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CRITICAL DENSITY OF ACTIVATED RANDOM WALKS
ON TRANSITIVE GRAPHS

BY ALEXANDRE STAUFFER1 AND LORENZO TAGGI2

University of Bath and Technische Universität Darmstadt

We consider the activated random walk model on general vertex-
transitive graphs. A central question in this model is whether the critical
density μc for sustained activity is strictly between 0 and 1. It was known
that μc > 0 on Zd , d ≥ 1, and that μc < 1 on Z for small enough sleep-
ing rate. We show that μc → 0 as λ → 0 in all vertex-transitive transient
graphs, implying that μc < 1 for small enough sleeping rate. We also show
that μc < 1 for any sleeping rate in any vertex-transitive graph in which sim-
ple random walk has positive speed. Furthermore, we prove that μc > 0 in
any vertex-transitive amenable graph, and that μc ∈ (0,1) for any sleeping
rate on regular trees.

1. Introduction. We consider the activated random walk (ARW) model on
a graph G = (V ,E). This is a continuous-time interacting particle system with
conserved number of particles, where each particle can be in one of two states:
A (active) or S (inactive, sleeping). Initially, the number of particles at each vertex
of G is an independent Bernoulli random variable of parameter μ ∈ (0,1], usually
called the particle density, and all particles are of type A. Each A-particle performs
an independent, continuous time random walk on G with jump rate 1, and with
each jump being to a uniformly random neighbor. Moreover, every A-particle has
a Poisson clock of rate λ > 0 (called the sleeping rate). When the clock of a par-
ticle rings, if the particle does not share the site with other particles, the transition
A → S occurs (i.e., the particle becomes of type S); otherwise nothing happens.
Each S-particle does not move and remains sleeping until another particle jumps
into its location. At such an instant, the S-particle turns into type A, giving the
transition A + S → 2A.

For any given λ, it is expected that ARW undergoes a phase transition as μ

varies. For example, if μ is very small, there is a lot of empty space between parti-
cles, which allows each particle to eventually fall asleep (i.e., turn into type S) and
never become active again. When this happens, we say that ARW fixates. When this
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does not happen, we say that ARW is active. This case is expected to occur when
μ is large, since active particles will repetitively jump on top of other particles,
“waking up” the ones that had turned into type S.

In a seminal paper, Rolla and Sidoravicius [6] showed that this process satisfies
a 0–1 law (i.e., the process is either active or fixated with probability 1) and is
monotone with respect to μ. This gives the existence of a critical value

(1.1) μc = μc(λ) := inf
{
μ ≥ 0 : P(ARW is active) > 0

}
such that ARW is active almost surely for all μ > μc, and fixates almost surely
for all μ < μc. Though [6], as well as almost all existing works, are restricted to
the case of G being Zd , the above properties hold for any vertex-transitive graph.
A graph G is called vertex transitive if, for any two vertices u, v ∈ V , there exists
a graph automorphism of G mapping u onto v. Throughout this paper we always
consider that G is an infinite graph that is locally finite and vertex transitive, which
ensures the existence of μc.

Our definition above implies that μc ≤ 1 since particles are initially distributed
as Bernoulli random variables. However, even if we replace this with any product
measure of density μ > 0, it is intuitive that μc ≤ 1, since at most one particle
can fall asleep at any given vertex. This has been established for a large class of
graphs [1, 6, 8]. A fundamental and very important problem in activated random
walks [3, 6] is whether

(1.2) μc ∈ (0,1) for all λ > 0 and all vertex-transitive graphs.

This problem is widely open, and both sides of the above question (i.e., whether
μc > 0 or μc < 1) turned out to be very challenging. In fact, even showing that
μc < 1 for some λ > 0 is already quite difficult, and is only known to hold on Z,
thanks to a very recent paper by Basu, Ganguly and Hoffman [2]. Our first theorem
establishes this result in all vertex-transitive transient graphs, which includes Zd ,
d ≥ 3.

THEOREM 1.1. For any vertex-transitive, transient graph, it holds that

μc → 0 as λ → 0.

More specifically, we have that limλ↓0
μc

λ1/4 < ∞.

Regarding the question of whether μc < 1 for all λ > 0, this has until now
not been established for any single graph. A positive answer to this question has
only been given for a variant of ARW where particles move according to biased
random walks on Zd ; see Taggi [10]. Rolla and Tournier [7] further extended this
result by proving that, for biased ARW on Zd , we have μc(λ) → 0 as λ → 0. In
our second theorem, we give a positive answer to this question for the original,
unbiased model, and for all graphs where simple random walk has positive speed.
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If (Xt)t∈N is a random walk on G starting from a vertex x, and |Xt | denotes the
distance between Xt and x, we say that a random walk on G has positive speed
if lim inft→∞ |Xt |

t
> 0 almost surely. This includes, for example, all nonamenable

graphs that are vertex transitive.

THEOREM 1.2. For any vertex-transitive graph such that a random walk on it
has positive speed α, it holds that

μc < 1 for all λ > 0.

More specifically, we obtain that μc < 1 − αδ
1+λ

, where δ is the probability that a
random walk does not return to the origin.

We prove the theorem above by providing general sufficient conditions for ARW
to be active, which as a consequence establishes an upper bound on μc. We believe
this result is of independent interest and state it in Theorem 5.1.

For the other side of (1.2) (i.e., whether μc > 0), there has been a bit more
progress. It has been settled when G is Zd thanks to the seminal work of Rolla
and Sidoravicius [6] for d = 1, and an elaborate proof of Sidoravicius and Teix-
eira [9] for d ≥ 2. Our next theorem establishes that μc > 0 in any vertex-transitive
amenable graph, which includes Zd , d ≥ 1. We remark that not only our result gen-
eralizes the ones in [6, 9], but also provides the additional information that μc → 1
as λ → ∞. In addition, our proof is quite short in comparison to [9].

THEOREM 1.3. For any vertex-transitive, amenable graph, we have

μc > 0 for all λ > 0.

More specifically, we have μc ≥ λ
1+λ

.

REMARK 1.4. Our lower bound is sharp, in the sense that there are no bet-
ter lower bounds for μc which are just a function of λ and hold for any vertex-
transitive amenable graph and any jump distribution. Indeed, μc is known to be
equal to λ

1+λ
on Z with totally asymmetric jumps [5].

REMARK 1.5. Our Theorems 1.1 and 1.3 hold in more generality, for any
distribution of the initial location of the particles and for any jump distribution
(biased or unbiased) which is translation invariant and has finite support.

Note that Theorems 1.2 and 1.3 provide a final answer to (1.2) in vertex-
transitive graphs that are amenable but for which a random walk has positive
speed; for example, the so-called lamplighter graphs. In our final result, we also
establish (1.2) for the case of regular trees, excluding Z.
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THEOREM 1.6. When G is a regular tree of degree at least 3, we have

μc ∈ (0,1) for all λ > 0.

In addition, we have μc → 0 as λ → 0.

We now give a brief description of our proof techniques. The traditional strategy
to establish bounds on μc is to consider a ball BL ⊂ V of some large radius L,
centered at a given vertex x ∈ V , and stabilize ARW inside this ball. This consists
of letting the process run (i.e., particles move and fall asleep) inside BL, deleting
every particle that exits BL. This procedure will eventually end. At this point, each
vertex of BL will either contain a sleeping particle or contain no particle; such a
vertex is usually called stable. It was shown in [6] that, roughly speaking, ARW is
active if and only if the number of times particles visit x during the stabilization
of BL goes to infinity with L. In this paper, we introduce a new point of view
on such stabilization procedure by focusing on some vertex y ∈ BL, and carrying
out what we call a weak stabilization of BL with respect to y. Intuitively, in the
weak stabilization we perform the steps of a stabilization procedure until each
vertex of BL \ {y} is stable while y is allowed to be either stable or host exactly
one active particle. This strategy allows us to estimate the probability that, at the
end of a stabilization procedure, y contains a sleeping particle. In principle, the
density of sleeping particles should correspond to μc, and it is by controlling such
probability that we obtain estimates on μc. We believe that our weak stabilization
procedure and our point of view of estimating the density of sleeping particles
have the potential to foster even more substantial progress in this model. In fact,
we believe our estimate on the probability that a sleeping particle ends at some
vertex is of independent interest, and we state it in Theorem 3.1.

The remaining of the paper is organized as follows. In Section 2, we describe
the so-called Diaconis–Fulton representation of ARW and its properties, which we
employ in all of our proofs. Then, in Section 3, we introduce the weak stabilization
procedure and estimate the probability of having a sleeping particle at a given
vertex (Theorem 3.1). Next, we turn to the proofs of our main results: we prove
Theorem 1.1 in Section 4, Theorem 1.2 in Section 5, Theorem 1.3 in Section 6 and
Theorem 1.6 in Section 7.

