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ALTERNATING ARM EXPONENTS FOR THE CRITICAL PLANAR
ISING MODEL!

By HAO WU
Tsinghua University

We derive the alternating arm exponents of the critical Ising model. We
obtain six different patterns of alternating boundary arm exponents which
correspond to the boundary conditions (©®), (© free) and (free free), and
the alternating interior arm exponents.

1. Introduction. The Lenz-Ising model is one of the simplest models in sta-
tistical physics. It is a model on the spin configurations. Each vertex x has a spin
oy which is @ or ©. Each configuration of spins o = (ox, x € V) has an intrin-
sic energy—the Hamiltonian: H (o) = —_, ., 0x0y. A natural way to sample the
random configuration is the Boltzman measure:

ulo] ocexp(—BH (o)),

where 8 > 0 is the inverse-temperature. This measure favors configurations with
low energy. Due to recent celebrated work of Chelkak and Smirnov [8, 9], it is
proved that at the critical temperature, the interface of the Ising model is confor-
mally invariant and converges to a random curve—Schramm-Loewner Evolution
(SLE3). In this paper, we drive the alternating arm exponents of the critical Ising
model.

An arm is a simple path of @ or of ©. We are interested in the decay of the
probability that there are a certain number of arms of a certain pattern in the semi-
annulus A" (n, N) or annulus A(n, N) connecting the inner boundary to the outer
boundary. This probability should decay like a power in N as N — o0, and the
exponent in the power is called the critical arm exponents.

In [15, 16, 22], the authors derived the value of the arm exponents for the critical
percolation. As explained in [22], to derive the arm exponents, one needs three
inputs: (1) the convergence of the interface to SLE; (2) the arm exponents of SLE;
and (3) the quasi-multiplicativity. This strategy also works for the critical Ising
model. In this paper, we derive the boundary arm exponents and the interior arm
exponents of SLE, and its variant SLE, (p) (see Section 3.1 for the definition and
see Figure 1 for the idea), and then explain how to apply these formulae to get the
alternating arm exponents of the critical Ising model.

Received June 2016; revised June 2017.

1Supported by NCCR/SwissMAP, ERC AG COMPASP and the Swiss NSF.
MSC2010 subject classifications. Primary 60J67; secondary 60K35.
Key words and phrases. Schramm—Loewner evolution, critical planar Ising model, arm exponent.

2863


http://www.imstat.org/aop/
https://doi.org/10.1214/17-AOP1241
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

2864 H. WU

) free

(a) ad: (©®©) with b.c.
(®D).

¢) B (8 © @8) with
b.c. (©free).

e free free free free free

d) g (ec@o®) with () 75: (2@ 0) with b.e.  (f)
c

v (& @ o) with
b.c. (& free). (free free). b.c. (f

ree free).

FI1G. 1. The six different patterns of boundary arm exponents in Theorem 1.1.

THEOREM 1.1. For the critical planar Ising model on the square lattice, we
have the following six different patterns of the boundary arm exponents (the arm
patterns are in clockwise order). Fix j > 1. We write b.c. for “boundary condi-
tions.”

e Consider the b.c. (&®) and the pattern (S ® S --- @ ©) with length 2j — 1.
The corresponding boundary arm exponents are given by

(1.1) ay; = Jj@ji+1)/3.

e Consider the b.c. (6®) and the pattern (& S --- © ©) with length 2j. The
corresponding boundary arm exponents are given by

(1.2) ay;=j@j+5)/3.

e Consider the b.c. (&free) and the pattern ( © & --- © ) with length 2j — 1.
The corresponding boundary arm exponents are given by

(1.3) By =2j@2j—1)/3.

o Consider the b.c. (& free) and the pattern (S @ - - - ® ©) with length 2j. The
corresponding boundary arm exponents are given by

(1.4) By =2j@2j+1)/3.

e Consider the b.c. (freefree) and the pattern (6D S --- B ©) with length2j — 1.
The corresponding boundary arm exponents are given by

(1.5) Va1 =Q2j —D@j =3)/6.
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e Consider the b.c. (freefree) and the pattern (© @ - - - © ®) with length 2j. The
corresponding boundary arm exponents are given by

(1.6) vy =Jj@j—1)/3.

THEOREM 1.2. For the critical planar Ising model on the square lattice, the
alternating interior arm exponents with length 2j for j > 1 are given by

(1.7) ar; = (16j% —1)/24.

REMARK 1.3. In Theorem 1.1, the arm exponent 7/2+ =1 is a universal arm
exponent of the critical Ising model. In other words, the fact that y," = 1 can be
obtained by standard proof of universal arm exponents using RSW.

REMARK 1.4. For the critical planar Ising model (on the square lattice) in a
topological rectangle (€2; a, b, ¢, d) with free boundary conditions, consider the
probability that there exists a path of @ connecting the boundary arc (ab) to the
boundary arc (cd). It is proved in [5] that, as the mesh-size goes to zero, this prob-
ability converges to a function f which maps topological rectangles to [0, 1] and
it is conformally invariant. Therefore, the limit of this probability only depends
on the extremal distance of the rectangle, whereas the exact formula for f is un-
known. As a consequence of Theorem 1.1, we can give the asymptotics of this
function f. Consider the rectangle [0, w L] x [0, 1] and let f (L) be the limit of the
probability that the Ising model with free boundary conditions has a @ horizontal
crossing of the rectangle. Then

f(L) =exp(—L(1/6 +o(1))).

Relation to previous works. In this paper, we derive the arm exponents for
SLE, (p) with x € (0,4) and p € (-2, 0]. In [25], we derive the arm exponents of
SLE, for k € (4, 8). The boundary 1-arm exponent y1+ is related to the Hausdorff
dimension of the intersection of SLE, (o) with the boundary whichis 1 — yl+ . This
dimension was obtained in [18, 24]. The formulae (1.1) and (1.2) are also obtained
in [26]. The formulae (1.1) and (1.7) were predicted by KPZ in [11], equation
(11.42), equation (11.43), and our work justifies those predictions.

The techniques developed in this paper are more complicated than those in [18,
22, 25, 26]. One difficulty is that, when we estimate the arm events of SLE, (p)
with k € (0, 4), we have two more variables to take care of than the cases in [22, 25,
26]; see the informal discussion at the end of Section 3.1. Another difficulty is that,
when we derive the arm exponents by iteration, we do not allow error terms in the
exponents, whereas, when one derives the one-point estimate for the intersection
probability as in many other papers calculating the Hausdorff dimension of SLE
curves, one is allowed to have error terms in the exponents (e.g., the conclusion as
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in Theorem A.1 is sufficient to derive the upper bound for the Hausdorff dimen-
sion). We treat these two difficulties in Section 3. There we obtain up-to-constant
one-point estimates which guarantee the iteration.

Outline. We give preliminaries on SLE in Section 2. We derive the boundary
arm exponents of SLE, (p) with k € (0,4) and p € (—2, 0] in Section 3. We derive
the interior arm exponents of SLE, with x € (0, 4) in Section 4. Finally, we explain
how to apply these formulae to obtain the alternating arm exponents of the critical
Ising in Section 5 and complete the proof of Theorems 1.1 and 1.2.

2. Preliminaries on SLE. Notation. We denote by f < g if f/g is bounded
from above by universal finite constant, by f = g if f/g is bounded from below
by a universal positive constant, and by f =< g if f < g and f 2 g. We denote by

F(e) = g(e) o if lim 108/ _
e—0logg(e)

Forz € C,r > 0, we denote B(z,r) = {w € C: |w — z| < r}. We denote the unit
disc B(0, 1) by U.

For two subsets A, B C C, we denote dist(A, B) =inf{|lx — y|:x € A, y € B}.
We assume that dist(A, @) = oo.

Let €2 be an open set and let V1, V, be two sets such that Vi N Q#@and Vo N
Q # @. We denote the extremal distance between Vi and V5 in Q by dq(V1, Vo);
see [2], Section 4, for the definition.

2.1. H-hull and Loewner chain. 'We call a compact subset K of H an H-hull if
H \ K is simply connected. Riemann’s mapping theorem and Schwarz’ reflection
principle assert that (see, e.g., [13], Proposition 3.34) there exists a unique confor-
mal map gx from H \ K onto H such that lim;—, « |gk (z) — z| = 0. We call such
gk the conformal map from H \ K onto H normalized at co.

The following Lemmas 2.1 to 2.3 are technical and they study the image of balls
under conformal maps. They are crucial in the iteration when we derive the arm
exponents in Section 3.

LEMMA 2.1. Let K be an H-hull and let g be the conformal map from H\ K
onto H normalized at co. Fix x > 0 and ¢ > 0 and assume that x > max(K N
R). Denote by y the connected component of HN (dB(x, ) \ K) whose closure
contains x + €. Then gk (y) is contained in the ball with center g (x + €) and
radius 3(gx(x + 3¢) — gx(x + ¢€)), hence it is also contained in the ball with
center gk (x + 3¢) and radius 88g/K (x 4+ 3¢).

PROOF. Define r* =sup{|z — gx (x + &)| : z € gx (v)}. It suffices to show

(2.1) r* <3(gx(x +3e) — g (x + ¢)).
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We will prove (2.1) by estimating the extremal distance: di(gg (v), [gx (x +
3¢), 00)). By the conformal invariance and the comparison principle [2], Sec-
tion 4.3, we can obtain the lower bound:

du(gx (v), [gk (x + 3¢),00)) = dm\k (v, [x + 3¢, 00))
> dH\B(x,s)(B(xa ), [x + 3¢, OO))
= dg\p(U, [3, 00)) = du([—1, 0], [1/3, 00)).

In the last equality, we use the conformal map ¢(z) := (z + 1/z)/4 — 1/2 which
sends H \ U onto H. Under this conformal map, we see that U is mapped to the
interval [—1, 0] and [3, 00) is mapped to the interval [1/3, 00).

On the other hand, we will give an upper bound. Recall a fact for extremal
distance: for x < y and r > 0, the extremal distance in H between [y, co) and
a connected set S C H with x € § C B(x, r) is maximized when S = [x — r, x];
see [1], Chapter I-E, Chapter III-A. Since gg (y) is connected and gx(x + ¢) €
RN gk (y), by the above fact, we have the upper bound:

du(gk (v), [k (x + 3e), 00))
<du([gx(x +e) —r", gx(x +8)], [gx (x + 3¢), 00))
=du([—r*,0], [gx (x +3¢) — gx (x + &), 00)).

Combining the lower bound with the upper bound, we have
du([—1,0],[1/3,00)) < du([—r".0], [gx (x + 38) — gk (x + &), 00)).

This implies (2.1) and completes the proof. [l
The following lemma is a standard estimate using the Koebe 1/4 theorem.

LEMMA 2.2. Fix z € H and ¢ > 0. Let K be an H-hull and let gk be the
conformal map from H\ K onto H normalized at 0o. Assume that dist(K, z) > 16¢.
Then gk (B(z, €)) is contained in the ball with center gk (z) and radius 48|g/K (2)].

Loewner chain is a collection of H-hulls (K;, t > 0) associated with the family
of conformal maps (g;, ¢ > 0) obtained by solving the Loewner equation: for each
ze H,

(2.2) 0:g1(2) = g0(z) =z,

&) —W; ’
where (W;, t > 0) is a one-dimensional real-valued continuous function which we
call the driving function. Let T, be the swallowing time of z defined as sup{r >
0 : mingeqo,7] 18s(z) — Ws| > 0}. Let K; :={z e H: T; <t}. Then g; is the unique
conformal map from H; :=H \ K; onto H normalized at co.
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LEMMA 2.3.  Suppose that (K;,t > 0) is a Loewner chain which is generated
by a continuous curve (n(t),t > 0). Fix y < —4r <0 < x. Let o be the first time
that n hits B(y, r) and assume that x is not swallowed by n|0, o] and that y —r is
not swallowed by n[0, o]. Then we have

8o (x) = Ws > (x —y—2r)/2.

