − t)η1(dt) =
∫ ∞
−∞

f (y − x)dx

∫ ∞
−∞

g(x − t)η(dt) = 0.
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Thus, we obtain from Lemma 2.5 that g(x) = 0 for almost every x ∈ R. Con-
versely, assume that assertion (2) holds and that, for a bounded measurable func-
tion g(x) on R, we have

0 =
∫ ∞
−∞

g(x − t)η1(dt)

=
∫ ∞
−∞

η(dt)

∫ ∞
−∞

g(x − u − t)f (u) du for every x ∈ R.

Then we find from assertion (2) that∫ ∞
−∞

g(x − t)f (t) dt = 0 for almost every x ∈ R,

and hence for every x ∈ R by the continuity in x of this integral. Thus, we see
from Lemma 2.5 and (2.4) that g(x) = 0 for almost every x ∈ R. It follows from
Lemma 2.5 that η1 ∈W and, by (2.4), η ∈ W . �

3. Proofs of Theorem 1.1 and its corollary. We prove Theorem 1.1 only for
γ = 1. The general case for γ > 0 is similar and omitted. The symbol [x] stands for
the largest integer not exceeding a real number x and the symbol 1B(x) does for the
indicator function of a subset B of R. Let 
0 be the totality of increasing sequences
{λn}∞n=1 with limn→∞ λn = ∞ such that the following λ ∈ [0,2π ] exists:

λ := lim
n→∞

(
λn − 2π

[
λn/(2π)

])
.

For any sequence {xn}∞n=1 with limn→∞ xn = ∞, there exists a subsequence {λn} ∈

0 of {xn}. We define two positive right-continuous functions φ1(x) and φ2(x) on
R+ as

φ1(x) = e−x

(
3π + 1 + √

2 sin
(
x − π

4

))
1[0,∞)(x)

and

φ2(x) = 1

3π
1[0,2π)(x) +

∞∑
n=1

1

π3n2 1[2nπ,2(n+1)π)(x).

Note that the two functions φ1(x) and φ2(x) are decreasing on R+ and φ1(0) ×
φ2(0) = 1 and that

∫ ∞
0 φ2(x) dx = 1 and

∫ ∞
0 exp(inx)φ2(x) dx = 0 for all n ∈

N. Thus, we can define a distribution ξ on R+ by using its tail ξ̄ (x) as ξ̄ (x) :=
φ1(x)φ2(x) on R+. In the following lemma, we show that the Wiener condition
fails for the measure exξ(dx).

LEMMA 3.1. We have ξ̂ (1) < ∞ and

(3.1) ξ̂ (1 + i) = 0.
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PROOF. Note that φ1(x) � e−x and φ2(x) ∼ 4π−1x−2, and hence ξ̄ (x) �
e−xx−2. Thus, ξ̂ (1) < ∞. We have by using integration by parts

ξ̂ (1 + i) = ξ̄ (0) + (1 + i)

∫ ∞
0

e(1+i)x ξ̄ (x) dx = 1 −
∫ ∞

0
φ2(x) dx = 0.

Thus, the lemma is true. �

LEMMA 3.2. We have ξ /∈ L(1), and hence ξ /∈ S(1).

PROOF. For every {λn} ∈ 
0 and every a ∈ R, we have

lim
n→∞

eaξ(λn + a)

ξ(λn)
= 3π + 1 + √

2 sin(λ + a − π
4 )

3π + 1 + √
2 sin(λ − π

4 )
,

which is not constant in a. Thus, we see that ξ /∈ L(1) and hence ξ /∈ S(1). �

LEMMA 3.3. We have ξ2∗ ∈ S(1).

PROOF. Let g(x) := 1[1,∞)(x)x−2e−x and A > 1. Then we have

(3.2)

lim
A→∞ lim sup

x→∞

∫ x−A
A g(x − u)g(u)du

g(x)

= lim
A→∞ lim sup

x→∞
2

∫ x/2
A g(x − u)g(u)du

g(x)
≤ 8 lim

A→∞

∫ ∞
A

u−2 du = 0

and

(3.3) lim
A→∞ lim

x→∞
g(x − A)g(A)

g(x)
= lim

A→∞A−2 = 0.