2. Diaconis–Fulton representation. In this section we describe the
Diaconis–Fulton graphical representation for the dynamics of ARW, following [6].
For a graph G = (V ,E), the state of configurations is � = {0, ρ,1,2,3, . . .}V ,
where a vertex being in state ρ denotes that the vertex has one sleeping particle,
while being in state i ∈ {0,1,2, . . .} denotes that the vertex contains i active parti-
cles. We employ the following order on the states of a vertex: 0 < ρ < 1 < 2 < · · · .
In a configuration η ∈ �, a site x ∈ V is called stable if η(x) ∈ {0, ρ}, and it is
called unstable if η(x) ≥ 1. We fix an array of instructions τ = (τ x,j : x ∈ V,

j ∈ N), where τx,j can either be of the form τxy or τxρ . We let τxy with x, y ∈ V
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denote the instruction that a particle from x jumps to vertex y, and τxρ de-
note the instruction that a particle from x falls asleep. Henceforth, we call τxy

a jump instruction and τxρ a sleep instruction. Therefore, given any configu-
ration η, performing the instruction τxy in η yields another configuration η′
such that η′(z) = η(z) for all z ∈ V \ {x, y}, η′(x) = η(x) − 1(η(x) ≥ 1), and
η′(y) = η(y) + 1(η(x) ≥ 1). We use the convention that 1 + ρ = 2. Similarly, per-
forming the instruction τxρ to η yields a configuration η′ such that η′(z) = η(z) for
all z ∈ V \ {x}, and if η(x) = 1 we have η′(x) = ρ, otherwise η′(x) = η(x).

Let h = (h(x) : x ∈ V ) count the number of instructions used at each site. We
say that we use an instruction at x (or that we topple x) when we act on the current
particle configuration η through the operator 	x , which is defined as

(2.1) 	x(η,h) = (
τx,h(x)+1η,h + δx

)
.

The operation 	x is legal for η if x is unstable in η and illegal otherwise.
Properties. We now describe the properties of this representation. Later we dis-

cuss how they are related to the the stochastic dynamics of ARW. For a sequence
of vertices α = (x1, x2, . . . , xk), we write 	α = 	xk

	xk−1 . . .	x1 and we say that
	α is legal for η if 	x


is legal for 	(x
−1,...,x1)(η, h) for all 
 ∈ {1,2, . . . , k}.
Let mα = (mα(x) : x ∈ V ) be given by mα(x) = ∑


 1(x
 = x), the number of
times the site x appears in α. We write mα ≥ mβ if mα(x) ≥ mβ(x) ∀x ∈ V .
Analogously, we write η′ ≥ η if η′(x) ≥ η(x) for all x ∈ V . We also write
(η′, h′) ≥ (η,h) if η′ ≥ η and h′ = h.

Let η,η′ be two configurations, x be a vertex in V and τ be an array of instruc-
tions. Let V ′ be a finite subset of V . A configuration η is said to be stable in V ′ if
all the sites x ∈ V ′ are stable. We say that α is contained in V ′ if all its elements
are in V ′, and we say that α stabilizes η in V ′ if every x ∈ V ′ is stable in 	αη. We
now state some fundamental properties of the Diaconis–Fulton representation. For
the proof, we refer to [6].

LEMMA 2.1 (Least action principle). If α and β are legal sequences of top-
plings for η such that β is contained in V and α stabilizes η in V , then mβ ≤ mα .

LEMMA 2.2 (Abelian property). Given any V ′ ⊂ V , if α and β are both legal
sequences for η that are contained in V ′ and stabilize η in V ′, then mα = mβ . In
particular, 	αη = 	βη.

For any finite subset V ′ ⊂ V , any x ∈ V ′, any particle configuration η, and
any array of instructions τ , we denote by mV ′,η,τ (x) the number of times that x

is toppled in the stabilization of V ′ starting from configuration η and using the
instructions in τ . Note that by Lemma 2.2, we have that mV ′,η,τ is well defined.

LEMMA 2.3 (Monotonicity). If V ′ ⊂ V ′′ ⊂ V and η ≤ η′, then mV ′,η,τ ≤
mV ′′,η′,τ .
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By monotonicity, given any growing sequence of subsets V1 ⊆ V2 ⊆ V3 ⊆ · · · ⊆
V such that limm→∞ Vm = V , the limit

mη,τ = lim
m→∞mVm,η,τ ,

exists and does not depend on the particular sequence {Vm}m.
We now introduce a probability measure on the space of instructions and of par-

ticle configurations. We denote by P the probability measure according to which,
for any x ∈ V and any j ∈ N, P(τ x,j = τxρ) = λ

1+λ
and P(τ x,j = τxy) = 1

d(1+λ)

for any y ∈ V neighboring x, where d is the degree of each vertex of G and the τx,j

are independent across different values of x or j . Finally, we denote by P ν = P⊗ν

the joint law of η and τ , where ν is a distribution on � giving the law of η. Let
Pν denote the probability measure induced by the ARW process when the initial
distribution of particles is given by ν. We shall often omit the dependence on ν by
writing P and P instead of P ν and Pν . The following lemma relates the dynamics
of ARW to the stability property of the representation.

LEMMA 2.4 (0–1 law). Let ν be an automorphism invariant, ergodic
distribution with finite density. Let x ∈ V be any given vertex of G. Then
Pν(ARW fixates) = P ν(mη,τ (x) < ∞) ∈ {0,1}.

Roughly speaking, the next lemma gives that removing a sleep instruction, can-
not decrease the number of instructions used at a given vertex for stabilization. In
order to state the lemma, consider an additional instruction ι besides τxy and τxρ .
The effect of ι is to leave the configuration unchanged; that is, ιη = η. Then given
two arrays τ = (τ x,j )x,j and τ̃ = (τ̃ x,j )x,j , we write τ ≤ τ̃ if for every x ∈ V and
j ∈N, we either have τ̃ x,j = τx,j or we have τ̃ x,j = ι and τx,j = τxρ .

LEMMA 2.5 (Monotonicity with enforced activation). Let τ and τ̃ be two ar-
rays of instructions such that τ ≤ τ̃ . Then, for any finite subset V ′ ⊂ V and con-
figuration η ∈ �, we have mV ′,η,τ ≤ mV ′,η,τ̃ .

When we average over η and τ using the measure P , we will simply write mV ′
instead of mV ′,η,τ .

3. Weak stabilization. In this section, we introduce our method of weak sta-
bilization and use it to derive upper and lower bounds on the probability that a
given vertex contains an S-particle at the end of the stabilization of some set. This
is the content of Theorem 3.1 below, which will play a fundamental role in the
proofs of our main results. For any finite set K ⊂ V and any vertex x ∈ K , let
Q(x,K) be the probability that there is one S-particle at x at the end of the stabi-
lization of K .
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THEOREM 3.1. Consider ARW on a vertex-transitive graph G = (V ,E).
Then, for any K ⊂ V and any x ∈ K , we have

(3.1) Q(x,K) ≥ λ

1 + λ
P

(
mK(x) ≥ 1

)
.

Moreover, if G is a vertex-transitive, transient graph, then

(3.2) Q(x,K) ≤ 3
√

λ
(
CG(1 + λ) + 1

)
,

where CG is the expected number of times a simple random walk on G starting
from x visits x.

In the proof of the theorem above, we will employ the notion of weakly stable
configurations and weak stabilization.

DEFINITION 3.2 (Weakly stable configurations). We say that a configuration
η is weakly stable in a subset K ⊂ V with respect to a vertex x ∈ K if η(x) ≤ 1 and
η(y) ≤ ρ for all y ∈ K \ {x}. In words, this means that all vertices in K \ {x} are
stable, and x is either stable or hosts at most one active particle. For conciseness,
we just write that η is weakly stable for (x,K).

DEFINITION 3.3 (Weak stabilization). Given a subset K ⊂ V and a vertex
x ∈ K , the weak stabilization of (x,K) is a sequence of topplings of unstable sites
of K \ {x} and of topplings of x whenever x has at least two active particles, until
a weakly stable configuration for (x,K) is obtained. The order of the topplings of
a weak stabilization can be arbitrary.

We now formulate the least action principle for weak stabilization of (x,K). In
order to state the lemma, we need to extend the notion of unstable vertex and of
legal operations to weak stabilization of (x,K). We call a vertex y WS-unstable
(i.e., unstable for weak stabilization) in η ∈ � if η(y) ≥ 1+δx(y), where δx(y) = 1
if x = y and δx(y) = 0 otherwise. We call a vertex y WS-stable in η ∈ � if it is not
WS-unstable. We call the operation 	y defined in (2.1) WS-legal for η if y is WS-
unstable in η. Note that a WS-legal operation is always legal but a legal operation
is not necessarily WS-legal. For a sequence of vertices α = (x1, x2, . . . , xk), we
say that 	α is WS-legal for η if 	x


is WS-legal for 	(x
−1,...,x1)(η, h) for all

 ∈ {1,2, . . . , k}. We say that that α stabilizes η weakly in (x,K) if every x ∈ V is
WS-stable in 	αη.

LEMMA 3.4 [Least action principle for weak stabilization of (x,K)]. If α and
β are sequences of topplings for η such that α is legal and stabilizes η weakly in
(x,K) and β is WS-legal and is contained in K , then mβ ≤ mα .
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PROOF. We follow [6]. The proof consists in observing that all topplings
performed by β are necessary for weak stabilization of (x,K). Let β be a WS-
legal sequence contained in K . Assume mα � mβ . Write β = (x1, . . . , xk) and
β(j) = (x1, . . . , xj ) for j ≤ k. Let 
 = max{j : mβ(j) ≤ mα} < k and y = x
+1 ∈ K .
Now y is WS-unstable in 	β(
)η since β is WS-legal, moreover mβ(
) ≤ mα and
mβ(
)(y) = mα(y) by definition of 
. Now note that if y is WS-unstable for 	β(
)η,
then y it is WS-unstable also for 	αη, since toppling sites of K \ {y} cannot de-
crease the number of particles at y. Then α does not stabilize η weakly in (x,K).

