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SCALING LIMIT OF TWO-COMPONENT INTERACTING
BROWNIAN MOTIONS

BY INSUK SEO

Seoul National University

This paper presents our study of the asymptotic behavior of a two-
component system of Brownian motions undergoing certain form of singular
interactions. In particular, the system is a combination of two different types
of particles and the mechanical properties and the interaction parameters de-
pend on the corresponding type of particles. We prove that the hydrodynamic
limit of the empirical densities of two types is the solution of a partial differ-
ential equation known as the Maxwell–Stefan equation.

1. Introduction. In this article, we are primarily concerned with the large-
scale analysis of the locally interacting Brownian motions (LIBM), which consists
of two different types of particles. Originally, the LIBM consisting of identical
particles was introduced by [10, 11], in which the limit theorem for the tagged par-
ticle in nonequilibrium dynamics and the propagation of chaos was established.
Recently, in [27] the author of the current paper developed a large deviation prin-
ciple for the bulk average of particle trajectories of the one-component LIBM by
analyzing the so-called two-color system. In the two-color system, all particles
have the same mechanical property but each particle is painted by either black or
white. The analysis of this system is known to be a difficult task because of the
so-called nongradient property, and accordingly, the limit theorem and the large
deviation principle for the two-color system are known only for three interacting
particle systems: the symmetric simple exclusion process (SSEP) [24], the zero-
range process (ZRP) [7] and the LIBM [27].

Furthermore, we can also consider the two-component system, instead of the
two-color system, in which particles of different colors have different mechanical
properties. Few results are announced for the two-component SSEP with addi-
tional interaction mechanisms. For instance, a two-component exclusion process
where two types of particles affect each other through their jump rates is studied
in [6]. A two-component SSEP under the presence of simultaneous births, deaths
and switching of different types of particles is investigated in [26]. Recently, a two-
component weakly asymmetric exclusion process where the type of each particle
is randomly updated according to the types of its neighboring particles is analyzed
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in [5]. However, the hydrodynamic limit of the two-component SSEP without ad-
ditional interaction mechanism other than the exclusion dynamics is an open prob-
lem. This kind of result is obtained for the ZRP. In [8], the hydrodynamic limit
for the two-component ZRP without additional interaction mechanism other than
zero-range dynamics is obtained. In this paper, we develop the second result of
this kind for the two-component LIBM. We also provide extensive discussions for
general features and technical difficulties for two-component interacting particle
systems.

We also remark here that another two-component system under the recent atten-
tion is the chain of harmonic oscillators [21, 29]. For these models, two conserved
quantities are the energy and the volume of the system.

1.1. Outline. In Section 2, we introduce a precise definition of the parti-
cle system and state our main results. We also discuss the main feature of the
model, which enables us to obtain the hydrodynamic limit although the system
is nongradient. In Section 3, we establish the hydrodynamic limit of the system,
which amounts to the main result. The hydrodynamic limit equation is a system
of parabolic equations (2.14) with the the explicit cross-diffusion matrix D [cf.
(2.15)], where the diffusion matrix D is not symmetric, and 1

2(D + D†) is not
even positive-definite. For this equation, the uniqueness of the weak solution is
known to be a delicate problem, and the general theory [1] only provides the lo-
cal uniqueness. Consequently, the hydrodynamic limit result for the general initial
condition is local in time. The global result is achieved only for the initial condi-
tion that is sufficiently close to the equilibrium. This finding is a common feature
of multi-component interacting particle systems, including the ZRP, due to the re-
sult of [8]. We discuss these uniqueness issues in Section 4. We finally remark
here that the hydrodynamic limit equation (2.14) for the two-component LIBM is
the so-called Maxwell–Stefan equation, which describes multi-component gaseous
mixtures and is explained in Section 4.3.

2. Model and main result.

2.1. Type of particles. Consider a system of N particles xN
1 (·), . . . , xN

N (·) on
T where each particle belongs to one of the two given types, namely, type 1 and
type 2. We denote by T N

c ⊂ {1,2, . . . ,N}, the index sets of type c ∈ {1,2}. Specif-
ically, the set of particles of type c ∈ {1,2} is {xN

i (t) : i ∈ T N
c }. The diffusivity of

the particle of type c is σ 2
c > 0 and our primary interest is the nonhomogeneous

case: σ 2
1 �= σ 2

2 . If σ 2
1 = σ 2

2 , the system becomes the one-component, two-color
system considered in [27].

In addition, the interaction mechanism also depends on the type of particles. In
the local interaction model, two particles always reflect each other regardless of
their types when they collide, but they sometimes change their labels. To explain
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this switching mechanism more precisely, we first measure the amount of collision
between two particles xN

i (·) and xN
j (·) up to time t by local times AN

ij (t) and

AN
ji(t), depending on their relative positions infinitesimally before the collision:

AN
ij (t) = lim

ε→0

∫ t

0

1[0,ε](xN
i (s) − xN

j (s))

2ε
ds,(2.1)

AN
ji(t) = lim

ε→0

∫ t

0

1[−ε,0](xN
i (s) − xN

j (s))

2ε
ds,(2.2)

where the limit exists almost surely, for example; see [14], Chapter 2. In the one-
component model [10, 27], the label switching between two particles xN

i (·) and
xN
j (·) occurs as a Poisson process with constant intensity λN along this local time

clock. The main difference for the two-component system is the dependence of the
interaction parameter λ on the types of particles involved. Let λc1,c2 ≥ 0, c1, c2 ∈
{1,2}, be four (possibly different) constants. Then the label switching between
xN
i (·) of type c1 and xN

j (·) of type c2, occurs as the Poisson process with intensity

λc1,c2N along the local time AN
ij (t) and with intensity λc2,c1N along the local time

AN
ji(t). The rigorous definition of the model described above will be given in the

next subsection.

REMARK 2.1. Our primary interest in the current paper is the symmetric case,
that is, λ1,2 = λ2,1, which shall be explicitly remarked in Section 2.3. On the other
hand, our construction of the process presented in Section 2.2 is valid without this
constraint.

2.2. Rigorous formulation of two-component LIBM. The rigorous construc-
tion of the model described above can be carried out in a similar manner to the
one-component system [10, 27]. Let GN be the N -manifold

(2.3) GN = {
x = (x1, x2, . . . , xN) ∈ TN : xi �= xj for all i �= j

}
,

then the LIBM is constructed as a diffusion process on GN with reflecting bound-
ary condition. We first characterize the boundary ∂GN of GN . Any point x ∈ ∂GN

must satisfy xi = xj for some i �= j . However, the face {x : xi = xj }, i �= j , has
two sides Fij and Fji corresponding to the boundary of two disconnected sets
Uij = {x ∈ GN : xi < xj } and Uji = {x ∈ GN : xj < xi}, respectively. Specifically,
Fij , i �= j , can be regarded as the equivalence class on sequences (xn)

∞
n=1 in Uij

which converges to some point x satisfying xi = xj . The equivalent class ∼ is
defined by (xn)

∞
n=1 ∼ (̃xn)

∞
n=1 if lim xn = lim x̃n. Then the boundary ∂GN can be

written as ∂GN =⋃
i �=j Fij . Denote by C(GN) the set of smooth functions on GN

that are smooth up to the boundary ∂GN . For 1 ≤ i ≤ N , denote by c(i) the type
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of particle xN
i (·). For f ∈ C(GN) and x ∈ Fij , define

fij (x) = lim
xn→x,xn∈Uij ,∀n

f (xn),(2.4)

(Dijf )(x) = lim
xn→x,xn∈Uij ,∀n

(
σ 2

c(i)∂i − σ 2
c(j)∂j

)
f (xn),(2.5)

so that fij and Dijf are functions on Fij .
The LIBM is a diffusion process xN(·) = (xN

1 (·), . . . , xN
N (·)) on GN with the

pregenerator:

(2.6) LNf = σ 2
1

2

∑
i∈T N

1

∂2
i f + σ 2

2

2

∑
j∈T N

2

∂2
j f = 1

2

N∑
i=1

σ 2
c(i)∂

2
i f,

where the domain D(LN) of LN consists of functions f ∈ C(GN) satisfying the
boundary condition (Bij f )(x) = 0 on Fij for all i �= j , where Bij f is a function
on Fij defined by

(2.7) Bij f = Dijf − λc(i),c(j)N(fij − fji).

