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GAUSSIAN MIXTURES: ENTROPY AND
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A symmetric random variable is called a Gaussian mixture if it has the
same distribution as the product of two independent random variables, one
being positive and the other a standard Gaussian random variable. Examples
of Gaussian mixtures include random variables with densities proportional to
e−|t |p and symmetric p-stable random variables, where p ∈ (0,2]. We ob-
tain various sharp moment and entropy comparison estimates for weighted
sums of independent Gaussian mixtures and investigate extensions of the B-
inequality and the Gaussian correlation inequality in the context of Gaussian
mixtures. We also obtain a correlation inequality for symmetric geodesically
convex sets in the unit sphere equipped with the normalized surface area mea-
sure. We then apply these results to derive sharp constants in Khinchine in-
equalities for vectors uniformly distributed on the unit balls with respect to
p-norms and provide short proofs to new and old comparison estimates for
geometric parameters of sections and projections of such balls.

1. Introduction. Gaussian random variables and processes have always been
of central importance in probability theory and have numerous applications in
various areas of mathematics. Recall that the measure γn on R

n with density

dγn(x) = (2π)−n/2e
−∑n

j=1 x2
j /2 dx is called the standard Gaussian measure and a

random vector distributed according to γn is called a standard Gaussian random
vector. A centered Gaussian measure on R

n is defined to be a linear image of
standard Gaussian measure. In the past four decades, intensive research has been
devoted to geometric properties related to Gaussian measures (see, e.g., the survey
[29]), which have provided indispensable tools for questions in convex geometry
and the local theory of Banach spaces. In many cases, however, it still remains a
challenging open problem to determine whether such properties are Gaussian per
se or, in fact, more general.

The main purpose of the present article is to investigate properties of mixtures
of Gaussian measures and demonstrate that they are of use to concrete geometric
questions.
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DEFINITION 1. A random variable X is called a (centered) Gaussian mixture
if there exists a positive random variable Y and a standard Gaussian random vari-
able Z, independent of Y , such that X has the same distribution as the product
YZ.

For example, a random variable X with density of the form

f (x) =
m∑

j=1

pj

1√
2πσj

e
− x2

2σ2
j ,

where pj , σj > 0 are such that
∑m

j=1 pj = 1, is a Gaussian mixture corresponding
to the discrete random variable Y with P(Y = σj ) = pj . Finite weighted averages
of noncentered Gaussian measures are ubiquitous in information theory and theo-
retical computer science (see, for instance, [1, 16] for relevant results in learning
theory) and are often referred in the literature as Gaussian mixtures. In this paper,
we shall reserve this term for centered Gaussian mixtures in the sense of Defini-
tion 1. Observe that Gaussian mixtures are necessarily symmetric and continuous.
We shall now discuss a simple analytic characterization of Gaussian mixtures in
terms of their probability density functions.

Recall that an infinitely differentiable function g : (0,∞) → R is called com-
pletely monotonic if (−1)ng(n)(x) ≥ 0 for all x > 0 and n ≥ 0, where for n ≥ 1
we denote by g(n) the nth derivative of g and g(0) = g. A classical theorem of
Bernstein (see, e.g., [18]) asserts that g is completely monotonic if and only if it
is the Laplace transform of some measure, that is, there exists a nonnegative Borel
measure μ on [0,∞) such that

(1) f (x) =
∫ ∞

0
e−tx dμ(t) for every x > 0.

Bernstein’s theorem implies the following equivalence.

THEOREM 2. A symmetric random variable X with density f is a Gaussian
mixture if and only if the function x �→ f (

√
x) is completely monotonic for x > 0.

Theorem 2 will be proven in Section 2. It readily implies that for every p ∈ (0,2]
the random variable with density cpe−|x|p is a Gaussian mixture; we denote its law
by μp and by μn

p = μ⊗n
p the corresponding product measure. Another example of

Gaussian mixtures are symmetric p-stable random variables, where p ∈ (0,2] (see
Lemma 23 in Section 2). Recall that a symmetric p-stable random variable X is
a random variable whose characteristic function is EeitX = e−c|t |p , for t ∈ R and
some c > 0. Standard symmetric p-stable random variables correspond to c = 1.
In the consecutive subsections, we shall describe our main results on Gaussian
mixtures.



2910 A. ESKENAZIS, P. NAYAR AND T. TKOCZ

1.1. Sharp Khinchine-type inequalities. The classical Khinchine inequality
asserts that for every p ∈ (0,∞) there exist positive constants Ap,Bp such that
for every real numbers a1, . . . , an we have

(2) Ap

(
n∑

i=1

a2
i

)1/2

≤
(
E

∣∣∣∣∣
n∑

i=1

aiεi

∣∣∣∣∣
p)1/p

≤ Bp

(
n∑

i=1

a2
i

)1/2

,

where ε1, . . . , εn ∈ {−1,1} are independent symmetric random signs. Whittle dis-
covered the best constants in (2) for p ≥ 3 (see [56]), Szarek treated the case p = 1
(see [53]) and finally Haagerup completed this line of research determining the op-
timal values of Ap,Bp for any p > 0 (see [21]).

Following Haagerup’s results, sharp Khinchine inequalities for other random
variables have also been investigated extensively (see, e.g., [5, 28, 31, 42]). In par-
ticular, in [31], Latała and Oleszkiewicz treated the case of i.i.d. random variables
uniformly distributed on [−1,1] and proved a comparison result in the sense of
majorization that we shall now describe.

We say that a vector a = (a1, . . . , an) is majorized by a vector b = (b1, . . . , bn),
denoted a � b, if the nonincreasing rearrangements a∗

1 ≥ · · · ≥ a∗
n and b∗

1 ≥ · · · ≥
b∗
n of the coordinates of a and b, respectively, satisfy the inequalities

k∑
j=1

a∗
j ≤

k∑
j=1

b∗
j for each k ∈ {1, . . . , n − 1} and

n∑
j=1

aj =
n∑

j=1

bj .

For a general reference on properties and applications of the majorization order-
ing, see [37]. For instance, every vector (a1, . . . , an) with ai ≥ 0 and

∑n
i=1 ai = 1

satisfies

(3)
(

1

n
, . . . ,

1

n

)
� (a1, . . . , an) � (1,0, . . . ,0).

A real-valued function which preserves (resp., reverses) the ordering � is called
Schur convex (resp., Schur concave). The majorization ordering has many equiva-
lent definitions. For example, it is well known (see [37]) that a vector (a1, . . . , an)

is majorized by another vector (b1, . . . , bn) if and only if for every continuous
convex function g : R→R we have

(4)
n∑

i=1

g(ai) ≤
n∑

i=1

g(bi).

This is equivalent to saying that the uniform probability measure μa = 1
n

∑n
i=1 δai

is smaller than μb = 1
n

∑n
i=1 δbi

in the convex ordering, that is, the property that∫
R

g(x)dμa(x) ≤
∫
R

g(x)dμb(x)

for every convex function g : R→R.
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The main result of [31] reads as follows. Let U1, . . . ,Un be i.i.d. random vari-
ables, uniformly distributed on [−1,1]. For p ≥ 2 and (a1, . . . , an), (b1, . . . , bn) ∈
R

n, we have

(5)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒ E

∣∣∣∣∣
n∑

i=1

aiUi

∣∣∣∣∣
p

≥ E

∣∣∣∣∣
n∑

i=1

biUi

∣∣∣∣∣
p

and for p ∈ [1,2) the second inequality is reversed. In particular, combining (3)
and (5), for any p ≥ 2 and a unit vector (a1, . . . , an) we get

(6) E|U1|p ≤ E

∣∣∣∣∣
n∑

i=1

aiUi

∣∣∣∣∣
p

≤ E

∣∣∣∣U1 + · · · + Un√
n

∣∣∣∣p,

whereas for p ∈ [1,2) the reverse inequalities hold. Inequality (6) along with the
central limit theorem implies that the sharp constants in the Khinchine inequality

(7) Ap

(
E

∣∣∣∣∣
n∑

i=1

aiUi

∣∣∣∣∣
2)1/2

≤
(
E

∣∣∣∣∣
n∑

i=1

aiUi

∣∣∣∣∣
p)1/p

≤ Bp

(
E

∣∣∣∣∣
n∑

i=1

aiUi

∣∣∣∣∣
2)1/2

are precisely

Ap =
⎧⎪⎨⎪⎩

γp, p ∈ [1,2),

31/2

(p + 1)1/p
, p ∈ [2,∞),

and

Bp =
⎧⎪⎨⎪⎩

31/2

(p + 1)1/p
, p ∈ [1,2),

γp, p ∈ [2,∞),

(8)

where γp = √
2(

�(
p+1

2 )√
π

)1/p is the pth moment of a standard Gaussian random
variable.

Theorem 3 below is an analogue of the Schur monotonicity statement (5) for
moments of Gaussian mixtures. Recall that for a random variable Y and p = 0 we
denote by ‖Y‖p = (E|Y |p)1/p its pth moment and ‖Y‖0 = exp(E log |Y |). Notice
that since a standard Gaussian random variable Z satisfies E|Z|p = ∞ for every
p ≤ −1, a moment comparison result for Gaussian mixtures can only make sense
for pth moments, where p > −1.

THEOREM 3. Let X be a Gaussian mixture and X1, . . . ,Xn be independent
copies of X. For two vectors (a1, . . . , an), (b1, . . . , bn) in R

n and p ≥ 2, we have

(9)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤
∥∥∥∥∥

n∑
i=1

biXi

∥∥∥∥∥
p

,

whereas for p ∈ (−1,2) the second inequality is reversed, provided that E|X|p <

∞.
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The proof of Theorem 3 and the straightforward derivation of sharp constants
for the corresponding Khinchine inequalities (Corollary 25) will be provided in
Section 3.

REMARK 4. After the submission of this paper, we learned from C. Houdré
that Theorem 3 had previously appeared in his joint work ([4], Proposition 2.6)
with R. Averkamp. We are grateful to C. Houdré for providing us this reference.

As an application, we derive similar Schur monotonicity properties for vec-
tors uniformly distributed on the unit ball of �n

q for q ∈ (0,2], which were first
considered by Barthe, Guédon, Mendelson and Naor in [9]. Recall that for a
vector x = (x1, . . . , xn) ∈ R

n and q > 0 we denote ‖x‖q = (
∑n

i=1 |xi |q)1/q and
‖x‖∞ = max1≤i≤n |xi |. We also write �n

q for the quasi-normed space (Rn,‖ · ‖q)

and Bn
q = {x ∈ R

n : ‖x‖q ≤ 1} for its closed unit ball. In [9], the authors discovered
a representation for the uniform measure on Bn

q , relating it to the product measures
μn

q defined after Theorem 2, and used it to determine the sharp constants in Khin-
chine inequalities on Bn

q up to a constant factor. Using their representation along
with Theorem 3, we deduce the following comparison result.

