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GROWTH EXPONENT FOR LOOP-ERASED RANDOM WALK IN
THREE DIMENSIONS

BY DAISUKE SHIRAISHI

Kyoto University

Let Mn be the number of steps of the loop-erasure of a simple random
walk on Z

3 run until its first exit from a ball of radius n. In the paper, we will
show the existence of the growth exponent, that is, we show that there exists
β > 0 such that

lim
n→∞

logE(Mn)

logn
= β.
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1. Introduction.

1.1. Introduction. Let S be the simple random walk on Z
d started at the origin

and let τn be its first exit from the ball of radius n centered at the origin. How does
the random walk path S[0, τn] look like? This question has fascinated probabilists
and mathematical physicists for a long time, and it continues to be an unending
source of challenging problems.

Cut points are one of the most important objects to study the random walk path
([4–6, 12, 16, 18, 26, 33, 34]). Here, a time k ∈ [0, τn] is called a (local) cut time if
S[0, k] ∩ S[k + 1, τn] = ∅ and S(k) is a (local) cut point if k is a cut time. We call
random walk path between each consecutive cut point a piece so that the random
walk path consists of the disjoint union of several pieces. The number of cut points
are studied in many papers ([12, 16–18]). In [16], it is proved that the expected
number of cut points is of order n2 for d ≥ 5. Since τn is also of order n2, the set
of cut times has a positive density in [0, τn] in higher dimensions. For d = 4, it
is shown in [17] that the expected number of cut points is of order n2(logn)−1/2.
Finally, for d = 2,3, it is proved in [18] that there exist ξd(d = 2,3) such that the
expected number of cut points is comparable to n2−ξd . The exponent ξd is called
the intersection exponent. For the value of ξ2, Lawler, Schramm and Werner [24]
prove that ξ2 = 5

4 by using the SLE techniques. Consequently, the expected number

of cut times up to time τn grows like n
3
4 for d = 2. The exact value of ξ3 is not

known. The best rigorous estimates for ξ3 [19, 26] are 1
2 < ξ3 < 1.

In higher dimensions, d ≥ 5, roughly we may think of S[0, τn] as a union of
O(n2)-stationary and ergodic pieces ([6, 7]). In that case, length of each piece has
a finite moment and a correlation of two pieces is negligible, which enables us
to analyze the path in detail. Borrowing a term from physics we might say that
the upper critical dimension for cut points is 4. In 4 dimensions, a logarithmic
correction is required in the analysis of pieces. Study of geometrical structure of
pieces in 4 dimensions is done in [34]. Roughly speaking, it is proved that a piece
has a “long sparse loop” if the length of the piece is large (see [34] for the details).

In 2 and 3 dimensions, the situation is more complicated since a correlation of
two pieces is not negligible and each piece has no common distribution. To deal
with this problem, we reconsider the nonintersecting random walk in this paper.
In [35], in order to investigate the structure of the path around cut points, the fol-
lowing problem was considered: if we condition that S[0, n] ∩ S[n + 1,2n] = ∅,
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then how does the path look like around S(n)? Let S1, S2 be independent sim-
ple random walks started at the origin. Then, thanks to the translation invari-
ance and the reversibility of the simple random walk, our problem may be re-
duced to clarify the structure of S1, S2 around the origin when we condition that
S1[0, n]∩S2[1, n] = ∅. To tackle this problem, the nonintersecting two-sided ran-
dom walk paths were constructed for d = 2,3 in [35], namely the following limit
exists:

(1.1) lim
n→∞P

(· | S1[0, τ 1
n

]∩ S2[1, τ 2
n

]= ∅
)=: P(·),

where τ i
n is the first time that Si exits from a ball of radius n centered at the origin;

see (1.13) for the precise definition of P . Let S
1
, S

2
be the associated two-sided

random walks whose probability law is P and we define S(n) by S(n) = S
2
(n) if

n ≥ 0 and S(n) = S
1
(−n) if n < 0. We call S a nonintersecting random walk (see

Figure 1 for S).
In [32], it is proved that S has infinitely many global cut points almost surely.

Here, n ∈ Z is called global cut time for S if the entire of the past path S(−∞, n]
and the future path S[n + 1,∞) do not intersect. We call S(n) a global cut point if
n is a global cut time. In [32], it is shown that the number of global cut points of
S lying in the ball of radius n is of order n2−ξd . Therefore, we see that the number
of local cut points for S and the number of global cut points for S lying in a ball
of radius n are of the same order of magnitude.

For k ∈ Z, we write T k for the kth global cut times with T 0 = 0 and T k < T k+1
for each k. (Note that by definition, 0 is always a global cut time.) We call

FIG. 1. A nonintersecting random walk trace S for d = 2.
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each S[T k, T k+1] a piece again. In the present paper, we first show that each
piece has common distribution and that S[0, T 1] is asymptotically independent
of S[T k, T k+1] as |k| → ∞. More precisely, let θ be a translation shift with re-
spect to the first global cut point so that S ◦ θ(m) = S(m + T 1) − S(T 1) for all m;
see (1.14) for θ . We recall that a measure preserving system (X,B,μ,T ) is mixing
if limn→∞ μ(A ∩ T −nB) = μ(A)μ(B) for all A,B ∈ B. The first our main result
is the following.

THEOREM 1.1. Let d = 2,3. The law of S is invariant under the shift θ and θ

is mixing.

