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CRITICAL RADIUS AND SUPREMUM OF RANDOM SPHERICAL
HARMONICS

BY RENJIE FENG1,2 AND ROBERT J. ADLER1,3

Peking University and Technion

We first consider deterministic immersions of the d-dimensional sphere
into high dimensional Euclidean spaces, where the immersion is via spher-
ical harmonics of level n. The main result of the article is the, a priori un-
expected, fact that there is a uniform lower bound to the critical radius of
the immersions as n → ∞. This fact has immediate implications for random
spherical harmonics with fixed L2-norm. In particular, it leads to an exact and
explicit formulae for the tail probability of their (large deviation) suprema by
the tube formula, and also relates this to the expected Euler characteristic of
their upper level sets.

1. Introduction. The spherical harmonics, of level n ≥ 1, on the d-dimen-
sional unit sphere Sd , are the collection of the

(1.1) kd
n = 2n + d − 1

n + d − 1

(
n + d − 1

d − 1

)

eigenfunctions {φn,d
j }kd

n

j=1 of the Laplacian �d on Sd , satisfying,

�dφ
n,d
j (x) = −n(n + d − 1)φ

n,d
j (x).(1.2)

It is then immediate that for any vector a = (a1, . . . , akd
n
) of reals, the functions

�d
n

�=
kd
n∑

j=1

ajφ
n,d
j(1.3)

solve the wave equation

�d�d
n = α�d

n,(1.4)
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where α = −n(n+d −1). Thus, with some ambiguity, both the �d
n and their linear

combinations are often also referred to as spherical harmonics, or wave functions
on the sphere.

Instead of taking the aj in (1.3) constant, they could also be taken to be random.
Two classical choices are either to take the vector a to be uniformly distributed on
Skd

n−1, or to take the aj as independent, standard Gaussians. In the former case,
we refer to random spherical harmonics under the spherical ensemble, while in
the latter we refer to the Gaussian ensemble. The two are clearly related, due to
the fact that, if the aj are Gaussian, then normalizing a → a/‖a‖ gives a uniform

variable on Skd
n−1. Thus, the spherical harmonics under the spherical ensemble are

a conditioned version of those under a Gaussian ensemble, with a corresponding
statement going in the opposite direction.

The relationship between the two ensembles has been a recurrent theme in the
general theory of Gaussian processes with a finite Karhunen–Loéve expansion, that
is, processes which have a finite expansion similar to (1.3), although both the φj

and the space over which they, and the process, are defined might be quite general
(e.g., [2, 17, 20]). We shall give some more details below, but for the moment note
that proofs based on this relationship typically only work when the expansion is
finite. If the processes in question have an infinite expansion, then approximating
them with a finite expansion and taking a passage to a limit has, to the best of our
knowledge, only worked in situations in which the limit process is very smooth,
typically at least C2.

Smoothness of random spherical harmonics as n → ∞ is most definitely not
one of their properties, since the n = ∞ limit is not only not C2, but rather is
a generalized function (cf. [8]). Consequently, one would not expect the passage
to the limit mentioned in the previous paragraph to be at all relevant for them.
The result of this paper is that this is not exactly the case, and, with the right
normalizations, connections between the spherical ensemble and integral geometry
which hold for the finite n case still make sense as n → ∞. In particular, we
shall obtain explicit formulae for the tail probability of the supremum of random
spherical harmonics above high levels, and for the expected Euler characteristic
of the excursion sets (cf. (1.11)). The derivations will rely on the result about a
certain immersion of Sd into the sphere Skd

n−1, which has its independent interest,
and is really the main result of the paper. Thus we describe it first, then describe its
implications for random spherical harmonics, and then close the Introduction with
a roadmap to the remainder of the paper.

1.1. Spherical harmonics and the immersion. The main result of the paper is
actually a deterministic one, and rather simple to state.

Consider the map idn : Sd →R
kd
n , defined by

(1.5) idn (x) =
√

sd

kd
n

(
φ

n,d
1 , . . . , φ

n,d

kd
n

)
,
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where

sd = 2π(d+1)/2

�((d + 1)/2)
,

is the Euclidean surface area of Sd .
It is an easy calculation, that we shall carry out in Section 5, that ‖idn (x)‖ = 1

for all x ∈ Sd , so that idn is actually a mapping of spheres into spheres, namely

(1.6) idn : Sd → Skd
n−1.

As proved in [15, 24], this map is actually an immersion for sufficiently large n.
Indeed, if n is odd it is an embedding, while if n is even then idn (Sd) ∼= RP d , the
real projective space of dimension d . Furthermore, the pullback of the Euclidean
metric to Sd has the leading order expansion

(1.7)
(
idn

)∗
(gE) ∼= cdn2gSd ,

where cd is a constant depending on d and gSd is the standard round metric on Sd .
Hence, roughly speaking, a geodesic of unit length on the unit sphere Sd will be

stretched by a factor of order n under the map idn , and so it is reasonable to expects
that its image, as with that of the entire sphere, becomes highly “twisted” as n

grows. An informative measure of twistedness is provided by the notion of reach
or critical radius, which we shall define and describe in Section 3, and which is a
measure of both the local and global smoothness of a set. In general, the smaller
the reach of a set, the less well behaved it is. In view of the last three sentences,
the following result, which shows that there exists a uniform lower bound for the
critical radii of the immersions as n → ∞, is, a priori, somewhat surprising.

THEOREM 1.1. For sufficiently large n, the reach of the immersion in(S
d) in

R
kd
n has a strictly positive, uniform in n, lower bound, which depends only on d .

An explicit lower bound for the two-dimensional case is given in (4.10), and for
the general case in (5.5). From Theorem 1.1, it follows that there is a lower bound
for the critical radius of idn (Sd) also when it is considered as a subset of Skd

n−1. We
use ρd denote this new lower bound throughout the article.