COROLLARY 5. Fix q ∈ (0,2] and let X = (X1, . . . ,Xn) be a random vector
uniformly distributed on Bn

q . For two vectors (a1, . . . , an), (b1, . . . , bn) in R
n and

p ≥ 2, we have

(10)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤
∥∥∥∥∥

n∑
i=1

biXi

∥∥∥∥∥
p

,

whereas for p ∈ (−1,2) the second inequality is reversed.

The derivation of the sharp constants in the corresponding Khinchine inequal-
ity is postponed to Corollary 26. Given Corollary 5 and the result of [31], which
corresponds to the unit cube Bn∞, the following question seems natural.

QUESTION 6. Let X = (X1, . . . ,Xn) be a random vector uniformly dis-
tributed on Bn

q for some q ∈ (2,∞). What are the sharp constants in the Khinchine
inequalities for X?

It will be evident from the proof of Corollary 5 that Question 6 is equivalent
to finding the sharp Khinchine constants for μn

q , where q ∈ (2,∞). We conjecture
that a Schur monotonicity result, identical to the one in (5), is valid.

Remark added in proofs. In the recent preprint [17], Question 6 is resolved
by different methods than those of the present article. In particular, it is shown there
that the sharp constants in the Khinchine inequality for μn

q , where q ∈ (2,∞), are
the same as those for μn∞ when p ∈ [1,∞).
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1.2. Entropy comparison. For a random variable X with density function
f : R → R+ the Shannon entropy of X is a fundamental quantity in information
theory, defined as

h(X) = −
∫
R

f (x) logf (x)dx = E
[− logf (X)

]
,

provided that the integral exists. Jensen’s inequality yields that among random
variables with a fixed variance, the Gaussian random variable maximizes the en-
tropy. Moreover, Pinsker’s inequality (see, e.g., [19], Theorem 1.1) asserts that if a
random variable X has variance one and G is a standard Gaussian random variable,
then the entropy gap h(G) − h(X) dominates the total variation distance between
the laws of X and G. Consequently, the entropy can be interpreted as a measure of
closeness to Gaussianity. The following question seems natural.

QUESTION 7. Fix n ≥ 2 and suppose that X1, . . . ,Xn are i.i.d. random vari-
ables with finite variance. For which unit vectors (a1, . . . , an) is the entropy of∑n

i=1 aiXi maximized?

The constraint
∑n

i=1 a2
i = 1 on (a1, . . . , an) plainly fixes the variance of the

weighted sum
∑n

i=1 aiXi and the answer would give the corresponding most Gaus-
sian weights.

The first result concerning the entropy of weighted sums of i.i.d. random vari-
ables was the celebrated entropy power inequality, first stated by Shannon in [50]
and rigorously proven by Stam in [52]. An equivalent formulation of the Shannon–
Stam inequality (see [35]) reads as follows. For every λ ∈ [0,1] and independent
random variables X,Y , we have

(11) h(
√

λX + √
1 − λY ) ≥ λh(X) + (1 − λ)h(Y ),

provided that all the entropies exist. It immediately follows from (11) that if
X1, . . . ,Xn are i.i.d. random variables with finite variance and (a1, . . . , an) is a
unit vector, then we have

(12) h

(
n∑

i=1

aiXi

)
≥ h(X1).

In other words, the corresponding minimum in Question 7 is achieved at the direc-
tion vectors ei .

Moreover, a deep monotonicity result in the entropic Central Limit Theorem
was obtained in the work [2] of Artstein-Avidan, Ball, Barthe and Naor. The au-
thors proved that for any random variable X with finite variance and any n ≥ 1 we
have

(13) h

(
n∑

i=1

1√
n
Xi

)
≤ h

(
n+1∑
i=1

1√
n + 1

Xi

)
,
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where X1,X2, . . . are independent copies of X.
Given inequality (13), a natural guess for Question 7 would be that the vector

( 1√
n
, . . . , 1√

n
) is a maximizer for any n ≥ 2 and for any square-integrable random

variable X. However, this is not correct in general. In [7], Proposition 2, the authors
showed that for a certain symmetric random variable X uniformly distributed on
the union of two intervals the Shannon entropy of the weighted sum

√
λX1 +√

1 − λX2 is not maximized at λ = 1
2 .

Nonetheless, for Gaussian mixtures it is possible to obtain the comparison for
Rényi entropies which confirms the natural guess. Recall that for a random variable
X with density f : R → R+ and α > 0, α = 1, the Rényi entropy of order α of X

is defined as

hα(X) = 1

1 − α
log

(∫
R

f α(x)dx

)
.

Note that if for some α > 1 the integral of f α is finite, then hα(X) tends to h(X)

as α → 1+ (see [11], Lemma V.3), which we shall also denote by h1(X) for con-
venience.

THEOREM 8. Let X1, . . . ,Xn be i.i.d. Gaussian mixtures and α ≥ 1. Then for
two vectors (a1, . . . , an), (b1, . . . , bn) in R

n we have

(14)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒ hα

(
n∑

i=1

aiXi

)
≥ hα

(
n∑

i=1

biXi

)
,

provided that all the entropies are finite. In particular, for every unit vector
(a1, . . . , an)

(15) h(X1) ≤ h

(
n∑

i=1

aiXi

)
≤ h

(
X1 + · · · + Xn√

n

)
.

Extensions of inequality (15), even for the uniform measure on the cube, appear
to be unknown.

QUESTION 9. Let U1, . . . ,Un be i.i.d. random variables, each uniformly dis-
tributed on [−1,1]. Is it correct that for every unit vector (a1, . . . , an)

(16) h

(
n∑

i=1

aiUi

)
≤ h

(
U1 + · · · + Un√

n

)
?

Geometrically, this would mean that, in the entropy sense, the most Gaussian
direction of the unit cube Bn∞ is the main diagonal.

REMARK 10. Since for every n ≥ 1,(
1

n
, . . . ,

1

n

)
�

(
1

n − 1
, . . . ,

1

n − 1
,0

)
,
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the monotonicity of entropy inequality (13) for Gaussian mixtures is a direct con-
sequence of Theorem 8. Furthermore, the same holds true for all Rényi entropies
of order α, where α ≥ 1.

We close this subsection with an intriguing question in the spirit of the well-
known fact that a Gaussian random variable has maximum entropy among all ran-
dom variables with a specified variance. Note that Theorem 8 along with

(1,1,0, . . . ,0) �
(

1,
1

2
,

1

2
,0, . . . ,0

)
� · · · �

(
1,

1

n
, . . . ,

1

n

)
imply that for every i.i.d. Gaussian mixtures X1,X2, . . . the sequence
h(X1 + X2+···+Xn+1√

n
), n = 1,2, . . . is increasing and in particular

h(X1 + X2) ≤ h

(
X1 + X2 + · · · + Xn+1√

n

)
.

Thus, the following result should not be surprising.

PROPOSITION 11. Let X1,X2 be independent Gaussian mixtures with finite
variance. Then

(17) h(X1 + X2) ≤ h(X1 + G),

where G is a Gaussian random variable independent of X1 having the same vari-
ance as X2.

We pose a question as to whether this is true in general, under the additional
assumption that X1,X2 are identically distributed.

QUESTION 12. Let X1,X2 be i.i.d. continuous random variables with finite
variance. Is it true that

(18) h(X1 + X2) ≤ h(X1 + G),

where G is a Gaussian random variable independent of X1 having the same vari-
ance as X2?

The preceding entropy comparison results will be proven in Section 3.

1.3. Geometric properties of Gaussian mixtures. Recall that a function ϕ :
R

n → R+ is called log-concave if ϕ = e−V for some convex function V : Rn →
(−∞,∞]. A measure μ on R

n is called log-concave if for every Borel sets
A,B ⊆ R

n and λ ∈ (0,1) we have

(19) μ
(
λA + (1 − λ)B

) ≥ μ(A)λμ(B)1−λ.
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A random vector is called log-concave if it is distributed according to a log-
concave measure. Two important examples of log-concave measures on R

n are
Gaussian measures and uniform measures supported on convex bodies. The ge-
ometry of log-concave measures, in analogy with the asymptotic theory of con-
vex bodies, has been intensively studied and many major results are known (see,
e.g., the monograph [3]). The Gaussian measure, however, possesses many delicate
properties which are either wrong or whose validity is still unknown for other log-
concave measures. In what follows, we will explain how to extend, in the context
of Gaussian mixtures, two such properties: the B-inequality, proven by Cordero-
Erausquin, Fradelizi and Maurey in [15], and the Gaussian correlation inequality,
recently proven by Royen in [46].

Choosing the sets A,B in (19) to be dilations of a fixed convex set K ⊆ R
n we

deduce that for every a, b > 0 and λ ∈ (0,1)

(20) μ
((

λa + (1 − λ)b
)
K

) ≥ μ(aK)λμ(bK)1−λ.

The (weak) B-inequality provides a substantial strengthening of (20) for Gaus-
sian measure, under an additional symmetry assumption: for any origin symmetric
convex set K ⊆ R

n, a, b > 0 and λ ∈ (0,1)

(21) γn

(
aλb1−λK

) ≥ γn(aK)λγn(bK)1−λ,

or, in other words, the function t �→ γn(e
tK) is log-concave on R. In fact, in [15]

the following strong form of the above inequality was proven.

THEOREM 13 (Strong B-inequality, [15]). Let K be a symmetric convex set in
R

n. Then, the function

(22) R
n � (t1, . . . , tn) �−→ γn

(
�

(
et1, . . . , etn

)
K

)
is log-concave on R

n, where �(s1, . . . , sn) is the diagonal n×n matrix with entries
s1, . . . , sn.

The authors also proved that the same conclusion holds for an arbitrary uncon-
ditional log-concave measure, provided that the convex set K is unconditional as
well (see [15], Section 5, for further details). Furthermore, they asked whether the
weak B-inequality holds for any symmetric log-concave measure and symmetric
convex set K ; this is currently known as the B-conjecture. We note that in [48],
Saroglou confirmed the B-conjecture on the plane (the case of uniform measures
on convex planar sets had previously been treated in [36]). Our result in this direc-
tion is the following theorem.

THEOREM 14. Let X1, . . . ,Xn be Gaussian mixtures such that Xi has the
same distribution as YiZi , where Yi is positive and Zi is a standard Gaussian
random variable independent of Yi . Denote by μi the law of Xi and by μ the
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product measure μ1 ⊗ · · · ⊗ μn. If, additionally, logYi is log-concave for each i,
then for every symmetric convex set K in R

n the function

(23) R
n � (t1, . . . , tn) �−→ μ

(
�

(
et1, . . . , etn

)
K

)
is log-concave on R

n.