In (2.7), the first term corresponds to the reflection between two particles xN
i (·)

and xN
j (·), while the second term explains the switching of labels between the two

particles. The Lebesgue measure dx on GN is the invariant measure for LN , and
the process xN(·) is reversible with respect to dx.

Alternative construction of the particle system can be achieved by the martin-
gale formulation of the diffusion processes reflecting at the boundary [13], as noted
in [10]. More precisely, for the fixed final time T > 0, the diffusion process xN(·)
on GN that we constructed above can be regarded as a probability measure PN on
C([0, T ],GN). Then there exist local times AN

ij (t), 1 ≤ i �= j ≤ N , such that, for

all f ∈ C(GN),

f
(
xN(t)

)− f
(
xN(0)

)− ∫ t

0

N∑
i=1

σ 2
c(i)

2

(
∂2
i f
)(

xN(s)
)
ds

(2.8)

−∑
i �=j

∫ t

0
(Bij f )

(
xN(s)

)
dAN

ij (s)

is a (PN, {Ft : 0 ≤ t ≤ T }) martingale where Ft = σ(xN(s) : 0 ≤ s ≤ t). The
martingale (2.8) admits the following alternative expression:

N∑
i=1

σc(i)

∫ t

0
(∂if )

(
xN(s)

)
dβi(s)

(2.9)

+∑
i �=j

∫ t

0
(fij − fji)

(
xN(s)

)[
dMN

ij (s) − dMN
ji (s)

]
,
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where {βi(·) : 1 ≤ i ≤ N} is a family of independent Brownian motions and
{MN

ij (·) : 1 ≤ i �= j ≤ N} is a family of pairwise orthogonal compensated Pois-
son jump processes where the rate of process MN

ij (t) is λc(i),c(j)NAN
ij (t) for all

i �= j . We denote the expectation with respect to PN as EN .

REMARK 2.2. The particle system consisting of m different types 1,2, . . . ,m

can be defined similarly.

2.3. Main result. The empirical density at time t of particles of type c ∈ {1,2}
is defined by

μN
c (t) = 1

N

∑
i∈T N

c

δxN
i (t) ∈ M (T),

and then the empirical density at time t of the entire system can be written as

μ̃N(t) = (
μN

1 (t),μN
2 (t)

)† ∈ M (T)2.

Fix the final time T and let QN be the measure on C([0, T ],M (T)2) induced by
the process μ̃N(·). Then our goal is to characterize the limit point of {QN }∞N=1
as a Dirac measure on the unique solution of a certain partial differential equa-
tion (PDE). To specify the initial condition of the PDE, we assume that the initial
empirical density μ̃N(0) satisfies the law of large number in the sense that

(2.10) μ̃N(0) ⇀ ρ̃0(x) dx = (
ρ0

1(x) dx,ρ0
2(x) dx

)†
weakly in M (T)2 for some nonnegative initial density functions ρ0

1 and ρ0
2 . By

pairing this weak convergence with the constant function 1, we derive |T N
c | =

N(ρc + oN(1)) where ρc = ∫
T ρ0

c (x) dx is the average density of type c.
We explain several technical assumptions to obtain the result in a concrete

form. The standard Sobolev space on T is denoted by Wk,p(T), and let Hk(T) =
Wk,2(T). The following assumptions are required in the investigation of the
uniqueness result in Section 4. The results in Section 3 are valid without these
assumptions.

ASSUMPTION 2.1. The function ρ̃0(·) belongs to W 1,p(T)2 for some p > 2.

ASSUMPTION 2.2. The function ρ̃0(·) belongs to H2(T)2, and satisfies∥∥ρ0
1(·) − ρ1

∥∥
H2(T) + ∥∥ρ0

2(·) − ρ2
∥∥
H2(T) < ε

for some sufficiently small constant ε = ε(λ,σ1, σ2) > 0. This constant is ex-
plained at the end of Section 4.3.

In addition, we also assume that the initial particle configuration satisfies the
following entropy condition [12, 32].
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ASSUMPTION 2.3. The distribution of initial configuration xN(0) is abso-
lutely continuous with respect to the Lebesgue measure dx, and the probability
density function f 0

N(·) of xN(0) satisfies

(2.11)
∫
GN

f 0
N(x) logf 0

N(x) dx ≤ CN ∀N ∈ N,

for some constant C > 0 independent of N .

This assumption enables us to control the entropy production in Section 3.2 and
is required in the proof of the tightness of {QN }∞N=1 in Section 3. Remark that the
i.i.d . configuration satisfies Assumption 2.3.

In this paper, we are interested in the symmetric case, that is, λ1,2 = λ2,1 only.
Thus, for the sake of convenience, we shall normalize

(2.12) λ1,2 = λ2,1 = λσ 2
1 σ 2

2 .

In particular, we are concerned with the asymptotic behavior of the empirical den-
sity μ̃N(·), which is not affected by the switching of the labels between particles
of the same type. Hence, the interactions among the particles of same type cer-
tainly do not affect μ̃N(·) and in turn, neither the assumptions nor the conclusion
are influenced even if we assume that the self-interaction parameters λ1,1 and λ2,2

satisfy

(2.13) λ1,1 = λσ 4
1 , λ2,2 = λσ 4

2 .

We emphasize that all the results obtained in this article are remaining in force for
systems with any interacting parameters, λ1,1, λ2,2 > 0. Finally, we can write the
interaction parameter between xN

i (·) and xN
j (·) by λσ 2

c(i)σ
2
c(j), under the notation

(2.12) and (2.13).
The following theorem is the main result.

THEOREM 2.1. Under Assumption 2.3, the family of probability measures
{QN }∞N=1 is tight and any of its limit point is concentrated on the trajectory of the
form (ρ1(·, x) dx,ρ2(·, x) dx)†, where (ρ1, ρ2)

† is a weak solution of the equation

(2.14)
∂

∂t

(
ρ1
ρ2

)
= 1

2
∇ ·

[
D(ρ1, ρ2)∇

(
ρ1
ρ2

)]
; t ∈ [0, T ]

with initial condition ρ̃0(·) = (ρ0
1(·), ρ0

2(·))†, and the cross-diffusion matrix D(·, ·)
is given by

(2.15) D(ρ1, ρ2) = 1

λ + ρ1
σ 2

1
+ ρ2

σ 2
2

(
ρ1 + λσ 2

1 ρ1

ρ2 ρ2 + λσ 2
2

)
.
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Furthermore:

1. (Local result). Under Assumption 2.1, there exists t+(ρ̃0) > 0 such that
equation (2.14) has a unique weak solution in [0, t+(ρ̃0)). Therefore, {QN }∞N=1
converges weakly to the Dirac mass concentrated on this unique solution if
T ≤ t+(ρ̃0).

