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COMPONENT SIZES FOR LARGE QUANTUM ERDŐS–RÉNYI
GRAPH NEAR CRITICALITY

BY AMIR DEMBO1, ANNA LEVIT AND SREEKAR VADLAMANI

Stanford University, University of British Columbia and TIFR-CAM

The N vertices of a quantum random graph are each a circle indepen-
dently punctured at Poisson points of arrivals, with parallel connections de-
rived through for each pair of these punctured circles by yet another indepen-
dent Poisson process. Considering these graphs at their critical parameters,
we show that the joint law of the rescaled by N2/3 and ordered sizes of their
connected components, converges to that of the ordered lengths of excur-
sions above zero for a reflected Brownian motion with drift. Thereby, this
work forms the first example of an inhomogeneous random graph, beyond
the case of effectively rank-1 models, which is rigorously shown to be in the
Erdős–Rényi graphs universality class in terms of Aldous’s results.

1. Introduction. The Erdős–Rényi random graph [8] is the simplest and most
studied example of a random graph ensemble. Such a graph, denoted by G(N,p),
has N vertices, with each pair of vertices connected with probability p, indepen-
dently of all other pairs. Its phase transition phenomena are well understood. In
particular, for p = c

N
with c > 1, the largest component in G(N,p) has �(N)

vertices and the second largest O(lnN) vertices (as N → ∞, with probability 1),
for p = c

N
with c < 1 the largest component has O(lnN) vertices and when p = 1

N
,

the largest component of G(N,p) has �(N2/3) vertices (cf. [5, 8, 17]).
Aldous [2] considered the asymptotic behavior of G(N,p) inside the “scaling

window” of this phase transition, namely for N → ∞ and |p−1/N | small enough,
showing that the ordered set of component sizes rescaled by N2/3 then converges
to an ordered set of excursion lengths of reflected inhomogeneous Brownian mo-
tion with a certain drift. Various other random graph models exhibit a phase tran-
sition phenomenon similar to the Erdős–Rényi random graph. While some fur-
ther follow the same behaviour as G(N,p) in their near-critical regime, the near-
critical regime of others falls into different universality classes.

For example, Nachmias and Peres [19] prove that the random graph ensemble
obtained by performing percolation on a random d-regular (d ≥ 3) graph on N ver-
tices with percolation probability p = 1/(d − 1) + aN−1/3 for a ∈ R fixed, falls
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into the same universality class as the Erdős–Rényi random graph. The random
multi-graph whose N vertices are constructed using the configuration model, with
its vertex degrees being i.i.d. variables, each having the distribution ν, has a richer
behavior. Indeed, Joseph [15] shows that when ν has a finite third moment, the
near-critical regime of this model falls into the Erdős–Rényi random graph’s uni-
versality class, whereas if νk ∼ ck−τ as k → ∞, c > 0, τ ∈ (3,4) then the relevant
scaling changes to N−(τ−2)/(τ−1) and the limit is an ordered set of the excursion
lengths of some other drifted process with independent increments above past min-
ima (near-critical regime of the Erdős–Rényi universality class, is also obtained in
[20] for more general class of degree distributions of finite third moment). A sim-
ilar behavior has been found in the near critical regime of the Rank-1 model (a
special case of the general in-homogeneous random graph studied in [6], which
has received much attention recently). Such graph has random i.i.d. weights {xi}
associated to its vertices, and edges chosen independently, with the edge (i, j) cho-
sen with probability pi,j = min{c xixj

N
,1}, for some positive constant c = c(N) (cf.

[21]). For xi having finite third moment, the near-critical regime corresponds to
c(N) = 1 + aN−1/3, in which case [2] shows that this model (formulated slightly
differently), falls into the Erdős–Rényi graph’s universality class (similar results
have been later proved in [3, 22]). In contrast, for the Rank-1 model with power-
law degrees of exponent τ ∈ (3,4), [4] show that the sizes of the components,
rescaled by N−(τ−2)/(τ−1), converge to hitting times of certain thinned Lévy pro-
cess.

Our aim here is to study the near-critical behavior of the so-called quantum ver-
sion of Erdős–Rényi random graph (QRG). We note in passing, that both the mo-
tivation and terminology come from the stochastic geometric (Fortuin–Kasteleyn
type) representation of the quantum Curie–Weiss model at inverse temperature
β > 0 (we exclude here the ground state case of β = ∞), in transverse magnetic
field of strength λ > 0 (at λ = 0 it reduces to the Erdős–Rényi ensemble, see Re-
mark 1.1). We refer the reader to [12] for more information on such stochastic
geometric representations (that were originally developed in [1, 7] for the general
ferromagnetic context), moving on instead, to the precise description of the QRG

(as in [13]).
The model: With GN = {1, . . . ,N} and Sβ denoting the circle of length β , let

Gβ
N = GN × Sβ , associating to each site i ∈ GN the copy S

i
β = i × Sβ of Sβ , so a

point in Gβ
N has two coordinates, its site (in GN ) and time (in Sβ ) coordinates. The

QRG is then the following random subset Gβ
N \ H of Gβ

N , equipped with random
links

⋃
i,j Li,j between pairs of points of the type {(i, t) and (j, t), for i �= j}. To

construct the QRG, we first punch within each S
i
β finitely many holes, according

to independent Poisson point processes Hi , i ∈ GN , of intensity λ > 0, so each
resulting punctured circle S

i
β \Hi consists of mi disjoint connected intervals

(1.1) S
i
β \Hi =

mi⋃
l=1

I l
i
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(the number of holes #Hi = mi , except when #Hi = 0, in which case mi = 1). We
next add links between pairs of points in Gβ

N of the same time coordinates (i.e.,
between points (i, t) and (j, t) where i �= j and t ∈ Sβ ), as follows. With each

(unordered) pair of sites i, j ∈ GN , we associate a copy S
i,j
β of Sβ and a Poisson

point process of links Li,j on S
i,j
β with intensity 1

N
. The processes Li,j = Lj,i

are assumed to be independent for different (i, j) and also independent of the
processes of holes Hi . Two intervals I l

i and I k
j of the decomposition (1.1) are then

considered to be directly connected if there exists some t ∈ Li,j such that both
(i, t) ∈ I l

i and (j, t) ∈ I k
j . Setting H := ⋃

i Hi (a finite collection of points), the
decomposition

(1.2) Gβ
N \H = C1 ∨ · · · ∨ C�

of Gβ
N \H into maximal connected components is, thereby, well defined (see Fig-

ure 1 for an example with N = 4). Further, each fixed x ∈ Gβ
N is a.s. not in H,

hence the notion of the connected component C(x) containing x in the decomposi-
tion (1.2), is also well defined, and hereafter the size of a connected component Cj

(or C(x)), means the number of intervals it contains, and P(C(x)) = ∑
I |I |1I∈C(x)

denotes the cumulative length of intervals constituting the component C(x).

FIG. 1. An example of the decomposition of Gβ
N after all the holes are punched and the links are

drawn: Gβ
N \H = C1 ∨ C2 ∨ C3, where C1 = I1

1 ∪ I2
2 ∪ I1

3 ∪ I1
4 ∪ I2

4 , C2 = I1
2 and C3 = I3

4 .
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REMARK 1.1. For λ = 0, there are no holes, so each S
i
β \Hi consists of one

connected component, which equals to S
i
β itself. We are then back to the Erdős–

Rényi random graph G(N,p) with p = 1 − e− β
N (the probability that Si

β and S
j
β

are directly connected).

Treating each interval I k
i as a vertex, Janson in [14] notices that the QRG is an

instance of the general in-homogeneous model of [6]. However, the probability
of direct connection between two intervals depends on the size of their overlap
and not only on the individual lengths of these intervals. Beyond separating our
model from the class of rank-1 models, this property makes it inherently different
from the other models we have mentioned thus far (all of whom mimic the idea of
rank-1 random graphs, in the sense that certain vertex related weights determine
the probabilities in which edges are present in the graph).

An equivalent description of the QRG in case λ > 0, which we adopt hereafter,

has N circles of length θ
	= λβ with a unit intensity Poisson process of holes on

them, using now i.i.d. Poisson processes of intensity 1/(λN) for creating links be-
tween each pair of (punched) circles. The critical curve for the QRG model in the
(β,λ)-parameter space, is obtained in [13] by comparisons with a critical branch-
ing process whose offspring distribution is the cut-gamma distribution 
θ(2,1)

(namely, the law of J := (J− + J+) ∧ θ for J−, J+ i.i.d. Exp(1) variables). Using
the preceding parametrization, the resulting curve β = βc(λ) corresponds to

(1.3) βc = θ

F (θ)
, λ = F(θ), for F(θ) = 2

(
1 − e−θ ) − θe−θ

(where F(θ) is precisely the expected length J of the interval I in the QRG upon
our rescaling by λ). It is easy to check that λ(θ) : [0,∞) �→ [0,2) is concave,
increasing and βc(θ) : [0,∞) �→ [1,∞) is strictly increasing, such that the curve
βc(λ) : [0,2) �→ [1,∞) is strictly increasing. The critical curve is alternatively
given by

(1.4) F(β,λ) := λ−1F(λβ) = 1,

and it is further shown in [13] that taking F(β,λ) > 1 (equivalently, β > βc(λ)),
yields the emergence of an �(N)-giant connected component in the disjoint de-
composition (1.2), whereas when F(β,λ) < 1 (equivalently, β < βc(λ)), all con-
nected components are typically of order O(lnN). Our first result complements
[13] by proving that at criticality the largest component is of size �(N2/3) (so the
QRG admits a version of the Erdős–Rényi phase transition).

THEOREM 1.2. Suppose (β,λ) is a critical point, namely F(β,λ) = 1. Then,
for the largest component Cmax of the QRG, we have that:

(a) There exist c∗, N0 and A0 finite, such that for all N > N0 and A > A0,

(1.5) P
(
P(Cmax) > AN2/3) ≤ c∗A−3/2.
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(b) There exists N1 finite such that for all N > N1 and δ > 0,

(1.6) P
(
P(Cmax) <

⌊
δN2/3⌋) ≤ (

6 + 4β2)
δ3/5.

Our primary objective is to further analyze the QRG model, and in particular its
component sizes near criticality, thereby confirming that the QRG is in the same
universality class as the Erdős–Rényi random graph. Whereas our proofs also rely
on an exploration process for estimating the connected components sizes, in con-
trast to all cases dealt with before (i.e., [2, 3, 15, 18, 19]), here we may have many
intervals sharing the same vertex (i.e., a site i ∈ GN , or alternatively, the corre-
sponding circle S

i
θ ). Thus, our exploration process (or breadth first walk), may

re-visit an already visited vertex (circle), as many times as the number of intervals
sharing such vertex. The latter is an unbounded random variable, thereby posing
a serious challenge to our analysis. While Theorem 1.2 is rough enough that we
can surpass this difficulty by showing that multiple returns to same vertex are rare
enough to not matter, this is no longer true for our main result, Theorem 1.3, about
the scaling limits of ordered component sizes. Indeed, our limiting process drift
differs from that of [2] by additional quadratic factor representing the already ex-
plored portion of the relevant circle. Indeed, the question of convergence of such
quantum random graphs, as metric spaces, is completely open due to this precise
problem of multiple visits to the same vertex.