PROOF. Let y be the right-hand side of 5[0, o]. We prove the conclusion by
estimating the extremal distance dpp ;[0,01((—00, y —7), y U[0, x]). Denote g, —
W5 by f. On the one hand, by the conformal invariance of the extremal distance,
we have

dH\n[0,0’] ((_OO’ y—= r)5 Y U [0’ -x]) = dH((—OO, f(y - r))a (O’ f(-x)))
_ dH((_OO’ 0. (1’ fO) —f = r))>.
—fly—r)
On the other hand, we give the following upper bound. Since any rectifiable arc
in H \ B(y, r) connecting (—oo,y —r) and (y + r, x) contains a rectifiable arc
in H \ n[0, o] connecting (—oo,y — r) and y U [0, x] [recall that o is the first
time that 5 hits B(y, r)]. By the comparison principle of the extremal distance [2],
Section 4.3, we have
dinnio,01((—00, y — 1), ¥ U[0, x])

< dm\B(y.r»)((—00, y = 1), (y +71,x))

_ _ l xX—y r
_dH(( OO’O)’(l’2+ 4r +4(x—y)))'

Comparing these two parts, we have
fOO—fh=r_ 1 x—y ro b o x-y

—fly—r) T2 4r +4(x—y)_2+ 4r

Thus
8o (x) — Wy >x_y_l

Wo —go(y—r)— 4r 2
Since the quantity g;(x) — g;(y — r) is increasing in ¢, we have

8o(X) —&(y—r)=zx—y+r.
We denote g,(x) — W, by A and W, — g5 (y — r) by B. Then the above two
estimates can be written as
xX—y—2r
AZTB; A+B>x—y+r.
As a consequence, we obtain
x—y—2

-
A+B)> — > (x—y—2r)/2.
x_y+2r( + )_x_y+2r(x y+rz—y=2r)/

A>x—y—2r

This completes the proof. [J
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2.2. SLE processes. In this section, we introduce standard SLE, process,
the process with one extra marked point SLE, (o) and the process with multi-
ple marked points SLE, (p). The main statements in Sections 3 and 4 only con-
cern SLE, (p) process; but, to derive those conclusions, one needs estimates for
SLE, (p) process.

SLE, and SLE,(p) processes. An SLE, is the random Loewner chain
(Ky,t > 0) driven by W; = /«k B; where (B;,t > 0) is a standard one-dimensional
Brownian motion. In [20], the authors prove that (K;, ¢ > 0) is almost surely gen-
erated by a continuous transient curve, that is, there almost surely exists a contin-
uous curve 7 such that for each ¢ > 0, H; is the unbounded connected component
of H \ n[0, #] and that lim;_,  |1(t)| = oo.

For k > 0 and p € R, an SLE, (p) process is a Lowerner chain with one marked
point x > 0. It is the Loewner chain driven by W, which is the solution to the
system of SDEs:

dt 2dt
i ) WO :0; dVl = )
Wi =V Vi— W,

When p > —2, the process is well defined for all time and it is almost surely gener-
ated by a continuous transient curve. When p < —2, the process is well defined up
to Ty—the swallowing time of x. Moreover, the process is almost surely generated
by a continuous curve up to and including 7.

We summarize the behaviors of SLE for different p’s in the following; see [10],
Lemma 15. Fix « > 0, p € R and x > 0. Suppose that n is an SLE, (p) process
with force point x. The following facts hold almost surely:

dWl:\/EdBt'i_ VOZX.

e When p > /2 — 2, the curve n never hits the interval (x, 00).

e When x/2 — 2 > p > k/2 — 4, the curve n accumulates at a point in (x, 00) at
finite time.

e When p <« /2 — 4, the curve n converges to the point x at finite time.

SLE, (p) processes. Next, we define an SLE, (BL; BR ) process with multiple
force points (xL; x®) where

£L=(pl’l‘,...,,ol’l‘), Pt =(p" LS with p"9 € R;

xE=(GM <. <x<0), xR=(0<xR<... < xR,

It is the Loewner chain driven by W; which is the solution to the following systems
of SDEs:

pi,L dt pi,R dt
’ L T e
avit= 2 i,

Vtz,L _ Wz
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2dt

dViR = —,
¢ Vtt,R —W,

Vé R IR,

The solution exists and is unique up to the continuation threshold is hit—the first
time ¢ that W, = V,/*Y where Z{ ph4 < —2 for some ¢ € {L, R}. Moreover, the
corresponding Loewner chain is almost surely generated by a continuous curve;
see [17], Section 2 and Theorem 1.3.

In fact, in this paper, we only need the definitions and properties of SLE with
three force points: SLE, (pL; pR, ,oz’R) with force points (xL; xR x2R) To
simplify notation, we will focus on these SLE processes in this section. From the
Girsanov theorem, it follows that the law of an SLE, (p) process can be constructed
by reweighting the law of an ordinary SLE, up to the first time that the Lowener
chain swallows any force point [21], Theorem 6.

LEMMA 2.4. Suppose xl <0< xVR < x2R and pb, pV-R p2R e R. The
following process is a local martingale for SLE,:

L.,L _ L
M, :g;(xL)p (p™+4 K)/(4K)(g,(xL) _ Wt)p /x

% g;(xI,R)pl,R(pl,R+4—K)/(4K) (g;(xl’R) _ Wt)pl.R/K
% g;(x2,R)pZ’R(PZ’R+4—K)/(4K) (g (x> F) — Wt)pz‘R/x

x (g;(xl’R) _ gz(xL))prl’R/(ZK)(g,(xz’R) _ g;(xL))pL'OZ’R/@")
X (gt(xz,R) N gl(xl’R))pl,sz,R/(ZK)‘

The law of SLE, weighted by M (up to the first time that W hits one of
the force points) is equal to the law of SLE,(p%; p'R, p>R) with force points
(xL.xl,R XZ’R).

The following two lemmas are technical estimates for SLE process with two
marked points on the right. These two lemmas estimate the probability for SLE
curves to have nice behavior and give lower bound for the probability uniform
over the location of force points. We will use them in Section 3.

LEMMA 2.5. Fixk € (0,4),p > —2,v eR that p +v < «/2 — 4. Suppose
that n is an SLE, (p, v) process with force points (v, x) where 0 <v < x. For
e > 0, let T be the first time that n hits B(x, €). For C > 4,1/4 > ¢ > 0, define

F ={nl0, r]1 C B(0, Cx), dist(n[0, ], [x — &, Cx]) > ce}.

Then there exist constants c, C,uqg > 0 which are uniform over v, x, ¢ such that
P[F] = up.
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PROOF. By the scale invariance of SLE, we may assume x = 1. Let ¢(z) =
€z/(1 — z). Then ¢ is the Mobius transformation of H that sends the triplet
(0,1,00) to (0,00, —¢). Let us check the images of n, B(0,C), and the ce-
neighborhood of [x — ¢, Ce] under ¢, respectively. ~

Denote the image of n under ¢ by 7, and denote its law by P. Note that 7 is an
SLE, (pL; p®) with force points (—¢; ev/(1 — v)) where

,OL=I(—6—,O—U>K/2—2, pR=p>-2.
Forr € (0,1/4)and y € (—1, 0), let T = inf{r : n(¢t) € 0B(y, r|y|)} and S= inf{z :
7i(t) € 3B(0, 1)}. Since pL > k/2 -2, by [18], Corollary 3.3, or Lemma A.3, there
exists A > 1 depending only on «, p%, p® such that

(2.3) P[T < §,Im7(T) > r|y|/4] <r?.

Consider the image of H \ B(0,C) under ¢. It is contained in the ball
B(—e,2¢/C). By Lemma A.5, there exists a function ¢(C), which depends on
C and is uniform over ¢, such that the probability for 7 to hit B(—¢,2¢/C) is
bounded by ¢(C) and g(C) — 0 as C — oo.

Consider the image of ce-neighborhood of [1 + &, C] under ¢. Since ce-
neighborhood of [1 + ¢, C] is contained in the union of the balls B(1 + kce/4, 4ce)
for 4/c <k < C/e, its image under ¢ is contained in the union of the following
balls:

B(—4/(ck) —€,256/(ck?),  |4/c] <k =<[C/e].

Define F to be the event that 7j exits the unit disc without touching the union of
B(—¢,2¢/C) and the image of ce-neighborhood of [1 4+ &, C] under ¢. Then, by
(2.3), we have

B T & 1 A A—1
1 -P[F]I<1-P[F]<q(C (7> <q(C .
[F] < [F1<q( )+k_24. ) SO+
= /c
This implies the conclusion. In this proof, it is important that A > 1 in (2.3). This
explains the requirement p +v <«/2 —4. U

LEMMA 2.6. Fixk € (0,4),p > —=2,v € R that p +v > —2. Suppose that n
is an SLE, (p, v) process with force points (v, x) where 0 <v <x.Forr >0>y
and M > 1, assume r < |y| < Mr. Let o be the first time that n hits B(y,r). For
C>4,1/4>c> 0, define

F ={o < o00,dist(n[0, 0], x) > cx,n[0,0] C B(0, Cly|),
dist(n[0, o1, [Cy, y]) > cr}.

Then there exist constants c, C,uq > 0 which may depend on M but are uniform
over v, x,y,r such that P[F] > uy.
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PROOF. From Lemma A.5, there exists a function p(§) which is uniform over
v, x such that p(§) | 0 as § | 0 and that

2.4) P[dist(y, x) = 8x] > 1 — p(8).

By scale invariance, we may assume y = —1 and r € [1/M, 1). Next, we esti-
mate the probability for the following event:

G ={o <00,n[0,0] C B(0,4),dist(n[0, o], [—4, —1]) > r/4}.

Denote by f(v,x,r) := P[G]. By a similar argument as in the proof of
Lemma A.5, we see that f is continuous and g(M) :=inf f (v, x,r) > 0 where
the infimum is over 0 < v < x and r € [1/M, 1]. Thus, P[G] > g(M). Combining
with (2.4), we have P[F] > g(M) — p(c). This implies the conclusion. [

3. SLE boundary arm exponents.

3.1. Definitions and statements. Fix x € (0,4) and p > —2. Let n be an
SLE, (p) with force point v > 0. Assume y < —4r <0 < & <v < x and we con-
sider the crossings of 1 between B(x, €) and B(y, r). Let T, be the first time that
n swallows x. We write c.c. for “connected component”. We have four different
types of crossing events.

Set 79 = 09 = 0. Let 11 be the first time that n hits B(x, £) and let o be the first
time after t1 that » hits the c.c. of d B(y, r) \ n[0, t1] containing y —r. For j > 1, let
7; be the first time after o; _; that » hits the c.c. of 9B (x, ¢) \ n[0, ;1] containing
x + ¢, and let o; be the first time after 7; that » hits the c.c. of B (y, r) \ n[0, ;]
containing y — r. Define

B HY ex.y.riv)={t;<T}.  H(e.x.y.riv)={o; <Ti}

In the definition of H5 -1 and 7—[2’3 j» We are interested in the case when x, y, r are
fixed and ¢ > 0 small. Imagine 7 is the interface of the lattice model, then 7{‘; -1

means that there are 2j — 1 arms connecting B(x, ¢) to far away place; and ’Hzﬂ j
means that there are 2j arms connecting B(x, ¢) to far away place.

Next, we define the other two types of crossing events. We emphasize that we
will change the definition of the stopping times in the following. Set 1o = o9 = 0.
Let o7 be the first time that n hits B(y, r) and 7| be the first time after oy that n
hits the c.c. of 9B(x, &) \ n[0, o1] containing x + ¢. For j > 1, let o; be the first
time after 7;_ that » hits the c.c. of 9B(y,r) \ [0, ;1] containing y — r and
let 7; be the first time after o; that n hits the c.c. of dB(x, €) \ [0, o] containing
x + €. Define

(32 Hiexyrv={y<T),  Ha(exy.riv)=lomn <T

In the definition of Hg‘j and Hzﬁ i1, We are interested in the case when y, r are
fixed and x = ¢ > 0 small. Imagine 7 is the interface of the lattice model, then
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HS ; means that there are 2 j arms connecting B(x, ¢) to far away place; and %2/3 i+l
means that there are 2j + 1 arms connecting B(x, €) to far away place.