Note that a model closely related to ours, but in the setting of complex geome-
try, was studied earlier in [18]. There the map (1.5) was replaced by the classical
Kodaira embedding, defined via a basis of holomorphic sections of positive holo-
morphic line bundles over complex manifolds, and a result similar to our Theo-
rem 1.1 was established. In particular, Sun derived a formula for the critical radius
of the Kodaira embeddings in complex projective spaces in terms of the Bergman
kernels. This allowed the exploitation of the fact that these kernels decay exponen-
tially to carry out the detailed calculations behind his corresponding result. Our
argument to prove Theorem 1.1 is similar to this, with the critical radius being
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expressed in terms of the spectral projection kernels of the sphere, which are of
polynomial decay.

We now turn to the implications of the deterministic Theorem 1.1 in a random
setting.

1.2. Random spherical harmonics. As we have already mentioned, the deter-
ministic results of the previous subsection have implications for random spherical
harmonics, under both the spherical and Gaussian ensembles. Both of these are ob-
jects of active research, much of the motivation coming from Berry’s conjectures
in the 1970s (e.g., [5]) linking them to the eigenstates of semiclassical, quantum,
Hamiltonian systems, but more recently motivated by intrinsic mathematical in-
terest. Thus, for example, there is a large and growing mathematical literature on
the nodal domains of these systems (e.g., [14, 16]), although its roots too are in
the quantum mechanical applications. There is also a rich literature on exceedence
probabilities (e.g., [9, 12, 13]), which, while part of the general exceedence theory
for Gaussian random fields (for which [2] will be our basic reference) is actually
motivated by the statistical analysis of the cosmic microwave background radiation
data.

Throughout this paper, we shall concentrate primarily on the spherical rather
than the Gaussian ensemble. The reason is three-fold. First, the calculations on
reach in Sections 4 and 5 are independent of the ensemble. Second, when apply-
ing these results one typically first treats the spherical ensemble, and then moves
to the Gaussian ensemble via the conditioning argument described above. This is
standard, and so we shall not treat it further. Finally, under the spherical ensem-
ble, random spherical harmonics also have a property that makes them of intrinsic
mathematical interest. It follows from the properties of (deterministic) spherical
harmonics that, in the spherical case,∥∥�d

n

∥∥
L2 =

∫
Sd

∣∣�d
n(x)

∣∣2 dVg
Sd

= 1,(1.8)

where we write Vg
Sd

for volume measure with respect to gSd . Put more simply,

Vg
Sd

measures surface area on Sd , so that, for example, sd = Vg
Sd

(Sd).

From this it follows, if we now write Hd
n to denote the nth eigenspace of �d

generated by the solutions of the wave equation (1.2), and SHd
n to denote L2-

sphere in this space, that �d
n , under the spherical ensemble, is a random element

of SHd
n . Thus it provides a mathematical model for studying this space.

Two results that at first seem somewhat at odds with (1.8) are due to Burq and
Lebeau [6]. To state them we need some notation. In particular, we shall denote
probabilities and expectations under the spherical ensemble by Pμd

n
and Eμd

n
, re-

spectively. Then Burq and Lebeau showed that, for u ≥ 1, and all α < sd ,

Pμd
n

{
sup
Sd

∣∣�d
n(x)

∣∣ > u
}

≤ Cn−d(1+d/2)e−αu2
.(1.9)
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The result (1.9) is typical of what we referred to above as an exceedence probabil-
ity. The second, related, result established the logarithmic growth of the expecta-
tion of suprema; namely, for some 0 < c < C < ∞,

c
√

logn ≤ Eμd
n

{
sup
Sd

∣∣�d
n(x)

∣∣} ≤ C
√

logn.(1.10)

Combining (1.8)–(1.10), we obtain a picture of sample paths for �d
n which,

while almost surely L2-integrable, have local behavior which grows increasingly
erratic as n → ∞, with the the supremum having an exponential concentration of
measure around

√
logn.

There are also analogues of (1.9) and (1.10) under the Gaussian ensemble. The
close connection between the above results for the two ensembles is not coinci-
dental but rather is related to the fact that the spherical ensemble is a conditional
version of the Gaussian ensemble as we mentioned above.

However, it turns out that, despite the irregular behavior of random spherical
harmonics for large n, the uniform lower bound that Theorem 1.1 provides for
the critical radii of the immersions idn actually allows one to exploit this general
approach to prove a number of interesting results.

1.3. Consequences for random spherical harmonics. We need some notation.
For u > 0, denote the excursion sets of �d

n by

Ad
n(u) = {

x ∈ Sd : �d
n(x) > u

}
.(1.11)

THEOREM 1.2. Let �d
n be spherical harmonics under the spherical ensemble.

Then there exist constants ρd > 0 such that, for sufficiently large n, and for all

u >
√

kd
n/sd cosρd ,

Pμd
n

{
sup
Sd

�d
n(x) > u

}
= κEμd

n

{
χ

(
Ad

n(u)
)}

,(1.12)

where κ = 1/2 if n is even and 1 if n is odd, and χ(A) denotes the Euler charac-
teristic of the set A.

The factor of κ here is due to the fact that �d
n(Sd) is isomorphic to Sd for n

odd, and is isomorphic to RP d for n even. This affects the corresponding tube
formulae, which are the key to the probability calculation leading to (1.12), but not
the Euler characteristic.

Note that (1.12) is an exact result (for quantifiably large u) and not an asymp-
totic equivalence as is more common, for example, in the Gaussian literature.

Precise expressions for the probability and expectation in Theorem 1.2 are ba-
sically already available in the literature, and lead to the following set of results, in
which Pn,d denotes the nth Legendre polynomial of order d .
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PROPOSITION 1.3. Under the conditions of Theorem 1.2,

Pμd
n

{
sup
x∈Sd

�d
n(x) > u

}
(1.13)

= κ

skd
n−1

d∑
j=0

fkd
n ,j

(
cos−1

(
u/

√
kd
n/sd

))[
P ′

n,d(1)
]j/2Lj

(
Sd)

,

where Lj (S
d) are the j th Lipschitz–Killing curvatures of the unit sphere Sd , given

explicitly by (6.10), and the fkd
n ,j are functions defined by (6.6) below.