We do not know whether the additional assumption on the Yi can be omitted, but
we verified (Corollary 30) that both the measure with density proportional to e−|t |p

and the symmetric p-stable measure have this property for p ∈ (0,1], whereas they
do not for p ∈ (1,2). Notice that the corresponding product measures, apart from
μn

1, are not log-concave. We note that extending the B-inequality to μn
p , where

p > 2, is of importance. For instance, it has been proven by Saroglou [47] that the
weak B-inequality for μn∞ (i.e., the uniform measure on the unit cube Bn∞) would
imply the conjectured logarithmic Brunn–Minkowski inequality (see [14]) in its
full generality. The proof of Theorem 14 will be given in Section 4.

An application of the B-inequality for Gaussian measure is a small ball prob-
ability estimate due to Latała and Oleszkiewicz [32]. For a symmetric convex set
K , denote by r(K) its inradius, that is, the largest r > 0 such that rBn

2 ⊆ K . In
[32], the authors used Theorem 13 along with the Gaussian isoperimetric inequal-
ity (see, e.g., [3], Theorem 3.1.9) to prove that if K ⊆ R

n is a symmetric convex
set with γn(K) ≤ 1/2, then

(24) γn(tK) ≤ (2t)
r(K)2

4 γn(K) for every t ∈ [0,1].
Using Theorem 14 and an isoperimetric-type estimate of Bobkov and Houdré from
[13], we deduce the following corollary.

COROLLARY 15. Let K be a symmetric convex set in R
n such that μn

1(K) ≤
1/2. Then

(25) μn
1(tK) ≤ t

r(K)

2
√

6 μn
1(K) for every t ∈ [0,1].

Our next result is an extension of the Gaussian correlation inequality, which
was recently proven by Royen in [46] (see also [30] for a very clear exposition of
Royen’s proof and the references therein for the history of the problem).

THEOREM 16 (Gaussian correlation inequality, [46]). For any centered Gaus-
sian measure γ on R

n and symmetric convex sets K,L in R
n, we have

(26) γ(K ∩ L) ≥ γ(K)γ(L).

This inequality admits a straightforward extension to products of laws of Gaus-
sian mixtures.
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THEOREM 17. Let X1, . . . ,Xn be Gaussian mixtures and denote by μi the
law of Xi . Then, for μ = μ1 ⊗· · ·⊗μn and any symmetric convex sets K,L in R

n

we have

(27) μ(K ∩ L) ≥ μ(K)μ(L).

This theorem implies that the correlation inequality (27) holds for the prod-
uct measure μn

p as well as for all symmetric p-stable laws on R
n, where

p ∈ (0,2) (Corollary 35). In particular, the multivariate Cauchy distribution,
which is a rotationally invariant 1-stable distribution on R

n defined as dμ(x) =
cn(1 + ‖x‖2

2)
− n+1

2 dx, satisfies the inequality (27). In [40], Memarian proved par-
tial results in this direction and noticed that such inequalities are equivalent to
correlation-type inequalities on the unit sphere Sn−1. We will recap his argu-
ment in Section 5. Let Sn−1+ ⊆ Sn−1 be the open upper hemisphere, that is,
Sn−1+ = Sn−1 ∩ {x ∈ R

n : xn > 0} whose pole is the point p = (0, . . . ,0,1). A sub-
set A ⊆ Sn−1+ is called geodesically convex if for any two points x, y ∈ A the short-
est arc of the great circle joining x, y is contained in A. Furthermore, A is called
symmetric (with respect to the pole p) if for any x ∈ A, the point x∗ = x which
lies on the great circle joining x and p and satisfies dSn−1(x,p) = dSn−1(p, x∗),
also belongs in A. Here, dSn−1 denotes the geodesic distance on the sphere.

COROLLARY 18. Let Sn−1+ ⊆ Sn−1 be the open upper hemisphere. Then for
every symmetric geodesically convex sets K,L in Sn−1+ we have

(28) |K ∩ L| · ∣∣Sn−1+
∣∣ ≥ |K| · |L|,

where | · | denotes the surface area measure on Sn−1.

Finally, we want to stress that one cannot expect that all geometric properties
of the Gaussian measure will extend mutatis mutandis to Gaussian mixtures. For
example, it has been proven by Bobkov and Houdré in [12] that the Gaussian
isoperimetric inequality actually characterizes Gaussian measures. Nevertheless,
it might be the case that there are many more that admit such an extension.

1.4. Sections and projections of Bn
q . The study of quantitative parameters of

sections and projections of convex bodies is a classical topic in convex geometry
(e.g., see the monograph [25]). As a first application, we revisit two well-known
theorems and reprove them using some relevant Gaussian mixture representations.

Denote by H1 the hyperplane (1,0, . . . ,0)⊥ and by Hn the hyperplane
(1, . . . ,1)⊥. It has been proven by Barthe and Naor in [10] that for any q ∈ (2,∞]
and any hyperplane H ⊆ R

n we have

(29)
∣∣ProjH1

Bn
q

∣∣ ≤ ∣∣ProjH Bn
q

∣∣ ≤ ∣∣ProjHn
Bn

q

∣∣,
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where | · | denotes Lebesgue measure. To deduce this, they proved that for any
q ∈ [1,∞], if X1, . . . ,Xn are i.i.d. random variables with density

(30) fq(t) = cq |t |
2−q
q−1 e−|t |

q
q−1

, t ∈ R,

then the volume of hyperplane projections of Bn
q can be expressed as

(31)
∣∣Proja⊥ Bn

q

∣∣ = αq,nE

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣,
where a = (a1, . . . , an) is a unit vector and αq,n is a positive constant. It immedi-
ately follows from the characterization given in Theorem 2 that for q ≥ 2 the ran-
dom variables Xi are Gaussian mixtures and thus, from Theorem 3 (with p = 1),
we deduce the following strengthening of (29).

COROLLARY 19. Fix q ∈ (2,∞]. For two unit vectors a = (a1, . . . , an),

b = (b1, . . . , bn) in R
n we have

(32)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒ ∣∣Proja⊥ Bn
q

∣∣ ≥ ∣∣Projb⊥ Bn
q

∣∣.
We now turn to the dual question for sections. Meyer and Pajor and later

Koldobsky (see [24, 41]) proved that for any q ∈ (0,2) and any hyperplane
H ⊆ R

n

(33)
∣∣Bn

q ∩ Hn

∣∣ ≤ ∣∣Bn
q ∩ H

∣∣ ≤ ∣∣Bn
q ∩ H1

∣∣.
More precisely, in [41] the authors proved the upper bound of (33) for q ∈ [1,2)

and the lower bound for q = 1 and posed a conjecture that would imply (33) for any
q ∈ (0,2); this was later confirmed in [24]. The main ingredients in Koldobsky’s
proof of (33) were a general representation of the volume of hyperplane sections
of a convex body in terms of the Fourier transform of the underlying norm and an
elegant lemma about symmetric q-stable densities. Using a different approach, we
prove the analogue of Corollary 19 for sections.

COROLLARY 20. Fix q ∈ (0,2). For two unit vectors a = (a1, . . . , an),

b = (b1, . . . , bn) in R
n we have

(34)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒ ∣∣Bn
q ∩ a⊥∣∣ ≤ ∣∣Bn

q ∩ b⊥∣∣.
In fact, Corollary 20 will follow from a more general comparison of Gaussian

parameters of sections which is in the spirit of [9]. For a hyperplane H ⊆ R
n and

a convex body K ⊆ R
n, denote by ‖ · ‖K∩H the norm on H associated with the

convex body K ∩ H .
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THEOREM 21. Fix q ∈ (0,2). For a unit vector θ ∈ R
n, let Gθ be a standard

Gaussian random vector on the hyperplane θ⊥. Then for every λ > 0 and unit
vectors a = (a1, . . . , an), b = (b1, . . . , bn) in R

n we have

(35)
(
a2

1, . . . , a2
n

) � (
b2

1, . . . , b
2
n

) =⇒ Ee
−λ‖Ga‖q

Bn
q ∩a⊥ ≤ Ee

−λ‖Gb‖q

Bn
q ∩b⊥

.

In [9], the authors used a different method to prove that for any q ∈ (0,2) and
λ > 0 the Gaussian parameters appearing in (35) are maximized when a = e1. As
explained there, such inequalities imply the comparison of various other param-
eters of sections and projections of Bn

q , most notably the volume (Corollary 20)
and the mean width. Recall that for a symmetric convex body K in R

n the sup-
port function hK : Sn−1 →R+ is defined as hK(θ) = maxx∈K〈x, θ〉 and the mean
width is

w(K) =
∫
Sn−1

hK(θ)dσ(θ),

where σ is the rotationally invariant probability measure on the unit sphere Sn−1.
Exploiting the duality between sections and projections, we deduce the following
corollary.

COROLLARY 22. Fix q ∈ (2,∞] and let H ⊆ R
n be a hyperplane. Then

(36) w
(
ProjH1

Bn
q

) ≤ w
(
ProjH Bn

q

) ≤ w
(
ProjHn

Bn
q

)
.

The lower bound in (36) was first obtained in [9], where the authors also proved
that for any q ∈ (0,2) and any hyperplane H ⊆ R

n

(37) w
(
ProjH Bn

q

) ≤ w
(
ProjH1

Bn
q

)
.

Given this result and Corollary 22, what remains to be understood is which hy-
perplane projections of Bn

q have minimal mean width for q ∈ (0,2), similar to the
study of volume. We will provide the proof of Theorem 21 and its consequences
in Section 6.

2. Proof of Theorem 2 and examples. Here, we establish some initial facts
about Gaussian mixtures, prove the characterization presented in the Introduction
and use it to provide relevant examples.

Let X be a Gaussian mixture with the same distribution as YZ, where Y is
positive and Z is an independent standard Gaussian random variable; denote by ν

the law of Y . Clearly, X is symmetric. Furthermore, for a Borel set A ⊆ R we have

P(X ∈ A) = P(YZ ∈ A)

=
∫ ∞

0
P(yZ ∈ A)dν(y) =

∫
A

∫ ∞
0

1√
2πy

e
− x2

2y2 dν(y)dx,
(38)
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which immediately implies that X has a density

(39) f (x) = 1√
2π

∫ ∞
0

e
− x2

2y2 dν(y)

y
.

We now proceed with the proof of Theorem 2.