The following quantities are required for our main result. First, let

σ 2(θ) = E[J 2]
F(θ)2 ,(1.7)

γ (θ) = E[F̂ (θ − J )]
θF (θ)

, for F̂ (x) = 2
(
x − 1 + e−x) + x3

3
e−θ .(1.8)

Then, for standard Brownian motion {W(s), s ≥ 0} and any a ∈ R, consider the
processes

Wa,θ (s) := σ(θ)W(s) + ρa,θ (s),(1.9)

ρa,θ (s) := as − s2

2

(
1 − γ (θ)

)
,(1.10)

and the associated process of nonnegative excursions

(1.11) Ba,θ (s) = Wa,θ (s) − min
0≤u≤s

Wa,θ (u).

THEOREM 1.3. Fix a ∈ R and (β,λ) a point on the critical curve of (1.4).
Consider parameters (βN,λN) → (β,λ) such that F(βN,λN) = 1 + aN−1/3.
Then, denoting the ordered sizes of components of the graph by |Ca,N

1 |, |Ca,N
2 |, . . . ,

we have when N → ∞ that(
N−2/3∣∣Ca,N

1

∣∣,N−2/3∣∣Ca,N
2

∣∣, . . .) d⇒ (γ1, γ2, . . .),
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where {γj } denote the ordered lengths of the excursions of the process Ba,θ above
zero, and the convergence of component sizes holds with respect to the l2↘ topology
(as defined in [2]).

In Section 2, we prove Theorem 1.2 by adapting to our context the ideas set
forth in [18]. Specifically, the main task here is to construct a pair of manageable
auxiliary counting processes, which are not too far apart, while stochastically dom-
inating (from above and below, resp.), the counting process that determines the size
of our components (thereby circumventing much of the difficulty associated with
the precise counting).

Section 3 is devoted to the proof of Theorem 1.3 which requires finer estimates
and thereby some new ideas. What sets our analysis apart of all those mentioned
before, is Proposition 3.4 which provides rough estimates on the number of sites of
QRG visited twice, or more, during the first k = O(N2/3) steps of the exploration
process. It shows in particular that only the first return to a site plays a crucial
role, with subsequent returns playing no role when the relevant limit is considered.
Combined with a further rough estimate on the number of sites visited exactly
once during the first k steps, it thus allows us to thereafter adapt the program of
[2] to the QRG setting. Specifically, Section 3.1 deals with weak convergence of
the law induced by the rescaled breadth first walk to the law of Wa,θ defined on
the space of RCLL functions D([0,∞)), equipped with the topology of uniform
convergence on finite intervals. Finally, in Section 3.2 we collate all the above
results into a proof of Theorem 1.3.

A further insight gained from our proof is that the QRG model is in the Erdös–
Rényi universality class by the confluence of two reasons: first, the small prob-
ability of many returns to the same vertex (circle); second, and more crucial is
the relatively fast relaxation of its exploration process, which thereby behaves ap-
proximately as a Markov process. One may examine the latter feature in many
other inhomogeneous random graph models, and where it is present, proceed to
try proving that they too belong to the Erdös–Rényi universality class.

2. Proof of Theorem 1.2. We shall first prove that |Cmax| = �P(N
2/3), then

to conclude the result of Theorem 1.2, we shall use natural bounds arising from
the arguments used to prove the former.

In particular, our first step toward proving Theorem 1.2 will be the following
proposition.

PROPOSITION 2.1. Suppose (β,λ) is a critical point, namely F(β,λ) = 1.
Then, for the largest component Cmax of the QRG, we have that:

(a) There exist c∗, N0 and A0 finite, such that for all N > N0 and A > A0,

(2.1) P
(|Cmax| > AN2/3) ≤ c∗A−3/2.
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(b) There exists N1 finite such that for all N > N1 and δ > 0,

(2.2) P
(|Cmax| < ⌊

δN2/3⌋) ≤ (
6 + 4β2)

δ3/5.

In proving |Cmax| = �P(N
2/3), to bypass the problem of multiple visits of the

same vertex by our exploration process (as described in Section 2.1), we stochas-
tically sandwich it between the overcounting process of Section 2.2, and the un-
dercounting process of Section 2.3. By combining the upper and lower bounds
provided by these two auxiliary processes, we complete the proof of Theorem 1.2.

2.1. Exploration process. Taking advantage of conditional independence
properties of Poisson processes, we start with an algorithmic definition of the
exploration process for our model (following [13], who used it for examining a
single component). This algorithm allows us to sequentially construct (or sample),
the rescaled QRG, interval by interval. In this description, our vertices (circles)
have first been labeled {1,2, . . . ,N}, and after k steps of the algorithm, we fully
explore k intervals, having Ak ≥ 0 active points (unexplored ends of connections
with the already explored intervals, or the point around which a new component
starts), while the rest of the space is declared to be neutral (note that we start ex-
ploring a new component of the graph upon arriving at Ak−1 = 0, but not before).

Initial stage: We fix the vertex w0 = 1 and choose a point t uniformly at random
on this vertex. At end of step k = 0, we have A0 = 1, with (w0, t) as our sole active
point and the whole space considered neutral.

At step k ≥ 1:

(a) If Ak−1 > 0, we choose an active point (wk, t) whose vertex has the small-
est index among all active points. In case of a tie, choose the active point which
chronologically appeared earlier than the others on the same vertex.

(b) If Ak−1 = 0 and there exists at least one neutral circle, we choose wk to be
the neutral vertex with the smallest index and uniformly at random mark a new
active point (wk, t) on this vertex.

(c) If Ak−1 = 0 and there is no neutral circle, we choose wk to be the vertex of
smallest index among the vertices having some neutral part, marking new active
point (wk, t) uniformly at random on the neutral part of Swk

θ .
(d) If Ak−1 = 0 and there is no neutral part available on any circle, then this

ends the exploration process.

Using i.i.d. Exp(1) variables J−, J+, we carve out of the maximal neutral
interval {wk} × (t1, t2) around (wk, t), the subinterval Ik := {wk} × Ĩ for Ĩ =
(t1 ∨ (t −J−), t2 ∧ (t +J+)). For Swk

θ completely neutral (apart from active points),
we take t2 = −t1 = ∞ and Ĩ = Sθ whenever J− + J+ ≥ θ (resulting with the
length of Ĩ having the 
θ(2,1) law). We then remove from the list of active points
all those points which got encompassed by the interval Ik , including the base point
(wk, t). The links in the graph connected to all such points other than (wk, t), are
considered to be surplus edges.
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Connections of Ik : With Ik = {wk}× Ĩk , for each i �= wk , we view Ĩk as a subset
of Swk,i and sequentially for i = 1,2, . . . ,N , sample the process of links Lwk,i for
t ′ ≥ 0 restricted to Ĩk . We erase all links between Ik and points on already explored
intervals, and register each link end (i, t ′) on the neutral space as an active point,
labeled with the time (order) of its registration.

When done examining all the connections from Ik , we change its status from
neutral to that of an explored interval and increase k by one, continuing with this
procedure until no neutral space remains (which happens after finitely many steps,
since the number of intervals in the QRG is finite). To recover the resulting QRG,
we need only to keep track of the explored intervals (end-points), and the ζk new
links that have been formed in each step.

Now, let ηk = ζk − (sur(k) − sur(k − 1)), where sur(k) counts all the surplus
edges found by the end of each of the first k steps of exploration. Then, by defini-
tion,

(2.3) Ak =
{
Ak−1 + ηk − 1, if Ak−1 > 0,

ηk, if Ak−1 = 0.

As mentioned before, the exploration of the first component containing the point
(1, t) sampled at the initial stage ends at τ1 = min{k ≥ 1 : Ak = 0}, with its size
|C(1, t)| being τ1 (the number of explored intervals thus far). A new component
whose size is τ2 − τ1 is then explored from step τ1 until the end of step τ2 =
min{k > τ1 : Ak = 0}, and so on.

2.2. Overcounting. Let m
(T )
i ≤ mi count the intervals in vertex i which belong

to components of Gβ
N whose sizes exceed T and C(i,∗) denotes the connected

component of Gβ
N containing S

i
θ , after erasing all the holes punched in S

i
θ by Hi .

Since the size of the component containing interval I l
i of (1.1) is at most |C(i,∗)|+

mi − 1, it follows that m
(2T )
i = 0 whenever both mi ≤ T and |C(i,∗)| ≤ T . Hence,

by Markov’s inequality

P
(|Cmax| ≥ 2T

) ≤ P

(
N∑

i=1

m
(2T )
i ≥ 2T

)

≤ 1

2T

N∑
i=1

E
[
m

(2T )
i

]

≤ 1

2T

N∑
i=1

E
[
mi(1|C(i,∗)|>T + 1mi>T )

]
.(2.4)

Further, |C(i,∗)|, i ∈ GN , are identically distributed random variables, each of
which is independent of the corresponding variable mi which in turn has the
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Poisson(θ) ∨ 1 distribution (so E[mi] = θ + e−θ ). Consequently,

(2.5) P
(|Cmax| ≥ 2T

) ≤ N(θ + e−θ )

2T

[
P

(∣∣C(1,∗)
∣∣ > T

) + P(m1 ≥ T )
]
.

Taking T = (A/2)N2/3 = H 2, we thus establish part (a) of Theorem 1.2, upon
showing that for some c finite and all H and N large enough

(2.6) P
(∣∣C(1,∗)

∣∣ > H 2) ≤ c

H
.

Since C(1,∗) corresponds to the exploration process starting at I1 = {1} × Sθ , it
suffices to consider the value of τ1 when the corresponding {ηk}k≥1 are replaced
in (2.3) by another, simpler to analyze, collection {ξk} that stochastically dominate
them.

For us to be able to estimate tail probabilities of τ1 using the i.i.d. sequence
{ξk}, we must define appropriate coupling between {ηk} and {ξk}. To this end, let
us define

(2.7) Sn = S1 +
n∑

k=2

(ξk − 1),

and consider the following monotone coupling between Ak associated to C(1,∗)

and Sk up to time τ1.
Like A0, we begin with setting S0 = 1. Since C(1,∗) corresponds to the explo-

ration process starting at I1 = {1} × Sθ , η1 follows Poisson( (N−1)θ
Nλ

) distribution.
Let ξ1 be η1 together with self-links of the interval to itself. Therefore, ξ1 fol-
lows Poisson( θ

λ
). Since the coupling is up to time τ1, we only have to consider

the Ak−1 > 0 case at step k ≥ 2. As explained above, we choose an active point
(wk, t) and sample links included in the counting toward ζk . In order to define ξk ,
recall the procedure of sampling connections and consider the following addition
to it. In addition to carving out of the maximal neutral interval Ik around (wk, t),
consider also the full interval IS

k around (wk, t) having the length law 
θ(2,1).
In addition to the links sampled by Lwk,i -s ∀i �= wk restricted to Ĩk , run a unit
intensity Poisson process on IS

k ∩ I c
k , and another independent Poisson process of

( 1
N

) intensity on the interval Ĩk counting self-links to the same interval. Let υk

count the arrival points of these additional Poisson processes. Define ξk = ζ S
k +υk

with ζ S
k counting all the links created by Lwk,i -s restricted to Ĩk without erasing

those whose end points fall on already explored intervals. Obviously, ξk ≥ ηk for
all k ≥ 1. Note also that for k ≥ 2, the random variables ξk are i.i.d. each following
Poisson(Jk

λ
) conditioned on Jk , which are i.i.d. 
θ(2,1), and independent of the

ξ1.
Defining τ = min{n ≥ 1 : Sn = 0} as the first hitting time of zero by the process

Sk , and using the monotone coupling argument, the inequality in (2.6) follows
from the bound

(2.8) P
(
τ > H 2) ≤ c

H
.