As a direct corollary of Theorem 1.1 and Proposition 1.3, we have the following
result for S2:

COROLLARY 1.4. For u >
√

(2n + 1)/4π cos(ρ2),

Pμ2
n

{
sup
S2

�2
n(x) > u

}

= κ�(n + 1
2)

π1/2�(n − 1)

∫ cos−1(u/
√

(2n+1)/4π)

0
sin2n−3(r)

×
{

2
(
n2 + n

)(
1 − 2n − 1

2n − 2
sin2(r)

)
+ 2 sin2(r)

n − 1

}
dr.

The simple structure of the two-dimensional result in Corollary 1.4 makes it
easy to understand the large deviation nature of the result. In particular, since
�2

n(x) = ∑
ajφ

n,2
j (x), it follows that

∣∣�2
n(x)

∣∣2 ≤
( k2

n∑
j=1

a2
j

)( k2
n∑

j=1

∣∣φn,2(x)
∣∣2)

=
k2
n∑

j=1

∣∣φn,2(x)
∣∣2 = 2n + 1

4π
,

the last equality coming from (2.1) and (2.4) below. Thus Corollary 1.4 relates
only to the range u ∈ [√(2n + 1)/4π cos(ρ2),

√
(2n + 1)/4π ], which makes it a

large deviation result. As opposed to most large deviation results, however, this
one is quite unique in the fact that the exceedence probability is precise, and not
just an approximation.

Obviously, a similar comment holds for Theorem 1.2 and Proposition 1.3 for
general d and n.

1.4. A roadmap. We now turn to proving these results. In the following sec-
tion, we collect some results on spherical harmonics, and in Section 3 we do the
same for critical radii. Section 4 then proves Theorem 1.1 for the case d = 2, while
Section 5 treats the case of general d . Section 6 proves the remaining results, and
in the final Section 7 we collect some comments relating our results to others in
the literature and mention some interesting open problems.
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2. Spherical harmonics on S2. In this section, we shall collect a number of
results specific to spherical harmonics on S2, which we shall use in our proof of
Theorem 1.1. Similar results hold in higher dimensions, but for the moment, we
stay in dimension 2. We then look at immersions.

Since, for this and most of the following two sections, we shall be dealing with
the case of S2, we shall drop the the superscript 2 whenever it does not lead to
ambiguities. Thus, i2

n becomes in, �2
n becomes �n, Pn,2 becomes Pn, and so forth.

2.1. Some basic facts. Consider the unit sphere S2 equipped with the round
metric gS2 and with associated Laplacian �. The spherical harmonics φn

j are then
the eigenfunctions of

�φn
j (x) = −n(n + 1)φn

j (x).

We normalize the eigenfunctions so that the L2 norm of φn
j is 1, and denote by

Hn their span. The dimension of Hn is 2n + 1. Since the Laplacian is invariant
under rotation, Hn is invariant under the action φ(x) → φ(Qx) for Q ∈ SO(3).
Moreover, if {φn

j (x)} is an orthonormal basis of Hn, so is {φn
j (Qx)}.

Let Hn be spanned by {φn−n, . . . , φ
n
0 , . . . , φn

n}. We denote Kn as the spectral
projection from the L2-integrable functions to the spherical harmonics of level n,
so that

Kn : L2(
S2) → Hn

(
S2)

.

Then the kernel of Kn is given by

Kn(x, y) =
n∑

j=−n

φn
j (x)φn

j (y).(2.1)

In fact, the spectral projection kernel has the following explicit formula [4, 19]:

Kn(x, y) = 2n + 1

4π
Pn

(
cos�(x,y)

)
,

where �(x,y) is the angle between the vectors x, y ∈ S2. The Legendre polyno-
mials (of order 2) are defined by

Pn(x) = 1

2nn!
dn(x2 − 1)n

dxn
.

Some basic facts that we shall require are [3, 4]

Pn(1) = 1; P ′
n(1) = n2 + n

2
; −1 ≤ Pn(x) ≤ 1, for x ∈ [−1,1],(2.2)

and

Pn(−x) = (−1)nPn(x).(2.3)

Thus, on the diagonal, the kernel satisfies

Kn(x, x) = 2n + 1

4π
Pn(1) = 2n + 1

4π
.(2.4)
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2.2. Immersions. Consider the map

(2.5) in : S2 →R
2n+1, x →

√
4π

2n + 1

(
φn−n(x), . . . , φn

0 (x), . . . , φn
n(x)

)
.

For large enough n, this map is an immersion [24].
Defining the normalized kernel

�n(x, y) = 4π

2n + 1
Kn(x, y) = Pn

(
cos�(x,y)

)
we have that the norm of in(x) is given by

∥∥in(x)
∥∥2 = 4π

2n + 1

n∑
j=−n

∣∣φj (x)
∣∣2 = �n(x, x) = 1.

Thus in is actually a map from S2 to S2n−1, and the pullback of the Euclidean
metric is

(2.6) gn = i∗n(gE) = n2 + n

2
gS2,

where we use gE to denote the standard Euclidean metric. While this fact is well
known (cf. [15, 24]) it will follow, en passant, from calculations below (cf. the
argument surrounding (3.8)).

The distance between two points of the immersion is given by∥∥in(x) − in(y)
∥∥2 = �n(x, x) + �n(y, y) − 2�n(x, y)

(2.7)
= 2

(
1 − Pn

(
cos�(x,y)

))
,

and so it follows from (2.3) that in is an embedding for n odd but identifies antipo-
dal points for n even. Thus, in the case of even n, it follows that in(S

2) ∼= RP 2.

3. The critical radius of in(S2). The modern notion of reach, or critical ra-
dius (terms which we shall use interchangeably) seems to have appeared first in
the classic paper [10] of Federer, in which he introduced the notion of sets with
positive reach and their associated curvatures and curvature measures. In doing
so, Federer was able to include, in a single framework, Steiner’s tube formula for
convex sets and Weyl’s tube formula for C2 smooth submanifolds of Rn. The im-
portance of this framework extended, however, far beyond tube formulae, as it
became clear that much of the theory surrounding convex sets could be extended
to sets that were, in some sense, locally convex, and that the reach of a set was
precisely the way to quantify this property.

