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ON THE CYCLE STRUCTURE OF MALLOWS PERMUTATIONS1

BY ALEXEY GLADKICH AND RON PELED

Tel Aviv University

We study the length of cycles of random permutations drawn from the
Mallows distribution. Under this distribution, the probability of a permutation
π ∈ Sn is proportional to qinv(π) where q > 0 and inv(π) is the number of
inversions in π .

We focus on the case that q < 1 and show that the expected length of the
cycle containing a given point is of order min{(1 − q)−2, n}. This marks the
existence of two asymptotic regimes: with high probability, when n tends to
infinity with (1 − q)−2 � n then all cycles have size o(n) whereas when n

tends to infinity with (1 − q)−2 � n then macroscopic cycles, of size pro-
portional to n, emerge. In the second regime, we prove that the distribution of
normalized cycle lengths follows the Poisson–Dirichlet law, as in a uniformly
random permutation. The results bear formal similarity with a conjectured lo-
calization transition for random band matrices.

Further results are presented for the variance of the cycle lengths, the ex-
pected diameter of cycles and the expected number of cycles. The proofs rely
on the exact sampling algorithm for the Mallows distribution and make use
of a special diagonal exposure process for the graph of the permutation.
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1. Introduction. The cycle structure of a random permutation picked uni-
formly from Sn, the permutation group on n elements, is a classic topic in proba-
bility theory. Of the abundant literature on it, we mention two key facts: the distri-
bution of the length of a cycle containing a given point is uniform on {1, . . . , n}.
Moreover, the joint distribution of the lengths of the longest cycles in the permu-
tation has an explicit limit; the sorted vector of cycle lengths, normalized by n,
converges in distribution to the Poisson–Dirichlet distribution with parameter one.

In this work, we study the cycle structure of a random permutation distributed
according to the Mallows distribution. The Mallows distribution is a nonuniform
distribution on permutations which was introduced by Mallows in statistical rank-
ing theory [20]. It has recently been the focus of several studies in varied contexts
including mixing times of Markov chains [3, 9], statistical physics [27, 28], learn-
ing theory [8], q-exchangeability [13, 14] and the problem of the longest increasing
subsequence [2, 6, 21]. Borodin, Diaconis and Fulman ([7], Section 5) considered a
class of models of random permutations (denoted Pθ there) for which the Mallows
distribution is the prime example. They noted that many of the “usual questions” of
applied probability and enumerative combinatorics remain open for such models
and asked “Picking a permutation randomly from Pθ(·), what is the distribution of
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the cycle structure, longest increasing subsequence, . . . ?” Our work answers the
part of this question pertaining to the cycle structure of the Mallows distribution.

The Mallows distribution on Sn is parameterized by a real number q > 0 and is
denoted μn,q . It is given by

(1) μn,q[π ] := q inv(π)

Zn,q

,

where

inv(π) := ∣∣{(s, t)|s < t and πs > πt

}∣∣
denotes the number of inversions in π , and Zn,q is a normalizing constant, given
explicitly by the following formula [26], Corollary 1.3.13,

Zn,q =
n∏

i=1

(
1 + q + · · · + qi−1) =

n∏
i=1

1 − qi

1 − q
.

The Mallows distribution with parameter q = 1 coincides with the uniform dis-
tribution on Sn. In this paper we restrict attention to the case that 0 < q < 1 (a
brief discussion of the case q > 1 is given in Section 5). As is well known, inv(π)

equals the minimal number of adjacent transpositions required to bring π to the
identity. Thus, when 0 < q < 1, the Mallows distribution gives higher weight to
permutations, which are closer to the identity in an underlying one-dimensional
geometry.

We are mainly interested in the properties of the Mallows distribution for q close
to 1, usually as a function of n, although our results apply in the full range of 0 <

q < 1. Figure 1 depicts samples of the Mallows distribution. One simple feature
of a Mallows distribution is that it typically displaces elements by a small amount.
This is quantified in the following statement: there exists an absolute constant c >

0 such that if π ∼ μn,q then for all 0 < q < 1 and 1 ≤ s ≤ n,

(2) c · min
{

q

1 − q
,n − 1

}
≤ E|πs − s| ≤ min

{
2q

1 − q
,n − 1

}
;

see [6] for a proof and related concentration bounds or [8, 14] for similar state-
ments.

Thus the expected displacements are of order o(n) when 1
1−q

� n and it is
natural to ask whether this also results in shorter cycles. Our first result determines
the expected length of cycles.

NOTATION. For two quantities x, y, which may depend on other parameters
such as n or q , we write x ≈ y if there exist absolute constants c,C > 0 such that
cy ≤ x ≤ Cy.

For a permutation π ∈ Sn and 1 ≤ s ≤ n we let Cs = Cs(π) be the orbit of s

in π , that is, the set of points in the cycle of π which contains s.
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FIG. 1. Graphs of samples of the Mallows distribution μn,q with n = 1000, q = 0.99 (left) and

q = 0.995 (right). The red lines are at vertical distance 2
1−q

from the diagonal. They delimit a
region containing most of the points of the permutation; see also (2).

THEOREM 1.1 (Expected cycle length). Let n ≥ 1, 0 < q < 1 and π ∼ μn,q .
Then

E|Cs | ≈ min
{

1

(1 − q)2 , n

}
for all 1 ≤ s ≤ n.

Thus the expected length of the cycle containing a given point transitions from
being o(n) when 1

1−q
� √

n to being �(n) in the complementary regime. The
same is true also for the maximal cycle length in the permutation; see Claim 4.14.
We say this transition marks the emergence of macroscopic cycles in the permuta-
tion.

Theorem 1.1 identifies a similarity between the uniform distribution and the
Mallows distribution in the regime that macroscopic cycles exist, namely, that the
expected cycle lengths in both distributions are of order n. The two distributions
are quite different in many other respects, for instance, when 1

1−q
� n they are dis-

tinguished even by their typical displacements as measured by (2). Our next result
shows that as far as the lengths of the long cycles are concerned, the similarities
extend much further than what may initially be expected: the two distributions give
rise to the same limit law (see also Figure 2).

THEOREM 1.2 (Poisson–Dirichlet law). Suppose that the sequence (qn) sat-
isfies

0 < qn < 1 and (1 − qn)
2 · n → 0.

Let π ∼ μn,qn and let �1 ≥ �2 ≥ · · · be the sorted lengths of cycles in π . Then, as
n → ∞,

1

n
(�1, �2, . . .) converges in distribution to the Poisson–Dirichlet law

with parameter one.
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FIG. 2. Distribution of the length of the cycle containing a uniform random point. Obtained empir-
ically with 1,000,000 samples.

In addition, for any sequence (sn) satisfying 1 ≤ sn ≤ n, as n → ∞,

1

n
|Csn | converges in distribution to the uniform distribution on [0,1].

Our results provide further information on the cycle lengths in the regime in
which there are no macroscopic cycles. We show that the cycle lengths are not
concentrated in the sense that their standard deviation has the same order of mag-
nitude as their expectation.

THEOREM 1.3 (Variance of cycle length). Let n ≥ 1,0 < q < 1 and π ∼ μn,q .
Then

Var |Cs | ≈ min
{

q

(1 − q)4 , (n − 1)2
}

for all 1 ≤ s ≤ n.

The argument showing that the standard deviation is at least as large as the
expectation, when q is bounded away from 0, bears something of a general nature
and may be applicable to other spatial permutation models such as the interchange
model; see Section 1.2.4 and Section 5 for more details on these models.

Our next theorem considers the diameter of cycles, showing that the cycles are
dense in their support in the sense that their lengths are comparable to their diam-
eters on average.

THEOREM 1.4 (Expected cycle diameter). Let n ≥ 1,0 < q < 1 and π ∼
μn,q . Then, for all 1 ≤ s ≤ n,

(3) E
[
max(Cs) − min(Cs)

] ≈ min
{

q

(1 − q)2 , n − 1
}
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and, moreover,

E
[
max(Cs) − s

] ≈ min
{

q

(1 − q)2 , n − s

}
,(4)

E
[
s − min(Cs)

] ≈ min
{

q

(1 − q)2 , s − 1
}
.(5)

Given our previous theorems, naively, one may expect that a typical random
Mallows permutation π has about n/min{(1 − q)−2, n} cycles, as the cycle con-
taining a given point typically has length of order min{(1 − q)−2, n}. However,
such reasoning is known to be false even for a uniformly random permutation, in
which the cycle containing a given point typically has length of order n, yet there
are logn cycles on average. This phenomenon reflects the fact that while most cy-
cles are short, most points lie in long cycles. Our last theorem clarifies that this is
also the case for random Mallows permutations and gives the order of magnitude
of the number of cycles.

THEOREM 1.5 (Expected number of cycles). Let n ≥ 1,0 < q < 1 and π ∼
μn,q . Then

E[number of cycles in π ] ≈ (1 − q) · n + log(n + 1).

1.1. Sampling algorithm. Our results are based on an exact sampling algo-
rithm for the Mallows distribution, which goes back to the original work of Mal-
lows [20]. The algorithm allows us to sample a permutation π ∼ μn,q sequentially
as follows: Given π1, . . . , πs−1, the distribution of πs is distributed on the remain-
ing n − s + 1 values in a geometric progression. Precisely, if the remaining values
are j1 < j2 < · · · < jn−s+1 then

(6) P[πs = jk|π1, . . . , πs−1] = 1 − q

1 − qn−s+1 · qk−1.

It is simple to verify the validity of this formula by noting that, given π1, . . . , πs−1,
the assignment πs = jk creates exactly k − 1 inversions between πs and πs+1, . . . ,

πn; precisely, if πs = jk then necessarily |{t |t > s,πt < πs}| = k − 1.
In our proofs, we develop more flexible versions of the above formula, allowing

us to sample portions of the cycles of the permutation iteratively and control the
evolution of these portions; see Section 3.2 and the beginning of Section 4.

There exist extensions of the Mallows distribution and the above formula (for
q < 1) to infinite permutations; one-to-one and onto functions π : N → N or
π : Z → Z. The extension to the case of N is straightforward, one simply takes
the limit n → ∞ in (6) to obtain a geometric distribution; see Gnedin and Olshan-
ski [13]. The extension to a two-sided infinite permutation, when the index set is Z,
is more complicated due to the fact that there is no natural initial position to start
the sampling process from.
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Generating methods for the two-sided infinite case were developed in [14]. In
one of these methods, one samples two one-sided infinite Mallows permutations
and uses a “stitching” mechanism to merge these into a two-sided infinite permu-
tation. We also present a method for sampling a Mallows permutation “from an
interior point”; see Section 3.5. The method is presented for finite n and may be
used also for the two-sided infinite case via an approximation theorem from [14],
Section 7.2. This method may serve as a bridge to transfer results from the finite n

case to the two-sided infinite case.

1.2. Relation with other models. In this section, we briefly describe other
models for which related results have been obtained or are conjectured.

1.2.1. Permutons. The regime of parameters in which n · (1 − q) → β is also
of special interest as in this case there is a limiting density to the empirical measure
of the points in the graph of a Mallows permutation. Starr [27] obtained an explicit
formula for the limiting density as a function of β . In modern terminology, the
limiting density is called a permuton. Recently, Mukherjee [22] proved Poisson
limit theorems for the lengths of short cycles for models converging to permutons,
including the Mallows model as a special case. See also Kenyon, Král’, Radin and
Winkler [17] for relations with permutons with fixed pattern densities.

1.2.2. Band matrices. In the study of random matrices, models of matrices
with a band structure are of interest. We elaborate on one representative model:
Let A be an n × n random matrix in which, for a given band width 0 < W ≤ n,
the entries Ai,j , |i − j | < W , are independent and identically distributed standard
Gaussian random variables and the other entries are set to zero. Define the sym-
metric band matrix H by

H := A + At

√
2

.

The main focus in these studies is on the eigenvalues and eigenvectors of H .
In one extreme case W = 1, meaning that the matrix H is diagonal, the eigen-

vectors are the standard basis vectors. The other extreme case, when W = n, results
in the Gaussian Orthogonal Ensemble (GOE) distribution (up to scaling). In this
case, the distribution of H is invariant under conjugation by orthogonal matrices,
implying that the eigenvectors of H form a uniformly distributed orthonormal ba-
sis.

It is conjectured that random matrices of this kind undergo a localiza-
tion/delocalization transition as the band width W increases beyond the threshold√

n. More precisely, one expects that when W � √
n, the eigenvectors are local-

ized in the sense that most of their �2 mass lies on a set whose size is o(n) (possibly
even in an interval of such size), whereas if W � √

n the eigenvectors have their
�2 mass approximately uniformly spread. Furthermore, in the second regime, it
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is expected that the local eigenvalue statistics have the same limit as in the GOE
case as n tends to infinity. Informally, we may say that the local eigenvalue statis-
tics should have the mean-field limit in the delocalized regime. See the survey of
Spencer [25] and references within for more on these topics.

Our results prove an analogous transition for the Mallows distribution. One
may consider the permutation matrix Hπ associated with a random permutation
π ∼ μn,q . By (2), this matrix has an approximate band structure in the sense that
few of its nonzero entries (Hπ)s,πs have |πs − s| greater than a constant multiple of
the band width W = min{ 1

1−q
, n} (in fact, the probability that |πs −s| ≥ tW decays

exponentially in t ; see [6], Theorem 1.1 and Figure 1). Such a matrix is orthog-
onal, having its eigenvalues on the unit circle. The eigenvalues and eigenvectors
of Hπ are determined by the cycle structure of π : associated with each cycle of
length �, one has the � eigenvalues exp(

2πij
�

), 0 ≤ j ≤ � − 1, and correspondingly
� eigenvectors, supported on the coordinates of the cycle and giving equal mass
to all points of it. Thus a localization/delocalization transition corresponds to the
emergence of cycles whose length is of order n. Theorem 1.1 shows that such a
transition occurs as the band width increases beyond

√
n, paralleling the conjecture

for random band matrices. Moreover, Theorem 1.2 shows that in the delocalized
regime, the statistics of long cycles approach the Poisson–Dirichlet distribution,
the limiting statistics for uniform random permutations, in analogy with the above
prediction for the local eigenvalue statistics.

The reader is also referred to the survey of Olshanski [23] for other analogies be-
tween random permutations and random matrices, discussing, in particular, analo-
gies between random permutations distributed according to the Ewens measure
(see also Section 5) and deformations of Dyson’s circular ensemble of random
matrices.

1.2.3. Card shuffling. There are many natural dynamics on permutations for
which the uniform distribution is stationary. Diaconis and Shahshahani [10] con-
sider the following natural card shuffling scheme: Start with a deck of n cards.
At each step, choose two cards uniformly and independently and exchange their
positions in the deck. How many steps does one need to perform in order for the
deck to become almost perfectly shuffled? In a beautiful application of represen-
tation theory to the study of Markov chains, it is proved in [10] that the state of
the deck after 1

2n logn + cn such steps is close to uniform (in the total variation
distance) when c is a large positive constant, and is far from uniform when c is a
large negative constant. The latter bound follows from the analysis of the coupon
collector problem: when c is a large negative constant there will be many cards
in the deck which have not moved from their initial position, creating a permuta-
tion with many fixed points. Thus the result of [10] may be interpreted as saying
that the number of short cycles is the main obstacle for a permutation to become
approximately uniform in this card shuffling scheme.
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Schramm [24] considered the above card shuffling scheme further, investigating
the state of the deck after tn steps are performed. The analysis in [24] proceeds
by drawing an associated graph on the vertex set {1, . . . , n}, in which an edge
is put between i and j if the cards at positions i and j in the deck have been
exchanged. This associated graph is distributed as an Erdős–Rényi random graph,
allowing one to deduce from the standard literature that when t ≤ 1

2 , all cycles
in the random permutation have size o(n). Schramm’s work focuses on the case
that t > 1

2 and proves that macroscopic cycles emerge in this regime (see also
Berestycki [4] for a later simpler argument). Moreover, confirming a conjecture
of Aldous, it is proved that the limiting joint distribution of these macroscopic
cycles obeys the same Poisson–Dirichlet law observed for uniform permutations.
Thus, although it takes about 1

2n logn steps for the full permutation to become
approximately uniform, it takes far fewer steps for macroscopic cycles to start
emerging and the joint distribution of these macroscopic cycles converges very
quickly to the limiting joint distribution. A similar fact is true for the Mallows
model by our results: when q increases beyond the threshold 1 − 1√

n
, although the

Mallows permutation is still far from uniform [distinguished by its displacements,
say, as in (2)], macroscopic cycles begin to emerge and their joint distribution
converges to the Poisson–Dirichlet law.