As an application of Theorem 1.1, we investigate some quantities generated by
the random walk path S[0, T n]. The quantities that we are interested in are:

• q1
n = len(LE(S[0, T n])), length (number of steps) of the loop-erasure of

S[0, T n],
• q2

n = dS[0,T n](0, S(T n)), graph distance between the origin and S(T n) on
S[0, T n],

• q3
n = RS[0,T n](0, S(T n)), effective resistance between the origin and S(T n) on

S[0, T n].
[See Section 4 for definitions and backgrounds of loop-erased random walk
(LERW), graph distance and effective resistance.] These three quantities have the
following similarities: for each 1 ≤ i ≤ 3, qi

n can be written in terms of sum of

compositions of qi
1 and θ

k
, that is, we have

(1.2) qi
n =

n−1∑
k=0

qi
1 ◦ θ

k
.

Using this expression, we want to apply some results of ergodic theory to analyze
qi
n. If qi

1 had a finite moment, we could apply Birkhoff’s theorem to show that qi
n

grows like cn. However, this is not the case since qi
1 has an infinite moment for

all i. To deal with this issue, we use Aaronson’s results derived in [1]. In [1], it

is shown that for all a > 1, either the ratio qi
n

na converges to 0 as n → ∞ a.s. or

lim supn→∞
qi
n

na = ∞ a.s. We are interested in the infimum of a satisfying that qi
n

na

converges to 0 a.s. and denote the infimum by ai
d . Then we have the following.

THEOREM 1.2. Let d = 2,3. Suppose that qi
n and ai

d (1 ≤ i ≤ 3) are as above.

Then for every a > ai
d the ratio qi

n

na converges to 0 as n → ∞ almost surely. On the

other hand, for all a < ai
d , lim supn→∞

qi
n

na = ∞ almost surely.
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With Theorem 1.2 in mind, it is natural to ask whether qi
n is logarithmically

asymptotic to nai
d . We are also interested in a comparison between these quantities

for S and the corresponding quantities for S. Unfortunately, we could not give
answers to such questions for graph distance and effective resistance. Actually, in
an early stage of this project, we tried to find a way to prove qi

n is of order nai
d just

by using general results of ergodic theory. However, since we could not find such
a way, we decided to focus on the length of the loop-erasure of S. (We should also
mention that Theorem 1.2 is the only place where we used a general result from
ergodic theory.) For the length of the loop-erasure q1

n in 2 dimensions, we have the
following theorem.

THEOREM 1.3. Let d = 2. We let τ+
n = inf{j ≥ 0 | |S(j)| ≥ n} be the first

time that S[0,∞) exits from a ball of radius n. Then we have a1
2 = 5

3 , and

lim
n→∞

logq1
n

logn
= a1

2 a.s.,(1.3)

lim
n→∞

log len(LE(S[0, τ+
n ]))

logn
= 5

4
a.s.(1.4)

Since the expected length of LE(S[0, τn]) is of order n
5
4 in 2 dimensions (see

[13, 27] and [22] for this), Theorem 1.3 gives that the length of LE(S[0, τ+
n ]) and

LE(S[0, τn]) are of the same order of magnitude.
We want to establish same type of results as Theorem 1.3 in 3 dimensions.

To prove Theorem 1.3, it turns out that we need various results of loop-erased
random walks in 2 dimensions (e.g., the expected length of LE(S[0, τn]) is of

order n
5
4 , exponential tail bounds on the length of length of LE(S[0, τn]), . . . ).

Unfortunately, those necessary results have not been established up to now in 3
dimensions. In the present article, we will show the following theorem for loop-
erased random walks in 3 dimensions, which will be used to prove that q1

n is of

order na1
3 .

THEOREM 1.4. Let d = 3. We write Mn = len(LE(S[0, τn])) for the length of
the loop-erasure of S[0, τn]. Then there exists α ∈ [1

3 ,1) such that

(1.5) lim
n→∞

logE(Mn)

logn
= 2 − α.

Furthermore, it follows that there exists c > 0 such that for all n ≥ 1 and κ ≥ 1:

(1.6) P
(
Mn ≥ κE(Mn)

)≤ 2e−cκ ,

and that for any ε ∈ (0,1), there exist 0 < cε,Cε < ∞ such that for all κ ≥ 1 and
n ≥ 1,

P

(
Mn ≤ E(Mn)

κ

)
≤ Cε exp

(−cεκ
1

2−α
−ε).(1.7)
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We should mention that once we show the existence of α as in (1.5), bounds α ∈
[1

3 ,1) immediately follow from Lawler’s estimates in [20] where it is proved that

cn2−ξ3 ≤ E(Mn) ≤ Cn
5
3 (recall that 1

2 < ξ3 < 1). To our knowledge, the existence
of the exponent α as in (1.5) and exponential tail bounds on Mn as in (1.6) and (1.7)

are new results. In 2 dimensions, E(Mn) is known to be of order n
5
4 (see [13, 27]

and [22]), and exponential tail bounds on Mn are established in [3]. Theorem 1.4 is
crucial and enough to derive an analog of Theorem 1.3 in 3 dimensions as follows.

THEOREM 1.5. Let d = 3. Recall that τ+
n = inf{j ≥ 0 | |S(j)| ≥ n} stands

for the first time that S[0,∞) exits from a ball of radius n, and that ξ3 is the
intersection exponent in 3 dimensions. Then we have a1

3 = 2−α
2−ξ3

, and

lim
n→∞

logq1
n

logn
= a1

3 a.s.,(1.8)

lim
n→∞

log len(LE(S[0, τ+
n ]))

logn
= 2 − α a.s.(1.9)

REMARK 1.6. Let Gn and Rn be the graph distance and effective resis-
tance between the origin and S(τn) on the path S[0, τn]. To our knowledge, up
to now it has not been proved or disproved that the exponents β1 and β2 with
E(Gn) = nβ1+o(1) and E(Rn) = nβ2+o(1) exist in 2 and 3 dimensions. Further-
more, exponential tail bounds on Gn and Rn also have not been established.

