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A VARIATIONAL APPROACH TO DISSIPATIVE SPDES WITH
SINGULAR DRIFT1

BY CARLO MARINELLI AND LUCA SCARPA

University College London

We prove global well-posedness for a class of dissipative semilinear
stochastic evolution equations with singular drift and multiplicative Wiener
noise. In particular, the nonlinear term in the drift is the superposition opera-
tor associated to a maximal monotone graph everywhere defined on the real
line, on which neither continuity nor growth assumptions are imposed. The
hypotheses on the diffusion coefficient are also very general, in the sense that
the noise does not need to take values in spaces of continuous, or bounded,
functions in space and time. Our approach combines variational techniques
with a priori estimates, both pathwise and in expectation, on solutions to reg-
ularized equations.

1. Introduction. Our aim is to establish existence and uniqueness of solu-
tions, and their continuous dependence on the initial datum, to the following semi-
linear stochastic evolution equation on L2(D), with D ⊂R

n a bounded domain:

(1) dX(t) + AX(t) dt + β
(
X(t)

)
dt � B

(
t,X(t)

)
dW(t), X(0) = X0,

where A is a linear maximal monotone operator on L2(D) associated to a coer-
cive Markovian bilinear form, β is a maximal monotone graph in R × R defined
everywhere, W is a cylindrical Wiener process on a separable Hilbert space U

and B takes values in the space of Hilbert–Schmidt operators from U to L2(D)

and satisfies suitable Lipschitz continuity assumptions. Precise assumptions on
the data of the problem and on the definition of solution are given in Section 2
below. Since any increasing function β0 : R → R can be extended in a canonical
way to a maximal monotone graph of R × R by “filling the gaps” (i.e., setting
β(x) := [β0(x

−), β0(x
+)] for all x ∈ R, where β(x−) and β(x+) denote the limit

from the left and from the right of β0 at x, resp.), Equation (1) can be interpreted
as a formulation of the stochastic evolution equation

dX(t) + AX(t) dt + β0
(
X(t)

)
dt = B

(
t,X(t)

)
dW(t), X(0) = X0.

Semilinear equations with singular and rapidly growing drift appear, for instance,
in mathematical models of Euclidean quantum field theory (see, e.g., [1] for an
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equation with exponentially growing drift), and, most importantly for us, cannot
be directly treated with the existing methods; hence are interesting from a purely
mathematical perspective as well. In particular, the variational approach (see [24,
33]) works only assuming that β satisfies suitable polynomial growth conditions
depending on the dimension n of the underlying Euclidean space (see also [28],
pages 137-ff, for improved sufficient conditions, still dependent on the dimension),
whereas most available results relying on the semigroup approach require just
polynomial growth, although usually compensated by rather stringent hypothe-
ses on the noise (see, e.g., [15, 18]). Under natural assumptions on the noise, well-
posedness in Lp spaces is proven, with different methods, in [25], under the further
assumption that β is locally Lipschitz continuous, and in [30]. A common basis for
both works is the semigroup approach on UMD Banach spaces. A special mention
deserves the short note [6], where the author considers problem (1) with A = −�

and B independent of X, and proves existence of a pathwise solution2 assuming
that the solution Z to the equation with β ≡ 0 (i.e., the stochastic convolution) is
jointly continuous in space and time. Furthermore, assuming that

E

∫ T

0

∫
D

j (Z) < ∞,

where j is a primitive of β , he obtains that the pathwise solution may admit a
version that can be considered as a generalized mild solution to (1). This is the
only result we are aware of about existence of solutions to stochastic semilinear
parabolic equations without growth assumptions on the drift in any dimension. It
is well known that a well-posedness theory for stochastic evolution equations on a
Hilbert space H of the type

du + Audt � B(u)dW, u(0) = u0,

with A an arbitrary (nonlinear) maximal monotone operator, is in full generality,
not yet available, even if B does not depend on u and is a fixed non-random op-
erator. However, a satisfactory treatment in the finite-dimensional case has been
given by Pardoux and Răşcanu in [34], Section 4.2, where the authors consider
stochastic differential equations in R

n of the type

dXt + A(Xt) dt + F(t,Xt) dt � G(t,Xt) dBt ,

where A is a (multivalued) maximal monotone operator whose domain has a
nonemtpy interior, B is a k-dimensional Wiener process, G satisfies standard Lip-
schitz continuity assumptions and F(t, ·) is continuous and monotone (not nec-
essarily Lipschitz continuous). While the assumptions on A are not restrictive in
finite dimensions, unbounded linear operators generating contraction semigroups

2To avoid misunderstandings, we should clarify once and for all that with this expression we do
not refer to a solution in the sense of rough paths, but simply “with ω fixed”.
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in infinite-dimensional spaces, as in our case, have dense domain, whose interior
is hence empty.

On the other hand, in the deterministic setting complete results have long been
known for equations of the type

du

dt
+ Au � f, u(0) = u0,

even in the much more general setting where A is a (multivalued) m-accretive op-
erator on a Banach space E and f ∈ L1(0, T ;E) (see, e.g., [5, 12]). Although a so-
lution to the general stochastic problem does not currently seem within reach, sig-
nificant results have been obtained in special cases: apart of the above-mentioned
works on semilinear equations, well-posedness for the stochastic porous media
equation under fairly general assumptions is known (see [7], where the same hy-
potheses on β imposed here are used and the noise is assumed to satisfy suitable
boundedness conditions, and [8] for an extension to jump noise). Moreover, the
variational theory by Pardoux, Krylov and Rozovskiı̆ is essentially as complete
as the corresponding deterministic theory. As mentioned above, however, large
classes of maximal monotone operators on H = L2(D) cannot be cast in the vari-
ational framework.

The main contribution of this work is a well-posedness result for (1) under the
most general conditions known so far, to the best of our knowledge. These con-
ditions are quite sharp for A, but not for β . In particular, the conditions on A are
close to those needed to show that A + β(·) is maximal monotone on L2(D), but
the hypothesis that β is finite on the whole real line is not needed in the determinis-
tic theory. Finally, the conditions on B are the natural ones to have function-valued
noise, and are in this sense as general as possible. Equations with white noise in
space and time, that have received much attention lately, are not within the scope
of our approach (nor of others, most likely, under such general conditions on β).

In forthcoming work, we shall extend our well-posedness results to equations
where A is a nonlinear operator satisfying suitable Leray–Lions conditions (thus
including the p-Laplacian, for instance), as well as to equations driven by discon-
tinuous noise.

Let us now briefly outline the structure of the paper and the main ideas of the
proof. Section 2 contains the statement of the main well-posedness result, and in
Section 3 we discuss the hypotheses on the drift and diffusion coefficients, pro-
viding corresponding examples. After collecting useful preliminaries in Section 4,
we consider in Section 5 a version of equation (1) with additive noise satisfying
a strong boundedness assumption. Using the Yosida regularization of β , we ob-
tain a family of approximating equations with Lipschitz coefficients, which can
be treated by the standard variational theory. The solutions to such equations are
shown to satisfy suitable uniform estimates, both pathwise and in expectation.
Such estimates allow us to obtain key regularity and integrability properties for
the solution to the equation with additive bounded noise. A crucial role is played
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by Simon’s compactness criterion, which is applied pathwise, and by compactness
criteria in L1 spaces, applied both pathwise and in expectation. It is, in essence,
precisely this interplay between pathwise and “averaged” arguments that permits
to avoid many restrictive hypotheses of the existing literature. An abstract version
of Jensen’s inequality for positive operators, combined with the lower semicon-
tinuity of convex integrals, is also an essential tool. In Section 6, we prove well-
posedness for equations with additive noise removing the boundedness assumption
of the previous section. This is accomplished by a further regularization scheme,
this time on the diffusion operator B , and by a priori estimates for solutions to the
regularized equations. A key role is played again by a combination of estimates and
passages to the limit both pathwise and in expectation. We also prove continuity
of the solution map with respect to the initial datum and the diffusion coefficient,
by means of Itô’s formula and regularizations, for which smoothing properties of
the resolvent of A are essential. Finally, in Section 7 we obtain well-posedness
in the general case by a fixed-point argument, using the Lipschitz continuity of
B only. Introducing weighted spaces of stochastic processes, we obtain directly
global well-posedness, thus avoiding a tedious construction by “patching” local
solutions.

Some tools and reasonings used in this work are obviously not new: weak com-
pactness arguments in L1, for instance, are extensively used in the literature on
partial differential equations (see, e.g., [10, 13] and references therein), as well
as, to a lesser extent, in the stochastic setting (cf. [6, 7, 31]). However, even where
similarities are present, our arguments are considerably streamlined and more gen-
eral. The pathwise application of Simon’s compactness criterion, made possible
by a construction based on the variational framework, seems to be new, at least
in the context of stochastic evolution equations. It is in fact somewhat surprising
that the variational setting, which notoriously fails when dealing with semilinear
equations, is at a basis of an approach that leads to well-posedness of those same
equations, even with singular and rapidly increasing drift.

2. Main result. In this section, after fixing notation and conventions used
throughout the paper, we state our main result.

2.1. Notation. All functional spaces will be defined on a smooth bounded do-
main D ⊂ R

n. We shall denote L2(D) by H and its inner product by 〈·, ·〉. The
domain and the range of a generic map G will be denoted by D(G) and R(G),
respectively. If E and F are subsets of a topological space, we shall write E ↪→ F

to mean that E is continuously embedded in F , that is, E is a subset of F and that
the injection i : E → F is continuous. Let E, F be Banach spaces. The space of
linear continuous operators from E to F is denoted by L (E,F ) if endowed with
the operator norm, and by Ls(E,F ) if endowed with the strong operator topology,
that is, Tn → T in Ls(E,F ) if Tnu → T u in F for all u ∈ E. If F = R, L (E,R)
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is the dual space E∗. If E and F are Hilbert spaces, we shall denote the space of
Hilbert–Schmidt operators from E to F by L 2(E,F ).

We shall occasionally use the symbols ⇀ and
∗−⇀ to denote convergence in the

weak and weak* topology of Banach spaces, respectively, while the symbol → is
reserved for convergence in the norm topology.

All random quantities will be defined on a probability space (�,F ,P) endowed
with a right-continuous and saturated filtration F := (Ft )t∈[0,T ], where T is a
positive number. All expressions involving random quantities are meant to hold
P-almost surely, unless otherwise stated. With W we shall denote a cylindrical
Wiener process on a separable Hilbert space U , that may coincide with H , but
does not have to. We shall use the standard notation of stochastic calculus, such as
K · W to mean the stochastic integral of K with respect to W , and, for a process
X taking values in a normed space E, X∗

t := ess sups∈[0,t]‖X(s)‖E .
Let E be a separable Banach space. Given a measure space (Y,A ,μ) and

p ∈ [1,∞], we shall denote the space of strongly measurable functions from
φ : Y → E such that ‖φ‖E ∈ Lp(Y ) by Lp(Y ;E). Moreover, we shall write
L2(�;L∞(0, T ;E)) to denote the space of F ⊗ B([0, T ])-measurable processes
φ : � × [0, T ] → E such that

‖φ‖L2(�;L∞(0,T ;E)) :=
(
E ess sup

t∈[0,T ]
∥∥φ(t)

∥∥2
E

)1/2
< ∞.

Given an interval I ⊆ R, the space of continuous and of weakly continuous func-
tions from I to E will be denoted by C(I ;E) and Cw(I ;E), respectively.

We shall write a � b to mean that there exists a constant N such that a ≤ Nb.
If such a constant depends on certain parameters of interest, we shall put these in
parentheses or write them as subscripts.

2.2. Assumptions. The following assumptions on the data of the problem are
assumed to be in force throughout and will not always be recalled explicitly.

ASSUMPTION A. Let V be Hilbert space that is densely, continuously, and
compactly embedded in H . The linear operator A belongs to L (V ,V ∗) and satis-
fies the following properties:

(i) there exists C > 0 such that

〈Av,v〉 ≥ C‖v‖2
V ∀v ∈ V ;

(ii) the part of A in H admits a unique m-accretive extension A1 in L1(D);
(iii) the resolvent ((I + λA1)

−1)λ>0 is sub-Markovian;
(iv) there exists m ∈ N such that∥∥(I + A1)

−m
∥∥
L (L1(D),L∞(D)) < ∞.
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Here, we have used 〈·, ·〉 also to denote the duality pairing of V and V ∗, which
is compatible with the scalar product in H . In fact, identifying H with its dual, one
has the so-called Gel'fand triple

V ↪→ H ↪→ V ∗,

where both embeddings are dense (see, e.g., [27], Section 2.9). Moreover, we recall
that the part of A in H is the operator A2 on H defined as D(A2) := {x ∈ V : Au ∈
H } and A2x := Ax for all x ∈ D(A2). If one identifies the operators with their
graphs, this is equivalent to setting A2 := A ∩ (V × H). We shall often refer to
condition (i) as the coercivity of A. The sub-Markovianity condition (iii) amounts
to saying that, for all functions f ∈ L1(D) such that 0 ≤ f ≤ 1, one has

0 ≤ (I + A1)
−1f ≤ 1.

In other words, (I + A1)
−1 is positivity preserving and contracting in L∞(D).

From Section 5 onwards, we shall often use the symbol A to denote also A1
and A2.

Let us observe that if A is the negative Laplacian with Dirichlet boundary condi-
tions, all hypotheses are met. Much wider classes of operators satisfying hypothe-
ses (i)–(iv) will be given below.

ASSUMPTION B. β is a maximal monotone graph of R × R such that
D(β) = R, 0 ∈ β(0), and its potential j is even.

