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FREE ENERGY IN THE MIXED p-SPIN MODELS
WITH VECTOR SPINS1

BY DMITRY PANCHENKO

University of Toronto

Using the synchronization mechanism developed in the previous work
on the Potts spin glass model, we obtain the analogue of the Parisi for-
mula for the free energy in the mixed even p-spin models with vector spins,
which include the Sherrington–Kirkpatrick model with vector spins interact-
ing through their scalar product. As a special case, this also establishes the
sharpness of Talagrand’s upper bound for the free energy of multiple mixed
p-spin systems coupled by constraining their overlaps.

1. Introduction. In the previous paper [33], we computed the free energy in
the Potts spin glass model. In this paper, we will extend this result to a more gen-
eral class of models with vector spins that have arbitrary prior distribution with
compact support on Rκ , for any κ ≥ 1. The components of the Hamiltonian on
each of the κ coordinates of the spin configuration will be given by mixtures of
p-spin interactions with possibly different sets of inverse temperature parameters.
The key step in the computation of the free energy will be exactly the same as in
the Potts spin glass, namely, the blocks of overlaps will be forced to synchronize
in the infinite-volume limit as a consequence of some special perturbation of the
Hamiltonian. This part of the proof will require only cosmetic changes, and we
will refer to [33] for the details. Compared to the Potts spin glass, additional dif-
ficulties in the general setting are purely technical, mainly due to the fact that we
are dealing with arbitrary prior distribution of spins and one has to find the right
way to combine techniques from spin glasses and classical large deviations, which
takes a little bit of care.

Let us now describe the model. Fix integer κ ≥ 1 and let μ be a probability
measure on Rκ with compact support � ⊆ Rκ . A configuration of N ≥ 1 vector
spins will be denoted

(1) σ = (σ1, . . . , σN) ∈ (
Rκ)N

,

the coordinates of each spin σi will be written as

(2) σi = (
σi(1), . . . , σi(κ)

) ∈Rκ,

Received April 2016; revised April 2017.
1Supported in part by NSERC.
MSC2010 subject classifications. 60F10, 60G15, 60K35, 82B44.
Key words and phrases. Spin glasses, free energy, p-spin interactions, vector spins.

865

http://www.imstat.org/aop/
https://doi.org/10.1214/17-AOP1194
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


866 D. PANCHENKO

and, for a given k ≤ κ , the configuration of the kth coordinates will be denoted by

(3) σ(k) = (
σ1(k), . . . , σN(k)

) ∈ RN.

For each p ≥ 2, let us consider the classical p-spin Hamiltonian on RN ,

(4) HN,p

(
σ(k)

) = 1

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1(k) · · ·σip(k),

where (gi1,...,ip ) are i.i.d. standard Gaussian for all p ≥ 2 and (i1, . . . , ip). Notice
that these random variables are the same for all coordinates k ≤ κ . Given sequences
(βp(k))p≥2 for k ≤ κ of nonnegative inverse temperature parameters, we consider
mixed p-spin Hamiltonians

(5) Hk
N

(
σ(k)

) = ∑
p≥2

βp(k)HN,p

(
σ(k)

)
.

We assume that these sequences decrease fast enough to ensure that the series are
well defined. For example, if � ⊆ [−c, c]κ then one can take βp(k) ≤ (2c)−p .
Finally, we define the Hamiltonian of the mixed p-spin model with vector spins
by

(6) HN(σ) = ∑
k≤κ

Hk
N

(
σ(k)

)
.

We will consider only mixed even p-spin models, so we will assume that βp(k) =
0 for all odd p ≥ 3. Our main goal will be to compute the limit of the free energy

(7) FN = 1

N
E log

∫
�N

expHN(σ)dμ⊗N(σ).

One can also add a general external field term to the model but, for simplicity of
notation, we will omit it.

EXAMPLE. If one takes β2(k) = β for k ≤ κ and βp(k) = 0 for p ≥ 3, then

(8) HN(σ) = β√
N

∑
1≤i,j≤N

gij (σi, σj ),

where (σi, σj ) is the scalar product of σi, σj ∈ Rκ . This choice corresponds to the
analogue of the classical Sherrington–Kirkpatrick model [40] with vector spins in-
teracting through their scalar product. In addition, when the measure μ is uniform
on the standard basis of Rκ , the model reduces to the Potts spin glass with κ ori-
entations, which was considered in [33]. The case when μ is uniform on the unit
circle in R2 is the spin glass analogue of the classical XY or rotor model on the
lattice and, when μ is uniform on the unit sphere in R3, it is the analogue of the
classical Heisenberg model on the lattice. The case κ = 1 with the general μ is the
Ghatak–Sherrington model [16] studied previously in [22].
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As usual, we will use the upper index, σ� for � ≥ 1, to index sequences of spin
configurations. If, for k, k′ ≤ κ , we introduce the function

(9) ξk,k′(x) = ∑
p≥2

βp(k)βp

(
k′)xp

then it is easy to check that, for two spin configurations σ� and σ�′
and for any

k, k′ ≤ κ ,

(10) EHk
N

(
σ�(k)

)
Hk′

N

(
σ�′(

k′)) = Nξk,k′
(
R

k,k′
�,�′

)
,

that is, the covariance is a function of the overlap between the corresponding co-
ordinates

(11) R
k,k′
�,�′ = 1

N

∑
i≤N

σ�
i (k)σ �′

i

(
k′).

We will denote the matrix of all such overlaps by R�,�′ or R(σ�, σ �′
),

(12) R�,�′ = R
(
σ�, σ �′) = (

R
k,k′
�,�′

)
k,k′≤κ = 1

N

∑
i≤N

σ�
i σ �′

i

T
.

When using matrix operations (transpose, product, etc.) we will always think of
vectors as column vectors. In order to state our main result, we need to introduce
some notation and definitions.

As in the Potts spin glass in [33], we will compute the free energy first for a sub-
system with constrained self-overlap R(σ,σ ). Let us consider the closed convex
hull

(13) D = conv
{(

σ1(k)σ1
(
k′))

k,k′≤κ | σ1 ∈ � = supp(μ)
}

of κ × κ matrices generated by σ1σ
T
1 for vector spins σ1 ∈ �. Clearly, for any

N ≥ 1, the self-overlap matrix R(σ,σ ) ∈ D. The set D is a compact subset of
Rκ×κ , as well as the subspace consisting of Gram matrices

(14) �κ = {γ | γ is a κ × κ symmetric positive-semidefinite matrix}.
Let 
 be the space of left-continuous monotone functions on [0,1] with values in
�κ ,

(15) 
 = {
π : [0,1] → �κ | π is left-continuous, π(x) ≤ π

(
x′) for x ≤ x′},

where π(x) ≤ π(x′) means that π(x′) − π(x) ∈ �κ . For D ∈ D, we consider

(16) 
D = {
π ∈ 
 | π(0) = 0 and π(1) = D

}
.

As in [33], the elements of 
D will play a role of the principle order parameter in
the variational formula for the free energy below. We would like to point out that
such order parameter already appeared in the physics literature in [15], where a
special case of three copies of p-spin model was studied in the framework of the
Parisi replica method.
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A discrete path π ∈ 
D can be encoded by two sequences,

(17) x−1 = 0 ≤ x0 ≤ · · · ≤ xr−1 ≤ xr = 1

and a monotone sequence of Gram matrices in �κ ,

(18) 0 = γ0 ≤ γ1 ≤ · · · ≤ γr−1 ≤ γr = D.

We can associate to these sequences the path defined by

(19) π(x) = γj for xj−1 < x ≤ xj for 0 ≤ j ≤ r,

with π(0) = 0. Recall the function ξk,k′ in (9) and denote

(20) θk,k′(x) = xξ ′
k,k′(x) − ξk,k′(x) = ∑

p≥2

βp(k)βp

(
k′)(p − 1)xp.

Given an arbitrary κ × κ matrix A, we will denote

(21) ξ(A) := (
ξk,k′(Ak,k′)

)
k,k′≤κ ,

and define ξ ′(A) and θ(A) similarly. If we denote by βp = (βp(k))k≤κ then, for
γ ∈ �κ ,

ξ ′(γ ) = ∑
p≥2

pγ ◦(p−1) ◦ (
βpβT

p

)
,

(22)
θ(γ ) = ∑

p≥2

(p − 1)γ ◦p ◦ (
βpβT

p

)
,

where ◦ is the Hadamard (element-wise) product and γ ◦p is the element-wise pth
power of γ . An important observation is that these representations imply that the
sequences ξ ′(γj ) and θ(γj ) are also nondecreasing in �κ for 0 ≤ j ≤ r .

Given a discrete path (19), let us now consider a sequence of independent Gaus-
sian vectors zj = (zj (k))k≤κ for 0 ≤ j ≤ r with the covariances

(23) Cov(zj ) = ξ ′(γj ) − ξ ′(γj−1).