�

REMARK 3.5. Consider any finite subset K ⊂ V and any x ∈ K . The Abelian
property (Lemma 2.2), monotonicity (Lemma 2.3) and monotonicity with enforced
activation (Lemma 2.5) hold true for weak stabilization of (x,K) as well with no
change in the proof.

The main idea of the proof of Theorem 3.1 is to perform a certain sequence of
topplings to stabilize K that will allow us to control whether there is a sleeping
particle at x. From the Abelian property (Lemma 2.2), in order to stabilize K we
can perform the topplings in any order we want. We will stabilize K by first weakly
stabilizing (x,K), which gives a weakly stable configuration η1 for (x,K). Then
either η1 is stable for K , in which case we finish the stabilization procedure, or
η1(x) = 1. In the latter case, we topple x and weakly stabilize (x,K) again, ob-
taining a configuration η2. We repeat the above procedure until we obtain a stable
configuration for K , concluding the stabilization. We will refer to this stabilization
procedure as a stabilization via weak stabilization.

3.1. Proof of the lower bound in Theorem 3.1. Note that, in a stabilization via
weak stabilization, after each weakly stable configuration ηi we obtain, if ηi is not
stable, then with probability λ

1+λ
we encounter a sleep instruction at x, transform-

ing ηi into a stable configuration. With this, we can derive the lower bound (3.1)
in Theorem 3.1.

PROOF OF (3.1) IN THEOREM 3.1. We apply the stabilization of K via weak
stabilizations of (x,K). Let η1 be the first weakly stable configuration for (x,K)

that is obtained in this procedure. As discussed above, if η1 is not stable for K ,
then we obtain a stable configuration for K if the next instruction at x is sleep.
Hence,

Q(x,K) ≥ P(η1 is not stable for K)
λ

1 + λ
.

The proof is concluded by noting that the event that η1 is not stable for K is
equivalent to the event that x is toppled at least once. This is true because of the
following. If η1 is not stable for K , then η1(x) = 1 which implies that x will be
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toppled at least once. In the other direction, if x is toppled at least once, then this
happens either before η1 is obtained or because η1(x) = 1. But if x was toppled
before η1 was obtained, this must have happened at a time when x had at least two
particles. From this time onward, x will have at least one active particle until η1 is
obtained. Hence, η1 is not stable. �

3.2. Proof of the upper bound in Theorem 3.1. Our proof of the upper
bound (3.2) for Q(x,K) is a bit longer than the proof of the lower bound. We
will perform the stabilization of K via weak stabilization as described above. The
idea is to estimate the probability that, for any i ≥ 1, we obtain a stable configu-
ration for K after the ith weak stabilization of (x,K). We do this by relating this
probability to the probability that a random walk starting from x never returns to x.
It is at this step that we use that G is transient.

After the ith time we perform the weak stabilization of (x,K), we let mi
(x,K)(y)

be the number of instructions that have been used at y ∈ K up to this time, and
denote by ηi the configuration we then obtained. Also, let T(x,K) denote the num-
ber of weak stabilizations of (x,K) we perform until a stable configuration in K

is obtained. Note that ηT(x,K)
is either a stable configuration, which implies that

ηT(x,K)
(x) = 0, or ηT(x,K)

is weakly stable for (x,K) with ηT(x,K)
(x) = 1 and the

next instruction used at x was a sleep instruction, thereby concluding the stabi-
lization of K . For consistency, for any i > T(x,K), let ηi be the stable configuration
obtained after stabilizing K and, for any y ∈ K , define mi

(x,K)(y) = mK(y), which
is the total number of instructions used at y for the complete stabilization of K .
By the Abelian property, the quantities T(x,K) and mi

(x,K) are all well defined.
Below we state a lemma, and then show how this lemma implies the upper

bound on Q(x,K).

LEMMA 3.6. Given any vertex-transitive, transient graph G = (V ,E), any
subset K ⊂ V and any vertex x ∈ K , and letting CG be the expected number of
visits to x of a random walk on G starting from x, we have

E[T(x,K)] ≤ CG(1 + λ) + 1,

where the expectation is with respect to the measure P .

PROOF OF (3.2) IN THEOREM 3.1. For simplicity, write η′ = ηT(x,K)+1 for
the configuration obtained after complete stabilization of K . Then the following
expression holds, as the sum is over disjoint events:

Q(x,K) = P
(
η′(x) = ρ

) =
∞∑

k=1

P
(
T(x,K) = k, η′(x) = ρ

)
.(3.3)

Now observe that

(3.4) P
(
T(x,K) = k, η′(x) = ρ

) ≤
(

1

1 + λ

)k−1 λ

1 + λ
.
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The previous inequality follows from independence of instructions: the event on
the left-hand side implies that after each weak stabilization we have an active par-
ticle at x, and moreover we encounter a jump instruction at x after each of the first
k − 1 weak stabilizations, and a sleep instruction at x after the last weak stabiliza-
tion. Hence, for any H ≥ 1 we can write

Q(x,K) ≤ λ

1 + λ

H∑
k=1

(
1

1 + λ

)k−1

+ P(T(x,K) > H)

≤ 1 −
(

1

1 + λ

)H

+ E[T(x,K)]
H

,

where in the last step we used Markov’s inequality. From Lemma 3.6, we obtain

Q(x,K) ≤ 1 −
(

1

1 + λ

)H

+ CG(1 + λ) + 1

H

≤ 1 − (1 − λ)H + CG(1 + λ) + 1

H

≤ λH + CG(1 + λ) + 1

H
.

Observe that our estimate holds for any integer H ≥ 1 and that CG ≥ 1. Then, by

setting H = 
√

CG(1+λ)+1
λ

�, we get that for any positive λ,

Q(x,K) ≤ 3
√

λ
(
CG(1 + λ) + 1

)
.

In the above calculations, we used x
x� ≤ 2 for x ≥ 1. �

3.3. Proof of Lemma 3.6. In this section, we establish the upper bound on
E[T(x,K)] from Lemma 3.6. Let x ∈ V be a given vertex. Let Ex denote the expec-
tation E conditioned on the initial particle configuration having one active particle
at x, and Ex denote the expectation conditioned on the initial particle configuration
having no particle at x.

LEMMA 3.7. For any finite subset K ⊂ V and vertex x ∈ K , we have

Ex

[
mK(x)

] ≤ Ex[
m1

(x,K)(x)
]
.

PROOF. Consider an initial particle configuration η having no particle at x,
and the particle configuration ηx obtained from η by adding an active particle at x.
We will show a stronger result saying that, by using the same instruction array
for both η and ηx , mK(x) starting from η is at most m1

(x,K)(x) starting from ηx .
We stabilize K starting from η via weak stabilization of (x,K), and do the same
topplings for ηx . Since η and ηx differ only at x, until the first weak stabilization
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of η is concluded, the same topplings can be carried out in ηx as well. At this
point, if there is a particle at x in η, there are two particles at x in ηx . Then if the
next instruction at x is a jump instruction, we can perform the same toppling in η

and ηx , and we repeat this procedure until another weakly stable configuration is
obtained in η. On the other hand, if the next instruction at x is a sleep instruction,
then the stabilization of η is concluded, but the weak stabilization of ηx continues.
Finally, if there is no particle at x at the end of a weak stabilization of η, then
the stabilization of η and the weak stabilization of ηx are concluded. Therefore,
under this coupling, the weak stabilization of η concludes no later than that of ηx ,
concluding the proof. �

PROOF OF LEMMA 3.6. The crucial observation is the following. Assume that
T(x,K) ≥ 2. After each of the first T(x,K) −1 weak stabilizations of (x,K), we must
perform at least one toppling at x, and this toppling happens after the first weak
stabilization of (x,K), so it is not counted in m1

(x,K)(x). This gives that

(3.5) T(x,K) − 1 ≤ mK(x) − m1
(x,K)(x).

The above bound also holds when T(x,K) = 1 since mK(x) ≥ m1
(x,K)(x). Then the

lemma follows by claiming that

E
[
mK(x)

] ≤ E
[
m1

(x,K)(x)
] + CG(1 + λ).(3.6)

First, we prove (3.6) with E replaced with Ex . Denote the particle that starts at x

by z. From Lemma 2.5, we have that if we ignore some sleep instructions during
the stabilization of K (i.e., we replace some sleep instructions in the instruction
array τ with neutral instructions ι), the value of mK(x) can only increase. There-
fore, we can bound mK(x) from above by carrying out a two-step stabilization
procedure. In the first step, we move z ignoring any sleep instruction seen until z

exits K . We call V the expected number of topplings at x up to this point. Then,
in the second step, we stabilize K in an arbitrary manner. Using Lemma 2.5 as
mentioned above, we conclude that

Ex[
mK(x)

] ≤ V + Ex

[
mK(x)

]
.

