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STABLE RANDOM FIELDS INDEXED BY FINITELY
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In this work, we investigate the extremal behaviour of left-stationary
symmetric α-stable (SαS) random fields indexed by finitely generated free
groups. We begin by studying the rate of growth of a sequence of partial
maxima obtained by varying the indexing parameter of the field over balls of
increasing size. This leads to a phase-transition that depends on the ergodic
properties of the underlying nonsingular action of the free group but is differ-
ent from what happens in the case of SαS random fields indexed by Z

d . The
presence of this new dichotomy is confirmed by the study of a stable random
field induced by the canonical action of the free group on its Furstenberg–
Poisson boundary with the measure being Patterson–Sullivan. This field is
generated by a conservative action but its maxima sequence grows as fast as
the i.i.d. case contrary to what happens in the case of Zd . When the action of
the free group is dissipative, we also establish that the scaled extremal point
process sequence converges weakly to a novel class of point processes that
we have termed as randomly thinned cluster Poisson processes. This limit too
is very different from that in the case of a lattice.

1. Introduction. A random variable X is said to follow symmetric α-stable
(SαS) distribution (α ∈ (0,2], the index of stability) with scale parameter σ > 0
if it has characteristic function of the form E(eiθX) = exp {−σα|θ |α}, θ ∈ R. In
this work, we will always concentrate on the non-Gaussian case, that is, α ∈ (0,2).
For encyclopedic treatment of α-stable (0 < α < 2) distributions and processes,
we refer the readers to [45]. A random field X = {Xt }t∈G, indexed by a (possi-
bly noncommutative) countable group (G, ·) is called an SαS random field if for
each k ≥ 1, for each t1, t2, . . . , tk ∈ G and for each c1, c2, . . . , ck ∈ R, the linear
combination

∑k
i=1 ciXti follows an SαS distribution. Also {Xt }t∈G is called left-

stationary, if {Xt } d= {Xs·t } for all s ∈ G. The notion of right-stationarity can be
defined analogously and will coincide with left-stationarity when G is Abelian.
Whatever we prove for left-stationary SαS random fields will have their corre-
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sponding counterparts in the right-stationary case. From now on, we shall write
stationary to mean left-stationary throughout this paper.

Thanks to the seminal works of Rosiński [34–36], various probabilistic aspects
of stationary SαS random fields indexed by Z or Zd have been connected to the
ergodic theoretic properties of the underlying nonsingular group action; see, for
example, [7, 13, 26, 28, 32, 37, 41–44, 51]. For similar connections in case of max-
stable processes and fields, we refer the readers to [9, 10, 17–19, 46, 47, 52, 53].
See also [16, 20, 27, 38] for links between ergodic theory and stationary infinitely
divisible processes, and [39] for an alternative approach to stable processes using
Maharam systems.

In all the works mentioned above, the indexing group G is Z
d (or R

d in the
continuous parameter case) for some d ≥ 1 and hence amenable. Many of the
proofs use the amenability of the underlying group in some way or the other. In
the present work, we would like to go beyond the framework of amenable groups
and study the corresponding stable random fields. To this end, we first establish
a general phase transition result (see Theorem 3.1 below) for extremes of stable
fields indexed by finitely generated countable groups, and then concentrate on the
simplest possible class of nonamenable groups, namely, the finitely generated free
groups. We use nonsingular actions of free groups to construct stationary SαS
random fields in parallel to [35, 36] and investigate the extremal properties of such
fields in details under various ergodic theoretic conditions on the action.

The motivation behind our work is twofold. First, ergodic theoretic properties of
group actions may change significantly as we pass from amenable to nonamenable
groups; (see, for instance, [50] for a recent article which shows that the pointwise
and maximal ergodic theorems do not hold in L1 for measure-preserving actions
of finitely generated free groups). This necessitates the investigation of the effect
of the ergodic theoretic change on various probabilistic aspects of the stable fields
and finitely generated free groups serve as a convenient test case in the class of
nonamenable groups. Keeping this broader goal in mind, we focus on extreme
value theoretic properties of stationary SαS random fields indexed by such groups.

The second motivation comes from the very simple observation that by passing
to the Cayley graph of the underlying free group, we obtain a stationary stable ran-
dom field indexed by a regular tree of even degree. This, of course, is an important
object to study (see, for example, [29] for a survey on stochastic processes indexed
by trees and their importance in probability theory, statistical physics, fractal ge-
ometry, branching models, etc.). To our knowledge, the only family of tree-indexed
processes with stable (or even heavy tailed) marginals was introduced by [11, 12]
in the form of branching random walks (see also [14, 22], and the more recent
works of [3, 23, 25]), [4, 5]. However, the branching random walks are, by de-
sign, highly nonstationary. In particular, no stationary stable random field has been
constructed on a tree so far and our work can perhaps fill in this gap.

An important manifestation of nonamenability of free groups is that the usual
ball and its interior boundary are “asymptotically proportional” in size. As a result,
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compared to the case G = Z
d , we indeed observe a different extremal behaviour

of {Xt }t∈G when G happens to be a finitely generated free group. In [42, 43],
it was shown that a maxima sequence of {Xt }t∈Zd (obtained by varying t in d-
dimensional cubes of increasing size) grows faster as we pass from a conservative
to a nonconservative Z

d -action in its integral representation. In case of finitely
generated free groups, we have observed a phase transition behaviour of a similar
maxima sequence and the transition boundary is a different one. In order to confirm
the presence of a new dichotomy, we study a class of stable random fields gener-
ated by the canonical action of the free group on its Furstenberg–Poisson boundary
with the measure being Patterson–Sullivan; see Example 3.2 below. Even though
this nonsingular action is conservative, the maxima of these fields grow as fast as
the maxima in the dissipative case.

For stationary SαS random fields generated by dissipative actions of the free
group, the corresponding extremal point process has been shown to converge
weakly (in the space of Radon point measures on [−∞,∞] \ {0} equipped with
the vague topology) to a new kind of point process that we have termed randomly
thinned cluster Poisson process. This limit too is much more sophisticated com-
pared to the corresponding one in the case G = Z

d (see [32, 41]), where a simple
cluster Poisson limit was obtained with no thinning. The presence of thinning in
our framework can be explained by the nontrivial contributions of the points com-
ing from the boundary of a ball and hence is clearly a “nonamenable phenomenon.”
The asymptotic behaviour of the maxima can easily be read off from the weak con-
vergence of the point process and not surprisingly, the constant term in this limit
is much more delicate than the one in the lattice case.

We would like to mention here that the proofs of the main results of this paper
are not at all straightforward. The proof of Theorem 3.1, for example, relies on
the use of ergodic theoretic machineries including Maharam extension (see [24])
and measurable union of a hereditary collection (see [1]), and a combinatorial tool
from geometric group theory. On the other hand, the argument used in proving
Theorem 4.1 is more probabilistic (and to some extent analytic) in nature. Due to
the nonamenability of free groups, even to establish that the limiting point process
is Radon, we need to give a sharp bound on an expected value based on exact
counting of vertices (see Lemma 6.1) that are a specified distance away from the
root and in a certain subgraph of the Cayley tree.

The paper is organized as follows. Section 2 is devoted to background informa-
tion on SαS random fields and their relations to the ergodic theoretic properties
of the underlying group actions. In Section 3, we present our results on the rate
of growth of partial maxima for stationary SαS random fields indexed by general
finitely generated countable groups, and in particular by finitely generated free
groups. Section 4 deals with the weak convergence of point processes associated
with stable fields generated by dissipative actions of finitely generated free groups.
The results in Sections 3 and 4 are proved in Sections 5 and 6, respectively.
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The following notation is going to be used throughout this paper. For two se-
quences of positive real numbers {an} and {bn}, the notation an ∼ bn will mean
an/bn → 1 as n → ∞. On the other hand, for two σ -finite measures m1 and m2
defined on the the same measurable space, m1 ∼ m2 will signify that the measures
are equivalent. For any σ -finite measure space (S,S,m), we define the function
space Lα(S,m) := {f : S →R measurable : ‖f ‖α < ∞}, where

‖f ‖α :=
(∫

S

∣∣f (s)
∣∣αm(ds)

)1/α

.

For two random variables X, Y (not necessarily defined on the same probability
space), the notation X

d= Y indicates that X and Y are identically distributed. For
two random fields {Xt }t∈G and {Yt }t∈G, we write Xt

fdd= Yt , t ∈ G to mean that they
have the same finite-dimensional distributions.

2. Background. Let (G, ·) be a countable group (which will be a finitely gen-
erated free group in most cases) with identity element e and (S,S,m) be a σ -finite
measure space. A collection of measurable maps ϕt : S → S indexed by t ∈ G is
called a group action of G on the measurable space (S,S) if:

(1) ϕe is the identity map on S, and
(2) ϕu·v = ϕv ◦ ϕu for all u, v ∈ G.

Note that the order in which the two maps ϕv and ϕu appear in the above definition
is important because G is mostly going to be a noncommutative free group in this
work. A group action {ϕt }t∈G of G on S is called nonsingular if m ◦ ϕt ∼ m for all
t ∈ G. Here ∼ denotes equivalence of measures.

Let X = {Xt }t∈G be an SαS (0 < α < 2) random field indexed by G. Any such
random field has an integral representation of the type

(2.1) Xt
fdd=

∫
S
ft (s)M(ds), t ∈ G,

where M is an SαS random measure on some standard Borel space (S,S) with
σ -finite control measure m, and ft ∈ Lα(m) for all t ∈ G. See, for instance, The-
orem 13.1.2 of Samorodnitsky and Taqqu [45]. One can assume, without loss of
generality, that the union

⋃
t∈G Support(ft ) of the supports of ft is equal to S.

If further {Xt }t∈G is stationary, then one can show, following an argument of
Rosiński (see [34–36]), that there always exists an integral representation of the
following special form

(2.2) ft (s) = ct (s)

(
dm ◦ ϕt

dm
(s)

)1/α

f ◦ ϕt(s), t ∈ G,

where f ∈ Lα(S,m), {ϕt }t∈G is a nonsingular G-action on S, and {ct }t∈G is a
measurable cocycle for {ϕt } taking values in {−1,+1} (i.e., each ct is a measur-
able map ct : S → {−1,+1} such that for all t1, t2 ∈ G, ct1·t2(s) = ct2(s)ct1(ϕt2(s))
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for m-almost all s ∈ S). One says that a stationary SαS random field {Xt }t∈G is
generated by a nonsingular G-action {ϕt } if it has an integral representation of the
form (2.2).