2. (Global result). Under Assumption 2.2, the weak solution of equation (2.14)
is unique for any T > 0. Hence, {QN }∞N=1 converges weakly to the Dirac mass
concentrated on this unique solution.

We now briefly explain the main feature of the model which enables us to com-
pute the hydrodynamic limit with the explicit diffusion coefficient (2.15). We first
review the model with σ1 = σ2 = 1, which is the one-component, two-color system
considered in [27]. In general, the two-color interacting particle system is nongra-
dient in the sense of [32], and this property makes the analysis of hydrodynamic
limit a complicated project. The robust non-gradient method has been developed
by Varadhan [32], and its application to the two-color SSEP was achieved by Quas-
tel [24]. For the detailed discussion on the nongradient method, we refer to [20],
Chapter 7.

The one-component LIBM is verified to be a nongradient system. Define
〈μ,f 〉 = ∫

T f dμ. Then the so-called density field for type c ∈ {1,2} correspond-
ing to the function g ∈ C1(T) is defined by 〈μN

c (t), g〉. Then, by (2.8), we can
observe that 〈μN

c (t), g〉 − 〈μN
c (0), g〉 is equal to

1

N

∑
i∈T N

1

∫ t

0
g′(xN

i (s)
) · N ∑

k:k �=i

[
dAN

ik(s) − dAN
ki(s)

]+ Mt,

where Mt is a martingale. Hence, in view of (2.1) and (2.2), the current around the
particle xN

i (s) can be formally defined by

(2.16) g′(xN
i (s)

) · N ∑
k:k �=i

[
δ+
(
xN
k (s) − xN

i (s)
)− δ−

(
xN
i (s) − xN

k (s)
)]

,

where δ+ and δ− are right and left Dirac functions at 0, respectively. The LIMB
can be easily observed as a nongradient system in this expression. The applica-
tion of the nongradient method to the singular object, such as (2.16), became a
technically difficult issue. Furthermore, at the time when this paper was written,
the nongradient method could not be applied to the nongradient, diffusion-type
interacting particle system. For instance, the analysis of the two-color system of
interacting diffusions considered in [31] is an open problem. However, the LIBM
owns a particular feature, which enables us to derive the hydrodynamic limit with-
out appealing the non-gradient method. This feature is briefly explained below.

In [19], Kipnis and Varadhan reduced the investigation of the tagged particle
in a reversible interacting particle system to a central limit theorem for certain re-
versible Markov chains. We refer to [20], Chapter 6, for the detailed exposition
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of this topic. This central limit theorem is obvious if there exists a solution of
a certain Poisson equation of the form −Lf = V , for example, see [20], Chap-
ter 1, for details. The general methodology of [19] deals with the situation for
which this Poisson equation does not have a solution. The main feature of the
one-component LIBM is the explicit, simple solution in the corresponding Pois-
son equation. Hence, the argument of [19] is not required. Given this feature,
we can simplify the computation considerably and compute the diffusion coef-
ficient in an explicit form. Furthermore, this feature is also useful in the exam-
ination of the nonequilibrium tagged particle in [10]. More precisely, in [10],
Definition 8, a martingale zN

1 (t) is introduced and is constructed by using the
explicit solution of the Poisson equation. The martingale zN

1 (t) allows [10] and
[27] to detour the nongradient method. Although our model is two-component,
we introduce another form of martingale (3.12) in the computation of hydrody-
namic limits. This martingale enables us to compute the explicit diffusion coeffi-
cient (2.15).

3. Hydrodynamic limit. In this section, we prove Theorem 2.1. The unique-
ness issue pertaining to equation (2.14) is discussed in the next section.

3.1. Green’s formula for GN . We briefly review Green’s formula for GN . Al-
though the current paper is self-contained, we refer to [27], Section 2.2, for detailed
explanation.

Fix a function u ∈ C(GN) and a smooth vector field V on GN . Recall that
the boundary ∂GN can be expressed as

⋃
i �=j Fij . Note that the normal vector

to Fij is (ei − ej )/
√

2 where ei represents the ith standard normal vector. The
Lebesgue measure on the surface Fij = {x : xi = xj }, which is denoted by dSij (x),
is normalized to have a total measure of 1. Then Green’s formula for GN implies
that ∫

GN

∇u(x) · V(x) dx = −
∫
GN

u(x)(∇ · V)(x) dx

(3.1)
+∑

i �=j

∫
Fij

uij (x)
[
V(x) · (ei − ej )

]
dSij (x).

Note that factor 1/
√

2 disappeared because of the renormalization of the measure
dSij on Fij . This formula will be used frequently hereafter.

3.2. Entropy production. Since the invariant measure for LN is dx, the cor-
responding Dirichlet form is defined by DN(f ) = ∫

GN
f (x)(−LNf )(x) dx for

f ∈ C(GN). For nonnegative function f ∈ C(GN) define DN(f ) = DN(
√

f ).
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Then it is easy to verify that

DN(f ) =
N∑

i=1

∫
GN

σ 2
c(i)

8

(∂if )2

f
dx

(3.2)

+∑
i �=j

λNσ 2
c(i)σ

2
c(j)

2

∫
Fij

(
√

fij −
√

fji)
2 dSij (x).

Denote by fN(t, ·) the marginal density of xN(·) at time t with respect to dx. Then
the entropy at time t is defined by

HN(t) =
∫
GN

fN(t,x) logfN(t,x) dx.

PROPOSITION 3.1. We have that d
dt

HN(t) ≤ −4DN(fN(t, ·)).

PROOF. Since the function fN solves the equation ∂tfN = (1/2)
fN on GN ,
and satisfies the boundary condition Bij fN ≡ 0 on Fij for all i �= j , we obtain

d

dt
HN(t) =

∫
GN

∂tfN(t,x) logfN(t,x) dx

(3.3)
=
∫
GN


fN(t,x) logfN(t,x) dx.

Hence, by (3.1) with u(x) = logfN(t,x) and V(x) = ∇fN(t,x), we can rewrite
(d/dt)HN(t) as

−
N∑

i=1

∫
GN

σ 2
c(i)

2

|∂ifN(t,x)|2
fN(t,x)

dx

−∑
i �=j

λNσ 2
c(i)σ

2
c(j)

2

∫
Fij

(
(fN)ij − (fN)ji

)
log

(fN)ij

(fN)ji

(t,x) dSij (x).

The proof is completed by the elementary inequality

(a − b) log(a/b) ≥ 4(
√

a − √
b)2. �

For t1 < t2, define f
[t1,t2]
N (x) = (t2 − t1)

−1 ∫ t2
t1

fN(t,x) dt , and denote f
[0,T ]
N

simply by f N .

COROLLARY 3.1. For all 0 ≤ t1 < t2 ≤ T , we have that

DN

(
f

[t1,t2]
N

)≤ CN/(t2 − t1),

where the constant C does not depend on t1, t2 and N .
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PROOF. By the convexity of the Dirichlet form,

DN

(
f

[t1,t2]
N

)≤ 1

t2 − t1

∫ t2

t1

DN

(
fN(t, ·))dt.

By Proposition 3.1 and Assumption 2.3, the right-hand side of the above inequality
is bounded above by

− 1

4(t2 − t1)

∫ t2

t1

d

dt
HN(t) dt = HN(t1) − HN(t2)

4(t2 − t1)
≤ HN(0)

4(t2 − t1)
≤ CN

t2 − t1
. �

3.3. Tightness. Denote by P
eq
N the equilibrium process starting from the in-

variant measure dx. We recall the following Dirichlet form for the one-component
system [27] with the interaction parameter λ > 0:

(3.4) D̃N(f ) = 1

8

N∑
i=1

∫
GN

(∂if )2

f
dx + λN

2

∑
i �=j

∫
Fij

(
√

fij −
√

fji)
2 dSij (x).