PROOF OF THEOREM 2. Let X be a symmetric random variable with density
f such that the function x �→ f (

√
x) is completely monotonic. By Bernstein’s

theorem, there exists a nonnegative Borel measure μ supported on [0,∞) such
that

(40) f (
√

x) =
∫ ∞

0
e−tx dμ(t) for every x > 0

or, equivalently, f (x) = ∫ ∞
0 e−tx2

dμ(t) for every x ∈ R. Notice that μ({0}) = 0,
because otherwise f would not be integrable. Now, for a subset A ⊆R we have

P(X ∈ A) =
∫
A

∫ ∞
0

e−tx2
dμ(t)dx =

∫ ∞
0

∫
A

e−tx2
dx dμ(t)

=
∫ ∞

0

∫
√

2tA

1√
2π

e−x2/2 dx

√
π

t
dμ(t) =

∫ ∞
0

γn(
√

2tA)dν(t),

(41)

where dν(t) =
√

π
t

dμ(t). In particular, choosing A = R, we deduce that ν is a
probability measure, supported on (0,∞). Let V be a random variable distributed
according to ν; clearly, V is positive almost surely. Define Y = 1√

2V
and let Z be

a standard Gaussian random variable, independent of Y . Then (41) implies that

P(YZ ∈ A) = P

(
1√
2V

· Z ∈ A

)
=

∫ ∞
0

γn(
√

2tA)dν(t) = P(X ∈ A),

that is, X has the same distribution as the product YZ. The converse implication
readily follows from (39) and Bernstein’s theorem after a change of variables. �

Before applying Theorem 2, we first provide some examples of completely
monotonic functions. Direct differentiation shows that the functions e−αx, x−α and
(1 + x)−α , where α > 0, are completely monotonic on (0,∞) and a straightfor-
ward induction proves that the same holds for e−xβ

, where β ∈ (0,1]. The same
argument implies that if g is a completely monotonic function on (0,∞) and h is
positive and has a completely monotonic derivative on (0,∞), then g ◦ h is also
completely monotonic on (0,∞). Moreover, one can easily see that products of
completely monotonic functions themselves are completely monotonic.

Combining the last example with Theorem 2, we get that for every p ∈ (0,2]
the random variable with density proportional to e−|t |p is a Gaussian mixture. Re-
call that we denote by μp the probability measure with density cpe−|t |p , p > 0,
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where cp = (2�(1 + 1/p))−1, and μn
p = μ⊗n

p . Student’s t random variables pro-
vide another example of Gaussian mixtures. Furthermore, it is a classical fact that
symmetric p-stable random variables, where p ∈ (0,2], are Gaussian mixtures.
For these measures, we can describe the positive factor in their Gaussian mixture
representation. Recall that a positive random variable W with Laplace transform
Ee−tW = e−ctα , where α ∈ (0,1) and c > 0, is called a positive α-stable random
variable. Standard positive α-stable random variables correspond to c = 1; we de-
note their density by gα .

LEMMA 23. Fix p ∈ (0,2) and let Z be a standard Gaussian random vari-
able:

(i) If Vp/2 has density proportional to t−1/2gp/2(t) and is independent of Z,
then (2Vp/2)

−1/2Z has density cpe−|t |p .
(ii) If Wp/2 is a standard positive p/2-stable random variable and is indepen-

dent of Z, then (2Wp/2)
1/2Z is a standard symmetric p-stable random variable.

PROOF. To show (i), we shall decompose a symmetric random variable with
density cpe−|x|p into a product of two independent random variables: a positive
one and a standard Gaussian. To this end, denote by μ the measure in the repre-
sentation (40) written for the density cpe−|x|p , that is,

cpe−xp/2 =
∫ ∞

0
e−tx dμ(t), x > 0.

Therefore, the Laplace transform of c−1
p μ is e−xp/2

, which implies that c−1
p μ is

a standard positive p/2-stable measure with density gp/2. Now, an inspection of
the proof of Theorem 2, reveals that the positive factor Y in the Gaussian mixture
representation is Y = (2V )−1/2, where V has law

√
π
t

dμ(t), so in this case the

density of V is indeed proportional to t−1/2gp/2(t), as required.
On the other hand, (ii) is a straightforward characteristic function computation.

Using the independence of Wp/2 and Z, we get

Ee
i
√

2tW
1/2
p/2Z = EWp/2EZe

i
√

2tW
1/2
p/2Z = Ee−t2Wp/2 = e−tp ,

which concludes the proof of the lemma. �

Lemma 23 will be useful in Section 4. It can be checked by doing further com-
putations that when p = 1:

(i) Let E be an exponential random variable (i.e., a random variable with den-
sity e−t1t>0) and Z a standard Gaussian random variable, independent of E . Then
the product

√
2EZ has density 1

2e−|t |, t ∈ R (symmetric exponential density).
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(ii) Let Z1,Z2 be independent standard Gaussian random variables. Then the
quotient Z1/|Z2| is distributed according to the Cauchy distribution with density

1
π(1+x2)

, which is the symmetric 1-stable distribution.

REMARK 24. It was noted in [10], page 223, that for an infinitely differen-
tiable integrable function f : (0,∞) →R, the function x �→ f (

√
x) is completely

monotonic if and only if x �→ f̂ (
√

x) is completely monotonic, where f̂ is the
Fourier transform of f . Applying this to the density cpe−|t |p and then using The-
orem 2 yields that symmetric p-stable random variables are Gaussian mixtures, as
was also proven above.

3. Moment and entropy comparison. For the proofs of this section, we will
use an elementary result of Marshall and Proschan from [38] which reads as fol-
lows. Let φ :Rn →R be a convex function, symmetric under permutations of its n

arguments. Let X1, . . . ,Xn be interchangeable random variables, that is, random
variables whose joint distribution is invariant under permutations of its coordi-
nates. Then for two vectors (a1, . . . , an), (b1, . . . , bn) ∈ R

n, we have

(a1, . . . , an) � (b1, . . . , bn)

=⇒ Eφ(a1X1, . . . , anXn) ≤ Eφ(b1X1, . . . , bnXn)
(42)

or, in other words, the function R
n � (a1, . . . , an) �→ Eφ(a1X1, . . . , anXn) is

Schur convex. If φ is concave, then the second inequality in (42) is reversed, that
is, the function above is Schur concave. This result follows directly from the fact
that a convex (resp., concave) function that is symmetric under permutations of its
arguments is Schur convex (resp., concave), which, in turn, is a consequence of the
following simple property. If a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R

n then

a � b ⇐⇒ a ∈ conv
{
(bσ(1), . . . , bσ(n)) : σ is a permutation of {1, . . . , n}},

where conv(A) denotes the convex hull of a set A ⊆R
n (for details, see [37]).

We start with the comparison of moments of Gaussian mixtures.

PROOF OF THEOREM 3. Fix p > −1, p = 0. Let X be a Gaussian mixture
and X1, . . . ,Xn be independent copies of X. Since each Xi is a Gaussian mixture,
there exist i.i.d. positive random variables Y1, . . . , Yn and independent standard
Gaussian random variables Z1, . . . ,Zn such that Xi has the same distribution as
the product YiZi . For a1, . . . , an ∈ R, the joint independence of the Yi,Zj implies
that

E

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣
p

= E

∣∣∣∣∣
n∑

i=1

aiYiZi

∣∣∣∣∣
p

= E

∣∣∣∣∣
(

n∑
i=1

a2
i Y

2
i

)1/2

Z

∣∣∣∣∣
p

= γp
p ·E

∣∣∣∣∣
n∑

i=1

a2
i Y

2
i

∣∣∣∣∣
p/2

,

where Z is a standard Gaussian random variable independent of all the Yi and γp =
(E|Z|p)1/p . The conclusion now follows directly from Marshall and Proschan’s
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result (42) since t �→ tp/2 is convex for p ∈ (−1,0) ∪ [2,∞) and concave for p ∈
(0,2). Notice that when the exponent 1/p is negative, the resulting norm becomes
Schur concave. The result for p = 0 is proven similarly. �

The derivation of sharp constants in the corresponding Khinchine inequalities
is now straightforward.

COROLLARY 25. Let X be a Gaussian mixture and X1, . . . ,Xn be indepen-
dent copies of X. Then, for every p ∈ (−1,∞) and a1, . . . , an in R we have

(43) Ap

∥∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥∥
2

≤
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ Bp

∥∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥∥
2

,

where

(44) Ap =
⎧⎪⎨⎪⎩

‖X‖p

‖X‖2
, p ∈ (−1,2),

γp, p ∈ [2,∞),

and Bp =
⎧⎪⎨⎪⎩

γp, p ∈ (−1,2),

‖X‖p

‖X‖2
, p ∈ [2,∞),

provided that all the moments exist. Here, γp = √
2(

�(
p+1

2 )√
π

)1/p is the pth moment

of a standard Gaussian random variable. These constants are sharp.

PROOF. We can clearly assume that (a1, . . . , an) is a unit vector. We will prove
the statement for p ≥ 2; the case p ∈ (−1,2) is identical. The Schur convexity
statement of Theorem 3 along with (3) implies that

(45)
∥∥∥∥X1 + · · · + Xn√

n

∥∥∥∥
p

≤
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ ‖X1‖p.

Applying this for a1 = · · · = an−1 = (n − 1)−1/2 and an = 0, where n ≥ 2, shows
that the quantity on the left-hand side is decreasing in n and the central limit theo-
rem implies that

γp‖X‖2 ≤
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ ‖X‖p,

which is equivalent to

γp

∥∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥∥
2

≤
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ ‖X‖p

‖X‖2

∥∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥∥
2

.

The sharpness of the constants is evident. �

For the proof of Corollary 5, we need to exploit two results about the geometry
of Bn

q which are probabilistic in nature. Let Y1, . . . , Yn be i.i.d. random variables
distributed according to μq and write Y = (Y1, . . . , Yn).
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We denote by S the random variable (
∑n

i=1 |Yi |q)1/q . As explained in the In-
troduction, the main ingredient of the proof of Corollary 5 is a representation for
the uniform measure on Bn

q discovered in [9] that reads as follows. Let E be an
exponential random variable (i.e., the density of E is e−t1t>0) independent of the
Yi . Then the random vector(

Y1

(Sq + E)1/q
, . . . ,

Yn

(Sq + E)1/q

)
is uniformly distributed on Bn

q . Furthermore, we will need a result of Schechtman
and Zinn from [49], also independently proven by Rachev and Rüschendorf in
[45], which asserts that the random variables S and Y

S
are independent.

PROOF OF COROLLARY 5. Recall that X = (X1, . . . ,Xn) is a random vec-
tor uniformly distributed on Bn

q and let Y1, . . . , Yn, S and E be as above. For the
reader’s convenience, we repeat the following computation from [9]. Using the
representation described before and the independence of S and Y

S
, we get

E

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣
p

= E

∣∣∣∣∣ 1

(Sq + E)1/q

n∑
i=1

aiYi

∣∣∣∣∣
p

= E

∣∣∣∣ S

(Sq + E)1/q

∣∣∣∣pE
∣∣∣∣∣

n∑
i=1

ai

Yi

S

∣∣∣∣∣
p

.