Note that V = CG(1 + λ), as every time the particle visits x, we find a geometri-
cally distributed number of sleep instructions (which are replaced by instructions ι)
before the particle jumps out of x. The expected number of sleep instructions found
at x after every visit is 1 + λ. With this, we obtain

Ex[
mK(x)

] ≤ CG(1 + λ) + Ex

[
mK(x)

] ≤ CG(1 + λ) + Ex[
m1

(x,K)(x)
]
,

where the last step follows from Lemma 3.7.
Now we establish (3.6) with E replaced with Ex . Using Lemma 3.7, we have

Ex

[
mK(x)

] ≤ Ex[
m1

(x,K)(x)
]
.
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Now for the term Ex[m1
(x,K)(x)], let η be an initial particle configuration having

an active particle at x, and call z the particle that starts at x. Let ηx be the particle
configuration obtained from η by removing z. We carry out a two-step stabilization
procedure, as in the previous case. In the first step, we move z ignoring any sleep
instruction seen until z exits K . We call V the expected number of topplings at x

up to this point. In the second step, we perform a weak stabilization of (x,K) start-
ing from the particle configuration ηx . Note that by Lemma 2.5, Remark 3.5 and
Lemma 3.4, we obtain that, after ignoring some sleep instructions and performing
some legal topplings, the value of m1

(x,K)(x) can only increase. Thus, we conclude

that Ex[m1
(x,K)(x)] ≤ V + Ex[m1

(x,K)(x)]. As in the previous case, we have that
V = CG(1 + λ). Putting everything together, we have

Ex

[
mK(x)

] ≤ Ex[
m1

(x,K)(x)
] ≤ CG(1 + λ) + Ex

[
m1

(x,K)(x)
]
,

which concludes the proof. �

4. Proof of Theorem 1.1. Let L be a positive integer, and let x ∈ V be a fixed
vertex. Let BL be the ball of radius L centered at x. For any y ∈ BL, let py be the
probability that a random walk starting from y visits x before exiting BL.

LEMMA 4.1. For any vertex-transitive, transient graph, we have∑
y∈BL

py → ∞ as L → ∞.

PROOF. We can lower bound py by p̃y , the probability that a random walk
starting from y visits x before exiting BL or returning to y. By symmetry, p̃y is
equal to the probability that a random walk starting from x visits y before return-
ing to x and before exiting BL. Therefore,

∑
y∈BL

p̃y is the expected number of
vertices visited by a random walk starting from x before returning to x and before
exiting BL. In a transient graph, this random walk has a positive probability of
never returning to x, in which case it visits at least L vertices. This establishes the
lemma. �

PROOF OF THEOREM 1.1. We will stabilize BL and show that, for any fixed
μ > 0 there exists a fixed λ > 0 small enough such that the number of topplings at
x goes to infinity with L. This implies that μc → 0 as λ → 0.

Let η be the initial particle configuration inside BL and let ηs be the particle
configuration inside BL obtained after stabilization of BL. Then ηs only contains
sleeping particles. For each particle of ηs , we start a so-called ghost particle, which
performs independent simple random walk steps until exiting BL. Let WL be the
number of visits to x by particles or ghosts, and let RL be the number of times
that x was visited by ghosts. So WL − RL is the number of topplings at x during
the stabilization of BL. Let N0 be the number of visits to x of a random walk
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that starts from x and is killed upon exiting BL. For simplicity, let q = q(λ) =
3
√

λ(CG(1 + λ) + 1), the upper bound in the second part of Theorem 3.1. Hence,

(4.1) E[WL − RL] = ∑
y∈BL

(
μ − Q(y,BL)

)
pyE[N0] ≥ (μ − q)E[N0]

∑
y∈BL

py.

Note that N0 is a geometric random variable and, for any transient graph, it
holds that E[N0] < ∞ as L → ∞. Also, Lemma 4.1 gives that for any μ > q ,
E[WL − RL] → ∞ as L → ∞. We want to show that

(4.2) P

(
WL − RL ≤ E[WL − RL]

3

)
≤ c < 1

for some constant c independent of L. This implies that

lim inf
L→∞ P

(
WL − RL >

E(WL − RL)

3

)
> 0.

By the 0–1 law, we then obtain that WL − RL goes to infinity almost surely, con-
cluding the proof.

In order to establish (4.2), note that

P

(
WL − RL ≤ E[WL − RL]

3

)

= P

(
WL − E[WL] + E[WL − RL]

3
≤ RL − E[RL] − E[WL − RL]

3

)
(4.3)

≤ P

(∣∣WL − E[WL]∣∣ ≥ E[WL − RL]
3

)

+ P

(∣∣RL − E[RL]∣∣ ≥ E[WL − RL]
3

)
.

We now use Chebyshev’s inequality, which gives

P

(
WL − RL ≤ E[WL − RL]

3

)
≤ 9

Var(WL)

E2[WL − RL] + 9
Var(RL)

E2[WL − RL] .(4.4)

We claim that

(4.5) lim
L→∞

Var(WL)

E2[WL − RL] = 0,

and that for any μ > 0 and for any small enough λ,

(4.6) lim sup
L→∞

Var(RL)

E2[WL − RL] ≤ q

(μ − q)2 .

Note that the above bound goes to 0 as λ → 0. Putting (4.5) and (4.6) into (4.4)
establishes (4.2), which concludes the proof of the theorem.
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It remains to establish (4.5) and (4.6). For any 3 independent random variables
A,B,C note that

(4.7) Var(ABC) = E
[
A2]

E
[
B2]

E
[
C2] − E2[A]E2[B]E2[C].

Then using independence we can write Var(WL) = ∑
y∈BL

Var(1(η(y) = 1)IyN0),
where Iy is the indicator that a random walk starting from y visits x before exiting
BL; hence, py = E[Iy]. Now applying (4.7), we obtain

Var(WL) = ∑
y∈BL

(
μpyE

[
N2

0
] − μ2p2

yE
2[N0])

= μE
[
N2

0
] ∑
y∈BL

py

(
1 − μpy

E2[N0]
E[N2

0 ]
)

≤ μE
[
N2

0
] ∑
y∈BL

py.

Therefore, using (4.1),

Var(WL)

E2(WL − RL)
≤ μE[N2

0 ]
(μ − q)2E2[N0]∑

y∈BL
py

→ 0,

since
∑

y∈BL
py → ∞ by Lemma 4.1, while all the other terms are bounded away

from both infinity and zero.
Now we turn to (4.6). For y ∈ BL, write

Sy = 1
(
ηs(y)

)
, sy = E[Sy] = Q(y,BL), and sx,y = E[SxSy].

Using this notation, we have RL = ∑
y∈BL

SyIyN0. Since Var(RL) = E[R2
L] −

E2[RL], we write

ER2
L = ∑

y∈BL

E
[
SyIyN

2
0
] + ∑

y,z∈BL,y �=z

E
(
SySzIyIzN0N

′
0
)
,

where N0,N
′
0 are independent and identically distributed. Using independence, we

have

ER2
L = ∑

y∈BL

sypyE
[
N2

0
] + ∑

y,z∈BL,y �=z

sy,zpypzE
2[N0].

Hence,

Var(RL) = ∑
y∈BL

sypyE
[
N2

0
] + ∑

y,z∈BL,y �=z

sy,zpypzE
2[N0]

−
( ∑

y∈BL

sypyE[N0]
)2

= ∑
y∈BL

(
sypyE

[
N2

0
] − s2

yp2
yE

2[N0])
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+ ∑
y,z∈BL,y �=z

(sy,z − sysz)pypzE
2[N0]

≤ ∑
y∈BL

sypyE
[
N2

0
] + ∑

y,z∈BL,y �=z

(sy − sysz)pypzE
2[N0]

≤ qE
[
N2

0
] ∑
y∈BL

py + qE2[N0]
∑

y,z∈BL,y �=z

pypz.

Finally, we obtain

Var(RL)

E2(WL − RL)
≤ qE[N2

0 ]∑
y∈BL

py + qE2[N0]∑
y,z∈BL,y �=z pypz

(μ − q)2E2[N0](∑y∈BL
py)2

≤ qE[N2
0 ]

(μ − q)2E2[N0]∑
y∈BL

py

+ q

(μ − q)2 .

Note that for any fixed λ > 0 the first fraction goes to 0 with L since
∑

x px →
∞ and all the other terms are bounded away from zero and infinity. The second
term can be made arbitrarily small since q → 0 as λ → 0. In particular, if μ >

q + √
q , the second term is smaller than 1, so ARW is active almost surely. This

establishes (4.6). �

5. Proof of Theorem 1.2. We prove Theorem 1.2 by first establishing general
sufficient conditions that give μc < 1 (Theorem 5.1 below), and then showing that
graphs of positive speed for random walks satisfy those conditions.

Let x ∈ V be a fixed vertex of G, which we refer to as the origin. Let {X(t)}t∈N
denote a simple random walk on G starting from the origin, and let {Y(t)}t∈N be
independent random variables such that, for any t ∈ N, we have Y(t) = 0 with
probability 1

1+λ
and Y(t) = 1 with probability λ

1+λ
. Let BL be the ball of radius L

centered at x, and let AL be the vertices at distance L from x. For any set V ′ ⊂ V ,
let

τV ′ := min
{
t ∈ N : X(t) ∈ V ′}

be the first hitting time of the random walk to V ′ and

τ+
V ′ := min

{
t ≥ 1 : X(t) ∈ V ′}

be the first return time of the random walk to V ′. Finally, let

τ k
V ′ := min

{
t ≥ 1 : X(t) /∈ V ′ and Y(t) = 1

}
.