In this context, we mention that the Mallows permutation also arises via a shuf-
fling algorithm. As proved by Benjamini, Berger, Hoffman and Mossel [3], it arises
as the stationary distribution of a biased card-shuffling algorithm. In this algorithm,
one starts with a deck of cards numbered {1, . . . , n} and at each iteration picks
uniformly a pair of adjacent cards in the deck. One flips a coin with probability
p = 1

1+q
for heads and rearranges the two cards according to the coin result, in

increasing order if heads and in decreasing order if tails. The iterations are done
independently of one another.

1.2.4. Spatial random permutations. A spatial random permutation is a ran-
dom permutation which is biased towards the identity in some underlying geom-
etry. This broad idea covers many models, among them the Mallows distribution
which is biased towards the identity in a one-dimensional geometry. In this sec-
tion, we briefly describe two other models in this class for which related results
have been proved.

Let G = (V ,E) be a finite or infinite bounded-degree graph. The interchange
process (also called the stirring process in some of the literature) gives a dynamics
on permutations in SV , one-to-one and onto functions π : V → V , which is asso-
ciated to the structure of the graph. Each edge of the graph is endowed with an
independent Poisson process of rate 1. An edge is said to ring at time t if an event
of its Poisson process occurs at that time. Starting from the identity permutation
π0 ∈ SV , the interchange process, introduced by Tóth [30], is the permutation-
valued stochastic process (πt ) obtained by performing a transposition along each
edge at each time that it rings.
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FIG. 3. Comparison between the Mallows distribution and the interchange model.

The interchange process on the complete graph coincides with a continuous
time version of the Diaconis–Shashahani card shuffling algorithm discussed in the
Section 1.2.3. Special attention has been given to the case that the graph G =
Z

d , where the interchange process is related to the magnetization of the quantum
Heisenberg ferromagnet [30]. In particular, the following conjecture of Bálint Tóth
has attracted significant attention but remains unresolved: When d = 2, for any
t > 0, all cycles of πt are finite almost surely. In contrast, when d ≥ 3 and t is
sufficiently large, πt has an infinite cycle almost surely.

Besides the case of the complete graph, results on the existence of long cy-
cles in the interchange process are currently available only for trees, by Angel
[1] and Hammond [15, 16], and for the hypercube graph, by Kotecký, Miłoś and
Ueltschi [18].

Recently, a quantitative study of the interchange process in a one-dimensional
geometry, V = {1, . . . , n} with i adjacent to i + 1, was performed by Kozma and
Sidoravicius. Here, as each (πt

s )t>0 is a simple random walk, the typical displace-
ment |πt

s − s| is of order min{√t, n}. Thus the graph of πt has a band structure
similar to the graph of a Mallows permutation (see Figure 3), and the two models
seem graphically similar when one takes

(7) q = 1 − 1

1 + √
t
.

In a work in preparation, Kozma and Sidoravicius prove that the expected length
of the cycle containing a given point in πt has order min{t + 1, n}. This result,
whose mathematical details were completed before our work began, is analogous
to our Theorem 1.1 when making the assignment (7).

A second model of spatial random permutations, related to the Feynman–Kac
representation of the ideal Bose gas in quantum statistical mechanics, has also
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received significant attention; see [5] and references within. In this model, one
samples a random collection of points (x1, . . . , xn) in a finite box � ⊂ R

d and a
random permutation π on these points. The distribution is such that permutations
with large displacements π(xi) − xi have lower density. In the physical context,
the emergence of macroscopic cycles in the model is related to the phenomenon
of Bose–Einstein condensation. In recent work, Betz and Ueltschi [5] (see also
Sütő [29]) have shown that the following phase transition takes place in the model
when d ≥ 3: Define the density of points per unit area ρ = n

|�| . There exists a
critical density ρc such that, with probability tending to 1 as n tends to infinity,
if the density is fixed to a value ρ < ρc then all cycles have length o(n), whereas
if it is fixed to a value ρ > ρc then macroscopic cycles, of size proportional to n,
emerge. Moreover, in the second regime, the distribution of suitably normalized
cycle lengths converges in distribution to the Poisson–Dirichlet law.

1.3. Reader’s guide. Section 2 introduces notation and preliminary facts used
throughout the paper.

Section 3 develops flexible sampling methods for the Mallows distribution and
studies closely related random processes: In Section 3.1, we develop tools for sam-
pling the graph of a random Mallows permutation sequentially. These are used in
Section 3.2 to introduce a “diagonal” exposure procedure for the graph. There,
we also define the “arc chain” of a permutation, which tracks the number of open
arcs (incomplete cycles) throughout the diagonal exposure process, and analyze
its basic properties. Concentration bounds for the arc chain process are developed
in Section 3.3 and used significantly in later proofs. Section 3.4 provides bounds
on the time it takes an arc chain to reach zero, of use in the regime where q is
bounded away from 1. Analogous bounds on return times also appeared in the
recent work [2] of Basu and Bhatnagar where a related Markov chain is intro-
duced. Section 3.5 considers the distribution of rectangular subsets of the graph of
a Mallows permutation. These provide the starting point for a method to sample a
Mallows permutation “from a mid-point”, which is further extended to a sampling
method for the two-sided infinite case, when π : Z→ Z.

Our main theorems are proved in Section 4: Section 4.1 is dedicated to the proof
of Theorem 1.5, regarding the number of cycles. In Section 4.2, we prove Theo-
rem 1.4 on the diameter of cycles by providing deviation bounds for the distribu-
tion of the maximal and minimal element of the cycle containing a given point.
In Section 4.3, we prove Theorem 1.1 regarding the length of cycles. Section 4.4
is dedicated to the proof of Theorem 1.3, which provides bounds on the variance
of the cycle lengths. Theorem 1.2 on the Poisson–Dirichlet law is proved in Sec-
tion 4.5.

We conclude in Section 5 with a discussion and a selection of open questions.

2. Notation and preliminaries.

• Throughout the rest of the paper, n is a positive integer whilst q ∈ (0,1) is a real
parameter:



ON THE CYCLE STRUCTURE OF MALLOWS PERMUTATIONS 1125

• For two quantities x, y ≥ 0, which may depend on other parameters such as n or
q , we write x � y if there exists an absolute constant c > 0 such that x ≤ c · y.
Note that x ≈ y is equivalent to x � y and y � x.

• N is the set of positive integers while [n] := {i ∈ N|i ≤ n} = {1,2, . . . , n}.
• 1A and 1{A} denote the indicator random variable of an event A.
• Throughout the paper, we denote by ξ = ξq the following:

(8) ξ := min
{
i ∈ N

∣∣∣qi ≤ 1

2

}
=

⌈
logq

1

2

⌉
≈ 1

1 − q
.

• In order to avoid cumbersome expressions we will use an abbreviated notation
when referring to subsets of Z2. We write, for instance,

{x < a,y < b} instead of
{
(x, y) ∈ Z

2|x < a,y < b
}

and analogous expressions involving other subsets of Z2.
• We introduce two useful symmetries of the Mallows distribution μn,q , that is,

bijections Sn ↔ Sn that preserve μn,q . The inverse symmetry is induced by the
inversion map

(9) μn,q[π ] = μn,q

[
π−1].

The reversal symmetry is defined via the reversal map r : s �→ n + 1 − s by

(10) μn,q[π ] = μn,q[r ◦ π ◦ r],
where we note that πi = j if and only if (r ◦ π ◦ r)(n + 1 − i) = n + 1 − j .
The fact that the two maps π �→ π−1 and π �→ r ◦ π ◦ r preserve the Mallows
distribution follows simply by checking that they preserve the number of inver-
sions. These two symmetries will prove useful as they also preserve the cycle
structure. Specifically, if C is a cycle of π , then C−1 and r ◦ C ◦ r are cycles of
π−1 and r ◦ π ◦ r , respectively.

3. The sampling algorithm and the arc chain. In this section, we present a
sampling algorithm for the Mallows distribution which will be fundamental in our
analysis. We further identify a Markov chain associated to this sampling algorithm,
termed the arc chain and explore its basic properties.

3.1. Generating the graph of a Mallows permutation. In Section 1.1, a method
is presented for sampling the values (πs) of a Mallows permutation iteratively.
Here, we explain a related method, which generates the graph of the permutation


π := {
(s,πs)|s ≥ 1

}
in an iterative manner, allowing to expose portions of the graph in various orders.
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Although our focus is on finite permutations, for clarity, we start by discussing
the case of infinite one-sided permutations π :N→N in which the construction is
simpler. In this case, as explained in Section 1.1,

P[πs = t |π1, . . . , πs−1]
= (1 − q) · q |[t]\{π1,...,πs−1}|−1 for t /∈ {π1, . . . , πs−1}.

In other words, the value of πs , conditioned on the values of π1, . . . , πs−1,
has the geometric distribution with success probability 1 − q on the values in
N\ {π1, . . . , πs−1}. This gives rise to the following sampling method: starting with
a two-dimensional infinite array (as,t )s,t≥1 of independent Bernoulli random vari-
ables, each satisfying

P[as,t = 1] = 1 − P[as,t = 0] = 1 − q,

we may generate the permutation π by setting

πs := min
{
t ≥ 1|t /∈ {π1, . . . , πs−1}, as,t = 1

}
.

Examination of this formula shows that the rule for deciding whether the point
(s, t) belongs to the graph 
π depends only on the value of the bit as,t and the
portions of the graph 
π, which lie strictly below (s, t) or strictly to the left of
(s, t),

(11) 
π ∩ {x < s, y = t} and 
π ∩ {x = s, y < t}.
Precisely, (s, t) ∈ 
π if and only if as,t = 1 and the two sets in (11) are empty.
This viewpoint allows for iterative generation of the graph 
π in many different
manners. In the sequel, we shall focus on diagonal generation, in which we expose
the portion of the graph intersecting the square {x < t, y < t} for increasing values
of t .

Our next lemma gives an analogous generating method for the graph of a finite
Mallows permutation, π ∈ Sn, showing that many of the essential features of the
above construction are preserved.

LEMMA 3.1. Let π ∼ μn,q , let s, t ∈ [n] and set U := {x < s or y < t}. Then

(12) P[πs = t |
π ∩ U ] = 1 − q

1 − q |
π∩U c| · 1
{

π ∩ {x < s, y = t} =∅


π ∩ {x = s, y < t} =∅

}
.

We point out that the right-hand side of (12) does not depend on the full infor-
mation in 
π ∩ U . Indeed, to evaluate the right-hand side one only needs to know
whether the sets in (11) are empty and the size of the set |
π ∩ U c|, which may be
computed, for instance, via

(13)
∣∣
π ∩ U c∣∣ = n − s − t + 2 + ∣∣
π ∩ {x < s, y < t}∣∣.



ON THE CYCLE STRUCTURE OF MALLOWS PERMUTATIONS 1127

As one application, one may use the equality (12) iteratively to compute the
probability distribution of the portion of the graph 
π ∩ {x ≥ i, y < j} condi-
tioned on the portion of the graph 
π ∩ {x < i, y < j}. The equality (12) shows
that this probability distribution remains the same if we condition additionally on

π ∩ {x < i, y ≥ j}. Therefore, we obtain the following conditional independence
statement: for each i, j ∈ [n],

conditionally on 
π ∩ {x < i, y < j},
(14)


π ∩ {x ≥ i, y < j} and 
π ∩ {x < i, y ≥ j} are independent.

PROOF OF LEMMA 3.1. Our proof relies upon the formula (6). In the notation
used there,

(15) P[πs = jk|π1, . . . , πs−1, πs ≥ jk] = 1 − q

1 − qn−s−k+2 .

We first claim that

(16) P
[
πs = t |
π ∩ U ∩ {x ≤ s}] = 1 − q

1 − q |
π∩U c| · 1A,

where A := {
π ∩ {x < s, y = t} = ∅} ∩ {
π ∩ {x = s, y < t} = ∅}. The equal-
ity (16) certainly holds on Ac as both sides are zero. Now set k := |[t − 1] \
{π1, . . . , πs−1}| and note that, by (13), |
π ∩U c| = n− s − k + 2. Observe that, in
the notation of (15), we have that t = jk on the event A, as the set {π1, . . . , πs−1}
misses exactly k − 1 elements out of [t − 1]. It then follows from formula (15) that

P
[
πs = t |
π ∩ U ∩ {x ≤ s}] = 1 − q

1 − qn−s−k+2 = 1 − q

1 − q |
π∩U c| on A,

completing the proof of (16).
Next, we observe that the argument used above to derive (14) from (12) may

also be used to derive (14) from (16). Applying (14) with i = s + 1 and j = t

shows that πs is conditionally independent of 
π ∩ U ∩ {x > s} conditioned on

π ∩ U ∩ {x ≤ s}. Thus the formula (12) is a consequence of (16). �

3.2. Diagonal exposure and the arc chain process. The main lemma of the
previous section, Lemma 3.1, provides a procedure for calculating the distribution
of certain portions of the graph 
π , of a Mallows permutation π , given others. This
gives rise to several iterative algorithms for exposing the full graph. The proofs of
our main theorems rely on a particular method of exposing 
π which will turn out
to be particularly convenient. The total portion of 
π that will be revealed by time
t will consist of 
π ∩ {x ≤ t, y ≤ t}. Equivalently, as we pass from time t to t + 1
we reveal


π ∩ {x = t + 1, y ≤ t}, 
π ∩ {x ≤ t, y = t + 1} and
(17)


π ∩ {x = t + 1, y = t + 1}.
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Formally, we define a finite filtration consisting of the sigma-algebras

F0 ⊆ F1 ⊆ · · · ⊆Fn−1 ⊆ Fn

defined by

(18) Ft := σ
(

π ∩ {x ≤ t, y ≤ t}).

Thus, F0 is the trivial σ -algebra and Fn is the σ -algebra generated by π . We call
this exposure procedure the diagonal exposure of π as the procedure exposes the
graph in the diagonal direction. Corresponding to this filtration, we introduce the
notation:

Pt [A] := P[A|Ft ] and Et [X] := E[X|Ft ],
for an event A and a random variable X.

An important quantity to keep track of during the diagonal exposure process is
the number of elements of π in the revealed portion of the graph 
π at each time t ,
that is, |
π ∩{x ≤ t, y ≤ t}|. Our next definition introduces the counting process of
an equivalent quantity, |
π ∩ {x ≤ t, y > t}|, which will appear more frequently in
our analysis. This quantity, as we elaborate upon in Section 4, counts the number
of open “arcs”, that is, portions of cycles that are yet to be closed, which are known
using the information in Ft .

DEFINITION 3.2 (Arc chain). The arc chain (κt ), 0 ≤ t ≤ n, of a permutation
π ∈ Sn is defined by

(19) κt = κt (π) := ∣∣{i ∈ [t]|πi > t
}∣∣ = t − ∣∣
π ∩ {x ≤ t, y ≤ t}∣∣,

that is, κt counts the number of π1, . . . , πt that are greater than t .

The arc chain is adapted to the filtration (Ft ), that is, κt is determined by Ft .
One should note that π and π−1 share the same arc chain, that is,

(20) κt = ∣∣{t < i ≤ n|πi ≤ t}∣∣.
The next proposition formalizes the fact that (κt ) is a time-inhomogeneous Markov
chain.

