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KIRILLOV–FRENKEL CHARACTER FORMULA FOR LOOP
GROUPS, RADIAL PART AND BROWNIAN SHEET

BY MANON DEFOSSEUX

Université Paris 5

We consider the coadjoint action of a Loop group of a compact group on
the dual of the corresponding centrally extended Loop algebra and prove that
a Brownian motion in a Cartan subalgebra conditioned to remain in an affine
Weyl chamber—which can be seen as a space time conditioned Brownian
motion—is distributed as the radial part process of a Brownian sheet on the
underlying Lie algebra.

1. Introduction. It is a famous result that a real Brownian motion conditioned
in Doob’s sense to remain positive, is distributed as a Bessel 3 process, that is, as
the radial process of a 3-dimensional Brownian motion. More generally, if one
considers the adjoint action of a compact Lie group on its associated Lie algebra,
the radial part process of a Brownian motion on the Lie algebra is distributed as a
Brownian motion on a Cartan subalgebra conditioned to remain in a Weyl chamber
(see, for instance, [8] for the unitary group and [10] for any compact groups). In
this paper, we consider the coadjoint action of a Loop group of a compact group
on the dual of the corresponding centrally extended Loop algebra. It allows us to
define the radial part process associated to a Brownian sheet on the underlying
semisimple Lie algebra. We prove that it is distributed as a Brownian motion on a
Cartan subalgebra conditioned to remain in an affine Weyl chamber.

Let us be more precise. Let K be a connected compact Lie group, k its Lie
algebra and t a Cartan subalgebra. One considers a Weyl chamber in t. Then the
orbits of k under the adjoint action of K are parametrized by the Weyl chamber.
Actually for any x ∈ k, there exists a unique vector in the Weyl chamber which is
in the same orbit as x. This vector is called the radial part of x. The Lie algebra
k is equipped with an Ad(K)-invariant scalar product, whose restriction to the
Cartan subalgebra is invariant for the action of the Weyl group. If we consider the
radial part process of a standard Brownian motion on k, it is a classical fact that
this process is distributed as the projection of the Brownian motion on the Cartan
subalgebra t—which is a Brownian motion on t—conditioned in Doob’s sense to
remain forever in the Weyl chamber (see [10]). The Kirillov’s character formula is
at the heart of the connection between the two processes.
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An affine Lie algebra can be realized as a central extension of a loop algebra Lk.
Considering the coadjoint action of the loop group LK on the dual of the centrally
extended loop algebra, one defines the radial part of an element of this dual space
(see Pressley and Segal [14]). Frenkel established in [6] a Kirillov character type
formula in the framework of affine Lie algebras considering a Gaussian measure on
the dual of Lk—basically a Brownian motion on k. In his approach, the conditional
law of a Brownian motion on k given its radial part provides a natural measure
on the corresponding orbit under the action of LK . It highly suggested that one
could construct a process on a loop algebra, whose radial part process would be
distributed as a projection on a Cartan subalgebra, conditioned to remain in an
affine Weyl chamber.

The affine Weyl chamber is a fundamental domain for the action of the Weyl
group on the Tits cone. The first difficulty is that there is no Euclidean structure
on the Cartan subalgebra of an affine Lie algebra, which would be invariant for the
action of the Weyl group. So there is no natural Brownian motion to consider on it.
The Kirillov’s orbit method, on which we based our intuition, suggests a connec-
tion between coadjoint orbits for the action of a Loop group on the dual of an affine
Lie algebra and irreducible representations of the affine Lie algebra. Tensor prod-
uct of irreducible representations of an affine Lie algebra makes appear a drift in
the direction of the fundamental weight �0. The idea is to consider a process with
such a drift in the direction of �0—which can be seen as a time component—living
in an affine Lie algebra. In this paper, we construct such a process, considering a
Brownian sheet on the Lie algebra k and prove that the corresponding radial part
process is distributed as a projection on a Cartan subalgebra, conditioned to remain
forever in an affine Weyl chamber.

The paper is organized as follows. In Section 2, we describe the orbits for the
coadjoint action of a Loop group of a compact group on the dual of the associated
centrally extended loop algebra. In particular, we define a notion of radial part for
this action, which is suitable for our context. In Section 3, we give a first statement
of the main result of the paper that will be clarify in Section 7. Section 4 is ba-
sically a reformulation of the main results of [6]. In this section, we compute the
conditional law of a Brownian motion indexed by [0,1] given the end point of its
stochastic exponential and recall how Frenkel proves that this conditional law leads
to a Kirillov character formula for affine Lie algebras. In Section 5, we briefly re-
call the necessary background on affine Lie algebras. In Section 6, we introduce a
Brownian motion on a Cartan subalgebra of an affine Lie algebra conditioned—in
Doob’s sense—to remain forever in an affine Weyl chamber. We prove in Section 7
that this conditioned Doob process has the same law as the radial part process of a
Brownian sheet on k.

2. Action of loop group and its orbits.

Loop group and its action. The following presentation is largely inspired by
the one given in [14]. Let K be a connected, simply connected, compact Lie group
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and k its Lie algebra. By compactness, without loss of generality, we suppose that
K is a matrix Lie group. The adjoint action of K on itself, which is denoted by
Ad, is defined by Ad(k)(u) = kuk∗, k,u ∈ K . The induced adjoint action of K

on its Lie algebra k is still denoted by Ad and is defined by Ad(k)(x) = kxk∗,
k ∈ K , x ∈ k. The Lie bracket on k is denoted by [·, ·]k. We equip k with an
Ad(K)−invariant inner product (·, ·), for instance the negative of the Killing form.
We denote by e the identity of K . We consider the group Map([0,1],K) of Borel
measurable maps from [0,1] to K , the group law being pointwise composition and
the subgroup LK of smooth loops from [0,1] to K ,

LK = {
f : [0,1] → K,f is smooth, f (0) = f (1)

}
.