A measurable set W ∈ S is called a wandering set for the action {ϕt }t∈G if
{ϕt(W) : t ∈ G} is a pairwise disjoint collection. It is a well-known result (see,
e.g., [1] and [21]) that S = C ∪ D, where C and D are disjoint and {ϕt }-invariant
measurable sets such that:

(1) D =⋃
t∈G ϕt(W

∗) for some wandering set W ∗,
(2) C has no wandering subset of positive measure.

This decomposition of S into two invariant parts is known as the Hopf decompo-
sition. D is called the dissipative part, and C the conservative part of the action,
and the corresponding action {ϕt } is called conservative if S = C and dissipative if
S = D.

Another important decomposition is the Neveu decomposition (see, for exam-
ple, [1]) of S into the positive and null parts of the nonsingular action as described
below. Following Lemma 2.2 and Theorem 2.3(i) in [51] (the arguments in the
proof apply to all countable groups, not just Zd ), we decompose S = P ∪ N into
two {ϕt }-invariant sets P (positive part) and N (null part), where the set P is the
largest (modulo m) set where one can have a finite measure equivalent to m that
is preserved by {ϕt }, and N is the complement of P . Obviously P ⊆ C because
a nontrivial wandering set will never allow a finite invariant measure equivalent
to m. A measurable subset B ⊆ S is called weakly wandering if there is a count-
ably infinite subset {tn : n ∈ N} ⊆ G such that ϕtn(B) are all disjoint. Clearly the
positive part P has no weakly wandering set of positive measure.

Following the notation used in [35] and [36], it is easy to obtain the following
unique in law decomposition of the random field {Xt }t∈G as

Xt
fdd=

∫
C
ft (s)M(ds) +

∫
D

ft (s)M(ds) =: XC
t + XD

t , t ∈ G

into a sum of two independent random fields XC
t and XD

t , generated by conserva-
tive and dissipative G-actions, respectively. Note that, following the same proof as
that of Proposition 3.1 in [42], if a stationary SαS random field {Xt }t∈G is gen-
erated by a conservative (dissipative, resp.) G-action, then in any other integral
representation of {Xt } the G-action must be conservative (dissipative, resp.).

Roughly speaking, stable random fields generated by conservative actions tend
to have longer memory simply because a conservative action “keeps coming back.”
For G = Z

d , this was made precise by studying the rate of growth of partial max-
ima and limits of sequences of scaled point processes in [32, 42, 43] and [41].
We review their results here. Let {Xt }t∈Zd be a stationary SαS random field and
Mn := max‖t‖∞≤n |Xt | for n ≥ 1 with ‖·‖∞ being the L∞-norm. Then, as n → ∞,

n−d/αMn ⇒
{
C1/α

α κXZα if {ϕt }t∈Zd is not conservative,

0 if {ϕt }t∈Zd is conservative.
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Here

(2.3) Cα =
(∫ ∞

0
x−α sinx dx

)−1
=

⎧⎪⎪⎨
⎪⎪⎩

1 − α

�(2 − α) cos(πα/2)
if α �= 1,

2

π
if α = 1,

Zα is a standard Frechét type extreme value random variable with distribution
function

(2.4) P(Zα ≤ x) = e−x−α

, x > 0,

and κX is a positive constant depending only on the random field {Xt }t∈Zd . In other
words, if {Xt }t∈Zd is generated by a conservative action, then the maxima sequence
Mn grows at a slower rate because longer memory prohibits sudden changes in Xt

even when ‖t‖∞ is large.
The following result on weak convergence of a sequence of scaled point pro-

cesses associated with stationary SαS random fields on Z
d generated by dissipative

action is from [32] (d = 1 case) and [41] (d > 1 case). Assume now that {Xt }t∈Zd

is generated by a dissipative Z
d -action. In this case, we can assume without loss

of generality that {Xt }t∈Zd has the following mixed moving average representation
(in the sense of [48]):

(2.5) Xt
fdd=

∫
W×Zd

f (w, s − t)M(dw,ds), t ∈ Z
d,

where f ∈ Lα(W ×Z
d, ν ⊗ζ ), ζ is the counting measure on Z

d , ν is some σ -finite
measure on the standard Borel space (W,W), and M is a SαS random measure on
W ×Z

d with control measure ν ⊗ ζ ; see [36] and [42] for details.
Suppose να is the symmetric measure on [−∞,∞] \ {0} such that να(x,∞] =

να[−∞,−x) = x−α for all x > 0. Let

(2.6)
∑
i

δ(ji ,wi,ui) ∼ PRM(να ⊗ ν ⊗ ζ )

be a Poisson random measure on ([−∞,∞] \ {0}) × W ×Z
d with mean measure

να ⊗ν⊗ζ . Then {Xt }t∈Zd in (2.5) has the following series representation (ignoring

a factor of C1/α
α ):

(2.7) Xt
fdd= ∑

i

jif (wi, ui − t), t ∈ Z
d .

It was shown in [32] and [41] that in the space M of Radon measures on
[−∞,∞] \ {0} (endowed with vague topology),∑

‖t‖∞≤n

δ(2n)−d/αXt
⇒ Ñ∗,
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which is a cluster Poisson random measure with representation

(2.8) Ñ∗ =
∞∑
i=1

∑
t∈Zd

δjif (wi,t)1(ui=0),

where ji , wi , ui are as in (2.6). The Laplace functional of the above Ñ∗ is

E
(
e−Ñ∗(g))= exp

{
−
∫
W

∫
|x|>0

(
1 − exp

{
− ∑

t∈Zd

g
(
x
(
f (w, t)

))})
να(dx)ν(dw)

}
,

for all measurable g : [−∞,∞] \ {0} → [0,∞). Here Ñ∗(g) denotes the random
variable obtained by integrating g with respect to the random measure Ñ∗. Note
that in the representation of the cluster Poisson random measure N∗ given in The-
orem 3.1 in [41], the term 1(ui=0) was missing even though the computation of
the limiting Laplace functional was correct. A similar comment applies to Theo-
rem 3.1 of [32].

Recall that for any finitely generated countable group G with a symmetric (w.r.t.
taking inverses) generating set D not containing the identity element e, the Cayley
graph (V ,E) consists of the vertex set V = G and edge set E = {(u, v) : u−1v ∈
D}. Clearly, symmetry of D turns this into an undirected graph and e /∈ D implies
there is no self-loop. In this paper, we shall use the language of Cayley graphs
to investigate the asymptotic behaviours of a sequence of partial maxima and a
sequence of point processes associated with the stationary SαS random fields in-
dexed by finitely generated free groups. In most of the discussions below, G will
denote a free group of finite rank d ≥ 2 (except in Theorem 3.1, where G will
simply be a general finitely generated countable group) with the generating set
D = {a1, a

−1
1 , a2, a

−1
2 , . . . , ad, a−1

d } being the collection of d independent sym-
bols and their inverses. This group consists of all reduced words formed out of
the symbols in D with the operation being “concatenation followed by reduction”
and its Cayley graph is a 2d-regular tree. See, for example, [2] for details on free
groups and Cayley graphs.

For any t ∈ G, we define |t | to be the graph distance of t from the root e in
the Cayley graph of the group G, that is, |t | = d(v, e), where d(a, b) denotes the
graph distance between vertices a and b in the Cayley graph of G. Also

(2.9)
En := {

t ∈ G : |t | ≤ n
}

and

Cn := {
t ∈ G : |t | = n

}
denote the ball of radius n and its interior boundary, respectively. When G is a free
group of finite rank d ≥ 2, an easy counting yields that

|En| = 1 + d

d − 1

[
(2d − 1)n − 1

]= �
(
(2d − 1)n

)
and |Cn| = (2d)(2d − 1)n−1 for all n ≥ 1. In particular, |Cn| is “asymptotically
proportional” to |En|, which is a manifestation of nonamenability. As a result, the
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extreme values of stable random fields indexed by finitely generated free groups
are affected by the significant contributions from the interior boundary of En. This
will become clear in Sections 3 and 4 below.

In the next section, we shall study the asymptotic behaviour of the partial max-
ima sequence of

(2.10) Mn = max
t∈En

|Xt |, n ≥ 1

of the stationary SαS random field {Xt }t∈G obtained by restricting the field to the
ball En. As we shall see, there will be a phase transition as long as G is a finitely
generated countable group. Of course, for G = Z

d , the phase transition boundary
has to coincide with the Hopf boundary. However, when G is a free group of finite
rank d ≥ 2, nonamenability of the group will induce a new transition boundary
that lies strictly between the Hopf and Neveu boundaries.

3. Rate of growth of partial maxima. Let G be a countable group generated
by a finite symmetric set D and {Xt }t∈G be a stationary SαS random field having
an integral representation of the form (2.1), where ft is given by (2.2). We shall
eventually specialize to the case when G is a free group of finite rank d ≥ 2 and
investigate the extreme value theory of the field. Define En and Cn as in (2.9) and
the partial maxima sequence Mn by (2.10). We define a deterministic sequence

(3.1) bn = bn(f ) =
(∫

max
t∈En

∣∣ft (x)
∣∣αm(dx)

)1/α

, n = 1,2, . . . ,

where f ∈ Lα(S,m) is used in the definition of ft in (2.2). Note that by Corol-
lary 4.4.6 of [45], for any specific random field {Xt }t∈G, the quantity bn does not
depend on the choice of ft in its integral representation (2.1). However, in this ar-
ticle, we shall analyze a class of stationary SαS random fields obtained by varying
f ∈ Lα(S,m), and fixing the group action {ϕt }t∈G and the cocycle {ct }t∈G in (2.2).
With this viewpoint in mind, we are introducing the notation bn(f ) even though
in many situations, we shall stick to bn.

Following arguments similar to that in [43], one can show that to a large extent,
the asymptotic behaviour of the random sequence Mn is determined by that of bn.
Hence, we first look at the growth rate of the deterministic sequence bn and use
that to analyze the same for Mn. In the sequel, c will always denote a positive
constant that may not necessarily be the same in each occurrence.

THEOREM 3.1. Let G be a countable group generated by a finite symmetric
set, and {ϕt }t∈G be a nonsingular group action on a σ -finite standard measure
space (S,S,m).

(i) Then the set S can be uniquely decomposed into two disjoint {ϕt }-invariant
measurable sets A and B (i.e. S = A∪ B) such that, for any f ∈ Lα(S,m),
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(a) whenever f is supported on B, limn→∞ bn(f )

|En|1/α = 0, and
(b) if the support of f has some nontrivial intersection with A, then

lim supn→∞
bn(f )

|En|1/α > 0.

The above decomposition is the same for all measures equivalent to m.
(ii) The dissipative part D ⊆ A, and the positive part P ⊆ B.

