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FREE ENERGY IN THE POTTS SPIN GLASS1

BY DMITRY PANCHENKO

University of Toronto

We study the Potts spin glass model, which generalizes the Sherrington–
Kirkpatrick model to the case when spins take more than two values but their
interactions are counted only if the spins are equal. We obtain the analogue
of the Parisi variational formula for the free energy, with the order parameter
now given by a monotone path in the set of positive-semidefinite matrices.
The main idea of the paper is a novel synchronization mechanism for blocks
of overlaps. This mechanism can be used to solve a more general version
of the Sherrington–Kirkpatrick model with vector spins interacting through
their scalar product, which includes the Potts spin glass as a special case. As
another example of application, one can show that Talagrand’s bound for mul-
tiple copies of the mixed p-spin model with constrained overlaps is asymp-
totically sharp. We will consider these problems in the subsequent paper and
illustrate the main new idea on the technically more transparent case of the
Potts spin glass.

1. Introduction and main results. The Hamiltonian of the classical Sherring-
ton–Kirkpatrick model introduced in [34] is a random function of the N ≥ 1 spins
taking values ±1,

(1) σ = (σ1, . . . , σN) ∈ {−1,+1}N,

given by the quadratic form

(2) HN(σ) = 1√
N

∑
1≤i<j≤N

gijσiσj ,

where the interaction parameters (gij ) are independent standard Gaussian ran-
dom variables. One common interpretation of this Hamiltonian (see, e.g., [33])
is related to the following so-called Dean’s problem (another variant was named
Shakespeare’s problem in the classic book on spin glasses [18]). Given a group
of N students, the parameter gij represents how much the students i and j like
or dislike each other and the configuration σ represents a possible assignment of
the students to the two dormitories, labeled ±1, by their dean. If a pair of students
(i, j) is assigned to the same dormitory, their interaction gij is counted in (2) with
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the plus sign, σiσj = +1, otherwise, it is counted with the minus sign, σiσj = −1.
The Hamiltonian HN(σ) is viewed as the global comfort function and one is then
interested in understanding the behaviour of its maximum, which can be related to
the problem of computing the free energy.

There is a natural generalization of the Dean’s problem to the case of κ dormi-
tories for κ ≥ 2, called the Potts spin glass, which has been studied extensively in
the physics literature (see, e.g., [3, 6–8, 14, 17, 19]), although the formula for the
free energy that we prove in this paper never appeared in full generality. The spin
configurations in this model are given by

(3) σ = (σ1, . . . , σN) ∈ {1,2, . . . , κ}N,

and the Hamiltonian is defined by

(4) HN(σ) = 1√
N

∑
1≤i,j≤N

gij I(σi = σj ).

In physics, κ values of spins are called “orientations” or “states”. Compared to (2),
the interaction term gij in (4) is counted with the factor I(σi = σj ) ∈ {0,1} instead
of 2I(σi = σj ) − 1 ∈ {−1,+1}. This transformation only rescales the Hamiltonian
and shifts it by a constant (random) factor, so it is irrelevant to the computation
of the free energy. Also, for convenience, we sum over all pairs of indices (i, j).
Except for these minor differences, the Hamiltonian (4) represents the comfort
function of the Dean’s problem with κ dormitories with the students still counted
as “friends” or “enemies” depending on whether they are assigned to the same
dormitory or not. In the standard version of the model one also consider the case
where the Gaussian variables gij have nonzero mean of the order 1/

√
N but, for

simplicity of notation, we will focus only on the conceptual difficulties related to
the purely random part of the disorder. Our main goal will be to find the general
formula for the limit of the free energy

(5) FN = 1

N
E log

∑
σ

expβHN(σ)

for any inverse temperature parameter β > 0.
The Potts spin glass is a special case of the following version of the Sherrington–

Kirkpatrick model with vector-valued spins. The spin configurations in this model
are given by

(6) σ = (σ1, . . . , σN) ∈ (
Rκ)N

,

and the Hamiltonian is defined by

(7) HN(σ) = 1√
N

∑
1≤i,j≤N

gij (σi, σj ),
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where (σi, σj ) is the scalar product of σi and σj . If we consider a probability
measure μ on a bounded subset � ⊆Rκ , then the free energy is defined by

(8) FN = 1

N
E log

∫
�N

expβHN(σ)dμ⊗N.

The model (4) corresponds to the case when μ is the uniform distribution on the
standard basis of Rκ . Not to hide the main idea in the technical details, we first
present the case of the Potts spin glass, and in the subsequent paper [25] we con-
sider the general mixed p-spin version of the Sherrington–Kirkpatrick model with
vector spins.

Going back to (4), it is enough to compute the limit of the free energy with fixed
proportions of spins in different states. Consider the set

(9) D =
{
(d1, . . . , dκ)

∣∣∣ d1, . . . , dκ ≥ 0,
∑
k≤κ

dk = 1
}

of possible proportions of the states. For d ∈ D, we consider the set of configura-
tions

(10) �(d) =
{
σ

∣∣∣ ∑
i≤N

I(σi = k) = Ndk for all k ≤ κ

}

constrained by the state sizes and define the constrained free energy by

(11) FN(d) = 1

N
E log

∑
σ∈�(d)

expβHN(σ).

By the classical Gaussian concentration inequalities, FN is approximated by
maxd∈D FN(d) and most of the work will go into the computation of this con-
strained free energy.

Before we write down our main result, let us describe a new phenomenon that
will appear in this model that will allow us to overcome the main difficulty in the
computation of the free energy (for precise formulation, see Theorem 3 below). As
in the Sherrington–Kirkpatrick model, a crucial role will be played by the distribu-
tion of the overlaps between i.i.d. replicas (σ �)�≥1 from the Gibbs measure (with
configurations restricted by the state sizes), only now, for a pair of replicas σ� and
σ�′

, we will need to consider a κ × κ matrix of different types of overlaps

(12) R
k,k′
�,�′ = 1

N

∑
i≤N

I
(
σ�

i = k
)
I
(
σ�′

i = k′)

indexed by k, k′ ≤ κ . The main novelty of the paper will be a mechanism that, by
way of a small perturbation of the Hamiltonian, will force the overlap matrix

(13) R�,�′ = (
R

k,k′
�,�′

)
k,k′≤κ
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to concentrate in the infinite-volume limit N → ∞ on the set of Gram matrices

(14) �κ = {γ | γ is a κ × κ symmetric positive-semidefinite matrix}.
Moreover, asymptotically, the entire (random) matrix R�,�′ will become a deter-
ministic function of its trace tr(R�,�′), and this function will be nondecreasing in
the sense of matrix comparison. As a result, for a model constrained to the set (10),
we will be able to describe the distribution of R�,�′ by a sort of “quantile transfor-
mation” belonging to the set

(15) 
d = {
π ∈ 
 | π(0) = 0 and π(1) = diag(d1, . . . , dκ)

}
,

where 
 is the space of left-continuous monotone functions (paths) in �κ ,

(16) 
 = {
π : [0,1] → �κ | π is left-continuous, π(x) ≤ π

(
x′) for x ≤ x′}.

Of course, π(x) ≤ π(x′) means that π(x′) − π(x) ∈ �κ . Combined with the fact
that the array (tr(R�,�′))�,�′≥1 will be ultrametric by the main result in [22] and
generated by the Ruelle probability cascades [31], this will allow us to encode the
distribution of the entire array

(17) R = (
R

k,k′
�,�′

)
�,�′≥1,k,k′≤κ

in terms of one element π ∈ 
d which plays the role analogous to the Parisi func-
tional order parameter in the Sherrington–Kirkpatrick model. Notice that a priori
the matrix R�,�′ in (13) is not even symmetric and, at first look, other properties
mentioned above seem even less plausible. Nevertheless, a novel matrix version
of the synchronization mechanism discovered in [26] in the setting of the multi-
species Sherrington–Kirkpatrick model (studied previously e.g., in [2, 10]) will
yield the above behaviour of the overlaps.

Notice that for σ ∈ �(d), the last row and column of the overlap matrix R�,�′
are determined by the (κ − 1) × (κ − 1) principal submatrix and, for k ≤ κ − 1,

R
k,κ
�,�′ = dk − ∑

k′≤κ−1

R
k,k′
�,�′ ,

R
κ,k
�,�′ = dk − ∑

k′≤κ−1

R
k′,k
�,�′ ,(18)

R
κ,κ
�,�′ = dκ − ∑

k≤κ−1

dk + ∑
k,k′≤κ−1

R
k,k′
�,�′ .

By symmetry, for a matrix γ = (γk,k′)k,k′≤κ ∈ �κ these equations can be written
as

γκ,k = γk,κ = dk − ∑
k′≤κ−1

γk,k′ for k ≤ κ − 1,

(19)
γκ,κ = dκ − ∑

k≤κ

dk + ∑
k,k′≤κ−1

γk,k′ .
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As a result, we can require that functions π ∈ 
d take values in �κ subject to these
constraints. We will denote such matrices by �κ(d) ⊆ �κ .

Functionals of π ∈ 
d that will appear in the computation of the free energy
will be Lipschitz with respect to the metric

(20) �
(
π,π ′) =

∫ 1

0

∥∥π(x) − π ′(x)
∥∥

1 dx,

where ‖γ ‖1 = ∑
k,k′ |γk,k′ |, and we will explain in Section 4 that a general π ∈ 
d

can be easily discretized in a way that approximates π in this metric. For some
r ≥ 1, a discrete path in 
d can be encoded by two sequences

(21) x−1 = 0 ≤ x0 ≤ · · · ≤ xr−1 ≤ xr = 1

and a monotone sequence of Gram matrices in �κ(d),

(22) 0 = γ0 ≤ γ1 ≤ · · · ≤ γr−1 ≤ γr = diag(d1, . . . , dκ).

We can associate with these sequences a path defined by

(23) π(x) = γp for xp−1 < x ≤ xp

for 0 ≤ p ≤ r , with π(0) = 0. Given such a discrete path, let us consider a se-
quence of independent Gaussian vectors zp = (zp(k))k≤κ for 0 ≤ p ≤ r with the
covariances

(24) Cov(zp) = 2(γp − γp−1).