Given λ = (λk,k′)1≤k≤k′≤κ ∈ Rκ(κ+1)/2, let us define

(24) Xr = log
∫
�

exp
(∑

k≤κ

σ1(k)
∑

1≤j≤r

zj (k) + ∑
k≤k′

λk,k′σ1(k)σ1
(
k′))dμ(σ1)

and, recursively over 0 ≤ j ≤ r − 1, define

(25) Xj = 1

xj

logEj expxjXj+1,

where Ej denotes the expectation with respect to zj+1 only. If xj = 0, we interpret
this equation as Xj = EjXj+1. Notice that X0 is nonrandom, and we will denote
it by

(26) �(λ,D, r, x, γ ) = X0,
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making the dependence on all the parameters explicit [the dependence on D here
is through the last constraint in (18)]. For any matrix A, we will denote by

(27) Sum(A) = ∑
k,k′

Ak,k′

the sum of all its elements. Finally, we define the functional

P(λ,D, r, x, γ ) = �(λ,D, r, x, γ ) − ∑
k≤k′

λk,k′Dk,k′

(28)

− 1

2

∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

)
.

Let us mention right away that, as in the setting of the classical Sherrington–
Kirkpatrick model or the Potts spin glass in [33], one can observe that the func-
tional (26) depends on (r, x, γ ) only through the path π in (19), so we can denote
it by �(λ,D,π). It was shown in [33] that functionals of this type are Lipschitz
with respect to the metric

(29) �
(
π,π ′) =

∫ 1

0

∥∥π(x) − π ′(x)
∥∥

1 dx,

where ‖γ ‖1 = ∑
k,k′ |γk,k′ |. This is a direct analogues of a well-known result of

Guerra in [19] (see also [44] or Theorem 14.11.2 in [46]) in the setting of the
Sherrington–Kirkpatrick model (see also Lemma 8 below). It was also shown in
[33] that a general π ∈ 
D can be discretized in a way that approximates π in this
metric. Therefore, � can be extended by continuity to all π ∈ 
D . Also, rearrang-
ing the terms, we can rewrite

− ∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

)

= −Sum
(
θ(γr)

) + ∑
1≤j≤r

(xj − xj−1)Sum
(
θ(γj )

)
(30)

= −Sum
(
θ(D)

) +
∫ 1

0
Sum

(
θ
(
π(x)

))
dx

and, therefore, (28) can be rewritten as

P(λ,D,π) = �(λ,D,π) − ∑
k≤k′

λk,k′Dk,k′ − 1

2
Sum

(
θ(D)

)

(31)

+ 1

2

∫ 1

0
Sum

(
θ
(
π(x)

))
dx.

The following is our main result.
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THEOREM 1. For any κ ≥ 1, the limit of the free energy is given by

(32) lim
N→∞FN = sup

D∈D
inf

λ,r,x,γ
P(λ,D, r, x, γ ) = sup

D∈D
inf

λ,π∈
D

P(λ,D,π).

The formula (32) is the analogue of the classical Parisi formula [20, 36, 37] for
the free energy in the Sherrington–Kirkpatrick model. The upper bound will be
a standard application of Guerra’s replica symmetry breaking interpolation, and
most work will be devoted to the following lower bound.

Given a subset of spin configurations S ⊆ �N , similarly to (7), we define the
free energy constrained to this set of configurations by

(33) FN(S) = 1

N
E log

∫
S

expHN(σ)dμ⊗N(σ).

Given D ∈ D and ε > 0, we consider an open ε-neighbourhood of D,

(34) Bε(D) = {
γ ∈ �κ | ‖γ − D‖∞ < ε

}
,

with respect to the sup-norm ‖γ −D‖∞ = maxk,k′ |γk,k′ −Dk,k′ |. Let us recall the
definition of the overlap matrix in (12) and consider the set of spin configurations

(35) �ε(D) = {
σ ∈ �N | R(σ,σ ) ∈ Bε(D)

}
with the self-overlap in the ε-neighbourhood of D. The lower bound in Theorem 1
is a direct consequence of the following.

THEOREM 2. For any D ∈ D,

(36) lim
ε↓0

lim inf
N→∞ FN

(
�ε(D)

) ≥ inf
λ,r,x,γ

P(λ,D, r, x, γ ) = inf
λ,π∈
D

P(λ,D,π).

The proof of the lower bound also works for models with odd p-spin interac-
tions, and only the proof of the upper bound uses the convexity of the functions
ξk,k′ in (9).

Besides the Sherrington–Kirkpatrick model with vector spins mentioned above,
perhaps, the most interesting special case included in Theorem 2 corresponds to the
uniform measure μ on {−1,+1}κ , that is, multiple copies of the classical mixed
p-spin model with Ising spins coupled through their overlaps. One of the funda-
mental ideas in these models is the replica symmetry breaking interpolation in-
vented by Guerra in [19] to show that the Parisi formula [36, 37] is an upper bound
on the free energy in the Sherrington–Kirkpatrick model. When Talagrand proved
the Parisi formula in [42], the main idea was to generalize Guerra’s bound to two
copies of the system coupled by fixing their overlap. Since then, various analogues
of the Guerra interpolation found many other applications, see, for example, [5,
7–11, 14, 22, 27, 31, 33–35, 43]. After his seminal work on the Parisi formula, Ta-
lagrand proposed in [45] a generalization of Guerra’s bound to multiple copies of
the system, possibly at different temperatures, coupled through their overlaps (see
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Section 15.7 in [46]), and suggested a natural approach to other famous problems
in spin glasses, such as ultrametricity and chaos, based on looking at the discrep-
ancy between constrained and unconstrained free energies of the system, with con-
straints violating conjectured properties of the overlaps. However, except for some
special cases, this “calculus problem” remains impenetrable. In [45], Talagrand
raised a possibility that these bounds are not the correct ones, but this possibility
is now eliminated by Theorem 2 showing that they are asymptotically sharp. This
leaves other possibilities that the analytical structure behind these bounds is ex-
tremely nontrivial and remains to be discovered, or that ultrametricity and chaos
cannot be detected at the level of the free energy and the probability of spin config-
urations violating these properties is not exponentially small, although it has been
argued in [15] (near the critical temperature) and [38] that both ultrametricity and
chaos in temperature can be observed in this way.

It is interesting to note that, in some sense, we are approaching the sharpness
of Talagrand’s bounds from the opposite direction, namely, utilizing ultrametricity
for the overlaps to study these bounds. Our approach continues the line of ideas
originating in another paper of Guerra [18], where the first of the so-called stability
properties of the Gibbs measure appeared. The identities for the distribution of the
overlaps discovered by Guerra in [18] were generalized in [17] to what are now
called the Ghirlanda–Guerra identities. These identities were originally proved on
average over temperature, but were later recast by Talagrand in [41] as a conse-
quence of a small perturbation of the Hamiltonian. This formulation is very pow-
erful because it requires minimal assumptions from the model itself and, as a result,
the Ghirlanda–Guerra identities can be proved perturbatively in many other mod-
els (the only known example where the Ghirlanda–Guerra identities can be proved
nonperturbatively is for generic mixed p-spin models, [24]). Another related sta-
bility property of the Gibbs measure known as the Aizenman–Contucci stochastic
stability was discovered in [1]. The two stability properties can be combined into
a unified stability property in the form of the Bolthausen–Sznitman invariance [6]
in the context of the Ruelle probability cascades, and proved in the context of spin
glass models in [26]. The idea of stability turned out to be very fruitful and led to
many applications. The first real progress on the ultrametricity problem was made
by Arguin and Aizenman in [3] using the Aizenman–Contucci stochastic stabil-
ity, under a technical assumption that the overlaps take finitely many values in the
infinite-volume limit. A similar result based on the Ghirlanda–Guerra identities
was proved in [24], with completely elementary proof discovered later in [25].
The general case turned out to be much harder but it was finally shown in [28] that
the Ghirlanda–Guerra identities imply ultrametricity of the overlaps, which means
that the Parisi ultrametric ansatz holds perturbatively under minimal assumptions
on the model. This led to significant further progress. For example, the Parisi for-
mula was proved in [30] for general mixed p-spin models including odd p-spin
interactions, and similar result for the spherical models was proved in [7]. The
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Ghirlanda–Guerra identities also led to a proof of important symmetries in the set-
ting of diluted spin glass models, namely, the hierarchical exchangeability of pure
states, [4, 32]. Combined with a new idea of synchronization of the overlaps, the
Parisi ansatz allowed to solve in [31] a multi-species version of the Sherrington–
Kirkpatrick model introduced in [5]. The Ghirlanda–Guerra identities played im-
portant role in the proof of modified versions of chaos in temperature in [9, 12],
and a different representation of the Ghirlanda–Guerra identities played a key role
in the proof in [34] of the first canonical chaos in temperature result for generic
mixed even p-spin models. A certain overlap-matrix form of the Ghirlanda–Guerra
identities was used to solve the Potts version of the Sherrington–Kirkpatrick model
in [33], and in this paper we will use the same idea to solve the general mixed even
p-spin models with vector spins, including the sharpness of Talagrand’s bound
for multiple systems. Hopefully, the observation that Talagrand’s bounds are sharp
will serve as a further motivation to try to understand if they can be exploited to
study mixed p-spin models nonperturbatively and, for example, prove chaos in
temperature for all mixed p-spin models.