Then, again by independence, E|∑n
i=1 ai

Yi

S
|pE|S|p = E|∑n

i=1 aiYi |p , and thus

E

∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣
p

= 1

E|S|pE
∣∣∣∣ S

(Sq + E)1/q

∣∣∣∣pE
∣∣∣∣∣

n∑
i=1

aiYi

∣∣∣∣∣
p

= c(p, q,n)E

∣∣∣∣∣
n∑

i=1

aiYi

∣∣∣∣∣
p

,

(46)

where c(p, q,n) > 0 is independent of the vector (a1, . . . , an). In other words,
the moments of linear functionals applied to the vector X are proportional to the
moments of the same linear functionals applied to Y . In view of Theorem 3 and of
the fact that Y1, . . . , Yn are i.i.d. Gaussian mixtures, this property readily implies
Corollary 5. �

Similar to Corollary 25, it is straightforward to deduce the sharp constants for
Khinchine inequalities on Bn

q .

COROLLARY 26. Fix q ∈ (0,2] and let X = (X1, . . . ,Xn) be a random vector,
uniformly distributed on Bn

q . Then, for every p ∈ (−1,∞) and a1, . . . , an in R we
have

(47) Ap

∥∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥∥
2

≤
∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ Bp

∥∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥∥
2

,
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where

(48) Ap =
⎧⎪⎨⎪⎩

‖X1‖p

‖X1‖2
, p ∈ (−1,2),

γp, p ∈ [2,∞),

and Bp =
⎧⎪⎨⎪⎩

γp, p ∈ (−1,2),

‖X1‖p

‖X1‖2
, p ∈ [2,∞),

and for r > −1

(49) ‖X1‖r =
(B(r+1

q
,

n+q−1
q

)

B( 1
q
,

n+q−1
q

)

)1/r

.

These constants are sharp.

PROOF. The derivation of (48) is identical to the one in the proof of Corol-

lary 25. To deduce (49), notice that X1 has density f (x) = cq,n(1 −|x|q)
n−1
q 1|x|≤1

where

c−1
q,n = 2

∫ 1

0

(
1 − xq) n−1

q dx = 2

q
B

(
1

q
,
n + q − 1

q

)
.

Thus, for every r > 0,

‖X1‖r =
(

2cq,n

∫ 1

0
xr(1 − xq) n−1

q dx

)1/r

=
(B(r+1

q
,

n+q−1
q

)

B( 1
q
,

n+q−1
q

)

)1/r

,

which completes the proof. �

We now turn to comparison of entropy.

PROOF OF THEOREM 8. Let X be a Gaussian mixture and X1, . . . ,Xn inde-
pendent copies of X. There exist i.i.d. positive random variables Y1, . . . , Yn and
independent standard Gaussian random variables Z1, . . . ,Zn such that Xi has the
same distribution as the product YiZi . For a vector θ = (θ1, . . . , θn) ∈ R

n denote
by Xθ the random variable

∑n
i=1 θiXi and by fθ the density of Xθ . Since Xθ is

itself a Gaussian mixture, Theorem 2 implies that the function x �→ fθ (
√

x) is
completely monotonic. Consequently, there exists a measure μθ on [0,∞) so that

fθ(
√

x) =
∫ ∞

0
e−tx dμθ(t) for every x > 0.

It now immediately follows from Hölder’s inequality that for x, y > 0 and λ ∈
(0,1) we have

fθ

(√
λx + (1 − λ)y

) =
∫ ∞

0

(
e−tx)λ(

e−ty)1−λ dμθ(t)

≤
(∫ ∞

0
e−tx dμθ(t)

)λ(∫ ∞
0

e−ty dμθ(t)

)1−λ

= fθ (
√

x)λfθ (
√

y)1−λ

or, in other words, the function ϕθ(x) = − logfθ (
√

x) is concave.
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Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R
n be such that (a2

1, . . . , a2
n) �

(b2
1, . . . , b

2
n). We first consider the case of Shannon entropy, that is, α = 1. Jensen’s

inequality implies the following well-known variational formula:

h(Xb) = E
[− logfb(Xb)

]
= min

{
E

[− logg(Xb)
] : g :R →R+ is a probability density

}
.

(50)

Thus, using (50) for g = fa we get

h(Xb) ≤ E
[− logfa(Xb)

] = E

[
− logfa

(
n∑

i=1

biYiZi

)]

= E

[
− logfa

((
n∑

i=1

b2
i Y

2
i

)1/2

Z

)]
= EZEY ϕa

(
n∑

i=1

b2
i Y

2
i Z2

)
,

(51)

where in the last equality we used the fact that Z is independent of the Yi . Now,
since (a2

1, . . . , a2
n) is majorized by (b2

1, . . . , b
2
n), the concavity of ϕa along with

Marshall and Proschan’s result (42) implies that

EY ϕa

(
n∑

i=1

b2
i Y

2
i Z2

)
≤ EY ϕa

(
n∑

i=1

a2
i Y

2
i Z2

)
which, after averaging over Z, gives

h(Xb) ≤ Eϕa

(
n∑

i=1

a2
i Y

2
i Z2

)
= E

[− logfa(Xa)
] = h(Xa).

For the Rényi entropy of order α, where α > 1, we need to prove that

(52)
∫
R

f α
a (x)dx ≤

∫
R

f α
b (x)dx.

Notice that, as before, we can write

(53)
∫
R

f α
a (x)dx = Ef α−1

a (Xa) = EZEY f α−1
a

((
n∑

i=1

a2
i Y

2
i

)1/2

Z

)
.

The concavity of ϕa implies that, since α > 1, the function x �→ f α−1
a (

√
x) =

e(1−α)ϕa(x) is convex, and thus from (42) we get

EY f α−1
a

((
n∑

i=1

a2
i Y

2
i

)1/2

Z

)
≤ EY f α−1

a

((
n∑

i=1

b2
i Y

2
i

)1/2

Z

)
,

which, after integrating with respect to Z, gives∫
R

f α
a (x)dx ≤ Ef α−1

a

((
n∑

i=1

b2
i Y

2
i

)1/2

Z

)

= Ef α−1
a (Xb) =

∫
R

f α−1
a (x)fb(x)dx.

(54)
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Finally, Hölder’s inequality yields

(55)
∫
R

f α−1
a (x)fb(x)dx ≤

(∫
R

f α
a (x)dx

) α−1
α

(∫
R

f α
b (x)dx

) 1
α

.

Combining (54) and (55) readily implies (52), that is, the comparison hα(Xa) ≥
hα(Xb). �

REMARK 27. We note that a result of similar nature was proven in the work
[57] of Yu, who showed that for every i.i.d. symmetric log-concave random vari-
ables X1, . . . ,Xn the function (a1, . . . , an) �→ h(

∑n
i=1 aiXi) is Schur convex on

R
n. In particular, for every vector (a1, . . . , an) ∈ R

n such that
∑n

i=1 |ai | = 1 we
have

(56) h

(
1

n

n∑
i=1

Xi

)
≤ h

(
n∑

i=1

aiXi

)
≤ h(X1).

The main actors in Yu’s argument are the same: the variational principle for en-
tropy (50) and Marshall and Proschan’s comparison result (42) (the log-concavity
assumption is paired up with the linear constraint on the coefficients).

Finally, we proceed with the proof of Proposition 11.

PROOF OF PROPOSITION 11. Let X1,X2 be independent Gaussian mixtures
such that Xi has the same distribution as the product YiZi , for some independent
positive random variables Y1, Y2 and independent standard Gaussian random vari-
ables Z1,Z2. Let G be a centered Gaussian random variable independent of X1
with the same variance as X2. Notice that X1 + X2 has the same distribution as
(Y 2

1 + Y 2
2 )1/2Z, whereas X1 + G has the same distribution as (Y 2

1 + EY 2
2 )1/2Z,

where Z is a standard Gaussian random variable independent of the Yi . Denote by
f the density of X1 + X2 and by g the density of X1 + G. Using the variational
formula for entropy (50), we get

h(X1 + X2) = E
[− logf (X1 + X2)

]
≤ E

[− logg(X1 + X2)
] = E(Y1,Z)EY2

[− logg
((

Y 2
1 + Y 2

2
)1/2

Z
)]

.

Since X1 + G is also a Gaussian mixture, as remarked in the proof of Theorem 8,
the function x �→ − logg(

√
x) is concave, and thus

EY2

[− logg
((

Y 2
1 + Y 2

2
)1/2

Z
)] ≤ − logg

((
Y 2

1 +EY 2
2
)1/2

Z
)
.

Combining the above, we deduce that

h(X1 + X2) ≤ E
[− logg

((
Y 2

1 +EY 2
2
)1/2

Z
)]

= E
[− logg(X1 + G)

] = h(X1 + G),

which concludes the proof. �



GAUSSIAN MIXTURES 2929

REMARK 28. In light of Proposition 11, it could seem that the assumption that
X1,X2 are identically distributed in Question 12 is redundant. However, this is not
the case. Let X1,X2 be independent symmetric random variables such that X1
has a smooth density f : R → R+ and let G be an independent Gaussian random
variable with the same variance as X2. A straightforward differentiation shows that
the inequality

h(X1 + εX2) ≤ h(X1 + εG)

as ε → 0+ is equivalent to the comparison of the fourth-order Taylor coefficients
of these expressions, namely,

EX4
2

∫
R

f (4)(x) logf (x)dx ≥ EG4
∫
R

f (4)(x) logf (x)dx.

However, this inequality can easily be seen to be wrong, for example, by taking X1

to have the density function f (x) = x2√
2π

e−x2/2 and X2 to be uniformly distributed
on a symmetric interval.

4. The B-inequality. We start by establishing a straightforward representa-
tion for products of laws of Gaussian mixtures. Let X1, . . . ,Xn be independent
Gaussian mixtures (not necessarily identically distributed) so that Xi has the same
distribution as the product YiZi , where Y1, . . . , Yn are independent positive random
variables and Z1, . . . ,Zn are independent standard Gaussian random variables.
Denote by νi the law of Yi , by μi the law of Xi and by ν,μ the product measures
ν1 ⊗ · · · ⊗ νn and μ1 ⊗ · · · ⊗ μn respectively. Then, for a Borel set A ⊆ R

n we
have

μ(A) = P
(
(X1, . . . ,Xn) ∈ A

)
= P

(
(Y1Z1, . . . , YnZn) ∈ A

)
=

∫ ∞
0

· · ·
∫ ∞

0
P

(
(y1Z1, . . . , ynZn) ∈ A

)
dν1(y1) · · ·dνn(yn)

=
∫
(0,∞)n

γn

(
�(y1, . . . , yn)

−1A
)

dν(y1, . . . , yn),

(57)

where �(y1, . . . , yn) is the diagonal matrix with entries y1, . . . , yn. In other words,
μ is an average of centered Gaussian measures on R

n. We now proceed with the
proof of the B-inequality for Gaussian mixtures.