(iii) If the SαS random field is given by the integral representation (2.1) and (2.2),
then

Xt
fdd=

∫
A

ft (s)M(ds) +
∫
B

ft (s)M(ds) =: XA
t + XB

t , t ∈ G

can be written as a sum of independent random fields XA
t and XB

t such that
the following results hold.

(a) If the component XA
t is zero, then

Mn/|En|1/α P→ 0

(b) If the component XA
t is nonzero, then Mn = Op(|En|1/α) (i.e.,

Mn/|En|1/α is tight), and there exists a subsequence Mnk
of Mn and a positive

constant c > 0 such that

Mnk
/|Enk

|1/α ⇒ cZα,

where Zα is an α-Fréchet random variable with distribution function given in
(2.4).

Keeping in mind the first part of the above theorem, we shall call A the non-
degenerate part and B the degenerate part. It is possible that this decomposition
may be known in the ergodic theory literature by some other name although our
extensive literature search did not reveal any. When G = Z

d , the above decompo-
sition is the same as the Hopf decomposition of the group action with A = D and
B = C (see [43] and [42]). For a general group G, even if the support of f has a
nontrivial intersection with the nondegenerate part A, one cannot surely say that
limn→∞ bn(f )

|En|1/α > 0 simply because the limit may not always exist. In particular,
we need to work with limit superior as opposed to the limit in Part (i)(b) of Theo-
rem 3.1. However, when G is a free group of finite rank d ≥ 2, we can significantly
improve our previous result as shown in the following theorem.

THEOREM 3.2. When G is a free group of finite rank d ≥ 2, for any f ∈
Lα(S,m) whose support has some nontrivial intersection with A, one has,

lim inf
n→∞

bn(f )

|En|1/α
> 0.
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Also given any subsequence Mnk
of Mn, there exists a further subsequence Mnk

and a positive constant c > 0 such that

Mnk
/|Enk

|1/α ⇒ cZα,

where Zα is an α-Fréchet random variable as before.

In fact, if f is supported on the dissipative part D, then for any finitely gen-
erated countable group G, lim infn→∞ bn(f )

|En|1/α > 0 [see the proof of Part (ii) of
Theorem 3.1]. When G is a free group of finite rank d ≥ 2 and Support(f ) ⊆ D,
then the limit exists and as a consequence, Mn/(2d −1)n/α ⇒ cZα for some c > 0;
see Corollary 4.2 below. For the rest of this section and the next one, we shall as-
sume that G is a free group of finite rank d ≥ 2. Thanks to the nonamenability of
this group, the decomposition of S into degenerate and nondegenerate parts is now
different from what happens in the Z

d case, where it coincides with the Hopf de-
composition. This leads to a new dichotomy (see below) for the maxima sequence
Mn defined in (2.10).

THEOREM 3.3. When G is a free group of finite rank d ≥ 2, there exists a
stationary SαS random field indexed by G generated by a conservative action, for
which we have Mn/(2d − 1)n/α ⇒ C

1/α
α Zα , where Cα is as defined in (2.3) and

Zα is a standard α-Fréchet random variable. Moreover if CN := C ∩ N denotes
the conservative null part of the action, then CN can have nontrivial intersections
with both the nondegenerate part A and the degenerate part B.

That is, we shall give two instances (see Examples 3.2 and 3.3 below) of sta-
tionary SαS random fields generated by conservative null actions, such that for
one, the partial maxima grows at the rate of (2d − 1)n/α (or |En|1/α) and for
the other, the partial maxima grows at a strictly smaller rate. Note that Hopf and
Neveu decompositions of the underlying nonsingular action induce the partition
of S = P ∪ CN ∪ D into positive, conservative null, and dissipative parts. Our
phase transition boundary (between the degenerate and the nondegenerate parts)
lies strictly between the Hopf and Neveu boundaries and passes through the con-
servative null part (CN ) of the group action; see the dotted line in Figure 1.

The next result says that the asymptotic behaviour of the partial maxima for the
balls of increasing radii is actually determined by the interior boundaries of the
balls. Clearly, this is intrinsically a nonamenable phenomenon that would never
happen in the lattice case.

THEOREM 3.4. Let G be a free group of finite rank d ≥ 2, and let the sta-
tionary SαS random field indexed by G has integral representation (2.1). Then we
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FIG. 1. Boundary between nondegenerate part (A) and degenerate part (B).

have

lim sup
n→∞

∫
maxt∈En |ft (x)|αm(dx)

(2d − 1)n
> 0 if and only if

lim sup
n→∞

∫
maxt∈Cn |ft (x)|αm(dx)

(2d − 1)n
> 0.

In the next theorem, we try to find some sets that belong to the nondegenerate
part A of Theorem 3.1. It states that if a set has sufficient number of disjoint
translates in each ball, then the set is inside A.

THEOREM 3.5. Define, for any subset B ⊆ S, an(B) to be the maxi-
mum number of sets in {ϕt (B) : t ∈ En} that are pairwise disjoint, that is,
an(B) := max{|T | : T ⊆ En and ϕt(B) are pairwise disjoint for all t ∈ T }. If
lim supn→∞ an(B)

|En| > 0 for some subset B ⊆ S, then B ⊆ A.

The proofs of the theorems stated in this section are given in Section 5. Finally,
we give three examples of stationary SαS random fields generated by conservative
actions. The first example holds for any countable finitely generated group G, and
is crucial for the proof of Part (iii) of Theorem 3.1. This is parallel to Example 5.4
in [43].

EXAMPLE 3.1. Let S = R
G and M is an SαS random measure on R

G whose
control measure m is a probability measure under which the projections (πt , t ∈ G)

are i.i.d. random variables with a finite absolute αth moment. Let π = πe : RG �→
R as π((xt )t∈G) = xe, and ϕt is the shift operator, that is, (ϕt ((xs)s∈G))k = xt ·k .
Clearly this action is probability m-preserving and hence is conservative. The ran-
dom field has the integral representation

Xt
fdd=

∫
RG

π ◦ ϕt dM =
∫
RG

πt dM, t ∈ G.

Now, if the projections πt , t ∈ G are i.i.d. Pareto random variables with m(πe >

x) = x−θ , x ≥ 1 for some θ > α, then as in Example 5.4 in [43], we get

bn ∼ c
1/α
α,θ |En|1/θ as n → ∞
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for some positive constant cα,θ . Furthermore, in this case, Mn/|En|1/θ converges
to an α-Fréchet distribution. This example will be required in the proof of Part (iii)
of Theorem 3.1.

In the next two examples, G is a free group of finite rank d ≥ 2. The first one
considers the canonical action of the free group on its Furstenberg–Poisson bound-
ary with the Patterson–Sullivan measure on it. Any stationary SαS random field
generated by this nonsingular action satisfies lim infn→∞ bn/|En|1/α > 0 even
though the action is conservative.

EXAMPLE 3.2. The boundary ∂G of the group G consists of all infinite length
reduced words made of powers of symbols from the generating set D. Given a
group element g ∈ G \ {e}, define Hg(⊂ ∂G) to be the cylinder set consisting of
all infinite words starting with g, that is,

Hg = {
ω ∈ ∂G : [ω]|g| = g

}
,

where [ω]n represents the element in G formed by the first n-length segment of ω.
Define S to be the σ -field on S = ∂G generated by the cylinder sets Hg , g ∈
G\ {e}. It is easy to check that there exists unique probability measure m on (S,S)

such that

m(Hg) = 1

2d(2d − 1)|g|−1 for all g ∈ G \ e.

This measure is known as the Patterson Sullivan measure (see [30]) and it turns
S = ∂G into a Furstenberg–Poisson boundary (see [49]) of the group G.

The free group G acts canonically on (S,S,m) in a nonsingular fashion by

(3.2) ϕt(ω) = t−1 · ω for t ∈ G,ω ∈ S,

where · is the left-concatenation of a finite word with an infinite word followed by
reduction. The Radon–Nikodym derivatives of this action are given by

dm ◦ ϕt

dm
(ω) = (2d − 1)−Bω(t), t ∈ G,ω ∈ S,

where Bω(t) = |t |−2|t ∧ω| (the Busemann function associated with ω) with t ∧ω

being the longest common initial segment (also known as the confluent) of t and ω.
For further details on the boundary action, we refer the reader to [15], where it was
established that this action is conservative.

We shall first show that the boundary action is null, that is, its positive part (in
the Neveu decomposition) is empty modulo m. To this end, consider the generating
set D = {a1, a

−1
1 , a2, a

−1
2 , . . . , ad, a−1

d } of G with d independent symbols and their
inverses as before. Then take the cylinder set H

a−1
1

and consider the sets ϕt(Ha−1
1

)

for t = e and t = a−1
1 xa−k

1 , where k = 0,1,2, . . . and x ∈ D \ {a1, a
−1
1 }. It is easy
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to see that, for all such t , ϕt(Ha−1
1

) are disjoint and their union is ∂G. This shows
that H

a−1
1

is a weakly wandering set, and hence the boundary action is null.
Define ft by (2.2) with the constant function f ≡ 1 on S, the trivial cocycle ct ≡

1 for all t ∈ G, and the boundary action (3.2). Then {Xt }t∈G defined by the integral
representation (2.1) is a stationary SαS random field generated by a conservative
null action. We now claim that

(3.3)
Fn(ω) := max

t∈En

∣∣ft (ω)
∣∣α = max

t∈En

dm ◦ ϕt

dm
(ω) = max

t∈En

(2d − 1)−Bω(t)

= (2d − 1)n

for all ω ∈ S. We need to show the last equality above. As t ∈ En, for any ω ∈ S,
the length of the confluent |t ∧ ω| ≤ |t | ≤ n. Hence,

−n ≤ Bω(t) ≤ n for all t ∈ En,ω ∈ S.

Hence, Fn(ω) ≤ (2d − 1)n. To see the other inequality, note that, for any fixed
ω ∈ S = ∂G, if we take g = [ω]n ∈ Cn ⊂ En, then |g ∧ ω| = n, so that

Bω(g) = |g| − 2|g ∧ ω| = n − 2n = −n.

Hence, (2d − 1)−Bω(g) = (2d − 1)n, so that Fn(ω) ≥ (2d − 1)n. This proves (3.3).
Hence,

(
bn(f )

)α =
∫
S
Fn(ω)m(dω) = (2d − 1)n, and,

lim
n→∞

(bn(f ))α

|En| = lim
n→∞

(bn(f ))α

d
d−1(2d − 1)n

= d − 1

d
> 0.