PROPOSITION 3.3. Let π ∼ μn,q . The arc chain κ of π is a time-inhomo-
geneous Markov chain, with respect to the filtration (Ft ), satisfying κ0 = 0 and
|κt+1 − κt | ≤ 1, with transition probabilities given by

Pt [κt+1 = κt − 1] =
(

1 − qκt

1 − qn−t

)2
,

Pt [κt+1 = κt ] = qκt − qn−t

1 − qn−t
· 2 − qκt − qκt+1

1 − qn−t
,(21)

Pt [κt+1 = κt + 1] = qκt − qn−t

1 − qn−t
· qκt+1 − qn−t

1 − qn−t
.
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As an illustration of the usefulness of the arc chain, we note that the probability
that π has a fixed point at position t + 1, given the information in Ft , has a simple
expression in terms of κt .

LEMMA 3.4. Let π ∼ μn,q and κ be its arc chain. Then

Pt [πt+1 = t + 1] = qκt − qκt+1

1 − qn−t
· qκt − qn−t

1 − qn−t
, 0 ≤ t < n.

We prove the proposition and lemma together.

PROOF OF PROPOSITION 3.3 AND LEMMA 3.4. The newly revealed portions
of 
π at time t + 1 were described in (17). Denote the first two of these portions
by

X := 
π ∩ {x = t + 1, y ≤ t} and Y := 
π ∩ {x ≤ t, y = t + 1}.
We claim that

(22) Pt [X �= ∅] = Pt [Y �=∅] = 1 − qκt

1 − qn−t
.

It is convenient to derive this directly from (6). Write j1 < j2 < · · · < jn−t for the
values in [n] \ {π1, . . . , πt } and observe that jk ≤ t if and only if k ≤ κt , see (20).
Therefore, it follows from (6) that

Pt [X �= ∅] = Et

[
P[X �= ∅|π1, . . . , πt ]] = Et

[
κt∑

k=1

1 − q

1 − qn−t
· qk−1

]
= 1 − qκt

1 − qn−t
.

The equality Pt [X �= ∅] = Pt [Y �= ∅] follows from the symmetry (9), as π and
π−1 share the same arc chain.

Now note that

Pt [πt+1 = t + 1] = Pt [X = Y = ∅] · Pt [πt+1 = t + 1|X = Y =∅].
The second factor can be computed directly from Lemma 3.1,

Pt [πt+1 = t + 1|X = Y =∅] = 1 − q

1 − qn−t−κt
.

In addition, observe that X and Y are conditionally independent given Ft , as fol-
lows from (14). Thus the value of the first factor may be calculated from (22),
which completes the proof of Lemma 3.4.

Observe that κt+1 −κt = 1−|Z|, where Z := X∪Y ∪ (
π ∩{(t +1, t +1)}), as
follows from the definition (19) of (κt ). As |Z| ≤ 2, it follows that |κt+1 − κt | ≤ 1.
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FIG. 4. Distributions associated with the arc chain of a Mallows permutation with parameters
n = 1000 and q = 0.99.

The equations in (21) can be verified by computations similar to the ones used to
prove Lemma 3.4, as

Pt [κt+1 = κt − 1] = Pt

[|Z| = 2
] = Pt [X �= ∅ and Y �= ∅],

Pt [κt+1 = κt + 1] = Pt

[|Z| = 0
]

= Pt [X = Y = ∅] · Pt [πt+1 �= t + 1|X = Y = ∅],
and the value of Pt [κt+1 = κt ] is derived from these using that |κt+1 − κt | ≤ 1. �

3.3. The distribution of the arc chain. In this section, we study the distribution
of the arc chain of a Mallows permutation at a fixed time t . Our main result, Theo-
rem 3.6 below, states that the value of the chain is unlikely to be much larger than
the value of ξ given in (8). Figure 4(a) depicts the percentiles of the distribution of
the arc chain for certain values of n and q and all times t . These suggest that the
typical values of the arc chain are close to ξ when t is bounded away from 1 and n.
For such times, we establish in Proposition 3.8 below a formula for the limiting
distribution of the arc chain when n tends to infinity with q fixed.

It is convenient to refer to the arc chain as an abstract Markov chain, without
reference to an underlying Mallows permutation, as facilitated by the following
definition.

DEFINITION 3.5. A random sequence (κt ), 0 ≤ t ≤ n, is an (n, q)-arc chain,
denoted κ ∼ ACn,q , if κ is a time-inhomogeneous Markov chain with transition
probabilities as in Proposition 3.3 and some initial distribution κ0 supported in
{0, . . . , n}.
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We point out that the formulas in Proposition 3.3 constitute valid transition
probabilities (i.e., they are nonnegative and sum to 1) when 0 ≤ κt ≤ n − t . Using
induction on t , one checks that an (n, q)-arc chain satisfies this condition for all t

almost surely.

THEOREM 3.6. Let κ ∼ ACn,q with κ0 = 0. Then for all 0 ≤ t ≤ n and d ∈ N

we have

(23) P[κt > ξ + d] ≤ qd2+d

1 − q2d
.

The idea of proof involves the definition of a limiting time-homogeneous
Markov chain, corresponding formally to the case that n = ∞, and bounding the
distribution of the (n, q)-arc chain by the stationary distribution of the limiting
chain. Some of the tools that we develop here will be used later in the paper as
well.

We recall that a time-homogeneous Markov chain (αt ) which takes values in
the nonnegative integers and satisfies |αt − αt+1| ≤ 1 is called a birth-and-death
chain.

DEFINITION 3.7. A random sequence (κ̂t )t≥0 is an (∞, q)-arc chain, denoted
κ̂ ∼ AC∞,q , if κ is a birth-and-death chain with transition probabilities given by

P[κ̂t+1 = κ̂t − 1|κ̂t ] = (
1 − qκ̂t

)2
,

P[κ̂t+1 = κ̂t |κ̂t ] = 2qκ̂t − q2κ̂t − q2κ̂t+1,(24)

P[κ̂t+1 = κ̂t + 1|κ̂t ] = q2κ̂t+1.

There is a formula for the stationary measure of a birth-and-death chain. If (αt )

is a birth-and-death chain taking values in {0, . . . ,m}, where m may be finite or
infinite, having positive transition probabilities between consecutive integers in
{0, . . . ,m}, then α has a stationary measure z defined by2

(25) z0 := 1 and zs :=
s∏

i=1

P[αt+1 = i|αt = i − 1]
P[αt+1 = i − 1|αt = i] for 1 ≤ s ≤ m.

This is straightforward to verify directly. It is also not difficult to check that the
stationary measure is unique up to scaling though we shall not use this fact (see
also [19], Section 2.5).

2Here and later in the paper, to avoid introducing extra notation, we denote the transition probabil-
ity of the chain from i − 1 to i at time t by P[αt+1 = i|αt = i − 1], even if P[αt = i − 1] = 0, and
use similar notation for other transition probabilities.
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This fact allows us to find the stationary distribution of an (∞, q)-arc chain κ̂ .
Put

ui := P[κ̂t+1 = i|κ̂t = i − 1] = q2i−1 > 0, i ≥ 1,
(26)

vi := P[κ̂t+1 = i − 1|κ̂t = i] = (
1 − qi)2

> 0, i ≥ 1.

Then the sequence (νs), s ≥ 0, defined by

(27) νs :=
∏s

i=1
ui

vi∑
j≥0

∏j
i=1

ui

vi

defines a stationary distribution for κ̂ , where, as usual, an empty product is inter-
preted as 1. The denominator in (27) is finite since ui → 0 and vi → 1 as i → ∞.
See Figure 4(b) for a graph of ν.

We study further the relation between the distributions of the (n, q)-arc chain κ

and the (∞, q)-arc chain κ̂ . Our next proposition shows that in a suitable limit, in
which q is fixed, the distribution of κt converges to the stationary distribution of κ̂ .
This proposition will be of use in Section 3.5.

PROPOSITION 3.8. Let κ ∼ ACn,q with κ0 = 0 and set t = tn. If both t → ∞
and n − t → ∞, then the law of κt converges to the stationary distribution of
AC∞,q , as n tends to infinity with q fixed.

Our main tool for proving the above theorem and proposition is a coupling
in which the (∞, q)-arc chain bounds the (n, q)-arc chain at all times. We first
introduce a general method for performing such couplings.

Let α be a Markov chain, possibly time-inhomogeneous, taking values in the
nonnegative integers and satisfying |αt − αt+1| ≤ 1. Let (Ut ) be a sequence of in-
dependent random variables, each uniformly distributed on [0,1]. One may couple
the Markov chain α with the sequence U as follows. The initial distribution α0 is
taken independent of U . Then, for each t ≥ 0, αt+1 := αt + Fα

t (αt ,Ut ) where

Fα
t (a, u) := 1{u>1−P[αt+1=a+1|αt=a]} − 1{u≤P[αt+1=a−1|αt=a]}.

This can be understood as “αt+1 is a monotone function of Ut for a given αt”. We
say that a set of Markov chains of the above type is monotonically coupled if they
are all coupled to the same sequence U via the above method.

PROPOSITION 3.9. Let q, q̂ ∈ (0,1) and n, n̂ ∈ N ∪ {∞} satisfy q ≤ q̂ and
n ≤ n̂. Let an (n, q)-arc chain κ be monotonically coupled with an (n̂, q̂)-arc chain
κ̂ that satisfies κ0 ≤ κ̂0 almost surely. Then, almost surely, κt ≤ κ̂t for all 0 ≤ t ≤ n.

DEFINITION 3.10 (Bounding chain). For an (n, q)-arc chain κ , a bounding
chain is any (∞, q)-arc chain κ̂ that is monotonically coupled with κ and satisfies
κ0 ≤ κ̂0 almost surely. Proposition 3.9 implies that any bounding chain satisfies
κt ≤ κ̂t , almost surely, for all 0 ≤ t ≤ n.
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PROOF OF PROPOSITION 3.9. The proof relies on the facts that |κt+1 − κt | ≤
1, |κ̂t+1 − κ̂t | ≤ 1 and the following three inequalities:

P[κt+1 = k + 1|κt = k]
≤ 1 − P[κ̂t+1 = k|κ̂t = k + 1], 0 ≤ k ≤ min{n − t, n̂ − t − 1},

(28)
P[κt+1 = k − 1|κt = k] ≥ P[κ̂t+1 = k − 1|κ̂t = k], 0 ≤ k ≤ n − t,

P[κt+1 = k + 1|κt = k] ≤ P[κ̂t+1 = k + 1|κ̂t = k], 0 ≤ k ≤ n − t.

To prove these inequalities, observe that the transition probabilities of arc chains
are given by

P[κt+1 = k − 1|κt = k] =
(

1 − qk

1 − qn−t

)2
,

(29)

P[κt+1 = k + 1|κt = k] =
(

1 − 1 − qk

1 − qn−t

)
·
(

1 − 1 − qk+1

1 − qn−t

)
.

Thus the last two inequalities in (28) follow from the fact that 1−qa

1−qb = 1+q+···+qa−1

1+q+···+qb−1 ,

with 1 ≤ a ≤ b, decreases with both b and q . The first inequality in (28) follows
from the third inequality there and the fact that P[κ̂t+1 = k + 1|κ̂t = k] ≤ 1 −
P[κ̂t+1 = k|κ̂t = k + 1]. This last fact follows by substituting the formulas in (29),
using that 1 − x2 = (1 − x)(1 + x) and taking out the nonnegative common factor

1 − 1−q̂k+1

1−q̂n−t .
We proceed to prove the proposition. Suppose t < n is such that κt ≤ κ̂t almost

surely and let us show that κt+1 ≤ κ̂t+1, almost surely. Recall that 0 ≤ κt ≤ n − t

and 0 ≤ κ̂t ≤ n̂− t almost surely, and let us consider separately the following three
cases:

• The inequality is clear if κ̂t − κt ≥ 2.
• If κt = κ̂t − 1 then κt+1 ≤ κ̂t+1 follows from the first inequality in (28).
• Lastly, if κt = κ̂t then κt+1 ≤ κ̂t+1 is a consequence of the second and third

inequality in (28). �

As a corollary of this proposition, we deduce that an (n, q)-arc chain κ with
κ0 = 0 satisfies

(30) P[κt ≥ d] ≤ ν[d,∞] = ∑
i≥d

νi for all t ≤ n and d ≥ 0,

where ν is the stationary distribution of an (∞, q)-arc chain, as given by (27).
This follows by letting κ̂ be the bounding chain of κ having κ̂0 ∼ ν. Then (30) is a
consequence of the facts that κ̂t ∼ ν and κt ≤ κ̂t .

We are now ready to prove Theorem 3.6 and Proposition 3.8.
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PROOF OF THEOREM 3.6. By (30), it suffices to prove that the stationary
distribution ν of an (∞, q)-arc chain satisfies

(31) ν[ξ + d + 1,∞] ≤ qd2+d

1 − q2d
, d ≥ 1.

Let ui and vi be as in (26) and set wi := ui/vi . Formula (27) implies that

(32) νξ+s+1 = νξ+1 ·
s∏

j=1

wξ+j+1 ≤
s∏

j=1

wξ+j+1, s ≥ 1.

Observe that uξ+1 ≤ 1
4 and vξ+1 ≥ 1

4 , by the definition (8) of ξ , yielding wξ+1 ≤ 1.
One may verify that wi+1 ≤ q2 ·wi , which yields that wξ+j+1 ≤ q2j ·wξ+1 ≤ q2j .
By substituting this in (32), we conclude that

νξ+s+1 ≤ qs2+s .

Summing this inequality over s ≥ d yields (31), by bounding the sum with a geo-
metric progression with quotient q2d . �

PROOF OF PROPOSITION 3.8. Recall the convergence theorem for finite-state
Markov chains: if a finite-state time-homogeneous Markov chain (at ) is aperiodic
and irreducible, then it has a stationary distribution and the distribution of at con-
verges to this stationary distribution as t → ∞.

Equation (30) states that ν dominates κt . We will construct distributions ν̃h that
are asymptotically dominated by κt as t → ∞. Then, with the limit of κt sand-
wiched between ν̃h and ν, we will show that ν̃h approaches ν as h → ∞. Let h be
some fixed positive integer and assume without loss of generality that n − t ≥ h.
Let κ̃ be the birth-and-death chain having κ0 = 0 and transition probabilities de-
termined by

P[κ̃t+1 = κ̃t − 1|κ̃t ] =
(

1 − qκ̃t

1 − qh

)2
and

P[κ̃t+1 = κ̃t + 1|κ̃t ] = qκ̃t − qh

1 − qh

qκ̃t+1 − qh

1 − qh
.

Observe that 0 ≤ κ̃t ≤ h for all t , almost surely. Let κ̃ be monotonically coupled
with κ . It is not hard to check that the pair (κ̃, κ) satisfies the analogous inequalities
of (28) for t ≤ n−h, which implies, by following the proof of Proposition 3.9, that
κ̃t ≤ κt for all t ≤ n − h, almost surely.

By applying the convergence theorem for finite-state Markov chains, we obtain
that κ̃ has stationary distribution ν̃ = ν̃h and that κ̃t converges to ν̃ in distribution.
Since κt dominates κ̃t for all t ≤ n − h, we obtain

ν̃[d,∞] ≤ lim infP[κt ≥ d] ≤ lim supP[κt ≥ d] ≤ ν[d,∞] for d ≥ 0,
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where the limits are taken for n, t → ∞ with the restriction n − t ≥ h. It remains
to verify, using (25) and the fact that the ratios P[κ̃t+1=i|κ̃t=i−1]

P[κ̃t+1=i−1|κ̃t=i] increase with h,
that ν̃s → νs as h → ∞, for all s. Thus ν̃[d,∞] converges to ν[d,∞] as h → ∞,
completing the proof of the proposition. �

3.4. The hitting time of zero. The times in which the arc chain is at zero can be
thought of as cut points for the graph of the permutation in the sense that if κt = 0
then 
π ⊆ {x ≤ t, y ≤ t} ∪ {x > t, y > t}. This leads one to consider the evolution
of the arc chain as performing a sequence of excursions away from zero; a point
of view which will be useful for us in the regime that q is bounded away from 1
since, as we now prove, the excursions tend to be relatively short in this regime.