To be just a little more precise, suppose N is a smooth manifold embedded in an
ambient manifold N̂ . Then the local reach at a point x ∈ N is the furthest distance
one can travel, along any geodesic in N̂ based at x but normal to N in N̂ , without
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meeting a similar vector originating at another point in N . The (global) reach of N

is then the infimum of all local reaches. As such it is related to local properties of
N through its second fundamental form, but also to global structure, since points
on N that are far apart in a geodesic sense, in the metric of N , might be quite close
in the metric of the ambient space N̂ .

There are many, equivalent, formal, definitions of reach, but we shall take as our
definition a result which is actually a theorem of Takemura and Kuriki [20], that
states that for a compact Riemannian manifold N ⊂ R

k , the critical radius is given
by

(3.1) rc(N) = inf
x,y∈N

‖x − y‖2

2‖P ⊥
y (x − y)‖ ,

where P ⊥
y (x − y) is the projection of x − y to the normal bundle of N at y.

This is actually all we need for the remainder of the paper, and so for the reader
interested to know more about critical radii we refer you to the review [21] for
an excellent coverage of the history and uses of this notion in Mathematics as a
whole, and to the expository sections of [1] to see why it is an important property
in the theory of random processes.

Our interest now, however, is in the critical radii of the immersions in(S
2) in

R
2n+1, and so we now concentrate solely on this.
Rewriting (3.1) for this setting, we have that the critical radius of in(S

2) is given
by

(3.2) rc,n := inf
x,y∈S2

‖in(x) − in(y)‖2

2‖P ⊥
in(y)(in(x) − in(y))‖ .

The numerator here is given by (2.7), and the first step regarding the denominator
is to compute the projection of the vector in(x) − in(y) to the normal space, that
is, the orthogonal complement, in R

2n+1, of the tangent space Tin(y)in(S
2).

To this end, we move to polar coordinates

x = (sin θx sinφx, sin θx cosφx, cos θx),

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π , with a corresponding definition for y.
Note that the normalized projection kernel �n is constant on the diagonal, and

so

(3.3) ∂θ�n(y, y) = ∂φ�n(y, y) = 0.

We rewrite the normalized kernel in polar coordinates as

�n(x, y) = Pn(sin θx sinφx sin θy sinφy

(3.4)
+ sin θx cosφx sin θy cosφy + cos θx cos θy).
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This yields

∂θy�n(x, y) = P ′
n

(
cos�(x,y)

)[sin θx sinφx cos θy sinφy

+ sin θx cosφx cos θy cosφy − cos θx sin θy]
and

∂φy�n(x, y) = P ′
n

(
cos�(x,y)

)[sin θx sinφx sin θy cosφy

− sin θx cosφx sin θy sinφy].
Further differentiation yields

∂θx ∂θy�n(x, y)|x=y = P ′
n(1),(3.5)

∂φx ∂φy�n(x, y)|x=y = P ′
n(1) sin2 θ,(3.6)

∂θx ∂φy�n(x, y)|x=y = 0.(3.7)

An easy consequence of these three identities is the fact, given in (2.6), that the
pullback, under in, of the Euclidean metric on R

2n+1 is a scaled version of the
standard metric on S2. To see this, note that the pullback is just∑

dφn
j (x) ⊗ dφn

j (x),(3.8)

which we can write as dxdy�n(x, y)|x=y . Since the differential operator d is
global, it is unchanged if we take derivatives with respect to the angle variables
θ and φ. Applying now (3.5)–(3.7) and (2.2) immediately establishes (2.6).

With polar notation, it is easy to see that the tangent subspace at in(y) is spanned
by the vector { ∂in

∂θ
(y), ∂in

∂φ
(y)}. (3.7) implies that these two vectors are orthogonal,

that is, 〈
∂in

∂θ
(y),

∂in

∂φ
(y)

〉
= 0.

Thus the projection of in(x) − in(y) to the tangent space is

px(y) := 〈in(x) − in(y), ∂in
∂θ

(y)〉
| ∂in
∂θ

(y)|2
∂in

∂θ
(y) + 〈in(x) − in(y), ∂in

∂φ
(y)〉

| in(y)
∂φ

|2
∂in

∂φ
(y),

which can be rewritten as

∂θy�n(x, y) − ∂θy�n(y, y)

∂θx ∂θy�n(x, y)|x=y

∂in

∂θ
(y) + ∂φy�n(x, y) − ∂φy�n(y, y)

∂φx ∂φy�n(x, y)|x=y

∂in

∂φ
(y).

Applying (3.3) to the above gives

(3.9) px(y) = ∂θy�n(x, y)

∂θx ∂θy�n(x, y)|x=y

∂in

∂θ
(y) + ∂φy�n(x, y)

∂φx ∂φy�n(x, y)|x=y

∂in

∂φ
(y).
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It follows that the squared norm of the projection px(y) in (3.9) can be written
as

(3.10)
∥∥px(y)

∥∥2 = |∂θy�n(x, y)|2
∂θx ∂θy�n(x, y)|x=y

+ |∂φy�n(x, y)|2
∂φx ∂φy�n(x, y)|x=y

.

Thus we can express the the critical radius (3.2) as

rc,n = inf
x,y∈S2

‖in(x) − in(y)‖2

2
√

‖in(x) − in(y)‖2 − ‖px(y)‖2
.

By rotation invariance, it is clear that each of the terms within the infimum here
is dependent only on the relative positions of x and y, and so the local radius is
actually the same at the image of each point on the sphere. Thus, it suffices to
consider the local critical radius at any point. Choosing x = (0,0,1) for this point,
the critical radius rc,n can be written as

(3.11) rc,n = inf
y∈S2

‖in((0,0,1)) − in(y)‖2

2
√

‖in((0,0,1)) − in(y)‖2 − ‖p(0,0,1)(y)‖2
.

For x = (0,0,1), we can write the coordinates of y as (θ,φ), and so (3.4)–(3.7)
become

�n

(
(0,0,1), y

) = Pn(cos θ),

∂θx ∂θy�n(x, y)|x=y = P ′
n(1),

∂φx ∂φy�n(x, y)|x=y = P ′
n(1) sin2 θ,

∂θy�n(x, y)|x=(0,0,1) = −P ′
n(cos θ) sin θ,

∂φy�n(x, y)|x=(0,0,1) = 0.