We recall that the potential j of β is the convex, proper, lower semicontinuous
function j : R → R+, with j (0) = 0, such that ∂j = β , where ∂ stands for the
subdifferential in the sense of convex analysis.3

ASSUMPTION C. The diffusion coefficient

B : � × [0, T ] × H → L 2(U,H)

is Lipschitz continuous and grows linearly in its third argument, uniformly over
� × [0, T ], that is, there exist constants LB , NB such that∥∥B(ω, t, x) − B(ω, t, y)

∥∥
L 2(U,H) ≤ LB‖x − y‖H ,

∥∥B(ω, t, x)
∥∥
L 2(U,H) ≤ NB

(
1 + ‖x‖H

)
for all ω ∈ �, t ∈ [0, T ], and x, y ∈ H . Moreover, B(·, ·, x) is progressively mea-
surable for all x ∈ H , that is, for all t ∈ [0, T ], the map (ω, s) �→ B(ω, s, x) from
� × [0, t], endowed with the σ -algebra Ft ⊗ B([0, t]), to L 2(U,H), endowed
with its Borel σ -algebra, is strongly measurable. We recall that, since U and H

3See Section 4.1 below for a summary of the notions of convex analysis and of the theory of
nonlinear monotone operators used throughout.
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are separable, the space of Hilbert–Schmidt operators L 2(U,H) is itself a sepa-
rable Hilbert space, hence strong and weak measurability coincide. Whenever we
deal with maps with values in separable Banach spaces, since strong and weak
measurability coincide, we shall drop the qualifier “strong”.

2.3. The well-posedness result.

DEFINITION 2.1. Let X0 be an H -valued F0-measurable random variable.
A strong solution to the stochastic equation (1) is a pair (X, ξ) satisfying the fol-
lowing properties:

(i) X is a measurable adapted V -valued process with AX ∈ L1(0, T ;V ∗) and
B(·,X) ∈ L2(0, T ;L 2(U,H));

(ii) ξ is a measurable adapted L1(D)-valued process, ξ ∈ L1(0, T ;L1(D)) and
ξ ∈ β(X) almost everywhere in (0, T ) × D;

(iii) one has, as an equality in L1(D) ∩ V ∗,

X(t) +
∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 +

∫ t

0
B

(
s,X(s)

)
dW(s)

for all t ∈ [0, T ].

Note that L1(D) ∩ V ∗ is not empty because D has finite Lebesgue measure,
hence, for instance, H is contained in both spaces.

Let us denote by J the set of pairs (φ, ζ ), where φ and ζ are measurable
adapted processes with values in H and L1(D), respectively, such that

φ ∈ L2(
�;L∞(0, T ;H)

) ∩ L2(
�;L2(0, T ;V )

)
,

ζ ∈ L1(
� × [0, T ] × D

)
,

j (φ) + j∗(ζ ) ∈ L1(
� × [0, T ] × D

)
.

We shall say that (1) is well-posed in J if there exists a unique process in J
which is a strong solution and such that the solution map X0 �→ X is continuous
from L2(�;H) to L2(�;L∞(0, T ;H)) ∩ L2(�;L2(0, T ;V )).

The central result of this work is the following.

THEOREM 2.2. Let X0 ∈ L2(�,F0,P;H). Then (1) is well-posed in J .
Moreover, the solution map X0 �→ X is Lipschitz continuous and the paths of X

are weakly continuous with values in H .

Let us stress the fact that the more general problem of unconditional well-
posedness (i.e., without the extra condition that strong solutions belong to J )
remains open and is beyond the scope of the techniques used in this work. In par-
ticular, we can only prove uniqueness of solutions within J .
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3. Examples and remarks. Some comments and examples on the assump-
tions on the data of the problem are in order. In particular, the hypotheses on A

deserve special attention. The coercivity condition 〈Av,v〉 ≥ C‖v‖2
V for all v ∈ V

is equivalent to A ∈ L (V ,V ∗) being determined by a bounded V -elliptic4 bilinear
form E : V × V →R, that is, such that∣∣E (u, v)

∣∣ � ‖u‖V ‖v‖V , E (v, v) ≥ C‖v‖2
V ∀u, v ∈ V.

This is an immediate consequence of the Lax–Milgram theorem, which also im-
plies that A is an isomorphism between V and V ∗ (see, e.g., [4], Section 5.2, or
[32], Lemma 1.3).

The bilinear form E can also be seen as a closed unbounded form on H with
domain V . This defines a (unique) linear m-accretive operator A2 on H , that is
nothing else than the part of A in H (see, e.g., [4], Section 5.3, or [32], page 34).
Conversely, given a positive closed bilinear form E on H with dense domain D(E )

satisfying the strong sector condition5

∣∣E (u, v)
∣∣ � E (u,u)1/2E (v, v)1/2 ∀u, v ∈ D(E ),

and such that E (u,u) > 0 for all u ∈ D(E ), u �= 0, setting V := D(E ) with inner
product given by the symmetric part E s of E , that is,

E s(u, v) := 1

2

(
E (u, v) + E (v, u)

)
, u, v ∈ D(E ),

there is a unique linear operator A ∈ L (V ,V ∗) such that E (u, v) = 〈Au,v〉 for
all u, v ∈ V . This amounts to trivial verifications, since, obviously, E (u,u) =
E s(u,u) for all u ∈ D(E ). As a particular case, let A′ be a linear positive self-
adjoint (unbounded) operator H such that 〈A′u,u〉 > 0 for all u ∈ D(A), u �= 0.
Then A′ admits a square root

√
A′, which is in turn a linear positive self-adjoint

operator on H . One can then define the Hilbert space V := D(
√

A′), endowed with
the inner product

〈u, v〉V := 〈√
A′u,

√
A′v

〉
,

and the symmetric bounded bilinear form E : V × V →R,

E (u, v) := 〈√
A′u,

√
A′v

〉
, u, v ∈ V,

which is obviously V -elliptic. By a theorem of Kato ([23], Theorem 2.23,
page 331), there is in fact a bijective correspondence between linear positive self-
adjoint operators on H and positive densely-defined closed symmetric bilinear

4We prefer this terminology, taken from [27], over the currently more common “V -coercive”,
to avoid possible confusion with related terminology used in the theory of Dirichlet forms, where
coercivity is meant in a somewhat different sense (cf. [29], Definition 2.4, page 16).

5Throughout this section, we shall follow the terminology on Dirichlet forms of [29].
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forms. More generally, if A′ is a linear (unbounded) m-accretive operator on H

such that ∣∣〈A′u, v
〉∣∣ � 〈

A′u,u
〉1/2〈

A′v, v
〉1/2 ∀u, v ∈ D

(
A′),

and 〈A′u,u〉 > 0 for all u ∈ D(A′), u �= 0, then there exists a (unique) closed
V -elliptic bilinear form E that determines an operator A ∈ L (V ,V ∗), with
V := D(E ) and 〈·, ·〉V := E s , such that A′ is the part on H of A. This follows,
for instance, by [29], page 27.

Note, however, that in the previous examples V may not be continuously em-
bedded in H , unless E satisfies a Poincaré inequality, that is, ‖u‖2

H � E (u,u) for
all u ∈ D(E ) (as is the case, for instance, for the Dirichlet Laplacian). This limi-
tation is resolved by the following important observation: all our well-posedness
result continues to hold if we assume, in place of hypothesis (i), the following
weaker one:

(i′) there exist constants C1 > 0, C2 ∈ R such that

〈Av,v〉 ≥ C1‖v‖2
V − C2‖v‖2

H ∀v ∈ V,

which is clearly equivalent to assuming that Ã := A + C2I is V -elliptic. Under
this assumption, equation (1) can equivalently be written as

dX(t) + ÃX(t) dt + β
(
X(t)

)
dt = C2X(t) dt + B

(
t,X(t)

)
dW(t).

The only added complication in the proofs to follow would be the appearance of
functional spaces with an exponential weight in time, very much as in the proof of
Proposition 6.2 below. An analogous argument, in a slightly different context, is
developed in detail in [30]. This seemingly trivial observation allows to consider-
ably extend the class of operators A that can be treated. For instance, one has the
following criterion.

LEMMA 3.1. A coercive closed form E on H uniquely determines an operator
A satisfying (i′).

PROOF. The hypothesis of the lemma means that E is a densely defined bilin-
ear form such that its symmetric part E s is closed and E satisfies the weak sector
condition: ∣∣E1(u, v)

∣∣ � E1(u,u)1/2E1(v, v)1/2 ∀u, v ∈ D(E ),

where E1 := E + I . In other words, E satisfies the weak sector condition if
the shifted form E + I satisfies the strong sector condition. Therefore, adapting
in the obvious way an argument used above, it is enough to take V := D(E )

with inner product 〈·, ·〉V := 〈·, ·〉H + E s to obtain that the generator A2 of E
can be (uniquely) extended to an operator A ∈ L (V ,V ∗) satisfying (i′) with
C1 = C2 = 1. �
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Note that in all the above constructions one has V ↪→ H densely and continu-
ously (under appropriate assumptions), but the embedding is not necessarily com-
pact. The latter condition has to be proved depending on the situation at hand.
For a general compactness criterion in terms of ultracontractivity properties, see
Proposition 3.3 below.

As regards condition (ii), the simplest sufficient condition ensuring that A2 ad-
mits an m-accretive extension A1 in L1(D) is that −A2 is the generator of a sym-
metric Markovian semigroup of contractions S2 on H or, equivalently, that A2
is positive self-adjoint with a Markovian resolvent. In fact, this implies that, for
any p ∈ [1,∞[, there exists a (unique) symmetric Markovian semigroup of con-
tractions Sp on Lp(D) such that all Sp , 1 ≤ p < ∞ are consistent, hence the
corresponding negative generators Ap coincide on the intersections of their do-
mains (see, e.g., [17], Theorem 1.4.1). In the general case, that is, if A2 is not self-
adjoint, the same conclusion remains true if the semigroup S2 and its adjoint S∗

2 are
both sub-Markovian, or, equivalently, if S2 is sub-Markovian and L1-contracting
(cf. [4], Lemma 10.13 and Theorem 10.15, or [32], Corollary 2.16). In particular,
if A2 is the generator of a Dirichlet form on H , these conclusions hold. Moreover,
since the resolvent of A1 is sub-Markovian if and only if the resolvent of A2 is
sub-Markovian, we obtain the following complement to the previous lemma.

LEMMA 3.2. A Dirichlet form E on H uniquely determines an operator A

satisfying (i′), (ii) and (iii).

Without assuming that S∗
2 is sub-Markovian [which is the case, for instance,

if A is determined by a semi-Dirichlet form on H , so that (i′) and (iii) only are
satisfied], we note that D(A2) is dense in L1(D), and the image of I + A2 is
dense in L1(D): the former assertion follows by D(A2) ⊂ L2(D) densely and
L2(D) ⊂ L1(D) densely and continuously. Moreover, since A2 generates a con-
traction semigroup in L2(D), the Lumer–Phillips theorem (see, e.g., [19], page 83)
implies that R(I +A2) = L2(D), hence R(I +A2) is dense in L1(D). The Lumer–
Phillips theorem again guarantees that the closure of A2 in L1(D) is m-accretive
if A2 is accretive in L1(D). The latter property is often not difficult to verify in
concrete examples.

The most delicate condition is (iv), that is, the ultracontractivity of suitable pow-
ers of the resolvent of A1. If A2 is self-adjoint, a simple duality arguments shows
that, for any t ≥ 0,

∥∥S2(t)
∥∥
L (L1,L∞) ≤ ∥∥S2(t/2)

∥∥2
L (L2,L∞).

Sufficient conditions for S2(t) to be bounded from L2(D) to L∞(D) are known in
terms, for instance, of logarithmic Sobolev inequalities, Sobolev inequalities, and
Nash inequalities (see, e.g., [17], Chapter 2, and [32], Chapter 6). The nonsym-
metric case is more difficult, but ultracontractivity estimates are known in many
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special cases, such as in the examples that we are going to discuss next. Ultracon-
tractivity estimates for powers of the resolvent can then be obtained from estimates
for the semigroup, as explained below. The following result (probably known, but
for which we could not find a reference) shows that hypothesis (iv) guarantees that
the embedding D(E ) ↪→ H is compact, thus answering a question left open above.

PROPOSITION 3.3. Let A2 be the generator of a closed coercive form E in H .
If there exists m ∈ N such that the mth power of the resolvent of A2 is bounded from
L2(D) to L∞(D), then D(E ) is compactly embedded in H .

PROOF. Let (uk)k be a bounded sequence in D(E ), that is, there exists a con-
stant N such that

‖uk‖2
H + E s(uk, uk) < N ∀k ∈ N.

