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THREE FAVORITE SITES OCCURS INFINITELY OFTEN FOR
ONE-DIMENSIONAL SIMPLE RANDOM WALK1

BY JIAN DING AND JIANFEI SHEN

University of Chicago

For a one-dimensional simple random walk (St ), for each time t we say
a site x is a favorite site if it has the maximal local time. In this paper, we
show that with probability 1 three favorite sites occurs infinitely often. Our
work is inspired by Tóth [Ann. Probab. 29 (2001) 484–503], and disproves a
conjecture of Erdős and Révész [In Mathematical Structure—Computational
Mathematics—Mathematical Modelling 2 (1984) 152–157] and of Tóth [Ann.
Probab. 29 (2001) 484–503].

1. Introduction. Let St , t ∈ N be a one-dimensional simple random walk
with S0 = 0. We define the local time at x by time t to be L(t, x) = #{0 < k ≤
t : Sk = x}. At time t , we say x is a favorite site if it has the maximal local time,
that is, L(t, x) = maxy L(t, y), and we say that three favorite sites occurs if there
are exactly three sites which achieve the maximal local time. Our main result states
the following.

THEOREM 1.1. For a one-dimensional simple random walk, with probabil-
ity 1 three favorite sites occur infinitely often.

Theorem 1.1 complements the result in [24] which showed that there are no
more than three favorite sites eventually, and disproves a conjecture of Erdős and
Révész [14–16] and of [24]. Previous to [24], it was shown in [25] that eventually
there are no more than three favorite edges.

Besides the number of favorite sites, the asymptotic behavior of favorite sites
have been much studied (see [23] for an overview): at time n as n → ∞, it was
shown in [3, 20] that the distance between the favorite sites and the origin in
the infimum limit sense is about

√
n/poly(logn) while in the supremum limit

sense is about
√

2n log logn; it was proved in [8] that the distance between the
edge of the range of random walk and the set of favorites increases as fast as√

n/(log logn)3/2; in [7] the jump size for the position of favorite site was stud-
ied and shown to be as large as

√
2n log logn; a number of other papers [2, 6, 12,

13, 17, 18, 21] studied similar questions in broader contexts including symmetric
stable processes, random walks on random environments and so on.
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In two dimensions and higher, favorite sites for simple random walks have been
intensively studied where some intriguing fractal structure arise; see, for example,
[1, 9, 10, 22]. Such fractal structure also plays a central role in the study of cover
times for random walks; see, for example, [4, 5, 11]. We refrain from an extensive
discussion on the literature on this topic as the mathematical connection to the
concrete problem considered in the present article is limited. That being said, we
remark that analogous questions on the number of favorite sites in two dimensions
and higher are of interest for future research, which we expect to be more closely
related to the literature mentioned in this paragraph as well as references therein.

Our proof is inspired by [24], which in turn was inspired by [25]. Following
[24], we define the number of upcrossings and downcrossings at x by the time t to
be

U(t, x) = #{0 < k ≤ t : Sk = x,Sk−1 = x − 1},
D(t, x) = #{0 < k ≤ t : Sk = x,Sk−1 = x + 1}.

It is elementary to check that (see, e.g., [24], equation (1.6))

L(t, x) = D(t, x) + D(t, x − 1) + 1{0<x≤S(t)} − 1{S(t)<x≤0}
= U(t, x) + U(t, x + 1) + 1{S(t)≤x<0} − 1{0≤x<S(t)}.

(1.1)

The set of favorite (or most visited) sites K (t) of the random walk at time t ∈ N

consists of those sites where the local time attains its maximum value, that is,

K (t) =
{
y ∈ Z : L(t, y) = max

z∈Z L(t, z)
}
.

For r ≥ 1, let f (r) be the (possibly infinite) number of times when the currently
occupied site is one of the r favorites:

f (r) = #
{
t ≥ 1 : St ∈ K (t),#K (t) = r

}
.

We remark that one of the main conceptual contributions in [24, 25] is the intro-
duction of this function f (r). Effectively, f (r) counts the clusters of instances for
r favorite sites; it is plausible that after the random walk leaves one of the favorite
sites, within a nonnegligible (random) number of steps those r favorite sites will
remain favorite sites. Therefore, the expectation of f (r) is significantly smaller
than the expected number of t at which r favorite sites occurs, and in fact it was
shown in [24] that Ef (r) < ∞ for all r ≥ 4. It was then conjectured in [24] that
f (3) < ∞ with probability 1, even though from the computations in [24] it was
clear that Ef (3) = ∞. In the current article, we will show, using the idea of count-
ing clusters in [24], that the correlation becomes so small that the first moment
dictates the behavior. That is to say, we will show that

(1.2) f (3) = ∞ with probability 1,

which then yields Theorem 1.1.
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The rest of the paper is organized as follows: in Section 2, we will set up the
framework of our proof following [24]; in Section 3, we first show that f (3) = ∞
with positive probability and then prove (1.2) by demonstrating a 0–1 law. We em-
phasize that the first moment computation in Section 3.1 follows from arguments
in [24], and the main novelty of our work is on the second moment computation in
Section 3.2.