We see that, for x > 2A,

ξ2∗(x) = I1(x) + I2(x),

where

I1(x) := 2
∫ A+

0−
ξ(x − u)ξ(du)

and

I2(x) :=
∫ (x−A)+
A+

ξ(x − u)ξ(du) + ξ(x − A)ξ(A).

Note that ξ(x) � g(x), and hence ξ(x) ≤ c1g(x) with some c1 > 0 for x > 1 and
that −g′(x) ≤ 3g(x) for x > 1. By using integration by parts, we obtain that, for
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x > 2A, ∫ (x−A)+
A+

ξ(x − u)ξ(du)

≤ c1

∫ (x−A)+
A+

g(x − u)ξ(du)

≤ c1g(x − A)ξ(A) − c1

∫ x−A

A
g′(x − u)ξ(u) du

≤ c2
1g(x − A)g(A) + 3c2

1

∫ x−A

A
g(x − u)g(u)du.

Thus, we find that, for x > 2A,

I2(x) ≤ 2c2
1g(x − A)g(A) + 3c2

1

∫ x−A

A
g(x − u)g(u)du,

and hence by (3.2) and (3.3)

(3.4) lim
A→∞ lim sup

x→∞
I2(x)

g(x)
= 0.

For every {λn} ∈ 
0, we have

lim
n→∞

I1(λn)

g(λn)
= 8π−1

∫ A+
0−

(
3π + 1 + √

2 sin
(
λ − u − π

4

))
euξ(du).

Thus, we see from (3.1) of Lemma 3.1 and (3.4) that, for every {λn} ∈ 
0,

lim
n→∞

ξ2∗(λn)

g(λn)
= lim

A→∞ lim
n→∞

I1(λn)

g(λn)
= 8(3π + 1)

π
ξ̂ (1),

which is independent of the choice of {λn} ∈ 
0. Recall that any sequence con-
verging to infinity has a subsequence in 
0. Thus, we have

ξ2∗(x) ∼ 8(3π + 1)π−1ξ̂ (1)e−xx−2.

Hence, by Lemma 2.1, we establish that ξ2∗ ∈ S(1). �

PROOF OF THEOREM 1.1. The proof is due to Lemmas 3.2 and 3.3. �

PROOF OF COROLLARY 1.1. The proof of assertion (i) is due to Theorem 1.1
and (i) of Lemma 2.4. If the class S� is closed under convolution roots for some
�, then so is for every � and thereby the class Sloc is closed under convolution
roots. Thus, assertion (ii) is due to assertion (i). The proof of assertion (iii) is due
to Lemmas 3.2 and 3.3. We see from assertion (iii) and (ii) of Lemma 2.4 that
Lloc ∩M(−γ ) with some γ > 0 is not closed under convolution roots and hence
so is Lloc. If the class L� is closed under convolution roots for some �, then so
is for every � and thereby the class Lloc is closed under convolution roots. Thus,
assertion (v) is due to assertion (iv). �
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4. Proofs of Theorem 1.2 and its corollary. In Sections 4 and 5, let μ be a
distribution on R satisfying μ̄(x) > 0 for all x ∈ R. Let {Xj }∞j=1 be IID random
variables with the same distribution μ. We define Jk(x) for 1 ≤ k ≤ 3 and ε(A) for
A > 0 and n ≥ 2 as

J1(x) :=
∫ A+
−∞

μ̄(x − u)μ(n−1)∗(du),

J2(x) :=
∫ (x−A)+
A+

μ̄(x − u)μ(n−1)∗(du) + μ̄(A)μ(n−1)∗(x − A),

J3(x) :=
∫ (x−A)+
A+

μ̄(x − u)μ(du) + μ̄(A)μ(x − A)

and

ε(A) := lim sup
x→∞

J2(x) + J3(x)

μn∗(x)
.

The following lemma is important for the proofs of Theorems 1.2 and 1.3.

LEMMA 4.1. Let γ ≥ 0 and let n ≥ 2. Then we have the following:

(i) We have, for x > nA,

(4.1) μn∗(x) ≤ nJ1(x) + nJ2(x)

and

(4.2) nJ1(x) − 2−1n(n − 3)J2(x) − 2−1n(n − 1)J3(x) ≤ μn∗(x).

(ii) If μn∗ ∈ S(γ ), then limA→∞ ε(A) = 0, and hence we have

(4.3) lim
A→∞ lim inf

x→∞
nJ1(x)

μn∗(x)
= lim

A→∞ lim sup
x→∞

nJ1(x)

μn∗(x)
= 1.