We consider the Lie algebra Lk over R of smooth loops from [0,1] to k, equipped
with the Lie bracket given by [ξ, η]k, defined pointwise, for ξ, η ∈ Lk. We define
a centrally extended Lie algebra Lk⊕Rc, where c is an additional formal central
element, equipped with a Lie bracket given by

[ξ + t1c, η + t2c] = [ξ, η]k + ω(ξ, η)c,

for ξ, η ∈ Lk, t1, t2 ∈ R, where ω is the cocycle defined by ω(ξ, η) = ∫ 1
0 (ξ ′(s),

η(s)) ds. A Cartan subalgebra of the extended Loop algebra is t ⊕ Rc, where t is
identified with the set of t-valued constant loops. The Lie bracket actually defines
a Lie algebra action of Lk on Lk⊕Rc given by

ξ · (η + tc) = [ξ, η] + ω(ξ, η)c,

for any ξ ∈ Lk, (η, t) ∈ Lk×R. This action comes from the adjoint action of LK

on Lk⊕Rc defined by

(1) γ.(η + tc) = Ad(γ )(η) +
(
t +

∫ 1

0

(
γ −1
s γ ′

s , ηs

)
ds

)
c,

for any γ ∈ LK , (η, t) ∈ Lk × R. The corresponding coadjoint action of LK on
the algebraic dual (Lk⊕Rc)∗ = (Lk)∗ ⊕R�0, where �0(Lk) = 0 and �0(c) = 1,
is defined by

(2) γ.(φ + t�0) =
[
Ad∗(γ )φ − t

∫ 1

0

(
γ ′
sγ

−1
s , ·)ds

]
+ t�0,

for any φ ∈ (Lk)∗, t ∈ R, where
∫ 1

0 (γ ′
sγ

−1
s , ·) ds stands for the linear form defined

by

x ∈ k �→
∫ 1

0

(
γ ′
sγ

−1
s , xs

)
ds.
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Notice that the coadjoint action of the loop group does not affect the level, that is,
the coordinate in �0. Let us equip Lk with the L2-norm, and consider its comple-
tion L2([0,1], k) with respect with the L2-norm. We define

LH 1([0,1],K) = {
γ : [0,1] → K,γ is absolutely continuous,

γ −1γ ′ ∈ L2
([0,1], k), γ (0) = γ (1)

}
H 1([0,1], k) = {

f : [0,1] → k, f is absolutely continuous,

f ′ ∈ L2
([0,1], k), f (0) = 0

}
,

H 1([0,1],K) = {
h : [0,1] → K,h is absolutely continuous,

h−1h′ ∈ L2
([0,1], k), h(0) = e

}
.

Notice that the derivatives are understood in the weak sense. If we denote by
(L2([0,1], k))′ the topological dual of L2([0,1], k) then (2) defines an action of
LH 1([0,1],K) on (L2([0,1], k))′ ⊕R�0, given by

γ · (φx + t�0) =
∫ 1

0

(
γsx

′
sγ

−1
s , ·)ds − t

∫ 1

0

(
γ ′
sγ

−1
s , ·)ds + t�0,

for any γ ∈ LH 1([0,1],K), where φx is a linear form defined on L2([0,1], k) by

φx(y) =
∫ 1

0

(
ys, x

′
s

)
ds,

for any y ∈ L2([0,1], k), and x ∈ H 1([0,1], k). This action gives rise to an action ·
of LH 1([0,1],K) on H 1([0,1], k) ⊕R�0 defined by

(3) γ · (x + t�0) =
∫ ·

0

(
γsx

′
sγ

−1
s − tγ ′

sγ
−1
s

)
ds + t�0,

for any γ ∈ LH 1([0,1],K), x ∈ H 1([0,1], k) and t ∈R, which satisfies

φ(γ ·(x+t�0)−t�0) + t�0 = γ · (φx + t�0).

There is another way to make this action appear naturally. One defines a group
action of the loop group LH 1([0,1],K) on H 1([0,1],K) by letting for any γ ∈
LH 1([0,1],K),

(γ · h)s = γ0hsγ
−1
s ,

for h ∈ H 1([0,1],K) and s ∈ [0,1]. The set H 1([0,1],K) is in one-to-one corre-
spondence with the set H 1([0,1], k). Actually for t ∈ R∗+, this is a classical result
of differential geometry that for any path x ∈ H 1([0,1], k) there exists a unique
X ∈ H 1([0,1],K) such that t dX = X dx. For any x ∈ H 1([0,1], k), and t ∈ R∗+,
one defines ε(x + t�0) as the unique map in H 1([0,1],K) which satisfies this
differential equation. As

t d
(
γ0ε(x + t�0)γ

−1) = γ0ε(x + t�0)γ
−1(

γ dxγ −1 − t dγ γ −1)
,
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the action of LH 1([0,1],K) on H 1([0,1],K), and the action of LH 1([0,1],K)

on H 1([0,1], k) ⊕R�0, satisfy

ε
(
γ · (x + t�0)

) = γ · ε(x + t�0).

Roots and weights. We choose a maximal torus T of K and denote by t its Lie
algebra. We denote by g the complexification of k, that is, g= k⊕ ik. We consider
the set of real roots

R = {
α ∈ t∗ : ∃X ∈ g \ {0},∀H ∈ t, [H,X] = 2iπα(H)X

}
.

We choose a set � of simple roots of R and denote by R+ the set of positive roots.
The half sum of positive roots is denoted by ρ. Letting for α ∈ R,

gα = {
X ∈ g : ∀H ∈ t, [H,X] = 2iπα(H)X

}
,

the coroot α∨ of α ∈ � is defined to be the only vector of t in [gα,g−α] such that
α(α∨) = 2. We denote by θ the highest root. The dual Coxeter number denoted by
h∨ is equal to 1 + ρ(θ∨), where θ∨ is the highest coroot. We denote respectively
by Q = ∑

i Zαi and Q∨ = ∑
i Zα∨

i the root and the coroot lattice. The weight
lattice {λ ∈ t∗ : λ(α∨) ∈ Z,∀α ∈ �} is denoted by P and the set {λ ∈ t∗ : λ(α∨) ∈
N,∀α ∈ �} of dominant weights is denoted by P+.

Orbits and radial part of a path from H 1([0,1], k).