The definition here might be confusing at first sight, but these definitions avoid
confusions in the proof. We emphasize that we define H;, for odd n in (3.1) and

for even n in (3.2); and that we define ’Hg for even n in (3.1) and for odd » in (3.2).
Propositions 3.1 and 3.2 study the probability of H% and 7-[,’3 when the force

point v is close to x; Proposition 3.3 studies the probability of H{ and ’HE when
the force point v is far from x. Set aa“ =0, ,BJ =0and y0+ =0. Assume j > 1.

PROPOSITION 3.1. Fixk € (0,4) and p € (—2,0]. Define
ay; 1 =2jQj+p+2—K/2)/xk, @y =2jQj+p+4—1x/2)/k.
Suppose r > 1V (200¢). We have

P[ngq(&)f, y.r;v)] Sxa;f'*f“;jflg“;jq’
(3.3) |
provided 0 < x —v <S¢, and |y| > (40)% 17,

P[ng (e,x,y,r;v)] < X021 %31 ,
(3.4) |
provided 0 <x —v < ¢, and |y| > (40)%/r,

where the constants in S are uniform over x and €. We also have

+ .t +
P[H3; (e, x, y, riv)] 2 x2-27 0201520,
3.5)
provided 0 <x —v <S¢, andx <xr <|y|Sr,
+_ +
IP’[’HS‘J- (&, x,y,r;v)] 2 x“2 % 2i-1g%2)-1
(3.6)
provided 0 <x —v e, andr <|y| S,
where the constants in 2 are uniform over x and ¢. In particular, we have
o (X+.
P[sz_l(s,x, y, r;v)] < g1,
provided 0 <x —v < ¢, and
x=r<@0¥ r<y <,
+
o . - o
P[H3; (e, x, y, 75 0)] =< %%,
provided x < v < ¢, and (40)2jr <l|y|<r,

where the constants in < are uniform over €.
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PROPOSITION 3.2. Fixk € (0,4) and p € (—2,k/2 — 2). Define
BYi1=2jQ2j+1/2—4—p)/x, By =2j@2j+x/2=2—p)/k.
Suppose r > 1V (200¢). We have
P[Hzﬂj(s,x, y,r; )] Sxﬁgj—l_ﬂ;feﬂ;f,

3.7 ‘
provided 0 < x —v < ¢, and |y| > (40)*/r,

+ + +
]P)[HZﬁ]—l (8, X, Y, r; ‘U)] S xﬁZ_i—]_ﬂZ_j_zgﬂzj_z’
(3.8) |
provided 0 <x —v <S¢, and |y| > 40)2 -1y,

where the constants in S are uniform over x and ¢. We also have

+ + gt
P[H5; (e x, y, 75 0)] 2 xP21 7P g,
(3.9)
provided 0 <x —v <S¢, andx <xr <|y|Sr,

P[Hzﬁ;_l (e, x,y,r;0)] 2 x’g;rffl_ﬁ;j*zgﬂ;jfz,
(3.10) '
provided 0 <x —v <e¢, andr <|y| <,

where the constants in 2 are uniform over x and €. In particular, we have
p )] = P2
]P)[Hz‘j(gvxvyarav)]"g 2'/’
provided 0 < x —v <e, and x <r < (40)r <|y| <r,
p )] = P
PIHE, (e y.ri )] =< 6P,
provided x < v < ¢, and (40 ~'r < |y| <r,

where the constants in < are uniform over ¢.

PROPOSITION 3.3. Fixk € (0,4) and p € (—2,k/2 — 2). Define
Vi = Qi+ eQi+p+2—k/D/k, v =2j2j+K/2-2)/k.
Define the event
F ={t1 < Ty, n[0, 11] C B(0, Cx), dist(n[0, 71], [x — &, x + 3¢]) > ce},

where c, C are the constants from Lemma 2.5. We have

P[ng—l(g’ X, Y, F; 0+) N f] ~ 8)/2_;_1,
3.11) |
provided Cx <r < (40)>~1r <|y| <r,
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PIHS, (e, 3,7 01) N F] = e,
(3.12) .
provided Cx <r < (40)%r < |y| <,

where the constants in < are uniform over ¢.

We end this section by an informal discussion. Consider Proposition 3.1. Sup-
pose we are allowed to ignore the evolution of the variables y, » and v, and elimi-
nate them from the notation. Then we can prove the conclusion by iteration. Let t
be the first time that # hits the ball B(x, ¢), and denote g; — W; by f. The image
of the ball B(x, ¢) under f is roughly a ball centered at f(x) with radius g_(x)e.
Thus we can write

P[ng (¢, X)] ~ E[(g./[ (x)g)a571 IL{1’<o<>}]’

and the conclusion can be deduced by an estimate on the expectation of g/ (x)*
for A > 0. This is a natural first trial. However, the SLE curves can behave badly
with small positive chance, and the evolution of the variables y,  and v can be
arbitrary. In order to fulfill the above iteration procedure, we need to take care of
all the variables. This explains the hard and lengthy work in Sections 3.2 and 3.3.
In Section 3.2, we derive a more general version of the estimate on E[g (x)].
In Section 3.3, we prove Propositions 3.1 to 3.3 by iteration where the results in
Section 3.2 play a crucial role.

3.2. Estimates on the derivatives. Suppose n is an SLE, (p) with force point
v > 0. We use the following notation: g; is the conformal map from the Loewner
chain, W; is the driving function, V; is the evolution of the force point and O; is
the rightmost point of 1[0, ] N R under g;.

LEMMA 3.4. Fixk € (0,4) and p > —2. For A > 0, define

1 1
()= —(p+4—1/2)+ ;\/4@ (o +4—1/2)2

For b e R, assume

(3.13) 4b > (A —b)(2p + k(L —b) +4 —«).

Suppose x > v > ¢ > 0 and let n be an SLE, (p) with force point v. Define t to be
the first time that n hits B(x, €) and T to be the swallowing time of x. If x = v, we
have

(3.14) E[g, (x)° (g (x) — W)~
where the constants in < are uniform over x and . For C > 4,1/4 > ¢ > 0, define

F={t <T,Imn(x) > ce,n[0, 7] C B(O, Cx), dist(n[0, ], [-Cx,y +r]) > cr}.

b —u1(A) gy () +A—b

]l{r<T}] =X
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There exist constants C, ¢ depending only on k and p such that

Elg; (x)kllf] = x T W g1 )
T )
(3.15)

provided 0 <x —v <S¢, andx <xr <|y|Sr,
where the constants in < are uniform over x and €.
To prove Lemma 3.4, we only need to show the upper bound in (3.14) and the
lower bound in (3.15). To show the upper bound in (3.14), we need the following

Lemma 3.5 which is similar in the spirit of [23], Section 6.3; to show the lower
bound in (3.15), we use Lemma 2.5.

LEMMA 3.5. Fixk >0 and v <k/2 — 4. Let n be an SLE, (v) with force
point 1. Set Yy = (g:(1) — O0;)/g; (1), o(s) = inf{t : \; = e Y, and J, = (V; —
0:)/(Vy — Wy). Let T be the swallowing time of the point 1. We have, for 8 > 0,

(3.16) B[/, 0 Low<r)] =1 when8+2v +«f < 2,

where the constants in < depend only on k, v, B.

PROOF. Since 0 < J; <1, we only need to show the upper bound. Set X, =
— W;. We know that

AW, = JedB, + av, = 24
= K —_—, = .
! "Tw, -, TV, —w,
By It6’s formula, we have
J; J; —2J,dt
dJ, = (K—U 2 >dt+— xdB,, dY,=7",——1""
T X2 1—J, X,[ ! TIX2( -0

Recall that o (s) = inf{r : Y, = e~2*}, and denote by X,J, 7 the processes indexed
by o (s). Then we have

1=
do(s)=X2—"

N

dJs=(k —v—4—(—v—2)J5)ds ++«Js(1 — J)dBs,

where B is a standard 1-dimensional Brownian motion. By [14], equations (56),
(62), we know that J has an invariant densny on (0, 1), which is proportional to
yl=@+20)/k (1 — y)#/x=1 Moreover, since Jo=1, by a standard coupling argu-
ment, we may couple (J;) with the stationary process (J;) that satisfies the same
equation as (JAS), such that JAS > J~s for all s > 0. Then we get E[fs_ﬁ] < E[fs_ﬁ],
which is a finite constant if 8 +2v 4+ k8 < 2« . This gives the upper bound in (3.16)
and completes the proof. [J
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PROOF OF LEMMA 3.4-(3.14). Define Y, = (g,(x) — 0,)/g(x), J; =
(g:1(x) — O01)/(g:(x) — Wy) and 7, =inf{r : Y, = &}. Set

Mt — gt/(x)(v—p)(v+p+4—ic)/(4/<) (gl‘(x) _ Wt)(v_p)/K,

where v =«/2 — 4 — \/4KA + (p +4 —«/2)2. Then M is a local martingale and

the law of n weighted by M becomes the law of SLE, (v) with force point x (see
Lemma 2.4). Set 8 = u1(A) + A — b. By the choice of v, we can rewrite

My = g{(0)? (g ) — W) PP
At time T, < 0o, we have Y; =¢. Thus
E[gh ()" (g5, (x) = W2, )* "1z, 1]
= P MoE*[(J2,) 7] = ePx T WEH[(J2) ] < efx ),

where P* is the law of n weighted by M and 7, J* are defined accordingly. The
last relation is due to Lemma 3.5. Thus we have

@17 Efg}, (0" (82,00 = W, ) Ly, gy ] a1 Pt W0,

Consider the process (U; := g, (x)b(gt (x) — W,)A_b)tzo. We can check that it
is a super martingale by It6’s formula when (3.13) holds. Combining with the fact
Te/4 > T > T4¢, We have

E[Ufs/4]1{fe/4<T}] <E[U:1z<1y] =E[Uz, 1z, <1y ]-
Combining with (3.17), we obtain (3.14). [J
PROOF OF LEMMA 3.4—(3.15). 'We may assume x > v. Define

M; = g (x)" O H=/EO (0 (o) — W) (g, (x) — g1 ()",

where v = —ku(A). Then M is a local martingale for  and the law of n weighted
by M is an SLE, (p, v) with force points (v, x) (see Lemma 2.4). We argue that
(3.18) gr(x) — gr(v) < (x — v)g; (x).

There are two possibilities: v is swallowed by 5[0, t] or not. If v is not swallowed
by 5[0, t], then by the Koebe 1/4 theorem, we know that g, (x) — g;(v) < (x —
v)g. (x). If v is swallowed by 5[0, 7], then we must have x — v > ¢. By the Koebe
1/4 theorem, we have g;(x) — g (v) < eg.(x). Since ¢ <x — v < &, we have
gr(x) — gr(v) < (x — v)gL(x). These complete the proof of (3.18).

On {Imn(t) > ce}, we also have g; (x) — W; < eg. (x). Combining with (3.18)
and the choice of v, we have

My =< ¥/ (x — )P/ g! (x)* on F.
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Therefore,
Elgy ()" r] = 7"/ (x — ) P/ COMgPH[FF] = e P 1 WP F],

where P* is the law of 1 weighted by M and F* is defined accordingly. Note that
p>—-2,p+v <k/2—4. By a similar proof of Lemma 2.5, we know that there
exists constants C, ¢ such that P*[F*] < 1. This completes the proof. [J

REMARK 3.6. Taking A =b =0 in Lemma 3.4, we see Proposition 3.1 holds
for H{ with ocfr =u1(0) =2(p+4 —«/2)/k. Precisely, taking . = 0 in (3.15), we
have P[# hits B(x, €)] > (¢/x)"1©. This gives the lower bound. Taking A =b =0
in (3.14), we have P[n hits B(v, €)] < (g/v)*1 (@ Since 0 < x — v < ¢, we know
that B(x, ¢) is contained in B(v, C &) for some constant C, thus

PP[n hits B(x, )] < P[n hits B(v, 6‘8)] = (¢/v)"1® < (g/x)1 O,
This gives the upper bound.

LEMMA 3.7. Fixx € (0,4) and p € (=2,0]. For A > 0, define

1 1 S
u2() = (/2= 2= p) + ;\/4/</\+ ()2 =2 — p)>.