Following the arguments in the proof of Theorem 4.1 in [43], one has

Mn

(2d − 1)n/α
⇒ C1/α

α Zα,

where Zα is a standard α-Fréchet random variable defined in (2.4).
Our next claim is that the degenerate part B of the boundary action is an m-null

set. To establish this, take the cylinder set Ha for any a in the generating set D,
and the set Tn = {a · g : g ∈ Cn−1}. Clearly Tn ⊂ En as |a · g| ≤ |a| + |g| = n, and{

ϕt(Ha)
}
t∈Tn

= {Hg−1a−1a : g ∈ Cn−1} = {Hg : g ∈ Cn−1}
are all the cylinder sets of “dimension” n − 1 which are all disjoint. Since
|Tn| = |Cn−1| ∼ 2d−2

(2d−1)2 |En| as n → ∞, by Theorem 3.5, we have, Ha ⊆ A. As
this happens for all symbols a ∈ D, and the union of the cylinder sets over all
a ∈ D is S, one gets that the nondegerate part A = S modulo m.
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REMARK 3.6. Note that the boundary action defined here differs slightly from
that defined in [15], where the authors define

ϕt(ω) = t · ω for t ∈ G,ω ∈ S.

We use the definition in (3.2) so as to match with our convention for group actions
used in this paper, that is, ϕu·v = ϕv ◦ ϕu for all u, v ∈ G. This adjustment does
change the Radon–Nikodym derivatives but does not compromise the nonsingula-
trity (or the conservativity) of the action.

The above example shows that there exist stationary SαS random fields gen-
erated by conservative null actions, for which the maxima grows at the rate of
(2d − 1)n/α . But this is not necessarily the case for all such actions. The next ex-
ample shows that there exists a stationary SαS random field generated by a null
conservative action, for which the maxima sequence grows at a strictly smaller
rate.

EXAMPLE 3.3. Let the free group G of rank d ≥ 2 be generated by the set D

as in Example 3.2. Take S =R with m = Lebesgue measure, and the group action
{ϕt }t∈G to be the one that makes a shift of 1 by the action of a1 and is fixed by the
actions of a2, a3, . . . , ad . In other words, for all i = 1,2, . . . , d ,

ϕai
(x) = x + 1{i=1}, x ∈ R.

This group action is clearly measure preserving. Therefore, one has (bn(1(0,1]))α =
Leb((−n,n + 1]) = 2n + 1, and hence (bn(1(0,1]))α/|En| → 0 as n → ∞.

Again, the set (0,1] is weakly wandering, as ϕt((0,1]) for t = ak
1 , k ∈ Z are

all disjoint, and their union is the whole set R. As the set (0,1] ⊆ B (the degen-
erate part—recall Theorem 3.1) and B is ϕt -invariant, it contains all translates
{ϕt((0,1]), t = ak

1}, and hence B = R. Hence this action is conservative, null and
yet degenerate. By Theorem 3.3, for any stationary SαS random field generated by

this action, the partial maxima satisfies Mn/(2d − 1)n/α P→ 0.

4. Dissipative case: Point process and maxima. We would like to begin this
section by observing that the representations (2.5) and (2.7) can be generalized to
any countable group G, not just Zd . More specifically, one can establish that for
any countable group G, a stationary SαS random field {Xt }t∈G is generated by a
dissipative G-action if and only if it has a mixed moving average representation of
the form

(4.1) Xt
fdd=

∫
W×G

f
(
w, t−1s

)
dM(w, s), t ∈ G,

where M is an SαS random measure on W ×G with control measure ν⊗ζ , and ν is
a σ -finite measure on the measurable space (W,W), ζ is the counting measure on
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the group G, and f ∈ Lα(W ×G,ν ⊗ ζ ) (as mentioned in Section 2, this terminol-
ogy was introduced in [48]). See [40], where the argument is given for any count-
able Abelian group extending the works of [36] and [42]. With a little bit of care
(about the side of multiplication, etc.), such an argument can be carried forward
to any countable group, not necessarily Abelian. As in Section 2, taking να as the
symmetric measure on [−∞,∞]\ {0} satisfying να(x,∞] = να[−∞,−x) = x−α

for all x > 0,

(4.2) N =∑
i

δ(ji ,vi ,ui) ∼ PRM(vα ⊗ ν ⊗ ζ )

on ([−∞,∞] \ {0}) × W × G, and dropping a factor of C1/α
α , one can obtain the

series representation

(4.3) Xt
fdd= ∑

i

jif
(
vi, t

−1ui

)
, t ∈ G.

In this section, we shall assume that G is a free group of finite rank d ≥ 2
and study the weak limit of scaled point process and partial maxima sequences in-
duced by a stationary SαS random field (4.3) generated by a dissipative (and hence
nondegenerate by Part (ii) of Theorem 3.1 above) action. Thanks to the nontriv-
ial contributions (see, for instance, Theorem 3.4 above) coming from the interior
boundary Cn of En as a result of the nonamenability of G, these limits are different
from those arising in the case of Zd . The class of point process limits that we ob-
tain are completely novel and we have termed this new class as randomly thinned
cluster Poisson processes. We would like to mention once more that in case of Zd ,
Poisson cluster processes arise as limits and the “random thinning” phenomenon
is absent; see [32, 41]. We will state our results for the random field (4.3) after
defining various quantities that appear in the statement of the main theorem of this
section.

4.1. Construction of -subgraphs. For each fixed  ∈ Z, we define a class of
subgraphs of the Cayley graph of G by specifying the set of vertices of each sub-
graph. We call them -subgraphs, and denote the set of all -subgraphs by �. We
shall consider three cases and in each case, we shall construct a typical -subgraph
as described below. Recall that for u, v ∈ G, d(u, v) denotes the graph distance be-
tween the vertices u and v in the Cayley graph of G, v = d(v, e), and Cn denotes
the interior boundary of the ball En of size n.

Case 1:  = 0. Consider a self-avoiding path starting from the root e. Let the
vertices along the path be v0 = e, v1, v2, . . . , where |vk| = k. For each such vertex
vk , we define a collection of sets of vertices Vk by

(4.4) Vk = {
t ∈ G : d(t, vk) ≤ k

}
, k = 0,1,2, . . . .

Note that {e} = V0 ⊂ V1 ⊂ V2 ⊂ . . .. A typical -subgraph (for  = 0) correspond-
ing to a particular self-avoiding path {v0 = e, v1, v2, . . .} is defined as the union of
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all these sets of vertices
⋃∞

i=0 Vi . The collection of all such subgraphs correspond-
ing to all self avoiding paths starting from the root e is the set �0.

Case 2:  > 0. Here we consider all self avoiding paths {v0, v1, v2, . . .} start-
ing from some vertex v0 ∈ C that “goes away from the root,” that is, |v0| = ,
|v1| = +1, |v2| = +2 and so on. For any such self avoiding path, define the col-
lection of vertices Vk by (4.4), and we have the corresponding typical -subgraph
as
⋃∞

i=0 Vi . The collection of all such subgraphs is denoted by �.
Case 3:  < 0. For any fixed  < 0, consider all self avoiding paths {v0, v1,

v2, . . .} starting from some vertex v0 ∈ C|| such that |v0| = ||, |v1| = || −
1, |v2| = || − 2, . . . , v|| = e, |v||+1| = 1, |v||+2| = 2 and so on. Given such a
path, we define, once again, the corresponding -subgraph to be

⋃∞
i=0 Vi , where

Vk is as in (4.4). The collection of all such subgraphs corresponding to all self
avoiding paths is our �.

Given g ∈ Lα(W × G,ν ⊗ ζ ),  ∈ Z and ξ ∈ �, we define functions g̃(,ξ) by
appropriately thinning the function g to the -subgraph ξ ∈ �, that is,

(4.5) g̃(,ξ)(w, t) = g(w, t)1{t∈ξ}, w ∈ W, t ∈ G.

4.2. An all-encompassing Poisson random measure. Next we shall describe
for each  ∈ Z, a probability measure γ on the set � of all -subgraphs as a
“uniform measure on all -subgraphs.” We shall construct these by resorting to
Kolmogorov consistency theorem. To this end, first fix  ∈ Z. For any m ∈ N,
we say that two -subgraphs are m-essentially distinct if the two subgraphs when
restricted to Em are distinct. We denote, by �

(m)
 , the finite set of all m-essentially

distinct -subgraphs.
Define X = {1,2, . . . ,2d}. We claim that for each (,m) ∈ Z×N, the set �

(m)


can be embedded into C|| ×Xm−−1. To see this, note that any two essentially dis-

tinct subgraphs in �
(m)
 will necessarily correspond to two distinct (self avoiding)

paths of length m −  starting from some vertex in C||. (But the path associated
to such a subgraph may not be unique, in that case, we just choose any one of the
associated paths. However, for any two distinct subgraphs, any two corresponding
paths associated to them will necessarily be distinct.) And since the degree of each
vertex in G is 2d , any such path is an element of C|| ×Xm−−1. Similarly, � can
be embedded into C|| × X∞.

Once again, fix  ∈ Z. Now suppose that γ
(m)
 is the uniform distribution on

�
(m)
 (embedded in C|| ×Xm−−1). Then clearly {γ (m)

 }m≥1 is a consistent system
of probability measures. Therefore by Kolmogorov consistency theorem, we get
a unique probability measure γ on � (embedded in C|| × X∞), such that γ

restricted to �
(m)
 is γ

(m)
 for each m ∈ N. Now that we have defined the sets of

-subgraphs � and the measures γ on them, we consider the product probability
space (

� = ∏
∈Z

�, γ =⊗
∈Z

γ

)
.
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And as each � is embedded in a compact separable metric space, so is their prod-
uct �. In particular, � is locally compact and separable.

We define a sequence of i.i.d. �-valued random variables ri = (ri, :  ∈ Z),
i ∈N with common law γ and independent of the Poisson point process N defined
in (4.2). We also take a collection of i.i.d. integer-valued random variables si , i ∈N

independent of N and {ri}i∈N, and distributed according to the probability measure
μ on Z defined by

(4.6) μ
({k})=

⎧⎪⎨
⎪⎩

2d(2d − 1)k−1
(

d − 1

d

)
if k = 0,−1,−2, . . . ,

0 otherwise.

By Proposition 3.8 of [33],

(4.7) M =∑
i

δ(ji ,vi ,ui ,si ,ri ) ∼ PRM(vα ⊗ ν ⊗ ζ ⊗ μ ⊗ γ )

on ([−∞,∞] \ {0}) × W × G ×Z× �.