2. Preliminaries. In this section, we recall the framework of [24] with suit-
able adaption to our setup, and collect a number of useful and well-understood
facts. We claim no originality in this section, and the existence of the current sec-
tion is mainly for the completeness of notation and definition.

2.1. Three consecutive favorite sites. It turns out that in order to show f (3) =
∞ it suffices to consider instances of three favorite sites which are consecutive. To
this end, we define the inverse edge local times by

TU(k, x)� inf
{
t ≥ 1 : U(t, x) = k

}
and TD(k, x)� inf

{
t ≥ 1 : D(t, x) = k

}
.

We consider the events of three consecutive favorite sites, that is,

A
(k)
x,h �

{
K

(
TU(k + 1, x)

) = {x, x + 1, x + 2},L(
TU(k + 1, x), x

) = h
}
.

We write the events in TU(k + 1, x) rather than TU(k, x) as it matches the form
of the Ray–Knight representation which we will discuss later. We then let Ih =
(1

2(h + √
h), 1

2(h + 2
√

h)) and define

NH =
H∑

h=1

∑
k∈Ih

∞∑
x=1

1
A

(k)
x,h

and N = lim
H→∞NH =

∞∑
h=1

∑
k∈Ih

∞∑
x=1

1
A

(k)
x,h

.

We observe that for each h, the events A
(k)
x,h are mutually disjoint. In addition, we

have that f (3) ≥ u(x) where

u(x) =
∞∑
t=1

1{S(t−1)=x−1,S(t)=x,x∈K (t),#K (t)=3}

=
∞∑

k=1

1{x∈K (TU (k,x)),#K (TU (k,x))=3}

=
∞∑

k=0

∞∑
h=1

1{x∈K (TU (k+1),x),#K (TU (k+1,x))=3,L(TU (k+1,x),x)=h}.

Therefore, we have that f (3) ≥ N , and thus it suffices to show that N = ∞. We
remark that the preceding discussions are extracted from decompositions in [24],
(2.3), (2.4), (2.5), and they are the starting point for all computations in [24] as
well as the present article.
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2.2. Additive processes and the Ray–Knight representation. Throughout this
paper, we denote by Yt a critical Galton–Watson branching process with geometric
offspring distribution and by Zt , Rt critical geometric branching processes with
one immigrant in each generation (in different ways). More precisely, we let Xt,i’s
be i.i.d. geometric variables with mean 1 and recursively define

(2.1) Zt+1 =
Zt+1∑
i=1

Xt,i and Rt+1 = 1 +
Rt∑
i=1

Xt,i .

One can verify that Yt , Zt and Rt are Markov chains with state space Z+ and
transition probabilities:

P(Yt+1 = j |Yt = i) = π(i, j)�

⎧⎪⎨
⎪⎩

δ0(j) if i = 0,

2−i−j (i + j − 1)!
(i − 1)!j ! if i > 0,

P(Zt+1 = j |Zt = i) = ρ(i, j)� π(i + 1, j)

and P(Rt+1 = j |Rt = i) = ρ∗(i, j)� π(i, j − 1).

(2.2)

Let k ≥ 0 and x be fixed integers. When x ≥ 1, define the following three pro-
cesses:

1. (Z
(k)
t )t≥0, is a Markov chain with transition probability ρ(i, j) and initial

state Z0 = k.
2. (Y

(k)
t )t≥−1, is a Markov chain with transition probabilities π(i, j) and initial

state Y−1 = k.
3. (Y

′(k)
t )t≥0, is a Markov chain with transition probabilities π(i, j) and initial

state Y
′(k)
0 = Z

(k)
x−1.

The three processes are independent, except for the fact that Y
′(k)
t starts from the

terminal state of Z
(k)
t . We patch the three processes together to a single process:

�(k)
x (y) �

⎧⎪⎪⎨
⎪⎪⎩

Z
(k)
x−1−y if 0 ≤ y ≤ x − 1,

Y
(k)
y−x if x − 1 ≤ y ≤ ∞,

Y
′(k)
−y if − ∞ < y ≤ 0.

We also define

�(k)
x (y)� �(k)

x (y) + �(k)
x (y − 1) + 1{0<y≤x}.(2.3)

From the Ray–Knight theorems on local time of simple random walks on Z (cf.
[19], Theorem 1.1), it follows that for any integers x ≥ 1 and k ≥ 0,(

D
(
TU(k + 1, x), y

)
, y ∈ Z

) law= (
�(k)

x (y), y ∈ Z
)
.(2.4)
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Using (1.1), (2.3) and (2.4), we get

(
L

(
TU(k + 1, x), y

)
, y ∈ Z

) law= (
�(k)

x (y), y ∈ Z
)
.(2.5)

Similarly, when x ≤ 0, we define the processes:

1. (R
(k)
t )t≥0, is a Markov chain with transition probability ρ∗(i, j) and initial

state R−1 = k.
2. (Y

(k)
t )t≥0, is a Markov chain with transition probabilities π(i, j) and initial

state Y0 = k.
3. (Y

′(k)
t )t≥−1, is a Markov chain with transition probabilities π(i, j) and ini-

tial state Y
′(k)
−1 = R

(k)
−1−x .