The recent work of Basu and Bhatnagar [2] uses a similar viewpoint in their
analysis of the longest monotone subsequences in a random Mallows permutation.
There, a Markov chain related to our (∞, q)-arc chain is considered. While the
two chains differ, they share the same visit times to zero and the work [2] contains
an analysis of the distribution of the return times to zero, related to our discussion
here.

The following theorem will be instrumental in the proofs of the upper bounds
of Theorem 1.1, Theorem 1.3 and Theorem 1.4 in this regime.

THEOREM 3.11. Let κ be an (n, q)-arc chain with κ0 = 0 and let 0 ≤ s ≤ n.
For any ε > 0, there exists a constant cε > 0 such that

Ts := min{t ≥ s|κt = 0} satisfies

E
[
(Ts − s)2] ≤ cε · q for all q ∈ (0,1 − ε).

This theorem is a consequence of the following two statements.

PROPOSITION 3.12. There exists a monotone nondecreasing function
f : (0,1) → [0,∞) such that the following holds. Let k ≥ 0 and let κ̂ be an
(∞, q)-arc chain with κ̂0 = k. Then

T := min{t ≥ 0|κ̂t = 0} satisfies E
[
T 2] ≤ f (q) · k2 for all k ≥ 0.

Recall the definition of ξ from (8).

LEMMA 3.13. Let ν be the stationary distribution of the (∞, q)-arc chain.
One has

νx ≤ 22ξ−x for q ∈ (0,1),(33)

νx ≤ 4q

2x
for x > 0 and q ∈

(
0,

1

4

)
.(34)
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PROOF OF THEOREM 3.11. Let κ̂ be a bounding chain of κ with κ̂0 having
the stationary distribution of the (∞, q)-arc chain. Define T̂s by

T̂s := min{t ≥ s|κ̂t = 0}.
Proposition 3.9 implies that Ts ≤ T̂s . Hence it suffices to prove that there exists
cε > 0 such that

E
[
(T̂s − s)2] ≤ cε for q ∈ (0,1 − ε), and

E
[
(T̂s − s)2]� q for q ∈

(
0,

1

4

)
.

As κ̂ is a time-homogeneous Markov chain, Proposition 3.12 implies that

E
[
(T̂s − s)2|κ̂s

] ≤ f (q) · κ̂2
s .

By taking expectations, we obtain

(35) E
[
(T̂s − s)2] ≤ f (q) · ∑

k>0

k2 · νk.

Using the geometric bounds on νs provided in (33) and the fact that f is a mono-
tone nondecreasing function, it follows that the right-hand side in (35) is uniformly
bounded for q ∈ (0,1 − ε).

Now consider the case q ≤ 1
4 . By applying (34) to (35), we conclude that

E
[
(T̂s − s)2] ≤ f

(
1

4

)
· ∑
k>0

νk · k2 ≤ 4q · f
(

1

4

)
· ∑
k>0

k2

2k
� q.

�

Now we need only prove Lemma 3.13 and Proposition 3.12.

PROOF OF LEMMA 3.13. Let ui and vi be as in (26). As ui is monotone
decreasing in i and vi is monotone increasing in i, it follows that for i > 2ξ one
has

ui

vi

≤ u2ξ+1

vξ

≤ qξ · uξ+1

vξ

≤ qξ ≤ 1

2
,

where we have used that uξ+1 ≤ 1
4 and vξ ≥ 1

4 . Thus, using (25), we obtain

(36) νx = ν2ξ ·
x∏

i=2ξ+1

ui

vi

≤ ν2ξ · 22ξ−x ≤ 22ξ−x for x > 2ξ.

This completes the proof of (33). We proceed with the proof of (34) and assume
q ≤ 1

4 . In this case, one may verify that us

vs
≤ 1

2 for s > 1, while u1
v1

≤ 2q . Similarly,
as we obtained (36), we conclude

νx ≤ q

2x−2 ν0 ≤ q

2x−2 for x > 0. �
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We proceed to prove Proposition 3.12. Let κ̂ be an (∞, q)-arc chain. We shall
write Ek to denote the expectation under the measure where κ̂0 = k. We also define
the stopping times:

τi = min{t ≥ 0|κ̂t ≤ i}, i ≥ 0.

CLAIM 3.14. If k > 4ξ , then E
k[3τ4ξ ] ≤ 9k−4ξ and if 1 ≤ k ≤ 4ξ then

E
k[λτk−1

k,q ] < ∞ for some λk,q > 1.

PROOF. Suppose first that k > 4ξ . Consider the random sequence Xt :=
32κ̂t−8ξ+t and note that X0 = 9k−4ξ . Let ui and vi be as in (26) with v0 := 0.
The sequence (Xt) satisfies

E
k[Xt+1|κ̂t = i] =

(
27 · ui+1 + 3 · (1 − ui+1 − vi) + 1

3
vi

)
· Xt.

One may verify that for all i > 4ξ one has 27 ·ui+1 +3 · (1−ui+1 −vi)+ 1
3vi ≤ 3

4 .
This implies that

E
k[Xt+1|κ̂t = i] ≤ 3

4
Xt for all i > 4ξ.

Denoting t ∧ τ4ξ = min{t, τ4ξ } and using the facts that τ4ξ is a stopping time for
(Xt) and κ̂t > 4ξ when τ4ξ > t , it follows that Ek[Xt∧τ4ξ

] is nonincreasing in t . As
3t∧τ4ξ ≤ Xt∧τ4ξ

we conclude by the monotone convergence theorem that

E
k[3τ4ξ

] = lim
t→∞E

k[3t∧τ4ξ
] ≤ lim

t→∞E
k[Xt∧τ4ξ

] ≤ X0 = 9k−4ξ .

Now suppose that 1 ≤ k ≤ 4ξ . By induction and using the previous case we may
assume that there exists some λk+1,q > 1 for which

(37) E
k+1[λτk

k+1,q

]
< ∞.

Let t ≥ 1 and 1 < λ < λk+1,q . By conditioning on the first step of the Markov
chain, we have

E
k[λτk−1∧t ]

= vkλ + (1 − uk+1 − vk)E
k[λτk−1∧t |κ̂1 = k

] + uk+1E
k[λτk−1∧t |κ̂1 = k + 1

]
(38)

= vkλ + (1 − uk+1 − vk)E
k[λ(1+τk−1)∧t ] + uk+1E

k+1[λ(1+τk−1)∧t ].
Now observe that Ek[λ(1+τk−1)∧t ] ≤ λ ·Ek[λτk−1∧t ]. In addition,

E
k+1[λ(1+τk−1)∧t ] ≤ λ ·Ek+1[λτk+(τk−1−τk)∧t ] = λ ·Ek+1[λτk

] ·Ek[λτk−1∧t ],
where in the last equality we used the strong Markov property and the fact that τk

is almost surely finite under the measure where κ̂0 = k + 1 by (37). Substituting
these two bounds into (38) and rearranging the terms, we conclude that(

1 − (1 − uk+1 − vk) · λ − uk+1 · λ ·Ek+1[λτk
]) ·Ek[λτk−1∧t ] ≤ vk · λ.
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Thus, using (37), we may pick λ > 1 sufficiently small to make the coefficient of
E

k[λτk−1∧t ] positive. With this choice, we conclude that Ek[λτk−1∧t ] is bounded
uniformly in t . Taking the limit t → ∞ completes the proof. �

PROOF OF PROPOSITION 3.12. The proposition is trivial for k = 0 so we
assume that k ≥ 1. Observe that

T = T4ξ +
4ξ−1∑
i=0

(τi − τi+1).

The Cauchy–Schwarz inequality then implies that

T 2 ≤ (4ξ + 1)

(
T 2

4ξ +
4ξ−1∑
i=0

(τi − τi+1)
2

)
.

If i ≥ k, then τi = τi+1 whereas if i < k then the strong Markov property and
Claim 3.14 imply that

E
k[(τi − τi+1)

2] = E
i+1[τ 2

i

]
< ∞.

Similarly, if 4ξ ≥ k then T4ξ = 0 while if 4ξ < k it follows from Claim 3.14 and
the fact that log2

3 x is concave for x ≥ e that

E
k[τ 2

4ξ

] = E
k[log2

3
(
3τ4ξ

)] ≤ log2
3 E

k[3τ4ξ
] ≤ g(q)k2

for some g(q) > 0. Combining all of the above facts, we conclude that

E
k[T 2] ≤ g(q)(4ξ + 1)k2 + (4ξ + 1) · 4ξ · max

0≤i≤4ξ−1
E

k[(τi − τi+1)
2] ≤ h(q)k2

for some h(q) > 0. This bound implies a similar bound in which h is replaced by
a monotone nondecreasing function f as Ek[T 2] is a nondecreasing function of q

by Proposition 3.9. �

3.5. Induced Mallows permutations and a stitching process. Our discussion
so far was based on the results of Section 3.1, describing the distribution of a por-
tion of the graph 
π of a Mallows permutation π conditioned on the parts of the
graph “to the left and below this portion”. In our proof of Theorem 1.2, pertain-
ing to the Poisson–Dirichlet limit law, we will need to understand the distribution
of portions of 
π under more general conditioning events. Our first result in this
section discusses the distribution of 
π restricted to a rectangle, given the comple-
mentary part of 
π . As it turns out, in this case the relative ordering of the points
of 
π is itself distributed via a Mallows distribution. This is formulated precisely
below.

Given a finite set of points 
 ⊆ R
2, no two of which have equal x or equal y

coordinate, we define the relative order of 
 as a permutation λ characterized by
the following properties:

if 
 = {
(x1, y1), . . . , (xk, yk)

}
with x1 < · · · < xk

(39)
then λ ∈ Sk and λi := ∣∣
 ∩ {y ≤ yi}

∣∣.
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The name relative order stems from the fact that for each pair i, j ∈ [k], one has
λi < λj if and only if yi < yj .

LEMMA 3.15. Let R := {x1 ≤ x ≤ x2, y1 ≤ y ≤ y2} ⊆ [n]2 be a discrete rect-
angle. Let π ∼ μn,q and 
π be the graph of π . When 
π ∩ R is nonempty the
relative order (39) of 
π ∩R, conditioned on 
π \R, has the Mallows distribution
μm,q with m := |
π ∩ R|.

The lemma generalizes the more familiar special case where R is a vertical
rectangle {x1 ≤ x ≤ x2} (see, for instance, [6], Corollary 2.7, for a proof of this
special case). The original paper of Mallows [20] contained a discussion of related
facts. In fact, the above lemma can be deduced from the special case, though we
will provide a direct proof below.

So far we have discussed methods for sampling the graph of a Mallows permu-
tation iteratively “from beginning to end”. The above lemma gives rise to a method
for sampling the graph “from a mid-point”. Indeed, one can consider, say, the top
and bottom parts of the graph,

(40) A := 
π ∩ {y ≤ s} and B := 
π ∩ {y > s}
for a given 0 ≤ s ≤ n. Then, due to the lemma, the relative orders of A and B are
independent and have distributions μs,q and μn−s,q , respectively. We now provide
a “stitching” procedure for determining the full permutation π from the relative
orders. Indeed, given the relative orders, one may determine the full permuta-
tion from the projections of A and B on the x-axis. Defining the process (χt ),
0 ≤ t ≤ n, by

(41) χt := ∣∣
π ∩ {x > t, y ≤ s}∣∣
we note that the projection of A on the x-axis is exactly the set of descents of χ ,
{t ∈ [n]|χt = χt−1 −1}, and the projection of B on the x-axis is the complementary
set. Thus the following lemma provides a computational procedure for determining
these projections.

LEMMA 3.16. The process χ defined in (41) is a time-inhomogeneous Markov
chain with transition probabilities given by

P[χt+1 = χt − 1|π1, . . . , πt ] = 1 − qχt

1 − qn−t
and

(42)

P[χt+1 = χt |π1, . . . , πt ] = qχt − qn−t

1 − qn−t
.

We remark that the formulas (42) provide more than the transition probabilities
of χ ; namely, that these probabilities remain the same even when conditioning on
π1, . . . , πt .
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Putting together the above two lemmas, we obtain the following method for
sampling a Mallows permutation π . Let 0 ≤ s ≤ n and let A and B be as in (40).
Observe that, according to Lemma 3.15, the relative order of A is independent
of χ , as χ is determined by B . Similarly, the relative order of B is independent of
both χ and A. Thus we may sample π by independently sampling χ , the relative
order of A and the relative order of B . The sampling of χ can be performed using
the transition probabilities given in Lemma 3.16. The usual sampling algorithm (6)
may then be used to sample the relative orders of A and B .

The infinite case. Gnedin and Olshanski defined an infinite two-sided Mal-
lows distribution as the unique q-exchangeable measure on one-to-one and onto
π : Z → Z; see [14] for details. A method for sampling from this distribution was
given in [14]. Although the infinite two-sided Mallows distribution is not used in
our work, we note here that the above sampling algorithm may be extended to
produce another sampling method for it.

We do not define the infinite two-sided Mallows distribution and shall rely only
on the fact, proved in [14], Proposition 7.6, that this distribution is the limit of the
distributions of finite Mallows permutations in a suitable sense. To give precise
meaning to this, let us extend the definition of the finite Mallows permutation to
arbitrary finite, nonempty, intervals I ⊂ Z by saying that π ∼ μI,q if π : I → I is
a bijection and P[π ] is proportional to q inv(π) as in (1). This is the same as saying
that P −1

I ◦π ◦PI ∼ μ|I |,q where PI is the unique increasing bijection from [|I |] to
I . We view bijections π : Z → Z as elements of ZZ with the product topology and
identify each bijection π : I → I with a bijection π : Z → Z by setting π(i) = i

for i /∈ Z.

FACT 3.17 ([14], Proposition 7.6). Let (In) be an arbitrary sequence of finite,
nonempty, intervals increasing to Z and let π(n) ∼ μIn,q . Then π(n) converges in
distribution to the infinite two-sided Mallows distribution.

We augment this with the following useful tightness property.

CLAIM 3.18. Let (In) be an arbitrary sequence of finite, nonempty, intervals
increasing to Z and let π(n) ∼ μIn,q . Then

lim
t→∞ sup

n
P
[

π(n) ∩ {x > t, y ≤ 0} �=∅

] = 0.

Here and later, similar to before, given π : I → I with I ⊆ Z, we write


π := {
(s,πs)|s ∈ I

}
.

PROOF OF CLAIM 3.18. The claim follows either from Theorem 3.11 or from
tail bounds on the displacement of elements as in, say, [6], Theorem 1.1. Let us
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argue from Theorem 3.11. Write In = {−a,−a + 1, . . . , b} and assume that a, b ≥
0 as otherwise, deterministically, 
π(n) does not intersect the quadrant {x > 0, y ≤
0}. Let π̃ (n) ∼ μb+a+1,q . By the definition of μIn,q , we see that

(43) P
[

π(n) ∩ {x > t, y ≤ 0} �=∅

] = P
[

π̃(n) ∩ {x > t + a, y ≤ a} �= ∅

]
.

Let κ be the arc chain of π̃ (n) and define T := min{s ≥ a|κs = 0}. By (20), assum-
ing also t ≥ 0, {


π̃(n) ∩ {x > t + a, y ≤ a} �= ∅
} ⊆ {T > t + a}.

Thus Theorem 3.11 and Markov’s inequality imply that the probabilities in (43)
are at most cq/t2 for some cq > 0 depending only on q , from which the claim
follows. �

We require the notion of an infinite one-sided Mallows distribution. We recall
that one may define an infinite one-sided Mallows permutation π : N → N with
parameter 0 < q < 1 via the formula (6) with the formal substitution n = ∞ and
this yields a convenient sampling algorithm. This construction may be slightly
generalized: For a countably infinite subset I ⊂ Z with either a minimal or max-
imal element, let PI be the unique monotone bijection PI : N → I (increasing if
I has a minimal element and decreasing if it has a maximal element). Given two
countably infinite I, J ⊂ Z, each with a minimal or maximal element, one defines
the infinite one-sided Mallows distribution from I to J with parameter q as the
measure on bijections π : I → J satisfying that P −1

J ◦ π ◦ PI has the Mallows
distribution from N to N with parameter q .