Let n be an SLE, (p) with force point v > 0. Forr > 0> —r > y,and 0 < v <x,
define o to be the first time that n hits B(y,r) and T to be the swallowing time
of x. For b <uy(A) and x > v, we have

(319 E[g,(0) (g0 (x) = Wo) L] Sx2P(x — y — 21)P 72,
where the constant in < is uniform over x, y,r. Assume r < |y| <r, define
F={o <T,dist(n[0,0],x) > cx,n[0,0] C B(0, Clyl),
dist(n[0, o1, [Cy, y]) > cr},

where the constants C, ¢ are from Lemma 2.6. Then, for b < u>(L) and x > v >
(1 —¢)x, we have

(3.20) E[g) (x)* (g0 (x) — Wy ) 15] = x"2®|y b2

where the constant in 2 is uniform over x and y.
PROOF OF LEMMA 3.7—(3.19). We may assume x > v. Set

My = gj(x)" VAT A (g () — W) ¥ (g1 () — g (1)) "/,

where v = ku3(A) > 0. By Lemma 2.4, we know that M is a local martingale for n.
Note that g;(x) — g;(v) < (x —v)g/(x) and vp < 0. We have

My = gl () (g0 (x) — W) P (x — )"/,
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Therefore,
E[g}, ()" (g0 (x) = Wo) Lo 1]
< (x = ) PO MOE*[ (g5 (x) — W) T2 P ]
= X2 (gE. (x) — W) TP L igucpny]
<x2W(x —y —2p)p72® by Lemma 2.3,
where P* is the law of n weighted by M and g*, W*, o*, T* are defined accord-

ingly. This implies the conclusion. [

PROOF OF LEMMA 3.7—(3.20). Assume the same notation as in the proof of
(3.19). On {dist(n[0, o], x) > cx}, since 0 < x —v < cx, by the Koebe 1/4 theorem,
we have g;(x) — g;(v) > (x — v)g;(x)/4. Thus

My S gl (0) (g (x) — W)"2 P (x — )P/ 20,
On {n[0, 0] C B(0, C|y|)}, we have g, (x) — W, < |y|. Therefore,
E[g) (x)* (g0 (x) — Wo) 1] 2 x|y [P 2@ P F7],

where P* is the law of n weighted by M and F* is defined accordingly. By
Lemma 2.6, we have P*[F*] =< 1. This completes the proof. [J

REMARK 3.8. Taking A = b =0 in Lemma 3.7, we see that Proposition 3.2
holds for ”H’lg with 8" = u2(0) =2(k/2 — 2 — p) /«.

LEMMA 3.9. Fixk € (0,4) and p > —2. For A > 0, define
(p+2)
2K

Let n be an SLE, (p) with force point 0%. For x > & > 0, define T to be the first
time that n hits B(x, &) and T to be the swallowing time of x. Define

uz(1) = (p 44— K/24 /4 + (p +4 — /2)?).

G={r <T,Imn(r) >ce},
F=6n{nl0, 7] C B, Cx),dist(n[0, 7], [x — &, x + 3¢]) > ce},
where c, C are the constants from Lemma 2.5. Then we have
E[g. (x)A]l]:] =E[g. (x)}‘]lg] = x W g3

where the constants in < are uniform over x and €.

PROOF. Setv=1c/2 —4—p— \/4xd + (/2 — 4 — p)* and

M, = g/ (x)" " HT 9 (g, () — W) (g () — V7))
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Then M is a local martingale and the law of n weighted by M becomes SLE, (o, v)
with force points (0T, x) (see Lemma 2.4). On G, we have g, (x) — W; < g;(x) —
Vr < eg’(x). Combining with the choice of v, we have
M, = gh(x)*e™ 3™ onG.
Therefore,
E[g, (x)*1g] =< e Wx~WPH G ], E[g, (0)*'Lr] = e3P x WP F*],

where n* is an SLE, (p, v) with force points (0", x), and P* denotes its law and
G*, F* are defined accordingly. By Lemma 2.5, we have P*[F*] < 1. This com-
pletes the proof. [

REMARK 3.10. Taking A =0in Lemma 3.9, we see that Proposition 3.3 holds
for H{ with y1+ =u3z(0)=(+2)(p+4—«/2)/xk.

3.3. Proof of Propositions 3.1 to 3.3. Fix k € (0,4) and p > —2. Suppose n
is an SLE, (p) with force point v > 0. We keep the same notation as before: g; is
the conformal map from the Loewner chain, W; is the driving function, V; is the
evolution of the force point and Oy is the rightmost point of 1[0, ] N R under g;
and T is the swallowing time of x. Assume j > 1.

LEMMA 3.11. If (3.3) holds for ”Hg‘j_l, then (3.4) holds for ’H%‘j.

PROOF. Let o be the first time that n hits the ball B(y, 16(40)%~1r). De-
note g» — W, by f. Let 7 be the image of n[o, co) under f. We know that 7 is
an SLE, (p) with force point f(v). Define 7—2% i1 for 7. We have the following
observations:

e Consider the image of B(y,r) under f. By Lemma 2.2, we know that
f(B(y,r)) is contained in the ball with center f(y) and radius 4rf’(y). By
the Koebe 1/4 theorem, we have

)| = 4@0)> 1 ().

e Consider the image of the connected component of d B(x, €) \ n[0, o] containing
x + ¢ under f. By Lemma 2.1, it is contained in the ball with center f (x + 3¢)
and radius 8¢f’(x + 3¢). Moreover, we have

fx+3e)— f(v) <(x+3e—v)f(x+3e) Sef (x +3e).
Combining these two facts with (3.3), we have
P[ng(e,x, y,r;v) [ 1[0, o]
<P[HS;_;(8ef " (x +3e), f(x +38), f (), 4rf'(); f ()]

< (80 (x + 36) — W,) ™27 (sl (x + 3¢)) 2.
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By Lemma 3.7 and the fact that the swallowing time of x + 3¢ is greater than T,
we have

P[ng(s, X, y,r;0)]
SE[(80 (x +38) — Wo ) 2127 (e} (x +36)) 21 g <11
< 651 (x + 36) 200 (x — y — 32040)2 "1 )27
< xa;f_agj—lsa;.f—l.
The last line is because x > ¢ and |y| > (40)2jr. O
LEMMA 3.12. If (3.4) holds for ’Hg‘j, then (3.3) holds for ngH.

PROOF. If x < 64e, then IP’[’}-[‘;J-Jrl (e,x,y,r;v)] < IP’[’ng (e, x,y,r;v)]. This
gives the conclusion. In the following, we may assume x > 64¢. Let T be the first
time that n hits B(x, 16¢). Denote g; — W; by f. Let 1 be the image of n[t, 00)
under f. We know that 7 is an SLE, (p) with force point f(v). Define ’ﬁg j for 7.
We have the following observations:

e Consider the image of the connected component of d B(y, r) \ n[0, t] containing
y—runder f. By Lemma 2.1, we know that it is contained in the ball with center
f(y —3r) and radius 87 f'(y — 3r). By Lemma 2.3, we have

|f(y —3r)| = (x —y +3r —32¢)/2 > (40)%/8r.

e Consider the image of B(x, ¢) under f. By Lemma 2.2, we know that B(x, ¢)
is contained in the ball with center f(x) and radius 4¢f”(x). Moreover,

fx) = f) <(x—v)f'(x) Sef (x).

Combining these two facts with (3.4), we have
IP[’H%‘J-H((L:, x, y,r;v) | 1[0, 7]
< P[HS; (4ef' (), F (), (v —3r).8rf'(y = 3r); f())]
< (e(0) = We) 91 (o () 1.
If x = v, by Lemma 3.4, since a;j_l and oz;rj satisfy (3.13):

K(a;j — oz;j_l)(Zp +4—K+ K(Ol;_j — a;j_l)) = 4/(05;1._1,
we have
P[HS; (e, v, 5,75 0)]

ot +
SE[(g:(v) = W)™ ™21 (g7 (0)) 2 1z <1y ]

4yt o+ +
< @) (g 00 g
Y
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For 0 < x — v < ¢, we know that B(x, €) is contained in B(v, C‘s) for some con-
stant C, thus

P[H3; 4 1(8, %, y, 75 0)]
~ +_ 7t + + _oF +
< IF’[H%HI(CE, v, y, 5 0)] S v T2 %2 < x %22 g%

This gives the conclusion. [
LEMMA 3.13. If (3.5) holds for ’H%‘j_l, then (3.6) holds for ”H‘i’j.

PROOF. Let o be the first time that # hits B(y, r). Define
F={o <T,dist(n[0, 0], x) > cx, n[0,0] C B(0, Clyl|),
dist(n[0, o1, [Cy, y]) = cr},

where ¢, C are the constants from Lemma 2.5. Denote g, — W, by f. Let 1 be
the image of n[o, co) under f, then 7 is an SLE, (p) with force point f(v). Given
n[0, o] and on F, we have the following observations:

e Consider the image of B(y,r) under f. By the Koebe 1/4 theorem, it contains
the ball with center f(y) and radius rf’(y)/4. On {dist(n[0, o], [Cy, y]) > cr},
we have

rf' WA fDISrf o).

e Consider the image of B(x,¢) under f. On {dist(n[0, o], x) > cx}, by the
Koebe 1/4 theorem, it contains the ball with the center f(x) and radius
cef’(x)/4. Since x — v < €, we have

fx) = fw) <(x—v)f'(x) Sef ().

e Compare f(x) and |f(y)| < rf’(y). On {n[0,0] C B(0,C|y|)}, we have
f(x) S Iyl On {dist(n[0, 0], [Cy, y]) > cr}, we have | f(y)| 2 |y|. Thus, on
F, we have

FESISIFDI=rf ().
Combining these three facts with (3.5), we have
P[HS; (e, x, y, 71 v) | 9]0, 0, F]
> P[ ~gj—1(8f/(x)/4» F&), fO).rf /4 f(v)]

2 (30 5) = Wa) o275 g o).
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By Lemma 3.7, we have

P[ng(s,x, y,r; V) N F]

+  __+ X
2 E[(go(x) — Wo) 22721 (eg7, (x)) 211 7]
> xuz(a;jfl)ga;—jfl :xa;j_a;jﬂg“;j—l‘

~

This gives the conclusion. [
LEMMA 3.14.  If (3.6) holds for 13, then (3.5) holds for 13, ;.

PROOF. Let 7 be the first time that  hits B(x, ). Define
F={t <T,Imn(x) > ce,n[0, t] C B(O, Cx), dist(n[0, t], [-Cx, y +r]) > cr},

where ¢, C are constants from Lemma 3.4. Denote g, — W; by f. Let 7 be the
image of 5[z, c0) under f, then 7 is an SLE, (p) with force point f(v). Define
5 ; for 7. Given 5[0, ] and on F, we have the following observations:

e Consider the image of B(y,r) under f. On F, we know that f(B(y,r)) con-
tains the ball with center f(y) and radius crf’(y)/4; moreover, we have

crf' M4 <|fWSrf o).

e Consider the image of B(x, €) under f. By the Koebe 1/4 theorem, it contains
the ball with center f(x) and radius ef’(x)/4. On {Imn(t) > ce}, we have

fx)=<ef'(x).
Since x — v < &, we have
fO) = f) = =0 f'(x) Sef ().
Combining these two facts with (3.6), we have

P[HS, (e, x, y. riv) [ 0[O0, 7], F]

~ a+
> PIHS; (ef (x)/4, £, FO).rf (/4 ()] 2 (egh (x)) ™.
By Lemma 3.4, we have
P[H3;1(e, %, y,r50) N F]
> B[ (egl (x)) 0 Lr] = x 1@ 1@+ _ podimodin g O

PROOF OF PROPOSITION 3.1. Note that

a;er:a;rj —I—ul(a;j), a;jza;j_l—l-uz(a;j_l).
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Combining Remark 3.6 with Lemmas 3.11, 3.12, 3.13 and 3.14, we obtain the
conclusion. [

PROOF OF PROPOSITION 3.2. By Remark 3.8, we know the conclusion is true
for H’f . Note that

ﬁ;j:ﬁ;}_l-'_ul(ﬁ;]—l)’ 13;_]—5—1:'3;] +M2(,3;_])

Moreover, the exponents ,853_2 and ,B;J-_ | satisfy (3.13):

K(ﬂ;j—l - :327;'—2)(2/0 +4—-k+ "(/353—1 - ﬁ;j—Z)) = 4Kﬁ;—j—2‘
We can prove the following:
If (3.8) holds for ng_l, then (3.7) holds for 7-[5]- (by the proof of Lemma 3.12).