In this case, we patch the three processes together by

�(k)
x (y) �

⎧⎪⎪⎨
⎪⎪⎩

Y ′(k)
y if − 1 ≤ y < ∞,

Ry−x if x − 1 ≤ y ≤ −1,

Y
(k)
x−1−y if − ∞ < y ≤ x − 1.

The corresponding �
(k)
x is defined by

�(k)
x (y) ��(k)

x (y) + �(k)
x (y − 1) − 1{x<y≤0}.

By classical Ray–Knight theorems, we get the couplings for the case k ≥ 0, x ≤ 0:

(
D

(
TU(k + 1, x), y

)
, y ∈ Z

) law= (
�(k)

x (y), y ∈ Z
)
,(2.6)

(
L

(
TU(k + 1, x), y

)
, y ∈ Z

) law= (
�(k)

x (y), y ∈ Z
)
.(2.7)

In this paper, we will mainly use the Ray–Knight representation (2.4) and (2.5),
while (2.6) and (2.7) will be used in the calculation of EN2

H . In the following, we
default x > 0 unless mentioned otherwise.

2.3. Three favorite sites under Ray–Knight representation. To utilize (2.5),
given the additive processes Y

(k)
t , Z

(k)
t and Y

′(k)
t , we define

Z̃
(k)
t � Z

(k)
t + Z

(k)
t−1 + 1, Ỹ

(k)
t � Y

(k)
t + Y

(k)
t−1, Ỹ

′(k)
t � Y

′(k)
t + Y

′(k)
t−1 .

For h ∈ Z+, define the first hitting time of [h,∞) for Y
(k)
t and Z

(k)
t to be σ

(k)
h and

τ
(k)
h , respectively, and the extinction time of Y

(k)
t to be ω(k). That is,

σ
(k)
h � inf

{
t ≥ 0 : Y (k)

t ≥ h
}
, τ

(k)
h � inf

{
t ≥ 0 : Z(k)

t ≥ h
}
,

and ω(k) = inf
{
t ≥ 0 : Y (k)

t = 0
}
.

(2.8)
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Correspondingly, we define the first hitting time of [h,∞) for the process Ỹ
(k)
t and

Z̃
(k)
t to be σ̃

(k)
h and τ̃

(k)
h , respectively. Namely,

σ̃
(k)
h � inf

{
t ≥ 0 : Ỹ (k)

t ≥ h
}
, τ̃

(k)
h � inf

{
t ≥ 0 : Z̃(k)

t ≥ h
}
.

Using the notation above, we can write P(A
(k)
h,x) in its Ray–Knight representation

form. That is, P(A
(k)
h,x) is equal to

P
(
Y

(k)
0 = h − k − 1, Y

(k)
1 = k + 1, Y

(k)
2 = h − k − 1,

{
Ỹ

(k)
t < h, for t ≥ 3

}
,{

Z̃
(k)
t < h, for 1 ≤ t ≤ x − 1

}
,
{
Ỹ

′(k)
t < h, for t ≥ 1

})
.

For all the notation above, when the initial state of a process is obvious, we omit
the superscript “(k)” to avoid cumbersome notation. We will also use conditional
probability P(·|Y0 = k) to indicate the initial state.

2.4. Standard lemmas. In this subsection, we record a few well-understood
lemmas that will be useful later.

LEMMA 2.1 ([24], (6.14)–(6.15)). For any 0 ≤ k ≤ h ≤ u, the following over-
shoot bounds hold:

P(Yσh
≥ u|Y0 = k, σh < ∞) ≤ P(Y1 ≥ u|Y0 = h,Y1 ≥ h),

P(Zτh
≥ u|Z0 = k) ≤ P(Z1 ≥ u|Z0 = h,Z1 ≥ h).

LEMMA 2.2. We have that:

(i) For i, j ∈ (1
2(h − 10

√
h), 1

2(h + 10
√

h)), there exist positive constants c

and C such that ch− 1
2 ≤ π(i, j) ≤ Ch− 1

2 for all h ≥ 1.

(ii) For i + j = h, π(i, j) ≤ O(1)h− 1
2 .

(iii) For j < i1 < i2, π(i1, j) > π(i2, j).

PROOF. Properties (i) and (ii) follow from straightforward computation using
Stirling’s formula and (2.2). For Property (iii), we see that π(i+1,j)

π(i,j)
= i+j

2i
< 1 for

j < i, and (iii) follows from induction. �

LEMMA 2.3. We have that Eτh = EZτh
− Z0. In particular, we have that

E[τh|Z0 = k] ≥ h − k.

PROOF. Applying the optional stopping theorem to the martingale Zt − t at
time τh, we get Eτh = EZτh

− Z0 ≥ h − k, as desired. �
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3. Proof of Theorem 1.1. The current section contains three parts: in Sec-
tion 3.1, we adapt the arguments in [24] and provide a lower bound on the first
moment for the number of instances for the consecutive three favorite sites; in
Section 3.2 (which contains the main novelty of the present paper), we show
that the second moment is of the same order as the square of the first moment,
thereby proving that three favorite sites occurs with nonvanishing probability; in
Section 3.3, we prove a 0–1 law for three favorite sites, and thus complete the
proof of Theorem 1.1.