1194 A. DEMBO, A. LEVIT AND S. VADLAMANI

Having {−1,0,1,2, . . .}-valued increments, recall Kemperman’s formula for
such a random walk, stating that for any � ≥ 0 and n ≥ 1,

P(τ = n + 1|S1 = �) = �

n
P(Sn+1 = 0|S1 = �)

(see [10], Theorem 7, page 165). Then we can write

P(τ = n + 1) =
n∑

�=0

�

n
P(Sn+1 − S1 = −�)P(S1 = �)

≤ E(S1)

n
sup

�

{
P(Sn+1 − S1 = −�)

}
.(2.9)

Our assumption that F(β,λ) = 1, implies that Eξ2 = λ−1
EJ2 = 1, so {Sn}n≥2 has

zero-mean i.i.d. increments of finite exponential tails. Thus, applying the local CLT

for the lattice random walk Sn+1 −S1 (see [16], Proposition 2.4.4), we deduce from
(2.9) that

(2.10) P(τ = n + 1) ≤ cn−3/2,

for some c finite and all n, which together with (2.8), proves that

(2.11) P
(|Cmax| > AN2/3) ≤ c∗A−3/2.

2.3. Undercounting. To bound the lower tail of |Cmax|, we construct a stochas-
tic lower bound for all component sizes by following a more restrictive exploration
process, which after forming the first active point on each vertex w ∈ GN , voids
all space on that same vertex beyond the relevant interval around this active point
(thus sequentially producing components with no more intervals than does the
original exploration process). Specifically, after the initial stage, at each step k ≥ 1
the restrictive exploration considers for Ik only active intervals or completely neu-
tral circles (as in parts (a) and (b) of the original exploration process defined in
Section 2.1), until none such are left. It also keeps at most one connection from Ik

to any, as of yet, never visited (in particular, completely neutral) circle S
i
θ , ignor-

ing (erasing) all the other links which are being formed in step k by the original
exploration process. Note that this restrictive process has no surplus edges and its
number of active points A

f
k , starts at A

f
0 = 1 and follows the recursion

(2.12) A
f
k =

{
A

f
k−1 + η

f
k − 1, if A

f
k−1 > 0

η
f
k , if A

f
k−1 = 0.

Here, conditioned on A
f
k−1 and Jk , the variables η

f
k are independent variables

distributed as Bin(N
f
k−1,1 − e−Jk/(λN)) for i.i.d. 
θ(2,1)-distributed collection

{Jk} and N
f
k := N − k − (A

f
k ∨ 1). As before, the component sizes are given by
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τ
f
r − τ

f
r−1, for successive returns to zero τ

f
r = min{k > τ

f
r−1 : Af

k = 0}, starting at

τ
f
0 = 0.

Had we replaced Jk by EJk = λ, it would have resulted in the exploration pro-
cess for the (effectively) critical Erdős–Rényi random graph G(N,1 − e−1/N), for
which (2.2) is well known, for example, see [18], Theorem 2. As we are not aware
of a study of component sizes for our inhomogeneous graph, we next adapt the
proof of [18], Theorem 2, to our context.

First, from the recursion (2.12) conditioned on the event {Af
k−1 > 0}, then(

A
f
k

)2 − (
A

f
k−1

)2 = (
η

f
k − 1

)2 + 2
(
η

f
k − 1

)
A

f
k−1.

Conditioned on the event {0 < A
f
k−1 ≤ h} for some arbitrary h > 0, which we shall

specify later, we observe that

E
[(

A
f
k

)2 − (
A

f
k−1

)2|Af
k−1

] ≥ (N − h − k)2

(λN)2 E
[
J 2

k

]
− 2

h

N
(h + k) + O

(
1

N

)
.(2.13)

Further, since E[J 2
k ] > λ2, so for h = chN

1/3, for all k ≤ Th with Th = c1N
2/3,

and large enough N ,

(2.14) E
[(

A
f
k

)2 − (
A

f
k−1

)2|Af
k−1

] ≥ 1 − 2chc1,

where ch and c1 are arbitrary positive constants to be chosen later.
The latter bound applies also when A

f
k−1 = 0, as then A

f
k = η

f
k . Now, taking

b := 1 − 2chc1 > 0, we consider the stopping time

τh = Th ∧ min
{
k ≥ 0 : Af

k ≥ h
}

noting that by the preceding calculation, Lk := (A
f
k∧τh

)2 − b(k ∧ τh) is a sub-
martingale starting at L0 = 1. Further, it is shown in [18], Proof of Lemma 5, that
for ξ a Bin(n,p) variable, and any n ≤ N , the distribution of ξ − r , conditioned on
the event {ξ ≥ r}, is stochastically dominated by Bin(N,p). Thus, in our setting,
given τh = k ≤ Th, N

f
k−1 = n ≤ N , A

f
k−1 = � and pN = 1 − e−Jk/(λN), with {Jk}

i.i.d 
θ(2,1), we have that conditioned on the event {Af
k ≥ h}, the distribution

of (A
f
k − h) is stochastically dominated by Bin(N,pN) conditioned on the same

pN . Averaging over all possible n, k, �, pN values, we deduce that conditioned
on {Af

τh ≥ h} the overshoot (A
f
τh − h) is stochastically dominated by Bin(N,pN)

conditioned on pN = 1 − e−J/(λN) with J ∼ 
θ(2,1). Consequently,

E
[(

Af
τh

)2] ≤ h2 + 2hE[NpN ] +E
[
(NpN)2] +E

[
NpN(1 − pN)

] ≤ (h + 2)2,
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for h = chN
1/3 and all N large enough. With τh ≤ Th, upon applying the op-

tional stopping theorem for the L2-bounded submartingale {Lk}, we find that
E[(Af

τh)
2] ≥ 1 + bE(τh). Thus, by Markov’s inequality,

(2.15) P(τh = Th) ≤ E[τh]
Th

≤ (h + 2)2

bTh

= c2
h

bc1

(
1 + o(1)

)
.

Fixing T0 = δN2/3 note that |Cmax| exceeds the value of the stopping time

τ0 = T0 ∧ min
{
s ≥ 0 : Af

τh+s = 0
}
,

so the stated bound (2.2) follows once we show that for any b′ > λ−2
E[J 2] +

2ch(c1 + δ),

(2.16) P
(
τ0 < T0|Af

τh
≥ h

) ≤ b′δ
c2
h

.

Indeed, we then choose ch = 1
2δ1/5 and c1 = 1/(4ch), so b = 1/2 and b′ = β2 + 1

works whenever δ ≤ 1/2.
To derive (2.16), consider the uniformly bounded, nonnegative process Mk =

max{h − A
f
τh+k,0}. If 0 < Mk−1 < h then by (2.12)

M2
k − M2

k−1 ≤ (
η

f
τh+k − 1

)2 + 2
(
1 − η

f
τh+k

)
Mk−1.

The same inequality applies when Mk−1 = 0 (i.e., Af
τh+k−1 ≥ h, so Mk ≤ max{1−

η
f
τh+k,0}). By definition, A

f
τh+k−1 ≤ h whenever Mk−1 �= 0, hence for N large

enough and all k ≤ T0, τh ≤ Th we find, as in the derivation of (2.14) that

E
[
M2

k − M2
k−1|Mk−1 < h

] ≤ λ−2
E

[
J 2] + 2

h

N
(Th + T0 + h) + o(1) ≤ b′.

Thus, conditioned on the event A
f
τh ≥ h the process {M2

k∧τ0
− b′(k ∧ τ0)} is a

supermartingale which starts at zero. Noting that {τ0 < T0} ⊆ {Mτ0 = h}, upon
applying the optional stopping theorem for this process at τ0, we conclude that

P
(
τ0 < T0|Af

τh
≥ h

) ≤ h−2
E

[
M2

τ0
|Af

τh
≥ h

] ≤ b′h−2
E

[
τ0|Af

τh
≥ h

] ≤ b′ T0

h2 ,

as stated. �

PROOF OF THEOREM 1.2. Observe that P(Cmax) is stochastically dominated
by

∑|Cmax|
i=1 ξi , where {ξi} are i.i.d. cut-Gamma random variables. Repeating the

arguments set forth in Section 2.2 we can easily conclude the upper bound as in
equation (2.1).

Similarly, we shall propose a process using the same undercounting algorithm
such that it is stochastically dominated by P(Cmax). In particular, instead of ac-
counting only the number of once visited vertices, let us associate a cut gamma
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θ(2,1) random variable with every such vertex visited. Then consider the sum
of all such random variables, which clearly is dominated by P(Cmax). Thereafter,
again following the same steps as in Section 2.3 we conclude the required result of
Theorem 1.2. �

3. Proof of Theorem 1.3.

3.1. Exploration process and Brownian excursions. Recall the length of a
sampled interval of the QRG being J = min(J− + J+, θ) for i.i.d. Exp(1) vari-
ables J−, J+ (a distribution we denote by 
θ(2,1)). With E(J ) = F(θ) of (1.3),
the critical curve has the explicit expression λ = F(θ). Further, the critical window
around some λ� = F(θ�) for θ� > 0, corresponds to fixing a ∈ R and considering

(3.1) θN → θ�, F (θN) = λN

(
1 + aN−1/3)

.

Let Ñ = ∑N
i=1 mi denote the total number of steps in the exploration process

of Section 2.1, and (Y
a,θN

N (k), k ≤ Ñ) be the breadth-first walk associated with the
QRG on GN

θN
, where (θN,λN) satisfy (3.1). That is,

(3.2) Y
a,θN

N (k) = Y
a,θN

N (k − 1) + ηk − 1, Y
a,θN

N (0) = 1,

for ηk of recursion (2.3). Thus, Y
a,θN

N (k) (which may well become negative as k

grows), counts the number of active points at the end of step k, minus the number
of explored components before step k.

As in [2], observe that lengths of excursions of the process Y
a,θN ,+
N (k) =

Y
a,θN

N (k) − minl≤k Y
a,θN

N (l) above zero correspond to size of the connected com-

ponent containing the vertex where the process Y
a,θN

N (k) started.
Setting

(3.3) σ 2
� = σ 2(θ�) = 1

λ2∗
E

[
(J− + J+) ∧ θ�)

2]
,

our goal in this subsection is to prove the following proposition.

PROPOSITION 3.1. For (θN,λN) that satisfy (3.1), as N → ∞, the processes

(3.4) Ȳ
a,θN

N (s) = N−1/3Y
a,θN

N

(⌊
N2/3s

⌋ ∧ Ñ
)
,

converge in law to Wa,θ� of (1.9) (on the space D([0,∞)) equipped with the topol-
ogy of uniform convergence on compacts).