Given λ = (λk)k≤κ−1 ∈Rκ−1 [which will play the role of Lagrange multipliers for
the constraints in (10)], let us define

(25) Xr = log
∑
k≤κ

exp
(
β

∑
1≤p≤r

zp(k) + λkI(k ≤ κ − 1)

)

(keeping the dependence of Xr on λ implicit) and, recursively over 0 ≤ p ≤ r − 1,
define

(26) Xp = 1

xp

logEp expxpXp+1,

where Ep denotes the expectation with respect to zp+1 only. If xp = 0, we interpret
this equation as Xp = EpXp+1. Notice that X0 is nonrandom, and we will denote
it by

(27) �(λ,d, r, x, γ ) := X0,

making the dependence on all the parameters explicit [the dependence on d here
is through the last constraint in (22)]. Finally, we define the functional

P(λ, d, r, x, γ ) = �(λ,d, r, x, γ ) − ∑
k≤κ−1

λkdk

(28)

− β2

2

∑
0≤p≤r−1

xp

(‖γp+1‖2
HS − ‖γp‖2

HS
)
,
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where ‖A‖HS denotes the Hilbert–Schmidt norm of the matrix A = (aij ), that is
‖A‖2

HS = ∑
i,j a2

ij . The following is our main result.

THEOREM 1. For any κ ≥ 1, the limit of the free energy is given by

(29) lim
N→∞FN = sup

d

inf
λ,r,x,γ

P(λ, d, r, x, γ ).

The formula (29) is the analogue of the classical Parisi formula [27, 28] for
the free energy in the Sherrington–Kirkpatrick model, which was first proved for
general mixed even p-spin models in [35], and for general mixed p-spin models
in [24]. Let us make several remarks about Theorem 1.

REMARK 1. As in the setting of the classical Sherrington–Kirkpatrick model,
one can observe that the functional (27) depends on (r, x, γ ) only through the path
π in (23), so we can denote it by �(λ,d,π). Moreover, we will show (for more
general family of functionals) that, for discrete paths, � is Lipschitz with respect to
the metric (20) and we can extend it by continuity to all π ∈ 
d . Also, rearranging
the terms, we can rewrite

− ∑
0≤p≤r−1

xp

(‖γp+1‖2
HS − ‖γp‖2

HS
)

= −‖γr‖2
HS + ∑

1≤p≤r

(xp − xp−1)‖γp‖2
HS(30)

= − ∑
k≤κ

d2
k +

∫ 1

0

∥∥π(x)
∥∥2

HS dx

and, therefore, we can rewrite (28) as

(31) P(λ, d,π) = �(λ,d,π) − ∑
k≤κ−1

λkdk − β2

2

∑
k≤κ

d2
k + β2

2

∫ 1

0

∥∥π(x)
∥∥2

HS dx.

The last term can also be extended by continuity to all π ∈ 
d and the formula for
the free energy can be rewritten in terms of π (such order parameter appeared in
the physics literature in [11]),

(32) lim
N→∞FN = sup

d

inf
λ,π

P(λ, d,π).

REMARK 2. Since the matrices γp in (22) represent possible values of the
overlap matrix R�,�′ and the overlaps in (12) are nonnegative, we can restrict γp to
the set �+

κ of Gram matrices with nonnegative coefficients [also satisfying the con-
straints (19)]. We will see in the proof that the upper bound holds for more general
sequences as above, without this additional structural information. However, from
the proof of the lower bound it will be clear that it is enough to restrict the vari-
ational problem (29) to this subclass of matrices that “remembers” the structural
properties of the original overlaps matrices.
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REMARK 3. In the case of the classical Sherrington–Kirkpatrick model κ = 2,
the representation (29) differs from the usual Parisi formula, although it is equiv-
alent. Up to a transformation, it essentially corresponds to the maximization over
the free energies of subsystems with constrained magnetization N−1 ∑

i≤N σi . In
the case κ ≥ 3, it seems important to constrain the state sizes first, and it would be
very interesting to know if one can remove supd in (29), for example, by showing
that it is achieved on the configurations with equal group sizes.

REMARK 4. In addition to allowing gij ’s to have nonzero mean of order
1/

√
N , one can introduce some general external field term to the model, or con-

sider a mixed p-spin version with p spins interacting through I(σ1 = · · · = σp).
These modifications require only minor changes in the proof, so we do not con-
sider them for simplicity of notation.

REMARK 5. The Potts spin glass model resembles, but is different from the
Ghatak–Sherrington model [12] (which was solved rigorously in [21] and is in-
cluded as a special case in [25]) where the spins take more than two values but
interact through the product σiσj as in (2).

REMARK 6. In [38] (see also Section 15.7 in [39]), Talagrand considered a
system consisting of multiple copies of the Sherrington–Kirkpatrick model (or
mixed even p-spin models), possibly at different temperatures, coupled by con-
straining the overlaps between them. He proved a natural generalization of the
Guerra replica symmetry breaking upper bound [15] for such systems and asked
whether this bound can be improved. This problem can be viewed as a special
case of the vector version of the Sherrington–Kirkpatrick model mentioned above
(more precisely, its mixed p-spin analogue), so the synchronization mechanism
developed in this paper can be used to show that the bound of Talagrand is, in fact,
asymptotically sharp (see [25]).

REMARK 7. A connection between the formula (29) and max-κ-cut problem
on sparse random graphs can be found in [32], where a generalization of the cor-
responding result in [5] for κ = 2 was obtained (among other results). In a further
work in this direction, an analogue of (29) in the setting of inhomogeneous Potts
model was established in [16], motivated by a connection to max-κ-cut problem
on sparse inhomogeneous random graphs.

We begin in Section 2 with the analogue of Guerra’s replica symmetry breaking
interpolation and the proof of the upper bound. One of the functionals arising in
this interpolation does not automatically decouple over spin coordinates, and in
Section 3 we prove a basic large deviations result that gives the right form of
decoupling, which is used later in the proof of the lower bound. In preparation for
the proof of the lower bound, in Section 4 we collect various basic continuity and
approximation properties of this and other functionals. Sections 5 and 6 contain the
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core new ideas of the proof. In Section 5, we prove a new family of the Ghirlanda–
Guerra identities via a small perturbation of the Hamiltonian and in Section 6 we
utilize these identities to prove strong synchronization properties for the blocks of
the overlap array that were mentioned above. Finally, we put all the pieces together
in Section 7, where we prove the matching lower bound via the standard cavity
computation.

2. Upper bound via Guerra’s interpolation. In this section, we will show
that the functional P(λ, d, r, x, γ ) in (28) is an upper bound for FN(d) for any
λ, r, x, γ , using the analogue of Guerra’s interpolation [15]. Without loss of gen-
erality, we can and will assume that the inequalities in (21) are strict,

(33) x−1 = 0 < x0 < · · · < xr−1 < xr = 1.

Let (vα)α∈Nr be the weights of the Ruelle probability cascades [31] corresponding
to the sequence (33) (see, e.g., Section 2.3 in [23] for the definition). For α1, α2 ∈
Nr , we denote

(34) α1 ∧ α2 = min
{
0 ≤ p ≤ r | α1

1 = α2
1, . . . , α1

p = α2
p,α1

p+1 
= α2
p+1

}
,

where α1 ∧ α2 = r if α1 = α2. Since the sequence in (22) is nondecreasing, the
sequence ‖γp‖HS is also nondecreasing. As a result, there exist Gaussian processes

(35) Zα = (
Zα(k)

)
k≤κ and Yα,

both indexed by α ∈ Nr , with the covariances

Cov
(
Zα1

,Zα2) = 2γα1∧α2,
(36)

Cov
(
Yα1

, Y α2) = ‖γα1∧α2‖2
HS.

Let Zα
i be independent copies of the process Zα , also independent of Yα . For

0 ≤ t ≤ 1, consider an interpolating Hamiltonian defined on �N ×Nr by

(37) HN,t (σ,α) = √
tHN(σ) + √

1 − t
∑
i≤N

Zα
i (σi) + √

t
√

NYα.

Similarly to (11), we define

(38) ϕ(t) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈�(d)

expβHN,t (σ,α).

Then it is easy to check the following.

LEMMA 1. The function ϕ(t) in (38) is nonincreasing.
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PROOF. Let us denote by 〈·〉t the average with respect to the Gibbs measure

Gt(σ,α) ∼ vα expβHN,t (σ,α),

on �(d) ×Nr . Then, for 0 < t < 1,

ϕ′(t) = β

N
E

〈
∂HN,t (σ,α)

∂t

〉
t

.

If we rewrite the Hamiltonian HN(σ) as

(39) HN(σ) = 1√
N

κ∑
k=1

N∑
i,j=1

gij I(σi = k)I(σj = k)

and recall the definition of the overlaps in (13), a direct calculation gives

(40) Cov
(
HN

(
σ 1)

,HN

(
σ 2)) = N

∑
k,k′≤κ

(
R

k,k′
1,2

)2
.

Similarly, if we write Zα
i (σi) = ∑

k≤κ I(σi = k)Zα
i (k) then, from the defini-

tion (36),

(41) Cov
(∑

i≤N

Zα1

i

(
σ 1

i

)
,
∑
i≤N

Zα2

i

(
σ 2

i

)) = 2N
∑

k,k′≤κ

R
k,k′
1,2 γ

k,k′
α1∧α2,

where γ
k,k′
α1∧α2 is the (k, k′)-element of the matrix γα1∧α2 . Using these equations

and recalling the covariance of Yα in (36),

1

N
E

∂HN,t (σ
1, α1)

∂t
HN,t

(
σ 2, α2) = 1

2

∑
k,k′≤κ

(
R

k,k′
1,2 − γ

k,k′
α1∧α2

)2
.

For (σ 1, α1) = (σ 2, α2), this sum vanishes because R1,1 = γr = diag(d1, . . . , dκ).
Finally, usual Gaussian integration by parts (see, e.g., Lemma 1.1 in [23]) yields

ϕ′(t) = −β2

2

∑
k,k′≤κ

E
〈(
R

k,k′
1,2 − γ

k,k′
α1∧α2

)2〉
t ≤ 0.