In particular, there exists a subsequence of k, denoted by the same symbol, such
that uk converges weakly to u in H as k → ∞. The goal is to show that the con-
vergence is in fact strong. Since D(Am

2 ) ⊂ L∞(D) by assumption, it follows by
a result of Arendt and Bukhvalov (see [3], Theorem 4.16(b)) that the resolvent
Jλ := (I + λA2)

−1 is a compact operator on H for all λ > 0. The triangle inequal-
ity yields

‖uk − u‖ ≤ ‖uk − Jλuk‖ + ‖Jλuk − Jλu‖ + ‖Jλu − u‖,
where the second term on the right-hand side converges to zero as k → ∞ by
compactness of Jλ. Moreover, since Jλ → I in Ls(H,H) as λ → 0, the third term
on the right-hand side can be made arbitrarily small. Therefore, we only have to
bound the first term on the right-hand side: note that I − Jλ = λAλ, where Aλ,
λ > 0, stands for the Yosida approximation of A2, hence ‖uk −Jλuk‖ = λ‖Aλuk‖,
and

〈Aλuk,uk〉 = 〈Aλuk,uk − Jλuk + Jλuk〉 = λ‖Aλuk‖2 + 〈Aλuk, Jλuk〉
≥ λ‖Aλuk‖2,

where we have used, in the last step, the identity Aλ = A2Jλ and the monotonicity
of A2. Since, by [29], Lemma 2.11(iii), page 20, one has

∣∣E (λ)
1 (u, v)

∣∣ � E1(u,u)1/2E (λ)
1 (v, v)1/2 ∀u ∈ D(E ), v ∈ H,

where E (λ)(u, v) := 〈Aλu, v〉, u, v ∈ H , and the implicit constant depends only
on E , it follows that

E (λ)
1 (u,u)� E1(u,u) ∀u ∈ D(E ),

hence

‖uk − Jλuk‖2 = λ2‖Aλuk‖2 ≤ λ〈Aλuk,uk〉 = λE (λ)
1 (uk, uk)� λE1(uk, uk).
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By the assumptions on the sequence (uk),

E1(uk, uk) = ‖uk‖2 + E (uk, uk) = ‖uk‖2 + E s(uk, uk)

is bounded uniformly over k, hence ‖uk − Jλuk‖2 can be made arbitrarily small as
well, thus proving the claim. �

Let us now consider some concrete examples: we first consider the case of A

being a suitable “realization” of a second-order differential operator, and then of a
nonlocal operator.

EXAMPLE 3.4 (Symmetric divergence-form operators). Consider the bilinear
form E on V := H 1

0 (D) defined by

E (u, v) := 〈a∇u,∇v〉 =
n∑

j,k=1

ajk∂ju∂kv,

where a = (ajk) with ajk ∈ L∞(D) for all j, k, and ajk = akj . The (formal) dif-
ferential operator associated to E is

A0u := −div(a∇u), u ∈ C∞
c (D),

where C∞
c (D) stands for the set of infinitely differentiable functions with com-

pact support contained in D. The form E is V -elliptic if there exists C > 0 such
that 〈aξ, ξ〉 ≥ C|ξ |2 for all ξ ∈ R

n. Moreover, if there exists a positive function
μ ∈ C(D) such that 〈aξ, ξ〉 ≤ μ(ξ)|ξ |2 for all ξ ∈ D, then A2 has sub-Markovian
resolvent (details can be found, e.g., in [17], Chapter 1, and, in much more gener-
ality, in [29], Chapter II). Ultracontractivity estimates follow as a special case of
the corresponding estimates for nonsymmetric forms treated next.

EXAMPLE 3.5 (Nonsymmetric divergence-form operators with lower-order
terms). Consider the differential operator on smooth functions

A0u := −div(a∇u) + b · ∇u − div(cu) + a0u

= −
n∑

j,k=1

∂j (ajk∂ku) +
n∑

j=1

(
bj∂ju − ∂j (cju)

) + a0u,

where ajk , bj , cj , a0 ∈ L∞(D), and the associated (nonsymmetric) bilinear form
E on V := H 1

0 (D) is defined as

E (u, v) = 〈a∇u,∇v〉 + 〈b · ∇u, v〉 + 〈u, c · ∇v〉 + 〈a0u, v〉

=
∫
D

(∑
jk

ajk∂ju∂kv + ∑
j

(bj ∂juv + cju∂jv) + a0uv

)
.
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The bilinear form E is continuous, as it easily follows from the boundedness of its
coefficients. If there exists a constant C > 0 such that 〈aξ, ξ〉 ≥ C|ξ |2, then E is
not V -elliptic, but satisfies the weaker estimate

E (u,u) ≥ C1‖u‖2
V − C2‖u‖2

H ∀u ∈ V,

where C1 > 0 and C2 ∈ R (see, e.g., [4], Section 11.2, or [32], page 100), that
is, the corresponding operator A satisfies (i′), but not (i). Using the Poincaré in-
equality, it is not difficult to show that E is V -elliptic if the diameter of D is small
enough (see [16], pages 385–387). If we furthermore assume that a0 − div c ≥ 0
(in the sense of distributions), then the semigroup S2 is sub-Markovian, and so is
also the resolvent of A2. Similarly, if a0 − divb ≥ 0,6 then the semigroup S2 is
L1-contracting (these results can be found, for instance, in [4], Proposition 11.14,
or deduced from [32], Section 4.3). As already mentioned above, this implies that
S2 can be extended to a consistent family of semigroups Sp for all p ∈ [1,∞[.
Finally, let us discuss ultracontractivity: if E is V -elliptic, and S2 as well as S∗

2 are
sub-Markovian, then a reasoning based on the Nash inequality

‖u‖2+4/n

L2 ≤ N‖u‖2
H 1

0
‖u‖4/n

L1 ∀u ∈ H 1
0 ,

implies the estimate ∥∥S2(t)
∥∥
L (L1,L∞) ≤ N1t

−n/2,

where N1 := (Nn/(2α))n/2. For a proof, see, for example, [2], Theorem 12.3.2, or
[32], page 159. The Laplace transform representation of the resolvent yields

(I + λA1)
−m = λm

(m − 1)!
∫ ∞

0
tm−1e−λtS(t) dt

(see, e.g., [4], page 17, or [35], page 21), hence

∥∥(I + λA1)
−m

∥∥
L (L1,L∞) �

λm

(m − 1)!
∫ ∞

0
tm−1−n/2e−λt dt.

Thus it suffices to choose m large enough to infer the ultracontractivity of the mth
power of the resolvent.

EXAMPLE 3.6 (Fractional Laplacian). Let � be the Dirichlet Laplacian on H .
Since it is a positive self-adjoint operator, it follows that, for any α ∈ ]0,1[, (−�)α

is itself a positive self-adjoint (densely defined) operator on H . Furthermore, the
bilinear form

E (u, v) := 〈
(−�)αu, v

〉 = 〈
(−�)α/2u, (−�)α/2v

〉
, u, v ∈ D

(
(−�)α/2)

,

6These two conditions involving a0 and the divergence of b, c, are not restrictive, as they are close
to necessary to ensure that the bilinear form E is positive. This can be seen by a simple computation
based on integration by parts; cf. [29], page 48.
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is a symmetric Dirichlet form on H , which, as already seen, uniquely deter-
mines an operator A satisfying conditions (i′), (ii) and (iii): in particular, V =
D((−�)α/2), equipped with the scalar product 〈·, ·〉V := 〈·, ·〉 + E , and A is just
the extension of (−�)α , generator of E , to V . In order to prove (iv), we are going
to use again an argument based on the Nash inequality, which is however more
involved as before. In particular, since −� satisfies the Nash inequality

‖u‖2+4/n

L2 � 〈−�u,u〉‖u‖4/n

L1 ∀u ∈ H 1
0 ,

a result by Bendikov and Maheux (see [9], Theorem 1.3) implies that the fractional
power (−�)α satisfies the Nash inequality

‖u‖2+4α/n

L2 �
〈
(−�)αu,u

〉‖u‖4α/n

L1 ∀u ∈ D(E ).

It follows by a general criterion of Varopoulos, Saloff-Coste and Coulhon (at-
tributed to Ph. Bénilan) (see [39], Theorem II.5.2) that the semigroup Sα on H

generated by (−�)α satisfies the ultracontractivity estimate
∥∥Sα(t)

∥∥
L (L1,L∞) � t−n/2α,

from which corresponding estimates for suitable powers of the resolvent can be
deduced, as in the previous example.

Related results on ultracontractivity and smoothing properties of semigroups
generated by nonlocal operators, arising as generators of Markov processes, can
be found, for example, in [20, 26].

We proceed with a brief discussion about the relation between our hypotheses
on A and those needed in the deterministic setting, where it is enough to prove that
A+β is maximal monotone in H to get well-posedness of the nonlinear equation,
for any right-hand side belonging to L1(0, T ;H). Probably the most widely used
criterion for the maximal monotonicity of the sum of two maximal monotone op-
erators on H , at least with applications to PDE in mind, is the following: let F be
a maximal monotone operator on H and ϕ a lower semicontinuous proper convex
function on H . If

(2) ϕ
(
(I + λF)−1u

) ≤ ϕ(u) + Cλ ∀λ > 0,∀u ∈ D(ϕ),

then F + ∂ϕ is maximal monotone (see [13], Theorem 9, page 108). In the case of
semilinear perturbations of the Laplacian of the type −� + β , this result is used
as follows: let ϕ be such that −� = ∂ϕ, and

ψ : u �→
⎧⎪⎨
⎪⎩

∫
D

j (u)dx if j (u) ∈ L1(D),

+∞ if j (u) /∈ L1(D).
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Then ψ : H →R∪{+∞} is proper convex lower semicontinuous, and F := ∂ψ is
maximal monotone, with F(u) = β(u) a.e. for all u ∈ H such that j (u) ∈ L1(D).
Then one has, recalling that (I + λβ)−1 is a contraction on R,

ϕ
(
(I + λF)−1u

) =
∫
D

∣∣∇(I + λβ)−1u
∣∣2 dx

≤
∫
D

|∇u|2 dx = ϕ(u),

so that (2) is satisfied, and −�+β is maximal monotone. If one replaces −� with
a general positive self-adjoint operator A on H , it is not clear how to adapt such
reasoning. However, if we assume that A is the generator of a symmetric Dirichlet
form E on H , then (2) is satisfied, with C = 0 and ϕ = E . This follows from
the fact that (I + λβ)−1 is a normal contraction on R and that, for any normal
contraction T on R, u ∈ D(E ) implies T u ∈ D(E ) and E (T u,T u) ≤ E (u,u), a
proof of which can be found, for example, in [29], Theorem 4.12, page 36.

On the other hand, if A is maximal monotone but not self-adjoint, we cannot
express it as the subdifferential of a convex function on H . Hence we are led to
“dualize” the previous argument, that is, we can try to show that

ψ
(
(I + λA)−1u

) ≤ ψ(u) + Cλ ∀λ > 0,∀u ∈ D(ϕ).

Knowing only that the resolvent is a contraction does not seem enough to proceed.
However, if we assume that the resolvent is sub-Markovian, we can apply Jensen’s
inequality (see Lemma 4.2 below), so that

j
(
(I + λA)−1u

) ≤ (I + λA)−1j (u),

hence, integrating,

ψ
(
(I + λA)−1u

) =
∫
D

j
(
(I + λA)−1u

)
dx ≤

∫
D

(I + λA)−1j (u) dx.

Assuming also that the resolvent is contracting in L1, we obtain ψ((I +λA)−1u) ≤
ψ(u), hence that A + β is maximal monotone in H . Recall that A is contracting
in L1 if it is the generator of a (nonsymmetric) Dirichlet form. It results from
this discussion that our conditions (ii) and (iii) on A are not restrictive and are
probably close to optimal, while the ultracontractivity condition (iv) is completely
superfluous in the deterministic setting. Moreover, while condition (i′) is always
satisfied if A is self-adjoint, it is equally superfluous in the deterministic case if A

is nonsymmetric.
Let us now comment on the Lipschitz continuity assumption on B . It is natural

to ask whether a well-posedness result analogous to Theorem 2.2 holds under the
weaker assumption that B is progressively measurable, linearly growing, and just
locally Lipschitz continuous, that is, assuming that there exists a sequence (Ln

B)n
of positive real numbers such that∥∥B(ω, t, x) − B(ω, t, y)

∥∥
L 2(U,H) ≤ Ln

B‖x − y‖H
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for every (ω, t) ∈ �×[0, T ] and x, y ∈ H with ‖x‖H ,‖y‖H ≤ n, for every n ∈ N.
In this case, introducing the globally Lipschitz continuous truncated operators

Bn : � × [0, T ] × H → L 2(U,H), Bn(ω, t, x) := B(ω, t, nPx),

for all n ∈ N, where P : H → H is the projection on the closed unit ball in H , the
stochastic evolution equation

dXn + AXn dt + β(Xn)dt � Bn(t,Xn) dW, Xn(0) = X0,

is well-posed in J for all n ∈ N. One would now expect to be able to construct a
global solution by suitably “gluing” the solutions (Xn, ξn). In fact, this technique
has been successfully applied in several situations (cf., e.g., [14, 25, 38]): the key
argument is to introduce the sequence of stopping times (τn)n defined as

τn := inf
{
t ∈ [0, T ] : ∥∥Xn(t)

∥∥ ≥ n
} ∧ T ,

and to show that, for any m > n, one has Xm = Xn on

[[0, τn[[ := {
(ω, t) ∈ � × [0, T ] : 0 ≤ t ≤ τn(ω)

}
.

For this construction to work, it seems essential to assume that Xn has continu-
ous trajectories for all n ∈ N (as is the case in op. cit.). However, in our case, we
only know that the trajectories of Xn are weakly continuous in H , hence the above
construction does not seem to work. On the other hand, we conjecture that strong
solutions in J to (1) are indeed pathwise continuous under suitable polynomial
boundedness assumption on β , and that, in this case, equations with locally Lips-
chitz diffusion coefficient can be shown to be well-posed. This will be treated in
forthcoming work. We conclude remarking that such a well-posedness result for
semilinear equations with polynomially growing drift does not follow from the
classical variational approach (see, e.g., [28], Example 5.1.8).

4. Preliminaries. We collect, for the reader’s convenience, several notions
and results that we are going to use in the following sections.