As we mentioned above, the main idea of the proof is identical to the setting
of the Potts spin glass [33], and the corresponding parts of the proof will be only
recalled briefly or sketched, especially, when they are slightly modified. The main
new technical difficulty comes from the fact that, for a general measure μ, we
can constrain the self-overlap as in (35) only up to some small ε > 0, while the
covariance structure of various cavity fields in the usual cavity computations must
be constrained more precisely in the limit, in order for spin glass techniques to
work. Once we start cavity computations in Section 3, we will explain these issues
in more detail to motivate the sections that follow. In fact, we will break the cavity
computations of the lower bound in three sections, Sections 3, 6 and 8, which
will alternate with necessary technical results proved in between. In Section 4,
we will construct a certain modification of the spin configurations designed to
make the main idea work smoothly in the present setting and, in Section 5, we
will reformulate the perturbation and synchronization mechanisms developed in
the setting of the Potts spin glass. Section 7 will be devoted to some standard large
deviation techniques for the functionals that appear in the infinite-volume limit.
We begin in Section 2 with the analogue of Guerra’s replica symmetry breaking
interpolation and the proof of the upper bound.

2. Upper bound via Guerra’s interpolation.

REMARK. Throughout the paper, we will denote by L any constant that does
not depend on any individual parameters, such as D ∈ D or N , but depends only
on the global parameters of the model, such as the dimension κ , the covariance
structure of the Hamiltonian and the size of the support of the measure μ. The
constant can change even within the same equation.
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The proof of the upper bound is, essentially, identical to Section 15.7 in [46].
By continuity, in the rest of the paper we will assume that the inequalities in (17)
are strict,

(37) x−1 = 0 < x0 < · · · < xr−1 < xr = 1.

Let (vα)α∈Nr be the weights of the Ruelle probability cascades [39] corresponding
to the sequence (37) (see, e.g., Section 2.3 in [29] for the definition). For α1, α2 ∈
Nr , we denote

(38) α1 ∧ α2 = min
{
0 ≤ j ≤ r | α1

1 = α2
1, . . . , α1

j = α2
j , α

1
j+1 �= α2

j+1
}
,

where α1 ∧ α2 = r if α1 = α2. We observed in (22) that the sequences ξ ′(γj ) and
θ(γj ) are nondecreasing in �κ for 0 ≤ j ≤ r . As a result, there exist Gaussian
processes

(39) Z(α) = (
Zk(α)

)
k≤κ and Y(α),

both indexed by α ∈Nr , with the covariances

Cov
(
Z

(
α1)

,Z
(
α2)) = ξ ′(γα1∧α2),

(40)
Cov

(
Y

(
α1)

, Y
(
α2)) = Sum

(
θ(γα1∧α2)

)
.

Let Zi(α) be independent copies of the process Z(α), also independent of Y(α).
For 0 ≤ t ≤ 1, consider an interpolating Hamiltonian defined on �N ×Nr by

(41) HN,t (σ,α) = √
tHN(σ) + √

1 − t
∑
i≤N

∑
k≤κ

σi(k)Zk
i (α) + √

t
√

NY(α).

Similarly to (33), we define the interpolating free energy constrained to the set
S ⊆ �N ,

(42) ϕS(t) = 1

N
E log

∑
α∈Nr

vα

∫
S

expHN,t (σ,α) dμ⊗N(σ).

Recall the definition of the set �ε(D) in (35). We begin with the following.

LEMMA 1. The derivative of the function ϕ(t) in (42) with S = �ε(D) satisfies
ϕ′(t) ≤ Lε.

PROOF. Let us denote by 〈·〉t the average with respect to the measure

Gt(dσ,α) ∼ vα expHN,t (σ,α) dμ⊗N(σ)

on �ε(D) ×Nr . Then, for 0 < t < 1,

ϕ′(t) = 1

N
E

〈
∂HN,t (σ,α)

∂t

〉
t

.
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From the definition of HN(σ) in (6) and (10),

(43) EHN

(
σ 1)

HN

(
σ 2) = N Sum

(
ξ(R1,2)

)
.

Similarly, from the definition (40),

(44) E
∑
i≤N

∑
k≤κ

σ 1
i (k)Zk

i

(
α1) ∑

i≤N

∑
k≤κ

σ 2
i (k)Zk

i

(
α2) = N Sum

(
R1,2 ◦ ξ ′(γα1∧α2)

)
.

Using these equations and recalling the covariance of Y(α) in (40),

1

N
E

∂HN,t (σ
1, α1)

∂t
HN,t

(
σ 2, α2)

= 1

2
Sum

(
ξ(R1,2) − R1,2 ◦ ξ ′(γα1∧α2) + θ(γα1∧α2)

)
.

By the usual Gaussian integration by parts (see, e.g., Lemma 1.1 in [29]),

ϕ′(t) = 1

2
E

〈
Sum

(
ξ(R1,1) − R1,1 ◦ ξ ′(γα1∧α1) + θ(γα1∧α1)

)〉
t

− 1

2
E

〈
Sum

(
ξ(R1,2) − R1,2 ◦ ξ ′(γα1∧α2) + θ(γα1∧α2)

)〉
t .

Since θk,k′(x) = xξ ′
k,k′(x)− ξk,k′(x) for all k, k′ ≤ κ , γα1∧α1 = γr = D and R1,1 =

R(σ 1, σ 1) ∈ Bε(D) for σ 1 ∈ �ε(D), the first term is bounded by Lε. We also
have ξk,k′(a) − aξ ′

k,k′(b) + θk,k′(b) ≥ 0 by convexity of ξk,k′ , so the second term is
negative and this finishes the proof. �

LEMMA 2. For any λ = (λk,k′)1≤k≤k′≤κ ∈ Rκ(κ+1)/2,

(45) FN

(
�ε(D)

) ≤ Lε + ε‖λ‖1 +P(λ,D, r, x, γ ).

PROOF. At the beginning of the interpolation at t = 1,

(46) ϕ�ε(D)(1) = FN

(
�ε(D)

) + 1

N
E log

∑
α∈Nr

vα exp
√

NY(α).

The standard properties of the Ruelle probability cascades (see Section 2.3 and the
proof of Lemma 3.1 in [29]) together with the covariance structure (40) imply that

(47)
1

N
E log

∑
α∈Nr

vα exp
√

NY(α) = 1

2

∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

)
.

Next, let us consider

ϕ�ε(D)(0) = 1

N
E log

∑
α∈Nr

vα

∫
�ε(D)

exp
(∑

i≤N

∑
k≤κ

σi(k)Zk
i (α)

)
dμ⊗N(σ).
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For any σ ∈ �ε(D) and λ ∈ Rκ(κ+1)/2,

− ∑
k≤k′

λk,k′Dk,k′ + 1

N

∑
i≤N

∑
k≤k′

λk,k′σi(k)σi

(
k′) ≥ −ε‖λ‖1

and, therefore,

ϕ�ε(D)(0) ≤ ε‖λ‖1 − ∑
k≤k′

λk,k′Dk,k′

+ 1

N
E log

∑
α∈Nr

vα

∫
�N

exp
∑
i≤N

(∑
k≤κ

σi(k)Zk
i (α)

+ ∑
k≤k′

λk,k′σi(k)σi

(
k′))dμ⊗N(σ).

If we introduce the notation

Xα
i =

∫
�

exp
(∑

k≤κ

σi(k)Zk
i (α) + ∑

k≤k′
λk,k′σi(k)σi

(
k′))dμ(σi)

then this upper bound can be rewritten as

ϕ�ε(D)(0) ≤ ε‖λ‖1 − ∑
k≤k′

λk,k′Dk,k′ + 1

N
E log

∑
α∈Nr

vα

∏
i≤N

Xα
i .

Standard properties of the Ruelle probability cascades (see Section 2.3 in [29])
imply that

1

N
E log

∑
α∈Nr

vα

∏
i≤N

Xα
i = E log

∑
α∈Nr

vαXα
1 = X0,

where X0 = �(λ,D, r, x, γ ) was defined in (26) and, therefore,

(48) ϕ�ε(D)(0) ≤ ε‖λ‖1 − ∑
k≤k′

λk,k′Dk,k′ + �(λ,D, r, x, γ ).

Together with (46), (47) and Lemma 1 this implies that FN(�ε(D)) is bounded by

Lε + ε‖λ‖1 − ∑
k≤k′

λk,k′Dk,k′ + �(λ,D, r, x, γ )

− 1

2

∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

)
,

which finishes the proof. �

We are now ready to prove the upper bound in Theorem 1.
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LEMMA 3. For any κ ≥ 1, the free energy satisfies

(49) lim sup
N→∞

FN ≤ sup
D

inf
λ,r,x,γ

P(λ,D, r, x, γ ).

PROOF. Fix δ > 0 and, for D ∈ D, let

Pδ(D) = max
(
−1

δ
, δ + inf

λ,r,x,γ
P(λ,D, r, x, γ )

)
.

For each D ∈ D, one can find λD, rD, xD, γD such that P(λD,D, rD, xD, γD) ≤
Pδ(D). If L is a constant in (45), let εD > 0 be such that εD(L + ‖λD‖1) ≤ δ.
Lemma 2 then implies that

FN

(
�εD

(D)
) ≤ δ +Pδ(D).

Since the collection of sets BεD
(D) for D ∈ D form an open cover of D and D is

compact, we can find a finite subcover indexed by some D1, . . . ,Dn ∈ D. Consider
the random free energy with spin configurations constrained to the set S,

F̃N(S) = 1

N
log

∫
S

expHN(σ)dμ⊗N(σ).

Since the union of �εDi
(Di) for i ≤ n covers �N ,

F̃N

(
�N ) ≤ logn

N
+ max

i≤n
F̃N

(
�εDi

(Di)
)
.