This finishes the proof. �

The lemma implies that ϕ(1) ≤ ϕ(0). First of all,

ϕ(1) = FN(d) + 1

N
E log

∑
α∈Nr

vα expβ
√

NYα.

The standard properties of the Ruelle probability cascades (see Section 2.3 and the
proof of Lemma 3.1 in [23]) together with the covariance structure (36) imply that

(42)
1

N
E log

∑
α∈Nr

vα expβ
√

NYα = β2

2

∑
0≤p≤r−1

xp

(‖γp+1‖2
HS − ‖γp‖2

HS
)
.
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Next, let us consider

ϕ(0) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�(d)

expβ
∑
i≤N

Zα
i (σi).

Since
∑

i≤N I(σi = k) = Ndk for σ ∈ �(d), adding
∑

k≤κ−1 λk

∑
i≤N I(σi = k)

and at the same time subtracting N
∑

k≤κ−1 λkdk for any λk ∈ R in the exponent
will not change ϕ(0). If we then replace the sum over σ ∈ �(d) by the sum over
all σ , we obtain the upper bound

ϕ(0) ≤ − ∑
k≤κ−1

λkdk

+ 1

N
E log

∑
α∈Nr

vα

∑
σ

exp
∑
i≤N

(
βZα

i (σi) + ∑
k≤κ−1

λkI(σi = k)

)
.

If we introduce the notation

Xα
i = ∑

σi≤κ

exp
(
βZα

i (σi) + ∑
k≤κ−1

λkI(σi = k)

)

= ∑
σi≤κ

exp
(
βZα

i (σi) + λσi
I(σi ≤ κ − 1)

)

then this upper bound can be rewritten as

ϕ(0) ≤ − ∑
k≤κ−1

λkdk + 1

N
E log

∑
α∈Nr

vα

∏
i≤N

Xα
i .

Again, standard properties of the Ruelle probability cascades (see Section 2.3
in [23]) imply that

1

N
E log

∑
α∈Nr

vα

∏
i≤N

Xα
i = E log

∑
α∈Nr

vαXα
1 = X0,

where X0 = �(λ,d, r, x, γ ) was defined in (27) and, therefore,

(43) ϕ(0) ≤ − ∑
k≤κ−1

λkdk + �(λ,d, r, x, γ ).

Together with the inequality ϕ(1) ≤ ϕ(0) this implies that FN(d) ≤
P(λ, d, r, x, γ ), which proves the upper bound in Theorem 1.

3. Decoupling the constraints on sizes of states. The quantity ϕ(0) will also
appear in the proof of the lower bound and, at that moment, we will need to use
the fact that the upper bound (43) becomes asymptotically exact after we minimize
over λ = (λk)k≤κ−1, which we will prove in this section. This type of feature first
appeared in the spherical Sherrington–Kirkpatrick model (see [4, 36]), as well as
in the study of the Ghatak–Sherrington model in [21].
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In the notation of the previous section, let

(44) fN(d) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈�(d)

expβ
∑
i≤N

Zα
i (σi).

Let us also note right away that in the computation leading to (43) we showed that

�(λ,d, r, x, γ )
(45)

= 1

N
E log

∑
α∈Nr

vα

∑
σ

exp
∑
i≤N

(
βZα

i (σi) + ∑
k≤κ−1

λkI(σi = k)

)

for any N . Let us consider the set

(46) DN = {
d ∈ D | �(d) is not empty

}
.

We will now prove the following.

LEMMA 2. If dN ∈ DN and limN→∞ dN = d , then

(47) lim
N→∞fN

(
dN ) = inf

λ

(
− ∑

k≤κ−1

λkdk + �(λ,d, r, x, γ )

)
.

Before we begin the proof, let us point out one subtle point. Notice that fN(d)

depends on d through the constraint σ ∈ �(d), but also through the covariance
structure of Zα

i due to the last constraint in (22). The dependence of � on d is
only through this covariance structure. For the rest of this section, we will fix
this covariance structure so that the dependence on d will be only through the
constraint σ ∈ �(d). In other words, we will prove (47) even if the covariance
structure is not related to the constraint on σ . In particular, since r, x, γ are also
fixed, we will view � = �(λ) as a function of λ only and show that

(48) lim
N→∞fN

(
dN ) = inf

λ

(
− ∑

k≤κ−1

λkdk + �(λ)

)
.

PROOF OF LEMMA 2. We will first give an outline of the proof, and all the
steps will be completed in the rest of the section. In the first step, we will show
that, for all d ∈ D, the limit

(49) f (d) = lim
N→∞fN

(
dN )

exists and is concave in d . Since, the function fN(d) is, clearly, bounded from
above and below uniformly over N and d such that �(d) is not empty, the limit
f (d) will be bounded and continuous on D. In the second step, we will show that

(50) �(λ) = max
d∈D

(
f (d) + ∑

k≤κ−1

λkdk

)
.
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By the biconjugation theorem for convex functions (see, e.g., Theorem 12.2
in [30]), we will then conclude that (48) holds. �

In order to prove (49), instead of working with the sequence (dN) it will be
convenient to relax the constraint σ ∈ �(d) instead. Given ε > 0, we define

(51) �ε(d) =
{
σ

∣∣∣ ∑
i≤N

I(σi = k) ∈ N [dk − ε, dk + ε] for all k ≤ κ

}

and, similarly to (44), define

(52) fN,ε(d) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε(d)

expβ
∑
i≤N

Zα
i (σi).

We begin with the following observation (which is an adaptation of Lemma 1
in [20]).

LEMMA 3. There exists a constant L > 0 independent of N such that

(53) sup
d∈DN

∣∣fN,ε(d) − fN(d)
∣∣ ≤ L

√
ε.

In particular, since, for any d1, d2 ∈ DN and ε = maxk≤κ |d1
k − d2

k |, we have the
inclusions

�
(
d1) ⊆ �ε

(
d2)

, �
(
d2) ⊆ �ε

(
d1)

,

Lemma 3 implies that

(54)
∣∣fN

(
d1) − fN

(
d2)∣∣ ≤ Lmax

k≤κ

∣∣d1
k − d2

k

∣∣1/2 ≤ L
∥∥d1 − d2∥∥1/2

∞ .

PROOF OF LEMMA 3. For σ ∈ �ε(d), let σ̃ be a vector in �(d) with the
smallest number of different coordinates

∑
i≤N I(σi 
= σ̃i). Then it is obvious that∑

i≤N I(σi 
= σ̃i) ≤ LNε for some constant L that depends on κ only. First, we
will compare fN,ε(d) with

f̃N,ε(d) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε(d)

expβ
∑
i≤N

Zα
i (σ̃i).

Let Z̃α
i be independent copies of the processes Zα

i , let

Zt(α,σ ) = ∑
i≤N

(√
tZα

i (σi) + √
1 − tZ̃α

i (σ̃i)
)

for t ∈ [0,1], and consider the interpolation

ϕ(t) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�ε(d)

expβZt(α,σ )
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such that ϕ(1) = fN,ε(d) and ϕ(0) = f̃N,ε(d). One can compute the derivative
ϕ′(t) using Gaussian integration by parts as in Lemma 1. If we recall the covariance
formulas in (36),

1

N
E

∂Zt(α
1, σ 1)

∂t
Zt

(
α2, σ 2) = 1

N

∑
i≤N

(
γ

σ 1
i ,σ 2

i

α1∧α2 − γ
σ̃ 1

i ,σ̃ 2
i

α1∧α2

)
.

The ith term is zero unless σ 1
i 
= σ̃ 1

i or σ 2
i 
= σ̃ 2

i and, by the definition of σ̃ above,
the number of such coordinates is bounded by LNε. Therefore, |ϕ′(t)| ≤ Lβ2ε

and ∣∣fN,ε(d) − f̃N,ε(d)
∣∣ ≤ Lβ2ε

for some constant L that depends only on κ .
For σ ∈ �(d), let us denote by N (σ ) the number of configurations ρ ∈ �ε(d)

such that ρ̃ = σ . Then we can rewrite and bound f̃N,ε(d) as follows,

f̃N,ε(d) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈�(d)

N (σ ) expβ
∑
i≤N

Zα
i (σi).

≤ fN(d) + 1

N
max

σ∈�(d)
logN (σ ).

For any σ ∈ �(d), the number N (σ ) is bounded by the number of configurations
ρ such that

∑
i≤N I(ρi 
= σi) ≤ LNε. By the classical large deviation estimate for

Bernoulli random variables, a number of different ways to choose LNε coordi-
nates is bounded by 2N exp(−NI (1 − Lε)), where

I (x) = 1

2

(
(1 + x) log(1 + x) + (1 − x) log(1 − x)

)
,

and there are κLNε ways to choose ρi’s different from σi’s on these coordinates.
Therefore,

1

N
max

σ∈�(d)
logN (σ ) ≤ Lε logκ + log 2 − I (1 − Lε)

= Lε logκ + log
(

1 + Lε

2 − Lε

)
+ Lε

2
log

2 − Lε

ε

≤ L
√

ε,

for small enough ε. We showed that fN,ε(d) ≤ fN(d) + L
√

ε and, since fN(d) ≤
fN,ε(d), this finishes the proof. �

LEMMA 4. For any d ∈ D, the limit

(55) lim
N→∞fN,ε(d) = fε(d)

exists and is a concave function of d .
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PROOF. Let us make the dependence of the set �N
ε (d) in (51) on N explicit.

For any N1,N2 ≥ 1, let N = N1 + N2 and λ = N1/N . For any d1, d2 ∈ D, let
d = λd1 + (1 − λ)d2. Then, clearly,

�N
ε (d) ⊇ �N1

ε

(
d1) × �N2

ε

(
d2)

and, therefore, the following inequality holds,

NfN,ε(d) ≥ N1fN1,ε

(
d1) + N2fN2,ε

(
d2)

.

In particular, for d1 = d2 = d this shows that the sequence NfN,ε(d) is super-
additive and, hence, the limit (55) exists. Dividing both sides by N , we get

fN,ε(d) = fN,ε

(
d1 + (1 − λ)d2) ≥ λfN1,ε

(
d1) + (1 − λ)fN2,ε

(
d2)

and taking limits shows that fε(d) is concave. �

Combining the above two lemmas, we complete the first step.