4.1. Convex analysis and monotone operators. We recall basic concepts of
convex analysis and their connections with the theory of maximal monotone oper-
ators. We limit ourselves to the case of functions (and operators) defined on the real
line, as we will not need the general setting of Banach spaces. For a comprehensive
treatment we refer, for example, to [5, 12, 22].

A graph γ in R×R is called monotone if

(x1 − x2)(y1 − y2) ≥ 0

for all (x1, y1), (x2, y2) ∈ γ . If γ is maximal in the family of monotone subsets
of R × R, endowed with the partial order relation of set inclusion, then it is said
to be maximal monotone. In other words, γ is maximal monotone if it does not
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admit any proper monotone extension. This maximality property is equivalent to
the range condition

R(I + λγ ) = R ∀λ > 0,

where I stands for the identity function. Monotonicity implies that the inverse
(I + λγ )−1, called the resolvent of γ , is single-valued (hence a function, not just
a graph) and contracting. Moreover, (I + λγ )−1 converges pointwise to the pro-
jection on the closed convex set D(γ ) as λ → 0. An essential tool is the Yosida
regularization γλ : R→ R, defined as

γλ := 1

λ

(
I − (I + λγ )−1)

, λ > 0.

The following properties will be used extensively:

(a) γλ is monotone and Lipschitz continuous, with Lipschitz constant bounded
by 1/λ;

(b) γλ ∈ γ ◦ (I + λγ )−1.

Let ϕ :R → R∪ {+∞} be a function not identically equal to +∞ (i.e., proper),
convex and lower-semicontinuous. Denoting the set of subsets of R by P(R), the
map

∂ϕ :R −→ P(R)

x �−→ {
z ∈R : ϕ(y) − ϕ(x) ≥ z(y − x) ∀y ∈ R

}
is called the subdifferential of ϕ. The multivalued map γ := ∂ϕ, that can equiv-
alently be considered as a graph in R × R, is maximal monotone. Conversely,
every maximal monotone graph of R×R is the subdifferential of a convex proper
function, which is, roughly speaking, its indefinite integral.

The Moreau–Yosida regularization of ϕ is the convex differentiable function
ϕλ :R → R defined by

ϕλ(x) := inf
y∈R

(
ϕ(y) + |x − y|2

2λ

)
, λ > 0.

It enjoys the following fundamental properties:

(c) ϕ′
λ = γλ, where γλ denotes the Yosida regularization of γ = ∂ϕ;

(d) ϕλ converges pointwise to ϕ from below as λ → 0.

The (Fenchel–Legendre) conjugate function of ϕ is the proper convex lower-
semicontinuous function ϕ∗ :R→ R∪ {+∞} defined as

ϕ∗ : x �→ sup
y∈R

(
xy − ϕ(y)

)
.

The Young inequality

xy ≤ ϕ(y) + ϕ∗(x) ∀x, y ∈ R
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follows immediately from the definition. The following properties will be particu-
larly useful:

(e) equality holds in the Young inequality if and only if x ∈ ∂ϕ(y);
(f) if D(γ ) =R, then ϕ∗ is superlinear at infinity, that is,

lim|r|→∞
ϕ∗(r)
|r| = +∞.

We shall also need a result about passing to the limit “within” maximal mono-
tone graphs due to Brézis; see [13], Theorem 18, page 126.

LEMMA 4.1. Let γ be a maximal monotone graph in R × R with D(γ ) = R

and 0 ∈ γ (0). Assume that the sequences (yn)n∈N, (gn)n∈N of real-valued measur-
able functions on a finite measure space (Y,A ,μ) are such that yn → y μ-a.e.
as n → ∞, gn ∈ γ (yn) μ-a.e. for all n ∈ N, and (gnyn) is a bounded subset of
L1(Y,A ,μ). Then there exists g ∈ L1(Y,A ,μ) and a subsequence n′ such that
gn′ → g weakly in L1(Y,A ,μ) as n′ → ∞ and g ∈ γ (y) μ-almost everywhere.

Finally, we recall a simplified version of an “abstract” Jensen’s inequality, due
to Haase (see [21], Theorem 3.4), that will be used to prove a priori estimates for
convex functionals of stochastic processes.

LEMMA 4.2. Let (Y,A ,μ), (Z,B, ν) be measure spaces, E ⊂ L0(Y,A ,μ)

a Banach function space, and

T : E −→ L0(Z,B, ν)

a linear continuous sub-Markovian operator. Moreover, let ϕ : R → [0,∞[ be a
convex lower semicontinuous function with ϕ(0) = 0. Then

ϕ(Tf ) ≤ T ϕ(f )

for all f ∈ E such that ϕ(f ) ∈ E.

4.2. Hilbert–Schmidt operators. Let us recall now some standard facts about
linear maps. We recall that the space of continuous linear operators from a Banach
space E to another one F , equipped with the strong operator topology, is denoted
by Ls(E,F ). If E and F are Hilbert spaces, the space of Hilbert–Schmidt op-
erators L 2(E,F ) is an operator ideal, in particular it is stable with respect to
pre-composition as well as post-composition with continuous linear operators: if
E′ and F ′ are also Hilbert spaces, and

E′ R−→ E
T−→ F

L−→ F ′,
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with R and L continuous linear operators, then LT R ∈ L 2(E′,F ′),7 with

‖LT R‖L 2(E′,F ′) ≤ ‖L‖L (F,F ′)‖T ‖L 2(E,F )‖R‖L (E′,E)

(see, e.g., [11], page V.52). It follows from these properties that, for any T ∈
L 2(E,F ), the mapping

�T : Ls

(
F,F ′) −→ L 2(

E,F ′)
L �−→ LT

is continuous: Ln → L in Ls(F,F ′) implies that LnT → LT in L 2(E,F ′). If E

and F are separable, then L 2(E,F ) is itself a separable Hilbert space.

LEMMA 4.3. If G is a progressively measurable L 2(U,H)-valued process
such that

E

∫ T

0

∥∥G(s)
∥∥2
L 2(U,H) ds < ∞

and F is a progressively measurable H -valued process such that E(F ∗
T )2 < ∞,

then, for any ε > 0,

E
(
(FG) · W )∗

T ≤ εE
(
F ∗

T

)2 + N(ε)E

∫ T

0

∥∥G(s)
∥∥2
L 2(U,H) ds.

PROOF. By the ideal property of Hilbert–Schmidt operators, one has∥∥F(s)G(s)
∥∥
L 2(U,R) ≤ ∥∥F(s)

∥∥
H

∥∥G(s)
∥∥
L 2(U,H)

≤ (
F ∗

T

)∥∥G(s)
∥∥
L 2(U,H)

for all s ∈ [0, T ], hence∫ T

0

∥∥F(s)G(s)
∥∥2
L 2(U,R) ds ≤ (

F ∗
T

)2
∫ T

0

∥∥G(s)
∥∥2
L 2(U,H) ds,

where the right-hand side is finite P-a.s. thanks to the assumptions on F and G.
Then (FG) · W is a local martingale, for which Davis’ inequality yields

E
(
(FG) · W )∗

T � E
[
(FG) · W,(FG) · W ]1/2

T

= E

(∫ T

0

∥∥F(s)G(s)
∥∥2
L 2(U,R) ds

)1/2

≤ E
(
F ∗

T

)(∫ T

0

∥∥G(s)
∥∥2
L 2(U,H) ds

)1/2
.

The proof is finished invoking the elementary inequality

ab ≤ 1

2

(
εa2 + 1

ε
b2

)
∀a, b ∈ R. �

7One may say, in a shorter but perhaps cryptic way, that L 2 is functorial, more precisely that

L 2(E, ·) and L 2(·,F ) are a covariant and a contravariant functor, respectively.
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4.3. Continuity and compactness in spaces of vector-valued functions. A gen-
eral result by Strauss (see [37], Theorem 2.1) provides sufficient conditions for a
vector-valued function to be weakly continuous. It will be used to establish the
pathwise weak continuity of solutions to several stochastic equations. We recall
that, given a Banach space E and an interval I ⊆ R, the space of weakly continu-
ous functions from I to E is denoted by Cw(I ;E).

LEMMA 4.4. Let E and F be Banach spaces such that E is dense in F ,
E ↪→ F , and E is reflexive. Then

L∞(0, T ;E) ∩ Cw

([0, T ];F ) = Cw

([0, T ];E)
.

The next result is a classical integration-by-parts formula, whose proof can be
found, for instance, in [5], Section 1.3. Let V and H be Hilbert spaces such that
V ↪→H ↪→ V∗, and denote by W(a,b;V) the set of functions u ∈ L2(a, b;V) such
that u′ ∈ L2(a, b;V∗), where the derivative u′ is meant in the sense of V∗-valued
distributions. The duality of V and V∗ as well as the scalar product of H will be
denoted by 〈·, ·〉.

LEMMA 4.5. Let u ∈ W(a,b;V). Then there exists ũ ∈ C([a, b];H) such that
u(t) = ũ(t) for almost all t ∈ [a, b]. Moreover, for any v ∈ W(a,b;V), 〈u, v〉 is
absolutely continuous on [a, b] and

d

dt

〈
u(t), v(t)

〉 = 〈
u′(t), v(t)

〉 + 〈
u(t), v′(t)

〉
.

The following compactness criterion is due to Simon; see [36], Corollary 4,
page 85.

LEMMA 4.6. Let E1, E2, E3 be Banach spaces such that E1 ↪→ E2 and
E2 ↪→ E3 compactly. Assume that F is a bounded subset of Lp(0, T ;E1) ∩
W 1,1(0, T ;E3) for some p ≥ 1. Then F is relatively compact in Lp(0, T ;E2).

5. Well-posedness for a regularized equation. Let V0 be a separable Hilbert
space such that V0 is a dense subset of V , V0 ↪→ V , and V0 ↪→ L∞(D). The goal
of this section is to establish existence and uniqueness of solutions to the stochastic
evolution equation

(3) dX(t) + AX(t) dt + β
(
X(t)

)
dt � B(t) dW(t), X(0) = X0,

where B is an L 2(U,V0)-valued process. In particular, this stochastic equation
can be interpreted as a version of (1) with additive and more regular noise.
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PROPOSITION 5.1. Assume that X0 ∈ L2(�,F0,P;H) and that

B ∈ L2(
�;L2(

0, T ;L 2(U,V0)
))

is measurable and adapted. Then equation (3) admits a unique strong solution
(X, ξ) such that

X ∈ L2(
�;L∞(0, T ;H)

) ∩ L2(
�;L2(0, T ;V )

)
,

j (X) + j∗(ξ) ∈ L1(
(0, T ) × D

)
P-almost surely.

Moreover, X(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ �.

The rest of this section is devoted to the proof of Proposition 5.1, which is struc-
tured as a follows: we consider a regularized version of (3), where the nonlinear
term β is replaced by its Yosida approximation, and obtain suitable a priori esti-
mates, both pathwise and in expectation. Taking limits in appropriate topologies
of the solutions to these regularized equations, we construct solutions to (3), that
are finally shown to be unique.

Let

βλ := 1

λ

(
I − (I + λβ)−1)

, λ > 0,

be the Yosida approximation of β , and consider the regularized equation

dXλ(t) + AXλ(t) dt + βλ

(
Xλ(t)

)
dt = B(t) dW(t), Xλ(0) = X0.

Since βλ is monotone and Lipschitz continuous, it is easy to check that the operator
A + βλ satisfies, for any λ > 0, the classical conditions of Pardoux, Krylov and
Rozovskiı̆ [24, 33]. For completeness, a proof is given next.

LEMMA 5.2. Let λ > 0. The operator Aλ := A + βλ : V → V ∗ satisfies the
following conditions:

(i) Aλ is hemicontinuous, that is, the map R � η �→ 〈Aλ(u + ηv), x〉 is con-
tinuous for all u, v, x ∈ V ;

(ii) Aλ is monotone, that is, 〈Aλu − Aλv,u − v〉 ≥ 0 for all u, v ∈ V ;
(iii) Aλ is coercive, that is, there exists a constant C1 > 0 such that 〈Aλv, v〉 ≥

C1‖v‖2
V for all v ∈ V ;

(iv) Aλ is bounded, that is, there exists a constant C2 > 0 such that ‖Aλv‖V ∗ ≤
C2‖v‖V for all v ∈ V .

PROOF. (i) For any u, v, x ∈ V , one has

〈
Aλ(u + ηv), x

〉 = 〈Au,x〉 + η〈Av,x〉 +
∫
D

βλ(u + ηv)x.
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It clearly suffices to check that the last term depends continuously on η, which
follows immediately by the Lipschitz continuity of βλ. (ii) Since both A and βλ

are monotone, one has

〈Aλu − Aλv,u − v〉 = 〈Au − Av,u − v〉 +
∫
D

(
βλ(u) − βλ(v)

)
(u − v) ≥ 0.

(iii) Similarly, since 0 ∈ β(0) implies βλ(0) = 0, coercivity of A and monotonicity
of βλ imply

〈Aλv, v〉 = 〈Av,v〉 +
∫
D

βλ(v)v ≥ 〈Av,v〉 ≥ C‖v‖2
V

(in particular, C1 can be chosen equal to C, the coercivity constant of A itself).
(iv) Using again the fact that βλ(0) = 0, and recalling that βλ is Lipschitz contin-
uous with Lipschitz constant bounded by 1/λ, one has

〈Aλv,u〉 = 〈Av,u〉 +
∫
D

βλ(v)u ≤ ‖Av‖V ∗‖u‖V + 1

λ
‖v‖H ‖u‖H

≤ (‖A‖L (V ,V ∗) + k/λ
)‖v‖V ‖u‖V ,

where k is the norm of the continuous embedding ι : V → H . �

Hence (4) admits a unique variational solution, that is, there exists a unique
adapted process

Xλ ∈ L2(
�;C([0, T ];H )) ∩ L2(

�;L2(0, T ;V )
)

such that, in V ∗,

(4) Xλ(t) +
∫ t

0
AXλ(s) ds +

∫ t

0
βλ

(
Xλ(s)

)
ds = X0 +

∫ t

0
B(s) dW(s)

for all t ∈ [0, T ].
In the next lemmata we establish a priori estimates for Xλ and βλ(Xλ). We

begin with a pathwise estimate.