4.3. The weak convergence results. Let M be the space of all Radon measures
on [−∞,∞] \ {0} equipped with the vague topology. Since |En| = �((2d − 1)n),
one expects (2d − 1)−n/α to be the correct scaling in this case. As we shall see,
the partial maxima sequence (2.10) grows in this rate as well. Define the function
f ′ ∈ Lα(W × G,ν ⊗ ζ ) based on f , as

f ′(v, t) = f
(
v, t−1) for all v ∈ W, t ∈ G.

Using (4.5), define for each  ∈ Z and for each ξ ∈ �, the function f̃ ′(,ξ)
on

W × G by

f̃ ′(,ξ)
(w, t) = f ′(w, t)1{t∈ξ} = f

(
w, t−1)1{t∈ξ}.

With these notation and machineries, we can now state the main theorem of this
section. See Section 6 for the proofs of all the results stated in this section.

THEOREM 4.1. Let {Xt }t∈G be the mixed moving average given in (4.3), and
define the sequence of point processes

(4.8) Nn := ∑
t∈En

δ(2d−1)−n/αXt
, n = 1,2, . . . .

Then Nn ⇒ N∗ (as n → ∞) weakly in the space M, where N∗ is a randomly
thinned cluster Poisson random measure with representation

(4.9)

N∗ =
∞∑
i=1

∑
k∈G

δ
ji f̃

′(|ui |,ri,|ui |)(vi ,k)
1(ui �=e)

+
∞∑
i=1

∑
k∈G

δ
( d
d−1 )1/αji f̃

′(si ,ri,si )
(vi ,k)

1(ui=e).
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Here ji , vi , ui , si , ri are as in (4.7). Furthermore N∗ is Radon on [−∞,∞] \ {0}
with Laplace functional

E
(
e−N∗(g))= exp

{
−
∫∫ (∑

∈Z

2d

(2d − 1)1−

×
∫ (

1 − e−∑
k∈G g(xf̃ ′(,ξ)

(v,k)))γ(dξ)

)
να(dx)ν(dv)

}
,

(4.10)

for any nonnegative measurable function g defined on [−∞,∞] \ {0}.
As mentioned earlier, in case of G = Z

d , the thinning of the function f is absent
due to amenability of the group. Note that in the above limit, index (, ξ) ∈ Z×�

of the thinned function f̃ ′ becomes random. That is why we have come up with the
term randomly thinned cluster Poissson process for the limiting point process N∗.
We can use the convergence of the point process to get the weak convergence of
partial maxima Mn scaled by (2d −1)n/α . The limit is a positive constant times the
standard α-Fréchet distribution and the constant is, not surprisingly, much more so-
phisticated and involved compared to the corresponding one in case of Zd obtained
in [43] and [42].

COROLLARY 4.2. Let Mn be as in (2.10). Then

1

(2d − 1)n/α
Mn ⇒ C1/α

α KXZα,

where Zα is a standard α-Fréchet random variable, Cα is the stable tail constant
given in (2.3), and

KX =
(∑

∈Z
(2d)(2d − 1)−1

∫
W

∫
�

2
(

sup
k∈G

∣∣f̃ ′(,ξ)
(v, k)

∣∣)α
γ(dξ)ν(dv)

)1/α

∈ (0,∞).

4.4. A special case with level symmetry. The above theorem takes a particu-
larly simple form if we assume a level symmetry assumption on the function f ,
that is, if for each v ∈ W , t ∈ G,

(4.11) f (v, t) = q
(
v, |t |),

for some function q on W ×N. For each  ∈ Z, fix ξ ∈ �. Observe that by level
symmetry, the thinned functions f̃ ′(,ξ) and f̃ (,ξ) are equal. We abuse the nota-
tion slightly and denote both of these functions by f̃ (). To clarify the intriguing
but ultimately complex structure of the limiting point process obtained in this sec-
tion, we present pictures of the -subgraphs (see Figure 2) corresponding to f̃ ()

for  = 0,−1,1 when G = Z ∗ Z is a free group of rank d = 2 and f satisfies the
level symmetry assumption (4.11). These pictures and the corollary below illus-
trate what random thinning means in this special case.
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FIG. 2. The -subgraphs corresponding to f̃ () for  = 0,−1,1

COROLLARY 4.3. Let {Xt }t∈G be the mixed moving average given in (4.3),
where f satisfies the assumption given in (4.11). Define the sequence of point pro-
cesses Nn by (4.8). Then

(4.12)

Nn ⇒ N∗ :=
∞∑
i=1

∑
t∈G

δ
ji f̃

(|ui |)(vi ,t)
1(ui �=e)

+
∞∑
i=1

∑
t∈G

δ
( d
d−1 )1/αji f̃

(si )(vi ,t)
1(ui=e),

where ji , vi , ui are as in (4.2), and {si} are distributed independent of (ji, vi, ui)

according to the probability measure μ as defined in (4.6). N∗ is Radon on
[−∞,∞] \ {0} with Laplace functional

(4.13)

E
(
e−N∗(g))= exp

{
−
∫∫ ∞∑

=−∞
2d(2d − 1)−1

× (
1 − e−∑

t∈G g(xf̃ ()(v,t)))να(dx)ν(dv)

}
.

Note that if we assume f satisfies the level symmetry assumption (4.11), then
it is easy to check that the Laplace functional given in (4.10) reduces to the one in
(4.13). As observed earlier, f ′ = f , and the expression

∑
k∈G g(xf̃ (,ξ)(v, k)) in

the exponent of the Laplace functional in (4.10) is the same for all ξ ∈ �. So the
inner integral in (4.10) does not depend on the subgraph ξ . Since γ is a probability
measure, the rest follows.

Using f ∈ Lα(W × G,ν ⊗ ζ ) and (4.11), for ν-almost all v ∈ W , we define
functions hv ∈ Lα(G, ζ ) as follows. If supt∈G |f (v, t)| is attained at Ck for some k,
then assign hv|C

= f |{v}×Ck
for all 0 ≤  ≤ k. Next, if supt /∈Ek

|f (v, t)| is attained
at Ck′ for some k′ > k, then define hv|C

= f |{v}×Ck′ for all (k + 1) ≤  ≤ k′, and
so on. The constant KX in Corollary 4.2 takes the following simple form under the
assumption (4.11):

Kα
X = 2α

d − 1

∫
W

L(v)αν(dv) +
∫
W

‖2hv‖α
αν(dv),
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where L(v) := supt∈G |f (v, t)| and ‖g‖α = (
∑

t∈G |g(t)|α)1/α for any function
g ∈ Lα(G, ζ ). Note that the first term of Kα

X was present (up to a constant multiple)
in case of Zd (see [43] and [42]) but the second term is new and can be interpreted
as the contribution of nonamenability (of the group G) to the clustering of the
extremes of {Xt }t∈G.

4.5. Open problems. We would like to mention that the results in this paper
give rise to a bunch of open problems, some of which will perhaps be taken up
as future directions by the authors. For instance, Gennady Samorodnitsky asked
the following question in a personal communication with the second author: is
it possible to characterize all finitely generated countable groups for which the
degenerate-nondegenerate decomposition is different from the Hopf decomposi-
tion? While we believe that this is perhaps a difficult question, it does open a
Pandora’s box full of open and interesting problems. For example, it may still be
possible to partially answer this question by considering special cases and even-
tually giving various sufficient conditions on the group so that a new transition
boundary is obtained in Theorem 3.1.

Most of the works mentioned in the second paragraph of Section 1 have not
been extended to the case of random fields generated by free groups. These can
also lead to many intriguing open problems relating ergodic theory (of nonsingular
actions of free groups) with probability theory (of tree-indexed random fields). The
nonamenability of free groups would surely affect various stochastic properties
of such fields as well and it would be fascinating to analyze them. In particular,
construction and investigations of max-stable random fields indexed by trees will
surely turn out to be important in spatial extremes.

Since nonsingular (also called quasi-invariant) actions arise naturally in the
study of Lie groups, one can think of going beyond countable groups (and R

d ),
and ask similar questions for stationary stable and max-stable random fields in-
dexed by Lie groups. Using the structure theorem of Abelian groups, [42] gave
finer asymptotics for the partial maxima of stable random fields indexed by Z

d

(see also [6] for the continuous parameter case). However, such finer results are
still missing in our setup mainly due to unavailability of a general structure theo-
rem for finitely generated noncommutative groups. It is perhaps possible to resolve
this issue in special classes of groups.

5. Proofs of the results stated in Section 3.

PROOF OF THEOREM 3.1. Let us define for any f ∈ Lα(S,m),

ψ(f ) := lim sup
n→∞

(bn(f ))α

|En| ,

where bn(f ) is as defined in (3.1). For any measurable B ⊆ S with m(B) < ∞, let
ψ(B) := ψ(1B). Note that for any A,B ⊆ S with m(A ∪ B) < ∞,

(5.1) ψ(A ∪ B) ≤ ψ(A) + ψ(B),
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and if 0 ≤ f ≤ g ∈ Lα(S,m) then

(5.2) ψ(f ) ≤ ψ(g).

We will need the following lemmas.

LEMMA 5.1. If f,g ∈ Lα are such that∫ ∣∣f (x) − g(x)
∣∣αm(dx) < ε,

then

ψ(f ) ≤ ε + ψ(g) for α ∈ (0,1),

ψ1/α(f ) ≤ ε1/α + ψ1/α(g) for α ∈ [1,2).

PROOF. Note that(
bn(f − g)

)α ≤ ∑
t∈En

∫ ∣∣(ft − gt )(x)
∣∣αm(dx) = |En|

∫ ∣∣f (x) − g(x)
∣∣αm(dx)

< |En|ε,
from which this result follows using the triangle inequality, and the facts that

(x + y)α ≤ xα + yα for all α ∈ (0,1) and x, y ≥ 0, and that for α ∈ [1,2), Lα is a
normed space. �

The above lemma has the following important consequences.

COROLLARY 5.2. If B ⊆ S with m(B) < ∞ can be decomposed as B =⋃∞
n=1 Bn, where Bi ’s are pairwise disjoint satisfying ψ(Bn) = 0 for all n =

1,2, . . . , then ψ(B) = 0.

PROOF. As m(B) =∑∞
n=1 m(Bn) < ∞, hence, given any ε > 0, we can get a

sufficiently large N ∈ N such that m(B \⋃N
n=1 Bn) < ε. Applying Lemma 5.1, for

α ∈ (0,1], we get

ψ(B) ≤ ε + ψ

(
N⋃

n=1

Bn

)
≤ ε +

N∑
n=1

ψ(Bn)

by (5.1). As ψ(Bn) = 0 for all n, ψ(B) ≤ ε. Since this holds for all ε > 0, we are
done. �

COROLLARY 5.3. If ψ(B) > 0 for all subsets B with 0 < m(B) < ∞, then
ψ(f ) > 0 for all nonzero f ∈ Lα . Also if ψ(B) = 0 for all subsets B with m(B) <

∞, then ψ(f ) = 0 for all f ∈ Lα .
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PROOF. For any nonzero f ∈ Lα , there exists c > 0 and some set C with 0 <

m(C) < ∞ such that |f | ≥ c1C . Hence, if ψ(B) > 0 for all B with 0 < m(B) <

∞, then ψ(C) > 0. Thus, using (5.2),

ψ(f ) ≥ cαψ(C) > 0.