LEMMA 5. If dN ∈ DN and limN→∞ dN = d ∈ D, then the limit

(56) f (d) := lim
N→∞fN

(
dN ) = lim

ε↓0
fε(d)

exists and, for all d1, d2 ∈ D, satisfies

(57)
∣∣f (

d1) − f
(
d2)∣∣ ≤ L

∥∥d1 − d2∥∥1/2
∞ .

PROOF. Suppose that δ := maxk≤κ |dN
k − dk| ≤ ε. The inclusions �(dN) ⊆

�ε(d) ⊆ �ε+δ(d
N) together with (53) imply that

fN

(
dN ) ≤ fN,ε(d) ≤ fN,ε+δ

(
dN ) ≤ fN

(
dN ) + L

√
ε + δ.

Taking limits and using (55) implies that

lim sup
N→∞

fN

(
dN ) ≤ fε(d) ≤ lim inf

N→∞ fN

(
dN ) + L

√
ε.

Finally, letting ε ↓ 0 proves (56). By (54), this limit satisfies (57). �

Next, we will focus on the second step (50).

LEMMA 6. For any λ = (λk)k≤κ−1 ∈ Rκ−1,

(58) �(λ) = max
d∈D

(
f (d) + ∑

k≤κ−1

λkdk

)
.
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PROOF. This will be a direct consequence of the properties of the Ruelle prob-
ability cascades. More precisely, we will use a recursive representation for func-
tionals of the type

(59) �(λ,S) = 1

N
E log

∑
α∈Nr

vα

∑
σ∈S

exp
∑
i≤N

(
βZα

i (σi) + ∑
k≤κ−1

λkI(σi = k)

)

for nonempty subsets S ⊆ � = {1, . . . , κ}N . Notice, for example, that, by (44) and
(45),

�(λ,�) = �(λ) and �
(
λ,�(d)

) = fN(d) + ∑
k≤κ−1

λkdk.

Let us recall the definition of the sequence zp = (zp(k))k≤κ for 0 ≤ p ≤ r in (24)
and let (zp,i)0≤p≤r be its independent copies for i ≤ N . Let us define

(60) Xr(λ,S) = log
∑
σ∈S

exp
∑
i≤N

(
β

∑
1≤p≤r

zp,i(σi) + ∑
k≤κ−1

λkI(σi = k)

)

and, recursively over 0 ≤ p ≤ r − 1, define

(61) Xp(λ,S) = 1

xp

logEp expxpXp+1(λ, S),

where Ep denotes the expectation with respect to zp+1,i for i ≤ N . Standard prop-
erties of the Ruelle probability cascades (Theorem 2.9 in [23]) imply that

(62) �(λ,S) = 1

N
X0(λ, S).

Now notice that, since � is a disjoint union of �(d) for d ∈ DN ,

expXr(λ,�) = ∑
d∈DN

expXr

(
λ,�(d)

)
.

Since xr−1 ≤ 1,

expxr−1Xr−1(λ,�) = Er−1 expxr−1Xr(λ,�)

= Er−1

( ∑
d∈DN

expXr

(
λ,�(d)

))xr−1

≤ ∑
d∈DN

Er−1 expxr−1Xr

(
λ,�(d)

)

= ∑
d∈DN

expxr−1Xr−1
(
λ,�(d)

)
.
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By induction, using that xp/xp+1 ≤ 1,

expxpXp(λ,�) = Ep expxpXp+1(λ,�)

≤ Ep

( ∑
d∈DN

expxp+1Xp+1
(
λ,�(d)

))xp/xp+1

≤ ∑
d∈DN

Ep expxpXp+1
(
λ,�(d)

)

= ∑
d∈DN

expxpXp

(
λ,�(d)

)
.

Recall that we assumed in (33) that x0 > 0 so, for p = 0, this gives

�(λ) = 1

N
X0(λ,�) ≤ 1

Nx0
log

∑
d∈DN

expx0X0
(
λ,�(d)

)

≤ 1

Nx0
log card(DN) + max

d∈DN

1

N
X0

(
λ,�(d)

)

≤ 1

Nx0
logNκ + max

d∈DN

(
fN(d) + ∑

k≤κ−1

λkdk

)
.

Combining this with (43), we get

0 ≤ �(λ) − max
d∈DN

(
fN(d) + ∑

k≤κ−1

λkdk

)
≤ 1

Nx0
logNκ.

Using Lemma 5 finishes the proof. �

4. Continuity and discretization. In this section, we will collect several
technical continuity and approximation properties for various functionals that al-
ready appeared above and will appear below in the proof of the lower bound. The
first two Lipschitz continuity properties are direct analogues of a well-known re-
sult of Guerra in [15] (see also [37] or Theorem 14.11.2 in [39]) in the setting of
the SK model.

Lipschitz continuity I. First, let us consider an arbitrary nonempty subset S ⊆
{1, . . . , κ}N and consider the functional

(63) f 1
N(S,π) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈S

expβ
∑
i≤N

Zα
i (σi)

defined similarly to (44). Right now we view this as a functional of the path π

defined in (23) in terms of the sequences (22) and (33), which determines the
covariance structure of the Gaussian processes Zα

i , and we are interested in the
continuity properties of f 1

N .
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LEMMA 7. For two discrete paths π, π̃ ∈ 
d as in (23),

(64)
∣∣f 1

N(S,π) − f 1
N(S, π̃)

∣∣ ≤ L

∫ 1

0

∥∥π(x) − π̃(x)
∥∥

1 dx,

where the constant L does not depend on N or the set S.

PROOF. Without loss of generality, we can suppose that π , π̃ are defined in
terms of the sequences

x−1 = 0 < x0 < · · · < xr−1 < xr = 1,

0 = γ0 ≤ · · · ≤ γr−1 ≤ γr = diag(d1, . . . , dκ),

0 = γ̃0 ≤ · · · ≤ γ̃r−1 ≤ γ̃r = diag(d1, . . . , dκ).

In other words, the same xps are used to define π , π̃ . The reason for this is because
we can combine the two sequences (xp) by artificially inserting additional values
(γp) and (γ̃p), because, as we mentioned above, the functional depends on these
sequences only through π and π̃ .

For 0 ≤ t ≤ 1, the sequence γ t
p = tγp +(1− t)γ̃p is, again, nondecreasing in �κ .

If we consider independent Gaussian processes

Zα = (
Zα(k)

)
k≤κ, Z̃α = (

Z̃α(k)
)
k≤κ

indexed by α ∈ Nr , with the covariances

Cov
(
Zα1

,Zα2) = 2γα1∧α2,

Cov
(
Z̃α1

, Z̃α2) = 2γ̃α1∧α2,

then Zα
t = √

tZα +√
1 − tZ̃α will have the covariance Cov(Zα1

t ,Zα2

t ) = 2γ t
α1∧α2 .

Let us consider independent copies Zα
t,i of this process for i ≤ N and define

(65) ϕ(t) := 1

N
E log

∑
α∈Nr

vα

∑
σ∈S

expβ
∑
i≤N

Zα
t,i(σi).

Then ϕ(1) = f 1
N(S,π) and ϕ(0) = f 1

N(S, π̃). To finish the proof, we will compute
the derivative as in Lemma 1. Let us denote by 〈·〉t the average with respect to the
Gibbs measure

(66) Gt(σ,α) ∼ vα expβHN,t (σ,α)

on S ×Nr and let now HN,t (σ,α) = ∑
i≤N Zα

t,i(σi). Then, for 0 < t < 1,

ϕ′(t) = β

N
E

〈
∂HN,t (σ,α)

∂t

〉
t

.
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Recalling the covariance of Zα and Z̃α above, it is easy to see that

1

N
E

∂HN,t (σ
1, α1)

∂t
HN,t

(
σ 2, α2) = 1

N

∑
i≤N

(
γ

σ 1
i ,σ 2

i

α1∧α2 − γ̃
σ 1

i ,σ 2
i

α1∧α2

)
,

which is zero for (σ 1, α1) = (σ 2, α2) and can be bounded in absolute value by
‖γα1∧α2 − γ̃α1∧α2‖1, where ‖γ ‖1 = ∑

k,k′ |γk,k′ |. Therefore, Gaussian integration
by parts gives

∣∣ϕ′(t)
∣∣ ≤ β2E

〈‖γα1∧α2 − γ̃α1∧α2‖1
〉
t .

For any 0 ≤ t ≤ 1, the marginal of the random measure (66) on Nr has the same
distribution as the weights (vα)α∈Nr (see, e.g., Theorem 4.4 in [23]) and, as a result,

E
〈‖γα1∧α2 − γ̃α1∧α2‖1

〉
t = E

∑
α1,α2

vα1vα2‖γα1∧α2 − γ̃α1∧α2‖1

= ∑
0≤p≤r

‖γp − γ̃p‖1E
∑

α1∧α2=p

vα1vα2

(
see eq. (2.82) in [23]

) = ∑
0≤p≤r

‖γp − γ̃p‖1(xp − xp−1)

=
∫ 1

0

∥∥π(x) − π̃(x)
∥∥

1 dx.

This finishes the proof. �

Lipschitz continuity II. Next, let us consider the functional in (42),

(67) f 2
N(π) = 1

N
E log

∑
α∈Nr

vα expβ
√

NYα.

It actually does not depend on N and, by (30), it can be represented as

(68) f 2
N(π) = −β2

2

∑
k≤κ

d2
k + β2

2

∫ 1

0

∥∥π(x)
∥∥2

HS dx.

In particular, it obviously satisfies

(69)
∣∣f 2

N(π) − f 2
N(π̃)

∣∣ ≤ L

∫ 1

0

∥∥π(x) − π̃(x)
∥∥

1 dx.

The equations (64) and (69) prove that these two types of functionals are uniformly
Lipschitz on the set of discrete paths in 
d with respect to the metric � in (20).
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Discretization with respect to �. To conclude that these functionals can be
extended to Lipschitz functionals on the entire 
d , we need to observe that any
path π ∈ 
d can be approximated by a discrete path with respect to �. To see this,
notice that for any γ ∈ �κ , ‖γ ‖1 ≤ κ tr(γ ), because |γk,k′ | ≤ (γk,k + γk′,k′)/2. For
π ∈ 
d , π(x′) − π(x) ∈ �κ for x ≤ x′ and, therefore,∥∥π(

x′) − π(x)
∥∥

1 ≤ κ tr
(
π

(
x′) − π(x)

) = κ
(
tr

(
π

(
x′)) − tr

(
π(x)

))
.