1.2. Some words about the proofs. In this subsection, we will explain ideas of
main theorems. For Theorem 1.1, the invariance of the law of S under the shift θ

is straightforward, but to show that S is mixing takes more work. Using the π -λ
theorem (see [10], Theorem A.1.4), it suffices to prove that the first piece S[0, T 1]
and the nth piece S[T n−1, T n] − S(T n−1) are almost independent if n is large.
Since the nth piece typically lies in the outside of a large ball when n is large,
we need to control the independence of S[0, τ+

l ] and S[τ+
m,∞) with l 	 m (see

Theorem 1.3 for τ+
l ). With this in mind, we take N large and consider two pairs

of paths γ = (γ 1, γ 2) and γ ′ = (γ 3, γ 4) such that for each i = 1,2,

(1.10)
P
(
S2i−1[0, τ 2i−1

N

]∩ S2i[1, τ 2i
N

]= ∅,(
S2i−1[0, τ 2i−1

l

]
, S2i[0, τ 2i

l

])= (
γ 2i−1, γ 2i))> 0,

where S1, . . . , S4 are independent simple random walks started at the origin and
τ

j
r stands for the first time that Sj exits from a ball of radius r . Namely, γ and γ ′

are possible configurations of S up to its first exit of the ball of radius l (we will
call such γ an initial configuration). We write AN

i,l for the event in the probability
of (1.10). In order to deal with the independence of S[0, τ+

l ] and S[τ+
m,∞), we
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will show that the distribution of (S1[τ 1
m, τ 1

N ], S2[τ 2
m, τ 2

N ]) conditioned on AN
1,l is

almost same as the distribution of (S3[τ 3
m, τ 3

N ], S4[τ 4
m, τ 4

N ]) conditioned on AN
2,l

if l 	 m (see Theorem 3.7 for the details). This implies that S[τ+
m,∞) is almost

independent of its initial configuration and we can conclude that θ is mixing.
Once we establish Theorem 1.1, Theorem 1.2 immediately follows from Theo-

rem A′ of [1].
We next consider Theorem 1.3. Since the number of global cut points of S lying

in a ball of radius n is typically of order n2−ξ2 in 2 dimensions (see Theorem 1.1 of
[32]) and ξ2 = 5

4 (see [24]), we see that the distance between the origin and S(T n)

is roughly of order n
4
3 . Indeed we will see that for any ε > 0, with high probability

T n is bounded above by τ+
n

4
3 +ε

. This implies that the length of LE(S[0, T n]) is

bounded above by the length of LE(S[0, τ+
n

4
3 +ε

]). However, tail bounds on Mk de-

rived in [3] shows that the probability that Mk ≥ k
5
4 +ε is less than Ce−ckε

, where
5
4 comes from the fact that the growth exponent for loop-erased random walk in
2 dimensions is equal to 5

4 (see [13, 27] and [22]). Therefore, the probability that

M
n

4
3 +ε

≥ n
5
3 +2ε is exponentially small in n, which is much smaller than the proba-

bility that S1 and S2 do not intersect up to the first time that they exit from a ball of

radius n
4
3 +ε [such a nonintersecting probability is a polynomial order, see (1.12)].

Consequently, we see that the length of LE(S[0, T n]) is bounded above by n
5
3 +2ε

with high probability. Similar considerations along with lower tail bounds on Mk

derived in [3] give the opposite inequality and we get Theorem 1.3.
We want to prove Theorem 1.5 by the same strategies as Theorem 1.3. However,

the following is missing in 3 dimensions:

(i) Existence of the exponent β such that E(Mn) = nβ+o(1) as n → ∞.
(ii) Exponential tail bounds on Mn.

Once we deal with these two issues, Theorem 1.5 follows from the same arguments
as in the proof of Theorem 1.3 explained as above.

For the first issue (i), the crucial object is so-called an escape probability that we
will explain from now. We are interested in the probability that a simple random
walk started at the origin and the loop-erasure of an independent simple random
walk started at the origin do not intersect up to the first time they exit from a ball
of radius n. We denote the probability by Es(n) [see Section 6.2 for the precise
definition of Es(n)]. We write B(n) for the ball of radius n centered at the origin.
Suppose that a point x with n

3 ≤ |x| ≤ 2n
3 lies in LE(S[0, τn]). Then the definition

of the loop-erasure (see Section 4) gives that the following holds:

• S hits x up to τn.
• The loop-erasure of the random walk S from the origin to x and S from x to the

boundary of B(n) do not intersect.
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Reversing a path, the probability of this event is equal to the probability that a
simple random walk from x up to the boundary of B(n) and the loop-erasure of
an independent random walk from x to the origin do not intersect. It turns out that
this probability is comparable to Es(n)

n
, which enables to conclude that E(Mn) is

comparable to n2 Es(n). Therefore, the issue (i) is reduced to proving that there
exists α such that Es(n) = n−α+o(1) as n → ∞.