By the Gaussian concentration inequalities, F̃N(S) deviates from its expectation
FN(S) by more than 1/

√
N with exponentially small probability of the order

e−N/L, where the constant L does not depend on the set S. With the above in-
equalities, this implies that

FN ≤ 2√
N

+ logn

N
+ max

i≤n
FN

(
�εDi

(Di)
) ≤ 2√

N
+ logn

N
+ δ + max

i≤n
Pδ(Di).

Therefore,

lim sup
N→∞

FN ≤ δ + sup
D

Pδ(D)

and letting δ ↓ 0 finishes the proof. �

3. Cavity computation, part 1. The proof of the lower bound in Theorem 2
will take up the rest of the paper, and we will start with a standard Aizenman–
Sims–Starr cavity computation [2] in the form that appeared, for example, in [7,
21, 33]. Let us make the dependence of �ε(D) in (35) on N explicit, �N

ε (D), and
denote

(50) ZN(ε,D) =
∫
�N

ε (D)
expHN(σ)dμ⊗N(σ),



FREE ENERGY IN THE MIXED p-SPIN MODELS WITH VECTOR SPINS 877

so that FN(�N
ε (D)) = N−1E logZN(ε,D). We start with an obvious inequality,

(51) lim inf
N→∞ FN

(
�N

ε (D)
) ≥ 1

M
lim inf
N→∞

(
E logZN+M(ε,D) −E logZN(ε,D)

)
,

where M on the right-hand side is fixed. Let us write spin configurations in �N+M

as ρ = (σ, τ ) for σ ∈ �N and τ ∈ �M . Using that

R(ρ,ρ) = N

N + M
R(σ,σ ) + M

N + M
R(τ, τ ),

we get that
{
ρ | R(ρ,ρ) ∈ Bε(D)

} ⊇ {
σ | R(σ,σ ) ∈ Bε(D)

} × {
τ | R(τ, τ ) ∈ Bε(D)

}

and, therefore,

ZN+M(ε,D) ≥
∫
�N

ε (D)

∫
�M

ε (D)
expHN+M(σ, τ ) dμ⊗M(τ) dμ⊗N(σ).

This allows to decrease the lower bound in (51) to

lim inf
N→∞ FN

(
�N

ε (D)
)

≥ lim inf
N→∞

1

M

(
E log

∫
�N

ε (D)

∫
�M

ε (D)
expHN+M(σ, τ ) dμ⊗M(τ) dμ⊗N(σ)(52)

−E log
∫
�N

ε (D)
expHN(σ)dμ⊗N(σ)

)
.

Then one can do the usual calculation as in the Aizenman–Sim–Starr representa-
tion [2] (see, e.g., Section 1.3 in [29]), separating the Hamiltonian

(53) HN+M(σ, τ ) = H ′
N(σ) + ∑

i≤M

∑
k≤κ

τi(k)Zk
i (σ ) + r(τ )

into three types of terms—that depend only on σ , the ones where only one spin
τi appears, and the ones where more than two coordinates of τ appear. Of course,
Zk

i (σ ) here depends only on the kth coordinate σ(k) of the configuration σ , but the
dependence on k is already reflected in the upper index [this includes the depen-
dence on the parameters (βp(k))p≥2 in (5)]. The term r(τ ) can be omitted because
it is of a small order as N → ∞. The Gaussian process H ′

N(σ) is defined just like
HN(σ), only with scalings in (4) by the powers of N +M instead of N . As a result,
one can decompose (in distribution),

(54) HN(σ)
d= H ′

N(σ) + √
M

∑
k≤κ

Y k(σ ),
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for some Gaussian processes Y k(σ ) independent of H ′
N(σ). One can easily check

(see, e.g., Section 3.5 in [29] for a similar computation) that, for k, k′ ≤ κ ,

EZk
i

(
σ�)Zk′

i

(
σ�′) = ξ ′

k,k′
(
R

k,k′
�,�′

) +O
(

M

N

)
,(55)

EY k(σ�)Y k′(
σ�′) = θk,k′

(
R

k,k′
�,�′

) +O
(

M

N

)
.(56)

If we define Y(σ) = ∑
k≤κ Y k(σ ), then

(57) EY
(
σ�)Y (

σ�′) = Sum
(
θ(R�,�′)

) +O
(

M

N

)
.

One can redefine the processes Zk
i and Y k to have the covariances without the error

terms O(M/N), since this does not affect the right-hand side of (52), which we
assume from now on.

Consider the Gibbs measure on �N
ε (D) corresponding to the Hamiltonian

H ′
N(σ) in (53),

dGN(σ) = expH ′
N(σ)dμ⊗N(σ)

Z′
N(ε,D)

,

(58)
where Z′

N(ε,D) =
∫
�N

ε (D)
expH ′

N(σ)dμ⊗N(σ)

and let us denote by 〈·〉N the average with respect to GN . Using representations
(53) and (54) [omitting the negligible term r(τ )] and dividing inside both loga-
rithms by Z′

N(ε,D), we can rewrite the quantity on the right-hand side of (52)
as

1

M

(
E log

〈∫
�M

ε (D)
exp

( ∑
i≤M

∑
k≤κ

τi(k)Zk
i (σ )

)
dμ⊗M(τ)

〉
N

(59)

−E log
〈
exp

√
MY(σ)

〉
N

)
.

Both terms here are continuous functionals of the distribution of the overlap ar-
ray (R�,�′)�,�′≥1 under the measure E(GN)⊗∞ (see, e.g., the proof of Theorem
1.3 in [29]), so in order to understand the limit N → ∞, we need to understand
the behaviour of this distribution. This will be achieved via the main idea used
to solve the Potts spin glass in [33], namely, a special perturbation of the Hamil-
tonian H ′

N(σ) which will ensure the validity of the overlap-matrix version of the
Ghirlanda–Guerra identities.

However, there is an issue we have to deal with that did not arise in [33].
Namely, the diagonal overlap blocks R�,� = R(σ�, σ �) for replicas σ� sampled
from the measure GN are now not fixed, since we only constrain them to be in
the ε-neighbourhood Bε(D) of D, and they can not satisfy the Ghirlanda–Guerra
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identities that are central to the whole argument. We will resolve this issue by map-
ping configurations σ ∈ �N

ε (D) into configurations σ̃ such that R(σ̃ , σ̃ ) is fixed.
We need to do this in a way that controls global distortion and does not affect the
overlaps R(σ�, σ �′

) much. Once we see how this can be done, the processes Zk
i (σ )

and Y(σ) in (59) will be replaced by Zk
i (σ̃ ) and Y(σ̃ ) with the covariance depend-

ing on the overlaps R(σ̃ �, σ̃ �′
). In particular, since the Ghirlanda–Guerra identities

is a property of the perturbation of the Hamiltonian, this perturbation will need to
be directly defined in terms of σ̃ .

This introduces another issue we have to be aware of when we define the map-
ping σ → σ̃ . As in the Potts spin glass [33], in the above cavity computation,
the Hamiltonian HN+M(σ, τ ) will have a perturbation term sN+MhN+M(ρ̃) with
ρ = (σ, τ ), while the Hamiltonian HN(σ) will come with the perturbation term
sNhN(σ̃ ) and, as usual, in the first term in (51) we will replace sN+MhN+M(ρ̃) by
sNhN(σ̃ ). Since we will take sN = Nγ for any 1/4 < γ < 1/2, which is not small,
and the covariance of hN will be a continuous function of the overlap R(σ̃ �, σ̃ �′

),
in order to make this work, we will need the difference between R(σ̃ �, σ̃ �′

) and
R(ρ̃�, ρ̃�′

) to be of the order 1/N . Since the difference between R(σ�, σ �′
) and

R(ρ�, ρ�′
) is of order 1/N , this again amounts to controlling the distortion of the

map σ → σ̃ . We will come back to the cavity computation after we resolve these
issues and recall the matrix Ghirlanda–Guerra identities from [33].

4. Modification of spin configurations. Given a matrix D ∈ D ⊆ �κ , let

(60) D = Q�QT , � = diag(λ1, . . . , λκ),

be its eigendecomposition. Without loss of generality, suppose that the eigenvalues
are arranged in the decreasing order, λ1 ≥ · · · ≥ λκ , and, given ε > 0, let 0 ≤ m ≤ κ

be such that λm ≥ √
ε and λm+1 <

√
ε. Let us define

(61) Dε = Q�εQ
T , � = diag(λ1, . . . , λm,0, . . . ,0).

Given any σ ∈ �ε(D), which means that self-overlap R(σ,σ ) ∈ Bε(D), we will
construct a κ × κ matrix A such that the self-overlap of Aσ = (Aσi)i≤N is equal
to Dε ,

(62) R(Aσ,Aσ) = 1

N

∑
i≤N

(Aσi)(Aσi)
T = AR(σ,σ )AT = Dε,

and such that A has small distortion in the sense explained below. The reason we
removed the eigenvalues smaller than

√
ε in D is precisely to ensure that A has

small distortion. These small eigenvalues will be reintroduced at the very end of
the computation of the lower bound, using continuity properties of the functionals
involved. The matrix A will depend on σ only through the self-overlap R(σ,σ ),
and we will denote A by

Aσ or A
(
R(σ,σ )

)
when we need to make this dependence explicit.
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First of all, small distortion means that the overlaps of σ with other config-
urations in �N should not change much when σ is replaced by σ̃ = (Aσσi)i≤N .
A convenient way to control the difference is as follows. If ρ ∈ �N and v = σ̃ −σ ,
then ∥∥∥∥ 1

N

∑
i≤N

σ̃iρ
T
i − 1

N

∑
i≤N

σiρ
T
i

∥∥∥∥
HS

=
∥∥∥∥ 1

N

∑
i≤N

viρ
T
i

∥∥∥∥
HS

≤ 1

N

∑
i≤N

∥∥viρ
T
i

∥∥
HS

(63)

= 1

N

∑
i≤N

‖vi‖‖ρi‖ ≤ L

N

∑
i≤N

‖vi‖

≤ L

(
1

N

∑
i≤N

‖vi‖2
)1/2

= L

(
tr

(
1

N

∑
i≤N

viv
T
i

))1/2
.