This implies that for any x, x′ ∈ [0,1], ‖π(x ′)−π(x)‖1 ≤ κ| tr(π(x ′))− tr(π(x))|.
Therefore, if we consider any discretization of the path π ,

(70) π̃(x) := π
(
x∗
p

)
for xp−1 < x ≤ xp,0 ≤ p ≤ r,

for arbitrary choice of points (x∗
p) inside these intervals, then

(71) �(π, π̃) =
∫ 1

0

∥∥π(x) − π̃ (x)
∥∥

1 dx ≤ κ

∫ 1

0

∣∣tr(π(x)
) − tr

(
π̃(x)

)∣∣dx.

Since the function tr(π(x)) is nondecreasing for π ∈ 
d , we can, obviously, make
the right-hand side as small as we like by an appropriate choice of sequences (xp)

and (x∗
p).

Another type of continuity. The functionals considered above will appear as the
limit of some functionals defined on finite size systems in terms of some Gaussian
processes whose covariance structure becomes related to the Ruelle probability
cascades only in the limit, due to the key result that will be proved below. As in
the classical Sherrington–Kirkpatrick model, the covariance will be a function of
the overlaps and the functionals will be continuous with respect to the distribution
of the overlaps, allowing us to express them in the limit in terms of the functionals
considered above.

Such continuity properties are quite standard, and here we will only remind
their general form. For example, for a fixed N ≥ 1, consider a functional resem-
bling (63),

(72) f1 = 1

N
E log

∑
α∈A

wα

∑
σ∈S

expβ
∑
i≤N

Zα
i (σi)

for an arbitrary nonempty subset S ⊆ {1, . . . , κ}N . Here, the random weights
(wα)α∈A define some random probability distribution G on a countable (or fi-
nite) set A, and G is independent of the Gaussian processes Zα

i = (Zα
i (k))k≤κ .

These Gaussian processes are independent copies of some Gaussian process Zα =
(Zα(k))k≤κ with the covariance

(73) Cov
(
Zα1

,Zα2) = Cz(Rα1,α2)

for some continuous functions Cz of the “overlaps” Rα1,α2 = (R
k,k′
α1,α2)k,k′≤κ . The

array

(74) RA = (Rα1,α2)α1,α2∈A
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is nonrandom with bounded entries, and at this moment we think of it as cor-
responding to some abstract overlap structure, for example, some infinite Gram
array. Similarly, we can define the analogue of the functional in (67),

(75) f2 = 1

N
E log

∑
α∈A

wα expβ
√

NYα

corresponding to the covariance

(76) Cov
(
Yα1

, Y α2) = Cy(Rα1,α2)

for some continuous functions Cy . Let (α(�))�≥1 be i.i.d. indices sampled from the
distribution G(α) = wα on A, and let

(77) R = (Rα(�),α(�′))�,�′≥1.

The following holds.

LEMMA 8. The quantities f1 in (72) and f2 in (75) are continuous function-
als of the distribution of the array R in (77) under EG⊗∞. In other words, they
depend on A, (wα)α∈A and the covariance structure RA in (74) only through the
distribution of the array R in (77) under EG⊗∞.

Of course, these functionals depend on N , the set S, β , Cz in (73). More specif-
ically, the lemma says that, for any ε > 0, there exists n ≥ 1 and a continuous
bounded function f1,ε of the array Rn = (Rα(�),α(�′))1≤�,�′≤n such that∣∣f1 −Ef1,ε

(
Rn)∣∣ ≤ ε.

The function f1,ε depends only on ε, N , S, β , and Cz. The same holds for f2. The
proof is omitted as it is almost identical, for example, to the proof of Theorem 1.3
in [23].

5. A new family of the Ghirlanda–Guerra identities. The proof of the
lower bound in Theorem 1 will rely on the synchronization mechanism based on
a new family of identities of the Ghirlanda–Guerra type [13]. These resemble the
multi-species identities in [26], but the difference is that now we deal with blocks
of overlaps, and to study their matrix properties we need new type of identities.
These identities arise via a small perturbation of the Hamiltonian that we will now
define.

For p ≥ 1, we will use the following notation,

e = (i1, . . . , ip) ∈ {1, . . . ,N}p, σe = (σi1, . . . , σip)

for a given σ ∈ {1, . . . , κ}N . Given λ ∈ Rκ , we will denote

Sλ(σe) = ∑
k≤κ

λkI(σi1 = k) · · · I(σip = k).
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Given n ≥ 0 and I = (e1, . . . , en) ∈ ({1, . . . ,N}p)n, we will denote

Sλ(σI ) = Sλ(σe1) · · ·Sλ(σen).

For integer m ≥ 1 and n1, . . . , nm ≥ 1, let Ij = (e1, . . . , enj
) ∈ ({1, . . . ,N}p)nj

and λj ∈ Rκ for 1 ≤ j ≤ m and consider the following Hamiltonian

(78) hθ(σ ) = 1

Np(n1+···+nm)/2

∑
I1,...,Im

gI1,...,ImSλ1(σI1) · · ·Sλm(σIm),

where gI1,...,Im are standard Gaussian random variables independent for different
choices of the indices. For simplicity of notation, we denoted the list of all param-
eters of the Hamiltonian by

(79) θ = (
p,m,n1, . . . , nm,λ1, . . . , λm)

.

The covariance Cθ
�,�′ := Cov(hθ (σ

�), hθ (σ
�′
)) of the Gaussian process (78) equals

Cθ
�,�′ =

∏
j≤m

1

Npnj

∑
Ij

Sλj

(
σ�

Ij

)
Sλj

(
σ�′

Ij

) = ∏
j≤m

(
1

Np

∑
e

Sλj

(
σ�

e

)
Sλj

(
σ�′

e

))nj

.

If we recall the notation for the matrix R�,�′ in (13) of overlaps (12) then, for
λ ∈ Rk , we can rewrite

1

Np

∑
e

Sλ

(
σ�

e

)
Sλ

(
σ�′

e

) = ∑
k,k′≤κ

λkλk′
1

Np

∑
i1,...,ip

∏
r≤p

I
(
σ�

ir
= k

)
I
(
σ�′

ir
= k′)

= ∑
k,k′≤κ

λkλk′
(
R

k,k′
�,�′

)p = (
R

◦p
�,�′λ,λ

)
,

where A◦p denotes the Hadamard (element-wise) pth power of the matrix A.
Hence, the covariance can be written as

(80) Cθ
�,�′ =

∏
j≤m

(
R

◦p
�,�′λj , λj )nj

for any configurations σ�, σ �′ ∈ {1, . . . , κ}N .

DEFINITION. Let � be a collection of all θ of the type (79) with p ≥ 1, m ≥ 1,
n1, . . . , nm ≥ 1, and λ1, . . . , λm taking values in ([−1,1] ∩ Q)κ with all rational
coordinates.

Let us consider a one-to-one function j0 : ([−1,1] ∩Q)κ →N and let

j (θ) := p + n1 + · · · + nm + j0(λ1) + · · · + j0(λm) + 4m.

Let (uθ )θ∈� be i.i.d. random variables uniform on the interval [1,2] and define a
Hamiltonian

(81) hN(σ) = ∑
θ∈�

2−j (θ)uθhθ (σ ).
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Conditionally on u = (uθ )θ∈�, this is a Gaussian process with the variance
bounded by 1. The Hamiltonian hN(σ) will be used as a perturbation of the model,
which means that, instead of HN(σ) in (2), from now on we will consider the per-
turbed Hamiltonian

(82) H
pert
N (σ) = HN(σ) + sNhN(σ),

where sN = Nγ for any 1/4 < γ < 1/2. With this choice, the perturbation term
is negligible from the point of view of computation of the free energy because
limN→∞ N−1s2

N = 0.
As in the classical Sherrington–Kirkpatrick model, the perturbation term hN(σ)

is introduced to ensure the validity of the Ghirlanda–Guerra identities [13] for the
Gibbs measure. The main difference is that now we will work with the Gibbs
measure restricted to the configurations with fixed state sizes. Recall the definition
of the set �(d) in (10) and DN in (46). Let us consider arbitrary dN ∈ DN and
define the Gibbs measure on �(dN) by

(83) GdN (σ ) = expH
pert
N (σ)

ZN(dN)
where ZN

(
dN ) = ∑

σ∈�(dN)

expH
pert
N (σ),

of course, in the form adapted to the present model. As usual, we will denote the
average with respect to G⊗∞

dN by 〈·〉. Now, given n ≥ 2, let recall the definition of
the matrices R�,�′ in (13)

Rn = (R�,�′)�,�′≤n

and consider an arbitrary bounded measurable function f = f (Rn). For θ ∈ �, let

(84) Δ(f,n, θ) =
∣∣∣∣∣E

〈
f Cθ

1,n+1
〉 − 1

n
E〈f 〉E〈

Cθ
1,2

〉 − 1

n

n∑
�=2

E
〈
f Cθ

1,�

〉∣∣∣∣∣,
where E denotes the expectation conditionally on the i.i.d. uniform sequence u =
(uθ )θ∈�. If we denote by Eu the expectation with respect to u, then the following
holds.

LEMMA 9. For any n ≥ 2 and any bounded measurable function f = f (Rn),
for all θ ∈ �,

(85) lim
N→∞EuΔ(f,n, θ) = 0.