We now describe the sampling algorithm for the infinite two-sided case. Let
π : Z → Z have the infinite two-sided Mallows distribution with parameter q . Let

A := 
π ∩ {y ≤ 0} and B := 
π ∩ {y > 0},
be the “bottom” and “top” portions of the graph of π , similar to the finite case. Let
Ax and Bx be the projections onto the x-axis of A and B , respectively. It is known
that, almost surely, Ax has a maximal element and Bx has a minimal element, and
also that

conditioned on Ax and Bx, the restrictions π |Ax and π |Bx

are independent and have the infinite one-sided Mallows(44)

distributions with parameter q.

These facts were also noted and used in one of the sampling algorithms presented
in [14]. With a bit of work, they also follow from Fact 3.17: the facts on the max-
imal and minimal elements follow using Claim 3.18, together with the reversal
symmetry (10), and the fact (44) follows from Lemma 3.15. Thus, to complete the
description of our sampling method for π it suffices to give an algorithm for sam-
pling the projections Ax and Bx, that is, a method to “stitch” the one-sided infinite
bijections to a two-sided infinite bijection.
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Define the process χ by

χt := ∣∣
π ∩ {x > t, y ≤ 0}∣∣, t ∈ Z

and note that Ax is exactly the set of descents of χ , that is, Ax = {t ∈ Z|χt =
χt−1 − 1}. The distribution of (χt )t≥0 is described by the following two facts,
whose proof we postpone:

χ0 is distributed as the stationary distribution
(45)

of the (∞, q)-arc chain; see (27).

χ is a time-homogeneous Markov chain

with transition probabilities given by
(46)

P[χt+1 = χt − 1|πi for i ≤ t] = 1 − qχt and

P[χt+1 = χt |πi for i ≤ t] = qχt .

Thus we may easily sample Ax ∩N. To finish, we need only sample Bx \N condi-
tioned on Ax ∩N and χ0, as Bx \N together with Ax ∩N determine both Ax and
Bx. To this end, we rely on the following facts, whose proof is again postponed:

Given χ0, Ax ∩N and Bx \N are conditionally independent

and have the same distribution up to reflection. Precisely, given χ0,

Bx \N d= −(Ax ∩N) + 1.

(47)

In conclusion, one may sample Ax and Bx as follows: First, sample χ0 from the
distribution (27). Make two independent samples of (χt )t≥0, with the same given
χ0, via the Markov chain transition probabilities in (46). Then take Ax ∩ N to
be the set of descents of the first copy of (χt )t≥0 and reconstruct Bx by taking
1 − (Bx \ N) to be the set of descents of the second copy of (χt )t≥0. The sets Ax
and Bx are determined from Ax ∩N and Bx \N. The full permutation π may now
be reconstructed using the property (44) and the sampling algorithm for infinite
one-sided Mallows permutations.

We now return to prove (45), (46) and (47). Define the discrete intervals

In = {−n + 1,−n, . . . , n}
and let π(n) ∼ μIn,q . Define the processes χ(n) by

χ
(n)
t := ∣∣
π(n) ∩ {x > t, y ≤ 0}∣∣, t ∈ Z.

Then Fact 3.17 together with Claim 3.18 imply that

(48) χ(n) converges in distribution to χ.
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Let us elaborate on the proof of this fact. Observe that

χ
(n)
t − χ(n)

s = ∣∣{i|t < i ≤ s,π
(n)
i ≤ 0

}∣∣ and

χt − χs = ∣∣{i|t < i ≤ s,πi ≤ 0}∣∣, t ≤ s,

so that these differences depend only on the value of the permutations at finitely
many indices. Thus Fact 3.17 implies that (χ

(n)
t − χ

(n)
s )t≤s converges in dis-

tribution to (χt − χs)t≤s . This may be upgraded to (48) by using the fact
that P[χs �= 0] s→∞→ 0 (since Ax has a maximal element, almost surely) and
supn P[χ(n)

s �= 0] s→∞→ 0 by Claim 3.18.
Observe that χ

(n)
0 has the distribution of the arc chain of π(n) at 0. By using

(48), property (45) follows from Proposition 3.8 and property (46) follows from
Lemma 3.16. Finally, property (47) is a consequence of the reversal symmetry (10)
and Lemma 3.16 applied to π(n).

Proofs of Lemma 3.15 and Lemma 3.16. To complete this section, we need
only prove these two lemmas.

PROOF OF LEMMA 3.15. Throughout the proof, we condition on 
π \ R and
assume that |
π ∩ R| > 0. Let ρ be the relative order of 
π ∩ R. Observe that the
permutation ρ uniquely determines π and ρ may assume, with positive probability,
any value in S|
π∩R|. Hence, the distribution of ρ is proportional to q inv(π) by
the definition of the Mallows distribution (1); while we need to prove that the
distribution of ρ is proportional to q inv(ρ). Therefore, it suffices to verify that

(49) inv(π) − inv(ρ) is determined by 
π \ R.

We say that two points (vx, vy), (wx,wy) ∈ R
2 form an inversion if (vx − wx) ·

(vy − wy) < 0. For two finite subsets V,W ⊂R
2 we define

inv(V ,W) := ∣∣{(v,w) ∈ V × W |(v,w) forms an inversion
}∣∣ and

inv(V ) := 1

2
inv(V ,V ).

The definitions are chosen so that inv(σ ) = inv(
σ ) for any permutation σ . Con-
sider the following equality:

inv(π) = inv(
π \ R) + inv(
π \ R,
π ∩ R) + inv(
π ∩ R).

Observe that inv(
π \ R) is determined by 
π \ R and that inv(ρ) = inv(
π ∩ R).
Thus we need only prove that

inv(
π \ R,
π ∩ R)
(50) = ∑

u∈
π\R
inv

({u},
π ∩ R
)

is determined by 
π \ R.
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Let u = (ux, uy) ∈ 
π \ R. Since u ∈ Rc, we know that at least one of four
inequalities occur: ux < x1, ux > x2, uy < y1, uy > y2. Assume ux > x2. We have

inv
({u},
π ∩ R

) = ∣∣{(x, y) ∈ 
π ∩ R|y > uy
}∣∣

= n − uy − ∣∣{(x, y) ∈ 
π \ R|y > uy
}∣∣.

Thus inv({u},
π ∩R) is determined by 
π \R and u. Applying similar reasoning
in the other three cases shows that (50), and hence (49) holds. �

PROOF OF LEMMA 3.16. As 0 ≤ χt − χt+1 ≤ 1, it suffices to establish the
formula for P[χt+1 = χt − 1|π1, . . . , πt ]. It is convenient to use the formula (6).
Let j1 < · · · < jn−t be the elements of [n] \ {π1, . . . , πt }. Observe that jk ≤ s if
and only if k ≤ χt . Hence by (6) and the definition of χt we have

P[χt+1 = χt − 1|π1, . . . , πt ] =
χt∑

k=1

P[πt+1 = jk|π1, . . . , πt ] = 1 − qχt

1 − qn−t
.

�

4. Main theorems. We start by introducing several definitions which we will
need for proving our main theorems. A nonempty subset a of [n] is called an arc
of the permutation π ∈ Sn if its elements can be ordered so that a = {a1, . . . , a|a|}
with π(ai) = ai+1 for 1 ≤ i < |a|. We say the arc has length |a| and say the arc
is closed if it forms a cycle, that is, if also π(a|a|) = a1. A nonclosed arc is called
open. When the arc is open, the above ordering is unique, in which case we call a1
and a|a| the tail and head of the arc a, respectively, and denote them by tail(a) and
head(a).

In our proofs of the main theorems, we will rely upon the diagonal exposure
process introduced in Section 3.2. We recall that by time t of this process, we
expose the portion of the graph 
π contained in {x ≤ t, y ≤ t}. This information
allows us to determine all arcs which are contained in [t] and, moreover, to tell
whether each such arc is open or closed. This motivates the following definitions.

Let π ∈ Sn and 0 ≤ t ≤ n. We say that an arc a of π is [t]-maximal (with respect
to inclusion) if a ⊆ [t] and if every arc b ⊆ [t] which contains a is in fact equal
to a. Denote

At (π) := {
a|a is [t]-maximal

}
,

Ot (π) := {
a|a is [t]-maximal and open

}
.

Recalling the definition of the arc chain κ from (19) we observe that

(51) κt (π) = ∣∣Ot (π)
∣∣,

which is the origin of the name “arc chain”. We note further that for each 1 ≤
s ≤ t there exists a unique [t]-maximal arc containing s and we denote this arc by
arct

s(π). When the permutation π is clear from the context, we shall abbreviate
arct

s(π),At (π) and Ot (π) to arct
s ,At and Ot .
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FIG. 5. Graph of the permutation (18726)(3)(45) alongside its arc chain process (κt ), its maximal
open arcs process (Ot ) and its maximal closed arcs process (At \Ot ).

Let us describe how At evolves during the diagonal exposure process, that is,
the relationship between At and At+1; see Figure 5 for an example. The newly
exposed portions of the graph 
π at time t + 1 were described in (17). Thus the set
of [t + 1]-maximal arcs is formed from the set of [t]-maximal arcs by having the
element t + 1 either: (i) form an, open or closed, arc by itself; (ii) extend an open
arc to a new, open or closed, longer arc; or (iii) merge two open arcs into a longer
open arc. These three possibilities are considered below according to their effect
on the number of open arcs:

• If κt+1 = κt +1, then necessarily {t +1} is a [t +1]-maximal open arc and At+1
equals At with {t + 1} added.

• If κt+1 = κt , then either t + 1 is a fixed point of π or t + 1 extends an open arc
in At to a longer open arc in At+1, either as the head or as the tail of the arc.

• If κt+1 = κt − 1, then either two open arcs were merged via t + 1 or an open arc
was extended by t + 1 to a closed arc.

We now consider the probabilities for the process (At ) to evolve according to
the above possibilities when π is a Mallows random permutation. As mentioned
above, we note that At and Ot are measurable with respect to Ft , that is, A and O
are adapted to the diagonal exposure filtration.

The probability, conditioned on Ft , that the element t + 1 forms a [t + 1]-
maximal arc by itself was already calculated in Proposition 3.3 (for the case that
it forms an open arc, or equivalently that κt+1 = κt + 1) and Lemma 3.4 (for the
case that it is a fixed point).

The other options, in which the element t + 1 either extends an existing arc
or merges two arcs, are determined from the basic events {π−1

t+1 = head(a)} and
{πt+1 = tail(a)} for an arc a ∈ Ot . Indeed, for the merging event one checks in a
straightforward manner that if a,b ∈ Ot are distinct arcs then{

a∪ {t + 1} ∪ b ∈Ot+1 and πt+1 ∈ b
} ⇐⇒
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{
π−1

t+1 = head(a) and πt+1 = tail(b)
}

and for the event that t + 1 extends the open arc a ∈Ot to a closed arc we have{
a∪ {t + 1} ∈ At+1 \Ot+1

} ⇐⇒ {
π−1

t+1 = head(a) and πt+1 = tail(a)
}
.

The event that t + 1 extends an open arc to a longer open arc is the complement of
the other possibilities. Thus the probabilities of these events may be derived from
the following lemma.

LEMMA 4.1. Let π ∼ μn,q , let 0 ≤ t < n and let a,b ∈ Ot be two, not neces-
sarily distinct, arcs. The events {π−1

t+1 = head(a)} and {πt+1 = tail(b)} are condi-
tionally independent given Ft . Furthermore,

Pt

[
π−1

t+1 = head(a)
] = q iha · 1 − q

1 − qn−t
and

(52)

Pt

[
πt+1 = tail(b)

] = q it
b · 1 − q

1 − qn−t
,

where

iha = ∣∣{c ∈ Ot |head(c) < head(a)
}∣∣ and itb = ∣∣{c ∈ Ot | tail(c) < tail(b)

}∣∣.
A consequence of the lemma is that for q ≥ 1

2 and any two open arcs a,b ∈ Ot

one has

Pt

[
π−1

t+1 = head(a) and πt+1 = tail(b)
] ≈

(
1 − q

1 − qn−t

)2
on {κt ≤ 2ξ},

which eventually leads to the appearance of the length scale 1
(1−q)2 in our theo-

rems.

PROOF OF LEMMA 4.1. The fact that the events {π−1
t+1 = head(a)} and

{πt+1 = tail(b)} are conditionally independent given Ft is a direct consequence
of (14).

It is not difficult to verify that

itb = ∣∣{1 ≤ j < tail(b)|j /∈ {π1, . . . , πt }}∣∣.
Thus the sampling formula (6) yields that

Pt

[
πt+1 = tail(b)

] = EtP
[
πt+1 = tail(b)|π1, . . . , πt

]
= Et

[
q it

b · 1 − q

1 − qn−t

]
= q it

b · 1 − q

1 − qn−t

as we wanted to show. The formula for Pt [π−1
t+1 = head(a)] follows from the for-

mula for Pt [πt+1 = tail(b)] applied to the inverse permutation π−1, as we have the
inverse symmetry (9) and the fact that Ft and Ot are invariant under this symmetry.

�
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4.1. Expected number of cycles. In this section, we prove Theorem 1.5. Let
π ∼ μn,q and κ be the arc chain of π . Recall from the Introduction that Cs is the
set of points in the cycle of π which contains s.

Our proof is based on the fact that the number of cycles in π equals the number
of points s ∈ [n] that satisfy s = max(Cs), that is,

(53) number of cycles in π = ∣∣{s ∈ [n]|s = max(Cs)
}∣∣ = ∑

s∈[n]
1{s=max(Cs )}.

The following proposition provides an estimate for the conditional probability of
the event {s = max(Cs)} given Fs−1.

PROPOSITION 4.2. For 1 ≤ s ≤ n, one has

qκs−1 · 1 − q

1 − qn−s+1 ≤ Ps−1
[
s = max(Cs)

] ≤ 1 − q

1 − qn−s+1 .

PROOF. Given π1, . . . , πs−1 there is a unique element t ∈ [n], distinct from
π1, . . . , πs−1, such that s = max(Cs) if and only if πs = t (indeed, there is a
unique k ≥ 1 and unique distinct t1, . . . , tk ∈ [s] satisfying tk = s, πti = ti+1 for
1 ≤ i ≤ k − 1 and t1 /∈ {π1, . . . , πs−1} whence we set t = t1). We shall derive the
proposition from this fact and formula (6). Write j1 < · · · < jn−s+1 for the ele-
ments of [n] \ {π1 . . . , πs−1} and let k be such that t = jk . Then

Ps−1
[
s = max(Cs)

] = Es−1P[πs = t |π1, . . . , πs−1] = Es−1

[
qk−1 1 − q

1 − qn−s+1

]
.

The proposition follows as 0 ≤ k − 1 ≤ κs−1. �

We augment this proposition with the following simple estimate on qκs−1 .

CLAIM 4.3. For 1 ≤ s ≤ n, one has

E
[
qκs−1

] ≈ 1.

PROOF. Clearly, qκs−1 ≤ 1 so we only need to prove the lower bound. We
consider two cases. If q ≥ 1

8 then, by Theorem 3.6,

E
[
qκs−1

] ≥ q2ξ
P[κs−1 ≤ 2ξ ] ≥ 1

4

(
1 − qξ2+ξ

1 − q2ξ

)
� 1.

Whereas if q ≤ 1
8 then, by (30) and Lemma 3.13,

E
[
qκs−1

] ≥ P[κs−1 = 0] � 1. �

Putting together (53) and the previous two estimates shows that

E[number of cycles in π ] ≈
n∑

s=1

1 − q

1 − qn−s+1 .
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Theorem 1.5 is a direct consequence of this fact, together with the observation that

(54)
1 − q

1 − qk
≈ 1 − q + 1

k
, k ≥ 1.

To verify (54), we consider two cases. Recall ξ from (8).
If k ≥ ξ , then qk ≤ 1

2 and 1
k
� 1 − q; therefore 1−q

1−qk ≈ 1 − q ≈ 1 − q + 1
k

.