PROPOSITION 2.1. Let x, y ∈ H 1([0,1], k) and t ∈ R∗+:

(1) For any γ ∈ LH 1([0,1],K), one has γ · (x + t�0) = (y + t�0) if and only
if γ · (φx + t�0) = φy + t�0.

(2) It exists γ ∈ LH 1([0,1],K), such that γ · (x + t�0) = (y + t�0) if and
only if there exists u ∈ K such that Ad(u)ε(x + t�0)1 = ε(y + t�0)1.

PROOF. The first point comes from identity (3). For the second, we write that
if Ad(u)ε(x + t�0)1 = ε(y + t�0)1, and γ = ε(y + t�0)

−1uε(x + t�0), then
γ ∈ LH 1([0,1],K) and γ.(x + t�0) = y + t�0. �

For α ∈ � the fundamental reflection sα∨ is defined on t by

sα∨(x) = x − α(x)α∨ for x ∈ t.

We consider the extended affine Weyl group generated by the reflections sα∨ and
the translations by α∨, x ∈ t �→ x + α∨, for α ∈ �. The fundamental domain for
its action on t is

A = {
x ∈ t : ∀α ∈ R+,0 ≤ α(x) ≤ 1

}
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(see, for instance, Section 4.8 of [11]). For x ∈ K , one defines Ox as the adjoint
orbit through x, that is,

Ox = {
y ∈ K : ∃u ∈ K,y = uxu∗}

.

We consider the exponential map exp : k → K . As K is simply connected, the
set of conjugacy classes K/Ad(K) is in one-to-one correspondence with the fun-
damental domain A, that is, for all u ∈ K , there exists a unique x ∈ A such that
u ∈ Oexp(x) (see [2] for instance). For t ∈ R+, one defines the alcove At of level t

by

At = {
x ∈ t : ∀α ∈ R+,0 ≤ α(x) ≤ t

}
,

that is, At = tA. Given t ∈ R∗+, every path in H 1([0,1], k) is conjugated to a
straight path

s ∈ [0,1] �→ sr,

for some r ∈ At , and one can give the following definition for the radial part of
x ∈ H 1([0,1], k), given a positive level t ∈R∗+.

DEFINITION 2.2. For (t, x) ∈ R∗+ × H 1([0,1], k), one defines the radial part
of x + t�0 as the unique element r in At such that ε(x + t�0)1 ∈ Oexp( r

t
). It is

denoted by rad(x + t�0).

Radial part of a continuous semimartingale. The aim of this part is to define
the radial part of a k-valued Brownian path. Such a path is not in H 1([0,1], k)
but one can define a stochastic exponential of a Brownian path, which allows
us to define its radial part, by analogy with what we have done above. Let
(�,F, (Fs)s∈[0,1],P) be a filtered probability space. The following results can
be found for instance in [13] or [9]. If {xs, s ∈ [0,1]} is an k-valued continuous
semimartingale and t ∈ R∗+, then the stochastic differential equation

(4) t dX = X ◦ dx,

where ◦ stands for the Stratonovitch integral, has a unique solution starting from
e. Such a solution is a K-valued process, that we still denote by {ε(x + t�0)s, s ∈
[0,1]}. This is the Stratonovitch stochastic exponential of x

t
.

DEFINITION 2.3. For t ∈ R∗+, and x = {xs, s ∈ [0,1]} a continuous k-valued
semimartingale, one defines the radial part of (x + t�0) as the unique element r

in At such that ε(x + t�0)1 ∈ Oexp( r
t
). It is denoted by rad(x + t�0). We extend

the definition to t = 0 letting rad(x + 0�0) = 0.
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3. Main theorem. In this section, we give a first statement of the main result
of the paper. All objects will be defined precisely in the next sections. We con-
sider a standard space-time Brownian motion {(t, bt ), t ≥ 0} on t and a standard
Brownian sheet {xt

s, s ∈ [0,1], t ≥ 0} on k. For any t, t ′ ∈ R∗+, { 1√
t
xt
s, s ∈ [0,1]}

is a standard Brownian motion on k, and {xt ′+t
s − xt

s, s ∈ [0,1]} is a k-valued
random process independent of σ(xr

s , s ∈ [0,1], r ≤ t), having the same law as
{xt ′

s , s ∈ [0,1]}. In the sequel we choose a continuous version of it. The definition
of the function ϕ̂d of the theorem is given in Definition 4.5.

THEOREM 3.1. The process {(t, rad(xt + t�0)), t ≥ 0} is a space-time h-
Doob transform of the space-time Brownian motion {(t, bt ), t ≥ 0} killed at the
boundary of

Ĉ = {
(t, x) ∈R+ × t : 0 ≤ α(x) ≤ t, α ∈ R+

}
,

with the space-time harmonic function h = ϕ̂d .

The set Ĉ is actually an affine Weyl chamber and the theorem can be seen as
an analogue in an affine framework of the fact that the radial part process of a
Brownian motion on the Lie algebra k is distributed as a Brownian motion on a
Cartan subalgebra of k conditioned to remain in a Weyl chamber.

4. Stochastic exponential of a Brownian motion on k and Kirillov character
type formula for affine Lie algebras. Frenkel established in [6] a Kirillov char-
acter type formula in the framework of affine Lie algebras considering a Brownian
motion on k and its wrapping on the group K . In this section, for the sake of clarity,
we give a reformulation of the main results of [6], which fits to our framework.

4.1. The conditional law of a Brownian motion on k given the end-point of its
stochastic exponential. We denote by � the kernel of the restriction exp|t and by
�∗ the set of integral weights {λ ∈ t∗ : λ(�) ⊂ Z}, which is included in P since
α∨ ∈ � (see [2] for instance). Thus, we define a map ϑλ on T , when λ ∈ �∗, by
letting ϑλ(exp(x)) = e2iπλ(x), for x ∈ t. The irreducible representations of K are
parametrized by the set �∗+ = �∗ ∩ C∨, where C∨ = {λ ∈ t∗ : λ(α∨) ≥ 0, α ∈ �}.
Here, K is supposed to be simply connected, so that P = �∗ and P+ = �∗+. We
denote by chλ the character of the irreducible representation with highest weight
λ ∈ P+. We recall that t is equipped with a W -invariant scalar product (·, ·). We
identify t and t∗ via (·, ·) and still denote by (·, ·) the scalar product on t∗. We write
sometimes ex instead of exp(x), for x ∈ k.