3.1. Lower bound on the first moment. For x > 0 and h ∈ N, in order to bound
the probability for three consecutive favorite sites with local time h at vertices x,
x +1 and x +2, the main part is to control the probability for the local times below
h everywhere except at x, x + 1 and x + 2. To this end, it suffices to consider the
edge local times (i.e., number of downcrossings) in the Ray–Knight representation
with appropriate conditioning in the region of (x, x+2). Then in the region outside
of (0, x + 2), these edge local times evolve as martingales [when looking forward
spatially in (x +2,∞) and backward spatially in (−∞,0)] and it is fairly standard
to control the probability of staying below the level h; in the region (0, x), the
edge local times are not exactly a martingale [when looking backward spatially;
see (2.1)] and the analysis is slightly more complicated. In the next lemma, we
prove a lower bound on the first moment of

∑τh

t=1
h−Zt

h
. Combined with standard

martingale analysis in the region outside of (0, x + 2) and a change of summation
when summing over x [see (3.5)], this will then give a lower bound on the first
moment of NH (see Proposition 3.2).

LEMMA 3.1. Suppose that Z0 = k ∈ [h − 2
√

h,h − √
h]. Then there exists a

constant c > 0 such that E(
∑τh

t=1
h−Zt

h
) ≥ c

√
h.

PROOF. Let Mt = ∑t
s=1(Zs − s)− t (Zt − t), and let Ft = σ(Z0,Z1, . . . ,Zt ).

We see that

E(Mt+1 | Ft ) =
[

t∑
s=1

(Zs − s) + (Zt − t)

]
− (t + 1)(Zt − t) = Mt.

Thus (Mt) is a martingale. By the optional stopping theorem, we see that
E(

∑τh

t=1(Zt − t)) = Eτh(Zτh
− τh), and hence

E

(
τh∑

t=1

h − Zt

h

)
=

(
1 + 1

2h

)
Eτh − 1

h
E

[
τhZτh

− 1

2
τ 2
h

]
.(3.1)

Now consider the process M ′
t = −1

4Z2
t + tZt − 1

2 t2 + 1
4 t . By (2.1), we see that

E
(
M ′

t+1 | Ft

) = −1

4

(
Z2

t +4Zt +3
)+(tZt +Zt + t +1)− 1

2

(
t2 +2t +1

)+ 1

4
(t +1),
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where equal to M ′
t . So (M ′

t ) is a martingale. Using the optional stopping theorem
to (M ′

t ) at τh, we have

E

[
τhZτh

− 1

2
τ 2
h

]
= E

[
1

4
Z2

τh
− 1

4
τh

]
− 1

4
Z2

0

= 1

4
E

(
Z2

τh
− Z2

0
) − 1

4
Eτh.

(3.2)

Combining (3.1), (3.2) and Lemma 2.3, we get

E

[
τh∑

t=1

h − Zt

h

]
=

(
1 + 1

4h

)
Eτh − 1

4h
E

[
Z2

τh
− Z2

0
]

=
(

1 + 1

4h

)
E(Zτh

− Z0) − 1

4h
E

[
(Zτh

− Z0)(Zτh
+ Z0)

]

≥ 1

4h
E

[
(Zτh

− Z0)
(
4h − (Zτh

+ Z0)
)]

.

Obviously, Zτh
− Z0 ≥ h − k ≥ √

h and by Lemma 2.1 we have that E(Zτh
−

Z0)(Zτh
+ Z0 − 2h) = O(h). Therefore, there is a constant c such that

E[∑τh

t=1
h−Zt

h
] ≥ c

√
h for sufficiently large h. �

PROPOSITION 3.2. For a constant c > 0, we have ENH ≥ c logH .

PROOF. In what follows, ci for i ≥ 1 and c are all constants. By the Ray–
Knight representation, ENH is equal to the following product:

H∑
h=1

∑
k∈Ih

P
(
Y

(k)
0 = h − k − 1, Y

(k)
1 = k + 1, Y

(k)
2 = h − k − 1,

{
Ỹ

(k)
t < h, for t ≥ 3

})
×

∞∑
x=1

P
({

Z̃
(k)
t < h,1 ≤ t ≤ x − 1

}
,
{
Ỹ

′(k)
t < h, for t ≥ 1

})
.

Thus, we get that

ENH ≥
H∑

h=1

∑
k∈Ih

π(l, h − k − 1)π(h − k − 1, k + 1)π(k + 1, h − k − 1)

× P

(
Y

(h−k−1)
t <

1

2
h for t ≥ 0

)
·

∞∑
x=1

P
(
τ̃h ≥ x,

{
Ỹ

′(k)
t < h, for t ≥ 1

})
.

By Lemma 2.2(i), all π(·, ·) in the above equation are at the scale h− 1
2 . Since Yt

is a martingale, by using the optional stopping theorem at σh
2
∧ ω where σh

2
and ω
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are defined in (2.8), we have

P

(
Y

(h−k−1)
t <

h

2
for t ≥ 0

)
= P

(
Y

(h−k−1)
t hits 0 before

h

2

)

≥ h/2 − (h − k − 1)

h/2
≥ c1h

− 1
2 .