If (3.7) holds for 13, then (3.8) holds for {3, | (by the proof of Lemma 3.11).
If (3.10) holds for Hzﬁ i1 then (3.9) holds for 7—[2’S j (by the proof of Lemma 3.14).

If (3.9) holds for 7_[2/3 It then (3.10) holds for Hzﬂ i+ (by the proof of Lemma 3.13).
Combining all these, we complete the proof. [

PROOF OF PROPOSITION 3.3—(3.11)-UPPER BOUND. By Remark 3.10, we
know that the conclusion is true for H{. We will prove the conclusion for H§ i+
for j > 1. Recall that 7 is an SLE, (p) with force point 0. Let 7 be the first time
that n hits B(x, €), and T be the first time that n swallows x. Recall that

F={t <T,n[0, 7] C B0, Cx),dist(n[0, 7], [x — &, x + 3¢]) > ce}.

Given 1[0, 7], denote g — W; by f. Let 7 be the image of n[7, o) under f, then
71 is an SLE, (p) with force point f(0™). Define H%‘j for 7. We have the following
observations:

e Consider the image of the connected component of d B(x, €) \ n[0, ] containing
x+e¢eunder f.ByLemma 2.1, we know that it is contained in the ball with center
f(x+3¢) and radius 8¢f”(x + 3¢). On the event {dist(n[0, ], [x — &, x +3¢]) >
ce}, by the Koebe distortion theorem [19], Chapter I, Theorem 1.3, we know that
there exists some universal constant C such that the ball with center f(x+3¢e)
and radius 8¢f’(x + 3¢) is contained in the ball with center f(x) and radius

C'ef/(x). Moreover, on the event {dist(n[0, t], [x — &, x 4+ 3¢]) > ce}, we have
@)= f) = f(07) = ef(x).

e Consider the image of the connected component of d B(y, r) \ n[0, t] containing
y—runder f. By Lemma 2.1, we know that it is contained in the ball with center
f(y —3r) and radius 87 f’(y — 3r). By Lemma 2.3, we know that

1F(y =3r)| > (x — y +3r —26)/2> |y|/2 > (40)%/ 8r.
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Combining these two facts with (3.4), we have
+
P[HS; 41 (e, %, y,7;07) [ 110, 7], F] < (e85 (x))*%.
By Lemma 3.9, we have
+ + +
P[H341 (e, x, .75 0 NF) SE[(egh () 1x] < GRS
Note that
V$+1 = ug(oz;j) + ozzrj.
This completes the proof. [J
PROOF OF PROPOSITION 3.3—(3.11)-LOWER BOUND. Assume the same no-
tation as in the proof of the upper bound. We have the following observations:

e Consider the image of B(x, ¢) under f. By the Koebe 1/4 theorem, it contains
the ball with center f(x) and radius &f’(x)/4. Moreover, on the event F, we
have

F) =< fx)— f07) < ef'(x).

e Consider the image of B(y, r) under f. Note that » > Cx and |y| > (40)27 1y,
Thus, on the event {n[0, 7] C B(0,Cx)}, we know that 1[0, 7] does not
hit B(y,r). Thus f(B(y,r)) contains the ball with center f(y) and radius
rf'(y)/4. On the event {n[0, T] C B(0, Cx)}, we know that

rf /4 <1 F D] < 1+ (Cx)?* /Iyl <20yl <.
Combining these two facts with (3.6), we have
+
P[HS; 41 (e, %, y,7507) [ 110, 7], F] Z (e85 (x))*/.
By Lemma 3.9, we have
+
P[HS; 41 (e, x, v, 7 07) N F] 2 B[ (e8; (X)) 17] < gia@pted;

This completes the proof. [

PROOF OF PROPOSITION 3.3—(3.12). By the same proof of (3.11), we can
prove that

P[5, (e, x, y,r;07) N F] < E[ (g, (0))P51] = 8 B0
Note that

va; =us(B3_1) + By

This completes the proof. [
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4. SLE interior arm exponents. Fix « € (0,4) and let n be an SLE, in H
from 0 to oco. We keep the same notation as before: g; is the family of conformal
maps for the Loewner chain, W; is the driving function. We write c.c. for “con-
nected component.”

Fix z € H with |z| = 1 and suppose » > 0 and y < —4r. Let t| be the first time
that n hits B(z, €). Define

&g, z) = {11 < 00}.

Let o1 be the first time after 71 that # hits the c.c. of d B(y, r) \ [0, t1] containing
y — r. Define £8 to be the event that z is in the unbounded c.c. of H \ (»[0, o1] U
B(y,r)).

Given 1[0, o1], we know that B(z,¢) \ 1[0, o1] has one c.c. that contains z,
denoted by C,. The boundary 0C;, consists of pieces of 1[0, o1] and pieces of
d0B(z, €). Consider 0C, N dB(z, ¢). There may be several c.c.s, but there is only
one which can be connected to co in H \ ([0, o1] U B(z, €)). We denote this c.c.
by C f , oriented it clockwise and denote the end point as X é’ ; see Figure 2.

Let 17 be the first time after o that n hits C f , and let o7 be the first time after 7o
that » hits the c.c. of 9 B(y,r) \ n[0, 7] containing y — r. For j > 2, let 7; be the
first time after o;_1 such that n hits the c.c. of Cf \ 1[0, oj_1] containing Xf and
let o; be the first time after 7; that n hits the c.c. of dB(y, ) \ n[0, ;] containing
y —r.For j > 2, define

Ej(e,z,y,r)=EN{r; < T}

We will prove the following estimate on the probability of &> ;.

0:

FIG. 2. The gray part is the c.c. of B(z, ¢) \ n[0, o1] that contains z, which is denoted by C;. The
bold part of 9C; is Cé’. The point Xé’ is denoted in the figure.
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PROPOSITION 4.1. Fixk € (0,4) and z € H with |z| = 1. For j > 1, define
arj = (16j% — (k — 4)?)/(8k).
Define F = {n|[0, t1] C B(0, R)} where R is the constant from Lemma 4.2. Then

we have, for j > 1,

HI)[‘C”Zj (e,z,y,r)N ]—'] — 8052j+0(1)’
4.1) |
provided R <r < (40)*r <|y| <r.

We will first explain the choice of the constant R in Lemma 4.2, and then prove
the lower bound and the upper bound of (4.1) separately. The lower bound is easier,
and the upper bound requires the estimates in Lemmas 4.3 and 4.4.

LEMMA 4.2. Fixk € (0, 8) and let n be an SLE,. in H from 0 to co. For . > 0,
define

p=1/2—4—\JHh+ (/2 —4)2,

e LI %\/4K/\+ ()2 — 4)2.

Fix z e Hwith |z| = 1. For ¢ > 0, let T be the first time that n hits B(z, €). Define
O, = arg(g;(z) — W;). For § € (0,1/16), R > 4, define

Gg={t <00,0; €@, -9}, F={nl0,7]1C B0, R)}.

There exists a constant R depending only on « and z such that the following is
true:

£ S B[|g} (0| "1rng] < BlJg} (0] 1g] S P8P /20,

where the constants in S are uniform over €, 8.

PROOF. Similar results were proved in [23], Section 6.3, and [18], Lem-
mas 4.1, 4.2, with constants in < only uniform over €. In our setting, we need
the explicit dependence on §. Set

_ 2
Mt — |g;(z)|P(P+8 2ic) [ (8ic) (Img;(Z))p /(SK)|gt(Z) _ WI‘P/K‘

From [21], Theorem 6, the process M is a local martingale and the law of n
weighted by M becomes the law of SLE, (p) with force point z. We introduce
two other quantities:

B Img;(2) S —in®, — Img;(z)
r — t —

Clg@l ] g (z) — Wi|’

t
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}wlp—v A SU A +p 8

By the Koebe 1/4 theorem, we know that Y; < €. On G, we know that S; > §/2
for § < 1/16. Thus

EU(A)P*[J—_-* N g*] 5 E[|g;(z)|xﬂfmg] < E[|g,’(z)}kﬂg] S 8U(A)5_v()‘)_p2/(8’<),

where n* is an SLE, (p) with force point z, P* denotes its law and 7*, ®*, F*, G*
are defined accordingly. By [18], equation (4.7), (4.8), we have

P*[n*[0,7*] € B(O, R)] — 1, as R — oo and
PO e (1/16,7 — 1/16)] < 1.
Therefore, there exists a constant R depending only on « and z such that
P*[F*NG*] = P*[n*[0,t*] € B(0, R), ®}. € (1/16, 7 — 1/16)] < 1.

This completes the proof. [J

We will fix the constant R from Lemma 4.2 in the following of the section. The
conclusion for & was proved in [4], Proposition 4, we will prove the conclusion
for &1 for j > 1. We will need the following conclusion from Section 3. For
j > 1, taking p = 0 in Proposition 3.1, we have oczrj =2j(2j+4—«/2)/k and

42)  P[HS (e, x, v, 1] =207 5-1g%0-1 provided (40)¥r < |y| S r.

Note that, since p = 0, we may assume v = x and we eliminate the force point in
the definition of H7;.

PROOF OF PROPOSITION 4.1—(4.1)-LOWER BOUND. We will prove the
lower bound for the probability of £;,5. Let n be an SLE, in H from 0 to co.
Let t be the first time that n hits B(z, ¢). Denote the centered conformal map
g+ — W; by f; for t > 0. Recall that F = {»[0, ] C B(0, R)}. Fix some § > 0 and
define G =F N{O, € 8,7 —§)}.

We run 7 until the time 7. On G, by the Koebe 1/4 theorem, we know that
fr(B(z,¢)) contains the ball with center w := f;(z) and radius u := €| f/(z)|/4
and

arg(w) € (8, T —§), u<Imw < 16u.

We wish to apply (4.2), however, this ball is centered at w = f; (z) which does not
satisfy the conditions in (4.2). We will fix this problem by running 7 a little further
and argue that there is a positive chance that 1 does the right thing.

Let 7 be the image of n[t, co) under f;. Let y be the broken line from 0 to w
and then to —u + ui and let A, be the u/4-neighborhood of y. Let S| be the first
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time that 7 exits A, and let S be the first time that 7 hits the ball with center —u +
ui and radius u /4. By [18], Lemma 2.5, we know that P[ S, < S1] is bounded from
below by positive constant depending only on x and §. On {S; < S1}, it is clear
that there exist constants xs, ¢s > 0 depending only on 6 such that fs,(B(z,¢))
contains the ball with center xsu and radius csu.

Consider the image of B(y,r) under fs,. On F N {S> < 1}, we know that
the image of B(y,r) under fs, contains the ball with center fs,(y) and radius
rfs, (¥)/4 where

2y<fs,(m <y,  fs,(M=1

Combining with (4.2), we have

P[E2j42(5.2, y.7) | 100, $21, G N (2 < S1}] = (e|gl(2)])°%.

Since {S7 < S1} has a positive chance, we have

+
P[&j42(8, 2, y,r) | 1[0, 71, G] 2 (g]gr (2)]) .
Therefore, by Lemma 4.2, we have
+ + +
Pl&jy2(e,2, v, 1)] 2 E[(e]gh (2)]) 7 1g] =< gVt _ cmjia
where the constants in 2 and < are uniform over ¢. This completes the proof. [
LEMMA 4.3. Fixk € (0,4) and let n be an SLE, in H from 0 to co. Fix z € H

with |z| = 1. Let ®; = arg(g;(z) — W;). For C > 16, let £ be the first time that n
hits 0B(z, Ce). For § € (0, 1/16), define

F=1{& <00,0¢ € (8,7 —3),n[0,]C B, R)}.
Then we have
P[&jqa(e, 2, y, ) NF] S CAs™Ben2it provided y < —20r,r > R,
where A, B are some constants depending on k and j, and the constant in < is
uniform over 8, C, ¢.
PROOF. We run the curve up to time § and let f = gz — We. We have the
following observations:

e Consider f(B(z,¢)). By Lemma 2.2, we know that f(B(z, ¢)) is contained in
the ball with center f(z) and radius u := 4¢| f'(z)|. Applying the Koebe 1/4
theorem to f, we have

(4.3) Celf'(2)|/4 <Im f(z) <4Ce|f'(2)].