Note that this Dirichlet form is equivalent to that in our study in the sense that

(3.5) C1DN(f ) ≤ D̃N(f ) ≤ C2DN(f ),

where C1 > 0 and C2 > 0 are constants that depend only on σ1 and σ2. In [27],
Proposition 3.4, the exponential tightness of the one-component LIBM in equilib-
rium has been developed, and the proof therein is entirely based on the estimates
in terms of the Dirichlet form D̃N(·). Accordingly, all the arguments are still valid
for our model through equivalence (3.5). In this manner, we obtain the following
tightness result for the equilibrium processes.

PROPOSITION 3.2. For all ε,α > 0,

lim sup
δ→0

lim sup
N→∞

1

N
logPeq

N

[∣∣∣{i : sup
0≤s,t≤T

|s−t |≤δ

∣∣xN
i (t) − xN

i (s)
∣∣≥ ε

}∣∣∣≥ Nα
]
= −∞.

This super-exponential estimate for the equilibrium processes allows us to de-
velop the tightness of the nonequilibrium processes PN , as follows.

COROLLARY 3.2. For all ε,α > 0,

(3.6) lim sup
δ→0

lim sup
N→∞

PN

[∣∣∣{i : sup
0≤s,t≤T

|s−t |≤δ

∣∣xN
i (t) − xN

i (s)
∣∣≥ ε

}∣∣∣≥ Nα
]
= 0.

In particular, {QN }∞N=1 is a tight family in C([0, T ],M (T)2).
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PROOF. Denote by EN,δ,ε,α the event inside the bracket of (3.6). By [18],
Proposition 8.2 of Appendix 1, and by Assumption 2.3,

(3.7) PN [EN,δ,ε,α] ≤ 2 + H [PN |Peq
N ]

log(1 + P
eq
N [EN,δ,ε,α]−1)

≤ 2 + CN

− logPeq
N [EN,δ,ε,α] .

Hence, (3.6) is a consequence of Proposition 3.2.
We next prove the tightness of {QN }∞N=1. It suffices to demonstrate that, for

ε > 0 and c ∈ {1,2},
lim
δ→0

lim sup
N→∞

PN

[
sup

0≤s,t≤T ,|s−t |≤δ

1

N

∑
i∈T N

c

∣∣xN
i (t) − xN

i (s)
∣∣≥ ε

]
= 0.

This estimate follows from (3.6), since the last probability is bounded above by

PN

[∣∣∣{i : sup
0≤s,t≤T ,|s−t |≤δ

∣∣xN
i (t) − xN

i (s)
∣∣≥ ε/2

}∣∣∣≥ Nε/2
]
.

�

3.4. Energy estimate. We now establish an energy estimate. Let ρ = ρ1 + ρ2.

PROPOSITION 3.3. Suppose that Q∞ is a weak limit of {QN }∞N=1. Then Q∞
is concentrated on the trajectory of the form (ρ1(·, x) dx,ρ2(·, x) dx)† for some
ρ1, ρ2 ∈ L2([0, T ] ×T), which are weakly differentiable in x, and satisfy

(3.8)
∫ T

0

∫
T

ρ2
x(t, x)

ρ(t, x)
dx dt < ∞.

PROOF. We claim first that all the conclusions of proposition follow from the
following estimate for all φ ∈ C0,1([0, T ] ×T):

(3.9) EN

[∫ T

0

1

N

N∑
i=1

φ′(xN
i (t)

)
dt

]
≤ CEN

[∫ T

0

1

N

N∑
i=1

φ2(xN
i (t)

)
dt

]1/2

.

Indeed, it is standard, for example, [18], Section 5.7, that (3.9) implies that ρ is
not only absolutely continuous with respect to the Lebesgue measure but also has
a weak derivative ρx that satisfies (3.8). By [27], Lemma 4.3, this energy estimate
implies ρ ∈ L2([0, T ] ×T) and accordingly ρ1, ρ2 ∈ L2([0, T ] ×T).

We now prove (3.9). By (3.1) with u(x) = φ(x1) + · · · + φ(xN) and V =
(f N, . . . , f N), the left-hand side of (3.9) becomes

(3.10)
T

N

∫
GN

N∑
i=1

φ′(xi)f N(x) dx = − T

N

∫
GN

N∑
i=1

φ(xi)(∂if N)(x) dx.

By Cauchy–Schwarz’s inequality, the right-hand side of (3.10) is bounded above
by

(3.11)
T

N

[∫
GN

N∑
i=1

φ2(xi)f N(x) dx
∫
GN

N∑
i=1

(∂if N)2(x)

f N(x)
dx

]1/2

.

Thus, (3.9) follows from Corollary 3.1. �
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3.5. Auxiliary martingales. Recall the average density ρc = ∫
T ρ0

c (x) dx, c ∈
{1,2}, and define a constant by

α =
(
λ + ρ1

σ 2
1

+ ρ2

σ 2
2

)−1
.

Define ν(x) = x, x ∈ [0,1) and regard ν(·) as a discontinuous function on T. The
process zN

k (t), 1 ≤ k ≤ N , is defined by

(3.12) zN
k (t) = xN

k (t) + α

N

N∑
i=1

1

σ 2
c(i)

ν
(
xN
i (t) − xN

k (t)
)
.

We claim that zN
k (t)− zN

k (0) is a martingale with respect to the filtration {Ft : 0 ≤
t ≤ T }. To demonstrate this, define a function rN,k : GN →R by

(3.13) rN,k(x) = xk + α

N

∑
i:i �=k

1

σ 2
c(i)

ν(xi − xk).

Since rN,k is a linear function on GN , it is obvious that ∂2
i rN,k ≡ 0 on GN for all

1 ≤ i ≤ N , and it is also straightforward to check that Bij rN,k ≡ 0 on Fij for all
1 ≤ i �= j ≤ N . Hence, by (2.8), zN

k (t) − zN
k (0) = rN,k(xN(t)) − rN,k(xN(0)) is a

martingale. Moreover, by (2.9), this martingale can be written as

zN
k (t) − zN

k (0) = αλσc(k)βk(t) + α

N

N∑
i=1

1

σc(i)

βi(t)

(3.14)

+ α

N

∑
i:i �=k

1

σ 2
c(i)

[
MN

ik (t) − MN
ki (t)

]
.

For 1 ≤ i ≤ N and c ∈ {1,2}, define the averaged local time AN
i,c(t) by

(3.15) AN
i,c(t) = 1

N

∑
j∈T N

c \{i}

[
AN

ij (t) + AN
ji(t)

]
.

Then the quadratic variation of the martingale zN
k (t) − zN

k (0) can be written as

(3.16)
〈
zN
k , zN

k

〉
t = λα2σ 2

c(k)

[
λt + 1

σ 2
1

AN
k,1(t) + 1

σ 2
2

AN
k,2(t)

]
+ O

(
N−1)t.

3.6. Mollification of local times. In the derivation of the hydrodynamic limit
in the spirit of [12, 32], the evolution of the density field must be analyzed and the
major technical issue in this investigation is the approximation of the interaction
terms by a function of the empirical density. This step is known as the replacement
lemma, and we refer to [18], Section 5, for the detailed exposition. In the context of
this work, this interaction term is J2 in (3.32) and, therefore, in view of (3.16), we
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must replace AN
i,c(t) with a function of the density field. To this end, we introduce

the local density of particle configuration. Fix ε > 0 and let ιε = (2ε)−11[−ε,ε] be
a function on T. Then, for x ∈ GN , we define the local density of type c ∈ {1,2}
around xi , 1 ≤ i ≤ N , by

(3.17) ρ
N,ε
i,c (x) = 1

N

∑
j∈T N

c

ιε(xj − xi).