In order to show the existence of the exponent α, we will give various relations
between escape probabilities on various scales (see Propositions 6.7, 6.8 and 6.10).
In particular, it will be shown in Proposition 6.11 that Es(2m+n) is comparable to
the product of Es(2n) and the probability that a random walk from (−2n,0,0) to
the boundary of B(2m+n) and the loop-erasure of an independent random walk
from (2n,0,0) to the boundary of B(2m+n) do not intersect (we denote this prob-
ability by am,n). Since we know the existence of the scaling limit of LERW in
3 dimensions (see [14]), it is natural to predict that the limit of am,n as n → ∞
exists for each fixed m. In fact, it will be shown in Proposition 7.1 that the limit
of am,n exists with the help of some results derived in [14]. Using the existence
of limn→∞ am,n and Proposition 6.11, a standard subadditive argument shows that
there exists α such that Es(n) = n−α+o(1) (see Theorem 7.4).

Estimates on escape probabilities established in Section 6 and the existence of
α as in Theorem 7.4 are enough to get exponential tail bounds on Mn by imitating
proofs in [3] (see Section 8 for tail bounds on Mn).

1.3. Structure of the paper. In the next subsection, we will collect notation
and definitions which will be used throughout the paper.

In Section 2, we will prove the first claim of Theorem 1.1, that is, we will show
that the law of S is invariant under the shift θ in Theorem 2.1.

Section 3 will be devoted to prove the second claim of Theorem 1.1. We will
show that θ is mixing in Theorem 3.8.

As an application of Theorem 1.1, in Section 4 we will consider asymptotic
behaviors of three quantities, the length of the loop-erasure, graph distance and
effective resistance of S[0, T n] along with Aaronson’s results in [1]. We will show
Theorem 1.2 in Theorem 4.2 after giving some backgrounds of these three quanti-
ties in Section 4.1.

We will prove Theorem 1.3 in Section 5 by establishing Proposition 5.2 and
Proposition 5.3.

From Section 6 to Section 9, we will focus on LERW in 3 dimensions. In par-
ticular, from Section 6 to Section 8, we will focus on the loop-erasure of usual
simple random walks (not the loop-erasure of S). In Section 6, we will give vari-
ous relations between escape probabilities on various scales. In order to give such
relations of escape probabilities, the separation lemma (see Theorem 6.5) is an
important tool. Theorem 6.5 roughly states that a random walk and an indepen-
dent LERW that are conditioned not to intersect are likely to be not very close at
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their endpoints, which allows to derive relations between escape probabilities on
various scales; see Propositions 6.7, 6.8, 6.10 and 6.11.

Using those results of the escape probabilities obtained in Section 6, we will
prove the existence of the exponent α such that Es(n) is of order n−α in Theo-
rem 7.4.

Section 8 will be devoted to establish exponential tail bounds on Mn in three
dimensions. We will prove (1.6) and (1.7) in Theorem 8.6 and Theorem 8.12. It
is also proved that E(Mn) is comparable to n2 Es(n) in Theorem 8.4 and Proposi-
tion 8.5. Combining this with Theorem 7.4, we get (1.5).

Using results obtained in Section 6–Section 8, we will prove Theorem 1.5 in
Section 9 by giving Proposition 9.1 and Proposition 9.2.

In Section 10, we will summarize our results and discuss some future works.

1.4. Notation. In this subsection, we will collect some notation and definitions
which will be used in the present article many times.

Take a sequence of points λ = [λ(0), λ(1), . . . , λ(m)] in Z
d . We call λ a

path of length m if |λ(j) − λ(j + 1)| = 1 for all j . Here, | · | stands for
the Euclid distance in R

d . We write lenλ for the length of λ. For two pats
λ = [λ(0), λ(1), . . . , λ(m)] and γ = [γ (0), γ (1), . . . , γ (n)] with λ(m) = γ (0), we
write λ + γ = [λ(0), λ(1), . . . , λ(m), γ (1), . . . , γ (n)]. We set λR = [λ(m),λ(m −
1), . . . , λ(0)] for the time reversal of λ. We call λ a simple path if λ(i) �= λ(j) for
all i �= j .

We let B(x,n) = {y ∈ Z
d | |y − x| ≤ n} be the discrete ball of radius n centered

at x. We write B(n) for B(0, n) the ball of radius n centered at the origin.
For a set A ⊂ Z

d , we let ∂A = {x /∈ A | there exits y ∈ A such that |x −
y| = 1} be the outer boundary of A. We write ∂iA = {x ∈ A|, there exits y /∈
A such that |x − y| = 1} for the inner boundary of A.

For a subset A ⊂ R
d , r > 0, and a point x ∈ R

d , we write x + A = {x + y | y ∈
A} and rA = {ry | y ∈ A}.

S, S1, S2, S3 and S4 stand for independent simple random walks in Z
d . We

write P x and Ex for probability of S and its expectation assuming that S(0) = x.
If x = 0, we use P and E instead of P 0 and E0. We sometimes consider a product
probability of Si and Sj with i < j assuming that Si(0) = x and Sj (0) = y. We
write P x,y and Ex,y for the product probability and its expectation. Of course, it
depends on i and j and we should write P

x,y
i,j instead of P x,y to emphasize that it

stands for the product probability measure of Si and Sj . However, in order to avoid
complication of notation, we will use P x,y . For example, P x,y(S1[0, n] ∩ A �=
∅, S3[0,m]∩A �=∅) stands for the probability that both S1[0, n] and S3[0,m] hit
A assuming that S1(0) = x and S3(0) = y. We also use P and E instead of P 0,0

and E0,0 if x = y = 0.
For a Markov chain X and a set A, we let τX

A = inf{j ≥ 0 | X(j) /∈ A} be the
first time that X exists from A. If X is S, we use τA instead of τS

A. Furthermore,
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if X = Si , we use τ i
A instead of τSi

A . When A = B(n), we use τX
n instead of τX

B(n).