We can interpret the above quantity by considering that the random walk is “killed”
outside V ′ at times t when Y(t) = 1; using this, τ k

V ′ gives the time the random walk
is killed.

Here, we consider that the initial particle configuration, denoted by η, is given
by any product of identical measures on NV with density E[η(x)] = μ. We assume
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that the graph G is vertex-transitive. Note that the assumption of positive speed of
the random walk on G is not required in the next theorem. Let ν0 = P(η(x) = 0)

be the probability that a vertex is empty at time 0, which is the same for all vertices.

THEOREM 5.1. Given positive integers n < L, set � = V \ BL and let

NL
n := ∣∣{t ∈N : X(t) ∈ An and t < τ� ∧ τ+

x

}∣∣
be the number of visits of X(t) to An before X(t) enters � or returns to the origin.
Let

ÑL
n := ∣∣{t ∈ N : X(t) ∈ An and t < τ� ∧ τ+

x ∧ τ k
Bn−1

}∣∣
be the number of visits of X(t) to An before X(t) enters �, returns to the origin or
is “killed” outside Bn−1. Let also ML := ∑L

n=0 NL
n and M̃L := ∑L

n=0 ÑL
n . If given

μ and λ, we have

(5.1) lim inf
L→∞

E[M̃L]
E[ML] >

ν0

μ + ν0
,

then ARW is active almost surely.

PROOF. We will define a stabilization procedure for BL and show that the
number of topplings at the origin goes to infinity with L. We will do the stabiliza-
tion by moving particles located at different levels step by step. At the first step, we
move all particles which are located in AL, at the next step we move all particles
which are located in AL−1, and so on. The same particle might be moved several
times in the course of the whole procedure. We now define such steps.

First step. Let η be the initial particle configuration, and let ZL be the particles
of η which are in AL. Order the particles in ZL in some arbitrary manner. Consider
the first particle in the order and move that particle until one of the following events
occur:

1. the particle reaches the origin,
2. the particle reaches an empty site in BL−1,
3. the particle “uses” a sleep instruction in V \ BL−1,
4. the particle reaches �.

Then take the second particle in the order and move it several times until one of the
four events above occurs. After that, take the third particle in the order and do the
same. Repeat this procedure until all particles of ZL have been moved. We obtain
a new particle configuration that we denote by η1.

Second step. Let ZL−1 be the particles of η1 which are in AL−1. Note that ZL

and ZL−1 are not necessarily disjoint, since particles in ZL could have ended in
AL−1 after they were moved in the first step. Order the particles of ZL−1 in some
arbitrary order. Now move the first particle in the order of ZL−1 until one of the
following events occur:
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1. the particle reaches the origin,
2. the particle reaches an empty site in BL−2,
3. the particle “uses” a sleep instruction in V \ BL−2,
4. the particle reaches �.

Then take the second particle in the order and move it several times until one of
the four events above occurs. After that, take the third particle in the order and do
the same. Repeat the same procedure until all particles of ZL−1 have been moved.
We obtain a new particle configuration that we denote by η2.

Next steps. We repeat the procedure above, analogously defining the set of par-
ticles ZL−i , i ∈ {2,3,4, . . . ,L − 1}, and obtaining the particle configuration ηi+1.

Note that ηL may not be a stable configuration. However, letting GL be the total
number of particles that stop at the origin during the procedure described above,
the Abelian property (Lemma 2.2) implies that mBL

(x) ≥ GL. Our goal is to prove
that there exists a constant c > 0 independent of L such that the probability that
GL > cL is bounded away from 0, which implies that ARW is active by the 0–1
law. In order to estimate GL, we introduce ghost particles as in Section 4. Ghost
particles can be created at any step of our procedure. Consider the (L − n + 1)th
step, where we move particles from the set Zn, the set of particles of ηL−n that are
located in An. Let w be one of the particles that is moved at this step. Let z ∈ An

be its starting vertex. We create a ghost particle if the two next conditions hold:

(i) η(z) = 0 (i.e., z is empty for the initial particle configuration),
(ii) the motion of w stops because it “uses” a sleep instruction at some site

y ∈ V \ Bn−1 (i.e., the motion of w stops due to condition 3. in the procedure
above).

The ghost particle is then created at y ∈ V \ Bn−1, the site where the particle w

uses the sleep instruction. We call the site z ∈ An above the site that is associated
to the ghost. A crucial point to observe is that, in order for w to create a ghost
during step L − n + 1, it is necessary that w is in V \ Bn for the initial particle
configuration η, and that at some previous step w is moved until reaching the site
z, which was empty at that time (so w is stopped according to condition 2. in the
procedure above). Note that every particle creates at most one ghost in the course
of the whole procedure. Indeed, when this happens, the particle that is responsible
for the generation of the ghost is not moved any more at any subsequent step. After
being created, each ghost particle performs independent simple random walk steps
until reaching � ∪ {x}, when it then stops.

Let WL be the number of particles and ghosts visiting the origin, and let RL be
the number of ghosts visiting the origin. Then

GL = WL − RL.

We now estimate the terms WL and RL separately. For any j ∈ N and z ∈
V , let (X(z,j)(t))t∈N be an independent random walk on V starting from z
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and (Y (z,j)(t))t∈N be an infinite sequence of i.i.d. random variables such that
Y (0,0)(0) = 1 with probability λ

1+λ
and Y (0,0)(0) = 0 with probability 1

1+λ
. Let

τ
(z,j)
S be the first time the random walk (X(z,j)(t))t∈N visits the set S ⊂ V and let

us write simply τ
(z,j)
y if S = {y}. Then

(5.2) WL stochastically dominates W̃L :=
L∑

n=1

∑
z∈An

η(z)∑
j=1

1
(
A(z,j) ∩B(z,j)),

where A(z,j) := {τ (z,j)
x < τ

(z,j)
� }, B(z,j) := {Y (z,j)(t) = 0 for any t ≤ τ

(z,j)
x such

that X(z,j)(t) /∈ B|z|−1}, and |z| denotes the distance between z and x.
Now we make a crucial observation for the estimation of RL. Recall that every

ghost can be associated to the site where the particle starts at the step it uses the
sleep instruction and generates that ghost. From the definition of our procedure, it
follows that for every site z ∈ BL such that η(z) = 0, there exists at most one ghost
that can be associated to z. It also follows that if z ∈ BL is such that η(z) = 1,
then no ghost can be associated to that site. Thus, if from every site z ∈ BL with
η(z) = 0 we start a sleeping random walk (X(z,0)(t), Y (z,0)(t))t∈N and we count
R̃L, the number of them, which hit the origin before entering � and such that
Y(t) = 1 somewhere in V \ B|z|−1, we conclude that

(5.3) R̃L stochastically dominates RL.

Hence, we write

(5.4) R̃L :=
L∑

n=1

∑
z∈An

1
(
η(z) = 0

) · 1(
A(z,0) ∩B(z,0))

,

where for clarity we denote by B(z,0) := (B(z,0))c = {Y (z,0)(t) = 1 for some t ≤
τ

(z,0)
x such that X(z,0)(t) /∈ B|z|−1} the complement of B(z,0). As the initial particle

configuration is distributed according to a product measure, from (5.2) and (5.4) it
follows that

E[W̃L] − E[R̃L] =
L∑

n=1

∑
z∈An

[
μ · P (

A(z,0) ∩B(z,0)) − ν0 · P (
A(z,0) ∩B(z,0))]

=
L∑

n=1

∑
z∈An

[
(μ + ν0)P

(
A(z,0) ∩B(z,0)) − ν0 · P (

A(z,0))].
(5.5)

To simplify the notation, we will henceforth drop the 0’s from the superscript in
the terms above. When analyzing the term P(Az ∩ Bz), consider the last time t

that the random walk starting from z ∈ An visits An before reaching the origin. We
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will denote by y the vertex of An where the random walk is in its last visit to An.
Hence, decomposing in y and t , we have

(5.6) P
(
Az ∩Bz) = ∑

y∈An

∞∑
t=1

P
(
Cz,y,t ∩Dz,t ∩ Ez,t ) · P (

τy
x < τ

y
An,+

)
,

where Cz,y,t := {Xz(t) = y}, Dz,t := {Y z(t) = 0 for any i ≤ t such that Xz(i) /∈
B|z|−1}, Ez,t := {τ z

{x}∪� > t}, τ z
S,+ is the first return time of the random walk start-

ing from z to the set S ⊂ V . Now since the graph is transitive, any path of a random
walk from a vertex z1 to z2 occurs with the same probability as the reversed path
for a random walk going from z2 to z1. This gives that, for y, z ∈ An,

(5.7) P
(
τy
x < τ

y
An,+

) = P
({

Xx(
τx
An

) = y
} ∩ {

τx
An

< τx
x,+

});
that is, the event τ

y
x < τ

y
An,+ is equivalent to the event that a random walk starting

from x visits An before returning to x, and visits An for the first time at y. Also,
for y, z ∈ An and t ∈ N,

(5.8) P
(
Cz,y,t ∩Dz,t ∩ Ez,t ) = P

(
Cy,z,t ∩Dy,t ∩ Ey,t ).