Next, we argue that f(B(z, ¢)) is contained in the ball with center | f(z)| € R
and radius 8Cu/$. Since f((z, €)) is contained in the ball with center f(z) and
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radius u, it is clear that f(B(z, €)) is contained in the ball with center | f(z)|
with radius u# + 2| f (z)|. By (4.3), we have
Cu/16 < |f(z)|sin®¢ < Cu.

Since ®¢ € (8, m — §), we know that, for § > 0 small, we have sin©®g > §/2.
Thus, Cu/16 < |f(z)| <2Cu/$. Therefore, f(B(z,¢)) is contained in the ball
with center | f (z)| with radius 8Cu/§. In summary, we know that f(B(z, ¢)) is
contained in the ball with center | f(z)| and radius 32C¢| f'(z)|/8 where

Celf'@|/4 = |f (@] =8Ce|f'(2)]/3.

e Consider f(B(y,r)). Since {n[0,&] C B(0, R)} and y < —20r with r > R,
we know that f(B(y,r)) is contained in the ball with center f(y) and radius
4rf’(y) where

2y < f(y) =<y, f(y)=<1.

Combining these two facts with (4.2), we have

P[€2j12(e. 2. y. 1) | 0[O, €1, F] < (Ce| £'@)] /8)%1.
where the constant in < is uniform over C, &, §. Thus, by Lemma 4.2, we have
P[&2j12(8, 2, y, 1) N F] S CAs™Be2iv2,
where A, B are some constants depending on « and j. This completes the proof.

g

LEMMA 4.4. Fixk € (0, 8) and let n be an SLE,. in H from 0 to co. Fix z € H
with |z| = 1. Let T, be the first time that n swallows z and set ©; = arg(g;(z) — W;).
Take n € N such that B(z,16e2") is contained in H. For 1 <m < n, let &, be
the first time that n hits B(z, 1682”_””‘1). Note that &1, ...,&, is an increasing
sequence of stopping times and &1 is the first time that n hits B(z, 16e2") and &, is
the first time that n hits B(z,32¢). For 1 <m <n, for § > 0, define

Fin={&m <T,,0¢, ¢ (8, m—38)}
There exists a function p : (0, 1) — [0, 1] with p(§) { 0 as § | O such that

P[ﬂ fm} < p@)".
1

PROOF. For w € H with arg(w) ¢ (8, ¥ — §), by (A.3), we know that
(4.4) P[n hits B(w, Imw)] < C8%/<~1,

where C is some universal constant.
For 1 <m <n, let f,, = g¢,, — Wg,,. Note that &,, is the first time that » hits
B(z, 16e2"+1) We denote £2""*! by u. By Lemma 2.2, we know that the
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ball f,,(B(z,u)) is contained in the ball with center f,(z) and radius 4u| f,, (2)|;
MOreover,

du| f,,(2)| <Im fiu(z) < 64ul f,(2)|.

Therefore, by (4.4), we have P[F,14 | n[0, £,1] < C8%/%~1 Iterating this inequal-
ity, we have

n
1

where C is some universal constant. This implies the conclusion. [

PROOF OF PROPOSITION 4.1—(4.1)-UPPER BOUND. Assume the same no-
tation as in Lemma 4.4. Recall that F = {5[0, t1] C B(0, R)}. By Lemma 4.3, we
have, for1 <m <n

P[&j42 NFNFL] S 2 A8 Be2ina,

where A, B are some constants depending on « and j. Combining with Lemma 4.4,
we have, for any n and 6 > 0,

P[&j12(e, 2, y, 1) N F] Sn2" A8~ Be®2iv2 4 p(8)",
where p(8) | 0 as § | 0. This implies the conclusion. [

5. Ising model.

5.1. Definitions. We focus on the square lattice Z2. Two vertices x = (x1, x2)
and y = (y1, y2) are neighbors if |x; — y{| + |x2 — y2| = 1, and we write x ~ y.
We denote by A, (x) the box centered at x:

Ap(x) =x + [—n, n]?, A, = Ap(0).

Let Q be a finite subset of Z2, and the edge-set of Q consists of all edges of
77 that link two vertices of . The boundary of € is defined to be 9Q = {e =
(x,y):x~y,x €,y ¢ Q}. We sometimes identify a boundary edge (x, y) with
one of its endpoints. Two vertices x = (x1, x2) and y = (y1, y2) are x-neighbors
if max{|x; — y1], |x2 — y2|} = 1. With this definition, each vertex has eight -
neighbors instead of four.

The Ising model with free boundary conditions is a random assignment o €
(e, @)% of spins oy € {©, @}, where o, denotes the spin at the vertex x. The
Hamiltonian of the Ising model is defined by nge(a) = — > x~y0x0y. The

Ising measure is the Boltzmann measure with Hamiltonian HI®® and inverse-
temperature 8 > 0:

exp(—BHg* ()
upglol= Zfreﬁj where Z§G = > exp(—BHG™(0)).
Xe o
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For a graph Q and 7 € {©, @}Zz, one may also define the Ising model with
boundary conditions t by the Hamiltonian

HE(0) =— > 0,0y if o =7, Vx ¢ Q.
X~y (X, yINQAD

The Ising model has the following domain Markov property: Suppose  C Q' are

two finite subsets of Z2. Let 7 € {©, @}Z2 and let 8 > 0. Suppose X is a random
variable measurable with respect to {0y : x € Q}. Then we have

ME,Q/[X oy =1,,YVx € Q'\ Q] = [,LE’Q[X].

Dobrushin domains are the discrete analogue of simply connected domains with
two marked points on their boundary. Suppose (2; a, b) is a Dobrushin domain.
Assume that 0€2 can be divided into two x-connected paths from a to b (coun-
terclockwise) and from b to a. Several boundary conditions will be of particular
interest in this paper:

e We denote by 1™ for free boundary conditions. We denote by u® (resp. u®)
for the boundary conditions t, = @ for all x (resp., 7o = © for all x).

e (6®) boundary conditions: & along 92 from a to b, and & along 92 from b
to a. These boundary conditions are also called Dobrushin boundary conditions,
or domain-wall boundary conditions.

e (&free) boundary conditions: free along 02 from a to b, and & along 92 from
btoa.

The set {©, @)% is equipped with a partial order: o < ¢’ if o, < o/ for all
x € Q. A random variable X is increasing if o < ¢’ implies X (o) < X(c’). An
event A is increasing if 1 4 is increasing. The following inequality is the FKG
inequality for the Ising model: Let 2 be a finite subset, let T be the boundary
conditions, and let 8 > 0. For any two increasing events .4 and 3, we have

ME,Q[A N Bl > M;;,Q[A]ME,Q[B]-

As a consequence of the FKG inequality, we have the following comparison be-
tween boundary conditions: For boundary conditions 7; < 72 and an increasing
event A, we have

(5.1 M;]’Q[A] =< M/?Q[A]

The Ising model with inverse-temperature 8 > 0 is related to the random-cluster
model with parameters (p,2) through the Edwards—Sokal coupling, thus the
critical value p.(2) for the random-cluster model gives the critical value of B:
Be = (1/2)1og(1 4 +/2). We focus on the critical Ising model on the square lattice
and derive the arm exponents. To this end, we need three inputs:

e The convergence of the scaling limit of the interface in the critical Ising model.
This is proved in [8, 12]; see Theorems 5.7 and 5.8.
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e The arm exponents of SLE3. This is the topic of Sections 3 and 4.

e A stronger version of Russo—Seymour—Welsh inequality for the critical Ising
model. This is proved in [7]; see Proposition 5.1. We can deduce the so-called
quasi-multiplicativity from the RSW inequality.

With these three inputs at hand, we can apply the same strategy as in [22] where
the authors derived the arm exponents of the critical percolation. The content in
this section is not new, and we just summarize the known results and explain how
to put them together to get the arm exponents of the critical Ising model.

5.2. Quasi-multiplicativity. In this section, we first introduce a stronger ver-
sion of RSW inequality—Proposition 5.1—for the critical Ising model and then
define quasi-multiplicativity for the model. The quasi-multiplicativity is a conse-
quence of the RSW inequality and, roughly speaking, it guarantees that we can use
the crossing events of SLE3 to approximate the crossing events of the Ising model.

A discrete topological rectangle (<2; a, b, ¢, d) is a bounded simply-connected
subdomain of Z? with four marked boundary points. The four points are in coun-
terclockwise order and (ab) denotes the arc of 02 from a to b. We denote by
do((ab), (cd)) the discrete extermal distance between (ab) and (cd) in 2; see
[6], Section 6. The discrete extremal distance is uniformly comparable to and con-
verges to its continuous counterpart—the classical extremal distance. The rectan-
gle (2;a, b, c,d) is crossed by @ in an Ising configuration o if there exists a path

of @ going from (ab) to (cd) in 2. We denote this event by (ab) PN (cd). We
have the following RSW-type estimate on the crossing probability at critical.

PROPOSITION 5.1 ([7], Corollary 1.7). For each L > 0, there exists c(L) > 0
such that the following holds: for any topological rectangle (2; a, b, c,d) with
do((ab), (cd)) < L,

Pl (ab) <> (cd)] = c(L),
where the boundary conditions are free on (ab) U (cd) and © on (bc) U (da).

As a consequence of Proposition 5.1, we have the following spatial mixing prop-
erty at criticality.

COROLLARY 5.2. There exists a > 0 such that for any 2k < n, for any event
A depending only on edges in Ay, and for any boundary conditions t, &, we have
k o
AT = 2 0, LA = () 2, 1AL
In particular, this implies that, for any boundary conditions t, for any 2k <n <m,
for any event A depending only on {0y, x € Ay}, and for any event B depending
only on {0y, x € Ay \ Ay}, we have

k o
g LA B = i, LA, 1B = () i, LA, 51
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Fix n < N and consider the annulus Ay \ A,. A simple path of & or of © con-
necting dA,, to dAy is called an arm. Fix aninteger j > l and w = (w1, ..., wj) €
{e,®}/. For n < N, define A,(n, N) to be the event that there are j disjoint
arms (yx)1<k<; connecting A, to dAy in the annulus Ay \ A, which are of
types (wi)1<k<;, where we identify two sequences w and o' if they are the same
up to cyclic permutation and the arms are indexed in clockwise order. For each
j > 1, there exists a smallest integer ng(j) such that, for all N > ng(j), we have

Aw(no(j), N) # 2.

PROPOSITION 5.3. Assume that w is alternating with even length. For all
no(j) <np <ny <n3 <m/2, and for all boundary conditions t, we have

1, [Ao(i, n3)] < g p [Ao(r,n2)]ug, A, [Ao(nz, n3)],

where the constants in < are uniform over ny,ny, n3,m and t.

Proposition 5.3 is called the quasi-multiplicativity. We will introduce several
auxiliary subevents of A, (n, N) which are both important for the proof of Propo-
sition 5.3 and also important for us to derive the arm exponents of the Ising model.
Fix v = (w1, ...,w;) € {©, ®}/. Fix some § > 0 small. Suppose Q =[—1, 172
is the unit square. A landing sequence (/x)1<k<; is a sequence of disjoint sub-
intervals on 0 Q in clockwise order. We denote by z([x) the center of I;. We say
(Ik)1<k<j 1s 8-separated if:

o the intervals are at distance at least 26 from each other, and they are at distance
at least 28 from the four corners of 9 Q
e for each Iy, the length of I is at least 26.

We say that two sets are wg-connected if there is a path of type wy connecting
them. Fix two d8-separated landing sequences (/i)j<k<; and (I,é) 1<k<j. We say
that the arms (yx)1<k<; are §-well-separated with landing sequence (/x)<x<; on
dA, and landing sequence (I})1<x<; on d Ay if:

e for each k, the arm y; connects nl; to N1} ;
e for each k, the arm y4 can be wg-connected to distance dn of dA, inside

Asn(z(Ix));
e for each k, the arm 34 can be wi-connected to distance SN of dAy inside

Asn (z(I})).

We denote this event by .ACI,)/ I,(n, N).