Recall that ζk links are generated at step k of the exploration process and let

(3.5) Z
a,θN

N (l) = Z
a,θN

N (l − 1) + ζl − 1, Z
a,θN

N (0) = 1,
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be the corresponding breadth-first walk. Since we sample intervals only when they
are to be explored, the walk ZN does not distinguish between active points that
end as intervals of the QRG and those that are later found to be on surplus edges.
Nevertheless, our next proposition controls the number of active points, which as
seen in Remark 3.3, yields having at most OP(1) surplus edges until step sN2/3.

PROPOSITION 3.2. Fixing a ∈ R, recall the count Ak of active points at the
end of step k of the exploration for (θN,λN) satisfying (3.1). Then, for some K =
K(a, s) < ∞ and all L,N ≥ L0(a, s),

(3.6) P

(
N−1/3 max

k≤sN2/3
{Ak} > L

)
≤ KL−2.

The proof of above proposition involves elaborate, but crude, bounds on func-
tionals of ZN , and thus we defer it to the Appendix.

REMARK 3.3. Recall sur(l) counts the surplus links detected in part (a) of
the exploration process during its first l steps. The order of exploring active points
is such that the first active point formed on any given vertex never contributes to
sur(l). Further, sur(l) is bounded above by the aggregate count 	e(l) of active
points on vertex wk at step k ≤ l, beyond the explored point (wk, t). Conditional
on the state of the process at the start of its kth step, the number of active points
registered during that step that may contribute to 	e(l), is stochastically dominated
by a Poisson(Ak−1θN(λNN)−1) random variable. In particular, for some κ finite
and all N , l,

(3.7) E
[
sur(l)

] ≤ E
[
	e(l)

] ≤ κ

N
E

[
l−1∑
k=0

Ak

]
≤ κl

N
E

[
max
k≤l

{Ak}
]
.

From Proposition 3.2, we have that E[	e(sN
2/3)], and hence E[sur(sN2/3)], is

uniformly bounded in N .

The control on number of vertices, which the exploration process visits at least
twice by the end of the kth step (for k = sN2/3), is crucial for the success of our
analysis. To this end, we define hereafter the number of visits to vertex v ∈ GN by
the end of the kth exploration step, as the total number of active points formed on
S

v
θN

by that time, that is, we count past active points which were removed from the
list and also those which are currently active by the end of time k.

PROPOSITION 3.4. For the exploration of the QRG at parameters satisfying
(3.1), let νl≥m count the total number of visits by the end of its lth step, to sites
(circles), having at least m such visits each. Then, for some finite κ , all positive A,
s and N large enough, we have that for m = 1,2,3 and any l ∈ [1, sN2/3],
(3.8) P

(
νl≥m ≥ AlmN1−m) ≤ κm

A
.
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PROOF. Let Ft denote the filtration generated by the state of the exploration
process of Section 2.1, namely, the neutral subspace and collection of active points,
with Fk for integer k ≥ 0, denoting the state at the end of step k. Further, let τ(v)

the stage in which it first visits v ∈ GN (so Fτ(v) records the state of the exploration
process immediately after selecting its first active point on S

v
θ ). For any l ≥ 1 and

v, let Lv(l) count the links whose end points are on the neutral part of v2 until the
end of the lth step of that process, with L′

v(l) counting only such links made after
τ(v) (setting L′

v(l) = 0 in case τ(v) ≥ l + 1). Only one interval is explored in each
step, hence

(3.9) E
[
νl≥1

] ≤ l +
N∑

v=1

E
[
Lv(l)

]
.

Note that Lv(l) increases when considering the overcounting process, so the l

explored intervals are complete circles (of length θN ), other than the circle at v,
which remains completely neutral, even after links to it are formed and intervals
are sampled around the links. Thus, Lv(l) is stochastically dominated by a Poisson
random variable with parameter

(3.10)
θN l

λNN
≤ κ ′l

N
,

for some κ ′ finite and all N large enough. In particular, by (3.9) E[νl≥1] ≤ (κ ′ +1)l,
which in combination with Markov’s inequality establishes (3.8) for m = 1 and any
κ ≥ κ ′ + 1.

Next recall that for k ≤ N , either Ak > 0 so part (a) of the exploration process
applies at the kth step, or else part (b) applies for it (since at most k − 1 < N ver-
tices have been explored before). Consequently, assuming hereafter that sN2/3 ≤
N , part (c) of the exploration does not occur throughout its first l steps. Further, all
active points chosen in part (b) or the initial stage of the process result with a first
visit of new vertex. Hence we have in analogy with (3.9) that

(3.11) E
[
νl≥2

] ≤ 2
N∑

v=1

E
[
L′

v(l)
]
.

As argued before, conditional on Fτ(v) the value of L′
v(l) increases if from time

τ(v) onward we modify the process to have all explored intervals be complete
circles (of length θN ), on vertices other than v, while keeping the circle at v com-
pletely neutral. That is, conditionally on Fτ(v) the variable L′

v(l) is stochastically

2We note here that Lv(l) is different from the total number of visits to the vertex v by time l

because according to our description, the point where we start the exploration process, and the points
where we restart our exploration process after Ak = 0 are indeed counted as visits but these are not
identified as end points of links.
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dominated by a Poisson variable of parameter κ ′lN−1 times the indicator on the
event {τ(v) < l + 1}. Hence, for any l ≥ 1 and v ∈ GN ,

E
[
L′

v(l)|Fτ(v)

] ≤
(

κ ′l
N

)
1{τ(v)<l+1}.(3.12)

Summing over v the expected value of (3.12), we deduce from (3.11) that

(3.13) E
[
νl≥2

] ≤ 2
(

κ ′l
N

)
E

[
νl≥1

] ≤ 2
(
κ ′ + 1

)
κ ′l2N−1

from which we recover (3.8) for m = 2 and κ = 2κ ′ + 1 (by Markov’s inequality).
Finally, repeating this argument, now with τ(v) the time at which the second

active point on v ∈ GN is selected, we deduce that

E
[
νl≥3

] ≤ 3
(

κ ′l
N

)
E

[
νl≥2

]
,

which upon suitably increasing the value of κ , yields (3.8) for m = 3. �

PROOF OF PROPOSITION 3.1. Equipping D([0,∞)) with the topology of uni-
form convergence on compacts, let

(3.14) Z̄
a,θN

N (s) = N−1/3Z
a,θN

N

(⌊
N2/3s

⌋ ∧ Ñ
)
,

for the breadth first walk Z
a,θN

N (·) of (3.5). Recall that

Z̄
a,θN

N (s) − Ȳ
a,θN

N (s) = N−1/3 sur
(⌊

N2/3s
⌋ ∧ Ñ

)
is nondecreasing in s and so by Remark 3.3, as N → ∞,

(3.15) sup
s≤s0

∣∣Z̄a,θN

N (s) − Ȳ
a,θN

N (s)
∣∣ → 0 in P.

It thus suffices to prove that Z̄
a,θN

N converges in law to the desired limit Wa,θ� .
To this end, by Doob’s decomposition with respect to the canonical filtration Fk

associated with the exploration process, we get that

Z
a,θN

N = M
a,θN

N + B
a,θN

N ,
(
M

a,θN

N

)2 = Q
a,θN

N + D
a,θN

N ,(3.16)

with martingales M
a,θN

N , Q
a,θN

N (null at k = 0), and predictable processes B
a,θN

N

and D
a,θN

N . Adopting the notation M̄N , B̄N , in accordance with (3.14), and Q̄N ,
D̄N similarly scaled by extra factor N−1/3 in accordance to the RHS of (3.16), we
show in Lemmas 3.5 and 3.6, respectively, that for σ� of (3.3) and any finite s0, as
N → ∞,

D̄
a,θN

N (s0)
P→ σ 2

� s0,(3.17)

E

[
sup
s≤s0

∣∣M̄a,θN

N (s) − M̄
a,θN

N

(
s−)∣∣2]

→ 0.(3.18)
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Combining (3.17) and (3.18), it then follows from [9], Theorem 7.1.4, that the mar-
tingales {M̄a,θN

N } converge weakly in D([0,∞)) to σ�W for a standard Brownian
motion W . Further, we show in Proposition 3.7 that

(3.19) sup
s≤s0

∣∣B̄a,θN

N (s) − ρa,θ�(s)
∣∣ →P 0.

That is, the sequence of predictable processes B̄
a,θN

N converges in probability in

D([0,∞)) to the nonrandom ρa,θ� of (1.10), hence Z̄
a,θN

N converges in law to
Wa,θ� . �

Proceeding with the proof of (3.17)–(3.19), we often drop the indices (a, θN)

from Z
a,θN

N and related random variables. We start by establishing (3.17). That is,
we have the following.

LEMMA 3.5. For (θN,λN) that satisfy (3.1), σ� of (3.3), any δ > 0 and s0
finite,

(3.20) lim
N→∞ sup

l≤N2/3s0

P
(∣∣Da,θN

N (l) − σ 2
� l

∣∣ ≥ 2δN2/3) = 0.

PROOF. Recall that DN(k)−DN(k −1) = var(ζk|Fk−1) (starting at DN(0) =
0). Hereafter, Fk− denotes Fk−1 augmented by the active point (wk,Xk) of step k

and the interval Ik = {wk} × Ĩk around it. The law of ζk given Fk− is Poisson(ϕk),
with ϕk denoting the aggregate over circles other than S

wk

θN
, of the length of their

neutral space restricted to Ĩk and divided by λNN . As such, both its conditional
mean and conditional variance are given by ϕk , hence by the variance conditioning
decomposition (at Fk−),

(3.21) var(ζk|Fk−1) = E[ϕk|Fk−1] + var[ϕk|Fk−1].
Further, at the start of the kth step there are at least N −k completely neutral circles
beyond the vertex on which the kth explored interval lies. Hence, for Jk = |Ĩk| and
any k ≤ s0N

2/3,

0 ≤ Jk

λN

− ϕk ≤ Jkk

λNN
≤ κ ′N−1/3

(for κ ′ = s0 supN {θN/λN } finite). It thus suffices to prove (3.20) for D̂N(l) instead
of DN(l), where

D̂N(k) − D̂N(k − 1) = E[Jk/λN |Fk−1] + var[Jk/λN |Fk−1] =: 	k.

The nonnegative 	k are uniformly bounded by 	 := supN {(θN/λN)+ (θN/λN)2}.
Moreover, whenever Fk−1 dictates that the kth step explores the first interval on
a given vertex w ∈ GN , it yields a conditionally independent Jk that follow the
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θN
(2,1) distribution. We consequently have that 	k = F2(θN,λN) in any such

step, where

F2(θ, λ) := E
[
(J/λ)

] + var(J/λ).

This applies to all but at most νl≥2 of the first l steps, hence∣∣D̂N(l) − F2(βN,λN)l
∣∣ ≤ 	νl≥2.

From Proposition 3.4, we know that P(νl≥2 ≥ δN2/3) → 0 for l = s0N
2/3 and we

thus get (3.20) for D̂N(l) upon noting that F2(θ�, λ�) = σ 2
� of (3.3). �

We next establish (3.18), thereby moving closer to completing the proof of
Proposition 3.1.

LEMMA 3.6. For (θN,λN) that satisfy (3.1) and any s0 finite,

(3.22) lim
N→∞N−2/3

E

[
max

1≤l≤s0N
2/3

∣∣Ma,θN

N (l) − M
a,θN

N (l − 1)
∣∣2]

= 0.