Now plug (5.7) and (5.8) into (5.6). Summing over z ∈ An first and then over y

and t , and using the Markov property for the random walk, we conclude that

∑
z∈An

P
(
Az ∩Bz) = ∑

y∈An

∞∑
t=0

E

[ ∑
z∈An

1
(
Cy,z,t ∩Dy,t ∩ Ey,t )]

· P ({
Xx(

τx
An

) = y
} ∩ {

τx
An

< τx
x,+

})
= E

[
ÑL

n

]
.

(5.9)

Similar to (5.9), we obtain

(5.10)
∑
z∈An

P
(
Az) = E

[
NL

n

]
.

Hence, plugging (5.9) and (5.10) into (5.5), we have

E[W̃L] − E[R̃L] =
(

L∑
n=0

(μ + ν0)E
[
ÑL

n

] − ν0E
[
NL

n

])

= (μ + ν0)E[M̃L] − ν0E[ML].
(5.11)

Note now that E[ML] goes with L to the expectation of the return time of the ran-
dom walk, which is infinite on any infinite, connected graph (see, e.g., Theorem 1.1
in [4]). Then, from our assumption in (5.1), it follows that the lower bound above
diverges with L. It remains to prove that this implies that GL → ∞ with L with
positive probability, which in turn implies that ARW is active almost surely by the
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0–1 law (Lemma 2.4). For this, we use the same derivation as in (4.3) and (4.4),
which gives that

P

(
W̃L − R̃L <

E[W̃L − R̃L]
3

)
≤ 9

Var(W̃L)

E2[W̃L − R̃L] + 9
Var(R̃L)

E2[W̃L − R̃L]

≤ 9
E[W̃L]

E2[W̃L − R̃L] + 9
E[R̃L]

E2[W̃L − R̃L] ,
(5.12)

where in the last step we use that Var(W̃L) ≤ E[W̃L] and Var(R̃L) ≤ E[R̃L] since
W̃L and R̃L are defined as a sum of independent Bernoulli random variables. Note
that (5.11) and (5.1) imply that

E[W̃L − R̃L] > KE[ML]
(5.13)

for some constant K > 0 and all large enough L.

Hence, we obtain that E[W̃L] ≥ E[R̃L] for all large enough L. In addition, from
the derivation of (5.5) and (5.11) we have

E[W̃L] ≤ (μ + ν0)E[M̃L].
Using these facts, we obtain

E[W̃L + R̃L] ≤ 2E[W̃L] ≤ 2(μ + ν0)E[M̃L].
Plugging this into (5.12), and using (5.13), we get

P

(
W̃L − R̃L <

E[W̃L − R̃L]
3

)
≤ 18(μ + ν0)E[M̃L]

K2E2[ML] ≤ 18(μ + ν0)

K2E[ML] .

The last term converges to 0 with L. Hence, P(W̃L − R̃L ≥ E[W̃L−R̃L]
3 ) is bounded

away from 0 and this concludes the proof. �

PROOF OF THEOREM 1.2. We show that for any λ > 0 and μ > 1 − αδ
1+λ

the condition in (5.1) is satisfied. Observe that, conditioning on the non-return of
the random walk to the origin, ÑL

n is stochastically larger than a random variable
which takes value 1 with probability 1

1+λ
and 0 with probability λ

1+λ
, as the random

walk hits An at least one time. Hence,

(5.14) E
[
ÑL

n

] ≥ δ

1 + λ
and, consequently, E[M̃L] ≥ δ

1 + λ
L.

Our goal is to use that the random walk has a positive speed α, which is to say that

(5.15) lim
t→∞

|X(t)|
t

= α almost surely,

to show that, for any ε > 0, there exists L0 = L0(ε) large enough so that

(5.16) E[ML] ≤ L

α − ε
for all L ≥ L0.
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To do this, note that (5.15) implies that, for any ξ > 0, there exists t0 large enough
so that

P
(
X(t) > (1 − ξ)αt for all t ≥ t0

)
> 1 − ξ.

Now let �L = � L
(1−ξ)α

�, so for L large enough we have that X(�L) is outside BL

with probability at least 1 − ξ . If that does not happen, then X(�L) is at some
random vertex y ∈ BL. Then after an additional time of �2L, with probability at
least 1 − ξ , the walker exits the ball of radius 2L centered at y; consequently, it
also exits BL. This gives that P(X(�3L) ∈ BL) ≤ ξ2. Iterating this argument, we
have

E[ML] = ∑
i≥1

P(ML ≥ i)

≤ �L +
∞∑

k=1

(�(2k+1)L − �(2k−1)L) · P (
X(�(2k−1)L) > L

)

≤ �L +
∞∑

k=1

(
1 + 2L

(1 − ξ)α

)
ξk

= �L +
(

1 + 2L

(1 − ξ)α

)
ξ

1 − ξ
.

Then (5.16) follows by taking ξ small enough with respect to ε. Hence, we con-
clude that for all L large enough,

E[M̃L]
E[ML] ≥ δ(α − ε)

1 + λ
.

Thus, the condition in (5.1) is satisfied when ν0 = 1 − μ as long as μ > 1 − αδ
1+λ

.
�

6. Proof of Theorem 1.3. Since G is amenable and vertex transitive, we can
take a sequence of subsets {Vn}n≥1 of V such that Vn → V as n → ∞, there exists
a vertex x ∈ ⋂∞

n=1 Vn, and

|∂Vn|
|Vn| is nonincreasing and goes to 0 as n → ∞,

where ∂Vn denotes the external boundary of Vn; that is, the set of vertices in
V \ Vn that have an edge incident to Vn. Let BK be the ball of radius K cen-
tered at x, and recall that mBK

(x) is the number of instructions used at x to sta-
bilize BK . If we assume that μ > μc, then the 0–1 law (Lemma 2.4) implies that
Pr(mBK

(x) ≥ 1) → 1 as K → ∞. By monotonicity of this probability, for any
fixed ε > 0, we can find K = K(ε) large enough such that

Pr
(
mBK

(x) ≥ 1
) ≥ 1 − ε.
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For any set Vn ⊂ V , let V K
n be the set obtained by taking the union of balls of

radius K centered at each vertex of Vn. Hence, V K
n ⊃ Vn. Let Nn,K be the number

of particles inside V K
n prior to the stabilization of V K

n and let Ns
n,K be the number

of sleeping particles in V K
n after the stabilization of V K

n . Clearly, Ns
n,K ≤ Nn,K

almost surely. Let d denotes the degree of each vertex of G; so BK has at most dK

vertices. Note that

E[Nn,k] = ∣∣V K
n

∣∣μ ≤ (|Vn| + dK |∂Vn|)μ =
(

1 + dK |∂Vn|
|Vn|

)
|Vn|μ.

Also, from (3.1) in Theorem 3.1, we have

E
[
Ns

n,K

] ≥ ∑
y∈Vn

Q
(
y,V K

n

) ≥
(

λ

1 + λ

) ∑
y∈Vn

Pr
(
mV K

N
(y) ≥ 1

)
.

Since V K
N contains a ball of radius K centered at y, by monotonicity and transitiv-

ity we obtain

E
[
Ns

n,K

] ≥ |Vn|
(

λ

1 + λ

) ∑
y∈Vn

Pr
(
mBK

(x) ≥ 1
) ≥ |Vn|

(
λ

1 + λ

)
(1 − ε).

Since E[Nn,k] ≥ E[Ns
n,k], placing the two inequalities together yield

μ ≥
(

λ

1 + λ

)
(1 − ε)

(
1 + dK |∂Vn|

|Vn|
)−1

.

Now set n = n(d,K) large enough such that μ ≥ ( λ
1+λ

)(1 − ε)2. Therefore, as-

suming that μ > μc implies that μ ≥ ( λ
1+λ

)(1 − ε)2, which completes the proof
since ε > 0 is arbitrary.

7. Proof of Theorem 1.6. In order to show that μc > 0 for any λ > 0 when G

is a d-regular tree, we will relate a stabilization procedure to a certain branching
process in Z. To avoid ambiguity, we will refer to the particles of the branching
process as tokens. Initially, the branching process starts with d tokens at position 1.
We will show that μc > 0 holds if with positive probability we have that no token
ever visits a position k ≤ 0.

We start defining this branching process. Start with d tokens at position 1. The
process evolves in discrete steps, where at each step we update the position of each
token independently. Given a token at position k ∈ Z, we update it as follows. With
probability α, the token advances one position, jumping to position k + 1. With
probability 1 − α, there is a branching. This means that the token is deleted and is
replaced by 
d tokens at position k − 
, where 
 ≥ 1 is an independent geometric
random variable of success probability β; that is, P(
 = z) = (1 − β)z−1β . The
value d here will later be the same as the degree of the tree, that is why we choose
to use the same letter, while α and β are some additional parameters that will be
related to μ and λ.
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LEMMA 7.1. For all d ≥ 1 and all β ∈ (0,1), there exists α0 ∈ (0,1) large
enough so that, for all α ∈ (α0,1], with positive probability there will never be a
token in positions k ≤ 0.

PROOF. Let γ = √
1 − β . At time t , if k1, k2, . . . are the positions of the tokens

at that time, define the function

�t = ∑
i≥1

γ ki .

Let R be the smallest value such that dγ R+1 < 1/5, and consider the event

(7.1) E = {in the first R steps all tokens advance and do not branch}.
Note that P(E) = αdR , and E implies that at time R all tokens are at position R+1.
Thus,

P

(
�R <

1

5

)
≥ P(E) = αdR.