Since v = σ̃ − σ = (Aσ − I )σ ,

(64)
1

N

∑
i≤N

viv
T
i = (Aσ − I )R(σ,σ )(Aσ − I )T ,

and we can control the difference of the overlaps via the trace of this matrix. An-
other piece of information about the map Aσ that we will need is motivated by
the following question. Suppose that we have two pairs of configurations σ 1, σ 2

and ρ1, ρ2 that are close to each other in the sense that their overlaps R(σ 1, σ 2)

and R(ρ1, ρ2) and self-overlaps R(σ j , σ j ) and R(ρj , ρj ) are close to each other.
Then, how close will the overlaps

R
(
Aσ 1σ

1,Aσ 2σ
2) = Aσ 1R

(
σ 1, σ 2)

AT
σ 2 and

(65)
R

(
Aρ1ρ

1,Aρ2ρ
2) = Aρ1R

(
ρ1, ρ2)

AT
ρ2

be after we apply the corresponding transformations to all the configurations? For
this, we will need to control the sup-norms ‖Aσ 1 −Aσ 2‖∞, which will be bounded
in terms of the sup-norm ‖R(σ 1, σ 1) − R(σ 2, σ 2)‖∞.

LEMMA 4. For each R ∈ Bε(D) there exists a matrix A = A(R) ∈ �κ such
that ARAT = Dε ,

(66) tr
(
(A − I )R(A − I )T

) ≤ L
√

ε

and, for any R1,R2 ∈ Bε(D),

(67)
∥∥A(R1) − A(R2)

∥∥∞ ≤ L

ε
‖R1 − R2‖∞.
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PROOF. Recall the decomposition in (60). Let us change the coordinate sys-
tem by applying the transformation QT RQ to all matrices, which does not change
the trace and changes the sup norm ‖R‖∞ only up to a constant factor. In partic-
ular, QT RQ ∈ BLε(�). Once we define A(QT RQ), we can go back and define
A(R) = QA(QT RQ)QT . As a result, from now on we assume that D = � and
R ∈ Bε(�).

Let us recall (61) and let us denote �m = diag(λ1, . . . , λm). If Q = (Rk,k′)k,k′≤m

is the matrix consisting of the first m rows and columns of R, then Q ∈ Bε(�m).
Suppose we can find m × m matrix B = B(Q) ∈ �m such that BQBT = �m,

(68) tr
(
(B − I )Q(B − I )T

) ≤ L
√

ε

and, for any Q1,Q2 ∈ Bε(�m),

(69)
∥∥B(Q1) − B(Q2)

∥∥∞ ≤ L

ε
‖Q1 − Q2‖∞.

Then, we will define A(R) by extending B(Q) by all zeros in rows and columns
from m + 1 to κ . Then (67) will, obviously, follow from (69). As for (66), if we
denote by T = (Rk,k′)k,k′≥m+1 the matrix consisting of the last κ − m rows and
columns of R, then

tr
(
(A − I )R(A − I )T

) = tr
(
(B − I )Q(B − I )T

) + tr(T ).

However, since R ∈ Bε(�), we have

tr(T ) ≤ (κ − m)ε + λm+1 + · · · + λκ ≤ κ(ε + √
ε),

so it remains to find B = B(Q).
Let us consider the matrix Q̃ = �

−1/2
m Q�

−1/2
m . Since Q ∈ Bε(�m) and �m is

diagonal with all elements greater or equal than
√

ε, we have ‖Q̃− I‖∞ <
√

ε. By
Gershgorin’s theorem, all eigenvalues of Q̃ are within m

√
ε from 1. In particular,

it is invertible and we can define

(70) B = B(Q) = �1/2
m Q̃−1/2�−1/2

m .

Using that Q = �
1/2
m Q̃�

1/2
m , it is easy to check that BQBT = �m and

(B − I )Q(B − I )T = �1/2
m

(
I − Q̃1/2)2

�1/2
m .

Since the eigenvalues of Q̃ are within L
√

ε from 1, eigenvalues of Q̃1/2 are also
within L

√
ε from 1 and, therefore, ‖I − Q̃1/2‖∞ ≤ L

√
ε. This implies that

tr
(
(B − I )Q(B − I )T

) ≤ L
∥∥I − Q̃1/2∥∥2

∞ ≤ Lε.

Finally, since the elements of �
−1/2
m are bounded by ε−1/4,

∥∥B(Q1) − B(Q2)
∥∥∞ ≤ Lε−1/4∥∥Q̃−1/2

1 − Q̃
−1/2
2

∥∥∞.
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Since the eigenvalues of Q̃1 and Q̃2 are within L
√

ε from 1, we can take a circle
of radius 1/2 around 1 on the complex plane, C = {z ∈ C | |z − 1| = 1/2}, and
represent

Q̃
−1/2
1 − Q̃

−1/2
2 = 1

2πi

∫
C

z−1/2(z − Q̃1)
−1(Q̃2 − Q̃1)(z − Q̃2)

−1 dz,

which implies that
∥∥Q̃−1/2

1 − Q̃
−1/2
2

∥∥∞ ≤ L‖Q̃2 − Q̃1‖∞ ≤ Lε−1/2‖Q2 − Q1‖∞.

Combining the inequalities yields (69) and finishes the proof. �

5. Perturbation and its consequences. We will now define a direct analogue
of the perturbation in the setting of the Potts spin glass [33] that will force the
overlaps to satisfy the matrix version of the Ghirlanda–Guerra identities and all
their consequences. We will first define the perturbation formally for any spin con-
figurations, but will use it later for modifications of spin configurations defined in
the previous section. For p ≥ 1, we will use the following notation,

e = (i1, . . . , ip) ∈ {1, . . . ,N}p, σe = (σi1, . . . , σip)

for a given σ ∈ �N . Given λ ∈Rκ , we denote

Sλ(σe) = ∑
k≤κ

λkσi1(k) · · ·σip(k)

and, given n ≥ 0 and I = (e1, . . . , en) ∈ ({1, . . . ,N}p)n, we let

Sλ(σI ) = Sλ(σe1) · · ·Sλ(σen).

For integer m ≥ 1 and n1, . . . , nm ≥ 1, let Ij = (e1, . . . , enj
) ∈ ({1, . . . ,N}p)nj

and λj ∈ Rκ for 1 ≤ j ≤ m and consider the Hamiltonian

(71) hθ(σ ) = 1

Np(n1+···+nm)/2

∑
I1,...,Im

gI1,...,ImSλ1(σI1) · · ·Sλm(σIm),

where gI1,...,Im are standard Gaussian random variables independent for different
choices of the indices. We denote the list of all parameters of the Hamiltonian by

(72) θ = (
p,m,n1, . . . , nm,λ1, . . . , λm)

.

If we recall the notation for the matrix of overlaps R�,�′ in (12), then a straightfor-
ward calculation as in [33] shows that the covariance of the above Hamiltonian is
given by

(73) Cθ
�,�′ = Cov

(
hθ

(
σ�), hθ

(
σ�′)) = ∏

j≤m

(
R

◦p
�,�′λj , λj )nj
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for any configurations of spins σ�, σ �′
. Since we assume that the spins are

bounded, |σi(k)| ≤ c, the overlaps will be bounded by c2 and, for λ ∈ [−1,1]κ ,
we can control the quadratic form above by |(R◦p

�,�′λj , λj )| ≤ κ2c2p . If we denote
bp = κcp , then

(74) |Cθ
�,�′ | ≤ b2(n1+···+nm)

p .

As in [33], let � be a collection of all θ of the type (72) with p ≥ 1, m ≥ 1,
n1, . . . , nm ≥ 1, and λ1, . . . , λm taking values in ([−1,1] ∩ Q)κ with all rational
coordinates. Let us consider a one-to-one function j0 : ([−1,1]∩Q)κ →N and let

j (θ) = p + n1 + · · · + nm + j0(λ1) + · · · + j0(λm) + 22m.

Let (uθ )θ∈� be i.i.d. random variables uniform on the interval [1,2] and define a
Hamiltonian

(75) hN(σ) = ∑
θ∈�

2−j (θ)b−(n1+···+nm)
p uθhθ (σ ).

Conditionally on u = (uθ )θ∈�, this is a Gaussian process with the covariance

(76) Cov
(
hN

(
σ�), hN

(
σ�′)) = ∑

θ∈�

2−2j (θ)b−2(n1+···+nm)
p u2

θ

∏
j≤m

(
R

◦p
�,�′λj , λj )nj .

In particular, the bound in (74) and our choice of j (θ) imply that the variance is
bounded by 1.