PROOF. Recall that MN(·) is the martingale part of ZN(·). Hence, from (3.5)

MN(l) − MN(l − 1) = ζl −E(ζl|Fl−1)

and (3.22) amounts to showing that

N−2/3
E

[
max

l≤s0N
2/3

(
ζl −E(ζl|Fl−1)

)2
]
→ 0.

Clearly, (ζl −E(ζl|Fl−1))
2 ≤ 2ζ 2

l + 2E(ζl|Fl−1)
2. Further, in Section 2.2 we saw

that conditionally on Fl−1 the variable ζl is stochastically dominated by the in-
dependent ξl ≥ 0 whose mean F(βN,λN) is uniformly bounded (in N ). Hence,
supl E(ζl|Fl−1)

2 ≤ supN F(βN,λN)2 is finite and it suffices to show that for i.i.d.
(ξl),

(3.23) N−2/3
E

[
max

l≤s0N
2/3

ζ 2
l

]
≤ N−2/3

E

[
max

l≤s0N
2/3

ξ2
l

]
→ 0.

Finally, recall [11], equation (6’), that the expected maximum of n i.i.d. variables
of zero-mean and unit variance is at most (n − 1)/

√
2n − 1. Consequently, the

expectation on the right-hand side of (3.23) grows at most at rate O(N1/3), which
proves (3.22) (and thereby (3.18) as well). �

For the remainder of Section 3.1, we complete the proof of Proposition 3.1 by
establishing (3.19). Indeed, upon rearranging the expression (1.10) for ρa,θ� , this
is precisely the statement of our next proposition.



CRITICAL QUANTUM RANDOM GRAPHS 1203

PROPOSITION 3.7. For (θN,λN) that satisfy (3.1) and any s0 finite, as N →
∞,

(3.24) sup
s≤s0

∣∣∣∣B̄a,θN

N (s) − as + s2

2

(
1 − F(θ�)

θ�

− γ (θ�)

)
+ s2

2

F(θ�)

θ�

∣∣∣∣ P→ 0.

As the starting point for Proposition 3.7, we provide the geometric quantities
behind the coefficients of s2 in (3.24).

LEMMA 3.8. For any given interval I ⊆ Sθ , let

(3.25) H(I) := E
[∣∣I ′ ∩ I

∣∣], H0(I) := E
[∣∣I ′ ∩0 I

∣∣],
denote the expectation over an independent interval I ′ ⊆ Sθ of length law 
θ(2,1),
built around 0, where

(3.26) I ′ ∩0 I :=
{{

x ∈ I ′ : x � 0 within I ′ \ I}
, 0 /∈ I,

∅, 0 ∈ I.

For uniform U ∈ Sθ , independent of I , let

(3.27) UH
(|I|) := E

[
H(I − U)|I]

, UH0
(|I|) := E

[
H0(I − U)|I]

.

Then, for J of 
θ(2,1) law

(3.28) E
[
UH(J )

] = F(θ)2

θ
, E

[
UH0(J )

] = F(θ)

(
1 − F(θ)

θ
− γ (θ)

)
.

PROOF. Recall that for two arcs I and I ′ in Sθ of uniformly chosen relative
shift U , the expected length of I ′ ∩ (I − U) is the product of arc lengths divided
by θ . In particular, UH(J ) = F(θ)

θ
J , from which the LHS of (3.28) follows. Sim-

ilarly, per arc I ′ = [−J−, J+] of length J around 0 in Sθ and x = θ − |I|, the
expectation of θ |I ′ ∩0 (I − U)| over the uniform shift U , is x(J − x) for J = θ ,
while for J < θ it is∫ J−

(J−−x)+
udu +

∫ J+

(J+−x)+
udu = x(J − x) + 1

2

[(
(x − J+)+

)2 + (
(x − J−)+

)2]
,

by elementary geometric considerations. Computing the expectation of this ex-
pression for J− and J+ independent Exp(1) variables, yields

(3.29) UH0(θ − x) = 1

θ

[
xF(θ) − F̂ (x)

]
,

for F̂ (·) as given in (1.8). Finally, note that γ (θ) of (1.8) was set so the RHS of
(3.28) be the expectation of (3.29) when (θ − x) ∼ 
θ(2,1). �

Proceeding with the proof of Proposition 3.7, we next express BN(l) as the sum
of the terms (3.30)–(3.32), which for l = sN2/3 upon further scaling by N−1/3

converge to the three limit expressions in (3.24), respectively.
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LEMMA 3.9. Let Xk denote the position on S
wk

θN
around which Ĩk is carved

(and if there are no active points by the end of exploration step (k − 1), then any
function of Xk is replaced by its expectation over a uniform U ∈ S

wk

θN
). Similarly,

for 1 ≤ k < l let {X(k,i),1 ≤ i ≤ r(k, l]} be the collection of links formed on S
wk

θN

during steps (k, l] (some may be in Ĩk), with the convention that r(k, l] = 0 if vertex
wk has been explored before. Then, for (θN,λN) that satisfy (3.1), any fixed s0 and
all N large enough, we have uniformly over l ∈ [1, s0N

2/3],

BN(l) = OP(1) + l

(
F(θN)

λN

− 1
)

(3.30)

− 1

λN

l∑
k=1

r(k,l]∑
i=1

H0(Ĩk − X(k,i))(3.31)

− 1

λNN

∑
1≤k<k′≤l

H(Ĩk − Xk′).(3.32)

PROOF. Recall from proof of Lemma 3.5 that conditional on Fk′− the number
of links ζk′ formed during the k′th exploration step is Poisson distributed, whose
parameter

ϕk′ := 1

λN

|Ĩk′ | − 1

λNN

k′∑
k=1

|Ĩk′ ∩ Ĩk|,

is bounded by the nonrandom θN/λN . Since BN(l) is the predictable process in
Doob’s decomposition of ZN(l), we get from (3.5) that

BN(l) + (l − 1) =
l∑

k′=1

E(ζk′ |Fk′−1) =
l∑

k′=1

E(ϕk′ |Fk′−1)

= 1

λN

(
lF (θN) −

l∑
k′=1

(
F(θN) −E

(|Ĩk′ ||Fk′−1
))

− 1

N

∑
1≤k≤k′≤l

E
(|Ĩk′ ∩ Ĩk||Fk′−1

))
.(3.33)

Hereafter, for m ≥ 1 let Ek
m and Ek≥m, denote the event that upon exploring the

interval Ĩk during the kth step, the site wk on which it lies has been visited precisely
m times, or at least m times, respectively. Equipped with these notation, we next
show that the difference between the left sum in (3.33) and the sum in (3.31) is
merely part of the OP(1) in (3.30). Specifically, all terms are at most F(θN), which
in turn is uniformly bounded over θN → θ�, so it suffices to show that there are only
OP(1) differing terms between these sums. To this end, since H0(Ĩk − X(k,i)) = 0
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whenever X(k,i) ∈ Ĩk (see (3.26)), such superfluous links never contribute to (3.31).
Similarly, there is no contribution to the left sum in (3.33) when Ek′

1 occurs (i.e.,
when Ĩk′ is the first explored interval on its vertex). Moreover, the contribution to
the latter sum from

⋃
k′≤l E

k′
2 is by intervals Ĩk′ of second exploration of some wk ,

such that k′ ∈ (k, l] and

F(θN) −E
(|Ĩk′ ||Fk′−1

) = H0(Ĩk − Xk′)

measures for an independent interval I ′ ⊆ SθN
of length law 
θN

(2,1) around
Xk′ , the expected length of all but the part of I ′ built within (Ĩk)

c (note that for
k′ ≤ N , a second exploration of the vertex requires an a priori active point on it,
with Xk′ /∈ Ĩk then Fk′−1-measurable). These precise terms appear also in (3.31)
unless the link Xk′ has been formed before step k, and we recall Remark 3.3 that at
most 	e(l) = OP(1) such terms may be missing from (3.31). In contrast, the 	a(l)

active points on explored vertices after step l do not contribute to the left sum of
(3.33), while some may participate in (3.31). However, as we show in the sequel,

(3.34) E
[
	a(l)

] ≤ l

N
E[Al], ∀l ≥ 1,

hence 	a(l) = OP(1) uniformly in l ≤ s0N
2/3 (thanks to Proposition 3.2). Thus,

as claimed, we have at most

(3.35) 	e(l) + 	a(l) + 2νl≥3 = OP(1),

differing terms between these two sums (recall Proposition 3.4 that νl≥3 =
OP(l

3/N2) = OP(1) uniformly over l ≤ s0N
2/3).

Returning to establish (3.34), note that the fraction ql of explored vertices after
step l, never exceeds l/N and the average over vertices of the mean number of
active points per vertex is E[Al]/N . Thus, the bound (3.34) holds if these mean
numbers are the same across all vertices, or more generally, if they are tilted in
favor of the nonexplored vertices. Further, it suffices to consider l ≤ N , whereby
only parts (a) and (b) of the rules for choosing the explored points are ever used; see
Section 2.1. Exploring there the connections of Ik , one uses the same rate to each
vertex i �= wk , before erasing some of the connections to explored vertices, while
erasing none of those to nonexplored vertices. Beyond this reduction in E[	a(l)]
relative to E[Al], and possibly having ql < l/N (due to events {Ek≥2}), the only
other deviation from uniformity is due to the nonrandom preference of choosing
wk according to its index. The latter can only cause the probability that wk is an
already explored vertex (which thereby reduces 	a(k) by one), to exceed qk . In
conclusion, each of these effects merely tilts the mean number of active points per
vertex, toward the nonexplored vertices, hence collectively they merely reinforce
the inequality (3.34).

The other contribution to the OP(1) of (3.30) comes from the case of

(3.36) 1
(Ek

1∩Ek′
1 ∩{k′ �=k})c ≤ 1{k′=k} + 1Ek≥2

+ 1
Ek′

≥2
,
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in the right-most sum of (3.33). Indeed, uniformly over l ≤ s0N
2/3,

1

N

∑
1≤k≤k′≤l

(1k′=k + 1Ek≥2
+ 1

Ek′
≥2

) ≤ 2l

N

(
1 + νl≥2

)
= 2l

N
+ OP

(
l3N−2) = OP(1).(3.37)

Further, the event Ek
1 ∩ Ek′

1 results for k′ > k with wk′ �= wk and Ĩk′ lying on a
circle which is completely neutral (other than active points), after step (k′ − 1).
So following our convention in making Xk′ a Fk′−1-measurable variable, this case
contributes

E
(|Ĩk′ ∩ Ĩk||Fk′−1

) = H(Ĩk − Xk′),

to the right-most sum of (3.33), thereby completing the proof. �

PROOF OF PROPOSITION 3.7. Plugging F(θN) = λN(1 + aN−1/3), we find
that the RHS of (3.30) is

OP(1) + alN−1/3,

which upon setting l = sN2/3 and scaling by N−1/3, converges to as when
N → ∞, uniformly over s ≤ s0. Since λN → λ� = F(θ�) (see (3.1)), we com-
plete the proof of the proposition by way of Lemmas 3.10 and 3.11, which show
that upon scaling by N−1/3, for l = sN2/3 the terms in (3.32) and (3.31) con-
verge in probability as N → ∞, uniformly over s ≤ s0, to the appropriate nonran-
dom limits, respectively. Indeed, by the preceding we conclude that the processes
s �→ B̄N(s) converge to the deterministic path s �→ ρa,θ�(s) of (1.10), uniformly
over s ≤ s0. �

LEMMA 3.10. For (θN,λN) satisfying (3.1) and lN = sN2/3, we have

(3.38) lim
N→∞

1(lN
2

) lN∑
k=1

lN∑
k′=k+1

H(Ĩk − Xk′) = F 2(θ�)

θ�

,

in probability, uniformly over s ∈ [ε, s0].