So we get

ENH ≥ c2

H∑
h=1

∑
k∈Ih

∞∑
x=1

h−2
P

(
τ̃h ≥ x,

{
Ỹ

′(k)
t < h, t ≥ 1

})
.(3.3)

Let k1 = 1
2(h − 2

√
h). By independence in the Ray–Knight representation,

∞∑
x=1

P
(
τ̃h ≥ x,

{
Ỹ

′(k)
t < h, for t ≥ 1

})

≥
∞∑

x=1

P

(
Z

(k)
1 ≤ k1,Z

(k)
t <

h

2
for 2 ≤ t ≤ x − 1,

{
Y

′(k)
t <

h

2
, for t ≥ 1

})

≥
∞∑

x=2

[ h
2 −1]∑
l=0

(
P

(
Z

(k)
1 ≤ k1

) · P
(
Z

(k1)
t <

h

2
for 1 ≤ t ≤ x − 2,Z

(k1)
x−2 = l

)

× P

(
Y

(l)
t hits 0 before

h

2

))
.

By Lemma 2.2(i), P(Z
(k)
1 ≤ k1) ≥ c3. Using the optional stopping theorem again,

we have P(Y
(l)
t hits 0 before h

2 ) ≥ h/2−l
h/2 . So

∞∑
x=1

P
(
τ̃h ≥ x,

{
Ỹ

′(k)
t < h, t ≥ 1

})

≥ c3 ·
∞∑

x=1

[ h
2 −1]∑
l=0

P
(
τ

(k1)
h/2 ≥ x,Z

(k1)
x−1 = l

) · h/2 − l

h/2
.

(3.4)

By interchange of the summation and the expectation (which is valid by the mono-
tone convergence theorem) and Lemma 3.1, we have that the right- hand side of
(3.4) is equal to

c3 ·E
[[ h

2 −1]∑
l=0

τ
(k1)

h/2∑
x=1

h/2 − l

h/2
· 1{Z(k1)

x−1=l}

]
= c3E

(τ
(k1)

h/2 −1∑
t=0

h/2 − Z
(k1)
t

h/2

)

≥ c4
√

h,

(3.5)
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where in the second inequality we did change of variable t = x − 1. Thus by (3.3)
and (3.5),

ENH ≥
H∑

h=1

∑
k∈Ih

c5h
− 3

2 ≥ c6 ·
H∑

h=1

1

h
≥ c logH,

completing the proof of the proposition. �

3.2. Upper bound on the second moment. The calculation of second moment
involves the two three favorite sites that happen in chronological order. The key in-
sight is that two instances of three favorite sites with no spatial overlap are almost
independent. Before giving the bound for the second moment, we discuss some
useful concepts and tools that characterize the independence of different three fa-
vorite sites.

Let D(t) = (D(t, x), x ∈ Z) ∈ N
Z be the random vector that records the num-

ber of downcrossings of each site by the time t . For 
 ∈ N
Z, we use 
(i), i ∈ Z

to denote the ith component of 
. For 
 ∈ N
Z, define Bx(
) = {∃t < ∞ : D(t) =


,S(t − 1) = x − 1, S(t) = x}. Note that if Bx(
) happens, there exists a unique
t ∈N such that D(t) = 
, S(t − 1) = x − 1 and S(t) = x. Sometimes we abuse the
terminology “after Bx(
) happens” by meaning “after the unique t with D(t) = 
,
S(t −1) = x −1, S(t) = x.” We also say “Bx(
) happens before Bx′(
′)” by mean-
ing the unique t [corresponding to Bx(
)] is less than the unique t ′ [corresponding
to Bx′(
′)].

Let P = {
 : P(Bx(
)) > 0 for some x}. Clearly, for any 
 ∈ P , 
 has com-
pact support. For Q ⊂ P , denote Bx(Q) = ⋃


∈Q Bx(
). Then we have A
(k)
x,h =

Bx(P(k)
x,h) where P(k)

x,h is the collection of 
 ∈ P such that


(x − 1) = k, 
(x) = h − k − 1,


(x + 1) = k + 1, 
(x + 2) = h − k − 1;

(i − 1) + 
(i) < h for all i = x, x + 1, x + 2.

Our main intuition on bounding the correlation between two instances of three
favorite sites is the following: Suppose at some time (say T1) we have an instance
of three favorite points at x, x +1, x +2 with edge local time (i.e., downcrossings)
given by 
. Our crucial observation is that conditioning on Bx(
) does not increase
much of the probability for producing an instance of three favorite sites in a future
time (say T2) which are spatially different from those of 
. To this end, we let 
′
be one of many local perturbations of 
 (which are obtained from 
 by decreasing
the values at x + 1 and x + 2). We note that (see Figure 1 for an illustration)

• The event Bx(
) [resp., Bx(

′)] corresponds to that the edge local time is 


(resp., 
′) when the random walk cross the directed edge (x−1, x) for the (
(x−
1) + 1)′th time [note that 
(x − 1) = 
′(x − 1); and note that this corresponds
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FIG. 1. The black bars represent vertex local times at T1 and the grey bars represent ones at T2.
When we decrease the edge local times at x + 1 and x + 2, descent of vertex local times happens at
x + 1, x + 2 and x + 3. After the local time perturbation at time T1, we will still get “three favorite
sites” at T2.

to time T1 in Figure 1]. Conditioned on Bx(
) [resp., Bx(

′)], the edge local

time at a later time (which corresponds to T2 in Figure 1) is 
 (respectively,

′) superposed with an independent edge local time field which we denote by

̃. By the strong Markov property for random walks, the law of 
̃ is the same
regardless of conditioning on Bx(
) or Bx(


′).
• If the field (
+ 
̃) produces three favorite sites which are spatially different from

those of 
, then the field (
′ + 
̃) also produces three favorite sites.