Note that if any token reaches a position k ≤ 0, then we have �t ≥ 1. We show
that with positive probability �t < 1 for all t ≥ R. For this, it suffices to show that
�t is a supermartingale, provided α is large enough.

Let Ft denote the filtration given by the position of the tokens at times
0,1, . . . , t . Now we compute the change in �t in one step. Define �k as the ex-
pected change in �t caused by moving a token from position k, assuming that
there is at least one token at position k at that time. By the form of �t , we have
that �k does not depend on t . Given a token at position k, since the token advances
one position with probability α, and gets replaced by 
d tokens at position k − 


with probability (1 − α)(1 − β)
−1β , we have that

�k = −γ k + αγ k+1 + (1 − α)

∞∑

=1


dβ(1 − β)
−1γ k−


= −γ k

(
1 − αγ − dβ(1 − α)

1 − β

∞∑

=1




(
1 − β

γ

)

)
.

Since 1−β
γ

= γ < 1, the sum above converges to γ

(1−γ )2 . This and replacing 1 − β

with γ 2 yield

�k = −γ k

(
1 − αγ − d(1 − γ 2)(1 − α)

γ (1 − γ )2

)
= −γ k

(
1 − αγ − d(1 + γ )(1 − α)

γ (1 − γ )

)
.

Hence,

E(�t+1 | Ft ) = �t + ∑
i≥1

�ki
= �t − ∑

i≥1

γ ki

(
1 − αγ − d(1 + γ )(1 − α)

γ (1 − γ )

)

= �t

(
αγ + (1 − α)

d(1 + γ )

γ (1 − γ )

)
.
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Note that we can make the term inside the parenthesis as close to γ as possible
by having α close to 1. So, since γ < 1, by having α close enough to 1 we obtain
that {�t }t is a supermartingale. Let τ be the first time that �R+τ ≥ 1 and n be
any positive integer. We apply the optional stopping theorem for the almost surely
bounded stopping time τ ∧ n, and obtain under the event {�R < 1/5} that

1

5
> �R ≥ E(�R+(τ∧n)) ≥ E(�R+τ | τ ≤ n)P (τ ≤ n) ≥ P(τ ≤ n).

Since n is arbitrary, the probability that there will never be a token in positions
k ≤ 0 is at least αdR 4

5 . �

Before proceeding to the proof of Theorem 1.6, we state a well-known lemma
regarding random walks on regular trees.

LEMMA 7.2. For any 
, let p
 be the probability that a random walk starting
at distance 
 from the origin ever visits the origin. Then, for a d-regular tree we
have p
 = ( 1

d−1)
.

PROOF. The lemma follows by checking that if we set p
 = a
 for some
a > 0, then a = 1

d−1 is the only solution in (0,1) of the recursion a
 = 1
d
a
−1 +

(d−1
d

)a
+1. �

PROOF OF THEOREM 1.6. Since a simple random walk in a d-regular tree
with d ≥ 3 has positive speed, Theorem 1.2 gives that μc < 1 for any λ > 0.
Also, since a d-regular tree with d ≥ 3 is a transient graph, Theorem 1.1 gives
that limλ↓0 μc = 0. It remains to show that μc > 0 for any λ > 0.

For any ρ ∈ (0,1), let Geoρ be a geometric random variable of success prob-
ability ρ. We assume that, at each vertex v, the number of particles initially lo-
cated at v is distributed independently according to the distribution of Geo∗

1−μ =
Geo1−μ − 1. This is enough for our purposes, because P(Geo∗

1−μ = 0) = 1 − μ,
so Geo∗

1−μ stochastically dominates a Bernoulli random variable of mean μ. Then
using monotonicity of ARW (cf. Lemma 2.3), if for a given μ > 0 ARW almost
surely fixates starting from this initial configuration of particles, ARW almost
surely fixates starting from a Bernoulli field of particles of density μ. This will
establish that μc > 0.

We will employ a beautiful stabilization procedure developed by Rolla and
Sidoravicius [6] for the one-dimensional lattice Z. We will need to carry out a
much more delicate analysis for the case of a d-regular tree. Let x1, x2, . . . be the
particles ordered according to their initial distance to the origin, with x1 being the
closest particle to the origin. Let L be an arbitrarily large integer, and consider the
finite system inside BL, the ball of radius L around the origin. Our goal is to show
that with positive probability we stabilize BL without any particle visiting the ori-
gin. The idea is to move particles in order, ignoring some sleep instructions and
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stopping them when they see a sleep instruction near the origin. We do this to pack
the particles as close as possible to the origin in such a way that the gap between
the particles that have already been moved and the particles that have not yet been
moved increases with time. This creates more room for particles to fixate, allow-
ing the stabilization procedure to be carried out until the end without activating
any particle that was moved before.

Now we describe the stabilization procedure in details. We will define sets
Ck ⊂ V , k ≥ 0. Let C0 consist of only the origin. We start by moving particle
x1 repetitively, ignoring all sleep instructions, until it either reaches V \ BL or
C0. If it reaches V \ BL, then we set C1 = C0. Otherwise, let z1, z2, . . . , zT ∈ V

be the sequence of vertices visited by x1, with z1 being the initial location of
x1 and zT ∈ C0. Define τ to be the largest integer so that x1 ignored a sleep
instruction at zτ ; if x1 never ignored a sleep instruction until it reaches the ori-
gin, we declare that the procedure failed. If the procedure has not failed, set
C1 = C0 ∪ {zτ , zτ+1, . . . , zT −1}. Using the terminology in [6], we see C1 as the
set of corrupted vertices after x1 is moved. If after defining C1 we have that at
least one of the subsequent particles x2, x3, . . . is located inside C1, we declare
that the procedure fails.

The idea behind the definition of C1 is the following. We would like to move
x1 as close as possible to C0, to the point that we stop x1 at the last sleep in-
struction it sees before visiting C0. However, in order to observe that zτ is the
vertex where the last sleep instruction is seen by x1, we need to observe the in-
structions at zτ+1, zτ+2, . . . , zT −1. This corrupts the array of instructions at the
vertices zτ+1, zτ+2, . . . , zT −1, so we cannot use these arrays of instructions when
we move the subsequent particles. These vertices, together with xτ and C0, are the
ones forming C1.

We then repeat the procedure above. After having moved xk−1, we move xk

repetitively until it either reaches V \ BL (in which case we set Ck = Ck−1) or it
reaches Ck−1 (in which case we define Ck as the vertices in Ck−1 plus all vertices
visited by xk since the last sleep instruction xk sees). The procedure fails if xk

visits Ck−1 before V \BL and before seeing any sleep instruction, or if at least one
of the subsequent particles xk+1, xk+2, . . . is located inside Ck . For each k ≥ 1, let
Ek be the event that the procedure does not fail when we move xk . Our goal is to
show that there exists a positive constant c so that, for all L ≥ 1, we have

(7.2) P

(
nL⋂
k=1

Ek

)
≥ c > 0,

where nL is the number of particles initially inside BL. When (7.2) holds, we have
that this procedure stabilizes BL, without using any instruction at the origin. By
the zero-one law (Lemma 2.4), this implies that ARW fixates almost surely.

In order to establish (7.2), we will relate this stabilization procedure with a
branching process B on Z, and compare B with the branching process defined in
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the beginning of the section, which we denote by B′. The processes B and B′ start
with the same number of tokens, and at the same locations. Then we couple B and
B′ to show that at any time we can associate each token ι of B with a distinct token
ι′ of B′ such that

(7.3) the position of ι is not smaller than that of ι′.

If at any time the stabilization procedure fails, then we halt B. We will show that
this can only happens when B′ has a token at some position k ≤ 0. This will allow
us to use Lemma 7.1 to establish (7.2), as the construction of B and its coupling
with B′ will imply that

P

(
nL⋂
k=1

Ek

)
≥ P

(
no token of B′ visits position k ≤ 0

)
.(7.4)

The initial configuration of B will be d tokens at position 1. Each token is asso-
ciated with one connected component of the graph obtained from BL by removing
C0; we denote this graph by G \ C0. Since G is a tree, a particle that starts in one
component of G \ C0 cannot jump to a vertex in another component without visit-
ing C0. This will imply that tokens evolve independently of one another. The initial
configuration of B′ will be identical to that of B, and we associate each token of B
to a distinct token of B′. Note that, for this initial configuration (7.3) holds.

Let L = {v1, v2, . . .} be an ordered list of the vertices of BL \ C0, where the
vertices are sorted according to the order they are visited in a breadth-first search
in G starting from the origin. Thus, for any i < j , vi is not further away from the
origin than vj . Given any subset of vertices S of G, and any vertex v of G that is
not in S, we denote by dG(v,S) as the distance between v and S; that is,

dG(v,S) = min{distance between v and u in G : u ∈ S}.
One important point is that we will not sample yet the locations of the particles
x1, x2, . . . . The procedure for updating B is to consider the vertex v that is at
the front of the L, and check whether v hosts a particle. If the vertex does host a
particle, then we move that particle according to the stabilization procedure, which
will cause the token corresponding to the component of v to move and/or branch.
Depending on the outcome, we may remove v from the list. Then we iterate this
procedure.