Similarly, (2.7) becomes∥∥in
(
(0,0,1)

) − in(y)
∥∥2 = 2

(
1 − Pn(cos θ)

)
,

and (3.10) reads ∥∥p(0,0,1)(y)
∥∥2 = [P ′

n(cos θ) sin θ ]2

P ′
n(1)

.

Hence, we can now finally rewrite the critical radius of in(S
2) in R

2n+1 as

rc,n = inf
θ∈[0,π ]

1 − Pn(cos θ)√
2 − 2Pn(cos θ) − [P ′

n(cos θ) sin θ ]2

P ′
n(1)

,(3.12)

and we are now in a position to begin the more serious steps in the proof of Theo-
rem 1.1, at least for the case d = 2.
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4. Proof of Theorem 1.1 for S2. In view of the preceding section, in order to
prove Theorem 1.1 for the case d = 2 we need to provide a lower bound for the
expression given in (3.12) that is independent of n, at least for n large enough.

Note first that Pn(cos θ) is symmetric (anti-symmetric) about θ = π/2 for n

even (odd). Thus, for n even, it suffices to consider θ ∈ [0, π/2] in (3.12). For the
moment, we shall assume that n is even, and then discuss the case of odd n at the
end of the section.

So, with n even, fix a positive constant c and divide [0, π/2] into the three
subintervals

[0, c/n], [
c/n,n−3/4]

,
[
n−3/4, π/2

]
.

For the first two, short range, subintervals, our strategy will be to study the rescal-
ing limit of the projection kernel and its derivatives. The infimum for the third
subinterval will follow directly from the rapid decay of the projection kernel and
its derivatives. The entire proof is based on Hilb’s asymptotics for Legendre poly-
nomials [3]. Specifically, there exists a (uniform in n) constant c, for which

(4.1) Pn(cos θ) =
(

θ

sin θ

)1/2
J0

((
n + 1

2

)
θ

)
+ Rn(θ),

where

(4.2) Rn(θ) =
{
θ2O(1), 0 ≤ θ ≤ c/n,

θ1/2O
(
n−3/2)

, c/n ≤ θ ≤ π/2,

and J0(θ) is the Bessel function of order 0.
The global infimum is then

inf
θ∈[0,π/2] = min

{
inf[0,c/n], inf

[c/n,n−3/4]
, inf
[n−3/4,π/2]

}
=: min{In, IIn, IIIn}.(4.3)

Consider the first infimum here:

In = inf
θ∈[0,c/n]

1 − Pn(cos θ)√
2 − 2Pn(cos θ) − [P ′

n(cos θ) sin θ ]2

P ′
n(1)

.

In order to investigate the error terms here, and to make the notation easier, we
study a rescaling limit via a new parameter y, where y = nθ , so that y ∈ [0, c]. By
applying Hilb’s asymptotic on [0, c/n], we have

Pn

(
cos(y/n)

) = J0(y) + O
(
n−1)

.

Next, for, the rescaling of P ′
n(cos θ), we note the relation [4, 7]

P ′
n(cos θ) = n + 1

sin2 θ

[
cos θPn(cos θ) − Pn+1(cos θ)

]
.



1174 R. FENG AND R. J. ADLER

Again applying Hilb’s asymptotic, we rescale [P ′
n(cos θ) sin θ ]2/P ′

n(1) to obtain

[ n+1
y/n+O(n−3)

]2[(1 + O(n−2))(J0(y + y
2n

) + O(n−2)) − (J0(y + 3y
2n

) + O(n−2))]2

P ′
n(1)

.

We apply the Taylor expansion

J0

(
y + y

2n

)
= J0(y) + y

2n
J ′

0(y) + O
(
n−2)

to further get the rescaling

2
[
J ′

0(y)
]2 + O

(
n−1)

.

Hence, as n → ∞, In is asymptotic to

I∞ = inf
y∈[0,c]

1 − J0(y)√
2 − 2J0(y) − 2[J ′(y)]2

.(4.4)

For IIn, we also apply the rescaling technique, the only difference between this
and the previous case being in the estimates of the error terms, where we need to
show that the leading terms in the rescaling limits will dominate the error terms.
The details are as follows.

Again, take y = nθ , so that now y ∈ [c, n1/4]. Hilb’s asymptotic gives

Pn

(
cos(y/n)

) = (
1 + O

(
n−3/2))1/2

J0
(
y + y/(2n)

) + O
(
n−15/8)

,

where the uniform bound O(n−15/8) is achieved when Rn(θ) is evaluated at θ =
n−3/4.

A Taylor expansion yields

J0

(
y + y

2n

)
= J0(y) + y

2n
J ′

0(y) + · · · .

We now need two basic properties from [3] for Bessel functions. The first is that

(4.5) Jn(x) ∼
√

2

πx
cos

(
x − nπ

2
− π

4

)
as x → ∞.

The second is that

(4.6) J ′
0(x) = −J1(x).

Combining these two properties, we have, for n large enough, the following uni-
form estimate for y ∈ [c, n1/4]:

J0

(
y + y

2n

)
= J0(y) + O

(
n−3/4)

.