LEMMA 5.3. There exists �′ ⊆ � with P(�′) = 1 and M : �′ →R such that
∥∥Xλ(ω)

∥∥2
C([0,T ];H)∩L2(0,T ;V ) + ∥∥jλ

(
Xλ(ω)

)∥∥
L1(0,T ;L1(D)) < M(ω)

for all ω ∈ �′.

PROOF. Setting Yλ := Xλ − B · W , Itô’s formula8 yields

∥∥Yλ(t)
∥∥2
H + 2

∫ t

0

〈
AXλ(s), Yλ(s)

〉
ds + 2

∫ t

0

〈
βλ(Xλ),Yλ(s)

〉
ds = ‖X0‖2

H ,

8Whenever we refer to Itô’s formula, we shall always mean the version in [24].
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where ‖Xλ‖H ≤ ‖Yλ‖H + ‖B · W‖H by the triangle inequality, hence

∥∥Yλ(t)
∥∥2
H ≥ 1

2

∥∥Xλ(t)
∥∥2
H − ∥∥B · W(t)

∥∥2
H .

Moreover, writing 〈AXλ,Yλ〉 = 〈AXλ,Xλ〉 − 〈AXλ,B · W 〉, one has

〈AXλ,Xλ〉 ≥ C‖Xλ‖2
V

by the coercivity of A, and

〈AXλ,B · W 〉 ≤ ‖A‖L (V ,V ∗)‖Xλ‖V ‖B · W‖V

≤ 1

2
C‖Xλ‖2

V + 1

2ε
‖B · W‖2

V ,

where we have used the elementary inequality ab ≤ 1
2(εa2 +b2/ε) for all a, b ∈ R,

with ε := C‖A‖−2
L (V ,V ∗). Then

〈AXλ,Yλ〉 ≥ 1

2
C‖Xλ‖2

V − 1

2ε
‖B · W‖2

V ,

so that

2
∫ t

0

〈
AXλ(s), Yλ(s)

〉
ds ≥ C

∫ t

0

∥∥Xλ(s)
∥∥2
V ds − 1

ε

∫ t

0

∥∥B · W(s)
∥∥2
V ds

and
1

2

∥∥Xλ(t)
∥∥2
H + C

∫ t

0

∥∥Xλ(s)
∥∥2
V ds + 2

∫ t

0

〈
βλ

(
Xλ(s)

)
, Yλ(s)

〉
ds

≤ ‖X0‖2
H + ∥∥B · W(t)

∥∥2
H + 1

ε

∫ t

0

∥∥B · W(s)
∥∥2
V ds.

(5)

Let jλ be the Moreau–Yosida regularization of j , that is

jλ(x) := inf
y∈R

(
j (y) + |x − y|2

2λ

)
, λ > 0.

We recall that jλ is a convex, proper differentiable function, with j ′
λ = βλ, that

converges pointwise to j from below. In particular,

βλ(x)(x − y) ≥ jλ(x) − jλ(y) ≥ jλ(x) − j (y) ∀x, y ∈R.

This implies∫ t

0

〈
βλ

(
Xλ(s)

)
, Yλ(s)

〉
ds

=
∫ t

0

∫
D

βλ

(
Xλ(s, x)

)(
Xλ(s, x) − B · W(s, x)

)
dx ds

≥
∫ t

0

∫
D

jλ

(
Xλ(s, x)

)
dx ds −

∫ t

0

∫
D

j
(
B · W(s, x)

)
dx ds,
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hence also
1

2

∥∥Xλ(t)
∥∥2
H + C

∫ t

0

∥∥Xλ(s)
∥∥2
V ds + 2

∫ t

0

∫
D

jλ

(
Xλ(s, x)

)
dx ds

≤ ‖X0‖2
H + ∥∥B · W(t)

∥∥2
H + 1

ε

∫ t

0

∥∥B · W(s)
∥∥2
V ds

+ 2
∫ t

0

∫
D

j
(
B · W(s, x)

)
dx ds.

Taking the supremum with respect to t yields

‖Xλ‖2
C([0,T ];H) + ‖Xλ‖2

L2(0,T ;V )
+ ∥∥jλ(Xλ)

∥∥
L1(0,T ;L1(D))

� ‖X0‖2
H + ‖B · W‖2

C([0,T ];H)

+ ‖B · W‖2
L2(0,T ;V )

+ ∥∥j (B · W)
∥∥
L1(0,T ;L1(D)),

where the implicit constant depends only on the operator norm of A. It follows by
Itô’s isometry and Doob’s inequality that

‖B · W‖L2(�;C([0,T ];V0))
� ‖B‖L2(�;L2(0,T ;L 2(U,V0)))

,

where the right-hand side is finite by assumption, hence, recalling that V0 is con-
tinuously embedded in V ,

‖B · W‖C([0,T ];H) + ‖B · W‖L2(0,T ;V ) �T ‖B · W‖C([0,T ];V0).

Analogously, denoting the norm of the continuous embedding ι : V0 → L∞(D)

by k, one has, recalling that j is symmetric and increasing on R+,∥∥j (
B · W(t)

)∥∥
L1(D) �|D| j

(∥∥B · W(t)
∥∥
L∞(D)

) ≤ j
(
k
∥∥B · W(t)

∥∥
V0

)
,

for all t ∈ [0, T ], hence∥∥j (B · W)
∥∥
L1(0,T ;L1(D)) �|D|,T j

(
k‖B · W‖C([0,T ];V0)

)
.

The proof is complete choosing �′ ⊂ � such that ‖X0(ω)‖H and
‖B · W(ω)‖C([0,T ];V0) are finite for all ω ∈ �′, and defining M : �′ →R as

M := ‖X0‖2
H + ‖B · W‖2

C([0,T ];H) + ‖B · W‖2
L2(0,T ;V )

+ ∥∥j (B · W)
∥∥
L1(0,T ;L1(D)). �

REMARK 5.4. The above estimates can be obtained by purely determinis-
tic arguments, without invoking Itô’s formula. In fact, note that equation (4) can
equivalently be written as

Yλ(t) +
∫ t

0

(
AXλ(s) + βλ

(
Xλ(s)

))
ds = 0.
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One has Yλ ∈ L2(0, T ;V ), which follows at once by the properties of Xλ and
by B · W ∈ L2(�;C([0, T ];V0)). Similarly, since AXλ and βλ(Xλ) belong to
L2(�;L2(0, T ;V ∗)), one also has, by the previous identity, Y ′

λ ∈ L2(0, T ;V ∗).
In particular, there exists �′ ⊂ �, with P(�′) = 1, such that

Yλ(ω) ∈ L2(0, T ;V ), Y ′
λ(ω) ∈ L2(

0, T ;V ∗) ∀ω ∈ �′.
Lemma 4.5 then yields

1

2

∥∥Yλ(t)
∥∥2
H +

∫ t

0

〈
AXλ(s), Yλ(s)

〉
ds +

∫ t

0

〈
βλ(Xλ),Yλ(s)

〉
ds = 1

2
‖X0‖2

H .

LEMMA 5.5. There exists a constant N > 0 such that

‖Xλ‖2
L2(�;C([0,T ];H))

+ ‖Xλ‖2
L2(�;L2(0,T ;V )

+ ∥∥βλ(Xλ)Xλ

∥∥
L1(�;L1(0,T ;L1(D)))

< N
(‖X0‖2

L2(�;H)
+ ‖B‖2

L2(�;L2(0,T ;L 2(U,H)))

)
.

PROOF. Itô’s formula yields

∥∥Xλ(t)
∥∥2
H + 2

∫ t

0

〈
AXλ(s),Xλ(s)

〉
ds + 2

∫ t

0

〈
βλ

(
Xλ(s)

)
,Xλ(s)

〉
ds

= ‖X0‖2
H + 2

∫ t

0
Xλ(s)B(s) dW(s) + 1

2

∫ t

0

∥∥B(s)
∥∥2
L 2(U,H) ds,

where Xλ in the stochastic integral on the right-hand side has to be interpreted as
taking values in H ∗ � H . The coercivity of A and the monotonicity of βλ readily
imply, after taking supremum in time and expectation,

E‖Xλ‖2
C([0,T ];H) + 2CE‖Xλ‖2

L2(0,T ;V )
+E

∫ T

0

〈
βλ

(
Xλ(s)

)
,Xλ(s)

〉
ds

� E‖X0‖2
H +E‖B‖2

L2(0,T ;L 2(U,H))
+E sup

t∈[0,T ]

∣∣∣∣
∫ t

0
Xλ(s)B(s) dW(s)

∣∣∣∣,
where, by Lemma 4.3,

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
Xλ(s)B(s) dW(s)

∣∣∣∣

≤ εE‖Xλ‖2
C([0,T ];H) + N(ε)E

∫ T

0

∥∥B(s)
∥∥2
L 2(U,H) ds

for any ε > 0, whence the result follows choosing ε small enough. �

We now establish weak compactness properties for the sequence (βλ(Xλ)).

LEMMA 5.6. The sequence (βλ(Xλ))λ is relatively weakly compact in L1(�×
(0, T ) × D). Moreover, there exists a set �′′ ⊂ �, with P(�′′) = 1, such that
(βλ(Xλ(ω, ·)) is weakly relatively compact in L1((0, T ) × D) for all ω ∈ �′′.
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PROOF. Recalling that, for any y, r ∈ R, j (y) + j∗(r) = ry if and only if
r ∈ ∂j (y) = β(y), one has

(6) j
(
(I + λβ)−1x

) + j∗(
βλ(x)

) = βλ(x)(I + λβ)−1x ≤ βλ(x)x ∀x ∈ R.

In fact, since βλ ∈ β ◦ (I + λβ)−1, it follows from β = ∂j that βλ(x) ∈ ∂j ((I +
λβ)−1x). Moreover, β((I +λβ)−1x)(I +λβ)−1x ≥ 0 by monotonicity of β , hence
the inequality in (6) follows since (I +λβ)−1 is a contraction. The previous lemma
thus implies, thanks to the symmetry of j∗, that there exists a constant N , inde-
pendent of λ, such that, setting

N̄(X0,B) := N
(‖X0‖2

L2(�;H)
+ ‖B‖2

L2(�;L2(0,T ;L 2(U,H)))

)
,

one has

E

∫ T

0

∫
D

j∗(∣∣βλ(Xλ)
∣∣) ≤ E

∫ T

0

∫
D

βλ(Xλ)Xλ < N̄(X0,B).

Since j∗ is superlinear at infinity, the sequence (βλ(Xλ)) is uniformly integrable
on � × (0, T ) × D by the de la Vallée–Poussin criterion, hence weakly relatively
compact in L1(� × (0, T ) × D) by a well-known theorem of Dunford and Pettis.
The first assertion is thus proved.

By (5), since Yλ = Xλ − B · W , it follows that
∫ t

0

〈
βλ

(
Xλ(s)

)
,Xλ(s)

〉
ds � ‖X0‖2

H + ∥∥B · W(t)
∥∥2
H +

∫ t

0

∥∥B · W(s)
∥∥2
V ds

+
∫ t

0

〈
βλ

(
Xλ(s)

)
,B · W(s)

〉
ds,

where, by Young’s inequality and convexity [recalling that j∗(0) = 0],
∫ t

0

〈
βλ

(
Xλ(s)

)
,B · W(s)

〉
ds ≤ 1

2

∫ t

0

∫
D

j∗(
βλ(Xλ)

) +
∫ t

0

∫
D

j (2B · W).

Rearranging terms and proceeding as in the (end of the) proof of Lemma 5.3, we
infer that there exists a set �′′ ⊂ �, with P(�′′) = 1, and a function M : �′′ → R

such that

(7)
∫ T

0

〈
βλ

(
Xλ(ω, s)

)
,Xλ(ω, s)

〉
ds < M(ω) ∀ω ∈ �′′.

The symmetry of j∗ and the inequality (6) yield, as before, that, for any ω ∈ �′′,
(βλ(Xλ(ω, ·))) is weakly relatively compact in L1((0, T ) × D). �

In order to pass to the limit as λ → 0, we are going to use Simon’s compactness
criterion, that is, Lemma 4.6, and Brézis’ Lemma 4.1.
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PROPOSITION 5.7. There exists �′ ⊆ �, with P(�′) = 1, such that, for any
ω ∈ �′, there exists a subsequence λ′ = λ′(ω) of λ such that, as λ′ → 0,

Xλ′(ω, ·) ∗−⇀ X(ω, ·) in L∞(0, T ;H),

Xλ′(ω, ·) −⇀ X(ω, ·) in L2(0, T ;V ),

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

βλ′
(
Xλ′(ω, ·)) −⇀ ξ(ω, ·) in L1(

(0, T ) × D
)
.