We also use τn (resp., τ i
n) for the case that A = B(n) and X = S (resp., X = Si). If

A = {x}, we write τX
x instead of τX{x}. Then τx and τ i

x can be defined for the case

that X = S and X = Si . We let σX
A = inf{j ≥ 1 | X(j) ∈ A} be the first time that X

hits A. For the first hitting time, σA, σ i
A, σX

n , σn, σ i
n, σX

x , σx and σ i
x can be defined

similarly.
For a Markov chain X and x, y ∈ A ⊂ Z

d , we write

GX(x, y,A) = Ex
X

(τX
A −1∑
j=0

1
{
X(j) = y

})

for Green’s function of X in A, where P x
X and Ex

X stands for the probability of X

and its expectation assuming that X(0) = x. If X = S, we use G(x,y,A) instead
of GS(x, y,A).

Let �(n) be the set of paths satisfying that

γ (0) = 0, γ (j) ∈ B(n) for all j = 0,1, . . . , lenγ − 1,

γ (lenγ ) ∈ ∂B(n).

We write �(∞) = {γ | γ (0) = 0, lenγ = ∞, and limj→∞ |γ (j)| = ∞} for a set
of infinite paths. We next define a set of pairs of paths γ = (γ 1, γ 2) satisfying a
nonintersecting condition as follows. Let

�(n) = {
γ = (

γ 1, γ 2) ∈ �(n) × �(n) | γ 1[0, lenγ 1]∩ γ 2[1, lenγ 2]=∅
}
.

We also write �(∞) = {γ = (γ 1, γ 2) ∈ �(∞) × �(∞) | γ 1[0,∞) ∩ γ 2[1,∞) =
∅} for a set of pairs of infinite paths satisfying the nonintersecting condition.

Let S1, S2 be independent simple random walks in Z
d started at the origin. We

write

(1.11) An = {(
S1[0, τ 1

n

]
, S2[0, τ 2

n

]) ∈ �(n)
}

for the event that S1 and S2 do not intersect up to the first time that they exit from
B(n). The intersection exponent ξd (d = 2,3) is characterized by

(1.12) P(An) 
 n−ξd ;
see [18] for the intersection exponent. For the value of ξ2, it is proved in [24] that
ξ2 = 5

4 . The exact value of ξ3 is not known. The best rigorous estimates for ξ3 are
1
2 < ξ3 < 1; see [19, 26].

In [35], it was proved that for each L ∈ N and a pair of paths γ = (γ 1, γ 2) ∈
�(L), the limit of the conditional probability

(1.13) lim
n→∞P

((
S1[0, τ 1

L

]
, S2[0, τ 2

L

])= γ | An

)
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exists. If we denote the value of (1.13) by P(γ ), then P extends uniquely to a
probability measure on �(∞). We denote this probability space by (�,F,P ). Let

S
1
, S

2
be the associated two-sided random walks whose probability law is P . We

set τ i
n = inf{j ≥ 0 | S

i
(j) /∈ B(n)} for the first time that S

i
exits from B(n). For

n ∈ Z, we write

S(n) =
⎧⎨
⎩S

2
(n) (n ≥ 0),

S
1
(−n) (n < 0).

for the doubly infinite random walk. For m ∈ Z, we write θm for the translation
shift so that S ◦θm(n) = S(n+m)−S(m) for each n ∈ Z. In [32], global cut points
for S are studied. Here, n ∈ Z is called global cut time for S if the entire of the past
part S(−∞, n] and the future part S[n + 1,∞) do not intersect. We call S(n) a
global cut point if n is a global cut time. We set τ+

n = inf{j ≥ 0 | S(j) /∈ B(n)}
for the first time that S[0,∞) exits from B(n). We also define τ−

n = sup{j ≤ 0 |
S(j) /∈ B(n)} for S(−∞,0]. In [32], it is proved that the number of global cut
times lying in [0, τ+

n ] is equal to n2−ξd+o(1) as n → ∞ with probability one. Here,
ξd stands for the intersection exponent for simple random walks in d dimensions
(see [18] for the intersection exponent). This is true for the number of global cut
times lying in [−τ−

n ,0]. In particular, S has infinitely many global cut times both in
(−∞,0] and [0,∞) almost surely. Thus we may define the set of global cut times
T = {. . . , T −2, T −1, T 0, T 1, T 2, . . .} with T 0 = 0 and T j < T j+1 for each j . We
define the translation shift with respect to the first global cut point by

(1.14) θ := θT 1
.

Throughout the paper, we use c, c′, c1,C,C′,C1, . . . to denote arbitrary positive
constants which may change from line to line. If a constant is to depend on some
other quantity, this will be made explicit. For example, if c depends on ε, we write
cε [or c(ε)]. We write an 
 bn if there exist constants c1, c2 such that

(1.15) c1bn ≤ an ≤ c2bn.

We write an ∼ bn if

(1.16) lim
n→∞

an

bn

= 1.

Finally, we denote an ≈ bn if

(1.17) lim
n→∞

logan

logbn

= 1.