PROOF. The proof is, essentially, identical to proof of Theorem 3.2 in [23]. We
only need to mention why restricting the Gibbs measure to the set of configurations
�(dN) with fixed state sizes is so important. This is because the proof depends in
a crucial way on the fact that the diagonal elements Cθ

�,� are constant independent
of σ�. In our case,

Cθ
�,� = ∏

j≤m

(
R

◦p
�,�λ

j , λj )nj = ∏
j≤m

(
diag

((
dN

1
)p

, . . . ,
(
dN
κ

)p)
λj , λj )nj
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are, indeed, independent of the configuration σ� due to the constraint σ ∈ �(dN).
Besides this observation, the rest of the argument is exactly the same and, for
a given θ ∈ �, the equation (85) is obtained by utilizing the term hθ(σ ) in the
perturbation (81). �

Using (85), one can choose a nonrandom sequence uN = (uN
θ )θ∈� ∈ [1,2]�

such that

(86) lim
N→∞Δ(f,n, θ) = 0 for all θ ∈ �

for the Gibbs measure GN with the parameters u in the perturbation (81) equal to
uN rather than random. In fact, the choice of uN will be made below in a special
way to coordinate with the cavity computations in the lower bound. Right now we
will consider any such sequence uN .

Let us now consider any subsequence (Nk)k≥1 along which the array
(R�,�′)�,�′≥1 of the κ × κ overlap matrices in (13) converges in distribution un-
der the measure EG⊗∞

N . We will continue to use the same notation as in (13)
and (80),

R�,�′ = (
R

k,k′
�,�′

)
k,k′≤κ , Rn = (R�,�′)�,�′≤n,

(87)
Cθ

�,�′ = ∏
j≤m

(
R

◦p
�,�′λj , λj )nj ,

for the limiting random array. Then the equations (84) and (86) imply that

(88) Ef
(
Rn)

Cθ
1,n+1 = 1

n
Ef

(
Rn)

ECθ
1,2 + 1

n

n∑
�=2

Ef
(
Rn)

Cθ
1,�

for all θ ∈ �. Since Cθ
�,�′ is a continuous function of λj ∈ [−1,1]κ for j ≤ m, (88)

holds a posteriori for all values of λj , not only with rational coordinates.
For any p ≥ 1, λ1, . . . , λm ∈ [−1,1]κ and a bounded measurable function

ϕ : Rm →R, let

(89) Q�,�′ := ϕ
((

R
◦p
�,�′λ1, λ1)

, . . . ,
(
R

◦p
�,�′λm,λm))

.

Then the following version of the Ghirlanda–Guerra identities holds.

THEOREM 2. For any n ≥ 2 and any bounded measurable function f =
f (Rn),

(90) Ef
(
Rn)

Q1,n+1 = 1

n
Ef

(
Rn)

EQ1,2 + 1

n

n∑
�=2

Ef
(
Rn)

Q1,�.

PROOF. By (88), this holds for all functions of the type ϕ(y1, . . . , ym) =
y

n1
1 · · ·ynm

m . Approximating continuous functions by polynomials, this implies (90)
for continuous functions ϕ and the general case follows. �
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6. Synchronizing the block of overlaps. In this section, we will prove the
following result, which will be the main tool in the computation of the free energy.
Recall the notation �κ in (14).

THEOREM 3. Suppose that the array (R�,�′)�,�′≥1 in (87) satisfies (90) for all
choices of parameters there. Then there exists a function � : R+ → �κ such that

(91) R�,�′ = �
(
tr(R�,�′)

)
almost surely. Moreover, one can take � to be nondecreasing in �κ ,

�
(
x′) − �(x) ∈ �κ for all x ≤ x′,

and Lipschitz continuous,∥∥�(
x′) − �(x)

∥∥
1 ≤ Lκ

∣∣x′ − x
∣∣

for some constant Lκ that depends only on κ .

The function � here is, of course, not universal and depends on the distribution
of the array (R�,�′).

REMARK. Notice that 0 ≤ R
k,k
�,�′ ≤ dk because R

k,k
�,� = R

k,k
�′,�′ = dk and the en-

tire overlap array is positive and positive-semidefinite. Therefore, 0 ≤ tr(R�,�′) ≤∑
k≤κ dk ≤ 1 and the function � can be defined on the interval [0,1] instead of R+.

The proof of Theorem 3 will utilize the following results obtained in [26]. For
a fixed p ≥ 1 and fixed λ1, . . . , λm ∈ [−1,1]κ , let us consider the arrays

(92) �
j

�,�′ = (
R

◦p
�,�′λj , λj )

, ��,�′ = ∑
j≤m

�
j

�,�′

indexed by �, �′ ≥ 1. All of these arrays are symmetric, positive-semidefinite, and
exchangeable in the sense that their distribution is invariant under the same per-
mutation of finitely many rows and columns. All of these properties hold trivially
before we pass to the limit Nk → ∞ [see paragraph above (87)] and are inherited
by the limiting array. The proof of Theorem 3 will use some results for such arrays
from [26] (Theorem 4 and Lemma 2 there), which will be summarized in the next
lemma. We omit the proof, because it can be carried over to the present setting
without any modifications.

LEMMA 10. Suppose that the array (R�,�′) satisfies (90). Then the following
hold.

(i) With probability one, if �
j

�,�′ > �
j

�,�′′ for some j ≤ m then �
j

�,�′ ≥ �
j

�,�′′
for all j ≤ m.
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(ii) There exist nondecreasing 1-Lipschitz functions Lj : R+ → R+ for j ≤ m

such that, with probability one, �
j

�,�′ = Lj(��,�′).

The reason we can consider the domain and range of Lj to be R+ is because,
by (90), each array in (92) by itself satisfies the canonical Ghirlanda–Guerra iden-
tities [13] and, therefore, its entries are nonnegative by Talagrand’s positivity prin-
ciple (see Theorem 2.16 in [23]). Equipped with Lemma 10, we proceed to prove
Theorem 3.

PROOF OF THEOREM 3. Step 1. In (92), let us take p = 1, m = κ and let
λ1 = e1, . . . , λ

κ = eκ be the standard basis in Rκ . With this choice of parameters,

�k
�,�′ = R

k,k
�,�′ and ��,�′ = ∑

k≤κ

R
k,k
�,�′ = tr(R�,�′).

Lemma 10(ii) implies that there exist nondecreasing 1-Lipschitz functions Lk such
that

(93) R
k,k
�,�′ = Lk

(
tr(R�,�′)

)
with probability one.

Step 2. Let us fix two indices k, k′ ≤ κ . In (92), let us take p = 1, m = 2 and let
λ1 = ek + ek′ and λ2 = ek − ek′ . Then

�1
�,�′ = R

k,k
�,�′ + R

k′,k′
�,�′ + R

k,k′
�,�′ + R

k′,k
�,�′ ,

�2
�,�′ = R

k,k
�,�′ + R

k′,k′
�,�′ − R

k,k′
�,�′ − R

k′,k
�,�′ ,

��,�′ = 2
(
R

k,k
�,�′ + R

k′,k′
�,�′

) = L
(
tr(R�,�′)

)
,

where the function L = 2(Lk + Lk′) and the last equality follows from (93). Since

R
k,k′
�,�′ + R

k′,k
�,�′ = �1

�,�′ − 1

2
��,�′,

Lemma 10(ii) implies that there exist a Lipschitz functions Lk,k′ (maybe, not
monotone) such that

(94) R
k,k′
�,�′ + R

k′,k
�,�′ = Lk,k′

(
tr(R�,�′)

)
with probability one.

Step 3. If in the above two steps we take p = 2, then the same arguments shows
that, for any k, k′ ≤ κ , (Rk,k′

�,�′ )2 + (R
k′,k
�,�′ )2 is a Lipschitz function of tr(R◦2

�,�′). How-

ever, since each R
k,k
�,�′ is bounded and itself is a Lipschitz function of tr(R�,�′), the

trace tr(R◦2
�,�′) is also a Lipschitz function of tr(R�,�′). Therefore, there exist a Lip-

schitz functions L′
k,k′ such that, with probability one,

(95)
(
R

k,k′
�,�′

)2 + (
R

k′,k
�,�′

)2 = L′
k,k′

(
tr(R�,�′)

)
.
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Step 4. The systems of equations (94) and (95) is of the form x + y = a, x2 +
y2 = b and can be solved to find {x, y} in terms of a and b,

x, y = a ± √
2b − a2

2
.

In other words, there exist two continuous functions f1, f2 (maybe, not Lipschitz)
such that

(96)
{
R

k,k′
�,�′ ,R

k′,k
�,�′

} = {
f1

(
tr(R�,�′)

)
, f2

(
tr(R�,�′)

)}
.

(The functions, of course, depend on the indices k, k′.) The main obstacle in the
proof is that we do not know which of these two overlaps takes which of the two
values, so this does not quite reconstruct the matrix in terms of its trace tr(R�,�′).
However, in the next step we will show that one can take f1 = f2 and, in particular,
by (94),

(97) R
k,k′
�,�′ = R

k′,k
�,�′ = 1

2
Lk,k′

(
tr(R�,�′)

)

with probability one.
Step 5. The array (tr(R�,�′))�,�′≥1 is symmetric, positive-semidefinite, ex-

changeable and, by (90), satisfies the canonical Ghirlanda–Guerra identities [13].
Therefore, the results in Sections 2.4 in [23] imply that it can be generated by the
Ruelle probability cascades and, in particular, it satisfies what was called the dupli-
cation property in Sections 2.5 in [23]. This means that if the support (of the distri-
bution) of tr(R1,2) contains a point q then support of the array (tr(R�,�′))1≤�<�′≤n

contains the array with all entries equal to q for any n ≥ 2. Recalling (93) and (96),
let us denote

a = Lk(q), d = Lk′(q), b = f1(q), c = f2(q).

By the above steps, the 2n × 2n array consisting of 2 × 2 blocks indexed by 1 ≤
�, �′ ≤ n, ⎡

⎣R
k,k
�,�′ R

k,k′
�,�′

R
k′,k
�,�′ R

k′,k′
�,�′

⎤
⎦ ,

will have in its support a 2n × 2n array A indexed by 1 ≤ �, �′ ≤ n consisting of
2 × 2 blocks

a�,�′ =
⎡
⎣a

1,1
�,�′ a

1,2
�,�′

a
2,1
�,�′ a

2,2
�,�′

⎤
⎦ ,

where each of the blocks a�,�′ is either
[
dk 0
0 dk′

]
,

[
a b

c d

]
or

[
a c

b d

]
,
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where the first choice corresponds to the diagonal blocks for � = �′, and the second
and third correspond to � 
= �′. Let us define a directed complete graph (V ,E) on
n vertices such that, for each pair � 
= �′, the edge is oriented � → �′ or �′ → �

depending on whether

a�,�′ =
[
a b

c d

]
or a�,�′ =

[
a c

b d

]
.