From now on, for each spin configuration σ ∈ �N
ε (D), let σ̃ denote the mod-

ified configuration (Aσσi)i≤N with the matrix Aσ = A(R(σ,σ )) constructed in
Lemma 4. Let us fix any 1/4 < γ < 1/2, consider the sequence sN = Nγ , and
redefine the partition function in (50) by

(77) ZN(ε,D) =
∫
�N

ε (D)
exp

(
HN(σ) + sNhN(σ̃ )

)
dμ⊗N(σ),

adding to the Hamiltonian the perturbation term sNhN(σ̃ ) depending on modified
configurations. Because the variance of hN is of order one and limN→∞ N−1s2

N =
0, the free energy

FN

(
�N

ε (D)
) = 1

N
E logZN(ε,D)

will not be affected by this perturbation in the limit. Notice that the expectation
now also includes the average with respect to the uniform random variables (uθ ).
One can now repeat the Aizenman–Sims–Starr calculation that leads to the rep-
resentation (52) with the right-hand side that can be rewritten as in (59), with the
following minor modifications.

First of all, the Hamiltonian H ′
N(σ) in (53) will be replaced by the perturbed

Hamiltonian

(78) H
pert
N (σ) = H ′

N(σ) + sNhN(σ̃ ),
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and the Gibbs measure GN on �N
ε (D) in (58) will be redefined by

dGN(σ) = expH
pert
N (σ)dμ⊗N(σ)

Z
pert
N (ε,D)

,

(79)

where Z
pert
N (ε,D) =

∫
�N

ε (D)
expH

pert
N (σ)dμ⊗N(σ).

However, in the middle of this calculation the first term on the right-hand side of
(52) will include the perturbation term sN+MhN+M(ρ̃) with ρ̃ = (Aρρi)i≤N+M

with the matrix Aρ = A(R(ρ,ρ)) constructed in Lemma 4. At that point, one
would like to replace it by sNhN(σ̃ ) via the interpolation

√
tsN+MhN+M(ρ̃) + √

1 − tsNhN(σ̃ )

for t ∈ [0,1], and one needs to check that this introduces an error that vanishes
as N → ∞. If, conditionally on (uθ ), we think of the right-hand side of (76) as a
function of the overlap matrix R�,�′ , denote it by f (R�,�′) and compute the deriva-
tive of the first term on the right-hand side of (52) in the parameter t in the above
interpolation using Gaussian integration by parts, we will see that the order of the
derivative will be determined by the quantities of the type

(N + M)2γ f
(
R

(
ρ̃1, ρ̃2)) − N2γ f

(
R

(
σ̃ 1, σ̃ 2))

(see, e.g., Section 3.5 in [29] for details). Let us recall that we write the configura-
tion ρ ∈ �N+M as (σ, τ ) for σ ∈ �N and τ ∈ �M , and

R(ρ,ρ) = N

N + M
R(σ,σ ) + M

N + M
R(τ, τ ).

For a fixed M , this implies that |R(ρ,ρ)−R(σ,σ )| = O(N−1) so, from the equa-
tion (65) and Lemma 4, we see that |R(ρ̃1, ρ̃2) − R(σ̃ 1, σ̃ 2)| = O((Nε)−1). Since
(N + M)2γ − N2γ is of the order N−(1−2γ ) and the derivative of f is bounded on
compacts uniformly over (uθ ), the order of the derivative in the above interpola-
tion will be N−(1−2γ )/ε and the error introduced by the interpolation will vanish
in the limit N → ∞.

As in the Potts spin glass model in [33], the perturbation term sNhN(σ̃ ) is in-
troduced to ensure the validity of some overlap-matrix version of the classical
Ghirlanda–Guerra identities [17] for the Gibbs measure (79). Given replicas (σ �)

from the Gibbs measure GN on �N
ε (D), let us denote by

(80) R̃�,�′ = R
(
σ̃ �, σ̃ �′)

and R̃n = (R̃�,�′)�,�′≤n

for any n ≥ 2. Similarly to (73), let us define

(81) C̃θ
�,�′ = Cov

(
hθ

(
σ̃ �), hθ

(
σ̃ �′)) = ∏

j≤m

(
R̃

◦p
�,�′λj , λj )nj .
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Consider an arbitrary bounded measurable function f = f (R̃n) and, for θ ∈ �, let

(82) Δ(f,n, θ) =
∣∣∣∣∣E

〈
f C̃θ

1,n+1
〉 − 1

n
E〈f 〉E〈

C̃θ
1,2

〉 − 1

n

n∑
�=2

E
〈
f C̃θ

1,�

〉∣∣∣∣∣,
where E denotes the expectation conditionally on the i.i.d. uniform sequence u =
(uθ )θ∈�. If we denote by Eu the expectation with respect to u, then the following
holds.

LEMMA 5. For any n ≥ 2 and any bounded measurable function f = f (R̃n),
for all θ ∈ �,

(83) lim
N→∞EuΔ(f,n, θ) = 0.

PROOF. The proof is identical to proof of Theorem 3.2 in [29], but we should
emphasize one more time why we defined the perturbation Hamiltonian in terms
of modified configurations σ̃ . The reason is because the proof of the equation (83)
follows from some Gaussian integration by parts computation involving one term
hθ(σ̃ ) in the perturbation (75), but this computation only works if the covariance
C̃θ

�,� corresponding to the same configuration σ̃ � is constant independent of the
configuration. Otherwise, some additional terms will appear. By the construction
of the modified configurations in Lemma 4,

C̃θ
�,� = ∏

j≤m

(
R̃

◦p
�,�λ

j , λj )nj = ∏
j≤m

(
D◦p

ε λj , λj )nj

are, indeed, independent of the configuration. Without spin modification, the self-
overlap R(σ�, σ �) would be nonconstant, since it is only constrained to be in the
ε-neighbourhood of D ∈ D. With the small modification of spins that fixes the
self-overlap to be equal to Dε , the proof of the Ghirlanda–Guerra identities goes
through without any changes. �

Let us now summarize main consequences of this result obtained in [33]. Using
(83), one can choose a nonrandom sequence uN = (uN

θ )θ∈� ∈ [1,2]� such that

(84) lim
N→∞Δ(f,n, θ) = 0 for all θ ∈ �

for the Gibbs measure GN with the parameters u in the perturbation (75) equal
to uN rather than random. Consider any such sequence uN and consider any sub-
sequence (Nk)k≥1 along which the array (R̃�,�′)�,�′≥1 of overlap matrices in (80)
converges in distribution under the measure EG⊗∞

N . Let us slightly abuse notation
and denote the limiting array again by

(85)

R�,�′ = (
R

k,k′
�,�′

)
k,k′≤κ ,

Rn = (R�,�′)�,�′≤n,

Cθ
�,�′ =

∏
j≤m

(
R

◦p
�,�′λj , λj )nj .
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Then the equations (82) and (84) imply that

(86) Ef
(
Rn)

Cθ
1,n+1 = 1

n
Ef

(
Rn)

ECθ
1,2 + 1

n

n∑
�=2

Ef
(
Rn)

Cθ
1,�

for all θ ∈ �. Since Cθ
�,�′ is a continuous function of λj ∈ [−1,1]κ for j ≤ m, (86)

holds a posteriori for all values of λj , not only with rational coordinates.
For any p ≥ 1, λ1, . . . , λm ∈ [−1,1]κ and a bounded measurable function

ϕ : Rm →R, let

(87) Q�,�′ = ϕ
((

R
◦p
�,�′λ1, λ1)

, . . . ,
(
R

◦p
�,�′λm,λm))

.

As in Theorem 2 in [33], the next result immediately follows from (86).

THEOREM 3. For any n ≥ 2 and any bounded measurable function f =
f (Rn),

(88) Ef
(
Rn)

Q1,n+1 = 1

n
Ef

(
Rn)

EQ1,2 + 1

n

n∑
�=2

Ef
(
Rn)

Q1,�.

In addition to well-known standard consequences of the classical Ghirlanda–
Guerra identities, which are contained in (88), the main consequence about the
structure of the limiting overlap arrays was the following result in Theorem 3 in
[33] about the synchronization of the blocks of overlaps.

THEOREM 4. If the overlap array satisfies (88) for all choices of parameters
then

(89) R�,�′ = �
(
tr(R�,�′)

)
a.s.

for some function � : R+ → �κ , which is nondecreasing in �κ , �(x′)−�(x) ∈ �κ

for all x ≤ x′, and Lipschitz continuous, ‖�(x′) − �(x)‖1 ≤ L|x′ − x|.

We now return to the cavity computation and explain the next steps.

6. Cavity computation, part 2. If we denote the quantity in (59) by

AN,M = 1

M
E log

〈∫
�M

ε (D)
exp

( ∑
i≤M

∑
k≤κ

τi(k)Zk
i (σ )

)
dμ⊗M(τ)

〉
N

(90)

− 1

M
E log

〈
exp

√
MY(σ)

〉
N

then in the previous section, we explained that the lower bound

lim inf
N→∞ FN

(
�N

ε (D)
) ≥ lim inf

N→∞ AN,M(91)
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holds for the Gibbs measure GN in (79) corresponding to the perturbed Hamil-
tonian. Recall that in this case the expectation E in (90) includes the average Eu

in the uniform random variables u = (uθ )θ∈� in the definition of the perturbation
Hamiltonian (75). By Lemma 3.3 in [29], one can choose a nonrandom sequence
uN = (uN

θ )θ∈� changing with N such that both (84) and (91) hold for the Gibbs
measure GN with the parameters u in the perturbation Hamiltonian (75) equal to
uN rather than random.