Note that the leading term J0(y) will always dominate the error term, since, by
(4.5), the growth of J0(y) is at least of order O(n−1/8).
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Hence, we have the rescaling limit

Pn

(
cos

y

n

)
= J0(y) + O

(
n−3/4)

on the interval y ∈ [c, n1/4].
A similar argument shows that the rescaling of [P ′

n(cos θ) sin θ ]2/P ′
n(1), for n

large enough, will be dominated by the leading term 2[J ′
0(y)]2. Hence, IIn will

converge, as n → ∞ to

II∞ = inf
y∈[c,∞]

1 − J0(y)√
2 − 2J0(y) − 2[J ′

0(y)]2
.(4.7)

We now turn to IIIn, which is the last of the three terms to estimate. From
the asymptotic expansion (4.5), we see that J0((n + 1

2)θ) decays rapidly on θ ∈
[n−1/4, π/2], and has, in fact, a uniform bound of O(n−3/8). Thus by the Hilb
asymptotic, the same is true of Pn(cos θ). As for the derivative, Lemma 9.3 of [7]
proves that, for θ ∈ [c/n,π/2],

P ′
n(cos θ) =

√
2

π

n1/2

sin
3
2 θ

[
sinφ− − 1

8nθ
sinφ+

]
+ O

(
n−1/2θ−5/2)

,

where φ± = (n + 1
2)θ ± π/4. This implies the rapid decay of [P ′

n(cos θ) sin θ ]2/

P ′
n(1) if we apply the expression of P ′

n(1), and so the n → ∞ limit of IIIn is

III∞ = 1√
2
.(4.8)

Now fix (small) ε > 0. Combining (4.4), (4.7) and (4.8) with (4.3) and the defi-
nition (3.12) of rc,n, it follows that there exists a finite nε such that, for all even
n > nε , we have

rc,n ≥ min
{

inf
y∈[0,∞]

1 − J0(y)√
2 − 2J0(y) − 2[J ′

0(y)]2
,

1√
2

}
− ε.(4.9)

As an aside, note that if we write the expansion of the Bessel function J0(y) =
1 − y2/4 + y4/64 + O(y5) around y = 0, then the expression

1 − J0(y)√
2 − 2J0(y) − 2[J ′

0(y)]2

has the limit, as y → 0, of
√

2/3. Since this is trivially positive, and ε was arbitrary,
Theorem 1.1 is now proven for d = 2 and for even n, large enough.

However, we still need to treat the cases when n is odd. On the interval θ ∈
[0, π/2], exactly the same argument as above for the even case applies, and the
same infimum is achieved. But when we consider on θ ∈ [π/2, π], there is a sign
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FIG. 1. Behavior of the first and third terms in the lower bound for rc,n in the 2-dimensional case.

change in the expression of Pn(cos θ), since Pn(−x) = −Pn(x) for n odd. Taking
this into account, we obtain the global lower bound, for arbitrary ε and for all n

large enough, of

rc,n ≥ min
{

inf
y∈[0,∞]

1 − J0(y)√
2 − 2J0(y) − 2[J ′

0(y)]2
,

1√
2
,

(4.10)
inf

y∈[0,∞]
1 + J0(y)√

2 + 2J0(y) − 2[J ′
0(y)]2

}
− ε,

and the proof of Theorem 1.1 for the case d = 2 is done.
Figure 1 shows the behavior of the first and third terms in the lower bound for

rc,n in the above inequality.

5. Proof of Theorem 1.1 for the general case. The proof of Theorem 1.1 for
two dimensions can be generalized to higher dimensions without much difficulty. It
relies on properties of spherical harmonics in high dimensions that parallel those
of the two-dimensional case, and, not surprisingly, some heavier notation. (The
additional notation was the main reason for handling the two-dimensional case
first.) We shall sketch the main arguments in the proof now.

Retaining the earlier notation, we need to define the normalized spectral projec-
tion kernel

�d
n(x, y) = sd

kd
n

kd
n∑

j=1

φ
n,d
j (x)φ

n,d
j (y)

= Pn,d

(
�(x,y)

)
,

the second line following from [4].
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Following the same arguments as those that led to and follow from (3.5)–(3.7),
the pullback of the Euclidean metric is

(5.1)
(
idn

)∗
(gE) = P ′

n,d(1)gSd = n(n + d − 1)

d
gSd

and the critical radius of idn (Sd), as a subset of Rkd
n , is exactly the same as before,

namely as given by (3.12). Once again, relying on rotation invariance, it suffices
to study the local critical radius at the image of the point (0,0, . . . ,1).

As before, moving to polar coordinates on Sd , we have

�d
n

(
(0, . . . ,1), y

) = Pn,d(cos θ), θ ∈ [0, π].
Taking derivatives of the normalized kernel and evaluating them at (0, . . . ,1), the
d-dimensional analogue of (3.10) now reads

(5.2)
∥∥p(0,...,1)(y)

∥∥2 = [∂θy�n((0, . . . ,1), y)]2

∂θx ∂θy�n(x, y)|x=y

= [P ′
n,d(cos θ) sin θ ]2

P ′
n,d(1)

.

Hence, we can rewrite (3.11), now for the critical radius of the higher dimensional
immersion as

(5.3) rd
c,n

(
Sd) = inf

θ∈[0,π ]
1 − Pn,d(cos θ)√

2 − 2Pn,d(cos θ) − [P ′
n,d (cos θ) sin θ ]2

P ′
n,d (1)

.

We still have the following Hilb’s asymptotic [19],

Pn,d(cos θ) = �

(
d

2

)[
1

2

(
n + d − 1

2

)
sin θ

]− d
2 +1(

θ

sin θ

)1/2

× Jd
2 −1

((
n + d − 1

2

)
θ

)
+ Rn(θ),

where

(5.4) Rn(θ) =
{
θd/2O

(
nd/2−2)

, 0 ≤ θ ≤ c/n,

θ1/2O
(
n−3/2)

, c/n ≤ θ ≤ π/2,

with c a large, d-dependent, constant, and where Jd
2 −1(θ) is the Bessel function

Jd
2 −1(θ) =

∞∑
j=0

(−1)j

j !�(j + d
2 )

(
θ

2

)2j+ d
2 −1

.

Again, following the arguments of the preceding section, the global infimum
is derived by considering each of the subintervals [0, c/n], [c/n,n−3/4] and
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[n−3/4, π/2]. The infimum on the first two subintervals is expressed by the rescal-
ing limit of the Hilb’s asymptotic of the Legendre polynomials Pn,d(cos θ). When
we rescale θ → y/n in the Hilb’s asymptotic, we obtain the n → ∞ limit

J d∞(y) = �

(
d

2

)(
1

2
y

)− d
2 +1

Jd
2 −1(y) =

∞∑
j=0

(−1)j�(d
2 )

j !�(j + d
2 )

(
y

2

)2j

.