In view of (2.2), the local density ρ
N,ε
i,c (x) is the natural candidate for the required

replacement, and the corresponding approximation can be formally stated as fol-
lows.

THEOREM 3.1. For all c1, c2 ∈ {1,2}, δ > 0, 0 ≤ t1 < t2 ≤ T , and h(·, ·) ∈
C1([0, T ] ×T), we have that

lim sup
ε→0

lim sup
N→∞

PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

∫ T

0
h
(
t, zN

i (t)
)[

dAN
i,c2

(t) − ρ
N,ε
i,c2

(
xN(t)

)
dt
]∣∣∣∣> δ

]

= 0.

We now prove this theorem by several steps. Define

PN =
{
f ∈ C(GN) :

∫
GN

f (x) dx = 1
}
,

and for ε > 0 and 1 ≤ i ≤ N , define

Mε,i(x) = ∑
j :j �=i

1[−ε,ε](xj − xi).

The following lemma was proven in [27], Lemmata 2.6, 2.7 and 2.10.

LEMMA 3.1. For f ∈ PN and ε ∈ (0,1/4), we have that

1

N2

N∑
i=1

∫
GN

f (x)Mε,i(x) dx ≤ Cε
[
1 + (

D̃N(f )/N
)1/2]

,

1

N2

N∑
i=1

∫
GN

∣∣(∂if )(x)
∣∣Mε,i(x) dx ≤ Cε1/2[1 + (

D̃N(f )/N
)3/4]

,

and finally,

1

N2

∑
i �=j

∫
Fij

∣∣fij (x) − fji(x)
∣∣Mε,i(x) dSij (x)

≤ C
(
ε1/4 + N−1/2)[1 + (

D̃N(f )/N
)7/8]

.

Furthermore, these estimates are still valid if we replace D̃N with DN .
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The proof of these estimates are entirely based on Green’s formula (3.1), and
we refer to [27], Section 2.2, for the detailed proofs of these estimates. Note that
we can replace D̃N with DN because of (3.5).

Let zk = rN,k(x), 1 ≤ k ≤ N , where rN,k is defined in (3.13). The following
lemma is a generalization of [27], Proposition 2.11.

LEMMA 3.2. For all f ∈ PN , h ∈ C1(T) and 0 < ε < 1
4 , we have that

1

N2

∑
i �=j

∣∣∣∣∫
GN

h(zi)f (x)ιε(xj − xi) dx − 1

2

∫
Fij

h(zi)(fij + fji)(x) dSij (x)

∣∣∣∣
(3.18)

≤ C
(
1 + [

DN(f )/N
] 7

8
)(

ε
1
4 + N− 1

2
)

for some constant C = C(h) > 0 that only depends on h.

PROOF. Define a function gε on [0,1) by

gε(x) =
(

x

2ε
− 1

2

)
1[0,ε](x) +

(
x − 1

2ε
+ 1

2

)
1[1−ε,1)(x)

and regard gε as a discontinuous function on T. Fix i �= j and define a vector field
Vij (x) = h(zi)gε(xi − xj )ej which is continuous on GN . Fix f ∈ PN . By (3.1)
with u = f , and V = Vij , we obtain

(3.19)
∫
GN

(∂jf )(x)
[
h(zi)gε(xi − xj )

]
dx = K

(1)
ij + K

(2)
ij ,

where

K
(1)
ij =

∫
GN

f (x)∂j

[
h(zi)gε(xi − xj )

]
dx,

K
(2)
ij =

∫
Fji

fji(x)h(zi)gε(xi − xj ) dSji(x) −
∫
Fij

fij (x)h(zi)gε(xi − xj ) dSij (x)

+ ∑
k:k �=i,j

[∫
Fjk

fjk(x)h(zi)gε(xi − xj ) dSjk(x)

−
∫
Fkj

fkj (x)h(zi)gε(xi − xj ) dSkj (x)

]
.

Note that K
(1)
ij and K

(2)
ij correspond to the first and second terms of the right-hand

side of (3.1), respectively. By simple computations, we deduce

(3.20) K
(1)
ij =

∫
GN

f (x)

[
α

Nσ 2
c(j)

h′(zi)gε(xi − xj ) + h(zi)ιε(xi − xj )

]
dx.
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Since gε(xi − xj ) = 1
2 on Fij and −1

2 on Fji , and since h(zi)gε(xi − xj ) has same

value on Fjk and Fkj for k �= i, j , we can simplify K
(2)
ij to

K
(2)
ij = −1

2

∫
Fij

h(zi)
(
fij (x) + fji(x)

)
dSij (x)

(3.21)

+ ∑
k:k �=i,j

[∫
Fjk

(
fjk(x) − fkj (x)

)
h(zi)gε(xi − xj ) dSjk(x)

]
.

By (3.19), (3.20), (3.21) and by an elementary inequality |gε| ≤ 1
2χε , we can bound

the left-hand side of (3.18) by

C(h)

N2

N∑
i=1

∫
GN

∣∣∂if (x)
∣∣Mε,i(x) dx + C

N3

N∑
i=1

∫
GN

f (x)Mε,i(x) dx

+ C(h)

N2

∑
i �=j

∫
Fjk

∣∣fij (x) − fij (x)
∣∣Mε,i(x) dSij (x).

The proof is completed by Lemma 3.1. �

Based on the previous lemma, we obtain the following super-exponential esti-
mate for the equilibrium process.

PROPOSITION 3.4. For all c1, c2 ∈ {1,2}, δ > 0, 0 ≤ t1 < t2 ≤ T , and h ∈
C1(T), we have that

lim sup
ε→0

lim sup
N→∞

1

N
logPeq

N

[∣∣∣∣ 1

N

∑
i∈T N

c1

∫ t2

t1

h
(
zN
i (t)

)[
dAN

i,c2
(t)

− ρ
N,ε
i,c2

(
xN(t)

)
dt
]∣∣∣∣> δ

]
(3.22)

= −∞.

PROOF. Denote simply by E(N,h, ε, δ) the event inside the bracket of (3.22).
By Chebyshev’s inequality, for any a > 0,

1

N
logPeq

N

[
E(N,h, ε, δ)

]
≤ −aδ + 1

N
logEeq

N exp
{
a
∑

i∈T N
c1

∣∣∣∣∫ t2

t1

h
(
zN
i (t)

)[
dAN

i,c2
(t)(3.23)

− ρ
N,ε
i,c2

(
xN(t)

)
dt
]∣∣∣∣}.
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Let

EN = {
e = (e1, e2, . . . , eN) : ei = ±1 ∀1 ≤ i ≤ N

}
.

By the inequality e|x| ≤ ex + e−x and Feynman–Kac’s formula, we can bound the
last expectation by∑

e∈EN

E
eq
N exp

{
a
∑

i∈T N
c1

ei

∫ t2

t1

h
(
zN
i (t)

)[
dAN

i,c2
(t) − ρ

N,ε
i,c2

(
xN(t)

)
dt
]}

(3.24)
≤ ∑

e∈EN

exp
{
(t2 − t1)λh,N,ε,a,e

}
,

where λh,N,ε,a,e, e = (e1, . . . , eN) ∈ EN , is the largest eigenvalue of the operator

LN + a

N

∑
i∈T N

c1
,j∈T N

c2

eih(zi)
{
ιε(xj − xi) − δ(xj − xi)

}
.