Brownian motion on K . Let (�, (Fs)s∈[0,1],P) be a probability space, where
{Fs, s ∈ [0,1]} is the natural filtration of a k-valued standard continuous Brownian
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motion {xσ
s , s ∈ [0,1]} defined on �, with variance σ > 0. In this section, we

consider the stochastic exponential ε(xσ + t�0) only for t = 1. Since, for any

t ∈ R∗+, we have the identity in law ε(xσ + t�0) = ε(x
σ

t2 +�0), there is no loss of
generality. In the sequel, we let ε(xσ ) = ε(xσ + �0). The stochastic exponential
{ε(xσ )s, s ∈ [0,1]} is a left Levy process on K starting from e, with transition
probability {pσ

s , s ∈ [0,1]} with respect to the Haar measure on K , defined on K

by

pσ
s (x, y) = pσ

s

(
e, x−1y

) = ∑
λ∈P+

chλ(e) chλ

(
x−1y

)
e− sσ (2π)2

2 (‖λ+ρ‖2−‖ρ‖2),

s ∈ [0,1], x, y ∈ K (see, for instance, [5]). In the sequel, we write pσ
s (x) instead

of pσ
s (e, x). This process is a Brownian motion on K . The following proposition

states a Girsanov formula for a Brownian motion on a compact Lie group. It is
proved for instance in [3, 7] or [13]. For a k-valued L2 function y, and a k-valued
continuous semimartingale {xs, s ∈ [0,1]}, ∫ t

0 (ys, dxs) is defined as the stochastic
integral of y with respect to x, for any t ∈ [0,1].

THEOREM 4.1. Let {xσ
s , s ∈ [0,1]} be a Brownian motion on k, with variance

σ ∈ R∗+, and h ∈ H 1([0,1],K). If μσ is the law of {ε(xσ )s, s ∈ [0,1]}, then

d(Rh)∗μσ

dμσ
= e

1
σ

∫ 1
0 (h−1

s h′
s ,dxσ

s )− 1
2σ

∫ 1
0 (h−1

s h′
s ,h

−1
s h′

s ) ds,

where (Rh)∗μσ is the law of {ε(xσ )shs, s ∈ [01]}.

For z ∈ K , we write Pz, for the probability defined on F1 as the conditional
probability P(·|ε(xσ )1 = z). One has for any s ∈ (0,1),

Pz
|Fs

= pσ
1−s(ε(x

σ )s, z)

p1(z)
· P|Fs .(5)

Note that under Pz, {xσ
s , s ∈ [0,1)} remains a continuous semimartingale (see,

for instance, [1], Theorem 14), so that the stochastic integral
∫ t

0 (ys, dxσ
s ) is well-

defined under Pz, for any k-valued L2 function y and t ∈ (0,1). Theorem 4.1 im-
plies the following proposition, which appears in Proposition (5.2.12) of [6].

PROPOSITION 4.2. Let {xσ
s , s ∈ [0,1]} be a standard Brownian motion on k

with variance σ > 0 and y be a k-valued L2 function. If h ∈ H 1([0,1],K) satisfies
h−1h′ = y, then for any t ∈ (0,1),

e− 1
2σ

∫ t
0 (ys ,ys) dsE

(
e

1
σ

∫ t
0 (ys ,dxσ

s )|ε(
xσ )

1 = z
) = pσ

1 (zh−1
t )

pσ
1 (z)

.
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PROOF. For t ∈ (0,1),

E
(
e

1
σ

∫ t
0 (ys ,dxσ

s )|ε(
xσ )

1 = z
)

= E

(
e

1
σ

∫ t
0 (ys ,dxσ

s )
pσ

1−t (ε(x
σ )t , z)

pσ
1 (z)

)

= e
1

2σ

∫ t
0 (ys ,ys) dsE

(
e

1
σ

∫ t
0 (ys ,dxσ

s )− 1
2σ

∫ t
0 (ys ,ys) ds

pσ
1−t (ε(x

σ )t , z)

pσ
1 (z)

)
.

Let h ∈ H 1(K) such that h−1h′ = y. Theorem 4.1 implies that

E

(
e

1
σ

∫ t
0 (ys ,dxσ

s )− 1
2σ

∫ t
0 (ys ,ys) ds

pσ
1−t (ε(x

σ )t , z)

pσ
1 (z)

)

= E

(
pσ

1−t (ε(x
σ )tht , z)

pσ
1 (z)

)

= E

(
pσ

1−t (ε(x
σ )t , zh

−1
t )

pσ
1 (z)

)

= pσ
1 (zh−1

t )

pσ
1 (z)

,

which gives the proposition. �

The following lemma has been proved in [6].

LEMMA 4.3. For k1, k2 ∈ K , s ∈ [0,1],∫
K

pσ
s

(
k1, uk2u

∗)
du = ∑

λ∈P+
chλ

(
k−1

1

)
chλ(k2)e

− sσ (2π)2
2 (‖ρ+λ‖2−‖ρ‖2).

The previous lemma and Proposition 4.2 imply the following one.

PROPOSITION 4.4. Let {xσ
s , s ∈ [0,1]} be a standard Brownian motion on k

starting from 0, with variance σ > 0. For y a k-valued L2 function, r ∈ A, and
t ∈ (0,1),

e− 1
2σ

∫ t
0 (ys ,ys) dsE

(
e

1
σ

∫ t
0 (ys ,dxσ

s )| rad
(
xσ ) = r

)
= 1

pσ
1 (er)

∑
λ∈P+

chλ

(
h−1

t

)
chλ

(
er)e− σ(2π)2

2 (‖ρ+λ‖2−‖ρ‖2),

where h ∈ H 1([0,1],K) satisfies h−1h′ = y.
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PROOF.