PROOF. We have, for x > nA,

μn∗(x) = P

(
n∑

j=1

Xj > x

)

≤
n∑

k=1

P

(
Xk > A,

n∑
j=1

Xj > x

)

= nJ1(x) + nJ2(x).
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Thus, (4.1) of assertion (i) is true. On the other hand, we see that, for x > nA,

P

(
X1 > A,X2 > A,

n∑
j=1

Xj > x

)

= P

(
X1 > A,X2 > A,

n∑
j=1

Xj > x,

n∑
j=3

Xj ≥ 0

)

+ P

(
X1 > A,X2 > A,

n∑
j=1

Xj > x,

n∑
j=3

Xj < 0

)

≤ P

(
X1 > A,

n∑
j=2

Xj > A,

n∑
j=1

Xj > x

)

+ P(X1 > A,X2 > A,X1 + X2 > x)

= J2(x) + J3(x),

with the understanding that
∑n

j=3 Xj = 0 for n = 2. By using Bonferroni inequal-
ity, we have, for x > nA,

P

(
n∑

j=1

Xj > x

)

≥
n∑

k=1

P

(
Xk > A,

n∑
j=1

Xj > x

)

− ∑
1≤k<l≤n

P

(
Xk > A,Xl > A,

n∑
j=1

Xj > x

)

= nJ1(x) + nJ2(x) − 2−1n(n − 1)P

(
X1 > A,X2 > A,

n∑
j=1

Xj > x

)

≥ nJ1(x) − 2−1n(n − 3)J2(x) − 2−1n(n − 1)J3(x).

Hence, (4.2) of assertion (i) is true. Next, suppose that μn∗ ∈ S(γ ). Let d :=
μ([0,∞)). We obtain that, for x > nA,

dnJ2(x) + d2n−2J3(x)

= P

(
X1 > A,

n∑
j=2

Xj > A,

n∑
j=1

Xj > x,Xk ≥ 0 for n + 1 ≤ k ≤ 2n

)

+ P(X1 > A,X2 > A,X1 + X2 > x,Xk ≥ 0 for 3 ≤ k ≤ 2n)
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≤ 2P

(
X1 +

2n∑
j=n+2

Xj > A,

n+1∑
j=2

Xj > A,

2n∑
j=1

Xj > x

)

= 2
∫ (x−A)+
A+

μn∗(x − u)μn∗(du) + 2μn∗(A)μn∗(x − A).

Note from μ̂(γ ) < ∞ that

lim
A→∞ eγAμn∗(A) ≤ lim

A→∞

∫ ∞
A+

eγ xμn∗(dx) = 0.

Thus, we see from μn∗ ∈ S(γ ) and (i) of Lemma 2.2 that

lim
A→∞d2n−2ε(A) ≤ lim

A→∞ lim sup
x→∞

dnJ2(x) + d2n−2J3(x)

μn∗(x)

≤ 2 lim
A→∞ lim sup

x→∞

∫ (x−A)+
A+ μn∗(x − u)μn∗(du)

μn∗(x)

+ 2 lim
A→∞ eγAμn∗(A) = 0.

Hence, we obtain (4.3) from (4.1) and (4.2). �

PROOF OF THEOREM 1.2. Let γ ≥ 0, n ≥ 2, and A > 0. We continue to use
Jk(x) for 1 ≤ k ≤ 3 and ε(A) defined above. Define C∗ and C∗ as

C∗ := lim sup
x→∞

μ̄(x)

μn∗(x)
, C∗ := lim inf

x→∞
μ̄(x)

μn∗(x)
.

Suppose that eγ xμ̄(x) ∈ AD and μn∗ ∈ S(γ ). Then we have, for −A ≤ u ≤ A,

(4.4) lim sup
x→∞

μ̄(x + A − u)

μ̄(x)
≤ eγ (−A+u)

and

(4.5) lim inf
x→∞

μ̄(x − A − u)

μ̄(x)
≥ eγ (A+u).