Directed complete graphs are called tournaments, and we will need to use the
fact that, for large n, one can find two large disjoint subsets of vertices V1,V2 ⊆ V

such that all edges between them are oriented from V1 to V2. For example, we can
use Theorem 3 in [9], which states the following. Given two tournaments S and T ,
T is called S-free if S is not a sub-tournament of T . Theorem 3 in [9] states that if
T is S-free, card(S) = m and card(T ) = n then one can find two disjoint subsets
V1,V2 in T of cardinality

card(V1) = card(V2) = ⌊
(n/m)1/(m−1)⌋

with all edges between them oriented from V1 to V2. Take S consisting of two
groups of cardinality m with edges between groups oriented in one direction, and
in arbitrary fashion within groups. If T contains S then is has two desired subsets
V1,V2 of cardinality m. If not then, by the above claim, it contains two such subsets
of cardinality �(n/2m)1/(2m−1)�. If we set (n/2m)1/(2m−1) = m/2, we find that m

is of order logn/ log logn, which means that, for large n, we can always find two
large disjoint subsets with edges between them oriented in the same direction.

Let V1,V2 ⊆ V = {1, . . . , n} be two such disjoint subsets of size m in the above
graph. This means that for all � ∈ V1 and �′ ∈ V2,

a�,�′ =
[
a b

c d

]
.

On the other hand, recall that the entire 2n × 2n array A is positive-semidefinite
since it belongs to the support of a positive-semidefinite random array. Therefore,
we can find pairs of vectors u�,w� for 1 ≤ � ≤ n in a Hilbert space H such that,
for all �, �′ ≤ n,

[
(u�, u�′) (u�,w�′)
(w�,u�′) (w�,w�′)

]
=

⎡
⎣a

1,1
�,�′ a

1,2
�,�′

a
2,1
�,�′ a

2,2
�,�′

⎤
⎦ .

In particular, for all �, �′ ≤ n,

(98) (u�, u�) = dk, (w�,w�) = dk′, (u�, u�′) = a, (w�,w�′) = d,

and, by construction of the sets V1,V2, for all � ∈ V1 and �′ ∈ V2,

(99)
[
(u�, u�′) (u�,w�′)
(w�,u�′) (w�,w�′)

]
=

[
a b

c d

]
.
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For j = 1,2, let us consider the barycenters of these collections of vectors

Uj = 1

m

∑
�∈Vj

u� and Wj = 1

m

∑
�∈Vj

w�.

On the one hand, using the equation (99),
[
(U1,U2) (U1,W2)

(W1,U2) (W1,W2)

]
=

[
a b

c d

]
.

On the other hand, using (98),

‖U1 − U2‖2 = 1

m2

∥∥∥∥
∑
�∈V1

u� − ∑
�∈V2

u�

∥∥∥∥
2
= 2(dk + a)

m

and

‖W1 − W2‖2 = 1

m2

∥∥∥∥
∑
�∈V1

w� − ∑
�∈V2

w�

∥∥∥∥
2
= 2(dk′ + d)

m
.

For large m, this implies that U1 ≈ U2 and W1 ≈ W2 and, therefore, (U1,W2) ≈
(W1,U2). Letting m → ∞ proves that b = c, so we can take f1 = f2 in (96), also
proving (97).

Step 6. We proved that there exists a Lipschitz function � on R+ with values in
the set of symmetric κ × κ matrices such that

(100) R�,�′ = �
(
tr(R�,�′)

)
almost surely. It remains to show that it is also nondecreasing in the space of Gram
matrices (14), �(x′) − �(x) ∈ �κ for all x ≤ x′. Let us first prove this for x, x′ in
the support of the distribution of tr(R1,2). Suppose that x < x′ but �(x′)−�(x) /∈
�κ . Then, there exists λ ∈ [−1,1]κ , such that

(
�(x)λ,λ

)
>

(
�

(
x′)λ,λ

)
.

In (92), let us take p = 1, m = κ + 1 and let λ1 = e1, . . . , λ
κ = eκ be the standard

basis in Rκ and λκ+1 = λ. With this choice of parameters,

�k
�,�′ = R

k,k
�,�′ for k ≤ κ,

�κ+1
�,�′ = (R�,�′λ,λ), and ��,�′ = tr(R�,�′) + (R�,�′λ,λ).

Recall that Step 5 started with the statement that the array (tr(R�,�′))�,�′≥1 is sym-
metric, positive-semidefinite, exchangeable and, by (90), satisfies the canonical
Ghirlanda–Guerra identities [13]. As a result, it satisfied the duplication prop-
erty. Another consequence of the Ghirlanda–Guerra identities from Lemma 2.7
in [23] (this was first observed in [29]) states that, with probability one, the set
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{tr(R1,�) | � ≥ 2} is a dense subset of the support of the distribution of tr(R1,2).
This means that, for any ε > 0, we can find �, �′ ≥ 2 such that

∣∣tr(R1,�) − x
∣∣ ≤ ε and

∣∣tr(R1,�′) − x′∣∣ ≤ ε.

For small enough ε, this implies that tr(R1,�) < tr(R1,�′). By Lemma 10(i), R
k,k
1,� <

R
k,k
1,�′ for at least one k ≤ κ and again, by Lemma 10(i),

�κ+1
1,� = (R1,�λ, λ) = (

�
(
tr(R1,�)

)
λ,λ

) ≤ �κ+1
1,�′ = (R1,�′λ,λ)

= (
�

(
tr(R1,�′)

)
λ,λ

)
.

Letting ε ↓ 0, we get that
(
�(x)λ,λ

) ≤ (
�

(
x′)λ,λ

)
,

contradicting the above assumption. This proves that � is nondecreasing on the
support of the distribution of tr(R1,2). On each interval (x, x′) outside of the sup-
port with x, x′ in the support, we extend � by a linear interpolation between the
values �(x) and �(x′), which does not affect the monotonicity and Lipschitz
properties. This finishes the proof. �

7. Lower bound via cavity computations. Finally, to prove the matching
lower bound we will combine the structural results for the overlaps proved above
with standard cavity computations. We will start with an obvious inequality FN ≥
FN(dN), for any dN ∈DN . For a fixed d ∈ D, we will choose dN converging to d

in such a way that dN
k = 0 whenever dk = 0 and, otherwise,

(101)
∣∣dN

k − dk

∣∣ ≤ Lκ

N
for all k ≤ κ

for some constant Lκ that depends only on κ . The next step is to use the inequality,

(102) lim inf
N→∞ FN

(
dN ) ≥ 1

M
lim inf
N→∞

(
E logZN+M

(
dN+M) −E logZN

(
dN ))

,

where M on the right-hand side is fixed and where, for any N and d ∈ DN , we
denoted

ZN(d) = ∑
σ∈�N(d)

expβHN(σ),

where now we will make the dependence of �(d) = �N(d) on the dimension
explicit. The infimum on the right-hand side of (102) is achieved along some sub-
sequence (Nk)k≥1, but to simplify the notation we will keep writing N . Next, from
this subsequence, for any fixed M , we will choose another subsequence as follows
(slightly modifying Lemma 5 in [20]).
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LEMMA 11. There exists a sequence δM ∈DM such that

(103)
∣∣δM

k − dk

∣∣ ≤ 2Lκ

M
for all k ≤ κ

and such that, for each M ≥ 1,

(104) NdN + MδM = (N + M)dN+M

for infinitely many N ≥ 1.

PROOF. For a fixed M , consider a sequence δM(N) defined by (104),

MδM(N) := (N + M)dN+M − NdN.

Subtracting Md on both sides, for all k ≤ κ ,

M
(
δM(N)k − dk

) = (N + M)
(
dN+M
k − dk

) − N
(
dN
k − dk

)
and, therefore, (101) implies that M|δM(N)k − dk)| ≤ 2Lκ . For a fixed M ≥ 1,
this implies that the sequence (MδM(N))N≥1 takes a finite number of values and
we can find infinitely many N with the same value, denoted MδM . Notice that, by
construction, δM

k = 0 whenever dk = 0 and, otherwise, δM
k ≥ dk − 2M−1Lκ > 0

for M large enough. �

For a fixed M , let us take a subsequence of N found in (104) and, again, for
simplicity of notation we will keep writing N . The equation (104) implies that

�N+M

(
dN+M) ⊇ �N

(
dN ) × �M

(
δM)

.

If we represent configurations ρ ∈ {1, . . . , κ}N+M as ρ = (σ, ε) for σ ∈
{1, . . . , κ}N and ε ∈ {1, . . . , κ}M , this inclusion implies that

ZN+M

(
dN+M) ≥ ∑

σ∈�N(dN)

∑
ε∈�M(δM)

expβHN+M(σ, ε).

This inequality is in the right direction for the purpose of decreasing the lower
bound in (102) to

lim
N→∞

1

M

(
E log

∑
σ∈�N(dN)

∑
ε∈�M(δM)

expβHN+M(σ, ε)

(105)

−E log
∑

σ∈�N(dN)

expβHN(σ)

)
,

where, for a fixed M , the limit here is over some subsequence determined above.
Next, we separate a common part in the Hamiltonians HN+M(σ, ε) and HN(σ)

as in the usual Aizenman–Sim–Starr representation [1] (see e.g. Section 1.3
in [23]). First, we can separate

(106) HN+M(σ, ε) = H ′
N(σ) + ∑

i≤M

Zσ
i (εi) + r(ε)
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into three types of terms,

H ′
N(σ) = 1√

N + M

∑
1≤i,j≤N

gij I(σi = σj ),

Zσ
i (εi) = 1√

N + M

∑
1≤j≤N

(gN+i,j + gj,N+i )I(σj = εi),(107)

r(ε) = 1√
N + M

∑
1≤i,j≤M

gN+i,N+j I(εi = εj ).