E
(
e

1
σ

∫ t
0 (ys ,dxσ

s ) ds | rad
(
xσ ) = r

) = E
(
E

(
e

1
σ

∫ t
0 (ys ,dxσ

s ) ds |ε(
xσ )

1

)| rad
(
xσ ) = r

)
= e

1
2σ

∫ t
0 (ys ,ys) dsE

(
pσ

1 (ε(xσ )1h
−1
t )

pσ
1 (ε(xσ )1)

∣∣∣ rad
(
xσ ) = r

)

= e
1

2σ

∫ t
0 (ys ,ys) ds

∫
K

pσ
1 (ueru∗h−1

t )

pσ
1 (er)

du,

which proves the proposition thanks to Lemma 4.3. �

4.2. A Kirillov character type formula for affine Lie algebras. Let {xσ
s , s ∈

[0,1]} be a Brownian motion on k, with variance σ > 0, and its stochastic expo-
nential {ε(xσ )s, s ∈ [0,1]}. In the sequel, we let, for x ∈ t,

π(x) = ∏
α∈R+

(
eiπα(x) − e−iπα(x)) and h(x) = ∏

α∈R+
α(x).

DEFINITION 4.5. For x ∈ t, y ∈ t⊕ it, σ ∈R∗+, we let

ϕ̂d+y

(
1

σ
,
x

σ

)

= σn/2e
1

2σ
(y,y)+ 1

2σ
(x,x)

∑
μ∈P+

π(x) chμ

(
ex)

chμ

(
e−y)

e− σ
2 (2π)2‖μ+ρ‖2

.

A Kirillov character type formula for affine Lie algebras has been proved by
Frenkel in [6]. It can be formulated as in the following theorem, which is a conse-
quence of propositions 4.4. This is the analogue of the Harish–Chandra formula.

THEOREM 4.6. For y ∈ L2([0,1], k), and z ∈ A, one has for t ∈ (0,1),

E
(
e

1
σ

∫ t
0 (ys ,dxσ

s )| rad
(
xσ ) = z

) = e
1

2σ

∫ t
0 (ys ,ys) dse− 1

2σ
(a,a) ϕ̂d+a(

1
σ
, z

σ
)

ϕ̂d( 1
σ
, z

σ
)

,

where h−1h′ = y and ht ∈ Oea , with a ∈ t. In particular for y ∈ t, one has

E
(
e

1
σ

(y,xσ
1 )| rad

(
xσ ) = z

) = ϕ̂d+y(
1
σ
, z

σ
)

ϕ̂d( 1
σ
, z

σ
)

.

REMARK 4.7. Let us make some nonrigorous remarks about these formu-
lae. Previously, we have considered the identification of L2([0,1], k)′ ⊕R�0 with
H1([0,1], k) ⊕ R�0 letting ϕx = ∫ 1

0 (·, x′
s) ds for x ∈ H1([0,1], k). In the first

formula, the stochastic integral
∫ 1

0 (·, dxσ
s ) can be seen as a random linear func-

tional. Its conditional law given ε(xσ ) ∈ Oe(z) has to be thought as a measure
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on a coadjoint orbit through ϕπz + �0 where πz is the straight path πz(s) = sz,
s ∈ [0,1]. For the second formula, we notice that the restriction of ϕx to t is equal
to y ∈ t �→ (y, x1). Thus the law of xσ

1 given ε(xσ ) ∈ Oe(z) has to be thought as a
Duistermaat–Heckman distribution associated to ϕπz + �0.

5. Affine Lie algebras. In this part, we consider an affine Lie algebra whose
Cartan matrix is an extended Cartan matrix of the simple finite dimensional com-
plex Lie algebra g. Such an algebra is a nontwisted affine Lie algebra. It can be
realized as a central extension of the Lie algebra of Laurent polynomials with co-
efficients in g. For our purpose, we only need to consider a realization of its Cartan
subalgebra. If {α1, . . . , αn} and {α∨

1 , . . . , α∨
n } are respectively the sets of simple

real roots and coroots of the group K previously considered, we let

h= spanC
{
α∨

0 = c − θ∨, α∨
1 , . . . , α∨

n , d
}

and

h∗ = spanC{α0 = δ − θ,α1, . . . , αn,�0},
where

αi(d) = δi0, δ
(
α∨

i

) = 0, �0
(
α∨

i

) = δi0, �0(d) = 0.

The Killing form on k is from now on normalized such that (θ∨, θ∨) = 2. We
consider its restriction to t and extend it to h by C−linearity, and by letting

(Cc +Cd, t) = 0, (c, c) = (d, d) = 0, (c, d) = 1.

The following definitions mainly come from Chapters 1 and 6 of [12]. The linear
isomorphism

ν : h→ h∗,
h �→ (h, ·)

identifies h and h∗. We still denote by (·, ·) the induced bilinear form on h∗. We
record that

(δ, αi) = 0, i = 0, . . . , n, (δ, δ) = 0, (δ,�0) = 1.

Notice that here ν(θ∨) = θ and (θ∨|θ∨) = (θ |θ) = 2. One defines the Weyl group
Ŵ , as the subgroup of GL(h∗) generated by fundamental reflections sα , α ∈ �,
defined by

sα(β) = β − β
(
α∨)

α, β ∈ h∗.

Under the identification of h and h∗, the action of the affine Weyl group on h is
defined by wx = ν−1wνx, x ∈ h, w ∈ Ŵ . The form (·, ·) is Ŵ -invariant. The affine
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FIG. 1. The affine Weyl Chamber corresponding to A
(1)
1 .

Weyl group Ŵ is the semidirect product W �� (Proposition 6.5, Chapter 6 of [12])
where � is the group of transformations tγ , γ ∈ ν(Q∨), defined by

tγ (λ) = λ + λ(c)γ −
(
(λ, γ ) + 1

2
(γ, γ )λ(c)

)
δ, λ ∈ h∗.

Thus, if w ∈ W , γ ∈ ν(Q∨), and λ ∈ h∗,

(6) wtγ (λ) = w
(
λ + λ(c)γ

) −
(
(λ, γ ) + 1

2
(γ, γ )λ(c)

)
δ.