To avoid complication of notation, we do not use �r� (the largest integer ≤ r) even
though it is necessary to carry it.
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2. Invariance under the translation shift. Recall that the conditioned ran-
dom walk S has infinitely many global cut times both in positive and negative
times almost surely. The shift θ is the translation shift that translates the first global
cut point to the origin; see (1.14) for θ . In this section, we will prove that the law
of S is invariant under the shift θ in Theorem 2.1 below. From this, we see that
S[T i, T i+1] − S(T i) has same distribution as S[0, T 1] for each i ∈ Z. It turns out
that the proof of Theorem 2.1 follows from a standard application of the transla-
tion invariance of the usual simple random walk S. Therefore, the argument here
might be used to show the same type of the invariance of the corresponding “two-
sided” objects for other models, for example, critical percolation (see [8] for such
a two-sided object for critical percolation in 2 dimensions).

THEOREM 2.1. The law of S is invariant under the shift θ .

PROOF. In order to prove the theorem, by the π -λ Theorem (see [10], Theo-
rem A.1.4), it suffices to show that

(2.1) P
(
θ

−1
A
)= P(A),

where A is an event that

A = {
S[0, T 1] = λ

}
,

with P(A) > 0.
So fix a path λ = [λ(0), λ(1), . . . , λ(l)] with length l and assume that P (A) > 0.

The definition of θ immediately gives that

(2.2) P
(
θ

−1
A
)= P

(
S[T 1, T 2] − S(T 1) = λ

)
.

We want to say that the right-hand side of (2.2) is equal to P(A). To show it, we
consider every path γ such that the probability of the first piece S[0, T 1] being γ

is positive, that is, we define

(2.3) Bead = {
γ | P (S[0, T 1] = γ

)
> 0

}
.

Then we have

P
(
S[T 1, T 2] − S(T 1) = λ

)= ∑
γ∈Bead

P
(
S[0, T 1] = γ,S[T 1, T 2] = λ + γ (lenγ )

)
.

Fix γ ∈ Bead such that P (S[0, T 1] = γ,S[T 1, T 2] = λ + γ (lenγ )) > 0. Let
lenγ = k. The definition of P [see (1.13)] gives that

P
(
S[0, T 1] = γ,S[T 1, T 2] = λ + γ (lenγ )

)
= lim

N→∞P
(
S2[0, k] = γ,S2[k, k + l] = λ + γ (lenγ ),FN | AN

)
,
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where AN was defined as in (1.11) and FN is defined by

FN = {
S1[0, τ 1

N

]∩ (γ
(
0, k] ∪ (

λ + γ (lenγ )
)∪ S2[k + l, τ 2

N

])= ∅
}
.

Namely, FN is the event that time k = lenγ and k + l are cut times for S2 up to
time τ 2

N . Now we want to translate γ (k) to the origin and to use the translation
invariance for the usual simple random walk. With this in mind, we write γ R =
[γ (k), γ (k − 1), . . . , γ (0)] for the time reverse of γ . Let x = γ (k). Since B(N −
|x|) ⊂ B(N) − x ⊂ B(N + |x|), we can use the translation invariance to show that

P
(
S1[0, k] = γ R − x,S2[0, l] = λ,F+

N ,AN+|x|
)

≤ P
(
S2[0, k] = γ,S2[k, k + l] = λ + γ (lenγ ),FN,AN

)
≤ P

(
S1[0, k] = γ R − x,S2[0, l] = λ,F−

N ,AN−|x|
)
,

where

F+
N = {

S1[k, τ 1
N+|x|

]∩ (γ (0, k] − x) =∅, S2(l, τ 2
N+|x|] ∩ λ =∅

}
,

F−
N = {

S1[k, τ 1
N−|x|

]∩ (γ (0, k] − x) =∅, S2(l, τ 2
N−|x|] ∩ λ =∅

}
.

Namely, F+
N is the event that time k is a cut time for S1 up to τ 1

N+|x| and l is a cut

time for S2 up to τ 2
N+|x|. F−

N is the event obtained by replacing τ i
N+|x| by τ i

N−|x|
in the definition of F+

N .
By definition of P , we have

lim
N→∞

P(S1[0, k] = γ R − x,S2[0, l] = λ,F+
N ,AN+|x|)

P (AN+|x|)

= P
(
S[T −1,0] = γ − x,S[0, T 1] = λ

)
= lim

N→∞
P(S1[0, k] = γ R − x,S2[0, l] = λ,F−

N ,AN−|x|)
P (AN−|x|)

.

However, by Corollary 4.2 in [35], we have

lim
N→∞

P(AN±|x|)
P (AN)

= 1,

which implies that

P
(
S[T −1,0] = γ − x,S[0, T 1] = λ

)
= P

(
S[0, T 1] = γ,S[T 1, T 2] = λ + γ (lenγ )

)
.

By taking the sum for γ ∈ Bead such that P(S[0, T 1] = γ,S[T 1, T 2] = λ +
γ (lenγ )) > 0, we have

P
(
θ

−1
A
)= P (A),

and complete the proof. �
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3. Ergodicity w.r.t. the translation shift. In this section, we prove the shift
θ is mixing in Theorem 3.8 below. We will explain the sketch of the proof here. In
order to prove Theorem 3.8, again by the π -λ Theorem (see [10], Theorem A.1.4),
it suffices to show that

(3.1) lim
n→∞P

(
A ∩ θ

−n
B
)= P (A)P (B),

where we write

(3.2) A = {
S[0, T 1] = λ

}
, B = {

S[0, T 1] = γ
}
,

with λ,γ ∈ Bead [see (2.3) for Bead]. In order to prove (3.1) for those events, we
want to show that two events