Next, assume ψ(B) = 0 for all subsets B with m(B) < ∞ and f ∈ Lα . Then
given any ε > 0, we get K large enough, and c small enough, such that

∫ |f (x) −
f (x)1{c≤|f |≤K}(x)|αm(dx) < ε. Also observe that ψ(f 1{c≤|f |≤K}) ≤ Kαψ({c ≤
|f | ≤ K}) = 0 as m(c ≤ |f | ≤ K) ≤ m(|f | ≥ c) < ∞. The result now follows by
applying Lemma 5.1. �

This lemma tells us that it is enough to compute ψ(B) for all sets B with
m(B) < ∞ instead of all functions in Lα . The next lemma relates ψ(A) with
ψ(ϕt (A)).

LEMMA 5.4. If ψ(A) = 0 for some subset A with 0 < m(A) < ∞ and g ∈ G

is such that m(ϕg(A)) < ∞, then ψ(ϕg(A)) = 0.

PROOF. First assume {ϕt } is measure m preserving. Then

(
bn

(
ϕg(1A)

))α = m

( ⋃
t∈En

ϕt

(
ϕg(A)

))= m

( ⋃
t∈En

ϕg.t (A)

)
≤ m

( ⋃
t∈En+|g|

ϕt(A)

)
.

The last inequality follows as |g · t | ≤ |g|+ |t | ≤ n+|t | and hence {g · t |t ∈ En} ⊆
En+|g|. Thus,

ψ
(
ϕg(A)

)= lim sup
n→∞

(bn(ϕg(1A)))α

|En| ≤ lim sup
n→∞

m(
⋃

t∈En+|g| ϕt(A))

|En|

≤ lim sup
n→∞

m(
⋃

t∈En+|g| ϕt(A))

|En+|g|| |E|g||

= |E|g||ψ(A) = 0.

Here we have used the following combinatorial fact from geometric group the-
ory: for any finitely generated group G, |Em+n| ≤ |Em||En| for all m,n ∈ N; see
Chapter 6 of [8].

Now we assume ϕt is any nonsingular map (not necessarily measure preserv-
ing). We have 0 < m(A) < ∞, m(ϕg(A)) < ∞ and ψ(A) = 0. Define

(5.3) wt(s) := dm ◦ ϕt

dm
(s), t ∈ G,s ∈ S,

and the group action ϕ∗
t of G on (S × (0,∞),m ⊗ Leb) as

ϕ∗
t (s, y) :=

(
ϕt(s),

y

wt (s)

)
, s ∈ S, y > 0, t ∈ G.
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It is easy to see that ϕ∗
t preserves the measure m ⊗ Leb (this action is called

Maharram extension; see [24] and Chapter 3.4 of [1]). Denote for any set B ⊆
S × (0,∞), ψ∗(B) as before but using the group action ϕ∗

t . Also note that, for
any n ∈ {0,1,2, . . .}, and any subset B ⊆ S, ψ(B) = ψ∗(B × (n,n + 1]). This is
because

m ⊗ Leb
( ⋃

t∈En

ϕ∗
t

(
B × (n,n + 1]))

=
∫
S

∫ ∞
0

max
t∈En

1
(
ϕt(s) ∈ B,nwt(s) < y ≤ (n + 1)wt (s)

)
dym(ds)

=
∫
S

max
t∈En

wt(s)1B

(
ϕt(s)

)
m(ds) = (

bn(1B)
)α

.

Hence, ψ∗(A×(n,n+1]) = ψ(A) = 0 for all n = 0,1,2, . . . . Also as ψ∗(ϕg(A)×
(0,1]) = ψ(ϕg(A)), so we need to prove ψ∗(ϕg(A) × (0,1]) = 0. To this end, let
us define �n = ϕ∗

g(A× (n,n+1]) and B = ϕg(A)× (0,1]. Then
⋃∞

n=0 �n is equal
to

∞⋃
n=0

ϕ∗
g

(
A × (n,n + 1])= ϕ∗

g

( ∞⋃
n=0

(
A × (n,n + 1])

)
= ϕ∗

g

(
A × (0,∞)

)

= ϕg(A) × (0,∞).

As B ⊆⋃∞
n=0 �n, �n’s are disjoint, so B can be decomposed as B =⋃∞

n=0(B ∩
�n). Also m ⊗ Leb(B) = m(ϕg(A)) < ∞, hence by Corollary 5.2 and (5.2), it is
enough to show ψ∗(�n) = 0 for all n. Now

ψ∗(�n) = ψ∗(ϕ∗
g

(
A × (n,n + 1]))= 0

using the already considered case of measure preserving actions and ψ∗(A ×
(n,n + 1]) = ψ(A) = 0. �

We are now in a position to present the proof of Theorem 3.1.
(i) For simplicity, assume without loss of generality that the control measure

m is a probability measure. This can always be done because if ν is a probability
measure equivalent to m, define h = f (dm

dν
)1/α ∈ Lα(S, ν), and write Xt as an

integral representation in (2.1) and (2.2) replacing f by h and the SαS random
measure M by an SαS random measure with control measure ν. Note that the
supports of f and h are equal. Also bn(f ) calculated with respect to the measure
m is same as bn(h) corresponding to the measure ν. Henceforth, we assume m is
a probability measure.

Consider all subsets B ⊆ S such that ψ(B) = 0. As these sets form a hereditary
collection (i.e., C ⊆ B and ψ(B) = 0 implies ψ(C) = 0), we can take the measur-
able union of all such sets, and call it B. Define A := S \ B. Note that ψ(B) = 0
by Corollary 5.2 and exhaustion lemma (see page 7 of Aaronson [1]). Hence, for
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any C ⊆ S, ψ(C) = 0 if and only if C ⊆ B. Consequently, C ⊆ A if and only if
for all subsets B ⊆ C with m(B) > 0, one has ψ(B) > 0.

In order to see that B is {ϕt }-invariant, take any set C ⊆ B and any g ∈ G. As
C ⊆ B, ψ(C) = 0 and then by Lemma 5.4, we have ψ(ϕg(C)) = 0, which im-
plies ϕg(C) ⊆ B. This shows ϕg(B) ⊆ B. As ϕg is invertible, we have ϕg(B) = B.
Hence B is {ϕt }-invariant. Hence, also A is {ϕt }-invariant. Applying Corollary 5.3,
we have, for all f ∈ Lα supported on B, ψ(f ) = 0. Similarly, for any nonempty
set B ⊆ A, we have ψ(B) > 0, and hence for any nonzero f supported on A, it
follows that ψ(f ) > 0. Hence for any f whose support has nontrivial intersection
with A, ψ(f ) ≥ ψ(f 1A) > 0.

(ii) If W ∗ is a wandering set with m(W ∗) > 0, then

(
bn(1W ∗)

)α =
∫
S

max
t∈En

wt(s)1W ∗
(
ϕt(s)

)
m(ds) =

∫
S

∑
t∈En

wt(s)1W ∗
(
ϕt(s)

)
m(ds),

where wt(s) is as in (5.3). To see the last equality, note that the functions
wt(s)1W ∗(ϕt (s)) are supported on ϕt−1(W ∗), which are all pairwise disjoint as
t runs over G. Therefore, the maximum can be replaced by the sum. It is easy to
observe that

∫
S wt (s)1W ∗(ϕt (s))m(ds) = m(W ∗) and hence

(5.4)
(
bn(1W ∗)

)α = |En|m(W ∗),
which yields ψ(W ∗) > 0. In fact, for any B ⊆ W ∗ with m(B) > 0, B is also a
wandering set of positive measure and so ψ(B) > 0, which means W ∗ ⊆ A. As
the dissipative part D is the union of all wandering sets, it follows that D ⊆ A. In
fact, note that (5.4) implies limn→∞ bn(1B)

|En|1/α > 0 for all B ⊆D.
Next, we want to show that the positive part P ⊆ B, that is, for all B ⊆ P ,

ψ(B) = 0. Restrict the group action to the set P , and assume that the measure m is
a probability measure which is preserved by the group action (go to the equivalent
probability measure of m that is preserved by the group action, which exists as
P is the positive part, and note that the decomposition into sets A and B remains
unchanged for any equivalent measure). Then clearly ψ(B) = 0 as (bn(1B))α =
m(

⋃
t∈En

ϕt (B)) ≤ 1 and |En| → ∞.
(iii) Recall that {Xt }t∈G has an integral representation (2.1) of the form (2.2).

Let {Yt }t∈G be another stationary SαS random field independent of {Xt } such that
its integral representation has a kernel g ∈ Lα(S′,m′) and a G-action {ϕ′

t } on S′
satisfying ψ(g) = 0 and bn(g) ≥ c|En|θ for all n ≥ 1. Here c and θ are positive
constants. Marginally, such a {Yt }t∈G exists; see Example 3.1). However, in order
to construct such a random field independent of {Xt }t∈G, an enlargement of the
underlying probability space may be necessary.

Now assume that f is supported on B, that is, the component XA
t = 0. By

Part (i) of this theorem, we have ψ(f ) = 0. Let Zt := Xt + Yt , t ∈ G defined in
parallel to the process Z defined in page 1452 of [43]. That is, {Zt }t∈G has an
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integral representation on the (possibly artificially disjointified) union S ∪ S′ with
kernel f 1S + g1S′ , and the nonsingular action defined by

ηt (s) =
{
ϕt(s) if s ∈ S,

ϕ′
t (s) if s ∈ S′

for all t ∈ G. Then clearly, ψ(f + g) = ψ(f ) + ψ(g) = 0. Following the argu-
ments used in the proof of (4.3) in [43], the rest follows.

If the component XA
t is nonzero, then the support of f has nonzero intersection

with A, and hence by Part (i) of this theorem, ψ(f ) = lim supn→∞
bn(f )

|En|1/α = b > 0

for some positive constant b. Get a subsequence nk such that limk→∞
bnk

(f )

|Enk
|1/α = b.

Working along this subsequence, and following the proof of (4.9) in [43], we get

Mnk
/bnk

⇒ C
1/α
α Zα . Hence,

Mnk

|Enk
|1/α

⇒ bC1/α
α Zα.