If k < ξ , then qk > 1
2 and 1

k
� 1−q; thus 1−q

1−qk = 1
1+q+···+qk−1 ≈ 1

k
≈ 1−q + 1

k
.

4.2. Expected cycle diameter. In this section, we prove Theorem 1.4. Some of
the tools developed here will also be used in proving the rest of our main theorems.

We prove the lower and upper bounds on the quantity E[max(Cs)−s] as given in
(4). The other bounds in the theorem follow: The bounds on E[s − min(Cs)] given
in (5) are equivalent to those of (4) via the reversal symmetry (10). Put together,
the bounds in (4) and (5) yield the bounds on E[max(Cs) − min(Cs)] given in (3).

Throughout this section, we let π ∼ μn,q and κ be the arc chain of π .

Lower bound. Let us begin with the proof of the lower bound of (4), that is,

(55) E
[
max(Cs) − s

]
� min

{
q · ξ2, n − s

}
,

where we recall the definition of ξ from (8). First, we are going to provide upper
bounds for closing the cycle of s at time s ≤ t < n. Observe that for s ≤ t < n,
conditioned on the event {arct

s is open}, one has

arct+1
s is closed ⇐⇒ π−1

t+1 = head
(
arct

s

)
and πt+1 = tail

(
arct

s

)
.

Hence the following equation is an immediate corollary of Lemma 4.1:

(56) for s ≤ t < n, Pt

[
arct+1

s is closed
] ≤

(
1 − q

1 − qn−t

)2
on

{
arct

s ∈Ot

}
.

It is worth noting that the probability of closing the cycle of s at time t = s has a
larger estimate, as given in Proposition 4.2, as the event s = max(Cs) occurs either
when s is a fixed point or when any one of the open arcs closes at time t = s.

Combining Proposition 4.2 with (56), we derive by induction the following
corollary.

COROLLARY 4.4. For 0 < s ≤ t ≤ n, one has3

Ps−1
[
arct

s is open
] ≥ q − qn−s+1

1 − qn−s+1

∏
s≤i<t

(
1 −

(
1 − q

1 − qn−i

)2)
.

Now we state the main proposition.

3In the case when s = t , the empty product is assumed to be 1.
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PROPOSITION 4.5. Let 1 ≤ s < n and set r := min{s + ξ2, n − 1}. Then for
q ≥ 1

2 we have

Ps−1
[
arcr

s is open
]
� 1.

Observe that equation (55) in the case q ≥ 1
2 is an immediate corollary of this

proposition. One may also verify that Proposition 4.2 yields (55) in the case q ≤ 1
2 .

Hence it suffices to prove Proposition 4.5.
We use the following calculus fact: for a sequence (xi) with xi ∈ [0,1), one has

(57) if
∑
i

xi � 1 and 1 − xi � 1 for all i, then
∏
i

(1 − xi)� 1.

PROOF OF PROPOSITION 4.5. Due to Corollary 4.4 and the fact that
q−qn−s+1

1−qn−s+1 ≥ q−q2

1−q2 ≥ 1
3 , it suffices to verify that

∏
s≤i<r

(
1 −

(
1 − q

1 − qn−i

)2)
� 1.

Due to (57), we need only verify that one has

1 −
(

1 − q

1 − qn−i

)2
� 1, for s ≤ i < r, and

∑
s≤i<r

(
1 − q

1 − qn−i

)2
� 1.

The first inequality follows from the fact that q ≥ 1
2 and i < n − 1. For the second

inequality, observe that

∑
s≤i<r

(
1 − q

1 − qn−i

)2
≤

r−s∑
t=1

(
1 − q

1 − qt

)2
≤

ξ2∑
t=1

(
1 − q

1 − qt

)2
�

ξ2∑
t=1

(
(1 − q)2 + 1

t2

)
� 1,

where we applied the estimate (
1−q
1−qt )

2 � (1 − q)2 + 1
t2 which follows from (54).

�

Upper bound. We proceed to establish the upper bound

(58) E
[
max(Cs) − s

]
� min

{
q · ξ2, n − s

}
.

We are going to state analogues to (56) and Corollary 4.4 for the upper bound.
Lemma 4.1 implies that

(59) for s ≤ t < n, Pt

[
arct+1

s is closed
] ≥

(
qκt − qκt+1

1 − qn−t

)2
.

PROPOSITION 4.6. For 1 ≤ s ≤ t ≤ n and d ≥ 0, we have

(60) Ps

[
arct

s is open and κi ≤ d for all i ∈ [s, t]] ≤ exp
(−(t − s) · (1 − q)2 · q2d).
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PROOF. For s < r ≤ n, we set

Er := {
arcr

s is open and κi ≤ d for all i ∈ [s, r]}.
Via (59) one may verify that for such r ,

Ps[Er ] ≤ Ps

[
Er−1 ∩ {

arcr
s is open

}] ≤ Ps[Er−1] ·
(

1 −
(

qd − qd+1

1 − qn−r+1

)2)

≤ Ps[Er−1] · exp
(−(1 − q)2 · q2d).

By applying this inequality for all s < r ≤ t , we obtain inequality (60). �

PROPOSITION 4.7. For 1 ≤ s ≤ n, one has

E
[(

max(Cs) − s
)2]� min

{
q · ξ4, (n − s)2}.

This proposition implies (58) for q ≥ 1
2 using the fact that E[X2] ≥ E[X]2 for

any integrable random variable X. For q ≤ 1
2 we use the fact that max(Cs) − s ≤

(max(Cs) − s)2 to again deduce (58) from the same proposition.
Proposition 4.7 is stronger than what we need here as it bounds the second

moment of max(Cs) − s, but this extra strength will be used in the proof of Theo-
rem 1.3.

PROOF. The inequality max(Cs) − s ≤ n − s holds true by definition. So we
need only verify E[(max(Cs) − s)2] � q · ξ4. In the regime when q is bounded
away from 1, the inequality is a direct consequence of Theorem 3.11 due to

κt = 0 =⇒ max(Ci ) ≤ t for all i ≤ t,

as κt counts the number of open arcs at time t , see (51). Thus to complete the proof
of proposition it suffices to verify that

(61) E
[(

max(Cs) − s
)2]� ξ4, for q sufficiently close to 1.

We assume without loss of generality that n > s + 2ξ2. Our starting point is the
inequality

(62) E
[(

max(Cs) − s
)2] ≤ 4ξ4 + 3

n−1∑
t=s+2ξ2

(t − s) · P[max(Cs) > t
]
.

Define

dt :=
⌈

1

4
log1/q

(
t − s

ξ2

)⌉
and Et := {

κi ≤ dt + ξ for all i ∈ [s, t]}.
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Now write
n−1∑

t=s+2ξ2

(t − s)P
[
max(Cs) > t

]

≤
n−1∑

t=s+2ξ2

(t − s)P
[
Ec

t

] +
n−1∑

t=s+2ξ2

(t − s)P
[{

max(Cs) > t
} ∩ Et

]
.

We estimate the two sums separately. For the first sum, using Theorem 3.6 and the
observation that dt ≥ 12 for t ≥ s + 2ξ2 as we assumed that q is sufficiently close
to 1, we obtain

n−1∑
t=s+2ξ2

(t − s)P
[
Ec

t

]
�

n−1∑
t=s+2ξ2

(t − s)q12dt ≤
n−1∑

t=s+2ξ2

(t − s)

(
ξ2

t − s

)3
� ξ4.

For the second sum, Proposition 4.6 implies that

n−1∑
t=s+2ξ2

(t − s)P
[{

max(Cs) > t
} ∩ Et

]

≤
n−1∑

t=s+2ξ2

(t − s) exp
(−(t − s)(1 − q)2q2dt+2ξ )

≤ ∑
t≥s+2ξ2

(t − s) exp
(
−(t − s)(1 − q)2 q2+2ξ ξ√

t − s

)

≤ ∑
t≥s+2ξ2

(t − s) exp
(−c

√
t − s(1 − q)

)
� ξ4,

for a positive absolute constant c > 0, where the last estimate is not difficult to
check directly. �

4.3. Expected cycle length. In this section, we prove Theorem 1.1. As |Cs | ≤
diam(Cs)+1 the upper bound for E|Cs | follows immediately from the upper bound
on the diameter of Cs proved in Theorem 1.4. Thus we need only prove the lower
bound, namely that

(63) E|Cs |� min
{
ξ2, n

}
.

Since |Cs | ≥ 1, we may and will restrict, for the rest of the section, to the regime
where q is sufficiently close to 1 and n is sufficiently large.

Our starting point is the formula

E|Cs | =
∑
t∈[n]

P[t ∈ Cs].
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The lower bound (63) is an immediate consequence of this formula combined with
the next lemma.

LEMMA 4.8. Let s, t ∈ [n] satisfy |t − s| ≤ ξ2 then

P[t ∈ Cs] � 1.

PROOF. It suffices to consider the case s < t . Define the events (Vr), t ≤ r ≤ n

by

Vt := {
arct

s = arct
t

}
and

Vr := {
arcr

s = arcr
t and arcr−1

s �= arcr−1
t

}
for r > t.

By definition, Vr occurs if and only if the arc of s and the arc of t merge exactly at
time r . Hence {t ∈ Cs} is the disjoint union

⊔
t≤r≤n Vr , yielding that

P[t ∈ Cs] = ∑
t≤r≤n

P[Vr ].

We shall prove the following estimates:

P[Vt ] � 1 − q

1 − qn−t+1 and

(64)

P[Vr ] �
(

1 − q

1 − qn−r+1

)2
for t < r < min

{
t + ξ2, n − 2

}
.

The lemma follows easily from these, as if t + ξ2 < n − 2 one may sum the esti-
mates for P[Vr ] and otherwise it suffices to consider only the estimate for P[Vt ] or
P[Vn−3]. Let us prove these estimates. The following inequality is an immediate
consequence of Lemma 4.1:

(65) Pt−1[Vt ] ≥ q2ξ · 1 − q

1 − qn−t+1 · 1A∩{κt−1≤2ξ} where A := {
arct−1

s is open
}
.

Thus the estimate for P[Vt ] follows by noting that P[A ∩ {κt−1 ≤ 2ξ}] � 1 for q

sufficiently close to 1. Indeed, P[A] � 1 by Proposition 4.5 and P[κt−1 ≤ 2ξ ] tends
to 1 as q tends to 1, uniformly in t and n, by Theorem 3.6.

We proceed to estimate P[Vr ] for t < r < min{t + ξ2, n − 2}. Define

Bi := {
arci

s and arci
t are open and distinct

}
, t ≤ i ≤ n.

Similar to (65), we have

Pr−1[Vr ] ≥ q4ξ ·
(

1 − q

1 − qn−t+1

)2
· 1Br−1∩{κr−1≤2ξ}
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and, as before, it suffices to show that P[Br−1] � 1. Lemma 4.1 implies that for
i > t ,

P[Bi] = E

[
1Bi−1 ·

(
1 − Pi−1

[
πi ∈ {

tail
(
arci−1

s

)
, tail

(
arci−1

t

)}
,

π−1
i ∈ {

head
(
arci−1

s

)
,head

(
arci−1

t

)}
])]

≥ P[Bi−1] ·
(

1 − 4
(

1 − q

1 − qn−i+1

)2)
.

Furthermore, for i = t we obtain using Proposition 4.2 and Lemma 4.1 that

P[Bt ] = P
[
A ∩ {

πt �= tail
(
arct−1

s

)
, π−1

t �= head
(
arct−1

s

)
, t �= max(Ct )

}]
≥ P[A] ·

(
1 − 3 · 1 − q

1 − qn−t+1

)
.

Combining these inequalities with the estimate P[A] � 1 proved previously shows
that

P[Br−1] �
(

1 − 3 · 1 − q

1 − qn−t+1

) ∏
t<i<r

(
1 − 4

(
1 − q

1 − qn−i+1

)2)
.

By estimating the product as in the proof of Proposition 4.5, we conclude that
P[Br−1]� 1, as we wanted to show. �

4.4. Variance of cycle length. In this section, we prove Theorem 1.3. Through-
out we let π ∼ μn,q . We need to show that for every s ∈ [n] we have

Var |Cs | ≈ min
{
q · ξ4, (n − 1)2}.

We divide the proof into 3 cases:

1. The lower bound for q ≥ 1
8 follows from a general nonconcentration argument

together with Theorem 1.1.
2. The lower bound for q ≤ 1

8 is a corollary of Lemma 3.4.
3. The upper bound is a direct corollary of Proposition 4.7.

Case 1: Assume that q ≥ 1
8 . Assume that n > 2 as the case n = 1 is trivial.

Further, using the reversal symmetry (10), assume that s < n.
We consider the following equivalence relation on Sn: we say that σ1 ∼ σ2 if

σ1 ∈ {σ2, τ ◦ σ2, σ2 ◦ τ, τ ◦ σ2 ◦ τ } where τ := (s, s + 1).

Let X be the random equivalence class of π in this equivalence relation. We shall
prove that

(66) Var
(|Cs ||X)

� E
[|Cs |2|X]

.

The proof of the lower bound in this case follows from the inequality together with
Theorem 1.1 as

Var
(|Cs |) ≥ E

[
Var

(|Cs ||X)]
� E

[|Cs |2] ≥ E
[|Cs |]2

.
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Let us proceed with the proof of (66). Composing a permutation with an adja-
cent transposition, like τ = (s, s + 1), changes the number of inversions in the
permutation exactly by 1. It follows that any two permutations σ1 ∼ σ2 satisfy
| inv(σ1) − inv(σ2)| ≤ 2, whence (1) implies that

P[π = σ1] ≈ P[π = σ2].
As X is an equivalence class of Sn of size at most 4, we conclude that

(67) P[π = σ |X] ≈ 1, for all σ ∈ X.

The equivalence class X necessarily contains a permutation ρ satisfying Cs(ρ) �=
Cs+1(ρ). Choosing such a ρ, one checks that for each σ ∈ X, |Cs(σ )| is either
|Cs(ρ)|, |Cs+1(ρ)| or |Cs(ρ)| + |Cs+1(ρ)| and each of these values occurs for some
σ ∈ X. Thus (66) is a consequence of (67).

REMARK 4.9. The above argument is a general argument for showing non-
concentration of cycle lengths, that is,

Var
(|Cs |)� E

[|Cs |2].
It may be applied to other random permutation models satisfying the following
assumption. There exists some 1 ≤ t ≤ n, different from s, for which

P[σ ] ≈ P
[
σ ◦ (s, t)

] ≈ P
[
(s, t) ◦ σ

]
for all σ ∈ Sn.

Case 2: Assume now that q ≤ 1
8 . We need to prove that

Var |Cs |� q for n > 1.

It suffices to verify that

1 − P
[|Cs | = 1

]
� q and P

[|Cs | = 1
]
� 1.

Let κ be the arc chain of π . Due to the reversal symmetry (10), we may assume
that n − s ≥ 1. Lemma 3.4 implies that

P
[|Cs | = 1

] = P[πs = s] = E

[
qκs−1 − qκs−1+1

1 − qn−s+1 · qκs−1 − qn−s+1

1 − qn−s+1

]

≤ 1 − q

1 − q2 = 1

1 + q
.

Hence 1 − P[|Cs | = 1] ≥ q
1+q

� q . Now we shall verify that P[|Cs | = 1] � 1. Ob-
serve that

P[πs = s] ≥ P[πs = s|κs−1 = 0] · P[κs−1 = 0] ≥ (1 − q) · P[κs−1 = 0]
� P[κs−1 = 0]
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by Lemma 3.4 and our assumption that q ≤ 1
8 . The fact that P[κs−1 = 0] � 1 fol-

lows from (30) and Lemma 3.13.

Case 3: We prove the upper bound for the variance of cycle length. Since
|Cs | ≥ 1, it follows that

Var |Cs | ≤ E
[(|Cs | − 1

)2] ≤ E
[
diam(Cs)

2]
(68)

≤ 2E
[(

max(Cs) − s
)2 + (

s − min(Cs)
)2]

.