Next, similarly to (90), let us define

ÃN,M = 1

M
E log

〈∫
�M

ε (D)
exp

( ∑
i≤M

∑
k≤κ

τi(k)Zk
i (σ̃ )

)
dμ⊗M(τ)

〉
N

(92)

− 1

M
E log

〈
exp

√
MY(σ̃ )

〉
N,

where we replaced the configuration σ which indexes the processes Zk
i and Y by

the modified configuration σ̃ defined in Lemma 4. As in (55), (56) and (57), up to
smaller order terms which we can omit, the covariance of these processes indexed
by modified configurations is given by

EZk
i

(
σ̃ �)Zk′

i

(
σ̃ �′) = ξ ′

k,k′
(
R̃

k,k′
�,�′

)
,(93)

EY
(
σ̃ �)Y (

σ̃ �′) = Sum
(
θ(R̃�,�′)

)
.(94)

By (63) and (66), ‖R̃�,�′ −R�,�′‖∞ ≤ Lε1/4 so the covariance of these processes is
affected only slightly by this substitution. In particular, using the usual Gaussian
interpolation of the form

√
tZk

i (σ ) + √
1 − tZk

i (σ̃ ),
√

tY k(σ ) + √
1 − tY k(σ̃ ),

one can show that |ÃN,M − AN,M | ≤ Lε1/4 and, therefore,

lim inf
N→∞ FN

(
�N

ε (D)
) ≥ lim inf

N→∞ ÃN,M − Lε1/4.(95)

Let us take a subsequence along which the lower limit on the right-hand side is
achieved and then pass to another subsequence along which the distribution of the
array (R̃�,�′)�,�′≥1 under EG⊗∞

N converges. Let us denote the array with the limit-
ing distribution by (RM

�,�′)�,�′≥1, because the limit was taken for a fixed M and may
depend on M . Notice that, because of the definition of the modified configurations
σ̃ , the diagonal overlap blocks are fixed,

(96) R̃�,�′ = R̃M
�,�′ = Dε.

As in the case of the Potts spin glass in [33], we now recall the well-known fact
(see, e.g., the proof of Theorem 1.3 in [29]) that both terms in (92) are continu-
ous functionals of the distribution of the array (R̃�,�′)�,�′≥1 under EG⊗∞

N , so to
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describe the limit we need to understand how this functional looks like for the lim-
iting array (RM

�,�′)�,�′≥1. We showed that, due to the perturbation of the Hamilto-
nian, this array satisfies the generalized Ghirlanda–Guerra identities in Theorem 3
and the synchronization property in Theorem 4. Moreover, by Theorem 3, the ar-
ray (tr(RM

�,�′))�,�′≥1 itself satisfies the classical Ghirlanda–Guerra identities and,
by the results in Chapter 2 of [29], it can be generated by the Ruelle probability
cascades. This means that the proof can be finished exactly as in [33] if we can
only show the Lipschitz continuity and decoupling properties of the analogues of
the functionals in (92) for the Ruelle probability cascades, which we will do next.

7. Functionals of the Ruelle probability cascades. Let us consider a discrete
path π ∈ 
� defined as in (19) in terms of the sequences

(97) x−1 = 0 < x0 < · · · < xr−1 < xr = 1

and a monotone sequence of Gram matrices in �κ ,

(98) 0 = γ0 ≤ γ1 ≤ · · · ≤ γr−1 ≤ γr = �,

only now the final constraint is given by some arbitrary � ∈ �κ . Let us consider
the Gaussian processes Z(α) and Y(α) defined as in Section 2 with the covariances

Cov
(
Z

(
α1)

,Z
(
α2)) = ξ ′(γα1∧α2),

(99)
Cov

(
Y

(
α1)

, Y
(
α2)) = Sum

(
θ(γα1∧α2)

)
,

and let Zi(α) be independent copies of Z(α) for i ≥ 1. The path π , including the
constraint � in (98), will be fixed for the rest of this section so we will not write
the dependence on it explicitly. Let us consider the analogues of the functionals in
(90),

f 1
M

(
Bε(D)

)
(100)

= 1

M
E log

∑
α∈Nr

vα

∫
�M

ε (D)
exp

( ∑
i≤M

∑
k≤κ

τi(k)Zk
i (α)

)
dμ⊗M(τ),

f 2
M = 1

M
E log

∑
α∈Nr

vα exp
√

MY(α).(101)

Later we will replace the final constraints � in (98) by Dε defined in (61), but in
this section we will let � be arbitrary and unrelated to the constraint on the config-
urations τ ∈ �M

ε (D). The functionals (100) and (101) are precisely the functionals
that appeared at the end of Guerra’s replica symmetry breaking interpolation in
Section 2 [only now we write M instead of N , τ instead of σ , and � instead of D

in (98)]. We have seen in the proof of Lemma 2 that

(102) f 2
M = 1

2

∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

)
.
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If we recall the functional �(λ) = �(λ,�,π) defined in (26) (with D now re-
placed by �), in the proof of Lemma 2 we appealed to the properties of the Ruelle
probability cascades to claim that

�(λ) = E log
∑

α∈Nr

vα

∫
�

exp
(∑

k≤κ

τ1(k)Zk
i (α)

(103)

+ ∑
k≤k′

λk,k′τ1(k)τ1
(
k′))dμ(τ1).

We also showed there that, for any λ = (λk,k′)1≤k≤k′≤κ ∈ Rκ(κ+1)/2,

f 1
M

(
Bε(D)

) ≤ ε‖λ‖1 − ∑
k≤k′

λk,k′Dk,k′ + �(λ).

We will now show that, if we omit ε‖λ‖1 and minimize over λ, this bound becomes
asymptotically sharp. For D ∈ D, let us denote

(104) �∗(D) := inf
λ

(
− ∑

k≤k′
λk,k′Dk,k′ + �(λ)

)
.

Next, the lemma will follow by an adaptation of a standard smoothing technique
(see, e.g., Section 2.2.2 in [13]), combined with some straightforward spin glass
calculations.

LEMMA 6. For any ε > 0 and D ∈D,

(105) lim inf
M→∞ f 1

M

(
Bε(D)

) ≥ �∗(D).

Let gi = (gi(k, k′))k,k′≤κ be i.i.d. symmetric κ × κ matrices with indepen-
dent Gaussian entries with variance δ > 0 except for the symmetry constraint
gi(k, k′) = gi(k

′, k), and let g = (g1, . . . , gM). We will denote the distribution of
gi on Rκ×κ by ν. Define ḡ = M−1 ∑

i≤M gi and, for any subset S ⊆ Rκ×κ , let us
consider the set

(106) �(S) = {
(τ, g) | R(τ, τ ) + ḡ ∈ S

}
.

Similarly to (100), let us define

f
g
M(S) = 1

M
E log

∑
α∈Nr

vα

(107)

×
∫
�(S)

exp
( ∑

i≤M

∑
k≤κ

τi(k)Zk
i (α)

)
dμ⊗M(τ) dν⊗M(g).
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Without the Gaussian random variables g and with S = Bε(D), this would be
exactly f 1

M(Bε(D)). Similarly to (103), let us define

�g(λ) = E log
∑

α∈Nr

vα

∫
exp

(∑
k≤κ

τ1(k)Zk
i (α)

(108)

+ ∑
k≤k′

λk,k′
(
τ1(k)τ1

(
k′) + g1

(
k, k′)))dμ(τ1) dν(g1).

Since g1(k, k′) for k ≤ k′ are independent Gaussian with variance δ,

(109) �g(λ) = �(λ) + δ

2

∑
k≤k′

λ2
k,k′ .

Next, as in (104), let us define

(110) �∗
g(D) := inf

λ

(
− ∑

k≤k′
λk,k′Dk,k′ + �g(λ)

)
.

Since the symmetric random matrix ḡ is not necessarily positive-semidefinite, let
us redefine the set Bε(D) in (34) to be a subset

(111) Bε(D) = {
γ ∈ Rκ×κ | ‖γ − D‖∞ < ε

}
of Rκ×κ rather than �κ . We will begin by proving the following.

LEMMA 7. For any ε > 0 and D ∈ D,

(112) lim inf
M→∞ f

g
M

(
Bε(D)

) ≥ �∗
g(D).

PROOF. Since �(λ) is convex and grows at most linearly in λ, the presence of
the quadratic second term in (109) guarantees that the infimum in (110) is achieved
on some critical point λ such that

(113) ∇�g(λ) = D.

Here D represent only the upper half of the symmetric matrix D, but we will abuse
the notation and simply write D. In other words, with this choice of λ,

�∗
g(D) := − ∑

k≤k′
λk,k′Dk,k′ + �g(λ).

Similarly to (107), consider the functional

f
g
M(S,λ) = 1

M
E log

∑
α∈Nr

vα

∫
�(S)

exp
( ∑

i≤M

∑
k≤κ

τi(k)Zk
i (α)

(114)

+ M
∑
k≤k′

λk,k′
(
R(τ, τ ) + ḡ

)
k,k′

)
dμ⊗M(τ) dν⊗M(g).
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Notice that, by the standard properties of the Ruelle probability cascades that were
already invoked in the proof of the Guerra upper bound,

(115) f
g
M

(
Rκ×κ, λ

) = �g(λ)

with �g defined in (108). Let us now consider the complement of Bε(D) in Rκ×κ

and let us cover it by half-spaces of the form

H+
k,k′ = {

x ∈Rκ×κ | xk,k′ ≥ Dk,k′ + ε
}
,

H−
k,k′ = {

x ∈Rκ×κ | xk,k′ ≤ Dk,k′ − ε
}
.