(3.3)
{
S[0, T 1] = λ

}
and

{
S[T n,T n+1] − S(T n) = γ

}
are asymptotically independent as n → ∞. Suppose that λ ⊂ B(r) and γ +
S(T n) ⊂ B(R)c. By taking n large, we may assume R is much bigger than r .
Therefore, in order to show that two events in (3.3) are almost independent, we
need to control the independence between S[0, τ+

r ] and S[τ+
R,∞) (see Section 1.4

for τ+
r ). Since S is a conditioned random walk and does not satisfy the strong

Markov property, in order to achieve it, we need a careful consideration as fol-
lows. Take two pairs of paths γ k = (γ 1

k , γ 2
k ) (k = 1,2) satisfying that γ i

k ⊂ B(r)

for all i, k (we call γ k an initial configuration). We are interested in the conditional
law of (S1[0, τ 1

R], S2[0, τ 2
R]) conditioned on AR and Si[0, τ i

r ] = γ i
k for i = 1,2

[recall that AR was defined as in (1.11)]. The law of those conditional two-sided
walks near B(r) may have a big difference between k = 1 and k = 2. However, we
will prove that the law the conditional two-sided walks after exiting a large ball
(outside a large ball) for k = 1 is close to that for k = 2 in Theorem 3.7 below.
This theorem allows to prove Theorem 3.8.

In order to prove Theorem 3.7, we need to compare the probability of the events
AR ∩ {Si[0, τ i

r ] = γ i
k } for k = 1,2. We will give the difference between them in

Lemma 3.4.

3.1. Forgetting an initial configuration. The goal of this subsection is Theo-
rem 3.7. As we discussed above, Theorem 3.7 states roughly that the two-sided
walk conditioned on AR after exiting a large ball is almost independent from an
initial configuration. In order to prove this theorem, we will show that the probabil-
ity of AR with a given initial configuration is almost independent from the initial
configuration if the configuration satisfies some suitable conditions in Lemma 3.4.
To achieve the lemma, we will first collect some results derived in [32] in Sec-
tion 3.1.1, which will be used later.
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3.1.1. Separation lemma and up-to-constants estimates. In this subsection,
we will collect some known results derived in [32]. One of the important results
here is the so-called “separation lemma” (Proposition 3.1). This lemma roughly
states that two paths that are conditioned not to intersect are likely to be not very
close at their endpoints. There are many ways to define the “separation event”.
Here, we choose a particular one considered in [32].

Assume d = 2 or 3. For each l < n and γ = (γ 1, γ 2) ∈ �(l), see Section 1.4 for
�(l). We define

An(γ ) =

⎧⎪⎪⎨
⎪⎪⎩

S1[0, τ 1
n

]∩ γ 2 =∅,

S2[0, τ 2
n

]∩ γ 1 =∅,

S1[0, τ 1
n

]∩ S2[0, τ 2
n

]= ∅

⎫⎪⎪⎬
⎪⎪⎭ .(3.4)

Let wi = γ i(lenγ i). We assume Si(0) = wi when we consider An(γ ). Let

(3.5)
I (r) = {

(x1, . . . , xd) ∈ Z
d : x1 ≥ r

}
,

I ′(r) = {
(x1, . . . , xd) ∈ Z

d : x1 ≤ −r
}
.

For each l ∈ N, let Sep(l) denote the separation event (see Figure 2 for Sep)

(3.6)

Sep(l) =
{
S1[0, τ 1

2l

]⊂ B

(
3l

2

)
∪ I

(
4l

3

)}

∩
{
S2[0, τ 2

2l

]⊂ B

(
3l

2

)
∪ I ′

(
4l

3

)}
.

In Proposition 2.1 of [32], the following proposition was proved. This propo-
sition states that conditioned on A2l(γ ), the conditional probability of S1 and S2

being well-separated in the sense that they satisfy Sep(l) is positive.

PROPOSITION 3.1. There exists c > 0 such that for all l ∈ N and γ =
(γ 1, γ 2) ∈ �(l),

(3.7) P w1,w2(
Sep(l) | A2l(γ )

)≥ c,

where wi = γ i(lenγ i).

In Corollary 2.2 of [32], the following corollary was proved. Roughly speaking,
we compare An(γ ) with the probability that A2l(γ ) and S1, S2 do not intersect
from first time that they hit ∂B(2l) to the first time that they hit ∂B(n). Namely,
we want to separate the event into “before” and “after” exiting B(2l). It turns out
that the probability of latter event is comparable to (n

l
)−ξd where ξd denotes the

intersection exponent as in (1.12). We also point out that the upper bound of (3.8)
is not difficult and that Proposition 3.1 was used to prove the lower bound of (3.8),
see Corollary 2.2 of [32].
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FIG. 2. The event A2l (γ ) ∩ Sep(l).

COROLLARY 3.2. There exist c1, c2 such that for all l, n with 2l < n and all
γ = (γ 1, γ 2) ∈ �(l) with wi = γ i(lenγ i) ∈ ∂B(l),

(3.8)

c1

(
n

l

)−ξd

P w1,w2(
A2l(γ )

)≤ P w1,w2(
An(γ )

)

≤ c2

(
n

l

)−ξd

P w1,w2(
A2l(γ )

)
.

3.1.2. Good sets of paths. The goal of this subsection is Lemma 3.4. This
lemma shows that the probability of An(γ ) is close to that of An(γ

′) assuming
that initial configurations γ and γ ′ satisfy some condition. If γ and γ ′ are almost
same configurations, then the difference between the probability of An(γ ) and that
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of An(γ
′) is small. With this in mind, we will first consider some condition that

the initial configuration should satisfy (we call the configuration which satisfy the
condition a “good” one).