In summary, we see that the conditional probability of producing an instance of
three favorite sites which are spatially different from those of 
 given Bx(
) is the
same as the conditional probability given Bx(


′). But the probability for the union
of Bx(


′)’s when 
′ ranging over all legitimate perturbations is much larger than
that of Bx(
)—in fact larger by a factor of order h = 
(x − 1) + 
(x) + 1 (see
Lemma 3.4 below). This is a (quantitative) manifestation that the event Bx(
) is
uncorrelated with a spatially different instance of three favorite sites in the future.

Our formal proof does not exactly follow the discussion above on controlling
the conditional probability, as it turns out slightly simpler to directly compute the
joint probability for two instances of three favorite sites (but the intuition is the
same). For the precise implementation, we let A be the set of all subsets of P
and define a map ϕx : P �→ A mapping an 
 ∈ P to a collection of vectors where
we locally push down the values at locations x + 1 and x + 2. More precisely, we
define ϕx(
) to be{


∗ ∈ P : 
∗(i) < 
(i) for i = x + 1, x + 2, 
∗(i) = 
(i) for i = x + 1, x + 2
}
.

LEMMA 3.3. For i = 1,2 and 
∗
i ∈ ϕxi

(
i) with 
i ∈ P(ki)
xi ,h

, we have that
Bx1(


∗
1)∩Bx2(


∗
2) = ∅ if (x1, 
1) = (x2, 
2). Further, we have Bx1(


∗
1)∩Bx2(


∗
2) =

∅ if (x1, 
1) = (x2, 
2) but 
∗
1 = 
∗

2.
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PROOF. Case (i): Suppose x1 = x2. Since clearly Bx1(

∗
1) and Bx2(


∗
2) cannot

happen at the same time t , we can then assume without loss of generality that
Bx1(


∗
1) happens first. Then when Bx2(


∗
2) happens the vertex local time at x1 is at

least h, arriving at a contradiction.
Case (ii): Suppose that x1 = x2 but 
1 = 
2. In this case, we have 
∗

1 = 
∗
2.

Since clearly Bx1(

∗
1) and Bx2(


∗
2) cannot happen at the same time t , we can then

assume without loss of generality that Bx1(

∗
1) happens first. In order for Bx2(


∗
2)

to happen, the random walk has to leave x1 (= x2) and revisit x1. As a result, the
vertex local time at x1 will be strictly larger than h, arriving at a contradiction.

Case (iii): Suppose that x1 = x2, 
1 = 
2 but 
∗
1 = 
∗

2. This follows from the
same reasoning as in Case (ii). �

LEMMA 3.4. There exists a constant c > 0 such that for any 
 ∈ P
(k)
x,h with

k ∈ Ih,

P
(
Bx

(
ϕx(
)

)) ≥ chP
(
Bx(
)

)
.

PROOF. We consider 
∗ ∈ ϕx(
) such that 
∗(x + 1) ∈ [k + 1 − √
h, k + 1)

and 
∗(x + 2) ∈ [h− k − 1 −√
h,h− k − 1). According to Lemma 2.2(i) and (iii),

there is a constant c > 0 such that

P(Bx(

∗))

P(Bx(
))
= π(
∗(x), 
∗(x + 1))π(
∗(x + 1), 
∗(x + 2))π(
∗(x + 2), 
(x + 3))

π(h − k − 1, k + 1)π(k + 1, h − k − 1)π(h − k − 1, 
(x + 3))

≥ c.

Note that there are about h of such 
∗ ∈ ϕx(
) that satisfy the inequality. By
Lemma 3.3, we get that P(Bx(ϕx(
))) ≥ chP(Bx(
)). �

PROPOSITION 3.5. We have that EN2
H = O(logH) ·ENH .

PROOF. We decompose the second moment into the following three parts:

EN2
H = 2

∑
1≤h<h′≤H

∑
k∈Ih

∑
k′∈Ih′

∞∑
x=1

∞∑
x′=1

P
(
A

(k)
x,h,A

(k′)
x′,h′

) +ENH

≤ O(1) · (I + II +ENH),

(3.6)

where

I = ∑
1≤h<h′≤H

∑
k′∈Ih′

∑
k∈Ih

∑
|x′−x|>3

P
(
A

(k)
x,h,A

(k′)
x′,h′

)
,

II = ∑
1≤h<h′≤H

∑
k∈Ih

∑
k′∈Ih′

∑
|x′−x|≤3

P
(
A

(k)
x,h,A

(k′)
x′,h′

)
.
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First, we estimate I. By the strong Markov property,

P
(
A

(k)
x,h,A

(k′)
x′,h′

) = ∑

∈P(k)

x,h

∑

′∈P(k′)

x′,h′

P
(
Bx(
),Bx′

(

′))