One the other hand, the Gaussian process HN(σ) on {1, . . . , κ}N can be decom-
posed into a sum of two independent Gaussian processes (in distribution),

(108) HN(σ)
d= H ′

N(σ) + √
MYσ ,

where H ′
N(σ) was defined in (107) and

(109) Yσ = 1√
N(N + M)

∑
1≤i,j≤N

g′
ij I(σi = σj ),

where (g′
ij ) are independent copies of the Gaussian random variables (gij ). The

term r(ε) can be omitted because it is of a small order as N → ∞.
Consider the Gibbs measure on �N(dN) corresponding to the Hamiltonian

H ′
N(σ) in (107),

(110) G′
N(σ) = expβH ′

N(σ)

Z′
N(dN)

, where Z′
N

(
dN ) = ∑

σ∈�N(dN)

expβH ′
N(σ),

and let us denote by 〈·〉′N the average with respect to G′
N . Using representation

(106) and (108) and dividing inside both logarithms by Z′
N(dN), we can rewrite

(105) as

(111) lim
N→∞

1

M

(
E log

〈 ∑
ε∈�M(δM)

expβ
∑
i≤M

Zσ
i (εi)

〉′
N

−E log
〈
expβ

√
MYσ 〉′

N

)
.

Both terms here are exactly of the form considered in Lemma 8 above with α = σ ,
A = �N(dN) and wα = G′

N(σ) there. Therefore, they can be viewed as continu-
ous functionals of the overlap arrays determined by the covariance structure of the
Gaussian processes Zσ

i = (Zσ
i (k))k≤κ and Yσ , which we now compute.

First of all, for k, k′ ≤ κ ,

(112) EZσ�

i (k)Zσ�′
i

(
k′) = 2

N + M

∑
j≤N

I
(
σ�

j = k
)
I
(
σ�′

j = k′) = 2R
k,k′
�,�′ +O

(
N−1)
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and, similarly to the computation in (40),

(113) EYσ�

Y σ�′ = N

N + M

∑
k,k′≤κ

(
R

k,k′
�,�′

)2 = ∑
k,k′≤κ

(
R

k,k′
�,�′

)2 +O
(
N−1)

.

These resemble the definition in (36) and, of course, one can redefine the processes
Zσ

i and Yσ to have covariances without the lower order terms O(N−1), which we
now assume.

The same computation can be carried out just as easily in the case when the
constrained free energy FN(dN) in (102) corresponds to the perturbed Hamilto-
nian H

pert
N (σ) in (82) instead of the original Hamiltonian HN(σ). Moreover, since

the perturbation term sNhN(σ) in (82) is of smaller order, one can show that the
perturbation term sN+MhN+M(σ, ε) that would appear in the first term in (105)
can be replaced by sNhN(σ) and this only introduces some small order correc-
tion. All of this is standard and is explained, for example, in Section 3.5 in [23].
In other words, if the Gibbs measure G′

N in (110) corresponds to the perturbed
Hamiltonian

H ′
N(σ) + sNhN(σ)

then the representation in (111) still gives a lower bound on the constrained free
energy along some subsequence. Also, in this case the expectation E in (111) in-
cludes the average Eu in the uniform random variables u = (uθ )θ∈� in the defini-
tion of the perturbation Hamiltonian (81).

The proof of Lemma 9 applies verbatim to the measure G′
N and right below

the proof of Lemma 9 we mentioned that one can choose a nonrandom sequence
uN = (uN

θ )θ∈� changing with N such that (86) holds for the Gibbs measure G′
N

with the parameters u in the perturbation Hamiltonian (81) equal to uN rather than
random. By Lemma 3.3 in [23], one can choose this sequence uN in such a way
that the limit in (111) is also not affected by fixing u = uN instead of averaging
in u.

Passing to another subsequence, we can assume that the distribution of the ar-
ray (R�,�′)�,�′≥1 in (13) under EG′⊗∞

N converges, and we will denote the array
with this limiting distribution by (R∞

�,�′)�,�′≥1. By construction, this array satisfies
the generalized Ghirlanda–Guerra identities in Theorem 2 and, as a consequence,
its structure can be described as in Theorem 3. Namely, there exists a function
� : [0,1] → �κ such that

(114) R∞
�,�′ = �

(
tr

(
R∞

�,�′
))

almost surely. The function � is nondecreasing, �(x′)−�(x) ∈ �κ for all x ≤ x′,
and Lipschitz, ‖�(x′) − �(x)‖1 ≤ Lκ |x′ − x| for some constant Lκ that depends
only on κ .

Let us denote the distribution function of tr(R∞
1,2) by

(115) μ∞(q) = P
(
tr

(
R∞

1,2
) ≤ q

)
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and let μ−1∞ : [0,1] → R+ be its quantile transformation. Define

(116) π∞(x) := �
(
μ−1∞ (x)

)
,

which is an element of the family of paths 
d defined in (15). Notice that, by (114),

tr
(
π∞(x)

) = μ−1∞ (x).

Let us consider two sequences,

x−1 = 0 < x0 < · · · < xr−1 < xr = 1,
(117)

0 = q0 < · · · < qr−1 < qr = 1,

such that qp = μ−1∞ (xp). Consider the distribution function μ defined by

(118) μ(q) = xp for qp ≤ q < qp+1

and, similarly to (116), we define the corresponding path in 
d by

(119) π(x) := �
(
μ−1(x)

)
.

Notice that π is a discretization of π∞ in the sense of (70), because

(120) π(x) := π∞(xp) for xp−1 < x ≤ xp.

Therefore, by (71),

�(π,π∞) ≤ κ

∫ 1

0

∣∣tr(π(x)
) − tr

(
π∞(x)

)∣∣dx

= κ

∫ 1

0

∣∣μ−1(x) − μ−1∞ (x)
∣∣dx

= κ

∫ 1

0

∣∣μ(x) − μ∞(x))
∣∣dx.

In particular, we can choose the sequence in (117) to make �(π,π∞) as small as
we want, while also making the distributions μ and μ∞ as close as we want in
L1-norm.

As in Section 2, let (vα)α∈Nr be the weights of the Ruelle probability cascades
corresponding to the parameters (117). Let (α�)�≥1 be an i.i.d. sample from Nr

according to these weights and, using the sequence of q’s in (117), define

(121) T�,�′ = q
α�∧α�′ .

We already used in Section 6 the fact that, by Theorem 2, the array (tr(R∞
�,�′))�,�′≥1

satisfies the classical Ghirlanda–Guerra identities. Therefore, Theorems 2.13
and 2.17 in [23] imply that its distribution will be close to the distribution of the ar-
ray (T�,�′)�,�′≥1 when μ approximates μ∞. Consider the sequence γp := π(xp) =
�(qp) for 0 ≤ p ≤ r , so that

(122) 0 = γ0 ≤ · · · ≤ γr−1 ≤ γr = diag(d1, . . . , dκ)
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is a nondecreasing sequence in �κ [or �κ(d), satisfying the constraints in (19)].
Let

(123) Q�,�′ = �(T�,�′) = �(q
α�∧α�′ ).

The fact that � is Lipschitz implies that the array (Q�,�′)�,�′≥1 will be close in
distribution to the array (R∞

�,�′)�,�′≥1.
Let us now consider Gaussian processes Zα and Yα indexed by α ∈ Nr defined

in Section 2, with the sequence (22) now given by (122). Consider a quantity sim-
ilar to the quantity in (111),

f
1,2
M (π) := f 1

M(π) − f 2
M(π)

:= 1

M

(
E log

∑
α∈Nr

vα

∑
ε∈�M(δM)

expβ
∑
i≤N

Zα
i (εi)(124)

−E log
∑

α∈Nr

vα expβ
√

MYα

)
.

If we compare the covariances in (112) and (113) with (36), Lemma 8 implies that
(124) is the same continuous functional of the distribution of the array (Q�,�′)�,�′≥1
in (123) as the quantity in (111) is of the array (R�,�′)�,�′≥1 in (13). Since both ar-
rays, by construction, approximate in distribution the array (R∞

�,�′)�,�′≥1, we proved
that the limit in (111) equals to the limit of (124) as μ → μ∞ in L1-norm. How-
ever, in this case �(π,π∞) → 0 and, by Lemma 7 and (69), this limit is just the
extension f

1,2
M (π∞) of the functional in (124) to π∞.

To summarize, we showed that f
1,2
M (π∞) gives the lower bound for the con-

strained free energy for any M ≥ 1. Now we will let M → ∞, but it is important
to point out first that π∞ in the above construction depends on M , π∞ = πM∞ . Be-
cause the paths πM∞ ∈ 
d are monotone in �κ , one can choose a convergent subse-
quence with respect to the metric �. Indeed, the diagonal elements of any π ∈ 
d

are monotone functions, so one can choose an L1-convergent subsequence of the
diagonal elements first and then use that the sum πk,k + πk′,k′ + 2πk,k′ is also a
monotone function, which allows to choose a convergent subsubsequence for the
off-diagonal elements. Let π∗ be the limit of πM∞ and let π∗

ε be a discretization of
π∗ such that �(π∗, π∗

ε ) ≤ ε. By Lemma 7 and (69),
∣∣f 1,2

M

(
πM∞

) − f
1,2
M

(
π∗

ε

)∣∣ ≤ L�
(
πM∞ , π∗

ε

) ≤ L
(
�

(
πM∞ , π∗) + ε

)
,

and, therefore, lim supM→∞ |f 1,2
M (πM∞ ) − f

1,2
M (π∗

ε )| ≤ Lε. For discrete path π∗
ε ,

we can use Lemma 2, which shows that the limit of the first term in (124),

(125) lim
M→∞f 1

M

(
π∗

ε

) = inf
λ

(
− ∑

k≤κ−1

λkdk + �
(
λ,d,π∗

ε

))
.
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By (68), the second term is, actually, independent of M and equals

(126) f 2
M

(
π∗

ε

) = −β2

2

∑
k≤κ

d2
k + β2

2

∫ 1

0

∥∥π∗
ε (x)

∥∥2
HS dx.

If we recall the functional P(λ, d,π) defined in (31), we proved that

lim inf
M→∞ f

1,2
M

(
πM∞

) ≥ inf
λ
P

(
λ,d,π∗

ε

) − Lε ≥ inf
λ,π∈
d

P(λ, d,π) − Lε.

Letting ε ↓ 0 and maximizing over d ∈ D finishes the proof of the lower bound.
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