PROOF. The first two convergence statements follow by Lemma 5.3, and the
fourth one follows by Lemma 5.6. Let us show that the third convergence state-
ment holds. In the following, we omit the indication of ω, as no confusion can
arise. Setting Yλ = Xλ −B ·W , (4) can equivalently be written as the deterministic
equation (with random coefficients) on V ∗

Y ′
λ + AXλ + βλ(Xλ) = 0,

where

‖AXλ‖L1(0,T ;V ∗
0 ) � ‖AXλ‖L1(0,T ;V ∗) � ‖Xλ‖L1(0,T ;V ),∥∥βλ(Xλ)

∥∥
L1(0,T ;V ∗

0 ) �
∥∥βλ(Xλ)

∥∥
L1(0,T ;V ∗) �

∥∥βλ(Xλ)
∥∥
L1(0,T ;L1(D)),

hence, again by Lemmata 5.3 and 5.6, ‖Y ′
λ‖L1(0,T ;V ∗

0 ) is bounded uniformly over λ.

Moreover, since B · W ∈ L2(�;C([0, T ];V0)) and

‖Yλ‖L2(0,T ;V ) ≤ ‖Xλ‖L2(0,T ;V ) + ‖B · W‖L2(0,T ;V ),

we conclude that (Yλ) is bounded in L2(0, T ;V ). Simon’s compactness criterion
then implies that Yλ, hence also Xλ, is relatively compact in L2(0, T ;H). Since
Xλ′ ⇀ X in L2(0, T ;V ), it follows that

Xλ′(ω, ·) −→ X(ω, ·) in L2(0, T ;H),

thus completing the proof. �

We are now going to show that the couple (X, ξ) just constructed is indeed the
unique solution to the equation with “smoothed” noise (3).

PROOF OF PROPOSITION 5.1. In spite of the above preparations, the argument
is quite long, so we subdivide it into several steps.

Step 1. In the notation of Proposition 5.7, let ω ∈ �′ be arbitrary but fixed. Note
that Xλ′ → X in L2(0, T ;H) implies that, passing to a further subsequence of λ′,
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denoted with the same symbol for simplicity, Xλ′(t) → X(t) in H for almost all
t ∈ [0, T ]. Moreover, Xλ′ ⇀ X in L2(0, T ;V ) implies that

∫ t

0
AXλ(s) ds −⇀

∫ t

0
AX(s) ds in V ∗

for all t ∈ [0, T ]. In fact, taking φ0 ∈ V and φ := s �→ 1[0,t](s)φ0 ∈ L2(0, t;V ),
one obviously has A∗φ ∈ L2(0, t;V ∗) and

∫ t

0

〈
AXλ(s),φ0

〉
ds =

∫ T

0

〈
AXλ(s),φ(s)

〉
ds =

∫ T

0

〈
Xλ(s),A

∗φ(s)
〉
ds

−→
∫ T

0

〈
X(s),A∗φ(s)

〉
ds =

∫ t

0

〈
AX(s),φ0

〉
ds.

Similarly, βλ′(Xλ′) ⇀ ξ in L1((0, T ) × D) implies
∫ t

0
βλ′

(
Xλ′(s)

)
ds −⇀

∫ t

0
ξ(s) ds in L1(D)

for all t ∈ [0, T ]. In particular, passing to the limit as λ′ → 0 in the regularized
equation (4) yields

X(t) +
∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 + B · W(t) in V ∗

0 for a.a. t ∈ [0, T ].

Since L1(D),V ∗ ↪→ V ∗
0 , we have that AX ∈ L2(0, T ;V ∗) ↪→ L1(0, T ;V ∗

0 ) and
ξ ∈ L1(0, T ;L1(D)) ↪→ L1(0, T ;V ∗

0 ), and recalling that B · W ∈ C([0, T ];V0),
we infer that X ∈ C([0, T ];V ∗

0 ), hence the previous identity is true for every t ∈
[0, T ]. Moreover, it follows from X ∈ L∞(0, T ;H) that X ∈ Cw([0, T ];H), and
thanks Lemma 4.4. Note also that all terms expect the second one on the left-hand
side take values in L1(D), and all terms except the third one on the left-hand side
take values in V ∗, hence the above identity holds true also in L1(D) ∩ V ∗.

Let us now show that ξ ∈ β(X) a.e. in (0, T ) × D: Xλ′ → X in L2(0, T ;H)

implies that, passing to a subsequence of λ′, still denoted by the same symbol,
Xλ′ → X a.e. in (0, T ) × D, hence also (I + λ′β)−1Xλ′ → X a.e. in (0, T ) × D.
Since βλ′(Xλ′) ∈ β((I +λ′β)−1Xλ′) a.e. in (0, T )×D and βλ′(Xλ′)(I +λ′β)−1Xλ′
is bounded in L1((0, T ) × D) by (7), Brézis’ Lemma 4.1 implies the claim. These
relations and the weak convergence βλ′(Xλ′) ⇀ ξ in L1((0, T ) × D) also imply,
by the weak lower semicontinuity of convex integrals, that

∫ T

0

∫
D

(
j (X) + j∗(ξ)

) ≤ lim inf
λ′→0

∫ T

0

∫
D

(
j
((

I + λ′A
)−1

Xλ′
) + j∗(

βλ′(Xλ′)
))

= lim inf
λ′→0

∫ T

0

∫
D

βλ′(Xλ′)
(
I + λ′A

)−1
Xλ′ ≤ N,

where N is a constant that depends on ω.
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Step 2. Still keeping ω fixed as in the previous step, we are going to show that
the limits X and ξ constructed above are unique. Suppose there exist (Xi, ξi),
ξi ∈ β(Xi) a.e. in (0, T ) × D, i = 1,2, such that

Xi(t) +
∫ t

0
AXi(s) ds +

∫ t

0
ξi(s) ds = X0 + B · W(t)

in L1(D)∩V ∗ for all t ∈ [0, T ]. Setting X = X1 −X2 and ξ = ξ1 −ξ2, it is enough
to show that

(8) X(t) +
∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = 0

in L1(D) ∩ V ∗ for all t ∈ [0, T ] implies X = 0 and ξ = 0. By the hypotheses
on A, there exists m ∈N such that (I + δA)−m maps L1(D) in L∞(D). Therefore,
setting

Xδ := (I + δA)−mX, ξδ := (I + δA)−mξ,

one has

Xδ(t) +
∫ t

0
AXδ(s) ds +

∫ t

0
ξδ(s) ds = 0

for all t ∈ [0, T ], for which Itô’s formula and monotonicity of A yield

1

2

∥∥Xδ(t)
∥∥2
H +

∫ t

0

∫
D

ξδ(s, x)Xδ(s, x) dx ds ≤ 0.

We can now take the limit as δ → 0. Since (I + δA)−m converges, in the strong
operator topology, to the identity in L (H), one has ‖Xδ(t)‖H → ‖X(t)‖H for
all t ∈ [0, T ]. Passing to a subsequence of δ, still denoted by the same symbol,
we also have Xδ → X and ξδ → ξ a.e. in (0, T ) × D, hence Xδξδ → Xξ a.e. in
(0, T ) × D. Let us show that (Xδξδ) is uniformly integrable: by the symmetry of
j and j∗, and the abstract Jensen inequality of Lemma 4.2, we have

|Xδξδ| ≤ j (Xδ) + j∗(ξδ) ≤ (I + δA)−m(
j (X) + j∗(ξ)

)
,

where the term on the right-hand side converges to j (X)+j∗(ξ) in L1((0, T )×D)

as δ → 0, hence (Xδξδ) is indeed uniformly integrable on (0, T ) × D. It follows
by Vitali’s convergence theorem that, for any t ∈ [0, T ],∫ t

0

∫
D

Xδξδ →
∫ t

0

∫
D

Xξ,

hence also
1

2

∥∥X(t)
∥∥2
H +

∫ t

0

∫
D

X(s, x)ξ(s, x) dx ds ≤ 0.

The monotonicity of β immediately implies that X(t) = 0 for all t ∈ [0, T ]. Sub-
stituting in (8), we are left with

∫ t
0 ξ(s) ds = 0 in L1(D) for all t ∈ [0, T ], so that

also ξ = 0, and uniqueness is proved.
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Step 3. The solution (X, ξ) does not have, a priori, any measurability in ω,
because of the way it has been constructed. We are going to show that in fact X and
ξ are predictable processes. The reasoning for X is simple: with ω fixed, we have
proved that from any subsequence of λ one can extract a further subsequence λ′,
depending on ω, such that the convergences of Proposition 5.7 take place, and the
limit (X, ξ) is unique. This implies, by a well-known criterion of classical analysis,
that the same convergences hold along the original sequence λ, which does not
depend on ω. The convergence of Xλ(ω, ·) to X(ω, ·) in L2(0, T ;H) implies that
X : � → L2(0, T ;H) is measurable and Xλ(ω, t) converges to X(ω, t) in H in
P⊗ dt-measure, hence Xλ̄(ω, t) → X(ω, t) in H P⊗ dt-a.e. along a subsequence
λ̄ of λ. Since Xλ is predictable, being adapted with continuous trajectories in H ,
we infer that X is predictable. Unfortunately, a similar reasoning does not work for
ξ , because ξλ(ω) := βλ(Xλ(ω)) converges only weakly in L1((0, T ) × D) for P-
a.a. ω ∈ �.9 We shall prove instead that a subsequence of ξλ := βλ(Xλ) converges
weakly to ξ in L1(� × (0, T ) × D). In fact, let g ∈ L∞((0, T ) × D) be arbitrary
but fixed. Then, setting

Fλ(ω) :=
∫ T

0

∫
D

ξλ(ω, s, x)g(s, x) dx ds,

F (ω) :=
∫ T

0

∫
D

ξ(ω, s, x)g(s, x) dx ds,

we have Fλ → F in probability, and we claim that Fλ → F weakly in L1(�). Let
h ∈ L∞(�) be arbitrary but fixed, and introduce the even convex function

j0 := j∗(·/M), M := 1

(‖g‖L∞((0,T )×D) ∨ 1)(‖h‖L∞(�) ∨ 1)
.

Then, by Jensen’s inequality,

E j0(Fλh) = E j0

(∫ T

0

∫
D

ξλ(ω, s, x)g(s, x)h(ω)dx ds

)

�T ,|D| E
∫ T

0

∫
D

j0
(
ξλ(ω, s, x)g(s, x)h(ω)

)
dx ds

≤ E

∫ T

0

∫
D

j∗(
ξλ(ω, s, x)

)
dx ds,

where the last term is bounded by a constant independent of λ, as proved in
Lemma 5.6. Since j0 inherits the superlinearity at infinity of j∗, the criterion of de
la Vallée Poussin implies that Fλh is uniformly integrable, hence, since Fλh → Fh

9One may indeed deduce, using Mazur’s lemma, that there exists, for each ω in a set of probability

one, a sequence (ξ̃μ(ω)(ω))μ(ω) in the convex envelope of (ξλ(ω))λ that converges to ξ(ω). However,

the map ω �→ ξ̃μ(ω)(ω) needs not be measurable, hence we cannot infer measurability of its limit ξ .
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in probability, that Fλh → Fh strongly in L1(�) by Vitali’s theorem. As h was ar-
bitrary, this implies that Fλ → F weakly in L1(�), thus also that ξλ → ξ weakly
in L1(� × (0, T ) × D) by arbitrariness of g. By the canonical identification of
L1(� × (0, T ) × D) with L1(� × (0, T );L1(D)) and Mazur’s lemma (see, e.g.,
[11], 7), page 360), there exists a sequence (ζn)n∈N of convex combinations of
(ξλ) that converges strongly to ξ in L1(D) in P ⊗ dt-measure, hence P ⊗ dt-
a.e. passing to a subsequence of n. Since ξλ, hence ζn, are predictable for all λ

and n, respectively, it follows that ξ is a predictable L1(D)-valued process and
ξ : � → L1((0, T ) × D)) is measurable. Moreover, since Xλ(ω, ·) → X(ω, ·) in
L2(0, T ;H) for P-a.a. ω and (Xλ)λ is bounded in L2(�;L2(0, T ;V )), it follows
that Xλ ⇀ X in L2(�;L2(0, T ;V )). Therefore, an entirely analogous argument
based on Mazur’s lemma yields that X : � → L2(0, T ;V ) is measurable.

Step 4. As a last step, we are going to show that X and ξ satisfy also estimates in
expectation. In particular, the weak and weak* lower semicontinuity of the norm
ensures that, for P-almost all ω ∈ �,

∥∥X(ω, ·)∥∥L2(0,T ;V ) ≤ lim inf
λ→0

∥∥Xλ(ω, ·)∥∥L2(0,T ;V ),

∥∥X(ω, ·)∥∥L∞(0,T ;H) ≤ lim inf
λ→0

∥∥Xλ(ω, ·)∥∥L∞(0,T ;H),

∥∥ξ(ω, ·)∥∥L1(Q) ≤ lim inf
λ→0

∥∥βλ

(
Xλ(ω, ·))∥∥L1(Q).

Taking expectations and recalling Lemmata 5.5 and 5.6, it follows by Fatou’s
lemma that, for a constant N ,

E‖X‖2
L2(0,T ;V )

≤ E

(
lim inf
λ→0

‖Xλ‖2
L2(0,T ;V )

)
≤ lim inf

λ→0
E‖Xλ‖2

L2(0,T ;V )
< N,

E‖X‖2
L∞(0,T ;H) ≤ E

(
lim inf
λ→0

‖Xλ‖2
L∞(0,T ;H)

)
≤ lim inf

λ→0
E‖Xλ‖2

L∞(0,T ;H) < N

and

E‖ξ‖L1(0,T ;L1(D)) ≤ E

(
lim inf
λ→0

‖ξλ‖L1(0,T ;L1(D))

)

≤ lim inf
λ→0

E‖ξλ‖L1(0,T ;L1(D)) < N,

that is,

X ∈ L2(
�;L∞(0, T ;H)

) ∩ L2(
�;L2(0, T ;V )

)
,

ξ ∈ L1(
� × (0, T ) × D

)
.