= ∑

∈P(k)

x,h

∑

̃:
+
̃∈P(k′)

x′,h′

P
0(

Bx(
)
) · Px(

Bx′(
̃)
)
,

where the x in P
x indicates the starting point of the random walk. For any x′ ∈ Z+

and k′ ∈ Ih′ , using Lemma 3.4, we get∑
k∈Ih

∑
x:|x−x′|>3

P
(
A

(k)
x,h,A

(k′)
x′,h′

)

= ∑
k∈Ih

∑
x:|x−x′|>3

∑

∈P(k)

x,h

∑

̃:
+
̃∈P(k′)

x′,h′

P
0(

Bx(
)
) · Px(

Bx′(
̃)
)

≤ ∑
k∈Ih

∑
x:|x−x′|>3

∑

∈P(k)

x,h

∑

̃:
+
̃∈P(k′)

x′,h′

O(1)h−1
P

0(
Bx

(
ϕx(
)

)) · Px(
Bx′(
̃)

)

≤ O(1)h−1
∑
k∈Ih

∑
x:|x−x′|>3

∑

∈P(k)

x,h

∑

∗∈ϕx(
)

∑

̃:
+
̃∈P(k′)

x′,h′

P
(
Bx

(

∗)

,Bx′
(

∗ + 
̃

))
.

The last inequality follows from Lemma 3.3 and strong Markov property. By
Lemma 3.3, all events Bx(


∗) for x ∈ N, 
∗ ∈ ϕx(
), k ∈ Ih and 
 ∈ P(k)
x,h are dis-

joint. Note that |x−x′| > 3 and ϕx only reduces the downcrossing number at x+1,

x + 2. So 
∗ + 
̃ ∈ P(k′)
x′,h′ . Hence we have∑

k∈Ih

∑
x:|x−x′|>3

P
(
A

(k)
x,h,A

(k′)
x′,h′

) ≤ O(1)h−1
∑


′∈P(k′)
x′,h′

P
(
Bx′

(

′)).

As a result, we obtain that

I ≤ O(1)
∑

1≤h<h′≤H

h−1
∑

k′∈Ih′

∞∑
x′=1

P
(
A

(k′)
x′,h′

)

≤ O(1)

(
H∑

h=1

h−1

)(
H∑

h′=1

∑
k′∈Ih′

∞∑
x′=1

P
(
A

(k′)
x′,h′

)) = O(1) logH ·ENH .

(3.7)

It remains to estimate II. In the case where the locations for favorite sites have
overlap, we do have strong correlation between the two events. However, due to
the overlap of locations for favorite sites the enumeration is hugely reduced. As a
result, the contribution to the second moment in this case can also be controlled,
as we show in what follows.
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Since A
(k′

1)

x′,h′ ∩ A
(k′

2)

x′,h′ = ∅ for k1 = k2, we have

II ≤
∞∑

x=1

H∑
h=1

∑
k∈Ih

H∑
h′=h+1

7 · sup
x′:|x′−x|≤3

P
(
A

(k)
x,h,

{∃k′ : A(k′)
x′,h′

})
.

Note P(A
(k)
x,h, {∃k′ : A

(k′)
x′,h′ }) = ∑


∈P(k)
x,h

P(Bx(
)) · P(∃k′ : A
(k′)
x′,h′ |Bx(
)). Condi-

tioned on Bx(
), in order for the event {∃k′ : A(k′)
x′,h′ } to occur, we must have:

(1) There exists a k′ ≥ 
(x′) such that at some time t , S(t − 1) = x′ − 1, S(t) =
x′ and D(t, x′ − 1) = k′, D(t, x′) = h′ − k′ − 1 (if such k′ exists, it is unique).

(2) Once (1) happens, both t and k′ are determined. The additional process
after Bx(
) need to satisfy: D(t, x′ + 1) − 
(x′ + 1) = h′ − k′ − 1 − 
(x′ + 1) and
D(t, x′ + 2) − 
(x′ + 2) = k′ + 1 − 
(x′ + 2).

(3) L(t, y) < h′ for all y = x′, x′ + 1, x′ + 2.

We omit the probability loss for (1) and (3) and only consider the probability for
(2). Formally, define T to be the time t such that S(t − 1) = x′ − 1, S(t) = x′,
D(t, x′ − 1) + D(t, x′) = h′ − 1. Then we have P(∃k′ : A(k′)

x′,h′ |Bx(
)) is less equal
to

h′∑
k′=
(x′)

P
(
T = TU

(
k′ + 1, x′),D(

T ,x′) = h′ − k′ − 1,

D
(
T ,x′ + 1

) = k′ + 1,D
(
T ,x′ + 2

) = h′ − k′ − 1
)
.