The Weyl chamber Ĉ is defined by

Ĉ = {
x ∈ h : ∀i ∈ {0, . . . , n}, αi(x) ≥ 0

}
.

As the highest root θ is equal to δ − α0, one has for any t ∈ R+, y ∈ t

(td + y) ∈ Ĉ ⇔ ∀α ∈ R+,0 ≤ α(y) ≤ t.

Thus in the sequel we identify Ĉ with the subspace of R× t{
(t, x) ∈ R+ × t : 0 ≤ α(x) ≤ t, α ∈ R+

}
.

The affine Weyl chamber Ĉ for the A
(1)
1 type is drawn in Figure 1: it is the area

delimited by dark gray and gray half-planes. The alcove A is the dashed interval.

6. A space-time Brownian motion on t conditioned to remain in the affine
Weyl chamber. Let us consider a standard Brownian motion {bt , t ≥ 0} on t

and a space time Brownian motion {(τt , bt ), t ≥ 0}. For u ∈ R, x ∈ t, we denote
by Wu,x a probability under which τt = u + t , for all t ≥ 0, and {bt , t ≥ 0} is a
standard Brownian motion starting from x. Let us consider the stopping time

T = inf
{
t ≥ 0 : (τt , bt ) /∈ Ĉ

}
.
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LEMMA 6.1. For (u, x) in the interior of Ĉ, and y ∈ t⊕ it, the process{
e− (y,y)t∧T

2 ϕ̂d+y(τt∧T , bt∧T ), t ≥ 0
}

is a martingale under Wu,x .

PROOF. One has for (t, z) ∈ R∗+ × t,

e− t
2 (y,y)ϕ̂d+y(t, z) = ∑

μ∈P+

1

tn/2 e
1
2t

(z,z)π

(
z

t

)
chμ

(
e

z
t
)

chμ

(
e−y)

e− 1
2t

(2π)2‖μ+ρ‖2
,

where, by the Weyl’s character formula for compact Lie groups

chλ

(
ez) = 1

π(z)

∑
w∈W

(−1)we2iπ〈w(λ+ρ),z〉.

Choose an orthonormal basis v1, . . . , vn of t and consider for μ ∈ P+, a function
gμ defined on R∗+ ×Rn by

gμ(t, z1, . . . , zn) = 1

tn/2 e
1
2t

(z,z)π

(
z

t

)
chμ

(
e

z
t
)

chμ

(
e−y)

e− 1
2t

(2π)2‖μ+ρ‖2
,

where z = z1v1 + · · · + znvn. Letting � = ∑n
i=1 ∂zizi

, the function gμ satisfies

(7)
(

1

2
� + ∂t

)
gμ = 0.

As the sums
∑

�gμ and
∑

∂tgμ are normally convergent on any compact subsets
of R∗+ ×Rn, one has (

1

2
� + ∂t

) ∑
μ∈P+

gμ = 0,

on R∗+ ×Rn, which implies that {e− (y,y)t∧T
2 ϕ̂d+y(τt∧T , bt∧T ), t ≥ 0} is a local mar-

tingale. As

(t, z) ∈ R∗+ ×Rn �→ e− (y,y)t
2 ϕ̂d+y(t, z)

is bounded on any compact subsets of R∗+ ×Rn, {e− (y,y)t∧T
2 ϕ̂d+y(τt∧T , bt∧T ), t ≥

0} is a martingale under Wu,x . �

LEMMA 6.2. Let t > 0. If (t, x) ∈ Ĉ, then ϕ̂d(t, x) ≥ 0, with equality if and
only if (t, x) is on the boundary of Ĉ.

PROOF. For any z ∈ t, and t > 0,

ϕ̂d(t, z) = C × p
1
t

1

(
e

z
t
)
π

(
z

t

)
e

1
2t

‖z‖2− 1
2t

(2π)2‖ρ‖2
,
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where C is a positive constant, which ensures in particular that

ϕ̂d(t, z) ≥ 0,

for z ∈ At , with equality if and only if z ∈ ∂At . �

Let {Ft , t ≥ 0} be the natural filtration of {(t, bt ), t ≥ 0}. As for (u, x) in the
interior of Ĉ, {ϕ̂d(τt∧T , bt∧T ), t ≥ 0} is a positive martingale under Wu,x such that
ϕ̂d(τT , bT ) = 0, one defines a measure Qu,x on F∞ as below.

DEFINITION 6.3. Let u > 0 and x ∈ t such that (u, x) is in the interior of Ĉ.
One defines a probability Qu,x on F∞ letting

Qu,x(B) = EWu,x

(
ϕ̂d(τt , bt )

ϕ̂d(u, x)
1T ≥t,B

)
for B ∈ Ft , t ≥ 0.

Lemma 6.1 and the fact that for y ∈ t⊕ it, ϕ̂d+y(τT , bT ) = 0 imply immediately
the following proposition.

PROPOSITION 6.4. For r, t ∈ R∗+, (u, x) in the interior of Ĉ, and y ∈ t ⊕ it,
one has

(8) EQu,x

(
ϕ̂d+y(τt , bt )

ϕ̂d(τt , bt )

)
= ϕ̂d+y(u, x)

ϕ̂d(u, x)
e

(y,y)
2 t

and

(9) EQu,x

(
ϕ̂d+y(τr+t , bt+r )

ϕ̂d(τt+r , bt+r )

∣∣∣Fr

)
= ϕ̂d+y(τr , br)

ϕ̂d(τr , br)
e

(y,y)
2 t .