PROOF OF THEOREM 14. Let X1, . . . ,Xn be as in the statement of the theo-
rem and denote by fi the density of Yi . Clearly, the log-concavity of the random
variable logYi is equivalent to the log-concavity of the function s �→ fi(e

−s) on R.
Let K ⊆ R

n be a symmetric convex set and (t1, . . . , tn) ∈ R
n. Then, by (57) and
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the change of variables yi = e−si we have

μ
(
�

(
et1, . . . , etn

)
K

)
=

∫
(0,∞)n

γn

(
�

(
y−1

1 et1, . . . , y−1
n etn

)
K

)
f1(y1) · · ·fn(yn)dy

=
∫
Rn

γn

(
�

(
es1+t1, . . . , esn+tn

)
K

)
f1

(
e−s1

) · · ·fn

(
e−sn

)
e−∑n

i=1 si ds.

(58)

The B-inequality for Gaussian measure (Theorem 13) immediately implies that the
function

R
n ×R

n � (s, t) �−→ γn

(
�

(
es1+t1, . . . , esn+tn

)
K

)
is log-concave on R

n × R
n. Consequently, the integrand in (58) is a log-concave

function of (s, t) ∈ R
n × R

n as a product of log-concave functions. The result
now follows from the Prékopa–Leindler inequality (see, e.g., [3], Theorem 1.4.1)
which implies that marginals of log-concave functions are log-concave (see also
[20], Theorem 3.15). �

REMARK 29. An inspection of the proof of Theorem 14 shows that the same
argument also yields the B-inequality for rotationally invariant measures of the
form dμ(x) = f (‖x‖2)dx, where f is proportional to the density of a Gaussian
mixture that satisfies the assumption of Theorem 14.

Checking whether a particular Gaussian mixture X satisfies the assumption of
Theorem 14 might be nontrivial, since one has to know the distribution of the posi-
tive factor Y occurring in its representation. However, by Lemma 23, we know this
factor for random variables with densities proportional to e−|t |p and for symmetric
p-stable random variables, where p ∈ (0,2). This allows us to determine the val-
ues of p ∈ (0,2) for which the assumption is satisfied, for each of these random
variables.

To this end, denote, as before, by gα the density of a standard positive α-stable
random variable, α ∈ (0,1). Recall that the positive factor in the representation of a
standard symmetric p-stable random variable is (2Wp/2)

1/2, where Wp/2 is a stan-
dard positive p/2-stable random variable. Thus, the assumption of Theorem 14 is
equivalent to the log-concavity of the function s �→ gp/2(e

−s) on R. On the other
hand, the corresponding factor in the representation of the random variable with
density cpe−|t |p is of the form (2Vp/2)

−1/2 where Vp/2 has density proportional to
t−1/2gp/2(t). Therefore, the corresponding assumption in this case is again equiva-
lent to the log-concavity of s �→ gp/2(e

−s) on R, since the remaining factor es/2 is
log-affine. If X is a random variable with density g : R → R+, the log-concavity
of s �→ g(e−s) is referred in the literature as multiplicative strong unimodality
of X. The multiplicative strong unimodality of positive α-stable distributions has
been studied by Simon in [51], who proved that such a random variable has this
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property if and only if α ≤ 1/2. Combining this with the above observations and
Theorem 14, we deduce the following.

COROLLARY 30. For every p ∈ (0,1], the product measure on R
n with den-

sity proportional to e−‖x‖p
p and the symmetric p-stable product measure on R

n

satisfy the B-inequality for every symmetric convex set K ⊆ R
n.

We now turn to the proof of the small ball estimate for the symmetric exponen-
tial measure (Corollary 15) described in the Introduction. The argument is very
similar to the one in [32].

PROOF OF COROLLARY 15. Let K ⊆ R
n be a symmetric convex set such that

μn
1(K) ≤ 1/2 and we denote by r = r(K) the inradius of K . For a set A ⊆R

n and
h > 0, we also denote by Ah the h-enlargement of A, that is, Ah = A+hBn

2 . Notice
that for s ∈ (0,1) we have (sK) ∩ (Kc)(1−s)r = ∅, where Kc is the complement
of K , and thus

(59) μn
1(sK) ≤ 1 − μn

1
((

Kc)
(1−s)r

)
.

Now, choose u ≥ 0 such that μn
1(K) = μ1((u,∞)) or, equivalently, μn

1(K
c) =

μ1((−u,∞)). Bobkov and Houdré proved in [13] that if A ⊆ R
n is a Borel set and

x ∈ R is such that μn
1(A) = μ1((x,∞)), then for every h > 0 we have

(60) μn
1(Ah) ≥ μ1

((
x − h

2
√

6
,∞

))
.

Combining (59) and (60), we get

μn
1(sK) ≤ 1 − μ1

((
−u − (1 − s)r

2
√

6
,∞

))

= μ1

((
u + (1 − s)r

2
√

6
,∞

))
= e

s−1
2
√

6
r(K)

μn
1(K).

(61)

For 0 < t ≤ s ≤ 1, we can write s = t
log s
log t and the B-inequality for μn

1 implies that

μn
1(tK)

log s
log t μn

1(K)
1− log s

log t ≤ μn
1(sK)

or equivalently

(62)
μn

1(tK)

μn
1(K)

≤
(

μn
1(sK)

μn
1(K)

) log t
log s

,

which, in view of (61), gives the estimate

μn
1(tK) ≤ e

s−1
2
√

6
· log t

log s
r(K)

μn
1(K) = t

r(K)

2
√

6
· s−1

log s μn
1(K).
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Taking the limit s → 1−, we finally deduce that

μn
1(tK) ≤ t

r(K)

2
√

6 μn
1(K)

for every t ∈ [0,1], which concludes the proof. �

REMARK 31. In [43], Paouris and Valettas proved a different small ball prob-
ability estimate for the symmetric exponential measure and any unconditional con-
vex body K in terms of the global parameter β(K) = Var‖W‖K/m(K)2, where
W is distributed according to μn

1 and m(K) is the median of ‖ · ‖K with respect
to μn

1. Their result is in the spirit of the work [23] of Klartag and Vershynin. In
the follow-up paper [44], they showed that a similar estimate holds for every un-
conditional log-concave measure and unconditional convex body K with a worse
dependence on β(K). In the particular case of the symmetric exponential mea-
sure, the unconditionality assumption in the suboptimal estimate from [44] can be
omitted, because of Corollary 30.

We would like to remark that Theorem 14 combined with a result of Marsiglietti,
[39], Proposition 3.1, immediately implies the following corollary.

COROLLARY 32. Let μ be as in Theorem 14. Then, for every symmetric con-
vex set K ⊆ R

n the function t �→ μ(tK) is 1
n

-concave for t > 0, that is,

(63) μ
((

λt + (1 − λ)s
)
K

)1/n ≥ λμ(tK)1/n + (1 − λ)μ(sK)1/n

for every t, s > 0 and λ ∈ (0,1).

5. Correlation inequalities. To prove the correlation inequality for Gaussian
mixtures (Theorem 17) we will use Royen’s Gaussian correlation inequality (The-
orem 16), along with a simple lemma for the standard Gaussian measure. Recall
that we write �(y) = �(y1, . . . , yn) for the diagonal n × n matrix with diagonal
y = (y1, . . . , yn).

LEMMA 33. Let K be a symmetric convex set in R
n. Then the function t �→

γn(�(t,1, . . . ,1)K) is nondecreasing for t > 0.

PROOF. It clearly suffices to consider the case when K has a nonempty in-
terior. We will prove that the function ψ(x) = log γn(�(ex,1, . . . ,1)K) is non-
decreasing on the real line. By virtue of the B-inequality for the standard Gaus-
sian measure (Theorem 13), ψ is concave. To verify that ψ is nondecreasing, it is
enough to prove that limx→∞ ψ(x) > −∞. Take δ > 0 such that [−δ, δ]n ⊆ K .
For every real number x, we have

ψ(x) ≥ log γn

([−exδ, exδ
] × [−δ, δ]n−1)

,
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which, for x → ∞, gives

lim
x→∞ψ(x) ≥ log γn

(
R× [−δ, δ]n−1)

> −∞.

This concludes the proof of the lemma. �

PROOF OF THEOREM 17. Let μ be a product of laws of Gaussian mixtures.
According to (57) for every Borel set A ⊆ R

n, we have

μ(A) =
∫
(0,∞)n

γn

(
�(y)−1A

)
dν1(y1) · · ·dνn(yn)

for some probability measures ν1, . . . , νn on (0,∞). Let K,L ⊆ R
n be symmetric

convex sets. The Gaussian correlation inequality yields

μ(K ∩ L) =
∫
(0,∞)n

γn

(
�(y)−1K ∩ �(y)−1L

)
dν1(y1) · · ·dνn(yn)

≥
∫
(0,∞)n

γn

(
�(y)−1K

)
γn

(
�(y)−1L

)
dν1(y1) · · ·dνn(yn).

(64)

Fix y1, . . . , yn−1 > 0. Lemma 33 implies that the functions yn �→ γn(�(y)−1K)

and yn �→ γn(�(y)−1L) are nonincreasing on (0,∞). Consequently, combining
(64) and Chebyshev’s integral inequality (see, e.g., [22], page 168) for the proba-
bility measure νn, we get

μ(K ∩ L) ≥
∫
(0,∞)n−1

(∫ ∞
0

γn

(
�(y)−1K

)
dνn(yn)

)
×

(∫ ∞
0

γn

(
�(y)−1L

)
dνn(yn)

)
dν1(y1) · · ·dνn−1(yn−1).

After iteratively applying Chebyshev’s inequality to ν1, . . . , νn−1 we finally de-
duce that

μ(K ∩ L) ≥
∫
(0,∞)n

γn

(
�(y)−1K

)
dν1(y1) · · ·dνn(yn)

·
∫
(0,∞)n

γn

(
�(y)−1L

)
dν1(y1) · · ·dνn(yn)

= μ(K)μ(L),

which is the correlation inequality (27). �

REMARK 34. Similar to the B-inequality, an inspection of the proof of Theo-
rem 17 reveals that the same argument also gives the correlation inequality for ro-
tationally invariant probability measures of the form dμ(x) = f (‖x‖2)dx, where
f is proportional to the density of a Gaussian mixture.
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Recall that a function f : Rn → R+ is called quasi-concave if for any t ≥ 0 the
set At = {x ∈ R

n : f (x) ≥ t} is convex. Writing

f (x) =
∫ ∞

0
1At (x)dt, x ∈ R,

one can immediately see that if a measure μ satisfies the correlation inequality (27)
for any symmetric convex sets K,L ⊆ R

n then for every symmetric quasi-concave
functions f,g :Rn →R+ we have

(65)
∫
Rn

f (x)g(x)dμ(x) ≥
∫
Rn

f (x)dμ(x) ·
∫
Rn

g(x)dμ(x).