Using the Ray–Knight representation for the random walk started at x after Bx(
),

we have P(∃k′ : A(k′)
x′,h′ |Bx(
)) is less equal to

h′∑
k′=
(x′)

P
(
T = TU

(
k′ + 1, x′),D(

T ,x′) = h′ − k′ − 1
)

× π∗(
h′ − k′ − 1 − 


(
x′), k′ + 1 − 


(
x′ + 1

))
× π∗(

k′ + 1 − 

(
x′ + 1

)
, h′ − k′ − 1 − 


(
x′ + 2

))
,

where π∗(·, ·) is either π(·, ·) or ρ∗(·, ·) depending on the relative position of x and
x′ [see (2.4) and (2.6)]. Since both (h′ − k′ − 1 − 
x(x

′)) + (k′ + 1 − 
(x′ + 1))

and (k′ + 1 − 
(x′ + 1)) + (h′ − k′ − 1 − 
(x′ + 2)) are greater than or equal to
h′ − h, by Lemma 2.2(ii) and the relation ρ∗(i, j) = π(i, j − 1), we see that

π∗(
h′ − k′ − 1 − 


(
x′), k′ + 1 − 


(
x′ + 1

)) · π∗(
k′ + 1 − 


(
x′ + 1

)
,

h′ − k′ − 1 − 

(
x′ + 2

))
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is at most O(1)
h′−h

for any 
(x′) ≤ k′ ≤ h′. Therefore,

P
(∃k′ : A(k′)

x′,h′ |Bx(
)
)

≤
h′∑

k′=
(x′)
P

(
T = TU

(
k′ + 1, x′),D(

T ,x′) = h′ − k′ − 1
) · O(1)

h′ − h

= P
(∃k′ : T = TU

(
k′ + 1, x′),D(

T ,x′) = h′ − k′ − 1
) · O(1)

h′ − h
,

which is bounded by O(1)
h′−h

. As a consequence, we get that

P
(
A

(k)
x,h,

{∃k′ : A(k′)
x′,h′

}) ≤ ∑

∈P(k)

x,h

P
(
Bx(
)

) · O(1)

h′ − h

= O(1)

h′ − h
· P(

A
(k)
x,h

)
and thus

II ≤
∞∑

x=1

H∑
h=1

∑
k∈Ih

H∑
h′=h+1

O(1)

h′ − h
· P(

A
(k)
x,h

)
(3.8)

≤ O(logH)

H∑
h=1

∑
k∈Ih

∞∑
x=1

P
(
A

(k)
x,h

) = O(logH)ENH .(3.9)

Combining (3.6), (3.7) and (3.8), we get that EN2
H = O(logH)ENH . �

We are now ready to show that N = ∞ with positive probability.

PROPOSITION 3.6. There exists a constant δ > 0 such that P(N = ∞) ≥ δ

where N = limH→∞ NH .

PROOF. By the Cauchy–Schwarz inequality, we get that

ENH = ENH 1{NH >log logH } +ENH 1{NH ≤log logH }

≤
√
EN2

H · P(NH > log logH) + log logH.

By Propositions 3.2 and 3.5, there exist constants c, δ > 0 such that

P(NH > log logH) ≥ (ENH − log logH)2

EN2
H

≥ c
ENH logH

EN2
H

≥ δ,

for all sufficiently large H . Sending H → ∞, we get that P(N = ∞) ≥ δ. �
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3.3. 0–1 law. In this section, building on Proposition 3.6 we show that N = ∞
occurs with probability 1. There are a few possible approaches, and here we choose
to prove a 0–1 law taking advantage of the result on the transience of favorite sites.
Let V (t) be an arbitrary element in K (t). It was shown in [3] that uniformly in all
V (t) ∈ K (t) we have with probability 1

(3.10) lim inf
t→∞

|V (t)|
t

1
2 (log t)−11

= ∞.

Denote ψ(t) = t
1
2 (log t)−11 and E = {lim inft→∞ |V (t)| ≥ ψ(t)}. By (3.10), we

have P(E) = 1, and thus without loss of generality we can assume that E oc-
curs in what follows. Our goal is to show that the event {f (3) = ∞} is a tail
event and it suffices to show that the event {f (3) = ∞} is independent of any σ -
field Fm (which is the σ -field generated by the first m steps of the random walk)
for all m ∈ N. To this end, for each m ∈ N we let M be the first time such that
for all t ≥ M favorite sites occurs outside of [−2m,2m]. We see that M is not
necessarily a stopping time but M < ∞ with probability 1. Therefore, the event
{f (3) = ∞} depends only on whether after M three favorite sites occurs infinitely
often. Now consider the event {fm(3) = ∞} where fm(3) is defined analogously
to f (3) but for the random walk started at time m. We claim that the symmetric
difference between {f (3) = ∞} and {fm(3) = ∞} has probability zero since in
the symmetric difference one must have a favorite site (for the original random
walk) in the interval [−2m,2m] after M . Therefore, the event {f (3) = ∞} is in-
dependent of Fm for all m ∈N, and thus is a tail event. By Kolmogorov’s 0–1 law,
P(f (3) = ∞) ∈ {0,1}. Combined with Proposition 3.6, it completes the proof of
(1.2).
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nian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186 239–270.

[11] DEMBO, A., PERES, Y., ROSEN, J. and ZEITOUNI, O. (2004). Cover times for Brownian
motion and random walks in two dimensions. Ann. of Math. (2) 160 433–464.

[12] EISENBAUM, N. (1997). On the most visited sites by a symmetric stable process. Probab.
Theory Related Fields 107 527–535.

[13] EISENBAUM, N. and KHOSHNEVISAN, D. (2002). On the most visited sites of symmetric
Markov processes. Stochastic Process. Appl. 101 241–256. MR1931268
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