Assume now that, for all e ∈ EN ,

(3.25) λh,N,ε,a,e ≤ CN
[
a
(
ε

1
4 + N− 1

2
)+ a8(ε 1

4 + N− 1
2
)8]

for some constant C which depends only on h. Then we can deduce from (3.23),
(3.24) and (3.25) that

1

N
logPeq

N

[
E(N,h, ε, δ)

]
≤ −aδ + log 2 + [

a
(
ε

1
4 + N− 1

2
)+ a8(ε 1

4 + N− 1
2
)8]

and, therefore, the left-hand side of (3.22) is bounded above by −aδ + log 2. This
completes the proof since a is an arbitrary positive number. Thus, the proof of
proposition is reduced to the verification of (3.25). To this end, recall (cf. [18],
Section 7) that the variational formula for λh,N,ε,a,e is supf ∈PN

of

−DN(f ) + a

N

∑
i∈T N

c1
,j∈T N

c2

ei

[∫
GN

h(zi)f (x)ιε(xj − xi) dx

− 1

2

∫
Fij

h(zi)
(
fij (x) + fji(x)

)
dSij (x)

]
.

By Lemma 3.2, we can bound this expression above by

N
[−(DN(f )/N

)+ Ca
(
1 + [

DN(f )/N
] 7

8
)(

ε
1
4 + N− 1

2
)]

.

Hence, we can prove (3.25) by an elementary inequality a7/8b − a ≤ (7b/8)8 for
a, b > 0. �

By the argument presented in (3.7), we obtain the following corollary. Notice
that the test function h depends only on the spatial variable.
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COROLLARY 3.3. For all c1, c2 ∈ {1,2}, δ > 0, 0 ≤ t1 < t2 ≤ T , and h ∈
C1(T),

lim sup
ε→0

lim sup
N→∞

PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

∫ t2

t1

h
(
zN
i (t)

)[
dAN

i,c2
(t) − ρ

N,ε
i,c2

(
xN(t)

)
dt
]∣∣∣∣> δ

]
= 0.

We now prove Theorem 3.1.

PROOF OF THEOREM 3.1. For any η > 0, we can find a partition 0 = t0 <

t1 < · · · < tM+1 = T of [0, T ] so that the function

h̃(t, x) =
M∑
i=0

1[ti ,ti+1](t)h(ti, x)

satisfies ‖h̃ − h‖∞ < η. By Corollary 3.3, the statement of theorem holds for h̃.
Since η > 0 is arbitrary, it suffices to verify that

lim sup
M→∞

lim sup
N→∞

PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

AN
i,c2

(T )

∣∣∣∣> M

]
= 0,(3.26)

lim sup
M→∞

lim sup
ε→0

lim sup
N→∞

PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

∫ T

0
ρ

N,ε
i,c2

(
xN(t)

)
dt

∣∣∣∣> M

]
= 0.(3.27)

For (3.26), it is enough to prove that

(3.28) EN

[
1

N2

∑
i �=j

AN
ij (t)

]
≤ C

for some constant C depending only on T . Note that the last expectation can be
written as

(3.29)
t

N2

∑
i �=j

∫
Fij

(
f̄

[0,t]
N

)
ij (x) dSij (x).

By [27], Lemma 2.5, this term is bounded by [2 +
√

8N−1D̃N(f̄
[0,t]
N )]t . Hence the

proof of (3.28) can be completed by (3.5) and Corollary 3.1.
For (3.27), observe first that

PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

∫ T

0
ρ

N,ε
i,c2

(
xN(t)

)
dt

∣∣∣∣> M

]

≤ PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

AN
i,c2

(T )

∣∣∣∣> M

2

]

+ PN

[∣∣∣∣ 1

N

∑
i∈T N

c1

(
AN

i,c2
(T ) −

∫ T

0
ρ

N,ε
i,c2

(
xN(t)

)
dt

)∣∣∣∣> M

2

]
.
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Then two probabilities can be controlled respectively by (3.26), and by Corol-
lary 3.3 with h ≡ 1, t1 = 0 and t2 = T , respectively. �

3.7. Proof of Theorem 2.1. In the one-component system, the limit of uncol-
ored empirical density is obtained by the solution of the heat equation. By similar
computation, we can derive the following lemma.

LEMMA 3.3. Let Q∞ be a weak limit of {QN }∞N=1. Then Q∞ is concentrated
on the trajectory of the form (ρ1(·, x) dx,ρ2(·, x) dx)†, where (ρ1, ρ2) weakly sat-
isfies

(3.30)
∂

∂t

[
ρ1(t, x)

σ 2
1

+ ρ2(t, x)

σ 2
2

]
= 1

2
ρxx(t, x).

PROOF. For any f ∈ C1,2([0, T ] ×T), by (2.8) and (2.9), we can check that

1

N

N∑
i=1

[
1

σ 2
c(i)

f
(
t, xN

i (t)
)− 1

σ 2
c(i)

f
(
0, xN

i (0)
)

(3.31)

−
∫ t

0

(
ft + 1

2
fxx

)(
s, xN

k (s)
)
ds

]
is a martingale, and can be expressed as

1

N

N∑
i=1

1

σc(i)

∫ t

0
fx

(
s, xN

i (s)
)
dβi(s) := Mf (t).

Since EN [M2
f (t)] = O(N−1), the expression (3.31) converges to 0 in probability

as N → ∞. This completes the proof. �

PROOF OF THEOREM 2.1. We start by applying Itô’s formula to the density
field of {zN

i (·)}i∈T N
1

. For f ∈ C1,2([0, T ] ×T), we can write

(3.32)
1

N

∑
i∈T N

1

[
f
(
t, zN

i (t)
)− f

(
0, zN

i (0)
)]= J1(t) + J2(t) + J3(t),

where

J1(t) = 1

N

∑
i∈T N

1

∫ t

0
ft

(
s, zN

i (s)
)
ds,

J2(t) = 1

2N

∑
i∈T N

1

∫ t

0
fxx

(
s, zN

i (s)
)
d
〈
zN
i , zN

i

〉
s,

J3(t) = 1

N

∑
i∈T N

1

∫ t

0
fx

(
s, zN

i (s)
)
dzN

i (s).
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We first demonstrate that the martingale J3(t) is negligible. By (3.14), (3.16) and
(3.28),

(3.33) EN

[
J 2

3 (t)
]≤ CN−1t + CN−1EN

[
N−2

∑
i �=j

AN
ij (t)

]
= O

(
N−1).

Thus, J3(t) is negligible by Doob’s inequality.
We now consider the quadratic variation part in J2(t). By (3.16) and Theo-

rem 3.1, we are able to approximate d〈zN
i , zN

i 〉s by

(3.34) λα2σ 2
c(i)

[
λ + μN

1 (s) ∗ ιε(x
N
i (s))

σ 2
1

+ μN
2 (s) ∗ ιε(x

N
i (s))

σ 2
2

]
ds.

For ρ1, ρ2 ∈ L2(T), define

F(t, x) = Fρ1,ρ2(t, x) = x + α

∫
T

ν(y − x)
(
ρ1/σ

2
1 + ρ2/σ

2
2
)
(t, y) dy.

Note that we can rewrite (3.12) as

zN
i (t) = xN

i (t) + (
α/σ 2

1
)〈
μN

1 (t), ν
(· − xN

i (t)
)〉

(3.35)
+ (

α/σ 2
2
)〈
μN

2 (t), ν
(· − xN

i (t)
)〉
.