Proposition 4.7, via the reversal symmetry (10), states that

E
[(

max(Cs) − s
)2]� min

{
qξ4, (n − s)2} and

E
[(

s − min(Cs)
)2]� min

{
qξ4, (s − 1)2},

which yields the upper bound via (68).

4.5. Poisson–Dirichlet law. In this section, we prove Theorem 1.2. We need
to prove two facts: that the normalized length 1

n
|Csn | converges in distribution to

the uniform distribution on [0,1] for any sequence (sn) with sn ∈ [n] and that the
distribution of the sorted and normalized cycle lengths converges to the Poisson–
Dirichlet law. The proofs of these two facts are similar and we shall focus on the
proof for the Poisson–Dirichlet law. At the end of the section, we point out the
needed modifications to obtain the limiting distribution of 1

n
|Csn |.

The Poisson–Dirichlet law in a space of multisets of reals. Denote by D the
space of sorted sequences (αi), i ≥ 1, α1 ≥ α2 ≥ · · · of nonnegative reals with
finite sum. The space D is endowed with the product topology, the topology in-
herited from R

N. We shall consider also the �2 metric on sequences in D and take
note of the fact that convergence in the �2 metric implies convergence in the prod-
uct topology.

The Poisson–Dirichlet law with parameter one, denoted by PD, is a distribution
on D, supported on sequences with sum 1. We will not need the precise definition
of PD, instead relying only on its relation with uniform random permutations, and
the reader is referred, for example, to [12] for further background. Specifically, we
shall use that if σ is a uniformly random permutation in Sk and �1 ≥ �2 ≥ · · · are
the sorted lengths of cycles in σ then

(69)
1

k
(�1, �2, . . .)

d→ PD as k → ∞,

where a finite sequence is viewed as an element of D by adding to it a trailing
sequence of zeros.

It is convenient to work with an alternative, equivalent, description of the
space D. A sequence in D may be equivalently described by a multiset of nonneg-
ative reals with finite sum (summing elements according to their multiplicities),
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in which the multiplicity of each number is the number of its occurrences in the
sequence. Note that 0 is the only number possibly having an infinite multiplicity
in this representation. We denote the space of such multisets by M and make the
identification of D and M in the sequel, putting the induced topology on M, that
is, the push-forward of the product topology via the identification map. We denote
by d the metric on M obtained as the push-forward of the �2 metric on D. The
metric d has the following explicit expression: given two multisets X,Y ∈ M,

(70) d(X,Y ) := min
ϕ

√∑
x∈X

(
ϕ(x) − x

)2
,

where the minimum is taken over all bijections ϕ : X → Y and it is understood
that bijections may assign different images to multiple occurrences of the same
element. To see that d coincides with the push-forward of the �2 metric on D, we
note that the minimum in (70) is obtained by taking ϕ to be a monotone nonde-
creasing mapping.

We will also consider multisets of finite cardinality of nonnegative reals as mem-
bers of M by adding an infinite amount of zeros to the multiset.

Convergence criterion. Here, we state a convergence criterion to the Poisson–
Dirichlet distribution which generalizes (69). We start with some definitions.

For a permutation σ : S → S and a weight function w : S → R, where S is
a nonempty finite set, we define the weighted length function L(σ,w) to be the
multiset

(71) L(σ,w) :=
{∑

i∈C1

wi, . . . ,
∑
i∈Cm

wi

}
,

where C1, . . . ,Cm is a decomposition of S into orbits of σ . For instance, L(σ,1),
where 1 denotes the constant 1 function, is the multiset of cycle lengths of σ .

The convergence in (69) may be stated equivalently as follows: if σ is uniform
in Sk then L(σ, 1

k
1) → PD as k → ∞. The following proposition allows us to

generalize this fact by “adding weights”.

PROPOSITION 4.10. Let S be a nonempty finite set, let w : S → [0,∞) satisfy∑
ws ≤ 1 and let σ : S → S be a uniformly random permutation. Then

E

[
d2

(
L
(
σ,

1

|S|1
)
,L(σ,w)

)]
≤ 1

2

((
1 − ∑

ws

)2 + ∑(
1

|S| − ws

)2)
.

In particular, if w = w(k) : [k] → [0,∞) is a sequence of tuples satisfying∑k
i=1 wi ≤ 1 and the limit relations

∑k
i=1 wi → 1 and maxi∈[k] wi → 0 as k → ∞,

then L(σ, 1
k
1) and L(σ,w) share the same limit distribution, which is the PD dis-

tribution by (69).
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PROOF OF PROPOSITION 4.10. Using the notation of (71), the following in-
equality follows from (70):

d2
(
L
(
σ,

1

|S|1
)
,L(σ,w)

)
≤ ∑

r

(∑
s∈Cr

(
1

|S| − ws

))2

(72)

= ∑
s∈S

∑
t∈S

(
1

|S| − ws

)(
1

|S| − wt

)
· 1{t ∈ Cs(σ )

}
.

For each s ∈ S, as P[t ∈ Cs(σ )] = 1
21s=t + 1

2 ,

E

[∑
t∈S

(
1

|S| − ws

)(
1

|S| − wt

)
· 1{t ∈ Cs(σ )

}]
(73)

= 1

2

((
1

|S| − ws

)
·
(

1 − ∑
t∈S

wt

)
+

(
1

|S| − ws

)2)
.

The proposition follows by taking expectation in (72) and substituting (73). �

Proof of the Poisson–Dirichlet law. Let q = qn satisfy

(74) (1 − q)2 · n → 0 as n → ∞.

Let m = mn ∈ N be a sequence that converges to infinity sufficiently slowly so that

(75)
m

n
→ 0 and qm2 → 1 as n → ∞.

For instance, we may take m = �n1/4� or m = �log(n + 1)�. Let π ∼ μn,q . We
shall analyze π conditioned on 
π ∩ U , where

U := {x ≤ n − m or y > n − m}.
The plan is to to show that the lengths of the long cycles can be coupled closely
with the lengths of cycles in a uniform permutation. To do it, we first show that,
despite the fact that 
π ∩U is almost the whole graph of π , with high probability, it
provides little to no information on the lengths of the long cycles of π . The lengths
of the long cycles, given 
π ∩ U , are mostly decided by 
π \ U , the remaining
portion of the graph. We shall then conclude by utilizing the fact that the relative
order [see (39)] of 
π \ U is very close to a uniformly distributed permutation.

Our proof requires us to define permutations over a finite random set OU and
analyze the multiset L(·,w) of such permutations for various weight tuples w.
The set OU may be empty, though this case does not impact on our analysis as its
probability tends to 0. To avoid treating it in a special manner, as much as possible,
we define the set of permutations over the empty set to consist of a single element
denoted id∅. This element has no cycles and, in particular, L(id∅,w) = ∅ for
all w.
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Let us begin the proof. We introduce additional definitions to discuss arcs, which
are determined by 
π ∩ U . We say that an arc a of π belongs to U if one may
order its elements a = {a1, . . . , a|a|} so that ai+1 = π(ai) and (ai, ai+1) ∈ U for
all 1 ≤ i < |a|. If, in addition, a1 = π(a|a|) and (a|a|, a1) ∈ U we say that a is
relatively closed and otherwise deem it relatively open. When the arc is relatively
open, then the above ordering is unique, in which case we call the elements a1 and
a|a| the tail and head of the arc a, respectively, and denote them by tail(a) and
head(a). We say that an arc a is U -maximal if a belongs to U and there are no
other arcs that belong to U and contain a. Let AU be the set of U -maximal arcs
and let OU be the set of relatively open U -maximal arcs. One should note that
AU and OU are determined by 
π ∩ U and that

∑
a∈AU

|a| = n. The last equality
follows from the fact that every element of [n] belongs to exactly one of the arcs
of AU (possibly to an arc containing only this element).

We proceed to discuss the way that the cycles of π are formed from the arcs
in AU and the portion of the graph 
π \ U . Each point (s, t) ∈ 
π \ U satisfies
s = head(a) and t = tail(b) for some a,b ∈ OU . Conversely, for each a ∈ OU

there exist points (s, t), (s′, t ′) ∈ 
π \ U satisfying s = head(a) and t ′ = tail(a).
Thus we may define a permutation τ :OU → OU by setting

τ(a) = b if and only if
(
head(a), tail(b)

) ∈ 
π.

It is straightforward to check that each cycle of π is then either a cycle in AU \OU ,
or formed by merging the open arcs in OU which are in the same orbit of τ . In
particular,

L
(
π,

1

n
1
)

=
{

1

n
|a||a ∈AU \OU

}
∪

{
1

n

∑
a∈C

|a||C is a cycle of τ

}
,

where the equality and union are in the sense of multisets. Write | · | for the length
map on arcs, a �→ |a|. Recalling (70), we conclude that

d

(
L
(
π,

1

n
1
)
,L

(
τ,

1

n
| · |

))
(76)

≤
√√√√ ∑

a∈AU \OU

|a|2
n2 ≤ ∑

a∈AU \OU

|a|
n

= 1 − ∑
a∈OU

|a|
n

.

The Poisson–Dirichlet law is a consequence of this inequality and the following
lemma, which states the properties of the Mallows model that we require.

LEMMA 4.11. Let π ∼ μn,q and suppose n → ∞ with (74) and (75) holding.
Then:

(77) (i)
1

n
max
a∈OU

|a| → 0 and
1

n

∑
a∈OU

|a| → 1 in probability.
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(ii) There exists a coupling of τ and a permutation σ : OU → OU such that

P[σ �= τ ] → 0 as n → ∞
and, conditioned on 
π ∩ U , σ has the uniform distribution on permutations
of OU .

To obtain the Poisson–Dirichlet limit law, let σ be the random permutation given
by part (ii) of Lemma 4.11. Observe that

d

(
L
(
π,

1

n
1
)
,L

(
σ,

1

|OU |1
))

≤ d

(
L
(
π,

1

n
1
)
,L

(
τ,

1

n
| · |

))
︸ ︷︷ ︸

=:I

+d

(
L
(
τ,

1

n
| · |

)
,L

(
σ,

1

n
| · |

))
︸ ︷︷ ︸

=:II

+ d

(
L
(
σ,

1

n
| · |

)
,L

(
σ,

1

|OU |1
))

︸ ︷︷ ︸
=:III

.

We estimate the expectation of each of the last three summands separately. By (76)
and part (i) of Lemma 4.11,

E[I] ≤ E

[
1 − ∑

a∈OU

|a|
n

]
→ 0 as n → ∞.

Note that as d(L(α,w),L(β,w)) ≤ 2
∑

i |wi | for any two permutations α,β on a
finite set S and weight tuple w : S → R, we have II ≤ 2 · 1σ �=τ . Thus, by part (ii)
of Lemma 4.11,

E[II] ≤ 2 · P[σ �= τ ] → 0 as n → ∞.

Lastly, III = 0 when OU = ∅ and by Proposition 4.10,

E
[
(III)2|
π ∩ U

]
≤ 1

2

((
1 − 1

n

∑
a∈OU

|a|
)2

+ ∑
a∈OU

(
1

|OU | − |a|
n

)2)
on {OU �= ∅}.

Thus, applying part (i) of Lemma 4.11 and observing that it implies, in particular,
that |OU | → ∞ in probability as n → ∞, we obtain

E[III] ≤
√
E
[
(III)2

] → 0 as n → ∞.

We conclude that

E

[
d

(
L
(
π,

1

n
1
)
,L

(
σ,

1

|OU |1
))]

→ 0 as n → ∞.
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The limiting distribution of L(σ, 1
|OU |1) is the PD distribution as, conditioned on


π ∩ U , σ is a uniform permutation on OU by part (ii) of Lemma 4.11, using
(69) and relying again on the fact that |OU | → ∞ in probability as n → ∞. Thus
L(π, 1

n
1) converges also to the PD distribution, as we wanted to prove.

Proof of part (ii) of Lemma 4.11. This is a corollary of Lemma 3.15. On the
event {OU = ∅}, we simply set σ = τ . On the complementary event {OU �= ∅}
we do as follows. Set k := |OU |. Let τ̃ be the relative order [see (39)] of 
π \ U .
By our construction,

τ = α ◦ τ̃ ◦ β

for two bijections, α : [k] → OU and β : OU → [k], which are determined by

π ∩ U . Explicitly, this follows by viewing τ : OU → OU as the composition of 5
maps:

OU
head→ head(OU)

monotone→ [k] τ̃→ [k] monotone→ tail(OU)
tail−1→ OU,

where A
monotone→ B stands for the unique monotone increasing bijection from A

to B , provided that A and B are subsets of N of the same size.
It thus suffices to couple τ̃ with a permutation σ̃ : [k] → [k] in a way that

P[τ̃ �= σ̃ |k ≥ 1] → 0 as n → ∞
and, conditioned on 
π ∩U , σ̃ has the uniform distribution on Sk , as we may then
take σ := α ◦ σ̃ ◦ β .

By Lemma 3.15, conditioned on 
π ∩ U , we have that τ̃ ∼ μk,q . Hence the
following claim suffices to finish the proof, using our assumption (75) and the fact
that k ≤ m.

CLAIM 4.12. Let k ∈ N, 0 < q ≤ 1 and ρ ∼ μk,q . Then ρ may be coupled
with a uniform random permutation λ in Sk such that

P[ρ �= λ] ≤ 1 − qk2
.

PROOF. We recall (see, e.g., [19], Proposition 4.7) that the total variation dis-
tance of two probability distributions μ and ν on a finite set S is given by

TV(μ, ν) := 1

2

∑
s∈S

∣∣μ[s] − ν[s]∣∣ = 1 − ∑
s∈S

min
{
μ[s], ν[s]},

and that there exists a coupling of the two distributions, that is, random variables
X,Y with X distributed μ and Y distributed ν, so that P[X �= Y ] = TV(μ, ν)

(and, moreover, there is no coupling achieving a smaller value for P[X �= Y ]).
Thus it suffices to show that the total variation distance of μk,q and the uniform

distribution on Sk is at most 1 − qk2
.
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Let Zk,q be as in the definition (1) of the Mallows permutation and note
that Zk,q ≤ k!. Since inv(σ ) ≤ k2 for all σ ∈ Sk , we obtain from (1) that

μk,q[σ ] ≥ qk2

k! for all σ ∈ Sk . Thus the required total variation distance is at most

1 − ∑
σ∈Sk

min{qk2

k! , 1
k! } = 1 − qk2

. �

Proof of part (i) of Lemma 4.11. The claim is derived from the following
proposition regarding diagonal arcs.

PROPOSITION 4.13. For 1 ≤ s ≤ r ≤ n, one has

E
∣∣{1 ≤ i ≤ r| arcr

i is closed
}∣∣� 1 + (1 − q)2 · n2 + 1

n − r + 1
· n,(78)

E
∣∣arcr

s

∣∣� 1 + (1 − q)2 · n2 + 1

n − r + 1
· n.(79)

Since each open arc of An−m extends to an arc of OU , inequality (78), applied
with r = n − m, implies the second limit in (77) by our assumptions that m tends
to infinity with n and that (74) and (75) hold.

To derive the first limit in (77), we use the following general claim.

CLAIM 4.14. Let I be a nonempty finite set. Let A1, . . . ,Ak , where k ∈ N is
random, be pairwise disjoint random subsets of I with union I . For i ∈ I , let �i be
the size of the Aj to which i belongs. Then(

1

|I |E
[
max
i∈I

�i

])3
� 1

|I | max
i∈I

E[�i].

Now, inequality (79) yields that 1
n
E| arcn−m

s | → 0 uniformly over all s ∈ [n−m]
by our assumptions that m tends to infinity with n and that (74) and (75) hold.
Claim 4.14, applied with I = [n − m] and A1, . . . ,Ak being the diagonal arcs of
An−m, allows one to deduce that in fact

(80)
1

n
E

[
max

a∈An−m

|a|
]
= 1

n
E

[
max

s∈[n−m]
∣∣arcn−m

s

∣∣] → 0.