LEMMA 5.4. Fix j > 1 and § > 0 and two §-separated landing sequences
(Ix)1<k<j and (112)151(51‘. Assume that o is alternating with length 2j. For all

n < N <m/2 such that A(IU/ 1/(n, N) is not empty, and for all boundary conditions
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T, we have

Whonn [AY " 0, N = 1, [Ao(n N,

where the constants in < depend only on §.

We have similar results for the boundary arm events. Denote by
AF(x) =[-n,n] x [0,n] +x, A= AT (0).

We consider the arm events in the semi-annulus A7 \ A, and extend the definition
of arm events and arm events with landing sequences in the obvious way, and
denote them by A% (n, N) and AT o, N,

We need to restrict to the cases that the arms together with the boundary
conditions are alternating. Precisely, in the statements of Proposition 5.5 and
Lemma 5.6, we restrict to the cases where the arm patterns and the boundary con-
ditions are listed in Theorem 1.1.

PROPOSITION 5.5.  Forall nf (j) <ni <ny <n3 <m/2, we have
Wi ar[Apnn)] = uf L[AS (i n)]i, s [AS (2, n3)],

where the constants in < are uniform over ni, no, n3 and m.

LEMMA 5.6. Fix j > 1, § > 0 and two §é-separated landing sequences

(I 1<k<j and (I}))1<k<j. For all n < N <m/2 such that Ax’l/ll(n,N) is not
empty, we have

i aglAS 0 N = AT, N,

where the constants in < depend only on §.

We do not give the proof of the quasi-multiplicativity in this paper, because the
proof is exactly the same as the proof of the quasi-multiplicativity for the FK-Ising
model proved in [7].

5.3. Proofs of Theorems 1.1 and 1.2. 1In this section, we first define the inter-
faces of the Ising model; then explain the convergence results on the interfaces;
and finally, complete the proof of Theorems 1.1 and 1.2.

The dual square lattice (Z*)* is the dual graph of Z?. The vertex set is
(1/2,1/2) + Z?* and the edges are given by nearest neighbors. The vertices and
edges of (Z?)* are called dual-vertices and dual-edges. In particular, for each edge
e of 72, it is associated to a dual edge, denoted by ¢*. The dual edge e* crosses e
in the middle. For a finite subgraph G, we define G* to be the subgraph of (Z?)*
with edge-set E(G*) = {¢* : ¢ € E(G)} and vertex set given by the end-points of
these dual-edges. The medial lattice (Z*)° is the graph with the centers of edges of
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(a) The square lattice. (b) The dual lattice. (c) The medial lattice.

FIG. 3. The lattices.

7 as vertex set, and edges connecting nearest vertices. This lattice is a rotated and
rescaled version of Z?; see Figure 3. The vertices and edges of (Z?) are called
medial-vertices and medial-edges. We identify the faces of (Z?)° with the vertices
of Z? and (Z?)*. A face of (Z?)° is said to be black if it corresponds to a vertex of
7?2 and white if it corresponds to a vertex of (Z>)*.

For u > 0, we consider the rescaled square lattice #Z>. The definitions of dual
lattice, medial lattice and Dobrushin domains extend to this context, and they will
be denoted by (2,; ay, by), (F; a), bY), (25 a’, b)), respectively. Consider the
critical Ising model on (2); a;;, by;). The boundary 02 is divided into two parts
(aib}) and (b}a}). We fix the boundary conditions to be © on (b)a;) and @ on
(a;b}),or ©on (bja}) and free on (a,b}). Define the interface as follows. It starts
from a;, lies on the primal lattice and turns at every vertex of €2, is such a way that
it has always dual vertices with spin © on its left and @ on its right. If there is an
indetermination when arriving at a vertex (this may happen on the square lattice),
turn left; see Figure 4.

Let (2;a,b) be a simply connected domain with two marked points on its

boundary. Consider a sequence of Dobrushin domains (£2,; a,, b,). We say that

FI1G. 4. The Ising interface.
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(R; ay, by) converges to (£2; a, b) in the Carathéodory sense if f, — f on any
compact subset K C H, where f, (resp., f) is the unique conformal map from
H to €, (resp., ) satisfying f,(0) = ay, fu(c0) = b, and f,(c0) =1 [resp.,
f(0)=a, f(c0) =0, f'(c0) =1].

Let X be the set of continuous parameterized curves and d be the distance on X
defined for n; : I — C and 1, : J — C by

d(mi, m) = inf 1(@1(2)) — n2(@a(2
(nom)=_ . nf o 1]—>J;e[op1]|n (@1(0) = m(p20)],
where the infimum is over increasing bijective functions ¢1, ¢». Note that / and J
can be equal to R} U {oo}. The topology on (X, d) gives rise to a notion of weak
convergence for random curves on X.

THEOREM 5.7 ([8]). Let (Q5; ay, b)) be a family of Dobrushin domains con-
verging to a Dobrushin domain (2; a, b) in the Carathéodory sense. The interface
of the critical Ising model in (; ay;, b)) with (©®) boundary conditions con-
verges weakly to SLE3 as u — 0.

THEOREM 5.8. Let (2); a;,, b.)) be a family of Dobrushin domains converg-
ing to a Dobrushin domain (2; a, b) in the Carathéodory sense. The interface of
the critical Ising model in (2}; a;;, b)) with (©free) boundary conditions con-

verges weakly to SLE3(—3/2) as u — 0.

PROOF. Itis proved in [5, 12] that the interface with (free free) boundary con-
ditions converges weakly to SLE3(—3/2; —3/2) as u — 0. The same proof works
here. [

PROOF OF THEOREM 1.2. We only give the proof for o4 and the other cases
can be proved similarly. Consider A,, with two boundary points a,, = (—m, 0) and
by, = (m, 0). Fix (6@) boundary conditions: the vertices along d A,, from b, to
a,, (counterclockwise) are @ and the vertices from a,, to b,, are &. Since we fix
B = B, and the boundary conditions, and w = (& © ®O), we eliminate them from
the notation. We will prove that, forn < N <m/2,

(5.2) pa,[Am, N)] =Nt ag N — oo,

Fix the landing sequence I = (I1, I, I3, I4) where I} =[—1/2,1/2] x {—1},
L ={-1} x[-1/2,1/2], 5 =[—1/2,1/2] x {1} and 14 = {1} x [—1/2,1/2].
Recall that A’/ (n, N) is the 1/8-well-separated arm event with the landing se-
quence nl on dA, and NI on dAy. The four arms in A(n, N) are denoted by
(v1, Y2, ¥3, va) where y; and y3 are @ and y» and y4 are ©. Consider the critical
Ising model in Asy. Let Ry to be the rectangle [-3N/4,3N /4] x [-2N, —N],
and define C1® to be the event that y; is connected by path of @ in R; to the bottom
of R;. Let R> to be the rectangle [-9N /8, —N] x [-N/2,2N], and define 62e to
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(a) A/I(n, N) is the well-separated arm  (b) The four gray parts are R; to Ry
event. respectively.

FIG. 5. The explanation of the proof of Theorem 1.2.

be the event that y» is connected by path of © in R; to the top of R,. Let R3 be the
rectangle [—3n/4,3n/4] x [—n, n], and define C3@ to be the event that y3 is con-
nected to y1 by path of @ in R3. Let R4 be the rectangle [N, 9N /8] x [-N/2,2N],
and define (349 to be the event that y4 is connected by path of © in R4 to the top of
Ry4; see Figure 5.

By (5.1), Proposition 5.1 and Corollary 5.2, we deduce

(5.3) taoy [A(n, N)] = sy [A (n, NynC®neg ned neg),

where the constants in < are uniform over n, N.

Let Py be the probability measure ua,, where the square lattice is scaled by
1/N and let Py be the law of SLE3 in [—2,2] x [—2, 2] from (-2, 0) to (2, 0).
On the event A/ (n, N)N C? N C26 N C3Ga N C49, consider the interface n from axy
to by . Let 71 be the first time that » hits 0 A,,. The event CfB N 62e guarantees that
n[0, 1] is bounded away from the target by . The event 63@ guarantees that, after

71, the path n hits the neighborhood of (0,2N) at some time ;. The event C4e
guarantees that, after oy, the path n hits d A, again. Therefore, by (4.1), we have
fore > 0,

limsupPy[ A (N, NynCP ncg neg ned)

N—o00

< g%t < liminf Py [A(eN, N)].
N—o0

Combining with Lemma 5.4 and (5.3), we have

liminfPy[A(eN, N)] < limsup Py [A(eN., N)] = goatoD),
— 00

N—o00
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By Corollary 5.2, we know that
(5.4) liminfyup, [A@eN, N)] < limsup un, [AEN, N)] < goato),
—00

N—o00

where the constants in < are uniform over ¢ and m > 2N.
Suppose N = ne~X for some integer K. By Proposition 5.3, for m > 2N, we
have

K
A, [A(, N)] < ck 1_[ HA, [A(ns_j+1, ng_j)],
j=1

where C is some universal constant. Thus

log ua, [A(n, N)] KlogC R P
m < 1 A J=h 1.
oeN = o iog e Al )]

By (5.4), we have

limsup e, [A(ne /71, ne™/)] < g@oM),

j—o00
Therefore,
i log i, [A(n, N)] C
im sup < —ay,
K —00 log N log(1/¢)

where C is some universal constant. Let ¢ — 0, we have

i log ua,, [A(n, N)]
imsup < -0y
N—oo logN

We deduce the lower bound similarly:

fim log ua,, [Am, N)]
iminf > —
N—o0 log N

as4.
These imply (5.2) and complete the proof. [

To prove Theorem 1.1, we will show the proof for y;;_l, and the results for

a;j_l, )/ZJ; can be proved similarly; and we will show the proof for ,B;rj, and the

+ pt .,
results for ;»Byj_y can be proved similarly.

PROOF OF THEOREM 1.1—(1.5). 'We will prove the conclusion for y3+ and the
other cases can be proved similarly. Consider A} with two boundary points a,, =
(=m,m/2) and b,, = (m,m/2). Fix (& free) boundary conditions: the vertices
along d A,, from b, to a,, (counterclockwise) are free and the vertices from a,, to
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FI1G. 6. The explanation of the proof of (1.5).

by, are ©. Since we fix § = S, and the boundary conditions, and w = (© & 6), we
eliminate them from the notation. We will prove that, forn < N <m/2,

(5.5) par[ AT, ] = N0 g N oo,

Fix the landing sequence [ = (Iy, I, I3) where I} = {—1} x [1/2,3/4], I, =
[—1/2,1/2] x {1} and Iz = {1} x [1/2,3/4]. Recall that A™//I(n, N) is the 1/8-
well-separated arm event with the landing sequence nl on dA;" and NI on BA;(,.
The three arms in AT/ (n, N) are denoted by (y1, 2, v3) where y; and y3 are
© and y; is @. Consider the critical Ising model in A;N. Let R; be the rectangle
[-9N/8, —N] x [N/2, N] and define Cle to be the event that y; is connected by
path of © in R; to the top of R;. Let R, be the rectangle [—3n /4, 3n/4] x [0, n]
and define C;e to be the event that y» is connected by path of & in R to the bottom
of Ry. Let R3 be the rectangle [N, 9N /8] x [N /2, N] and define C3e to be the event
that y3 is connected by path of © in R3 to the top of R3. For § > 0, let R4 be the
semi-annulus [3n/4,4n] x [0, n/4]\ [n, 3n] x [0, én] and define Cje(cS) to be the
event that there is a path of @ in R4 connecting the left bottom to the right bottom.

By (5.1), Proposition 5.1 and Corollary 5.2, we can prove, for § > 0 small
enough,

(5.6) oy [AT (0, N)] = pas [AT T (n, NynCP neP ne§ ned o)),

where the constants in < are uniform over n, N.