Note that, for u ≤ −A, μ̄(x + A − u) ≤ μ̄(x + 2A) and, for −A ≤ u ≤ A,

μ̄(x + A − u)

μ̄(x)
≤ 1.
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Hence, by using Fatou’s lemma, we find from (4.4) that

lim sup
x→∞

∫ A+
−∞

μ(x + A − u)

μ(x)
μ(n−1)∗(du)

≤
∫ A+
(−A)+

lim sup
x→∞

μ(x + A − u)

μ(x)
μ(n−1)∗(du)

+
∫ (−A)+
−∞

lim sup
x→∞

μ(x + 2A)

μ(x)
μ(n−1)∗(du)

≤
∫ A+
(−A)+

eγ (−A+u)μ(n−1)∗(du) +
∫ (−A)+
−∞

e−2γAμ(n−1)∗(du).

Note from the assumption μn∗ ∈ S(γ ) ⊂ L(γ ) that μn∗(x + A) ∼ e−γAμn∗(x)

and μn∗(x − A) ∼ eγAμn∗(x). Thus, we see from (4.1) of Lemma 4.1 that

1 − nε(A) ≤ lim inf
x→∞

nJ1(x)

μn∗(x)

= lim inf
x→∞

nJ1(x + A)

μn∗(x + A)

= lim inf
x→∞

nμ(x)

e−γAμn∗(x)

∫ A+
−∞

μ(x + A − u)

μ(x)
μ(n−1)∗(du)

≤ nC∗eγA lim sup
x→∞

∫ A+
−∞

μ(x + A − u)

μ(x)
μ(n−1)∗(du)

≤ nC∗
∫ A+
(−A)+

eγuμ(n−1)∗(du) + nC∗
∫ (−A)+
−∞

e−γAμ(n−1)∗(du).(4.6)

By using Fatou’s lemma in the last inequality, we obtain from (4.2) of Lemma 4.1
and (4.5) that

1 + 2−1n(n − 1)ε(A) ≥ lim sup
x→∞

nJ1(x)

μn∗(x)

= lim sup
x→∞

nJ1(x − A)

μn∗(x − A)

≥ lim sup
x→∞

nμ(x)

eγAμn∗(x)

∫ A+
(−A)+

μ(x − A − u)

μ(x)
μ(n−1)∗(du)

≥ nC∗e−γA lim inf
x→∞

∫ A+
(−A)+

μ(x − A − u)

μ(x)
μ(n−1)∗(du)

≥ nC∗
∫ A+
(−A)+

eγuμ(n−1)∗(du).(4.7)
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As A → ∞ in (4.6) and (4.7), we have, by (ii) of Lemma 4.1,

C∗ = C∗ = n−1μ̂(γ )1−n.

Hence, we establish that

μ̄(x) ∼ n−1μ̂(γ )1−nμn∗(x).

Thus, we conclude from (ii) of Lemma 2.2 that μ ∈ S(γ ). �

PROOF OF COROLLARY 1.2. Let γ > 0. Suppose that μ̂(−γ ) < ∞ and
gc(x) := μ((x, x + c]) ∈ AD for every c > 0. Let G(x) := eγ xμ〈−γ 〉(x) for x ∈ R.
Then we have

∞∑
k=1

e−kcγ gc

(
x + (k − 1)c

) ≤ μ̂(−γ )G(x) ≤ ecγ
∞∑

k=1

e−kcγ gc

(
x + (k − 1)c

)
.

Let a ≥ 0 and ε > 0. Since gc(x) ∈ AD, we see that there is N > 0 such that, for
y > N ,

gc(y + a)

gc(y)
≤ 1 + ε.

Thus, we obtain that, for x > N ,

G(x + a)

G(x)
≤ ecγ (1 + ε).

Since ε and c can be arbitrarily small, we have G(x) ∈ AD. Thus, the proof of the
corollary is clear from Theorem 1.2 and Lemma 2.3. �

5. Proofs of Theorem 1.3 and its corollary. Let 
1 be the totality of in-
creasing sequences {λk}∞k=1 with limk→∞ λk = ∞ such that, for every x ∈ R, the
following m(x; {λk}) exists and is finite:

(5.1) m
(
x; {λk}) := lim

k→∞
μ(λk + x)

μn∗(λk)
.

The idea of the use of the function m(x; {λk}) goes back to Teugels [20] and is
extensively employed in Watanabe and Yamamuro [23].