7. Conditioned space time Brownian motion and radial part of a Brownian
sheet. In this last section, we prove the main result of the paper which states that
the conditioned Doob process in an affine Weyl chamber introduced in Section 6,
has the same law as the radial part process of a Brownian sheet on k. It is stated in
Theorem 7.8. The proof rests on an intertwining proved in Proposition 7.9, which
allows us to apply a Rogers and Pitman’s criterion. Let {xt

s, s ∈ [0,1], t ≥ 0} be a
standard Brownian sheet on k. For any t, t ′ ∈ R∗+, { 1√

t
xt
s, s ∈ [0,1]} is a standard

Brownian motion on k, and {xt ′+t
s − xt

s, s ∈ [0,1]} is a k-valued random process
independent of σ(xr

s , s ∈ [0,1], r ≤ t), having the same law as {xt ′
s , s ∈ [0,1]}. In

the sequel, we choose a continuous version of it. We denote by C([0,1], k) the
set of continuous maps from [0,1] to k. Proposition 7.4 and Corollary 7.5 prove
the existence of an entrance law for the conditioned process in the affine Weyl
chamber introduced in Section 6, and the entrance point 0.
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LEMMA 7.1. For any y ∈ t⊕ it,

ϕ̂d+y(u, x)

ϕ̂d(u, x)

converges toward 1 when (u, x) goes to 0 within the affine Weyl chamber. In the
sequel, we write

ϕ̂d+y(0,0)

ϕ̂d (0,0)
= 1.

PROOF. One has for (u, x) in the interior of Ĉ

ϕ̂d+y(u, x) = 1

un/2 e
u
2 (y,y)+ 1

2u
(x,x)π

(
x

u

) ∑
μ∈P+

chμ

(
e

x
u
)

chμ

(
e−y)

e− 1
2u

(2π)2‖μ+ρ‖2
,

Lemma 13.13 of [12] implies that the dominant term in the sum of the right-hand

side of the identity is e− 1
2u

(2π)2‖ρ‖2
, and the proposition follows. �

LEMMA 7.2. Let us fix t > 0. If μu,x is the law of bt

t+u
under Qu,x then for

any y ∈ t⊕ it, ∫
A

ϕ̂d+y(t, tz)

ϕ̂d(t, tz)
μu,x(dz)

converges toward et
(y,y)

2 when (u, x) goes to 0 within the affine Weyl chamber.

PROOF. If μu,x is the law of bt

t+u
under Qu,x then∫

A

ϕ̂d+y(t + u, (t + u)z)

ϕ̂d(t + u, (t + u)z)
dμu,x(z) = ϕ̂d+y(u, x)

ϕ̂d(u, x)
e

t
2 (y,y).

The Weyl dimension formula gives that | chμ(ez)| ≤ h(μ+ρ)
h(ρ)

which implies that
ϕ̂d+y((t+u),(t+u)z)

ϕ̂d (t+u,(t+u)z)
converges to ϕ̂d+y(t,tz)

ϕ̂d (t,tz)
, uniformly in z ∈ A, when u goes to 0.

Thus the lemma follows from Lemma 7.1 �

The following proposition follows immediately from theorem (4.3.4) of [6].

PROPOSITION 7.3. For x ∈ t, y ∈ t⊕ it, t ∈ R∗+, one has

(10) ϕ̂d+y(t, x) = k

π(y)

∑
γ∈Q∨

∑
w∈W

(−1)we(w(x+tγ ),y)e−(x,γ )− 1
2 (γ,γ )t ,

where k is a constant which doesn’t depend on x, y and t .

PROPOSITION 7.4. Under Qu,x , for t > 0, bt converges in law toward the
radial part of {t�0 + xt

s, s ∈ [0,1]}, when (u, x) goes to 0 within the affine Weyl
chamber.
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PROOF. As {1
t
xt
s, s ∈ [0,1]} is a standard Brownian motion on k with variance

1
t
, Theorem 4.6 gives for z ∈ A, y ∈ t⊕ it,

E

(
e(xt

1,y)
∣∣∣ rad

({
xt
s

t
, s ∈ [0,1]

})
= z

)
= ϕ̂d+y(t, tz)

ϕ̂d(t, tz)
.

In particular the law μ of rad({xt
s

t
, s ∈ [0,1]}) satisfies, for any y ∈ t⊕ it,∫

A

ϕ̂d+y(t, tz)

ϕ̂d(t, tz)
dμ(z) = E

(
e(xt

1,y)) = e
t
2 (y,y).

The fact that |chμ(ez)| ≤ h(μ+ρ)
h(ρ)

imply that

z ∈ A �→ ϕ̂d(t, zt)

π(z)et (z)
,

where et (z) = ∑
γ∈ν(Q∨) e

−t (γ (z)+ 1
2 (γ,γ )), is smooth on A. Thus the Peter–Weyl

theorem ensures that for any smooth function u defined on A, and z ∈ A,

u(z)
ϕ̂d(t, zt)

π(z)et (z)
= ∑

λ∈P+
cλ chλ(z),

where cλ = ∫
A u(z)

ϕ̂d (t,zt)
π(z)et (z)

chλ(z)π
2(z) dz, and the convergence holds uniformly

and absolutely. Actually lim|λ|→∞(λ,λ)ncλ = 0 for all n ∈N. As ϕ̂d (t,zt)
π(z)et (z)

remains
positive on A,

u(z) = ∑
λ∈P+

cλ chλ(z)
π(z)et (z)

ϕ̂d(t, zt)
.

As | chλ(z)| ≤ h(λ+ρ)
h(ρ)

and π(·)et (·)/ϕ̂d(t, t ·) is bounded on A, the uniform and
absolute convergence imply that for any probability measure ν on A,

(11)
∫
A

u(z)ν(dz) = ∑
λ∈P+

cλ

∫
A

chλ(z)
π(z)et (z)

ϕ̂d(t, zt)
ν(dz).

Expression (10) for the definition of ϕ̂d+y gives

ϕ̂
d+2π i

t
(λ+ρ)

(t, tz) = 1

π(−2π i
t
(λ + ρ))

chλ(z)π(z)et (z),

for any λ ∈ P+. Thus one has∫
A

chλ(z)
π(z)e(z)

ϕ̂d(t, zt)
dμ(z) = π

(
−2π

i

t
(λ + ρ)

)∫
A

ϕ̂
d+2π i

t
(λ+ρ)

(t, tz)

ϕ̂d(t, tz)
dμ(z)

= π

(
−2π

i

t
(λ + ρ)

)
e− t

2 (2π)2(λ+ρ,λ+ρ),
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and identity (11) becomes for ν = μ,∫
A

u(z) dμ(z) = ∑
λ∈P+

cλπ

(
−2π

i

t
(λ + ρ)

)
e− t

2 (2π)2(λ+ρ,λ+ρ).