Correlation inequalities of the form (65) were treated by Koldobsky and
Montgomery-Smith in [27] for another class of functions when μ is a general
symmetric stable measure on R

n. Recall that the law μ of a random vector X

in R
n is called a symmetric p-stable measure if every marginal 〈X,a〉, a ∈ R

n,
is a symmetric p-stable random variable. It is a well-known fact (see, e.g., [55],
page 312) that symmetric p-stable random vectors X = (X1, . . . ,Xn) in R

n are in
one-to-one correspondence with finite measures mX on the unit sphere Sn−1 such
that

(66) E exp

(
i

n∑
j=1

ajXj

)
= exp

(
−

∫
Sn−1

∣∣∣∣∣
n∑

j=1

ajxj

∣∣∣∣∣
p

dmX(x)

)

for every a1, . . . , an ∈ R. We will argue that the correlation inequality (27) holds
for the law μ of any symmetric p-stable random vector X in R

n. Assume first that
the corresponding measure mX on Sn−1 has a finite support, namely supp(mX) =
{y1, . . . , y�}, and let Y be a standard �-dimensional symmetric p-stable random
vector with independent coordinates. In this case, one can find θ1, . . . , θn ∈ R

�

such that Xj has the same distribution as 〈Y, θj 〉 or, in other words, X is a linear
image of Y and the correlation inequality (27) immediately follows. For a gen-
eral measure mX on Sn−1, there exists a sequence of finitely supported measures
m� that converges to mX in the weak* topology (e.g., by the Krein–Milman the-
orem) which means, by (66), that the corresponding p-stable random vectors X�

converge to X in distribution. Note that to prove the correlation inequality (27)
for a symmetric p-stable measure μ on R

n, it suffices to consider the case when
K,L ⊆ R

n are convex polytopes, which are sets whose boundaries are contained
in a finite union of affine hyperplanes. However, any affine hyperplane is of μ-
measure zero, since the one-dimensional marginals of μ are p-stable, thus contin-
uous. Therefore, the convergence in distribution concludes the proof of the follow-
ing corollary.

COROLLARY 35. Let μ be a symmetric p-stable measure on R
n. Then for

every symmetric convex sets K,L ⊆ R
n we have

μ(K ∩ L) ≥ μ(K)μ(L).
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This corollary implies inequalities of the form (65), analogous to the ones
proven in [27]. It also implies that the multivariate Cauchy distribution, defined

as dμ(x) = cn(1 + ‖x‖2
2)

− n+1
2 dx, satisfies the correlation inequality (27). Notice

that this also follows from Remark 34. In [40], the author showed that this is actu-
ally equivalent to Corollary 18. We reproduce his argument below.

PROOF OF COROLLARY 18. Consider the hyperplane R
n−1 ≡ R

n−1 × {0} ⊆
R

n and let S ⊆ R
n be the sphere of radius 1 centered at en = (0, . . . ,0,1). Denote

by S+ the open lower hemisphere of S, that is, S+ = {x ∈ S : xn < 1}, and define a
bijection q : S+ →R

n−1 by the formula

(67) q(x) = the point of Rn−1 which lies on the line joining x to en.

One can easily check that closed arcs of great circles on S+ are mapped to line
segments on R

n−1 and vice versa, which immediately implies that geodesically
convex sets in S+ are in one-to-one correspondence with convex sets in R

n−1.
Moreover, since q(0) = 0, symmetry in R

n−1 agrees with geodesic symmetry in
S+. Denoting by μ the push-forward under q of the normalized surface area mea-
sure on S+, we get that for every r > 0, μ satisfies the identity

μ
(
rBn−1

2

) = |BSn−1(arctan r)|
|S+| ,

where BSn−1(θ) is a spherical cap of radius θ on Sn−1. A simple computation
for the volume of spherical caps along with the rotational invariance of μ shows
that μ is precisely the law of the multivariate Cauchy distribution on the hyper-
plane R

n−1. Therefore, for two symmetric geodesically convex sets K,L ⊆ S+,
the multivariate Cauchy correlation inequality for the symmetric convex sets
q(K), q(L) ⊆ R

n−1 implies that

|K ∩ L|
|S+| = μ

(
q(K ∩ L)

) = μ
(
q(K) ∩ q(L)

)
≥ μ

(
q(K)

) · μ(
q(L)

) = |K|
|S+| · |L|

|S+| ,

which completes the proof of the corollary. �

REMARK 36. It is a straightforward consequence of Theorem 17 that the
product probability measure μn

p with density cn
pe−‖x‖p

p satisfies the correlation in-
equality (27) for every p ∈ (0,2] and n ≥ 1. It turns out that this is the exact range
of p > 0 for which this property holds. To see this, take δ > 0 and consider the
symmetric strips

Kδ = {
(x, y) ∈ R

2 : |x − y| ≤ δ
}

and Lδ = {
(x, y) ∈ R

2 : |x + y| ≤ δ
}
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on the plane. We will show that μ2
p(Kδ ∩ Lδ) < μ2

p(Kδ)μ
2
p(Lδ) for p > 2 and

small enough δ > 0. Indeed, a straightforward differentiation yields that the Taylor
expansions of these two quantities around δ = 0 are

μ2
p(Kδ ∩ Lδ) = 4c2

pδ2 + o
(
δ3)

and μ2
p(Kδ)μ

2
p(Lδ) = 4c2

p21− 2
p δ2 + o

(
δ3)

and since 1 < 21− 2
p for p > 2, the correlation inequality (27) cannot hold for

small enough δ > 0. A computation along the same lines together with Remark 34
prove that a similar behavior is exhibited by the rotationally invariant probabil-
ity measures with densities proportional to e−‖x‖p

2 : they satisfy (27) if and only if
p ∈ (0,2].

REMARK 37. After the submission of this paper, we learned from J. Zinn
about the works [33] and [34] of Lewis and Pritchard on measures supporting
correlation inequalities (27). In [33], the authors proved, among other things, that
the uniform probability measure on any convex body K in R

n does not support a
correlation inequality, even though we now know that this holds for the uniform
measure on a hemisphere, where usual convexity and symmetry are replaced by
geodesic convexity and symmetry (Corollary 18). In [34], they showed that any
rotationally invariant measure μ on R

n which supports a correlation inequality
must satisfy ∫

Rn
ea‖x‖2

2 dμ(x) = ∞

for some constant a > 0. The computation mentioned in the last sentence of Re-
mark 36 is also a consequence of their result. We are grateful to J. Zinn for provid-
ing us these references.

6. Sections and projections of Bn
q revisited. In this section, we derive the

comparison results for geometric parameters of hyperplane sections and projec-
tions of the balls Bn

q described in the Introduction. First, let us explain how the
comparison of the aforementioned Gaussian parameters (Theorem 21) implies the
comparison of volume (Corollary 20) and mean width (Corollary 22), follow-
ing [9].

PROOF OF COROLLARIES 20 AND 22. Fix q ∈ (0,2) and let a = (a1, . . . , an),

b = (b1, . . . , bn) ∈R
n be unit vectors such that (a2

1, . . . , a2
n) � (b2

1, . . . , b
2
n). Recall

that Ga,Gb are standard Gaussian random vectors on the hyperplanes a⊥ and b⊥,
respectively. According to Theorem 21, for every λ > 0 we have

Ee
−λ‖Ga‖q

Bn
q ∩a⊥ ≤ Ee

−λ‖Gb‖q

Bn
q ∩b⊥

.
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Integrating this inequality with respect to λ and any measure μ on (0,∞), we
deduce that

E

∫ ∞
0

e
−λ‖Ga‖q

Bn
q ∩a⊥

dμ(λ) ≤ E

∫ ∞
0

e
−λ‖Gb‖q

Bn
q ∩b⊥

dμ(λ),

which, by Bernstein’s theorem, is equivalent to the validity of the inequality

(68) Eg
(‖Ga‖q

Bn
q ∩a⊥

) ≤ Eg
(‖Gb‖q

Bn
q ∩b⊥

)
for every completely monotonic function g : (0,∞) → R. In particular, choosing
g(s) = s−α/q , we get that

E‖Ga‖−α
Bn

q ∩a⊥ ≤ E‖Gb‖−α
Bn

q ∩b⊥,

provided that 0 < α < n − 1 so that the integrals are finite. Integration in polar
coordinates now shows that for every 0 < α < n − 1 we have

(69)
∫
S(a⊥)

‖θ‖−α
Bn

q ∩a⊥ dσa(θ) ≤
∫
S(b⊥)

‖θ‖−α
Bn

q ∩b⊥ dσb(θ),

where σa, σb are the rotationally invariant probability measures on the unit spheres
S(a⊥), S(b⊥) of the hyperplanes a⊥ and b⊥, respectively. Letting α → n − 1 in
(69) now implies that

(70)
∫
S(a⊥)

‖θ‖−n+1
Bn

q ∩a⊥dσa(θ) ≤
∫
S(b⊥)

‖θ‖−n+1
Bn

q ∩b⊥dσb(θ).

However, for every symmetric convex body K in R
m, the radius of K in the di-

rection θ ∈ Sm−1 is ρK(θ) = sup{t > 0 : tθ ∈ K} = ‖θ‖−1
K and integration in polar

coordinates gives

|K| =
∫
Sm−1

∫ ‖θ‖−1
K

0
rm−1drdθ = 1

m

∫
Sm−1

‖θ‖−m
K dθ,

where we denote by dθ integration with respect to the usual Lebesgue measure on
Sm−1. Equivalently, after rescaling we get

(71)
∫
Sm−1

‖θ‖−m
K dσ(θ) = |K|

|Bm
2 | ,

which, combined with (70) gives that |Bn
q ∩ a⊥| ≤ |Bn

q ∩ b⊥| and Corollary 20
follows.

Furthermore, applying (68) to g(s) = e−λsβ
, where β ∈ (0,1] and λ > 0, we

have

Ee
−λ‖Ga‖βq

Bn
q ∩a⊥ ≤ Ee

−λ‖Gb‖βq

Bn
q ∩b⊥

.

Since both sides, as functions of λ > 0, are equal at λ = 0 we deduce that their
derivatives at λ = 0 also satisfy the same inequality, that is,

E‖Gb‖βq

Bn
q ∩b⊥ ≤ E‖Ga‖βq

Bn
q ∩a⊥
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for every β ∈ (0,1]. Choosing β = 1/q and integrating in polar coordinates yields

(72)
∫
S(b⊥)

‖θ‖Bn
q ∩b⊥ dσb(θ) ≤

∫
S(a⊥)

‖θ‖Bn
q ∩a⊥ dσa(θ).

Recall that for a symmetric convex body K in R
m, the polar body Ko of K is

defined to be Ko = {x ∈ R
m : 〈x, y〉 ≤ 1 for every y ∈ K} and if ‖ ·‖Ko is the norm

associated with Ko then ‖θ‖Ko = hK(θ) for every θ ∈ Sn−1. Moreover, recall the
standard polarity relation (see, e.g., [54], Proposition 2.6) between sections and
projections, namely that for every convex body K on R

m and every hyperplane H ,

(73) K ∩ H = (
ProjH

(
Ko))o.