LEMMA 5.1. Assume that μn∗ ∈ S(γ ) with γ > 0 for n ≥ 2. Define d :=
μ([0,∞)). For any sequence {xk}∞k=1 with limk→∞ xk = ∞, there exists a subse-
quence {λk} ∈ 
1 of {xk}. Moreover, m(x; {λk}) is decreasing and finite, and we
have

(5.2) M
(
x; {λk}) := eγ xm

(
x; {λk}) ≤ d1−n.
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PROOF. Let A > 0 and

Tk(y) := μ(xk + y)

μn∗(xk)
.

Then we see that Tk(y) is decreasing and

sup
y∈[−A,A]

Tk(y) ≤ μ(xk − A)

μn∗(xk)
≤ d1−n μn∗(xk − A)

μn∗(xk)

and

lim
k→∞

μn∗(xk − A)

μn∗(xk)
= eγA.

Thus, Tk(y) is uniformly bounded on all finite intervals. By virtue of Helly’s se-
lection principle, there exists an increasing subsequence {λk} ∈ 
1 of {xk}. Since
Tk(x) is decreasing, so is m(x; {λk}). Moreover,

M
(
x; {λk}) ≤ d1−n lim

k→∞
eγ xμn∗(λk + x)

μn∗(λk)
= d1−n.

Thus, the lemma is true. �

PROOF OF THEOREM 1.3. Suppose that μn∗ ∈ S(γ ) with γ > 0 for n ≥ 2 and
that μ̂(γ ) < ∞ and μ̂(γ + iz) 
= 0 for every z ∈ R. Let A > 0 and a ∈ R. Define,
for {λk} ∈ 
1,

Uk(y) := μ(λk + y)

μn∗(λk)
.

Since Uk(a −u) is uniformly bounded on (−∞,A], we obtain from the dominated
convergence theorem and (4.3) of Lemma 4.1 that

e−γ a = lim
k→∞

μn∗(λk + a)

μn∗(λk)
= lim

A→∞n

∫ A+
−∞

lim
k→∞Uk(a − u)μ(n−1)∗(du)

= n

∫ ∞
−∞

m
(
a − u; {λk})μ(n−1)∗(du).

Thus, we find that, for every a ∈ R,

(5.3) 1 = n

∫ ∞
−∞

M
(
a − u; {λk})eγuμ(n−1)∗(du).

Hence, we have, for every a, b ∈ R,∫ ∞
−∞

(
M

(
a + b − u; {λk}) − M

(
b − u; {λk}))eγuμ(n−1)∗(du) = 0.
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Note that, by (5.2), M(x; {λk}) is bounded and that the Wiener condition holds for
the finite measure eγ xμ(n−1)∗(dx), namely, for every z ∈ R,∫ ∞

−∞
eizxeγ xμ(n−1)∗(dx) = μ̂(γ + iz)n−1 
= 0.

It follows from Lemma 2.6 that, for every a ∈ R,

M
(
a + b; {λk}) − M

(
b; {λk}) = 0 for a.e. b ∈R.

Since the function m(x; {λk}) is decreasing, the functions M(x−;{λk}) and
M(x+;{λk}) exist for all x ∈ R. Taking bn = bn(a) ↑ 0 and bn = bn(a) ↓ 0, we
have, for every a ∈ R,

(5.4) M
(
a−;{λk}) = M

(
0−;{λk}) and M

(
a+;{λk}) = M

(
0+;{λk}).

Then, taking a ↓ 0 in the first equality of (5.4), we have

C
({λk}) := M

(
0+;{λk}) = M

(
0−;{λk}).

Thus, we obtain from (5.4) that, for every a ∈ R,

M
(
a; {λk}) = M

(
a−;{λk}) = M

(
a+;{λk}) = C

({λk}).
Therefore, we see from (5.3) that

C
({λk}) = lim

k→∞
μ(λk)

μn∗(λk)
= n−1μ̂(γ )1−n,

which is independent of the choice of {λk} ∈ 
1. Thus, we find from Lemma 5.1
that

μ(x) ∼ n−1μ̂(γ )1−nμn∗(x)

and, by (ii) of Lemma 2.2, μ ∈ S(γ ). �

PROOF OF COROLLARY 1.3. If μ̂(−γ ) < ∞ for some γ > 0 and μ ∈ W , then
eγ xμ〈−γ 〉 ∈W, too. Thus, the proof is obvious from Theorem 1.3 and Lemma 2.3.

�
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