Now, we show that Mn/|En|1/α is always tight. Take {Zt }t∈G as in the proof
of Part (iii)(a). Following arguments in the proof of (4.3) in [43], it can be shown
that MZ

n /bZ
n is tight (here MZ

n , bZ
n denote the quantities corresponding to Mn,

bn defined for the stationary SαS random field {Zt }t∈G). Also for any nonzero
f ∈ Lα ,

bn(f ) =
(∫

max
t∈En

∣∣ft (x)
∣∣αm(dx)

)1/α

≤
(∑

t∈En

∫ ∣∣ft (x)
∣∣αm(dx)

)1/α

= |En|1/α‖f ‖α.

This calculation yields that bZ
n ≤ |En|1/α(‖f ‖α

α + ‖g‖α
α)1/α , where g is the kernel

function for {Yt }t∈G. Hence, MZ
n /|En|1/α is tight. This implies, as in the proof of

(4.3) in [43], that Mn/|En|1/α is also tight. �

PROOF OF THEOREM 3.2. We show that when G is a free group of rank d ,
then for any f ∈ Lα ,

(5.5) if lim inf
n→∞

bn(f )

|En|1/α
= 0, then lim sup

n→∞
bn(f )

|En|1/α
= 0.

To see this, observe that, for any m,n ∈ N, En+m = En · Em := {g1 · g2 : g1 ∈
En,g2 ∈ Em}. Hence,

(
bn+m(f )

)α =
∫

max
t1∈En

max
t2∈Em

∣∣ft1t2(x)
∣∣αm(dx)

≤ ∑
t1∈En

∫
max
t2∈Em

∣∣ft1t2(x)
∣∣αm(dx) = |En|(bm(f )

)α
.
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Here the last equality follows because with wt as in (5.3),∫
max
t2∈Em

∣∣ft1t2(x)
∣∣αm(dx)

=
∫

max
t2∈Em

wt1(x)wt2

(
ϕt1(x)

)∣∣f ◦ ϕt2

(
ϕt1(x)

)∣∣α dm(x)

=
∫

max
t2∈Em

wt2(x)
∣∣f ◦ ϕt2(x)

∣∣α dm(x) =
∫

max
t2∈Em

∣∣ft2(x)
∣∣α dm(x).

Hence, for any m,n ∈N,

(5.6)
(bn+m(f ))α

|En+m| ≤ |En||Em|
|En+m|

(bm(f ))α

|Em| ≤
(

d

d − 1

)2 (bm(f ))α

|Em|
using the trivial bounds

(5.7) (2d − 1)n ≤ |En| ≤ d

d − 1
(2d − 1)n.

So if lim infn→∞ bn(f )

|En|1/α = 0, then for any ε > 0, we get an m ∈ N, such that
bm(f )

|Em|1/α < ε. Hence using (5.6), we have that for all n ≥ m, bn(f )

|En|1/α < ( d
d−1)2/αε.

This shows (5.5).
Thus for any f ∈ Lα whose support has nontrivial intersection with A, we

have lim infn→∞ bn(f )

|En|1/α > 0. Again, as 0 ≤ bn(f )

|En|1/α ≤ ‖f ‖α , given any sequence

nk , there exists a further subsequence nk
such that

bnk
(f )

|Enk
|1/α converges to some

c > 0. Rest follows by applying the proof of (4.9) in [43] along this subsequence.
�

PROOF OF THEOREM 3.3. This result trivially follows from Examples 3.2 and
3.3. �

PROOF OF THEOREM 3.4. One implication is obvious. For the other one, as-

sume lim supn→∞
∫

maxt∈Cn |ft (x)|αm(dx)

(2d−1)n
= 0. Fix ε > 0, and choose K ∈ N large

enough so that |En−K |
(2d−1)n

≤ ε for all n ≥ K . This is possible by (5.7). Hence,

lim sup
n→∞

∫
maxt∈(

⋃n
i=n−K+1 Cn) |ft (x)|αm(dx)

(2d − 1)n

≤ lim sup
n→∞

K−1∑
i=0

∫
maxt∈Cn−i

|ft (x)|αm(dx)

(2d − 1)n

≤
K−1∑
i=0

1

(2d − 1)i
lim sup
n→∞

∫
maxt∈Cn−i

|ft (x)|αm(dx)

(2d − 1)n−i
= 0.
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Also for all n ≥ K ,∫
maxt∈En−K

|ft (x)|αm(dx)

(2d − 1)n
≤ ‖f ‖α

α

|En−K |
(2d − 1)n

≤ ε‖f ‖α
α.

Putting the two inequalities together, we get lim supn→∞
∫

maxt∈En |ft (x)|αm(dx)

(2d−1)n
≤

ε‖f ‖α
α . Since ε > 0 is arbitrary, this result follows. �

PROOF OF THEOREM 3.5. Take a set B ⊆ S such that lim supn→∞ an(B)
|En| > 0.

Then for any C ⊆ B also, we have lim supn→∞ an(C)
|En| > 0. For any such set C,

let Sn denote a subset of En with cardinality an(C) such that ϕt−1(C), t ∈ Sn are
pairwise disjoint. Hence with wt as in (5.3), we get

(
bn(1C)

)α ≥
∫

max
t∈Sn

wt (s)1C

(
ϕt(s)

)
m(ds) = ∑

t∈Sn

∫
wt(s)1C

(
ϕt(s)

)
m(ds)

= an(C)m(C).

The above calculation yields that ψ(C) > 0 for all C ⊆ B satisfying m(C) > 0.
Therefore B ⊆ A. �

6. Proofs of the results stated in Section 4.

PROOF OF THEOREM 4.1. We first show that the Laplace functional of N∗
defined in (4.9) is indeed of the form (4.10). By Proposition 5.4 of [31], we can
assume, without loss of generality, that the function g is also continuous with com-
pact support. For such a function g, we have E(e−N∗(g)) = E(e−∑

i ψ(ji ,vi ,ui ,si ,ri)),
where ψ(x, v,u, s,ρ) is given by

∑
k∈G

g
(
xf̃ ′(|u|,ρ|u|)

(v, k)
)
1(|u|>0) + ∑

k∈G

g

((
d

d − 1

)1/α

xf̃ ′(s,ρs)
(v, k)

)
1(|u|=0)

for all x ∈ [−∞,∞]\ {0}, v ∈ W , u ∈ G, s ∈ Z and ρ = (ρ :  ∈ Z) ∈ �. Because
of (4.7), the Laplace functional of N∗ is equal to E(e−M(ψ)) which is

exp

[
−
∫
�

∫
W

∫
|x|>0

{∑
|u|>0

0∑
s=−∞

2d(2d − 1)s−1
(

d − 1

d

)

× (
1 − e−∑

k∈G g(xf̃ ′(|u|,ρ|u|)(v,k)))

+
0∑

s=−∞
2d(2d − 1)s−1

(
d − 1

d

)

× (
1 − e−∑

k∈G g(( d
d−1 )1/αxf̃ ′(s,ρs )

(v,k)))}dνα dν dγ (ρ)

]
.
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The first integral inside the exponent equals∫∫∫ ∑
|u|>0

(
1 − e−∑

k∈G g(xf̃ ′(|u|,ρ|u|)(v,k)))dγ dνα dν

=
∫∫ ∞∑

=1

∫ ∑
u∈C

(
1 − e−∑

k∈G g(xf̃ ′(,ρ)
(v,k)))dγ dνα dν

=
∫∫ ∞∑

=1

[
2d(2d − 1)−1

∫ (
1 − e−∑

k∈G g(xf̃ ′(l,ξ)
(v,k)))dγ(ξ)

]
dνα dν.

Here the last equality follows because |C| = 2d(2d − 1)−1. Using the change of
variable y = ( d

d−1)1/αx and the scaling property of να for the second integral, and
combining the output with the first one, we get that the Laplace functional of N∗
is indeed the one given in (4.10).

Next, we show that N∗ is Radon. Note that for all  ∈ Z and for all ξ ∈ �,

(6.1)
∣∣f̃ ′(,ξ)∣∣≤ ∣∣f ′∣∣ ∈ Lα(W × G,ν ⊗ ζ ).

Now fix a δ > 0. Set C = [−∞,−δ) ∪ (δ,∞] and h = 1C . To establish that N∗
is Radon, it is enough to show that E[N∗(h)] < ∞. To this end, we write N∗ =
N(1) + N(2), where

N(1) =
∞∑
i=1

∑
k∈G

δ
ji f̃

′(|ui |,ri,|ui |)(vi ,k)
1(ui �=e)

and

N(2) =
∞∑
i=1

∑
k∈G

δ
( d
d−1 )1/αji f̃

′(si ,ri,si )
(vi ,k)

1(ui=e).

We first establish that E[N(2)(h)] is finite. To this end, note that another use of the
scaling property of να yields

E
[
N(2)(h)

]

=
∫∫ 0∑

=−∞

∑
k∈G

2d(2d − 1)−1
(∫

1C

(
yf̃ ′(,ρ)

(v, k)
)
να(dy)

)
ν(dv)γ (dρ)

from which, using the definition of να and applying (6.1), we get

= 2δ−α
∫ 0∑

=−∞

∑
k∈G

2d(2d − 1)−1
∫ ∣∣f̃ ′(,ξ)

(v, k)
∣∣αγ(dξ)ν(dv)

≤ 2δ−α

(
d

d − 1

)∥∥f ′(v, k)
∥∥α
α < ∞.
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The proof of finiteness of E[N(1)(h)], however, is slightly more involved. Let
us start by observing that a similar calculation as above yields

(6.2)
E
[
N(1)(h)

]= 2δ−α
∫ ∞∑

=1

∑
k∈G

2d(2d − 1)−1

×
∫ ∣∣f̃ ′(,ξ)

(v, k)
∣∣αγ(dξ)ν(dv),

which needs to be tightly estimated by a quantity that can be shown to be finite.
This would require the following combinatorial fact.

LEMMA 6.1. Fix  ∈ N. Then for each k = 0,1,2, . . . , every -subgraph has
exactly (2d −1)�k/2� many vertices from C+k . Here �·� denotes the floor function.

PROOF. Fix any subgraph in �. Consider a self avoiding path {v0, v1, v2, . . .}
(diverging away from the root) corresponding to this subgraph. Note that since
every vertex in G has degree 2d , the subgraph has exactly one vertex in C, one
vertex in C+1, and 2d − 1 vertices in C+2.