LEMMA 3.11. For (θN,λN) satisfying (3.1), lN = sN2/3

lim
N→∞

2N

l2
N

lN∑
k=1

r(k,lN ]∑
i=1

H0(Ĩk − X(k,i)) = F(θ�)

(
1 − F(θ�)

θ�

− γ (θ�)

)
,(3.39)

in probability, uniformly over s ∈ [ε, s0].
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REMARK 3.12. In view of Lemma 3.8, the heuristic behind (3.38) is that for
most pairs k′ > k the conditional law of Xk′ given Fk− is nearly uniform. To see
why we expect (3.39) to hold, let

(3.40) Rl :=
l∑

k=1

r(k, l],

be the aggregate number of links by the end of the lth step, so Rk − Rk−1 merely
counts the connections made during the kth step to all explored vertices, other
than wk . As such, conditional on Fk− , the law of Rk − Rk−1 is Poisson of rate
|Ĩk|qk−/λN , where qk− denotes the fraction of explored vertices, other than wk ,
by step k. With qk− = k/N(1 + o(1)) and F(θN)/λN → 1, the totality of these
Poisson rates

(3.41) Vl := 1

λN

l∑
k=1

|Ĩk|qk−,

should be about l2/(2N). We further expect most positions X(k,i) to be nearly
uniform on S

wk

θN
and approximately independent of the first explored interval Ĩk on

that vertex. Upon justifying these two approximations, we get (3.39) from the LLN

for the empirical average of UH0(·) at the nearly i.i.d. |Ĩk|.
PROOF OF LEMMA 3.10. While proving (3.28), we saw that at θN → θ�,

UH(J ) = F(θN)

θN

J → F(θ�)

θ�

J.

Thus, by the LLN, if Jk := |Ĩk| are i.i.d. 
2,1(θN) variables, then

(3.42)
1(lN
2

) lN∑
k=1

lN∑
k′=k+1

UH(Jk) = 2F(θN)

θN(lN − 1)

lN∑
k=1

(
1 − k

lN

)
Jk → F 2(θ�)

θ�

,

in probability, uniformly over N−2/3lN ∈ [ε, s0]. This indeed is the joint law of
{Jk} for the QRG, apart from possibly at most

ν
lN≥2 = OP

(
l2
N/N

) = oP(lN)

values of k. Hence, with H(·) uniformly bounded, the uniform convergence in
probability of (3.42) extends to our setting. Recalling (3.27) and using the notation
l̄N := s0N

2/3,

Ĥ (I) := H(I) −E
[
H(I − U)|I]

,

with U ∈ SθN
uniform, it suffices for proving the lemma, to show that

(3.43)
1

l̄4
N

∑
1≤k<k′≤l̄N

∑
1≤j<j ′≤l̄N

∣∣E[
Ĥ (Ĩk − Xk′)Ĥ (Ĩj − Xj ′)

]∣∣ → 0
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Assuming WLOG that j ′ > r := j ∨ k′ (there are only O(l̄3
N) terms with j ′ = k′),

and noting that the uniformly bounded Ĥ (Ĩk − Xk′) is Fr− -measurable, it suffices
for (3.43) to show that

(3.44)
1

l̄2
N

∑
1≤r<r ′≤l̄N

h
(
r, r ′) → 0,

where

(3.45) h
(
r, r ′) := max

j≤r

{
E

[∣∣E[
Ĥ (Ĩj − Xr ′)|Fr−

]∣∣]}.
Further, with πN denoting the uniform law on SθN

we have that for some C < ∞
and all r , r ′, N ,

(3.46) h
(
r, r ′) ≤ CE

[
dTV(πr,r ′, πN)

]
, πr,r ′(·) := P(Xr ′ ∈ ·|Fr−).

In view of (3.53) of Lemma 3.13, plugging this bound into (3.44) completes the
proof of Lemma 3.10. �

PROOF OF LEMMA 3.11. Recalling that if Jk := |Ĩk| is 
2,1(θN) variable then
EJk = F(θN) = λN(1 + o(1)), it follows from the LLN by the same argument as
in our proof of Lemma 3.10, that the following proxy

V �
l := 1

λN

l∑
k=1

Jk

k

N
,

for Vl of (3.41) is such that uniformly over s ∈ [ε, s0],

E

[∣∣∣∣2N

l2
N

V �
lN

− 1
∣∣∣∣] → 0.

Moreover, for any k ≤ lN ,

k

N
− qk− ∈ [

0,N−1ν
lN≥2

] = OP

(
N−2/3)

.

Hence, E[|V �
lN

− VlN |] ≤ OP(1) and consequently, uniformly over s ∈ [ε, s0],

(3.47) E

[∣∣∣∣2N

l2
N

VlN − 1
∣∣∣∣] → 0.

As explained in Remark 3.12, Mk := Rk−1 − Vk−1 is an Fk− martingale and
the corresponding predictable part in Doob’s decomposition for M2

k is precisely
〈M〉k = Vk−1. Thus, by (3.47), uniformly over s as above,

E

[(
2N

l2
N

MlN

)2]
→ 0,
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hence by yet another application of (3.47), also

(3.48) E

[∣∣∣∣2N

l2
N

RlN − 1
∣∣∣∣] → 0.

Consider the successive steps �1 ≤ �2 ≤ · · · ≤ �j ≤ . . . in which links of type
{X(k,i), k, i ≥ 1} to previously explored vertices, say X�

j := X(k,i), are formed,
with the induced stopped-filtration {F�j

}. We can ignore here ties (namely,
�j+1 = �j ), since the expected number of such is bounded uniformly in N and
l ≤ s0N

2/3 (indeed, Rk − Rk−1 which is at most a Poisson of rate θNk/(λNN),
yields (Rk − Rk−1 − 1)+ ties). Thanks to (3.48), it suffices for (3.39) to show that
for �N = tN1/3,

(3.49) lim
N→∞

1

�N

�N∑
j=1

H0
(
Ĩk(j) − X�

j

) = F(θ�)

(
1 − F(θ�)

θ�

− γ (θ�)

)
in P,

uniformly over t ∈ [ε′, t0], where k(j) denotes the first exploration step of the

vertex on which X�
j lies. Further, for at most ν

l̄N≥3 = OP(1) of the links {X�
j , j ≤

�N }, the vertex wk(j) appears more than once in this collection. Consequently,
appealing to the RHS of (3.28), as in the proof of Lemma 3.10 we get analogously
to (3.42) that as N → ∞, uniformly over t as above,

1

�N

�N∑
j=1

UH0
(|Ĩk(j)|) → F(θ�)

(
1 − F(θ�)

θ�

− γ (θ�)

)
in P.

Thus, similar to the proof of Lemma 3.10, setting �̄N = t0N
1/3 and

Ĥ0(I) := H0(I) − UH0
(|I|),

we get (3.49) as soon as we show that

(3.50)
1

�̄2
N

∑
1≤j<j ′≤�̄N

∣∣E[
Ĥ0

(
Ĩk(j) − X�

j

)
Ĥ0

(
Ĩk(j ′) − X�

j ′
)]∣∣ → 0.

With Ĥ0(Ĩk(j) −X�
j ) uniformly bounded and F�j

-measurable, this in turn follows
from

(3.51)
1

�̄2
N

�̄N∑
j=1

�̄N∑
j ′=j+1

E
[∣∣E[

Ĥ0
(
Ĩk(j ′) − X�

j ′
)|F�j

]∣∣] → 0.

Further, setting r = r(j, j ′) := �j ∨ k(j ′),
(3.52) π�

j,j ′(·) := P
(
X�

j ′ ∈ ·|Fr(j,j ′)
)
,

and recalling the definition (3.27) of UH0(·) with U ∼ πN on SθN
, we have that for

some C < ∞ and all j , j ′, N ,

E
[∣∣E[

Ĥ0
(
Ĩk(j ′) − X�

j ′
)|F�j

]∣∣] ≤ CE
[
dTV

(
π�

j,j ′, πN

)]
.

In view of Lemma 3.14, plugging this into (3.51) completes the proof. �
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We next complete the proof of Lemma 3.10 by showing that for most r < r ′ ≤
l̄N , the law of Xr ′ given Fr− is nearly uniform (in total-variation distance).

LEMMA 3.13. Setting l̄N = s0N
2/3 we have for πr,r ′ of (3.46), that

lim
N→∞

1

l̄2
N

l̄N∑
r=1

l̄N∑
r ′=r+1

E
[
dTV(πr,r ′, πN)

] = 0.(3.53)

PROOF. Fixing r ≥ 1 we assign to each active point at the end of the r th step,
and to any link formed thereafter (including a link onto the previously explored
part of the QRG), a proxy counter for its uniformity and Fr -independence, as fol-
lows. First, the counter of each active point at the end of the r th step is set to 0
if it is on an unexplored vertex and to −1 otherwise. Then, sequentially in k > r ,
if Ak−1 > 0 and the vertex wk was not previously explored, we set as nr,k the
counter of the active point (wk,Xk), if Ak−1 = 0 we set nr,k = ∞, and otherwise
let nr,k = −1. Thereafter, each link formed during the kth step gets a counter value
nr,k +1. We claim that for ρ := supN {P(
θN

(2,1) < θN)} < 1 and any r ′ ∈ (r,N),

(3.54) dTV
(
P(Xr ′ ∈ ·|Fr−, nr,r ′ ≥ c),πN

)
P(nr,r ′ ≥ c|Fr−) ≤ ρc.

Indeed, at each step we choose the value of Xk independently of the positions
of active points within their respective circles. Having Ak−1 = 0 yields Xk ∼ πN

independently of Fk−1 and this property is inherited by any point to which the path
from Xk involves only first explorations of the relevant vertices. Further, the Fk−1-
measurable event nr,k ≥ 0 (namely Ek

1 ), results with P(Ĩk = SθN
|Fk−1) ≥ 1 − ρ

and Ĩk = SθN
yields by Lwk,i uniformly distributed links to all vertices (prior to the

erasures on previously explored space). In case nr,r ′ ≥ c is finite, one has during
(r + 1, r ′) at least c consecutive forefathers of (wr ′,Xr ′) in our exploration tree,
all of whom were explored on circles which are neutral (apart from active points).
The chance that none of these forefathers forced a uniform conditional law of Xr ′ ,
is by the preceding at most ρc, thereby establishing (3.54).

Now, thanks to (3.54) and the convexity of the [0,1]-valued dTV(·, πN), it suf-
fices for (3.53) to show that for any c < ∞,

(3.55) lim
N→∞E

[

c(l̄N )

] = 0, where 
c(l) := l−2
∑

1≤r<r ′≤l

1{nr,r′<c}.