Identity (11) becomes for ν = μu,x∫
A

u(z) dμu,x(z) = ∑
λ∈P+

cλ

∫
A

chλ(z)
π(z)e(z)

ϕ̂d(t, zt)
dμu,x(z).

As∫
A

chλ(z)
π(z)e(z)

ϕ̂d(t, zt)
dμu,x(z) = π

(
−2π

i

t
(λ + ρ)

)∫
A

ϕ̂
d+2π i

t
(λ+ρ)

(t, tz)

ϕ̂d(t, tz)
dμ(z),

Lemma 7.2 implies that∫
A

u(z) dμu,x(z) converges towards
∫
A

u(z) dμ(z),

as (u, x) goes to 0 within the affine Weyl chamber, which proves the proposition.
�

COROLLARY 7.5. For any t > 0,

lim
(u,x)→0

Qu,x(bt ∈ dz) = Ct ϕ̂d(t, z)π

(
z

t

)
1A

(
z

t

)
W0(bt ∈ dz),

when (u, x) goes to 0 within the affine Weyl chamber.

PROOF. The corollary follows from the Weyl integration formula which im-

plies that the density of the radial part of 1
t
xt is equal to p

1
t

1 (z)π(z)21A(z), up to a
multiplicative constant. �

One defines a law Q0,0 on σ(bu : u > 0) letting for B ∈ σ(bu : u ≥ t), t > 0,

(12) Q0,0(B) = P0

(
Ct ϕ̂d(t, bt )π

(
bt

t

)
Qxt (θtB)

)
,

where {θt , t ≥ 0} is the shift operator.

REMARK 7.6. Under Q0,0, bt is equal in law to rad(t�0 + xt ) for any t > 0.

Thus for any t > 0, bt

t
is equal in law to rad(x

1
t ). As ε(x

1
t )1 converges toward the

Haar measure on K when t goes to 0, one obtains by the Weyl integration formula
that

lim
t→0

Q0,0

(
bt

t
∈ dx

)
= Cπ(x)21A(x) dx,

which can be also deduced from (12).
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REMARK 7.7. Notice that identity (8) remains true for (u, x) = (0,0), with
the convention of Lemma 7.1.

We are now in position to enounce the main theorem 3.1 in a more precise way.
In the following, one considers a continuous version of the doubly indexed process
{ε(t�0 +xt )s, s ∈ [0,1], t ≥ 0} (see, for instance, [4] and references therein for the
existence of a continuous version). Proposition 7.9 is fundamental for the proof.

THEOREM 7.8. Let {xt
s, s ∈ [01], t ∈ R+} be a standard Brownian sheet. Un-

der Q0,0, the process {(t, bt ), t ≥ 0} is equal in law to the process {(t, rad(t�0 +
xt )), t ≥ 0}.

PROOF. Applying the criterion given by Rogers and Pitman in Theorem 2 of
[15], Proposition 7.9 gives that {rad(xt + t�0), t ≥ 0} is a Markov process with
semigroup {Qt, t ≥ 0} starting from 0. �

PROPOSITION 7.9. Let {xt
s, s ∈ [0,1], t ≥ 0} be a standard Brownian sheet

on k. Let � be a kernel on Ĉ × (R+ × C([0,1], k), such that for any (t, y) ∈
Ĉ, �((t, y), (t, ·)) is the law of a Brownian motion {xt

s, s ∈ [0,1]} on k, given
rad(xt + t�0) = y. Let {Qt, t ≥ 0} be the transition probability of the Markov
process {(t, bt ), t ≥ 0} under Q0,0, and {Pt , t ≥ 0} the transition probability of
{(t, xt ), t ≥ 0}. Then for any t ≥ 0 and (u, x) ∈ Ĉ, one has the intertwining

Qt�
(
(u, x), ·) = �Pt

(
(u, x), ·).

PROOF. It is sufficient to prove that for every measurable function y ∈
L2([0,1], k), and r ∈ (0,1),∫

Qt�
(
(u, x), (u + t, dz)

)
e

∫ r
0 (ys ,dzs) =

∫
�Pt

(
(u, x), (u + t, dz)

)
e

∫ r
0 (ys ,dzs).

Let y ∈ L2([0,1], k), r ∈ (0,1), h ∈ H 1([0,1],K) such that h−1h′ = y, and a ∈ t

such that hr ∈ Oea . On the one hand, one has∫
Qt�

(
(u, x), (t + u,dz)

)
e

∫ r
0 (ys ,dzs)

=
∫

Qt

(
(u, x), (u + t, dz)

)
�

(
(u + t, z), (u + t, dz̃)

)
e

∫ r
0 (ys ,dz̃s )

=
∫

Qt

(
(u, x), (u + t, dz)

)
e

1
2 (u+t)

∫ r
0 (ys ,ys) ds− 1

2 (t+u)(a,a) ϕ̂d+a(u + t, z)

ϕ̂d(u + t, z)

= e
1
2 (u+t)

∫ r
0 (ys ,ys) ds− 1

2 (u+t)(a,a)EQu,x

(
ϕ̂d+a(u + t, bt )

ϕ̂d(u + t, bt )

)

= e
1
2 (u+t)

∫ r
0 (ys ,ys) ds− 1

2 u(a,a) ϕ̂d+a(u, x)

ϕ̂d(u, x)
.



1054 M. DEFOSSEUX

On the other hand,∫
�

(
(u, x), (u, dz)

)
Pt

(
(u, z), (u + t, dz̃)

)
e

∫ r
0 (ys ,dz̃s )

= e
t
2

∫ r
0 (ys ,ys) ds

∫
�

(
(u, x), (u, dz)

)
e

∫ r
0 (ys ,dzs)

= e
t
2

∫ r
0 (ys ,ys) dse

u
2

∫ r
0 (ys ,ys) ds− 1

2 u(a,a) ϕ̂d+a(u, x)

ϕ̂d(u, x)
. �
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