Since restricting an arc of OU to [n − m] yields an open arc of An−m which is
shorter by at most m elements, the first limit in (77) follows from (80) using our
assumption that m

n
→ 0.

PROOF OF CLAIM 4.14. Set L = maxi∈I �i and α := 1
|I |E[L]. By Markov’s

inequality applied to |I | − L, using that 0 ≤ L ≤ |I |,
(81) P

[
L ≥ 1

2
α|I |

]
� α.
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The sum of the �i satisfies

(82)
∑
i∈I

�i ≥ 1
{
L ≥ 1

2
α|I |

}
· ∑

i∈I

�i ≥ α2|I |2
4

· 1
{
L ≥ 1

2
α|I |

}
.

The second inequality is due to the fact that on the event {L ≥ 1
2α|I |} there are at

least 1
2α|I | values of i ∈ I for which �i ≥ 1

2α|I |. By taking expectation in (82) and
substituting (81), we obtain

|I | · max
i∈I

E[�i] ≥ ∑
i∈I

E[�i] ≥ α2|I |2
4

P

[
L ≥ 1

2
α|I |

]
� α3|I |2.

�

PROOF OF PROPOSITION 4.13. Fix s, r satisfying 1 ≤ s ≤ r ≤ n. Define

Mt := ∣∣{1 ≤ i ≤ t | arct
i is closed

}∣∣ and for t ≥ s let Nt := ∣∣arct
s

∣∣.
Our intention is to provide bounds for E[Ns], E[Nt+1 − Nt ] and E[Mt+1 − Mt ],
and to derive the proposition from these bounds. Observe that

Ns = 1 + ∑
a∈Os−1

|a| · 1
{

πs = tail(a) or
π−1

s = head(a)

}
,

as arcs
s consists of s and up to two arcs of Os−1 that have merged with {s} via

either their head or their tail. In light of this equality, Lemma 4.1 and the fact that∑
a∈Os−1

|a| ≤ n imply the following bound:

(83) E[Ns] � 1 + n · 1 − q

1 − qn−s+1 .

To bound Nt+1 − Nt and Mt+1 − Mt , we define the events

Mt+1(a,b) :=
{

πt+1 = tail(a)
π−1

t+1 = head(b)

}
∪

{
πt+1 = tail(b)
π−1

t+1 = head(a)

}
, a,b ∈ Ot ,

denoting the merging of a and b when the two arcs are distinct and the closure of
a when they are equal. Note that Pt [Mt+1(a,b)] ≤ (

1−q
1−qn−t )

2 for all a,b ∈ Ot , as
Lemma 4.1 implies.

Observe that for t ≥ s one has Nt+1 − Nt = 0 if arct
s is closed and otherwise

one has

Nt+1 − Nt = 1

{
πt+1 = tail

(
arct

s

)
or

π−1
t+1 = head

(
arct

s

) }

+ ∑
a∈Ot\{arct

s}
|a| · 1Mt+1(a,arct

s )
on

{
arct

s ∈ Ot

}
,
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as Nt+1 − Nt > 0 only when {t + 1} has merged with arct
s , in which case Nt+1 −

Nt = |a| + 1 if {t + 1} has also merged with another arc a ∈ Ot \ {arct
s}, and

otherwise Nt+1 − Nt = 1.
For the difference Mt+1 − Mt , observe that

Mt+1 − Mt = 1{t + 1 = πt+1} + ∑
a∈Ot

(|a| + 1
) · 1Mt+1(a,a)

= 1
{
t + 1 = max(Ct+1)

} + ∑
a∈Ot

|a| · 1Mt+1(a,a),

as Mt+1 − Mt > 0 only when t + 1 closes a cycle, in which case Mt+1 − Mt =
|a| + 1 when t + 1 closes the arc a ∈ Ot and Mt+1 − Mt = 1 when t + 1 forms a
fixed point.

Note that
∑

a∈Ot
|a| ≤ n and apply Lemma 4.1 and Proposition 4.2 to the above

formulas for Nt+1 − Nt and Mt+1 − Mt to obtain

E[Mt+1 − Mt ] � 1 − q

1 − qn−t
+ n · (1 − q)2

(1 − qn−t )2 for t ≥ 0,(84)

E[Nt+1 − Nt ] � 1 − q

1 − qn−t
+ n · (1 − q)2

(1 − qn−t )2 for t ≥ s.(85)

By using the bounds (83), (84) and (85) one may show that both E[Nr ] and
E[Mr ] are bounded, up to multiplication by a positive absolute constant, by

1 + n · 1 − q

1 − qn−r+1 +
r−1∑
t=0

1 − q

1 − qn−t
+ n ·

r−1∑
t=0

(1 − q)2

(1 − qn−t )2 .

The bounds (78) and (79) follow by using (54). �

Limiting distribution of 1
n
|Csn |. Our proof of the fact that 1

n
|Csn | converges in

distribution to U [0,1], the uniform distribution on [0,1], is very similar to our
proof of the Poisson–Dirichlet limit law. Therefore, let us only elaborate on the
main differences.

The proof is based on the following simple fact: For k ∈ N, let ρ ∈ Sk be a
uniformly random permutation and let ik ∈ [k] be arbitrary. Then

(86)
1

k

∣∣Cik (ρ)
∣∣ → U [0,1] in distribution as k → ∞.

We use the same notation as in the proof of the Poisson–Dirichlet limit law, for
example, σ is the random permutation over OU from part (ii) of Lemma 4.11. For
a ∈OU , we denote by Ca(σ ) the orbit of σ , and similarly with τ .

Let a be the arc of AU that contains sn. We first claim that

(87) P[a ∈ OU ] → 1 as n → ∞.
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Indeed, this is a consequence of Corollary 4.4, used with the reversal symme-
try (10) if sn > n−m, and our assumptions that m tends to infinity with n and that
(74) and (75) hold.

In addition, we recall that |OU | → ∞ in probability as n → ∞ as a consequence
of (77). Now, the limits (86) and (87) and the fact that, given |OU |, the distribution
of σ is uniform imply that

1

|OU |
∣∣Ca(σ )

∣∣ → U [0,1] in distribution as n → ∞,

where it is understood that in the case when a /∈ OU we set 1
|OU | |Ca(σ )| := 0. It

thus suffices to show that∣∣∣∣1

n

∣∣Csn(π)
∣∣ − 1

|OU |
∣∣Ca(σ )

∣∣∣∣∣∣ → 0 in probability as n → ∞.

To see this, we write, similarly as in the proof of the Poisson–Dirichlet limit law,
interpreting Ca(τ ) and Ca(σ ) as empty when a /∈ OU ,∣∣∣∣1

n

∣∣Csn(π)
∣∣ − 1

|OU |
∣∣Ca(σ )

∣∣∣∣∣∣
≤

∣∣∣∣1

n

∣∣Csn(π)
∣∣ − ∑

b∈Ca(τ )

|b|
n

∣∣∣∣ +
∣∣∣∣ ∑
b∈Ca(τ )

|b|
n

− ∑
b∈Ca(σ )

|b|
n

∣∣∣∣
+

∣∣∣∣ ∑
b∈Ca(σ )

|b|
n

− 1

|OU |
∣∣Ca(σ )

∣∣∣∣∣∣.
The first of the terms on the right-hand side is small, in probability, due to (87).
The second term is small by part (ii) of Lemma 4.11. The last term can be bounded
in a similar manner as in the proof of Proposition 4.10 and shown to be small by
part (i) of Lemma 4.11.

5. Discussion and open questions. In this work, we study the Mallows model
for random permutations, providing estimates for the typical length and diame-
ter of cycles. We observe that macroscopic cycles emerge in the parameter range

1
(1−q)2 � n. In this regime, we prove further that the joint distribution of the
lengths of long cycles in the permutation converges to the Poisson–Dirichlet distri-
bution. In this section, we discuss several further questions on the Mallows model
as well as questions pertaining to other related models of random permutations.

The limiting distributions of the cycle length and cycle diameter. Let π have
the Mallows distribution with parameters n and q . Recall that Cs stands for the
cycle in π containing the point 1 ≤ s ≤ n, so that |Cs | and max(Cs) − min(Cs) are
the length and diameter of Cs , respectively. What can be said about the limiting
distributions of these quantities when q → 1 and n → ∞? To avoid boundary
effects, we restrict to the case that there is some α ∈ (0,1) for which s = sn satisfies
s
n

→ α. We consider three cases.
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FIG. 6. Distribution of the length of the cycle containing a uniform random point. Obtained empir-
ically with 1,000,000 samples.

Macroscopic cycles. Suppose that n(1 − q)2 → 0. In this regime, as shown
in Theorem 1.2, the normalized cycle length 1

n
|Cs | converges in distribution to the

uniform distribution on [0,1]. Figures 2(b) and 6(b) suggest that, in fact, a stronger
convergence takes place. For any sequence 1 ≤ kn ≤ n bounded away from 1 and
n in a suitable manner, one has P[|Cs | = kn] · n → 1.

Using Corollary 4.4, it may additionally be shown that the cycle spans the full
interval, in the sense of the following convergence in distribution:

min(Cs)

n

d→ 0 and
max(Cs)

n

d→ 1.

Microscopic cycles. Suppose that n(1−q)2 → ∞. It appears from simulations
(see Figures 2 and 6) that the limiting distribution of the normalized cycle length
(1 − q)2|Cs | exists in this regime, but it is unclear what its form is. This limiting
distribution, if it indeed exists, cannot be concentrated on a single point due to the
lower bound on the variance of (1 − q)2|Cs | given in Theorem 1.3, used together
with the bounds in Proposition 4.6 and Theorem 3.6.

The normalized cycle diameter (1 − q)2(max(Cs) − min(Cs)) seems simpler to
analyze. Our results imply that there exist absolute constants 0 < c1 ≤ c2 < ∞
such that for any fixed x ≥ 0,

lim infP
[
(1 − q)2(max(Cs) − s

) ≥ x
] ≥ e−c2x,

lim supP
[
(1 − q)2(max(Cs) − s

) ≥ x
] ≤ e−c1x.

The lower bound follows from Corollary 4.4 and the upper bound follows by again
considering Proposition 4.6 together with Theorem 3.6. We conjecture that, in fact,
there exists a single absolute constant c > 0 for which

limP
[
(1 − q)2(max(Cs) − s

) ≥ x
] = e−cx, x ≥ 0.
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That is, that the limiting distribution of (1 − q)2(max(Cs) − s) is exponential. By
symmetry, the same is conjectured for (1 − q)2(s − min(Cs)). Furthermore, we
conjecture that the dependence between max(Cs) and min(Cs) disappears in this
limit, so that the diameter (1−q)2(max(Cs)−min(Cs)) converges in distribution to
the sum of two independent, identically distributed, exponential random variables.

Intermediate regime. Suppose that n(1 − q)2 → β ∈ (0,∞). We expect the
limiting distributions to still exist in this regime and interpolate in a continu-
ous manner the previous two cases. For the cycle diameter, this interpolation
may possibly be achieved by truncation, as certainly max(Cs) − s ≤ n − s. Re-
calling that s

n
→ α, we conjecture, for instance, that the limiting distribution of

(1 − q)2(max(Cs) − s) is equal to that of min{X,β(1 − α)} where X is the expo-
nential random variable conjectured to give the limiting distribution in the previous
regime.

Extensions of the parameter range. As discussed in the Introduction, there
exist extensions of the Mallows distribution to infinite permutations; one-to-one
and onto functions π : N → N or π : Z → Z. We expect the analogues of our
main theorems regarding the expected length, variance of the length and expected
diameter of cycles, Theorem 1.1, Theorem 1.3 and equation (3) of Theorem 1.4,
to continue to hold for these models, plugging formally n = ∞ and taking s ∈ N

or s ∈ Z according to the case. Such results may follow from our methods, using
the sampling mechanism described in Section 3.5 for the case π : Z → Z, but we
do not develop this further. The approximation theorems of Gnedin and Olshanski
[14], Section 7.2, may also prove useful in this context.

The Mallows distribution with parameters n and q is defined for the case that
q > 1 via the same formula (1). The distributions with parameters q and 1

q
are

related: If π ∼ μn,q then π ◦ r , with rs = n − s + 1, is distributed μn,1/q . This
operation corresponds to reflecting the graph of the permutation π across the line
x = n+1

2 . Cycles are significantly affected by this operation as, when π ∼ μn,q

with q > 1, πi typically lies around n + 1 − i, as follows from (2) and the above
relation. Thus, for instance, the diameter of the cycle containing 1 in π may be
close to n for all q > 1. Still, we would expect that for all q > 1 the expected cycle
lengths are still of order min{ 1

(1−1/q)2 , n} as in Theorem 1.1 and further expect a
Poisson–Dirichlet limit law for the long cycles when n → ∞, q → 1+ and n(q −
1)2 → 0 as in Theorem 1.2. This is suggested by the fact that composing π with
itself leads to a permutation whose graph is qualitatively similar to that of the
Mallows model with q < 1; see Figure 7.

Our study of the cycle lengths of the Mallows permutation with parameter q < 1
was based on the diagonal exposure process. Possibly, a similar process may be
used to study the case q > 1 by exposing the graph of the permutation “from
the center outwards”. That is, exposing after t iterations the portion of the graph
contained in a square of side length 2t around the mid-point (n+1

2 , n+1
2 ). The ideas

in Section 3.5 may be useful in making such an approach rigorous.
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FIG. 7. On the left is a graph of a sample of the Mallows distribution μn,q with n = 1000 and
q = 1.02. On the right is the graph of the composition of the same permutation with itself. The red

lines are at vertical distance 2
1−q

(left) and 2
√

2
1−q

(right) from the diagonal. They delimit a region
containing most of the points of the permutation.

Band models. We expect analogues of our results to hold for other natural
models of random permutations whose graph typically has a “band structure”. For
instance, for the interchange model on the one-dimensional graph {1, . . . , n} with
nearest-neighbor edges. In this case, as briefly discussed in Section 1.2.4, the anal-
ogous result for the expected cycle length has been proved by Kozma and Sido-
ravicius. Another natural model is the band-Poisson model. Here, for an integer
n ≥ 1 and real 0 < w ≤ n, one considers a Poisson point process with intensity 1

w
in the continuous band given by{

(x, y) ∈ [0, n]2||x − y| ≤ w
}
,

where the parameter w controls the width of the band. With this definition, each
vertical strip of width 1 in [0, n]2 contains on average a constant number of points.
Each realization of the process gives rise to a permutation by taking the relative
order of the points as in (39). We expect the analogues of our results to hold for
this model with w standing for q

1−q
.

Higher dimensions and general graphs. As discussed in Section 1.2.4, the
study of cycles of spatial random permutations, random permutations biased to-
wards the identity in an underlying geometry, is of great interest. The special case
in which the geometry is that of Rd or Zd is particularly significant with relations
to models of statistical physics. In this context, our work pertains to the case d = 1.
With other geometries in mind, we note here that a Mallows model may be defined
on any finite connected graph G = (V ,E) and parameter 0 < q ≤ 1 by letting the
probability of a permutation π : V → V be given by

PG,q[π ] = 1

ZG,q

qd(π,Id),
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where ZG,q is a normalization constant and d(π, Id) stands for the minimal num-
ber of adjacent transpositions required to change π to the identity permutation
Id : v �→ v. Here, an adjacent transposition is a transposition of the endpoints of an
edge of G. For instance, any transposition is allowed on the complete graph on n

vertices Kn, whence the model coincides with the well-studied Ewens model [11],
with parameter θ = 1

q
. This follows from the fact that

PKn,q[π ] = qn

ZKn,q

q−N (π)

with N (π) denoting the number of cycles (including fixed points) in π . Our anal-
ysis of the Mallows model is based on the exact sampling algorithm given by (6).
Unfortunately, we are not aware of corresponding algorithms for general graphs
(though in the specific case of the Ewens model an algorithm is given by the so-
called Chinese restaurant process). Nonetheless, it is of interest to obtain results
on the length of long cycles for general graphs G, with the case that G is a box in
Zd , d ≥ 2, having special significance.
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