To this end, with Zc(k
′) denoting the size of the exploration subtree of depth at

most c, rooted at the active point Xk′ and �(r) enumerating those k′ > r for which
the link to (wk′,Xk′) has been formed before the end of the r th step, we claim that

(3.56) 
c(l) ≤ l−2
∑

1≤r<k′≤l

Zc

(
k′)1{k′∈�(r)} + l−1

l∑
k′=1

Zc

(
k′)1

Ek′
≥2

.
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Indeed, to have nr,r ′ < c, one of the c consecutive exploration forefathers of
(wr ′,Xr ′), say (wk′,Xk′), must have been an event Ek′

≥2 (namely, not a first explo-
ration), or alternatively, be an active point formed before the end of the r th step.
In the latter case, considering the last such step (i.e., along the path to (wr ′,Xr ′)
and among active points formed by the end of the r th step), guarantees that r < k′
in the first sum of (3.56). Thereafter, Zc(k

′) bounds the number of possible pairs
(k′, r ′) having path distance at most c and should no such (k′, r ′) exist, the sec-
ond sum on the RHS of (3.56) bounds the number of r ′ ≤ l with some previously
explored vertex among the last c steps on the exploration path to (wr ′,Xr ′).

Now, for any k′, conditional on Fk′− the variable Zc(k
′) is stochastically domi-

nated by the size of a Galton–Watson tree of depth c and a Poisson(μ) off-spring
law, for μ := maxN {θN/λN } finite. It thus follows that for some κc = κc(μ) finite
and all N ,

max
k′≥1

E
[
Zc

(
k′)|Fk′−

] ≤ κc.

Equipped with the latter bound, upon considering the expected values in (3.56),
since both Ek′

≥2 and {k′ ∈ �(r)} are in Fk′− , while |�(r)| ≤ Ar , it follows by the
tower property of the conditional expectation, that

(3.57) E
[

c(l)

] ≤ κc

l

(
E

[
max
r<l

{Ar}
]
+E

[
l∑

k′=1

1
Ek′

≥2

])
.

Further, recall that
∑

k′≤l 1
Ek′

≥2
≤ νl≥2. Thus, with both l−1

E[maxr<l Ar ] and

l−1
E[νl≥2] decaying to zero at l = l̄N and N → ∞ (due to Proposition 3.2 and

(3.13), resp.), the bound (3.57) yields that (3.55) holds. �

Similar to Lemma 3.13 we complete the proof of Lemma 3.11 by showing that
for most j < j ′ ≤ �̄N the conditional law of X�

j ′ is nearly uniform.

LEMMA 3.14. Setting �̄N = t0N
1/3, we have for π�

j,j ′ of (3.52), that

lim
N→∞

1

�̄2
N

�̄N∑
j=1

�̄N∑
j ′=j+1

E
[
dTV

(
π�

j,j ′, πN

)] = 0.(3.58)

PROOF. We record the first exploration step ex(w) ≥ 1 of each vertex w ∈
[1,N], so upon forming a link of type X�

j ′ onto a vertex vj ′ one has that k(j ′) =
ex(vj ′). Utilizing the proxy counters of Lemma 3.13, let n�

j,j ′ denote the value of
the counter for the link X�

j ′ starting at step

r = r
(
j, j ′) := �j ∨ ex(vj ′).
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By the same reasoning as in the derivation of (3.54), we have that

(3.59) dTV
(
P

(
X�

j ′ ∈ ·|Fr , n
�
j,j ′ ≥ c

)
, πN

)
P

(
n�

j,j ′ ≥ c|Fr

) ≤ ρc.

We thus get (3.58) by establishing the analog of (3.55). That is, upon showing that
for l := 2

√
�N and any c < ∞,

(3.60) lim
N→∞E

[

�

c(�̄N)
] = 0, for 
�

c(�) := �−21{��≤l}
∑

1≤j<j ′≤�

1{n�
j,j ′<c}

(by (3.48) it suffices to consider 2N�/� 2
� → 1, hence the restriction here to

�� ≤ 2
√

�N ). Next, for k < k′, let Zc(k
′;k) = Zc(k

′) if the exploration subtree
of depth at most c rooted at the active point Xk′ , has a link to S

wk

θN
, otherwise set-

ting Zc(k
′;k) ≡ 0. Likewise, Z�

c (k′) := maxk<k′ {Zc(k
′;k)} is the nonzero Zc(k

′)
iff the relevant subtree produces a link to some previously explored vertex. Setting
hereafter k = k(j ′), recall that nr,r ′ < c requires that one of the c consecutive ex-
ploration forefathers of the link X�

j ′ , say (wk′,Xk′), must have been an event Ek′
≥2

(namely, not a first exploration), or alternatively, be an active point formed before
the end of the r(j, j ′)th step. We thus claim, similar to (3.56), that


�
c(�) ≤ �−2

∑
j<�,�j<k′≤l

Z�
c

(
k′)1{k′∈�(�j )}

+ �−1
∑

1≤k<k′≤l

Zc

(
k′;k)

1{k′∈�(k)}

+ �−1
l∑

k′=1

Z�
c

(
k′)1

Ek′
≥2

.(3.61)

The first two expressions on the RHS distinguish having k < �j from the case of
k ≥ �j , where we sum over j ≤ � and cover all choices of j ′ by the additional sum
over k = k(j ′) < l. As done on the RHS of (3.56), in both expressions we guarantee
that r < k′ by having (wk′,Xk′) stand for the last active point on the path to X�

j ′
among those formed by the end of the r th step. The link X�

j ′ must lie on the vertex
wk(j), yielding the bound Zc(k

′;k) in case k = r < k′ with an exploration path
distance at most c from Xk′ to X�

j ′ . However, in case k < �j = r we do not keep
track of k, hence must replace Zc(k

′;k) by the larger Z�
c (k′) which only indicates

the existence of a point of exploration path distance at most c from Xk′ which is
on a vertex that was first explored prior to step k′. Finally, should no active point
(wk′,Xk′) with k′ > k of exploration path distance at most c from X�

j ′ be formed
by the end of the r th step, the last sum on the RHS of (3.61) bounds the number of
j ′ ≤ � (with �j ′ ≤ l), having a nonneutral circle (explored at some step k′ > k),
among the last c points on the path to X�

j ′ .
Next recall that Zc(k

′) is, conditionally on Fk′− , stochastically dominated by the
size of a depth c Galton–Watson tree of a Poisson(μ) off-spring law. The latter size
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variable has finite moments of all order, whereas Zc(k
′;k) further demands having

at least one tree vertex corresponding to the prescribed wk . With the production
of the specified vertex wk stochastically dominated by a Poisson of rate μ/N , we
have for some κ�

c finite and all N ,

max
k<k′

{
E

[
Zc

(
k′;k)|Fk′−

]} ≤ κ�
c

N
, max

k′≤l

{
E

[
Z�

c

(
k′)|Fk′−

]} ≤ κ�
c l

N
.

Now, analogously to the derivation of (3.57), upon taking the expectation on both
sides of (3.61), we get by the tower property and the preceding estimates that

E
[

�

c(�)
] ≤ κ�

c l

N�

(
E

[
�−1

∑
j<�

A�j
1{�j≤l}

]
+E

[
l−1

∑
k′<l

Ak′
]

+E

[
l∑

k′=1

1
Ek′

≥2

])
.

Utilizing the fact that l/(N�) = 4/l, we arrive at the same bound as in the RHS of
(3.57). Setting � = �̄N corresponds to having l = l̄N , thus yielding (3.60) by the
reasoning provided at the end of the proof of Lemma 3.13. �

3.2. Joint convergence of component sizes. Recall the statement of Theo-
rem 1.3. In this section, we shall conclude the proof of this theorem using results
from previous sections.

As pointed out in [2], Theorem 1.3 primarily has two parts:

1. First is to prove that the excursions of the limit process are matched by the
excursions of the breadth first random walk.

2. The second is to arrange these excursions in the decreasing order. This can
be achieved if one can ascertain that there exists a random point after which one is
sure (with high probability) not to see large excursions.

In order to settle the first issue, we shall invoke [2], Lemmas 7 and 8, which can
be applied verbatim to our case, together with Proposition 3.1 proved in a previous
subsection.

Thus, we only need to be concerned about the second issue, for which we shall
need to prove an appropriate version of [2], Lemma 9, suited to our case.

Like in [2], let us define

T (y) = min
{
s : Wa,θ�(s) = −y

}
,

TN(y) = min
{
i : YN(i) = −⌊

yn1/3⌋}
.

Notice that as a consequence of Proposition 3.1

N−2/3TN(y) →d T (y).

Therefore, the following lemma completes the proof.
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LEMMA 3.15. Let us denote by p(N,y, δ) the probability that the QRG with
the parameters (θN,λN) that satisfy (3.1), contains a component of size at least
δN2/3 which does not contain any vertex i with 1 ≤ i ≤ yN1/3. Then

lim
y→∞ lim sup

N→∞
p(N,y, δ) = 0 for all δ > 0.

PROOF. Fix δ > 0. Let vCi
be the minimal vertex of the component Ci , then

for an interval I ⊂R+, define

(3.62) q(N,I) = E

(∑
i≥1

1(|Ci |≥δN2/3;vCi
∈N1/3I)

)
.

Conditioned on arranging the components in a decreasing order of their sizes, the
labels of the vertices of any given fixed component Ci are going to be uniformly
randomly ordered. Given such components ordering, define

χN(Ci ) = N−1/3vCi

and

UCi
= N−2/3 (number of vertices in the component Ci ).

Then note that for any x ≥ 0

P
(
vCi

> N1/3x|UCi

) =
(

1 − UCi
N2/3

N

)N1/3x

,

implying

(3.63) P
(
χN(Ci ) > y|UCi

) ≤ e−UCi
y

1 − e−UCi

P
(
χN(Ci ) ≤ 1|UCi

)
.

Further

(3.64) P
(
vCi

∈ [
yN1/3,∞)) = E

(
P

(
vCi

∈ [
yN1/3,∞)|UCi

))
.

At this point, conditional on component sizes being |Ci | = bN2/3, we note that one
can adopt the proof of Proposition 3.4 to the original exploration process restricted
to the construction of Ci in order to derive similar results for ν

Ci≥3, the number of
explored intervals belonging to Ci sampled by the end of the construction of Ci ,
which belong to vertices (circles), having at least three such intervals each. Then,
observing that UCi

N2/3 ≥ 1
2(bN2/3 − ν

Ci≥3), we have for ε > 0,

P

(
UCi

≥ 1

2
b − 1

2

N1/3+ε

N2/3

)
≥ P

(
ν
Ci≥3 ≤ N1/3+ε) = 1 − o

(
N−1/3)

,

implying that UCi
∈ (b

3 , b) with probability (1 − o(N−1/3)). Consequently,

E
(
P

(
vCi

∈ [
yN1/3,∞)|UCi

)) ≤ e−by/3

1 − e−b/3P
(
vCi

∈ [
0,N1/3]) + o

(
N−1/3)

.
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Recalling the definition of q(N,I) from (3.62), and conditioning on the number
Mb of components of size bN2/3, while observing that given the sizes of com-
ponents the minimal vertices of various different components are identically dis-
tributed, we get

q
(
N, [y,∞)

) = E

[ ∞∑
b=δ

MbP
(
vCi

∈ [
yN1/3,∞)||Ci | = bN2/3)]

.