In general, if k ≥ 4 is even, then Vk−2
2

does not contain any vertex in C+k ,
but Vk

2
contains vertices that lie in C+k (recall |vs | =  + s, and Vs consists of

all vertices at distance not greater than s from vs ). Since every vertex has degree
2d and the distance from the root increases if one moves from one vertex to any
of its adjacent vertices away from the root, the number of vertices in C+k that
are contained in Vk

2
(and hence in the -subgraph) is the number of vertices at a

distance k
2 from vk and away from the root (i.e., along 2d − 1 directions), which is

(2d −1)k/2. Note that any vertex in C+k that is contained in Vs for some s greater
than k/2, is already contained in Vk

2
. Thus, the subgraph has (2d − 1)k/2 many

vertices from C+k .
Similarly, if k ≥ 3 odd, then note that Vk−1

2
does not contain any vertex lying

in C+k while Vk+1
2

does. The number of vertices in C+k that are contained in

Vk+1
2

is the number of vertices at a distance k−1
2 from vk (along 2d − 1 directions),

which is (2d − 1)
k−1

2 . This completes the proof. �

Now we go back and show that E[N(1)(h)] < ∞. Note that f̃ ′(,ξ)
(v, k) van-

ishes in Cs for all s ≤  − 1. Keeping this in mind, for each fixed v ∈ W , we
consider the quantity

∞∑
=1

∑
k∈G

(2d − 1)−1
∫ ∣∣f̃ ′(,ξ)

(v, k)
∣∣αγ(dξ)

=
∞∑

=1

∑
s≥

∑
k∈Cs

(2d − 1)−1
∫ ∣∣f̃ ′(,ξ)

(v, k)
∣∣αγ(dξ)
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=
∞∑

s=1

s∑
=1

(2d − 1)−1
∫ ∑

k∈Cs

∣∣f̃ ′(,ξ)
(v, k)

∣∣αγ(dξ)

=
∞∑

s=1

s∑
=1

(2d − 1)−1 1

|�(s)
 |

∑
ξ∈�

(s)


∑
k∈Cs

∣∣f̃ ′(,ξ)
(v, k)

∣∣α,

which, by virtue of Lemma 6.1 and symmetry, reduces to

=
∞∑

s=1

s∑
=1

(2d − 1)−1 1

|�(s)
 |

|�(s)
 |(2d − 1)� s−

2 �

|Cs |
∑
k∈Cs

∣∣f ′(v, k)
∣∣α

= 1

2d

∞∑
s=1

(∑
k∈Cs

∣∣f ′(v, k)
∣∣α s∑

=1

(2d − 1)−(s−−� s−
2 �)

)

≤ 1

2d

∞∑
s=1

∑
k∈Cs

∣∣f ′(v, k)
∣∣α ∞∑

r=0

(2d − 1)−(r−�r/2�) ≤ C
∑
k∈G

∣∣f ′(v, k)
∣∣α

for a positive constant C. Combining the above calculations with (6.2) finiteness
of E[N(1)(h)] follows because f ′ ∈ Lα(W × G,ν ⊗ ζ ). Hence, we get that N∗ is
Radon.

Finally, we need to prove that Nn converges to N∗ weakly. Inspired by [32], one
can guess that very few of the Poisson points ji in the definition of Xt are likely to
be large enough, so that Nn has the same weak limit as

N(2)
n :=

∞∑
i=1

∑
k∈En

δ(2d−1)−n/αjif (vi ,k
−1ui)

.

The Laplace functional of N
(2)
n can be computed easily. Using the scaling property

of να once again we get, for g ≥ 0 continuous with compact support, Ee−N
(2)
n (g) is

equal to

(6.3) exp
{
−
∫∫ 1

(2d − 1)n

∑
u∈G

(
1 − e−∑

k∈En
g(xf (v,k−1u))να(dx)ν(dv)

}

and by Theorem 5.2 of [31], this needs to be shown to converge to (4.10) as n →
∞. This is done in three steps. First, we prove the convergence of N

(2)
n when f

is compactly supported in the second variable. Then we remove the assumption of
compact support. Finally, we verify Nn to have the same limit by showing that its
vague distance from N

(2)
n converges to zero in probability. Since this proof closely

follows that of Theorem 3.1 in [32], only the first step is detailed here and the rest
are sketched.
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Keeping the above discussion in mind, we assume first that the function f in
(4.1) is compactly supported in the second variable, that is, for some positive inte-
ger m,

f (v,u) = 0 for all (v, u) ∈ W × G such that u /∈ Em.

Fix n > 2m and v ∈ W . We examine the integrand in (6.3) for each u. Since for
any fixed u ∈ G,

Bu := {
u−1k : k ∈ En

}
is the set of all vertices that are at a distance not greater than n from u−1, whenever
u /∈ En+m, (then u−1 is also not in En+m), due to the assumption on the support of
f , f (v,u−1k) = 0 for any k ∈ En, and hence the integrand vanishes. So, we only
examine the integrand with u restricted to En+m.

Now for each u ∈ En−m, it is easy to see that Bu ⊇ Em. Also as f vanishes
outside Em, so does f ′, and whenever f is zero, g is also zero. Hence, for any
u ∈ En−m, (

1 − e−∑
k∈En

g(xf (v,k−1u)))= (
1 − e−∑

k∈En
g(xf ′(v,u−1k)))

= (
1 − e−∑

k∈G g(xf ′(v,k))),
which immediately turns the integral inside the exponent of (6.3) into∫∫ 1

(2d − 1)n

∑
u∈G

(
1 − e−∑

k∈En
g(xf ′(v,u−1k))να(dx)ν(dv)

=
∫∫ [

m∑
=−(m−1)

1

(2d − 1)n

∑
u∈Cn+

(
1 − e−∑

k∈En
g(xf ′(v,u−1k))

+ 1

(2d − 1)n
|En−m|(1 − e−∑

k∈G g(xf ′(v,k)))]να(dx)ν(dv).

Fix  ∈ {−(m − 1),−(m − 2), . . . ,0,1, . . . ,m}. Then fix a vertex u ∈ Cn+,
and consider the subgraph Bu. The collection of subgraphs as u ranges over Cn+

is precisely the set �
(m)
 , the collection of m-essentially distinct subgraphs in �

as defined earlier. As there are |�(m)
 | many m-essentially distinct subgraphs, by

symmetry, each subgraph ξ ∈ �
(m)
 is repeated |Cn+|/|�(m)

 | many times as u

runs over Cn+. Also if two -subgraphs ξ differ only outside of Em, then as f ′

vanishes outside Em,
∑

k∈G g(xf̃ ′(,ξ)
(v, k)) is same for them. Hence,

1

(2d − 1)n

∑
u∈Cn+

(
1 − e−∑

k∈En
g(xf ′(v,u−1k))

= 1

(2d − 1)n

|Cn+|
|�(m)

 |
∑

ξ∈�
(m)


(
1 − e−∑

k∈G g(xf̃ ′(,ξ)
(v,k))
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= 2d(2d − 1)−1 1

|�(m)
 |

∑
ξ∈�

(m)


(
1 − e−∑

k∈G g(xf̃ ′(,ξ)
(v,k))

= 2d(2d − 1)−1
∫
�

(
1 − e−∑

k∈G g(xf̃ ′(,ξ)
(v,k))dγ(ξ).

Here the last equality holds because γ restricted to Em is uniform on all possible
subgraphs in �

(m)
 .

Combining the above calculations with (6.1), (5.7), and using the fact that g is
continuous with compact support, it can be shown that (6.3) converges to (4.10) as
we let n → ∞ and then m → ∞. The justification of this truncation can be given
using a convergence together argument in parallel to the one given in the proof of
Theorem 3.1 in [32]. Finally, we verify that the vague metric between N

(2)
n and Nn

converges to zero in probability following verbatim the corresponding portion in
the aforementioned reference. This finishes the proof. �

PROOF OF COROLLARY 4.2. Note that for each s > 0, [−∞,−s) ∪ (s,∞] is
a relatively compact set in [−∞,∞] \ {0} and N∗({s,−s,∞,−∞}) = 0 almost
surely. Therefore using Theorems 3.1 and 3.2 of [31] and Nn ⇒ N∗, we have

Nn

([−∞,−s) ∪ (s,∞])⇒ N∗
([−∞,−s) ∪ (s,∞]) for any s > 0.

In particular, for any s > 0,

P
(

1

(2d − 1)n/α
Mn ≤ s

)

= P
(
Nn

([−∞,−s) ∪ (s,∞])= 0
)→ P

(
N∗

([−∞,−s) ∪ (s,∞])= 0
)
.

To find P(N∗([−∞,−s) ∪ (s,∞]) = 0), we use the Laplace functional of N∗.
Note that as N∗ is a point process and hence N∗([−∞,−s) ∪ (s,∞]) is a nonneg-
ative integer valued random variable, by dominated convergence theorem,

P
(
N∗

([−∞,−s) ∪ (s,∞])= 0
)

= lim
t→∞E

(
e−tN∗([−∞,−s)∪(s,∞]))

= exp
{
−
∫∫ ∑



2d(2d − 1)−1

×
∫

lim
t→∞

(
1 − e−∑

k g(xf̃ ′(,ξ)
(v,k)))dγ dνα dν

}
,

where g = t1[−∞,−s)∪(s,∞]. Again,

lim
t→∞

(
1 − e−t

∑
k∈G 1[−∞,−s)∪(s,∞](xf̃ ′(,ξ)

(v,k)))= 1
(|x|≥s/supk∈G |f̃ ′(,ξ)

(v,k))|)
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and∫∫
1
(|x|≥s/supk∈G |f̃ ′(,ξ)

(v,k))|)να(dx)ν(dv) =
∫ 2(supk∈G |f̃ ′(l,ξ)

(v, k)|)α
sα

dν.

Hence, P(N∗([−∞,−s) ∪ (s,∞]) = 0) is given by

exp
{
−
∑∞

l=−∞(2d)(2d − 1)l−1 ∫
W

∫
2(supk |f̃ ′(l,ξ)

(v, k)|)αγ(dξ)ν(dv)

sα

}

= exp
{
−Kα

X

sα

}
.

Finiteness of KX can be established following the argument that was used to prove
N∗ is Radon. �

PROOF OF COROLLARY 4.3. It has already been verified that the Laplace
functional in (4.10) reduces to that in (4.13) under the assumption of level symme-
try. We just need to show that (4.13) is indeed the Laplace functional of N∗ defined
in (4.12). This can be done exactly as in the first part of the proof of Theorem 4.1.
The details are skipped. �
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[34] ROSIŃSKI, J. (1994). On uniqueness of the spectral representation of stable processes. J. The-
oret. Probab. 7 615–634. MR1284656
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