The proof is thus complete. �

We conclude this section with a corollary that will be used in the following.
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COROLLARY 5.8. There exists a constant N such that

E

∫ T

0

∫
D

(
j (X) + j∗(ξ)

)
< N

(‖X0‖2
L2(�;H)

+ ‖B‖2
L2(�;L2(0,T ;L 2(U,H)))

)
.

PROOF. Thanks to Step 3 in the previous proof, there exists a sequence λ,
independent of ω, such that Xλ → X a.e. in (0, T ) × D and βλ(Xλ) → ξ weakly
in L1((0, T ) × D). Proceeding as in the first part of the proof of Lemma 5.6,
Lemma 5.5 implies that there exists a constant N such that

E

∫ T

0

∫
D

(
j
(
(I + λβ)−1Xλ

) + j∗(
βλ(Xλ)

))
dx ds < N̄(X0,B),

where N̄(X0,B) := N(‖X0‖2
L2(�;H)

+ ‖B‖2
L2(�;L2(0,T ;L 2(U,H)))

). Therefore, in
analogy to Step 4 of the previous proof, two applications of Fatou’s lemma yield

E

∫ T

0

∫
D

j (X) ≤ lim inf
λ→0

E

∫ T

0

∫
D

j
(
(I + λβ)−1Xλ

)
< N̄(X0,B),

as well as, by the weak lower semicontinuity of convex integrals and Fatou’s
lemma again,

E

∫ T

0

∫
D

j∗(ξ) ≤ lim inf
λ→0

E

∫ T

0

∫
D

j∗(
βλ(Xλ)

)
< N̄(X0,B). �

6. Well-posedness with additive noise. In this section, we prove well-
posedness for the equation

(9) dX(t) + AX(t) dt + β
(
X(t)

)
dt � B(t) dW(t), X(0) = X0,

where B is an L 2(U,H)-valued process. Note that this is just equation (1) with
additive noise.

PROPOSITION 6.1. Assume that X0 ∈ L2(�,F0,P;H) and that

B ∈ L2(
�;L2(

0, T ;L 2(U,H)
))

is measurable and adapted. Then equation (3) is well-posed in J . Moreover,
X(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ �.

PROOF. We shall proceed in several steps: first, we approximate the coefficient
B in such a way that the corresponding equation can be uniquely solved by the
methods of the previous section. Then we pass to the limit in an appropriate way,
obtaining a solution to (9), which is then shown to be unique.

Step 1. By Assumption A(iv), there exists m ∈ N such that (I + A)−m maps
continuously L1 to L∞. The space V0 := D(Am), endowed with inner product

〈u, v〉V0 := 〈u, v〉H + 〈
Amu,Amv

〉
H , u, v ∈ D

(
Am)

,
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is a Hilbert space densely and continuously embedded in V . Moreover, the diagram

D
(
Am) (I+A)m−−−−→ L1(D)

(I+A)−m−−−−−→ L∞(D)

immediately shows that V0 is also continuously embedded in L∞(D). In particu-
lar, all hypotheses on V0 of the previous section are met. Moreover, by the ideal
property of Hilbert–Schmidt operators, setting, for any ε > 0,

Bε := (I + εA)−mB,

we have Bε ∈ L2(�;L2(0, T ;L 2(U,V0))). Then it follows by Proposition 5.1
that, for any ε > 0, there exist predictable processes

Xε ∈ L2(
�;L∞(0, T ;H)

) ∩ L2(
�;L2(0, T ;V )

)
,

ξ ε ∈ L1(
� × (0, T ) × D

)
,

with Xε(ω, ·) ∈ Cw([0, T ];H) for P-almost all ω ∈ �, such that

(10) Xε(t) +
∫ t

0
AXε(s) ds +

∫ t

0
ξε(s) ds = X0 +

∫ t

0
Bε(s) dW(s)

in V ∗ ∩ L1(D) for all t ∈ [0, T ]. Moreover, ξε ∈ β(Xε) a.e. in (0, T ) × D and
j (Xε) + j∗(ξε) ∈ L1((0, T ) × D) P-almost surely.

Step 2. For any ε > 0, the equation in V ∗

Xε
λ(t) +

∫ t

0
AXε

λ(s) ds +
∫

0
βλ

(
Xε

λ(s)
)
ds = X0 +

∫ t

0
Bε(s) dW(s)

admits a unique (variational) strong solution Xε
λ. Taking into account the coercivity

of A and the monotonicity of βλ, Itô’s formula yields, for any δ > 0,
∥∥Xε

λ(t) − Xδ
λ(t)

∥∥2
H +

∫ t

0

∥∥Xε
λ(s) − Xδ

λ(s)
∥∥2
V ds

�
∫ t

0

(
Xε

λ(s) − Xδ
λ(s)

)(
Bε(s) − Bδ(s)

)
dW(s)

+
∫ t

0

∥∥Bε(s) − Bδ(s)
∥∥2
L 2(U,H) ds.

Taking supremum in time and expectation, it easily follows from Lemma 4.3 that∥∥Xε
λ − Xδ

λ

∥∥
L2(�;L∞(0,T ;H)) + ∥∥Xε

λ − Xδ
λ

∥∥
L2(�;L2(0,T ;V ))

�
∥∥Bε − Bδ

∥∥
L2(�;L2(0,T ;L 2(U,H))).

On the other hand, the proof of Proposition 5.1 shows that there exists a se-
quence λ, independent of ε, such that, for P-almost all ω ∈ �,

Xε
λ(ω, ·) ∗−⇀ Xε(ω, ·) in L∞(0, T ;H),

Xε
λ(ω, ·) −⇀ Xε(ω, ·) in L2(0, T ;V ),

βλ

(
Xε

λ(ω, ·)) −⇀ ξε(ω, ·) in L1(
(0, T ) × D

)
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as λ → 0. Since the weak* limit in L∞(0, T ;H) as λ → 0 of Xε
λ −Xδ

λ is Xε −Xδ ,
the weak* lower semicontinuity of the norm implies∥∥Xε − Xδ

∥∥
L∞(0,T ;H) ≤ lim inf

λ→0

∥∥Xε
λ − Xδ

λ

∥∥
L∞(0,T ;H),

thus also, by Fatou’s lemma,

E
∥∥Xε − Xδ

∥∥2
L∞(0,T ;H) ≤ E lim inf

λ→0

∥∥Xε
λ − Xδ

λ

∥∥2
L∞(0,T ;H)

� E
∥∥Bε − Bδ

∥∥2
L2(0,T ;L 2(U,H)).

An entirely similar argument yields

E
∥∥Xε − Xδ

∥∥2
L2(0,T ;V ) � E

∥∥Bε − Bδ
∥∥2
L2(0,T ;L 2(U,H)),

so that ∥∥Xε − Xδ
∥∥
L2(�;L∞(0,T ;H)) + ∥∥Xε − Xδ

∥∥
L2(�;L2(0,T ;V ))

�
∥∥Bε − Bδ

∥∥
L2(�;L2(0,T ;L 2(U,H))).

Taking into account that ‖Bε − B‖L2(�;L2(0,T ;L 2(U,H))) → 0 as ε → 0, it follows
that (Xε) is a Cauchy sequence in

E := L2(
�;L∞(0, T ;H)

) ∩ L2(
�;L2(0, T ;V )

)
,

hence there exists X ∈ E such that Xε converges (strongly) to X in E as ε → 0.
In particular, the limit process X is predictable. Moreover, by Corollary 5.8, there
exists a constant N such that

E

∫ T

0

∫
D

(
j
(
Xε) + j∗(

ξε))dx ds

< N
(‖X0‖2

L2(�;H)
+ ∥∥Bε

∥∥2
L2(�;L2(0,T ;L 2(U,H)))

)

≤ N
(‖X0‖2

L2(�;H)
+ ‖B‖2

L2(�;L2(0,T ;L 2(U,H)))

)
,

(11)

as it follows by the ideal property of Hilbert–Schmidt operators and the contrac-
tivity of (I + εA)−1. The criterion by de la Vallée Poussin then implies that (ξε)

is uniformly integrable on �× (0, T )×D, hence, by the Dunford–Pettis theorem,
(ξε) is weakly relatively compact in L1(� × (0, T ) × D). Therefore, passing to
a subsequence of ε, denoted by the same symbol, there exists ξ belonging to the
latter space such that ξε → ξ therein in the weak topology. In particular, by an
argument based on Mazur’s lemma, entirely analogous to that used in Step 3 of the
proof of Proposition 5.1, one infers that ξ is a predictable process.

Step 3. We can now pass to the limit as ε → 0 in equation (10), by a reasoning
analogous to the one use in Step 1 of the proof of Proposition 5.1. As proved in the
previous step, Xε converges strongly to X in L2(�;L∞(0, T ;H)), hence

ess sup
t∈[0,T ]

∥∥Xε(t) − X(t)
∥∥
H → 0
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in probability as ε → 0. Let φ0 ∈ V0 be arbitrary. Since V0 ↪→ L∞(D), one has〈
Xε(t), φ0

〉 → 〈
X(t),φ0

〉
in probability for almost all t ∈ [0, T ]. Let us set, for an arbitrary but fixed
t ∈ [0, T ], φ : s �→ 1[0,t](s)φ0 ∈ L2(0, T ;V ), so that Aφ ∈ L2(0, T ;V ∗). Recall-
ing that Xε → X (strongly, hence also weakly) in L2(�;L2(0, T ;V )), it follows
immediately that Xε ⇀ X in L2(0, T ;V ) in measure, hence∫ t

0

〈
AXε,φ0

〉
ds =

∫ T

0

〈
AXε(s),φ(s)

〉
ds =

∫ T

0

〈
Xε(s),Aφ(s)

〉
ds

→
∫ T

0

〈
X(s),Aφ(s)

〉
ds =

∫ t

0

〈
AX(s),φ0

〉
ds

in probability as ε → 0. A completely analogous reasoning shows that∫ t

0

〈
ξε(s), φ0

〉
ds →

∫ t

0

〈
ξ(s), φ0

〉
ds

in probability as ε → 0. Doob’s maximal inequality and the convergence
∥∥Bε − B

∥∥
L2(�;L2(0,T ;L 2(U,H)))

ε→0−−→ 0

readily yield also that Bε · W(t) → B · W(t) in H in probability for all t ∈ [0, T ].
In particular, since φ0 ∈ V0 and t ∈ [0, T ] are arbitrary, we infer that

X(t) +
∫ t

0
AX(s) ds +

∫ t

0
ξ(s) ds = X0 +

∫ t

0
B(s) dW(s)

holds in V ∗
0 for almost all t . Since ξ ∈ L1(0, T ;L1(D)) ↪→ L1(0, T ;V ∗

0 ), so that
all terms except the first on the left-hand side have trajectories in C([0, T ];V ∗

0 ), we
conclude that the identity holds for all t ∈ [0, T ]. Moreover, thanks to Lemma 4.4,
X ∈ C([0, T ];V ∗

0 ) and X ∈ L∞(0, T ;H) imply X ∈ Cw([0, T ];H). Note also
that all terms bar the second [third] one on the left-hand side are L1(D)-valued
[V ∗-valued], hence the identity holds in L1(D) ∩ V ∗ for all t ∈ [0, T ].

Step 4. Convergence of Xε → X in L2(�;L∞(0, T ;H)) implies convergence
in measure in � × (0, T ) × D, hence, by Fatou’s lemma, (11) yields

E

∫ T

0

∫
D

j (X) < N̄(X0,B),

where N̄(X0,B) is the constant appearing in the last term of (11). Similarly, since
ξε → ξ weakly in L1(� × (0, T ) × D), (11) and the weak lower semicontinuity
of convex integrals yield

E

∫ T

0

∫
D

j∗(ξ) < N̄(X0,B).

To complete the proof of existence, we only need to show that ξ ∈ β(X) a.e. in
� × (0, T ) × D. Note that, passing to a subsequence of ε, still denoted by the
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same symbol, we have Xε → X a.e. in �× (0, T )×D. Recalling that ξε ∈ β(Xε)

a.e. in � × (0, T ) × D, (11) again implies

E

∫ T

0

∫
D

Xεξε = E

∫ T

0

∫
D

(
j
(
Xε) + j∗(

ξε)) < N̄(X0,B).

It follows by monotonicity that Xεξε ≥ 0, hence Xεξε ∈ L1(� × (0, T ) × D).
Brézis’ Lemma 4.1 then yields ξ ∈ β(X) a.e. in � × (0, T ) × D.

Uniqueness and continuous dependence of the solution on the initial datum is
an immediate consequence of the next result. �

We first need to introduce weighted (in time) versions of some spaces of pro-
cesses. For any p ∈ [1,∞] and α ≥ 0, we shall denote by L

p
α(0, T ) the space

Lp(0, T ) endowed with the norm ‖f ‖L
p
α(0,T ) := ‖t �→ e−αtf (t)‖Lp(0,T ). It is clear

that Lp(0, T ) and L
p
α(0, T ), for different values of α, are all isomorphic (their

norms are equivalent). Completely similar notation will be used for vector-valued
Lp and L

p
α spaces. For typographical economy, restricted only to the formulation

of the following proposition, let us define the Banach space

Fα := L2(
�;L∞

α (0, T ;H)
) ∩ L2(

�;L2
α(0, T ;V )

)
,

endowed with the norm

‖·‖Fα := ‖·‖L2(�;L∞
α (0,T ;H))∩L2(�;L2

α(0,T ;V )) + √
α‖·‖L2(�;L2

α(0,T ;H)).