Let Py be the probability measure j5,, where the square lattice is scaled by
1/N and let Py be the law of SLE3(—3/2) in [—2,2] x [0, 2] from (=2, 1) to
(2, 1). On the event AT /1 (n, N)N Cle N Cga N C3e N C? (8), consider the interface
n from ary to by . Let 71 be the first time that » hits d A,,. The event Cle guarantees
that n[0, t1] is bounded away from the target b, . The event Cff (8) guarantees that
n[0, 1] is bounded away from the segment [7, 3n]. The event Cga guarantees that,
after 71, the interface 7 hits the neighborhood of the point (0, N) at some time o7.
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The event 639 guarantees that, after o, the interface n hits 0 A,, again; see Figure 6.
Therefore, by (3.11), we have for ¢ > 0,

limsupPy[AT T (eN, NyncP neP nef ned )]

N—o00

<e” <liminfPy[AT(eN, N)].
N—o00
Now we can repeat the same proof of Theorem 1.2 to obtain (5.5). [

PROOF OF THEOREM 1.1-(1.4). We will prove the conclusion for ,62+ and
the other cases can be proved similarly. Consider A;} with two boundary points
am = (0,0) and b,, = (0, m). Fix (& free) boundary conditions: the vertices along
dA,, from b,, to a,, (counterclockwise) are free and the vertices from a,, to b, are
©. Since we fix 8 = B, and the boundary conditions, and w = (®6), we eliminate
them from the notation. We will prove that, forn < N <m/2,

(5.7) ppr[ AT, )] = N0 g N - o

Fix the landing sequence I = (I, I) where I} = {—1} x [1/2,3/4] and
I =[—1/2,1/2] x {1}. Recall that .A+’I/I(n, N) is the 1/8-well-separated arm
event with the landing sequence nl on dA;" and NI on 8A;{,. The two arms in
At/ (n, N are denoted by (y1, y2) where y1 is @ and y» is ©. Consider the crit-
ical Ising model in A;N. Let R; be the tube [—n, 3n/4] x [0, 3n/4]\ [—n,n/2] x
[0, n/4] and define Cfe to be the event that y; is connected by path of & in R; to
the bottom of R;. Let R, be the rectangle [—N, N/2] x [N/2,5N /8] and define
(?2e to be the event that 3, is connected by path of © in R; to the left-hand side
of R).

By (5.1), Proposition 5.1 and Corollary 5.2, we can prove, for § > 0 small
enough,

(5.8) gy [AT (0, )] = ppoy [AT (n, NynCP N CPY,

where the constants in < are uniform over n, N.

Let Py be the probability measure pa,, where the square lattice is scaled by
1/N and let Py, be the law of SLE3(—3/2) in [—2, 2] x [0, 2] from (0, 0) to
(0, 1). On the event AT!/1(n, N) N Cl@ N C’z6 , consider the interface n from azy
to by, the event guarantees that the interface hits the neighborhood of the point
(—N, N/2), and then comes back to A,T; see Figure 7. Therefore, by (3.4) and
(3.6) (taking p = —3/2), we have, for ¢ > 0,

limsup Py [AT1/1 (n, Ny nCP N €] < 6P < liminfPy[A* (N, N)].
—00

N—o0

Now we can repeat the same proof of Theorem 1.2 to obtain (5.7). [
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FI1G. 7. The explanation of the proof of (1.4).

APPENDIX: ONE-POINT ESTIMATE OF THE INTERSECTION OF SLE
WITH THE BOUNDARY

THEOREM A.l. Fixx >0, pL, pb® p2R € R such that
(A1) pl>-2, ol R > (=2) v (k)2 —4), ol R+ 02 R S /2 — 4.

Suppose 1 is an SLE, (p; pU R, p>R) process with force points (x*; x®, 1) where
xL <0and x® €0, 1). Define

a=(p" K +2)(p" K+ o> +d—k/2) e, B=2(0"F+ 0" +4—k/2)/x.

For e € (0,1/2) and r > 4, define t. = inf{t : n(t) € 9B(1, (1 — x®N), and S, =
inf{z : n(t) € dB(0, r)}. Then we have

6% (1 _xR)ﬁ <Pt < §,] = e*toD),
where the constant in < is uniform and the o(1) term goes to zero as ¢ — 0 at a
rate which depends only on x® and r.
COROLLARY A.2. Fixk >0, pL, pbR, p2R e R such that
(A2) ple(=2,0], ol R > (=2) Vv (k)2 — 4), ol R4 p?2R S /2 — 4.
Assume the same notation as in Theorem A.1. Then we have
(11— xR)ﬂ < P[z, < 00] =¥t

where the constant in < is uniform and the o(1) term goes to zero as ¢ — 0 at a

rate which depends only on xX.

We also expect that Corollary A.2 holds for all p* > —2, but we do not have a
proof yet for p~ > 0. Before proving the theorem, we first summarize the existing
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related results. For standard SLE, with « € (0, 8), a stronger conclusion is known

[3]:
(A.3) P[n hits B(1, )] =< &* where a = (8 — k) /«.
For SLE, (p) with one force point at xRel0,1),a stronger conclusion is known
([14], Proposition 5.4):
Plr, < oo] < e%(1 — xR)ﬁ,

where o = (p +2)(p +4 —«/2)/k, and B =2(p +4 — k/2)/k. For SLE(p!R,
>R processes, the conclusion in Theorem A.1 is proved in [18], Theorem 3.1.
The proof here is simpler than the one in [18].

LEMMA A.3. Assume the same notation as in Theorem A.1. For § € (0, 1/4)
and r > 4, we have

(1 —x®) <Pl < S, Imn(ze) = 86 (1 — xF)] e (1 = xF)Ps—F 1B,

where B=0V (,BpL/Z) and the constants in < are uniform over ¢, 8, xL xR r.

PROOF. Let V,F be the evolution of xL and VX be the evolution of x%. Set
v=—pfk <0and

My = g ()P 042 010 (g, (1) — )¢

(gt(l) _ VtR >vp1vR/(2K) (81(1) _ VtL )UpL/(ZK)

X | ——5— e .
1 — xR 1 —xtL

By Lemma 2.4, the process M is a local martingale and the law of n weighted by

M becomes the law of SLE, (p%; p''R, p>® + v) with force points (L xR ).
On E.(8,r) :={t. < S,,Imn(z.) > 8e(1 — x®)}, let us estimate the terms in

M, one by one for t = 7. Let O; be the image of the rightmost point of n[0, t]NR

under g;. By the Koebe 1/4 theorem, we have g;(1) — O; < g;(1)e(1 — x®y.

e Consider the term g, (1) — W;. Since Im n(¢) > de(1 —xB, combining with [18],
Lemma 3.4, we have

g (e(l —x®) =< g,(1) — 0, < (1) = W, < (g, (1) — 0,) /8
= gl(De(1 —xR)/s.

e Consider the term g;(1) — VIR . If xR is swallowed by n[0, ¢], then we have
g(1) — VR =g,(1) — 0, < g/(1)e(1 — xR®). If not, by the Keobe 1/4 theorem,
we have g;(1) — VIR =g/ (De(l — x®). In any case, we have

a(D) —VE< g (De(l —xF).
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e Consider the term g,(1) — VtL. Since g,(l) — VtL is increasing in ¢, we have
gr(1) — VtL > 1 — x* for all £. Suppose B* is a Brownian motion starting from
vi, from [13], Remark 3.50, we know that

g (1) —VE

BT yi . .
= yll)néo myP[B" exits H \ 5[0, ¢] through the union

[xE,0]Unl0,]UT0, 1]].
Since t = 1, < §,, we have
gi(h) -V}t
< Jlim myP[B”" exits H \ B(0, r) through the union [x%, 0] U B(0, r)].
If |xE| <7, then g, (1) — VE < dr;if |xE| > r, we have g, (1) — VI < |xE|+3r.
Thus we have

< gl‘(l) - VtL

1< T <dr.

Combining the above three parts, on E; (8, r), we have
e *(1— xR)_ﬁS’srfB <My, Se (1 - xR)_ﬂrOV(fﬂpL/z).
Therefore, we have the lower bound: P[E.(8,r)] > P[E.(4,1/4)] and
P[E.(4,1/4)] > (1 — x®YVPEIM,, 15, 41/0] = 6% (1 — xR)PPH[EF(4, 1/4)],

where 1* is an SLE, (p%; p1-R, p?R® 4 v) with force points (xZ; x®, 1) and P* is
its law, and E}(r, 8) is defined for n*. Note that

,Ol’R-I-,OZ’R—}—v:K—8—p1’R—,02’R</</2—4.

Thus n* converges to the point 1 at finite time. Let ¢ (z) = z/(1 — z) be the Mobius
transform of H that sends (0, 1, c0) to (0, oo, —1) and let 7 be the image of n*
under ¢. Then 7 is an SLE,(p"R + p2 & 42 — pL, pL; pR) with force points
(—1, ¢ (x%); p(xR)). Define E to be the event that 7 never hits B(—1,1/3) and 7
exits the ball of radius 1/(e(1 — x®y) through the angle interval [r/4, 3 /4]. It is
clear that P*[E}(4,1/4)] > I@[E] = 1 (see, for instance, [18], Lemma 2.3), since
pbR 4+ p2R 42 > /2 — 2. This gives the lower bound. For the upper bound, we
have

P[E.(5,r)] < e¥(1 —x®)P s PrBRIM,, 1k, 5.] < 2(1 — xF)P5PrE,

as desired. 0
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LEMMA A.4. Fix k > 0 and p~, p® € R. Suppose that x,f (resp., x,lf) is a
sequence of negative (resp., positive) real numbers converging to x* < 0 (resp.,
xR > 0) as n — oo. For each n, suppose that (W,, VnL, VnR) is the driving triple
for an SLE, (pL: pB) process in H with force points (x,f; xf). Then (W, VnL, VnR)
converges weakly in law with respect to the local uniform topology to the driving
triple (W, VL VR ofa SLE, (pL; p®) with force points (L x®y as n — oo. the
same likewise holds in the setting of multiple force points SLE, (p) processes.

PROOF. Proof of Theorem 2.4 in [17]. O

LEMMA A.5. Assume (A.1) holds. Suppose that n is a SLE, (pL; pbR, p2 Ry
with force points (xL;xl*R,xz’R) where xL' <0 and 0 < x"R <1 and x"R <
x2R_ Then there exists a function p(8) — 0 as 8§ — O which depends only on
i, pL, p R, p2R such that

P[n hits B(1,8)] < p(9).
We emphasize that p(8) is uniform over xL<0<xVB<1and x*R > xR,

PROOF. Define f(x%, xR x2R §) =P[y hits B(1,8)]. We argue that f is
continuous. Suppose 7, is a SLE, (p%; p''R, p?R) with force points (an; x,ll*R
x,%*R) and assume (x,f,x,{*R, x,%’R, 8n) = (xL xR x2.R ) Denote by gf', W, (1)
the conformal map and the driving function for 1,,. By Lemma A.4, we see that W,
converges to W in local uniform topology. Combining with [13], Section 4.7, we
obtain that g" converges to g in Carathéodory topology. This gives the continuity
of f.

Define p(8) := sup f(xL,xl’R,xz*R,é) where the supremum is taken over
xl<0,xR €10,1],x>® > xR Since (A.1) holds, for each xZ, xR xR we
have f(xL, xR x2R ) > 0as § — 0. When |xL|,x2’R — 00, the law of 1 be-
comes the law of SLE, (p!*®). This implies p(§) > 0as§ — 0. 0

PROOF OF THEOREM A.l. Lemma A.3 gives the lower bound, and we only
need to show the upper bound. Pick an integer n such that 2"¢ <1/4. For 1 <k <
n, let Ty, be the first time that » hits the ball centered at 1 with radius 2”“"‘8(1 —
x®). Define

Fi = {Imn(T) > 82" *e(1 — x®)}.
By Lemma A.3, we know that

Plr, < §/1< ZP[{Tk < oo} m-/‘Tk] +]P)|:{T£ = Sr}ﬂflg:|
1 1

n
<2me(1 — xR)P5=PrB +P[{rg < Sr}ﬂf,f}.
1
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By a similar argument as in Lemma 4.4, there is a function g(§) - 0 as § — 0
which depends only on «, p~, p!:® and p>* such that P[] F£1 < q(8)". Thus
we have

Plze < S,1 < 2" (1 — x®)PsFr8 4+ q(5)".

This implies the conclusion. [

PROOF OF COROLLARY A.2. Assume the same notation as in the proof of
Theorem A.1. When pL <0, we have B =0, thus

Pz, < 00] <2"e%(1— x®)Ps~F +4(5)".

This implies the conclusion. []
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