On the remaining subinterval, [n−3/4, π/2], the rapid decay of Pn,d(cos θ) and its
derivative follow from standard properties of Bessel functions [see (4.5)], thus the
infimum on this subinterval will tend to 1/

√
2, as n → ∞.

As before, combining arguments for the two cases of n add and n even, we find
the following lower bound for the critical radii rd

c,n as n → ∞:

min
{

inf
y∈[0,∞]

1 − J d∞(y)√
2 − 2J d∞(y) − d[(J d∞)′(y)]2

,
1√
2
,

(5.5)

inf
y∈[0,∞]

1 + J d∞(y)√
2 + 2J d∞(y) − d[(J d∞)′(y)]2

}
,

which completes the proof.

6. Proof of Theorem 1.2 and Proposition 1.3. We break the proofs into three
parts, starting with the proof of Theorem 1.2.

6.1. The equivalence of mean Euler characteristics and exceedence probabili-
ties. The following lemma implies Theorem 1.2. It also sets up the relationship
between exceedence probabilities and mean Euler characteristics, which we then
evaluate in the following two subsections. To state it we need to define the tube

Tube
(
in

(
Sd)

, ρ
) �=

{
x ∈ Skd

n−1 : min
y∈in(Sd)

d(x, y) ≤ ρ
}
,(6.1)

where d(x, y) is the geodesic distance on the sphere.
In addition, with a slight—but space saving—change of notation, we write VSN

for volumetric measure with respect to the round metric on SN .

LEMMA 6.1. Under the conditions of Theorem 1.2, and for all 0 ≤ ρ ≤ ρd ,

Eμd
n

{
χ

(
Ad

n(cosρ)
)} = 1

κ
Pμd

n

{
sup
Sd

�d
n(x)√
kd
n/sd

> cosρ

}
(6.2)

= V
Skd

n−1(Tube(in(Sd), ρ))

κskd
n−1

,

where κ is 1/2 if n is even and 1 if n is odd.
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PROOF. We start by noting that, by (1.8), we can write

�d
n(x)√
kd
n/sd

= 〈
a, idn (x)

〉 = cos�
(
a, idn (x)

)
,

with, as before a = (a1, . . . , akd
n
) ∈ Skd

n−1, and where �(x,y) is the angle between

vectors x, y ∈ Skd
n−1.

We now note the fact (e.g., [18], Lemma 3.1) that if M is a compact submanifold
of a smooth manifold N , and p ∈ N , then the intersection between M and a ball
of radius ρ around p will either be empty or contractible, as long as ρ is less than
the reach of M .

Further, we know from Theorem 1.1 that there is a uniform lower bound for
the critical radius of the immersion idn (Sd) in R

kd
n . From this and a little spherical

geometry, it follows that the same is true, albeit with a different lower bound, for
the critical radius of idn (Sd) considered as a subset of Skd

n−1. Let ρd denote this
new lower bound.

Putting the last three paragraphs together, with M = idn (Sd) and p = a ∈ N =
Skd

n−1, we have that the set{
idn (z) ∈ Skd

n−1 : 〈
a, idn (z)

〉
> cosρ

}
is either empty or contractible for 0 ≤ ρ ≤ ρd . Hence,

κEμd
n

{
χ

(
Ad

n(cosρ)
)} = Eμd

n

{
χ

{
idn (z) ∈ Skd

n−1 : 〈
a, idn (z)

〉
> cosρ

}}
(6.3)

= Pμd
n

{
sup

z

〈
a, idn (z)

〉
> cosρ

}
,

the factor of κ on the right-hand side coming from the fact that while idn is an
embedding if n is odd, it identifies antipodal points if n is even. Consequently, the
Euler characteristic of the preimage on Sd will be double that of the image when
n is even. This obviously completes the proof of the lemma. �

As an aside, we note that (6.3) is also proven in [20], although there the approach
is to obtain expressions for the the expected Euler characteristic and the probability
separately, and then note that they are identical.

6.2. On tube formulae. Returning to (6.3), and noting that, under the spherical
ensemble, a is chosen uniformly on Skd

n−1, we have that we can write the final
probability there as

Pμd
n

{
sup

z

〈
a, idn (z)

〉
> cosρ

}
= V

Skd
n−1(Tube(in(Sd), ρ))

skd
n−1

.(6.4)



1180 R. FENG AND R. J. ADLER

We now want to express the volume of the tube in (6.4) via Weyl’s tube formula
[2, 11, 22], and so spend the remainder of this section setting up some notation and
facts.

Given an m-dimensional Riemannian submanifold (M,g) of SN−1, the volume
of a tube around M of radius ρ less than its critical radius, is given by (Theo-
rem 10.5.7 in [2]),

(6.5) VSN−1
(
Tube(M,ρ)

) =
m∑

j=0

fN,j (ρ)Lj (M),

where

(6.6) fN,j (ρ) =
[ j

2 ]∑
k=0

(−4π)−k 1

k!
j !

(j − 2k)!Gj−2k,N−1+2k−j (ρ)

and

(6.7) Ga,b(ρ) = bπb/2

�(b
2 + 1)

∫ ρ

0
cosa(r) sinb−1(r) dr.

The Lipshitz–Killing curvatures Lj (M) are given by

(6.8) Lj =

⎧⎪⎪⎨⎪⎪⎩
(−2π)−(m−j)/2

(
m−j

2 )!
∫
M

Tr
(
R(m−j)/2

g

)
dVg, m − j even,

0, m − j odd,

where Rg is the curvature tensor. In general, Lm(M) = Vg(M) is the volume of M

and L0(M) = χ(M) is its Euler characteristic.
For two-dimensional surfaces of volume Vg(M) and Euler characteristic χ(M),

embedded in SN−1, the tube formula simplifies to

VSN−1
(
Tube(M,ρ)

)
= 2π(N−3)/2

�(N−3
2 )

(6.9)

×
∫ ρ

0
sinN−4(r)

{
Vg(M)

(
1 − N − 2

N − 3
sin2(r)

)
+ 2πχ(M) sin2(r)

N − 3

}
dr.