PROPOSITION 6.2. Let (X1, ξ1), (X2, ξ2) ∈ J be solutions to (9) with initial
values X01, X02 ∈ L2(�,F0;H) and progressively measurable diffusion coeffi-
cients B1, B2 ∈ L2(�;L2(0, T ;L 2(U,H))), respectively. Then, for any α ≥ 0,

‖X1 − X2‖Fα � ‖X01 − X02‖L2(�;H) + ‖B1 − B2‖L2(�;L2
α(0,T ;L 2(U,H))).

In particular, there is a unique solution (X, ξ) ∈ J to (9).

PROOF. Setting

Y := X1 − X2, Y0 := X01 − X02, G := B1 − B2,

one has

Y(t) +
∫ t

0
AY(s) ds +

∫ t

0
ζ(s) ds = Y0 +

∫ t

0
G(s)dW(s)

in V ∗ ∩ L1(D), where ζ := ξ1 − ξ2, and ξ1, ξ2 are defined in the obvious way.
By the hypotheses on A, there exists m ∈ N such that, using the notation hδ :=
(I + δA)−mh for any h for which it makes sense,

AYδ, ζ δ ∈ L1(
�;L1(0, T ;H)

)
,
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while Y δ
0 and Gδ have the same integrability properties of Y , Y0 and G, respec-

tively. In particular, we have

Y δ(t) +
∫ t

0
AYδ(s) ds +

∫ t

0
ζ δ(s) ds = Y δ

0 +
∫ t

0
Gδ(s) dW(s)

in V ∗. Let α > 0 be arbitrary but fixed, and add a superscript α to any process that
is multiplied pointwise by the function t �→ e−αt . The integration by parts formula
yields

Y δ,α(t) +
∫ t

0
(A + αI)Y δ,α(s) ds +

∫ t

0
ζ δ,α(s) ds = Y δ

0 +
∫ t

0
Gδ,α(s) dW(s),

to which we can apply Itô’s formula for the square of the norm in H , obtaining,
using the coercivity of A,

∥∥Y δ,α(t)
∥∥2
H + 2α

∫ t

0

∥∥Y δ,α(s)
∥∥2
H ds + 2C

∫ t

0

∥∥Y δ,α(s)
∥∥2
V ds

+ 2
∫ t

0

〈
Y δ,α(s), ζ δ,α(s)

〉
ds

≤ ∥∥Y δ
0
∥∥2
H +

∫ t

0
Y δ,α(s)Gδ,α(s) dW(s) +

∫ t

0

∥∥Gδ,α(s)
∥∥2
L 2(U,H) ds.

We are now going to pass to the limit as δ → 0: the first term on the left-hand side
and on the right-hand side clearly converge to ‖Yα(t)‖2

H and ‖Y0‖2
H , respectively.

Since (I + δA)−1 converges to the identity in H as well as in V in the strong
operator topology, the dominated convergence theorem yields

∫ t

0

∥∥Y δ,α(s)
∥∥2
V ds −→

∫ t

0

∥∥Yα(s)
∥∥2
V ds,

∫ t

0

∥∥Gδ,α(s)
∥∥2
L 2(U,H) ds −→

∫ t

0

∥∥Gα(s)
∥∥2
L 2(U,H) ds

as δ → 0 for all t ∈ [0, T ]. Defining the real local martingales

Mδ,α := (
Y δ,αGδ,α) · W, Mα := (

YαGα) · W,

in order to establish convergence in probability (uniformly on compact sets) of the
sequence Mδ,α to Mα as δ → 0, it is sufficient to show that [Mδ,α − Mα,Mδ,α −
Mα]T converges to zero in probability. To this purpose, note that

[
Mδ,α − Mα,Mδ,α − Mα]1/2

T = ∥∥Y δ,αGδ,α − YαGα
∥∥
L2(0,T ;L 2(U,R))

≤ ∥∥Y δ,αGδ,α − Y δ,αGα
∥∥
L2(0,T ;L 2(U,R))

+ ∥∥Y δ,αGα − YαGα
∥∥
L2(0,T ;L 2(U,R)),
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where ∥∥Y δ,α(t)Gδ,α(t) − Y δ,α(t)Gα(t)
∥∥
L 2(U,R)

≤ ∥∥Yα(t)
∥∥
H

∥∥Gδ,α(t) − Gα(t)
∥∥
L 2(U,H)

for all t ∈ [0, T ]. Since the right-hand side converges to 0 as δ → 0 and it is
bounded by 2‖Yα‖L∞(0,T ;H)‖Gα(t)‖L 2(U,H), and Gα ∈ L2(0, T ;L 2(U,H)), the
dominated convergence theorem yields∥∥Y δ,αGδ,α − Y δ,αGα

∥∥
L2(0,T ;L 2(U,R)) → 0

as δ → 0. Using completely analogous argument, we can show that the quantity
‖Y δ,αGα − YαGα‖L2(0,T ;L 2(U,R)) tends to 0 as δ → 0 as well.

We are now going to show that Y δ,αζ δ,α → Yαζα in L1(�×(0, T )×D), which
clearly implies that ∫ t

0

∫
D

Y δ,αζ δ,α →
∫ t

0

∫
D

Yαζα

in probability for all t ∈ [0, T ]. Since Y δ,α → Yα and ζ δ,α → ζ α in measure in
�× (0, T )×D, Vitali’s theorem implies strong convergence in L1 if the sequence
(Y δ,αζ δ,α) is uniformly integrable in �× (0, T )×D. In turn, the latter is certainly
true if (|Y δ,αζ δ,α|) is dominated by a sequence that converges strongly in L1. In
order to prove this property, note that j and j∗ are increasing on R+, hence

1

4

∣∣Y δ,α(ω, t, x)ζ δ,α(ω, t, x)
∣∣ ≤ j

(
e−αt

∣∣Y δ(ω, t, x)
∣∣/2

) + j∗(
e−αt

∣∣ζ δ(ω, t, x)
∣∣/2

)

≤ j
(∣∣Y δ(ω, t, x)

∣∣/2
) + j∗(∣∣ζ δ(ω, t, x)

∣∣/2
)
,

so that, by the symmetry of j and j∗, and by the Jensen inequality of Lemma 4.2,

1

4

∣∣Y δ,αζ δ,α
∣∣ ≤ j

(
Y δ/2

) + j∗(
ζ δ/2

) ≤ (I + δA)−m(
j (Y/2) + j∗(ζ/2)

)
,

where, by convexity and symmetry,

j (Y/2) = j

(
1

2
X1 + 1

2
(−X2)

)
≤ 1

2

(
j (X1) + j (X2)

) ∈ L1(
� × (0, T ) × D

)
,

and, completely analogously,

j∗(ζ/2) ≤ 1

2

(
j∗(ξ1) + j∗(ξ2)

) ∈ L1(
� × (0, T ) × D

)
,

hence ∣∣Y δ,αζ δ,α
∣∣ � (I + δA)−m(

j (X1) + j (X2) + j∗(ξ1) + j∗(ξ2)
)
.

Since the right-hand side of this expression converges strongly in L1(�× (0, T )×
D) as δ → 0, it is, a fortiori, uniformly integrable, and so is the left-hand side.
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We have thus obtained

∥∥Yα(t)
∥∥2
H + 2α

∫ t

0

∥∥Yα(s)
∥∥2
H ds + 2

∫ t

0
E

(
Yα(s), Y α(s)

)
ds

+ 2
∫ t

0

∫
D

Yα(s, x)ζ α(s, x) dx ds

≤ ‖Y0‖2
H +

∫ t

0
Yα(s)Gα(s) dW(s) +

∫ t

0

∥∥Gα(s)
∥∥2
L 2(U,H) ds,

where, by monotonicity, Yαζα = e−2α·(X1 − X2)(ξ2 − ξ2) ≥ 0, hence, taking the
L∞(0, T ) norm and expectation on both sides,

∥∥Yα
∥∥
L2(�;L∞(0,T ;H)) + √

α
∥∥Yα

∥∥
L2(�;L2(0,T ;H)) + ∥∥Yα

∥∥
L2(�;L2(0,T ;V ))

� ‖Y0‖L2(�;H) +
(
E sup

t≤T

∣∣∣∣
∫ t

0
Yα(s)Gα(s) dW(s)

∣∣∣∣
)1/2

+ ∥∥Gα
∥∥
L2(�;L2(0,T ;L 2(U,H))).

By Lemma 4.3, one has
(
E sup

t≤T

∣∣∣∣
∫ t

0
Yα(s)Gα(s) dW(s)

∣∣∣∣
)1/2

≤ ε
∥∥Yα

∥∥
L2(�;L∞(0,T ;H)) + N(ε)

∥∥Gα
∥∥
L2(�;L2(0,T ;L 2(U,H))),

with ε > 0 arbitrary. Choosing ε sufficiently small and rearranging terms, one ob-
tains

‖X1 − X2‖Fα � ‖X01 − X02‖L2(�;H) + ‖B1 − B2‖L2(�;L2
α(0,T ;L 2(U,H)))

as claimed.
Choosing α = 0, X01 = X02, and B1 = B2, one gets immediately X1 = X2,

hence also, by substitution,
∫ t

0

(
ξ1(s) − ξ2(s)

)
ds = 0 ∀t ∈ [0, T ],

which implies uniqueness of ξ . �

7. Proof of the main result. Let Y ∈ L2(�;L2(0, T ;H)) be a progressively
measurable process, X0 ∈ L2(�,F0,P;H), and consider the equation

(12) dX(t) + AX(t) dt + β
(
X(t)

)
dt � B

(
t, Y (t)

)
dW(t), X(0) = X0.

Since B(·, Y ) is U -measurable, adapted, and in L2(�;L2(0, T ;L 2(U,H))), the
above equation is well-posed in J by Proposition 6.1, hence one can define a
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map �

L2(�;H) × L2(
�;L2(0, T ;H)

)
−→ L2(

�;L2(0, T ;H)
) × L1(

� × (0, T ) × D
)

(X0, Y ) �−→ (X, ξ),

where (X, ξ) is the unique process in J solving (12). Denoting by �1 and �2 the
L2(�;L2(0, T ;H))-valued component and the L1(� × (0, T ) × D)-valued com-
ponent of �, respectively, we are going to show that Y �→ �1(X0, Y ) is a (strict)
contraction of L2(�;L2(0, T ;H)), if endowed with a suitably chosen equivalent
norm. Let Xi = �1(X0i , Yi), i = 1,2, with obvious meaning of the symbols. For
any α ≥ 0, Proposition 6.2 yields

‖X1 − X2‖L2(�;L∞
α (0,T ;H))∩L2(�;L2

α(0,T ;V )) + √
α‖X1 − X2‖L2(�;L2

α(0,T ;H))
(13)

� ‖X01 − X02‖L2(�;H) + ∥∥B(·, Y1) − B(·, Y2)
∥∥
L2(�;L2

α(0,T ;L 2(U,H))),

in particular, by the Lipschitz continuity of B ,

‖X1 − X2‖L2(�;L2
α(0,T ;H))

� 1√
α

‖X01 − X02‖L2(�;H)

(14)

+ 1√
α

∥∥B(·, Y1) − B(·, Y2)
∥∥
L2(�;L2

α(0,T ;L 2(U,H)))

� 1√
α

(‖X01 − X02‖L2(�;H) + ‖Y1 − Y2‖L2(�;L2
α(0,T ;H))

)
,

where the implicit constant does not depend on α. In particular, if X01 =
X02, choosing α large enough, one has that, for any X0 ∈ L2(�,H), Y �→
�1(X0, Y ) is a contraction of L2(�;L2

α(0, T ;H)). It follows by the Banach fixed-
point theorem that �1(X0, ·) has a unique fixed-point X therein, hence also in
L2(�;L2(0, T ;H)) by equivalence of norms. Setting ξ := �2(X0,X), by defini-
tion of the map �, (X, ξ) is a solution to (1) and it belongs to J .

Let X01, X02 ∈ L2(�,F0;H) and X1, X2 be the unique fixed points of the
maps �1(X0i , ·), i = 1,2, respectively, and ξi := �2(X0i ,Xi), i = 1,2. Replacing
Yi with Xi = �1(X0i ,Xi), i = 1,2, in (14) yields

‖X1 − X2‖L2(�;L2
α(0,T ;H))

≤ C1‖X01 − X02‖L2(�;H) + C2‖X1 − X2‖L2(�;L2
α(0,T ;H)),

with C1 > 0, C2 ∈ ]0,1[, hence, by equivalence of norms,

‖X1 − X2‖L2(�;L2(0,T ;H)) � ‖X01 − X02‖L2(�;H).
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This implies, substituting Yi with Xi = �(X0i ,Xi), i = 1,2, in (13), with α = 0,

‖X1 − X2‖L2(�;L∞(0,T ;H))∩L2(�;L2(0,T ;V ))

� ‖X01 − X02‖L2(�;H) + ∥∥B(·,X1) − B(·,X2)
∥∥
L2(�;L2(0,T ;L 2(U,H)))

� ‖X01 − X02‖L2(�;H) + ‖X1 − X2‖L2(�;L2(0,T ;H))

� ‖X01 − X02‖L2(�;H).

Choosing α = 0 and X01 = X02, one gets immediately X1 = X2, hence also, by
substitution, ∫ t

0

(
ξ1(s) − ξ2(s)

)
ds = 0 ∀t ∈ [0, T ],

which implies uniqueness of ξ .
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