If we replace μN
c (t), c ∈ {1,2}, with ρc(t, x) dx, then the right-hand side be-

comes F(t, xN
i (t)). By combining this observation, (3.32), (3.33), (3.34), (3.35)

and Proposition 3.3, we can conclude that, for any δ > 0,

lim sup
ε→0

Q∞
[(

ρ1(·, x) dx,ρ2(·, x) dx
)† :∣∣∣∣∫

T
f
(
T ,F (T , x)

)
ρ1(T , x) dx −

∫
T

f
(
0,F (0, x)

)
ρ1(0, x) dx(3.36)

−
∫ T

0

∫
T

[
ft + λα2σ 2

1

2

(
λ + ρ1 ∗ ιε

σ 2
1

+ ρ2 ∗ ιε

σ 2
2

)
fxx

]
ρ1 dx ds

∣∣∣∣> δ

]
= 0,

where ft and fxx are evaluated at (s,F (s, x)), while ρc ∗ ιε = ρc(s, ·) ∗ ιε is eval-
uated at (s, x). By Proposition 3.3, we know that ρc ∗ ιε converges to ρc in L2 as
ε → 0 and, therefore, we obtain from (3.36) that

Q∞
[(

ρ1(·, x) dx,ρ2(·, x) dx
)† :∫

T
f
(
T ,F (T , x)

)
ρ1(T , x) dx −

∫
T

(
0,F (0, x)

)
ρ1(0, x) dx(3.37)

−
∫ T

0

∫
T

[
ft + λα2σ 2

1

2

(
λ + ρ1

σ 2
1

+ ρ2

σ 2
2

)
fxx

]
ρ1 dx ds = 0

]
= 0.
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As before, ft and fxx are evaluated at (s,F (s, x)), and ρ1 and ρ2 are evaluated
at (s, x). Now we wish to replace f (t,F (t, x)) with g(t, x) ∈ C1,2([0, T ] ×T) to
complete the derivation of equation (2.14). To this end, first observe that, for any
h ∈ L1(T),

d

dx

[∫
T

ν(y − x)h(y) dy

]
= h(x) −

∫
T

h(y) dy.

Hence, we can write Fx(t, x) = αU(t, x) where

U(t, x) = λ + ρ1(t, x)/σ 2
1 + ρ2(t, x)/σ 2

2 > λ > 0.

Thus, there exists the inverse function G(t, ·) of F(t, ·) so that F(t,G(t, x)) =
G(t,F (t, x)) = x for all t and x. Now we can insert f (t, x) = g(t,G(t, x)), which
implies f (t,F (t, x)) = g(t, x).

At this moment, we need that g ∈ C1,2, while our computations leading to (3.37)
requires f ∈ C1,2 and, therefore, we should have f,g ∈ C1,2 simultaneously. This
is guaranteed if ρ1, ρ2 ∈ C1,2. Hence, we first assume that ρ1, ρ2 are smooth x. For
this case, we can check Fxx = αUx and Ft = α

2 ρx where the latter follows from
Lemma 3.3. Hence, by elementary computations we can check

Gx(t, x) = 1

αU(t,F (t, x))
, Gxx(t, x) = − Ux(t,F (t, x))

α2U3(t,F (t, x))
,

and

Gt(t, x) = − ρx(t,F (t, x))

2U(t,F (t, x))
.

Finally, substitute f (t, x) in (3.37) by g(t,G(t, x)) to obtain

Q∞
[(

ρ1(·, x) dx,ρ2(·, x) dx
)† :∫

T
g(T , x)ρ1(T , x) dx −

∫
T

f (0, x)ρ1(0, x) dx(3.38)

−
∫ T

0

∫
T

[
gt − ρxU + λσ 2

1 Ux

2U2 gx + λσ 2
1

2U
gxx

]
ρ1 dx ds = 0

]
= 1.

This completes the proof when ρ1, ρ2 are smooth. For the general case, we mollify
ρ1, ρ2 by ρ1 ∗ φη, ρ2 ∗ φη with the smooth mollifier {φη}η>0 and then apply the
argument above to ρ1 ∗ φη, ρ2 ∗ φη. Ultimately, we allow η → 0 to obtain (3.38).
The precise argument of this procedure can be found in [27], Lemma 4.12.

In particular, (3.38) proves the first coordinate of (2.14), that is, the equation
for ρ1. The equation for ρ2 can be proven in an identical manner. Therefore, the
identification of limit points as the weak solution of (2.14) with initial condition
ρ̃0(x) is completed.

We postpone the discussion of the uniqueness of weak solution to the next sec-
tion. �
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4. Uniqueness.

4.1. Revisit: Two-color system. We start by considering the two-color system.
At the time when this paper was written, there existed three limit theorems for
the two-color system: SSEP [24], ZRP [7] and LIBM [27]. These three models
share the same form of hydrodynamic limit. The evolution of the limiting particle
densities ρ1, ρ2 of the two colors are obtained as the solution of the following PDE:

(4.1)
∂

∂t

(
ρ1
ρ2

)
= 1

2
∇ ·

⎡⎢⎣
⎛⎜⎝

ρ1

ρ
D(ρ) + ρ2

ρ
S(ρ)

ρ1

ρ

(
D(ρ) − S(ρ)

)
ρ2

ρ

(
D(ρ) − S(ρ)

) ρ2

ρ
D(ρ) + ρ1

ρ
S(ρ)

⎞⎟⎠∇
(
ρ1
ρ2

)⎤⎥⎦ .

We briefly explain this equation:

• ρ = ρ1 + ρ2 is the uncolored limiting density.
• D(ρ) is the bulk-diffusion coefficient, that is, ρ is the solution of

(4.2)
∂ρ

∂t
= 1

2
∇ · [D(ρ)∇ρ

]
.

We can also derive this equation from (4.1) by simply adding two equations in
(4.1). For instance, for the SSEP and the LIBM, D(ρ) ≡ 1, so that equation (4.2)
becomes the heat equation. That is because the nature of interaction is reflection.
For the ZRP, D(ρ) is not a constant function and we refer to [18], Section 5, for
details.

• S(ρ) is the self-diffusion coefficient in the equilibrium with density ρ. The
closed form of the self-diffusion coefficient is known only for LIBM [9] and
ZRP [7]. In particular, for the LIBM, S(ρ) = λ

λ+ρ
where λ is the interaction

parameter. The closed form is not known for the SSEP but the regularity of S(·)
has been established in [22].

This kind of universality is an interesting feature of the theory of interacting parti-
cle systems. In particular, we can derive the nonequilibrium behavior of the tagged
particles, the so-called propagation of chaos [25], from the limit theorem for two-
color system. We emphasize here that the uniqueness of equation (4.1) is not a
significant issue. This becomes obvious when we substitute ρ2 = ρ − ρ1 in the
first equation of (4.1) to obtain

(4.3)
∂ρ1

∂t
= 1

2
∇ ·

[
S(ρ)∇ρ1 + (D(ρ) − S(ρ))∇ρ

ρ
ρ1

]
.

Given that ρ is the solution of the master equation (4.2), we can simply regard
(4.3) as a linear parabolic PDE. Thus, under appropriate initial conditions and the
nondegeneracy of S(·), the uniqueness is automatically guaranteed.

REMARK 4.1. We can observe an interesting property of the particle system
from (4.2) and (4.3); the bulk evolution of particles of specific color is not governed
by the bulk-diffusion coefficient D(·) but by the self-diffusion coefficient S(·) only.
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REMARK 4.2. An m-color system with m ≥ 3 produce exactly the same re-
sult; (4.3) does not depend on the number of colors we used.