Combining (72) with (73), we deduce that if q∗ > 2 is such that 1
q

+ 1
q∗ = 1, then

(74) w
(
Projb⊥

(
Bn

q∗
)) ≤ w

(
Proja⊥

(
Bn

q∗
))

.

In particular, for every hyperplane H ⊆ R
n we obtain

w
(
ProjH1

(
Bn

q∗
)) ≤ w

(
ProjH

(
Bn

q∗
)) ≤ w

(
ProjHn

(
Bn

q∗
))

,

where H1 = (1,0, . . . ,0)⊥ and Hn = (1, . . . ,1)⊥. This concludes the proof of
Corollary 22. �

We finally proceed with the proof of Theorem 21.

PROOF OF THEOREM 21. Fix q ∈ (0,2). For a hyperplane H = a⊥, where
a = (a1, . . . , an) ∈ R

n is a unit vector, let Ga be a standard Gaussian random vector
on a⊥ and denote by H(ε) the set

(75) H(ε) = {
x ∈R

n : ∣∣〈x, a〉∣∣ < ε
}
.

To proceed, we will need a representation from [9], Lemma 14, for the Laplace
transforms of ‖Ga‖q

Bn
q ∩H that reads as follows. For every λ > 0, there exist con-

stants α(q,λ),β(q,λ) > 0 and c(q,λ,n) > 0 such that for every hyperplane
H = a⊥, a = (a1, . . . , an) ∈ Sn−1, we have

(76) Ee
−λ‖Ga‖q

Bn
q ∩H = c(q,λ,n) lim

ε→0+
1

2ε
μn

q,λ

(
H(ε)

)
,

where the probability measure μq,λ on R is of the form

(77) dμq,λ(t) = e−α(q,λ)|t |q−β(q,λ)t2
dt

and μn
q,λ = μ⊗n

q,λ. An immediate application of Theorem 2 yields that μq,λ is the
law of a Gaussian mixture. Thus, by (57) there exists a probability measure ν =
ν(q,λ) on (0,∞) such that if A ⊆ R

n is a Borel set, then

μn
q,λ(A) =

∫
(0,∞)n

γn

(
�(y)−1A

)
dνn(y),
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where νn = ν⊗n. Notice that for the symmetric strip (75) we have

�(y)−1H(ε) =
{
x ∈R

n :
∣∣∣∣∣

n∑
j=1

ajyjxj

∣∣∣∣∣ < ε

}
,

that is, �(y)−1H(ε) is also a symmetric strip of width (
∑n

j=1 a2
j y

2
j )−1/2ε. Conse-

quently, the rotational invariance of the Gaussian measure implies that

(78) μn
q,λ

(
H(ε)

) = 2
∫
(0,∞)n

�

((
n∑

j=1

a2
j y

2
j

)−1/2

ε

)
dνn(y),

where �(s) = 1√
2π

∫ s
0 e−x2/2 dx. Combining (76) and (78), we deduce that

c(q,λ,n)−1 ·Ee
−λ‖Ga‖q

Bn
q ∩H = lim

ε→0+
1

ε

∫
(0,∞)n

�

((
n∑

j=1

a2
j y

2
j

)−1/2

ε

)
dνn(y)

=
∫
(0,∞)n

d

dε
|ε=0�

((
n∑

j=1

a2
j y

2
j

)−1/2

ε

)
dνn(y)

= 1√
2π

∫
(0,∞)n

(
n∑

j=1

a2
j y

2
j

)−1/2

dνn(y)

= 1√
2π

E

(
n∑

j=1

a2
j Y

2
j

)−1/2

,

where Y1, . . . , Yn are i.i.d. random variables distributed according to ν. To verify
the assumptions of the dominated convergence theorem for the swap of the limit
and integration in the second equality, it suffices to check that (

∑n
j=1 a2

j y
2
j )−1/2 ∈

L1(νn), since �(s) ≤ s√
2π

for s > 0. This immediately follows by Fatou’s lemma,
that is,∫

(0,∞)n

(
n∑

j=1

a2
j y

2
j

)−1/2

dνn(y) ≤ √
2π lim inf

ε→0+
1

2ε
μn

q,λ

(
H(ε)

)

= √
2πc(q,λ,n)−1

Ee
−λ‖Ga‖q

Bn
q ∩H < ∞.

Now, since t �→ t−1/2 is a convex function on (0,∞) and Y1, . . . , Yn are i.i.d. ran-
dom variables, Marshall and Proschan’s result (42) implies the comparison (35),
as required. �

We note that the crucial identity (78) can also be proven in purely probabilis-
tic terms. Let X1, . . . ,Xn be i.i.d. random variables distributed according to μq,λ
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and take i.i.d. positive random variables Y1, . . . , Yn and standard Gaussian random
variables Z1, . . . ,Zn such that Xi has the same distribution as the product YiZi .
Then we have

μn
q,λ

(
H(ε)

) = EYPZ

(∣∣∣∣∣
n∑

j=1

ajYjZj

∣∣∣∣∣ < ε

)
= EYPZ

(
|Z|

(
n∑

j=1

a2
j Y

2
j

)1/2

< ε

)

= EYPZ

(
|Z| <

(
n∑

j=1

a2
j Y

2
j

)−1/2

ε

)
= 2E

[
�

((
n∑

j=1

a2
j Y

2
j

)−1/2

ε

)]
,

where Z is a standard Gaussian random variable, independent of the Yi .

REMARK 38. A similar approach also yields a direct proof of Corollary 20.
The crucial ingredient in this case would be an identity from [41] and [8] instead of
(76). It is proven there that for every q ∈ (0,∞), there exists a constant c(q,n) > 0
such that if H ⊆ R

n is any hyperplane and H(ε) is defined by (75), then

(79)
∣∣Bn

q ∩ H
∣∣ = c(q,n) lim

ε→0+
1

2ε
μn

q

(
H(ε)

)
,

where μn
q is the measure on R

n with density proportional to e−‖x‖q
q . Since this

measure is also a product of the laws of i.i.d. Gaussian mixtures, the preceding
argument works identically.

In [26], Koldobsky and Zymonopoulou investigated extremal volumes of sec-
tions of the complex �q -balls Bn

q (C), which can also be treated by the approach
presented above. From now on, we will adopt the obvious identification of C

n

with R
2n without further ado. We will denote by 〈·, ·〉 the standard Hermitian inner

product on C
n and for a vector ζ ∈ C

n we will write ζ⊥ for the complex hyper-
plane orthogonal to ζ . Recall that for a vector z = (x1, y1, . . . , xn, yn) ∈ R

2n we
denote

‖z‖�n
q(C) =

(
n∑

j=1

(
x2
j + y2

j

)q/2

)1/q

=
(

n∑
j=1

|zj |q
)1/q

,

where zj = xj + iyj , and Bn
q (C) = {z ∈ R

2n : ‖z‖�n
q(C) ≤ 1}. Let Hn = ξ⊥ be any

complex hyperplane such that |ξ1| = · · · = |ξn| and H1 = η⊥ be such that ηj =
0 for j ≥ 2, where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ C

n. In [26], the authors
proved that for any q ∈ (0,2) and any complex hyperplane H ⊆ C

n the inequalities

(80)
∣∣Bn

q (C) ∩ Hn

∣∣ ≤ ∣∣Bn
q (C) ∩ H

∣∣ ≤ ∣∣Bn
q (C) ∩ H1

∣∣
hold true. We will sketch an alternative proof of their result, similar to the proof of
Theorem 21. For a complex hyperplane H = ζ⊥, where ζ ∈ C

n, and ε > 0 denote
by Hcyl(ε) the cylinder

(81) Hcyl(ε) = {
z ∈C

n : ∣∣〈z, ζ 〉∣∣ < ε
}
.
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One can prove (see also [41], Corollary 2.5) that there exists a constant c(q,n) > 0
such that for every complex hyperplane H ⊆ C

n we have

(82)
∣∣Bn

q (C) ∩ H
∣∣ = c(q,n) lim

ε→0

1

ε2 τn
q

(
Hcyl(ε)

)
,

where the measure τn
q on R

2n is of the form

dτn
q (x, y) = cn

qe
−∑n

j=1(x
2
j +y2

j )q/2
dx dy.

Writing e−sq/2 = ∫ ∞
0 e−ts dμ(t) for some measure μ, we deduce that the density

of τn
q can be written in the form

e
−∑n

j=1(x
2
j +y2

j )q/2 =
∫
(0,∞)n

e
−∑n

j=1 tj (x2
j +y2

j ) dμn(t),

where μn = μ⊗n. Therefore, an application of Fubini’s theorem and a change of
variables implies that there exists a measure ν on (0,∞) such that for νn = ν⊗n

and for every Borel set A ⊆ R
2n we can write

(83) τn
q (A) =

∫
(0,∞)n

γ2n

(
�(y1, y1, . . . , yn, yn)

−1A
)

dνn(y),

where each coordinate of y = (y1, . . . , yn) is repeated twice. Notice that the image

�(y1, y1, . . . , yn, yn)
−1Hcyl(ε) =

{
z ∈ C

n :
∣∣∣∣∣

n∑
j=1

ζjyj zj

∣∣∣∣∣ < ε

}

is still a cylinder in C
n with radius (

∑n
j=1 |ζj |2y2

j )−1/2ε. Thus, the unitary invari-
ance of complex Gaussian measure and a simple calculation in polar coordinates
implies that

(84) γ2n

(
�(y1, y1, . . . , yn, yn)

−1Hcyl(ε)
) = 1 − exp

(
−1

2

(
n∑

j=1

|ζj |2y2
j

)−1

ε2

)
.

After interchanging limit and integration in (82) and using (83), (84) we deduce
that

∣∣Bn
q (C) ∩ H

∣∣ = c(q,n)

2
·
∫
(0,∞)n

(
n∑

j=1

|ζj |2y2
j

)−1

dνn(y)

= c(q,n)

2
·E

(
n∑

j=1

|ζj |2Y 2
j

)−1

,

where Y1, . . . , Yn are i.i.d. random variables distributed according to ν. This yields
(80) as well as a more general comparison result, similar to Corollary 20, by a
direct application of Marshall and Proschan’s result (42).
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We note that, in view of Ball’s theorem from [6], a Schur monotonicity result for
the volume of sections of Bn

q cannot hold in any fixed dimension n ≥ 2 and q large
enough. Similarly, according to Szarek’s result from [53], the same can be said for
the volume of projections of Bn

q for values close to q = 1. Finally, we want to stress
that a careful look in the previous works [10, 24] and [26] reveals that, even though
not stated explicitly, the Schur monotonicity for the volume was established there
as well. The new aspect here is the replacement of representations which were
Fourier-analytic in flavor by others that exploit the rotational invariance of the
Gaussian measure.
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