We will now describe precisely how B is updated, and later will show how to
couple B′ with B. Assume that, at some moment, the vertex that is at the front
of the list is v, and that we have already discovered and moved the particles
x1, x2, . . . , xj . Assume that the number of tokens of B is the number of connected
components of G \ Cj , that B′ has at least as many tokens as B and that prop-
erty (7.3) holds. Let S be the connected component of v in G \ Cj , and let ι be the
token of B corresponding to S. Assume that ι is located at position dG(v,Cj ), and
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that ι′ is the token of B′ associated with ι. Note that all the properties above hold
for the initial configuration.

We start the update of B by checking whether v ∈ Cj . If this is the case, the
stabilization procedure failed, so we halt B. Otherwise, we update B in two phases.
Recall that the initial number of particles at v is distributed according to Geo∗

1−μ.
We will observe the particles at v one-by-one. This means that in the first time we
consider v we will check whether v hosts at least one particle, which happens with
probability μ. If this is the case, we move this particle and update B according to
the two phases described below. Then, in the next update of B, we will consider v

again, and ask whether v hosts at least two particles. The conditional probability
of this event given that v hosts at least one particle is again μ. If this happens, we
then move this second particle as we will describe below. We iterate this, each time
checking whether v hosts another particle, until we find out that v does not host
another particle. At this point, we move to another vertex. We now describe the
two phases for the update of B. The first phase starts by checking whether v hosts
another particle.

First phase, case one: no other particle at v. As explained above, this happens
with probability 1 − μ, regardless of how many times v has been checked before.
In this case, we remove v from L, do not change B and jump to the second phase.

First phase, case two: there is a new particle xj+1 at v. This happens with prob-
ability μ. We move xj+1 according to the stabilization procedure (see Figure 1).
If xj+1 does not visit Cj before leaving BL, nothing happens, and we jump to
the second phase. Otherwise, let Mj+1 be the number of vertices that xj+1 visits
from the last sleep instructions it sees until visiting Cj . If the stabilization pro-
cedure fails,3 then we halt B. Otherwise, we obtain a set Cj+1 which satisfies
Cj+1 \ Cj ⊂ S. We update B by removing the token ι and replacing it by as many
tokens as the number of connected components of S \ Cj+1. For each such com-
ponent S′ of S \ Cj+1, let the token corresponding to that component be located at
position minu∈L∩S′ dG(u,Cj+1). Since each instruction is a sleep instruction with
probability λ

1+λ
, we have that

(7.5) Mj+1 is stochastically dominated by Geo λ
1+λ

.

Also, note that

(7.6) Cj+1 splits S into at most dMj+1 connected components.

The reason is that for each new connected component S′, there must exist an edge
in G from S′ to Cj+1 \ Cj , which is a set with Mj+1 vertices. Also, each new

3Note that one of the reasons for the stabilization procedure to fail is because the set of newly
corrupted sites contains a particle that has not yet been moved. We cannot detect that the procedure
fails because of this at this moment, because the locations of the particles that have not yet been
moved are not known. But this can be detected in future updates of B, when checking whether
v ∈ Cj . If this is the case, we only halt B at that time.
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FIG. 1. Illustration of how to update B when observing vertices at distance k = 4 from Cj

(red vertex). After all white vertices in (a) have been observed, B is as illustrated in (b), with a
white/grey/black square corresponding to the token of the component with white/grey/black vertices
at distance k from Cj . Then, after observing all grey vertices, which led to no particle visiting Cj ,
the grey token in B advances one position, as in (c). Next, when observing the black vertices we
find particle xj+1, which moves according to the grey arrows and sees a sleep instruction in its first
visit to w. Then we add the triangular vertices to the set of corrupted vertices, and the black token
branches into three tokens, one for each connected component created by removing the triangular
vertices from the component of the black vertices. After this, B becomes the configuration in (d).

token created in B has position at least dG(v,Cj ) − Mj+1, where we recall that
dG(v,Cj ) was the position of ι in B. Then we go to the second phase without
removing v from the list.

Second phase. Let C be the set of corrupted sites after the end of the first phase;
that is, C = Cj if there were no other particle at v (first case above), or C =
Cj+1 (second case above). We check whether L contains any vertex u in the same
component of the graph G \ C as v, and whose distance (in G) to the origin of G

is the same as v. If this is the case (which includes the case that v remains in L
after the end of the first phase), then nothing is done and we end the second phase.
Otherwise, and this happens only if there was no additional particle at v, we take
the token ι and advance it by one position, moving it to position dG(v,C) + 1.
Refer to Figure 1(a)–(c). This concludes the second phase.

We then iterate the two phases above until L becomes empty. Since the vertex
at the front of L is removed at each iteration with probability 1 − μ, each vertex is
processed a finite number of times, almost surely, and the procedure ends almost
surely.

Now we couple B′ with B and show that property (7.3) continues to hold. Recall
that B′ is defined in terms of three parameters α,β and d , where d is the degree of
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vertices in G. For the other parameters, we set

α = exp
(
− μ

(1 − μ)(d − 1)

)
and β = λ

1 + λ
.

First, we estimate the probability that a token ι is advanced from position k to
k + 1. Let C be the set of corrupted sites at the time the token is advanced, and let
u1, u2, . . . , uκ be the vertices from the component of G \ C that is associated to ι

and satisfy dG(uj ,C) = k for all j ; note that κ = (d − 1)k−1. Note that ι only ad-
vances by one position if each u1, u2, . . . , uκ has no particle that reaches C before
leaving BL. If there is a particle at some uj , then the probability that this parti-
cle visits C before leaving BL is at most pk , where pk is defined in Lemma 7.2.
Therefore, the probability that ι advances to k + 1 is at least(∑

i≥0

μi(1 − μ)(1 − pk)
i

)(d−1)k−1

=
(

1 − μ

1 − μ + μpk

)(d−1)k−1

≥ exp
(
− μpk

1 − μ
· (d − 1)k−1

)

= α,

where in the inequality we used that 1
1+ε

≥ exp(−ε) for all ε > 0. Therefore, we
can couple ι and ι′ such that if ι′ advances by one position, so does ι.

Now if ι′ branches, then ι may branch or advance. If ι advances, then prop-
erty (7.3) continues to hold regardless of how ι′ branches, since new tokens of
B′ will all have positions smaller than that of ι. If ι also branches, then by (7.5)
and the value of β , the number of new tokens created by the branch of ι′ stochas-
tically dominates dMj+1, which is not smaller than the number of new tokens
created by the branch of ι. The positions of the new tokens of B′ are not larger
than dG(v,Cj )−Mj+1, which is a lower bound for the position of the new tokens
of B′. Therefore, we can couple the branch of ι and the branch of ι′ such that each
new token of B can be associated with one distinct new token of B′, and prop-
erty (7.3) continues to hold. We will update B′ even if the stabilization procedure
for the branch of ι failed because the particle encountered no sleep instruction.
Note that Mj+1 is still well defined in this case, and we can perform the coupling
between the branch of ι′ and Mj+1 as described above.

To conclude the proof, we show that if the stabilization procedure fails, then B′
has a token at some position k ≤ 0. Assume that the particles x1, x2, . . . , xj have
already been observed, and Cj is the current set of corrupted sites. We perform
the two phases above repetitively until we find the first particle xi , i > j , which
visits Cj before exiting BL. Note that Cj = Ci−1. Let v be the vertex where xi

started from, and let k = dG(v,Cj ). Note that k is the position of the token ι of B
corresponding to the component of v in G \ Cj , and the corresponding token ι′ of
B′ is at position at most k by (7.3). The procedure cannot fail before finding xi ,
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and there are two events that can make the procedure fail during the move of xi .
The first is if xi visits Cj before seeing any sleep instruction. If this happens, then
Mi ≥ k, and all tokens produced from the branching of ι′ will have position not
larger than dG(v,Cj )−Mj+1 ≤ 0. The second event is if xi sees sleep instructions,
but the new set of corrupted vertices Ci hosts at least one particle that has not yet
been moved. This implies that Ci contains a vertex u that is still in L. But by the
ordering of the vertices in L, this implies that dG(u,Cj ) ≥ dG(v,Cj ) which gives
that Mi ≥ k. Therefore, the token in B corresponding to the component of u will
be placed at position at most 0, implying that B′ will have a token at position at
most 0.

It is important to remark that the coupling between B and B′ described above
suggests that the tokens of B′ are not updated in the same order as described in
the beginning of the section, where all tokens of B′ were moving or branching
once in each discrete step. Indeed, a token from B could branch many times before
another token from B is moved or branches because, for example, a vertex v could
host more than one particle that visits the set of corrupted sites before leaving BL.
However, one can still apply Lemma 7.1 by reordering the updates of B and B′
accordingly. Letting Ak denote the vertices of G at distance k from the origin,
this is possible since tokens move or branch independently of one another, and
because for any given k it will take only a finite number of steps to remove from L
all vertices of Ak . For any k, let I ′

k be the set of tokens of B′ at the first time that
L contains no vertex from Ak . Thus, for any k, at the moment that L has no vertex
from Ak we obtain that all the tokens from I ′

k−1 will have moved or branched at
least once, giving that each token of B′ will move or branch in a finite time. To
conclude the proof, note that β depends only on λ. Hence, given any d and β , we
can find μ small enough to make α close enough to 1. Then Lemma 7.1 gives that
P(no token of B′ visits position k ≤ 0) is bounded away from 0, which with (7.4)
concludes the proof. �
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