Now we consider equation (2.14) for the two-component system. In this case,
due to the inhomogeneity of diffusivity of particles, the master equation (3.30),
which corresponds to (4.2) for homogeneous system, cannot be solved by itself.
Accordingly, an iterative strategy for solving the two-color system is unavailable
and instead, we have to confront the system of equation (2.14) in a direct manner.
Remark that the quasi-linear parabolic equation of the form (2.14) is known as a
cross-diffusion equation.

4.2. Uniqueness. The general theory for a cross-diffusion equation was thor-
oughly explained in [1]. In this section, we use this general theory to develop the
local uniqueness of (2.14).

Let us consider an n-dimensional quasi-linear equation

(4.4) ∂tu = div · [A(u)∇u
]
,

where u(·) is an n-dimensional vector function and A(·) is an n × n matrix func-
tional. In most physical situations of multi-component diffusive flow (e.g., [1, 3,
9, 16, 28] and models therein) the diffusion matrix A(u) is neither symmetric nor
positive semi-definite. Instead, it becomes evident that the physically relevant con-
dition for A(u) is the normal ellipticity. More precisely, a square matrix M is called
normally elliptic if all of its eigenvalues have a positive real part. Equation (4.4)
is considered normally elliptic if A(u) is normally elliptic for all u. The normally
elliptic parabolic equations differ intrinsically from the uniformly elliptic one. In
particular, in [30], examples of normally elliptic equations without the maximum
principle or even worse than that, equations that blow up in finite time, were sug-
gested. In experimental physics (cf. [4]), this behavior of multi-component system
has also been verified.

The normally elliptic equation has been analyzed in [1], in which the local ex-
istence and the uniqueness of solution were obtained. In particular, the following
theorem is a direct consequence of [1], Theorems 14.4, 14.6 and 15.1.

THEOREM 4.1. Suppose that a function ρ̃0 satisfies Assumption 2.1. Then
there exists t+(ρ̃0) > 0 such that equation (2.14) has a unique weak nonnegative
solution (ρ1, ρ2)

† provided that T < t+(ρ̃0).

PROOF. The normal ellipticity of D(ρ1, ρ2) of (2.15) is obvious since both
of its trace and determinant are positive. We note here that the condition ρ̃0 ∈
W1,p(T)2 for some p > 2 of Assumption 2.1 is used here for satisfying the re-
quirement of [1], Theorem 14.4. �

This theorem proves part (1) of Theorem 2.1. As we can anticipate from the pe-
culiar behavior of the solution of certain examples in [30], the analysis of equation



2060 I. SEO

(4.4) is more delicate than the analysis of usual parabolic equations. In particu-
lar, the general theory established in [1], Theorem 14.4, requires a priori bound
of supt≥0 ‖ρ̃(t, ·)‖Wk,p

for some k and p to achieve the global uniqueness result.
This bound for our model would be very difficult to obtain. We also stress here that
the reference [30] demonstrate a counterexample for which the global uniqueness
does not hold.

4.3. The Maxwell–Stefan equation. Equation (2.14) is not only an normally
elliptic equation but also has some underlying physical structures, which may
hopefully be exploited to develop a more concrete result than what we obtained in
the previous section. In fact, in addition to the normal ellipticity, we observed that
(2.14) is equivalent to the well-known Maxwell–Stefan equation [23]. We intro-
duce the Maxwell–Stefan equation and refer to [2, 15, 16] for detailed exposition
of this equation. In particular, [2] contains the physical derivation of the equation.
Our outline follows mostly that of [16].

In principle, the Maxwell–Stefan equation describes the diffusive behavior of
multi-component gaseous mixtures. Consider a system consisting of n components
and ui , 1 ≤ i ≤ n, denotes the molar concentration of the ith component. We as-
sume

∑n
i=1 ui ≡ 1 so that the dimension of equation is n−1. Denote by Ji the flux

of the ith component, and assume
∑n

i=1 Ji ≡ 0. Finally, Dij = Dji > 0, i �= j , rep-
resents the constant binary diffusion coefficient between ith and j th components.
Then the Maxwell–Stefan equation is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ui

∂t
= −∇ · Ji,

∇ui = − ∑
j :j �=i

ujJi − uiJj

Dij

,
i = 1,2, . . . , n.(4.5)

Note that, at least in principle, we can recover (J1, . . . , Jn) as a function of
(u1, . . . , un) from the second equation, and by inserting this result into the first
equation, we can derive an equation for (u1, . . . , un). This procedure can be explic-
itly carried out for the ternary system, that is, n = 3. For this case, by the elemen-
tary computation that we explained previously, it can be shown that u = (u1, u2)

(recall that u3 = 1 − u1 − u2) satisfies (4.4) with the cross diffusion matrix

(4.6) A(u1, u2) = 1

f (u1, u2)

(
D23 + (D12 − D23)u1 (D12 − D13)u1

(D12 − D23)u2 D13 + (D12 − D13)u2

)
,

where

(4.7) f (u1, u2) = D13D23 + D13(D12 − D23)u1 + D23(D12 − D13)u2.

This kind of simple derivation procedure is invalid for n ≥ 4; see [15], Section 2,
for details.

The equation (2.14) is equivalent to the ternary Maxwell–Stefan equation de-
scribed previously under the condition that D12 > D13,D23. To this end, first, for
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the given ternary Maxwell–Stefan equation, let k > 0 be an arbitrary real number
and let

ρ1 = kD13(D12 − D23)u1, ρ2 = kD23(D12 − D13)u2,
(4.8)

σ 2
1 = D−1

13 , σ 2
2 = D−1

23 and λ = kD13D23.

Then ρ1 and ρ2 can be easily verified to satisfy equation (2.14). On the other hand,
for the given hydrodynamic limit equation (2.14), let D12 be any number larger
than max{σ−2

1 , σ−2
2 }, and let

u1 = [
λ
(
σ 2

2 D12 − 1
)]−1

ρ1, u2 = [
λ
(
σ 2

1 D12 − 1
)]−1

ρ2,
(4.9)

D13 = σ−2
1 , D23 = σ−2

2 .

Then u1 and u2 can be observed to satisfy the ternary Maxwell–Stefan equation.
Owing to the multi-component nature of our model, this equivalence is quite natu-
ral. Hence, we can reduce the uniqueness problem of equation (2.14) to that of the
Maxwell–Stefan equation.

An important feature of the Maxwell–Stefan equation is its entropy structure
as a consequence of the Onsager reciprocity. More precisely, the diffusion matrix
(4.6) can be written as A(·, ·) = K(·, ·)χ(·, ·) where χ is the Hessian of entropy
functional, and K is a positive-definite and symmetric matrix. The normal ellip-
ticity of the diffusion matrix naturally follows from this structure. Recently, the
cross-diffusion equations under the presence of the entropy structure have been
investigated by several articles. For instance, the global existence of the weak
solution and its exponential decay to the steady state is proven in [16], and the
boundedness of this global solution is established in [15]. However, the global
uniqueness of with a general initial condition is known to be a delicate problem
(cf. [15], Section 6), and the global uniqueness of the Maxwell–Stefan equation
for a general class of initial conditions is an open problem. At the time when this
paper is written, the global uniqueness of the Maxwell–Stefan equation is known
only for the near-equilibrium case by [17]. In our context, this result can be stated
in the following manner.

THEOREM 4.2. Under Assumption 2.2, there exists a unique global weak so-
lution of (2.14).

The proof along with the nontrivial way to derive the constant ε(λ,σ1, σ2) is
summarized in [2], Section 9.4. This proves the part (2) of Theorem 2.1.
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