Because all the matrices are symmetric, we only need to consider indices k ≤ k′.
Let us consider one such half-space, for example, H = H+

m,m′ . Let us denote

em,m′ = (
I
((

k, k′) = (
m,m′)))

k≤k′ .

Since, for t ≥ 0 and x ∈ H , we have t (xm,m′ − Dm,m′ − ε) ≥ 0, this together with
(115) implies that

(116) f
g
M(H,λ) ≤ −t (Dm,m′ + ε) + �g(λ + tem,m′).

For t = 0, this upper bound equals �g(λ) and, by (113), the derivative

∂

∂t
�g(λ + tem,m′)|t=0 = ∂

∂λm,m′
�g(λ) = Dm,m′,

so the derivative of the right-hand side of (116) at t = 0 equals −ε. It is tedious
but straightforward to check that the second derivatives of �g are bounded on
compacts, and as a result,

f
g
M(H,λ) ≤ �g(λ) − εt + Lt2

2
for t ∈ [0,1] for some large enough L. For t = ε/L this yields the bound

(117) f
g
M(H,λ) ≤ �g(λ) − ε2

2L
.

The same bound can be obtained by a similar argument for any H = H−
m,m′ . The

argument in the proof of Lemma 6 in [33] (which we do not repeat here) shows
that if Aj(α) for 1 ≤ j ≤ n are some positive functions of the Gaussian processes
Zi(α) and Y(α) then

(118) E log
∑

α∈Nr

vα

∑
j≤n

Aj (α) ≤ logn

x0
+ max

j≤n
E log

∑
α∈Nr

vαAj (α),

where x0 is the first element in the sequence (97). Since Rκ×κ can be covered by
Bε(D) and the half-spaces as above, this implies that

�g(λ) = f
g
M

(
Rκ×κ, λ

) ≤ log(2κ + 1)

Mx0
+ max

(
f

g
M

(
Bε(D),λ

)
,max

H
f

g
M(H,λ)

)
.
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The maximum maxH on the right-hand side is over the above half-spaces and the
bound (117) ensures that one can not have

�g(λ) ≤ log(2κ + 1)

Mx0
+ max

H
f

g
M(H,λ),

for large M . Therefore, we must have

�g(λ) ≤ log(2κ + 1)

Mx0
+ f

g
M

(
Bε(D),λ

)
.

On the other hand, from the definition of these functionals,

f
g
M

(
Bε(D),λ

) ≤ ∑
k≤k′

λk,k′Dk,k′ + f
g
M

(
Bε(D)

) + ε‖λ‖1.

The above two inequalities imply that

lim inf
M→∞ f

g
M

(
Bε(D)

) ≥ − ∑
k≤k′

λk,k′Dk,k′ + �g(λ) − ε‖λ‖1 = �∗
g(D) − ε‖λ‖1.

Since f
g
M(Bε(D)) is increasing in ε, we can let ε ↓ 0 on the right-hand side while

fixing it on the left hand side. This finishes the proof. �

We can now deduce Lemma 6 from Lemma 7.

PROOF OF LEMMA 6. Using that{
R(τ, τ ) + ḡ ∈ Bε(D)

} ⊆ {
R(τ, τ ) ∈ B2ε(D)

} ∪ {‖ḡ‖∞ ≥ ε
}
,

we can bound∫
�(Bε(D))

exp
( ∑

i≤M

∑
k≤κ

τi(k)Zk
i (α)

)
dμ⊗M(τ) dν⊗M(g) ≤ A1(α) + A2(α),

where

A1(α) =
∫
�M

2ε (D)
exp

( ∑
i≤M

∑
k≤κ

τi(k)Zk
i (α)

)
dμ⊗M(τ),

A2(α) = P
(‖ḡ‖∞ ≥ ε

) ∫
�M

exp
( ∑

i≤M

∑
k≤κ

τi(k)Zk
i (α)

)
dμ⊗M(τ).

Using this and (118), we can bound

(119) f
g
M

(
Bε(D)

) ≤ log 2

Mx0
+ max

(
f 1

M

(
B2ε(D)

)
,A2

)
,

where

A2 = 1

M
logP

(‖ḡ‖∞ ≥ ε
)

+ 1

M
E log

∑
α∈Nr

vα

∫
�M

exp
( ∑

i≤M

∑
k≤κ

τi(k)Zk
i (α)

)
dμ⊗M(τ).
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Since ḡ is a vector of κ independent Gaussian random variables with the variance
δ/M , if z is a standard Gaussian random variable,

1

M
logP

(‖ḡ‖∞ ≥ ε
) = κ

M
logP

(
|z| ≥ ε

√
M√
δ

)
≤ −kε2

2δ
+ κ log 2

M
.

The second term in A2 is bounded by some constant, which can be seen by taking
the expectation inside the logarithm. By letting δ ↓ 0, one can make A2 → −∞.
On the other hand, (109) implies that �∗

g(D) ≥ �∗(D) and, by the previous
lemma,

lim inf
M→∞ f

g
M

(
Bε(D)

) ≥ �∗(D).

Therefore, letting M → ∞ and then δ ↓ 0 in (119) finishes the proof. �

In addition to the above lower bound, we need to recall standard Lipschitz con-
tinuity property for the functionals f 1

M(Bε(D),π) in (100) and f 2
M(π) in (101),

where we now make the dependence on the path π ∈ 
� defined in terms of the
sequences (97) and (98) explicit.

LEMMA 8. For any � ∈ �κ and for any two discrete paths π, π̃ ∈ 
�,

(120)
∣∣f 1

M

(
Bε(D),π

) − f 1
M

(
Bε(D), π̃

)∣∣ ≤ L

∫ 1

0

∥∥π(x) − π̃(x)
∥∥

1 dx

and

(121)
∣∣f 2

M(π) − f 2
M(π̃)

∣∣ ≤ L

∫ 1

0

∥∥π(x) − π̃(x)
∥∥

1 dx.

The representation of f 2
M(π) in (102), especially when written in the form (30),

makes the second equation (121) obvious. The proof of the first one is identical to
the proof of Lemma 7 in [33].

8. Cavity computation, part 3. The rest of the proof is almost identical to the
proof of the lower bound in [33], and we will only sketch it here without repeating
all the details. We showed in (95) that

lim inf
N→∞ FN

(
�N

ε (D)
) ≥ lim inf

N→∞ ÃN,M − Lε1/4(122)

with ÃN,M defined in (92). We denoted by (RM
�,�′)�,�′≥1 the limit of the array

(R̃�,�′)�,�′≥1 in (80) in distribution over some subsequence of the sequence along
which the lower limit in (122) is achieved. One can then take the lower limit of
(122) as M → ∞ and choose a subsequence along which (RM

�,�′)�,�′≥1 converges
in distribution to some array (R∞

�,�′)�,�′≥1. All these arrays satisfy the Ghirlanda–
Guerra identities in Theorem 3. Using the synchronization property in Theorem 4
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and well-known approximation properties of arrays satisfying the Ghirlanda–
Guerra identities (discussed in detail in [29]), as well as the uniform Lipschitz
properties in Lemma 8, one can replace the lim infN→∞ ÃN,M in (122) by

f 1
M

(
Bε(D),π

) − f 2
M(π)

for some discrete path π ∈ 
Dε and the functionals defined in (100) and (101) with
� = Dε due to the constraint in (96). The discretization introduces some error but
it can be made as small as we wish and can be, for example, absorbed in the term
Lε1/4 in (122). To summarize, the argument in [33] based on the Ghirlanda–Guerra
identities and the synchronization property shows that one can find a discrete path
π ∈ 
Dε such that

lim inf
N→∞ FN

(
�N

ε (D)
) ≥ lim inf

M→∞
(
f 1

M

(
Bε(D),π

) − f 2
M(π)

) − Lε1/4.(123)

Lemma 6 then shows that

lim inf
M→∞ f 1

M

(
Bε(D),π

) ≥ inf
λ

(
− ∑

k≤k′
λk,k′Dk,k′ + �(λ,Dε,π)

)
,

where �(λ,Dε,π) is defined in (103) (with � instead of Dε) and, by (102),

f 2
M(π) = 1

2

∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

)
.

Therefore, lim infN→∞ FN(�N
ε (D)) is bounded from below by

inf
λ

(
− ∑

k≤k′
λk,k′Dk,k′ + �(λ,Dε,π)

)

− 1

2

∑
0≤j≤r−1

xj Sum
(
θ(γj+1) − θ(γj )

) − Lε1/4,

and the proof of Theorem 2 would be finished if we can replace the final constraint
π(1) = Dε in the discrete path π by D. If we recall the definition of Dε in (61), it
is clear that Dε ≤ D and ‖D − Dε‖∞ ≤ L

√
ε. Therefore, if we simply extend the

path π by adding xr+1 = 1 and γr+1 = D to the sequences (17) and (18), this will
modify the above quantity by at most L

√
ε. Taking infimum over discrete π ∈ 
D

and letting ε ↓ 0 finishes the proof.
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