With
∑

b≥δ Mb ≤ δ−1N1/3, by the preceding, this and (3.63) imply that

q
(
N, [y,∞)

) ≤ e−δy/3

1 − e−δ/3 q
(
N, [0,1]) + o(1).

Since p(N,y, δ) ≤ q(N, [y,∞)), to prove the theorem, it suffices to show that

(3.65) sup
N

q
(
N, [0,1]) < ∞,

Writing ti(v) as points on the vth vertex around which intervals are constructed
and explored, and denoting N (v) as the number of such points we observe that

q
(
N, [0,1]) ≤

N1/3∑
v=1

E

(N (v)∑
i=1

1{|C(ti (v))|>δN2/3}

)
,

where C(ti(v)) is the maximal connected component containing ti(v).
Clearly, the collection {t1(v), . . . , tN (v)(v)} is independent and identically dis-

tributed for different v ∈ GN . We replace the exploration by the overcounting
process of Section 2.2 which is coupled with the exploration process until the
exploration process hits zero. Then we restart an independent (and identical) over-
counting process together with restarting the exploration process. We repeat this
process until the end of exploration of the complete graph. Subsequently, setting
{t∗1 (v), . . . , t∗N ∗(v)}, N ∗(v) and C∗(t∗i (v)) as the corresponding elements of the
overcounting process, we observe that since |C(t∗i (v))| are i.i.d. we have

q
(
N, [0,1]) ≤

N1/3∑
v=1

E

(N ∗(v)∑
i=1

1{|C(t∗i (v))|>δN2/3}

)

= N1/3
E

(
N ∗(v)

)
P

(∣∣C(
t∗i (v)

)∣∣ > δN2/3)
,

where we have used Wald’s equality.
Therefore, it suffices to prove that N1/3

P(|C∗
0 | ≥ δN2/3) is bounded by a con-

stant where C∗
0 is a typical component of the overcounting process.

We now define the coupled overcounting process via i.i.d. random variables
ξw
k , where each ξw

k represents the number of links generated at kth time step
by the overcounting process with the parameters λN and θN lying in the criti-
cal window (3.1), Unlike Section 2.2, here ξw

i ∼ Poisson( θN

λN
). Then define Sw

k =
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Sw
k−1 + (ξw

k − 1), with Sw
0 = 1. Setting τw = min{k ≥ 1 : Sw

k = 0}, it suffices to
show that N1/3

P(τw > δN2/3) is bounded by a universal constant. Using the same
arguments as used in Section 2.2, we conclude that

(3.66) P(τ = n + 1) ≤ E(Sw
1 )

n
sup

�

{
P

(
Sw

n+1 − Sw
1 = −�

)}
Using [16], Proposition 2.4.4, observe that

P
(
Sw

n+1 − Sw
1 = −�

) ≤ c

n1/2 .

Therefore,

P(τ = n + 1) ≤ cn−3/2.

Subsequently, following the same arguments as in Section 2.2, we conclude that

N1/3
P

(∣∣C∗
0
∣∣ ≥ δN2/3) ≤ c,

for some finite c = c(δ), thereby proving the statement of the lemma. �

APPENDIX: PROOF OF PROPOSITION 3.2

With YN = Y
a,θN

N , ZN = Z
a,θN

N and writing ι(l) for the number of maximal con-
nected components in the corresponding graph completely explored before step l,
we use the relations

Al = YN(l) + ι(l) = ZN(l) − sur(l) + ι(l),(A.1)

ι(l) = 1 − min
0≤k≤(l−1)

{
ZN(k) − sur(k)

}
,(A.2)

and the fact that k �→ sur(k) is nondecreasing, to find that

Al = 1 + ZN(l) − sur(l) + max
k≤(l−1)

{
sur(k) − ZN(k)

}
≤ 1 + max

k≤l

{
ZN(l) − ZN(k)

}
,

which can further be simplified to write

Al ≤ 1 + 2 max
k≤l

∣∣ZN(k)
∣∣

Recall the martingale decomposition, ZN(k) = MN(k) + BN(k), where MN is
a martingale and BN is the predictable process. Then, for any fixed positive K , set

ϒN = min
{
k : ∣∣ZN(k)

∣∣ > KN1/3} ∧ (
sN2/3)

.

By Markov’s inequality, it thus suffices for Proposition 3.2 to show that

(A.3) E
[∣∣ZN(ϒN)

∣∣2] = O
(
N2/3)

.
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To this end, using the notation introduced in (3.16), clearly

(A.4) E
[∣∣ZN(ϒN)

∣∣2] ≤ 2E
[∣∣MN(ϒN)

∣∣2] + 2E
[∣∣BN(ϒN)

∣∣2]
.

Further, by Doob’s optional sampling theorem,

E
(
MN(ϒN)2) = E

(
DN(ϒN)

) ≤ E
(
DN

(
sN2/3))

,

since M2
N is a submartingale and ϒN ≤ sN2/3. Now, recall that

DN

(
sN2/3) =

sN2/3∑
k=1

var(ζk|Fk−1)

with by way of (3.21) for uniformly bounded ϕk ≤ θN/λN , has expected value
bounded by cN2/3, for some finite c = c(a, s). Turning to show the same for
E|BN(ϒN)|2, recall that the right sum of (3.33) has l(l +1)/2 terms, each bounded
by θN/N , whereas to the left sum only the at most νl≥2 events Ek′

≥2 contribute (no
more than 2θN each). Thus, in view of (3.1) and (3.33),

(A.5) BN(l) ≤ 1 + al

N1/3 + θN l2

λNN
+ 2θN

λN

νl≥2.

For l = ϒN ≤ sN2/3, the nonrandom part of the RHS of (A.5) is at most cN1/3.
Next, upon examining the argument leading to (3.13), we deduce that νl≥2 is
stochastically dominated by the sum of at most νl≥1 i.i.d. Poisson variables of rate
κ ′lN−1 each. Hence, for some C finite and all l, N ,

E
[(

νl≥2
)2] ≤ C + C

l2

N2E
[(

νl≥1
)2]

.

Similar refinement in the argument leading to (3.9), yields that

E
[(

νl≥1
)2] ≤ Cl2,

hence E[(νl≥2)
2] ≤ cN2/3 for l ≤ sN2/3. Such bound holds for E|BN(ϒN)|2 and

the decomposition (A.4) yields (A.3) (thereby completing the proof).
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[8] ERDŐS, P. and RÉNYI, A. (1960). On the evolution of random graphs. Magy. Tud. Akad. Mat.
Kut. Intéz. Közl. 5 17–61. MR0125031

[9] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Conver-
gence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathe-
matical Statistics. Wiley, New York. MR0838085

[10] GRIMMETT, G. R. and STIRZAKER, D. R. (2001). Probability and Random Processes, 3rd ed.
Oxford Univ. Press, New York. MR2059709

[11] HARTLEY, H. O. and DAVID, H. A. (1954). Universal bounds for mean range and extreme
observation. Ann. Math. Stat. 25 85–99. MR0060775

[12] IOFFE, D. (2009). Stochastic geometry of classical and quantum Ising models. In Methods of
Contemporary Mathematical Statistical Physics. Lecture Notes in Math. 1970 87–127.
Springer, Berlin. MR2581610

[13] IOFFE, D. and LEVIT, A. (2007). Long range order and giant components of quantum random
graphs. Markov Process. Related Fields 13 469–492. MR2357384

[14] JANSON, S. (2007). On a random graph related to quantum theory. Combin. Probab. Comput.
16 757–766. MR2346812

[15] JOSEPH, A. (2014). The component sizes of a critical random graph with given degree se-
quence. Ann. Appl. Probab. 24 2560–2594. MR3262511

[16] LAWLER, G. F. and LIMIC, V. (2010). Random Walk: A Modern Introduction. Cambridge
Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. MR2677157

[17] ŁUCZAK, T. (1990). Component behavior near the critical point of the random graph process.
Random Structures Algorithms 1 287–310. MR1099794

[18] NACHMIAS, A. and PERES, Y. (2010). The critical random graph, with martingales. Israel J.
Math. 176 29–41. MR2653185

[19] NACHMIAS, A. and PERES, Y. (2010). Critical percolation on random regular graphs. Random
Structures Algorithms 36 111–148. MR2583058

[20] RIORDAN, O. (2012). The phase transition in the configuration model. Combin. Probab. Com-
put. 21 265–299. MR2900063

[21] TUROVA, T. S. (2011). Survey of scalings for the largest connected component in inhomoge-
neous random graphs. In Random Walks, Boundaries and Spectra. Progress in Probability
64 259–275. Birkhäuser, Basel. MR3051703

[22] TUROVA, T. S. (2013). Diffusion approximation for the components in critical inhomogeneous
random graphs of rank 1. Random Structures Algorithms 43 486–539. MR3124693

http://www.ams.org/mathscinet-getitem?mr=1434128
http://www.ams.org/mathscinet-getitem?mr=2735378
http://www.ams.org/mathscinet-getitem?mr=3050505
http://www.ams.org/mathscinet-getitem?mr=0756039
http://www.ams.org/mathscinet-getitem?mr=2337396
http://www.ams.org/mathscinet-getitem?mr=1091575
http://www.ams.org/mathscinet-getitem?mr=0125031
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=2059709
http://www.ams.org/mathscinet-getitem?mr=0060775
http://www.ams.org/mathscinet-getitem?mr=2581610
http://www.ams.org/mathscinet-getitem?mr=2357384
http://www.ams.org/mathscinet-getitem?mr=2346812
http://www.ams.org/mathscinet-getitem?mr=3262511
http://www.ams.org/mathscinet-getitem?mr=2677157
http://www.ams.org/mathscinet-getitem?mr=1099794
http://www.ams.org/mathscinet-getitem?mr=2653185
http://www.ams.org/mathscinet-getitem?mr=2583058
http://www.ams.org/mathscinet-getitem?mr=2900063
http://www.ams.org/mathscinet-getitem?mr=3051703
http://www.ams.org/mathscinet-getitem?mr=3124693


CRITICAL QUANTUM RANDOM GRAPHS 1219

DEPARTMENTS OF STATISTICS

AND MATHEMATICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305
USA
E-MAIL: amir@math.stanford.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BRITISH COLUMBIA

#121-1984 MATHEMATICS ROAD

VANCOUVER, BRITISH COLOMBIA

CANADA V6T 1Z2
E-MAIL: anna.levit.14@gmail.com

TIFR-CENTER FOR APPLICABLE MATHEMATICS

POST BAG 6503, GKVK POST OFFICE

BANGALORE 560065
INDIA

E-MAIL: sreekar@tifrbng.res.in

mailto:amir@math.stanford.edu
mailto:anna.levit.14@gmail.com
mailto:sreekar@tifrbng.res.in

	Introduction
	Proof of Theorem 1.2
	Exploration process
	Overcounting
	Undercounting

	Proof of Theorem 1.3
	Exploration process and Brownian excursions
	Joint convergence of component sizes

	Appendix: Proof of Proposition 3.2
	Acknowledgments
	References
	Author's Addresses