One final fact that we shall need for later is the value of the Lipshitz–Killing
curvatures for spheres. These are

Lj

(
SN−1) =

⎧⎪⎨⎪⎩2

(
N − 1

j

)
sN

sN−j

, N − 1 − j even,

0, N − 1 − j odd.
(6.10)



RANDOM SPHERICAL HARMONICS 1181

6.3. Proof of Proposition 1.3. The proof works by applying the tube formula
(6.5) to the equivalence (6.4).

We tackle the notionally easier case for S2 first, thus proving Corollary 1.4
directly. Then, by (6.9), for the surface in(S

2) in the ambient space S2n+1, we
have

VS2n

(
Tube

(
idn

(
Sd)

, ρ
))

/s2n

=
(

2πn−1/�(n − 1)

2πn+ 1
2 /�(n + 1

2)

) ∫ ρ

0
sin2n−3(r)

{
V

(
in

(
S2))(

1 − 2n − 1

2n − 2
sin2 r

)
(6.11)

+ 2πχ(in(S
2)) sin2(r)

2n − 2

}
dr.

Recall (cf. (2.6)) that the pullback of the Euclidean metric is ((n2 + n)/2)gS2 . If
we combine this with the fact that in(S

2) ∼= S2 for n odd and in(S
2) ∼= RP 2 for n

even, we have

V
(
in

(
S2)) = 2

(
n2 + n

)
π, χ

(
in

(
S2)) = 2, for odd n,

V
(
in

(
S2)) = (

n2 + n
)
π, χ

(
in

(
S2)) = 1, for even n.

Substituting this into (6.2) and noting (6.11) suffices to prove Corollary 1.4.
For the general, higher dimensional cases, (5.1) gives us that(

idn
)∗

(gE) = P ′
n,d(1)gSd ,

implying that the curvature tensor of the pullback (idn )∗(gE) is [P ′
n,d(1)]−1Rg

Sd
,

where Rg
Sd

is the curvature tensor of the round metric gSd so that

R
(d−j)/2
(idn )∗(gE)

= [
P ′

n,d(1)
](j−d)/2

R(d−j)/2
g
Sd

.(6.12)

Similarly, volume form is rescaled to give

dV(idn )∗(gE) = κ
[
P ′

n,d(1)
]d/2

dVg
Sd

,

where a factor of κ appears since the measure on RP d induced from Sd is half of
that on Sd . Hence, by definition of the Lipschitz–Killing curvatures in (6.10), the
j th Lipschitz–Killing curvature of the pullback metric which involves the integra-
tion on idn (Sd) will be rescaled to be κ[P ′

n,d(1)]j/2Lj (S
d). Consequently,

(6.13)
V

Skd
n−1(Tube(idn (Sd), ρ))

skd
n−1

= κ

skd
n−1

d∑
j=0

fkd
n ,j (ρ)

[
P ′

n,d(1)
]j/2Lj

(
Sd)

,

which, on combining (6.2) and (6.13), completes the proof of Theorem 1.2.
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7. Some closing comments. To conclude, we want to connect our results to
some other recent ones, as well as pointing out some interesting open questions.

Given a Riemannian manifold M , [1] studied the random map

(7.1) ik : M →R
k, x → k−1/2(f1, f2, . . . , fk),

where the fj were independent and identically distributed copies of a smooth,
mean zero, unit variance, Gaussian process f . For k large enough, the ik become
embeddings. It was shown that, as k → ∞, the critical radius of the embedded
manifold ik(M) converged, almost surely, to a constant known from Gaussian ex-
cursion theory, and which depended on a Riemannian metric on M induced by the
Gaussian process f .

Consider an analogue of (7.1) in which we replace f by Gaussian spherical
harmonics on Sd of level n. That is, we take for f the �d

n in the form of (1.3), but
with the aj standard normal variables. Note that, as n → ∞, we lose smoothness,
and so leave the setting of [1].

Consider the random map

i
(n)
k,d : Sd →R

k, x → 1√
k

(
f

(n)
1 , . . . , f

(n)
k

)
,

where the f
(n)
j are independent and identically distributed copies of �d

n . When

k is large enough, i
(n)
k,d is still an embedding. However, as opposed to the setting

(7.1), the interesting problem now is the decay rate of the critical radius of the
embedded sphere as n → ∞, but with fixed k, large enough. The method used in
[1] highly depends on a central limit theorem as k → ∞, and so their method is not
applicable in this problem. The generic behavior of the critical radius of i

(n)
k,d(S

d)

as n → ∞ is unclear.
Another problem, more closely related to what we have studied here, is to un-

derstand the critical radius for more general Riemannian manifolds. That is, given
a d-dimensional Riemannian manifold (M,g), consider the eigenspace

Hd[λ,λ+1] := {
φ : �gφ = −λ̃φ, λ̃ ∈ [λ,λ + 1]},

for large λ. Then choose {φ1, . . . , φkd
λ
} as the orthogonal basis of Hd[λ,λ+1] and

define the immersion,

(7.2) idλ : M →R
kd
λ , x → (

kd
λ

)−1/2
(φ1, . . . , φkd

λ
),

where kd
λ is the dimension of Hd[λ,λ+1].

This map is not new, and was considered by Zelditch in [24], for Zoll and ape-
riodic manifolds. He obtained the leading order terms of the spectral projection
kernel and its derivatives, from which he was able to derive asymptotics for the
distribution of zeros of Gaussian random waves by the classical Kac–Rice for-
mula.
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In the results of the current paper, our computations regarding the critical radius
for the immersion idn (Sd) relied on the fact that all the information of the immer-
sion idn (1.5) is contained in the spectral projection kernels. To be more precise,
we needed the leading expansion and the rescaling limit of the spectral projection
kernel and its derivatives up to order two. It seems that our method can be general-
ized to the case of Zoll and aperiodic manifolds. It is well known that the behavior
of eigenfunctions highly depends on the dynamical system of the manifolds [23],
and it should be very interesting to study the relation between the critical radius of
idλ (M) and the dynamical system. We postpone these questions for further investi-
gation.
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