Take l < n and two initial configurations γ = (γ 1, γ 2), γ ′ = (γ 3, γ 4) ∈ �(l).
Let wi be the end point of γ i . We write ql,n(γ ) = P w1,w2

(An(γ )) and define
ql,n(γ

′) similarly. We want to compare the difference between ql,n(γ ) and ql,n(γ
′).

We will only consider some set of initial configurations defined as follows. We
define

Goodl,k = {
γ ∈ �(l) : ql,2l(γ ) ≥ 1/

√
k
}
,

for k ≥ 1 and l. When the endpoint of γ i is not very close to γ 3−i for each i = 1,2,
ql,2l(γ ) is not so small. Therefore, such a configuration is in a good set Goodl,k .

Note that
⋃

k Goodl,k = �(l). Furthermore, by Corollary 3.2, we see that for
n > 2l

(3.9)

ql,n(γ ) ≥ c1
1√
k

(
n

l

)−ξd

, γ ∈ Goodl,k,

ql,n(γ ) ≤ c2
1√
k

(
n

l

)−ξd

, γ /∈ Goodl,k.

The next lemma shows that conditioned on An(γ ), S1 and S2 do not return to a
small ball with conditional high probability when γ is a good initial configuration.
Furthermore, under the same assumption, we will also prove that conditioned on
A2n(γ ), the pair of S1 and S2 is in a good set of configurations with high proba-
bility.

LEMMA 3.3. There exists c < ∞ such that if l ≤ m ≤ n and 2l < n, then for
all γ ∈ Goodl,k ,

∣∣P w1,w2(
An(γ ) ∩ F

)− ql,n(γ )
∣∣≤ c

1√
k
ql,n(γ ),

∣∣P w1,w2(
A2n(γ ) ∩ F ∩ G

)− ql,2n(γ )
∣∣≤ c

1√
k
ql,2n(γ ),

where

F =
{(

S1[0, τ 1
m

]∪ S2[0, τ 2
m

])∩ B

(
l

k

)
= ∅

}

and

G = {(
γ 1 + S1[0, τ 1

m

]
, γ 2 + S2[0, τ 2

m

]) ∈ Goodm,k

}
.

PROOF. We first consider the first inequality in three dimensions. Let

F ′ =
{
S1[0, τ 1

m

]∩ B

(
l

k

)
�= ∅

}
.
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For d = 3, by Proposition 1.5.10 of [16], we have

P w1,w2(
F ′)≤ c

1

k
.

However, Corollary 4.6 of [18] shows that

max
z1,z2∈B(l)

P z1,z2(
S1[0, τ 1

n

]∩ S2[0, τ 2
n

]= ∅
)≤ C

(
n

l

)−ξ3

.

(We mention that ζd was used to stand for the intersection exponent in [18] and
that ξd = 2ζd .) Hence, by the strong Markov property,

P w1,w2(
An(γ ) ∩ F ′)≤ c

1

k

(
n

l

)−ξ3

.

On the other hand, since γ ∈ Goodl,k , we have

ql,n(γ ) ≥ c1
1√
k

(
n

l

)−ξ3

,

which implies that∣∣P w1,w2(
An(γ ) ∩ F

)− ql,n(γ )
∣∣≤ 2P w1,w2(

An(γ ) ∩ F ′)
≤ 2c

1

k

(
n

l

)−ξ3

≤ c
1√
k
ql,n(γ ).

Next, we consider d = 2. For d = 2, since P w1,w2
(F ′) is not small enough,

we need a different way as follows. Assume that the event F ′ occurs. Let u1 :=
inf{t | S1(t) ∈ B( l

k
)} and let u2 := inf{t ≥ u1 | S1(t) ∈ ∂B(l)}. By applying the

Beurling estimate (see Theorem 6.8.1 of [23]) to both events S1[0, u1] ∩ γ 2 = ∅

and S1[u1, u2] ∩ γ 2 = ∅, we have

P w1,w2(
F ′ ∩ {

S1[0, u2] ∩ γ 2 = ∅
})≤ c

k
.

Therefore, by using the strong Markov property as above, we also get the first
inequality for d = 2.

The second inequality is easy. Using the strong Markov property as well as
Corollary 3.2 and (3.9), we see that

P w1,w2(
A2n(γ ) ∩ Gc)= P w1,w2(

Am(γ ) ∩ A2n(γ ) ∩ Gc)
≤ P w1,w2(

Am(γ )
)
P w1,w2(

A2n(γ ) | Am(γ ) ∩ Gc)
≤ c

(
m

l

)−ξd

P w1,w2(
A2l(γ )

) 1√
k

(
n

m

)−ξd
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≤ cP w1,w2(
A2l(γ )

) 1√
k

(
n

l

)−ξd

≤ cql,2n(γ )
1√
k
.

So we complete the proof. �

For two pairs of paths γ = (γ 1, γ 2), γ ′ = (γ 3, γ 4) ∈ �(l), we write γ =k γ ′
if γ after exiting B( l

k
) is same as that of γ ′. Namely, if we let τi(

l
k
) = inf{j ≥

0 | γ i(j) /∈ B( l
k
)} for 1 ≤ i ≤ 4, then we write γ =k γ ′ when γ i[τi(

l
k
), lenγ i] =

γ i+2[τi+2(
l
k
), lenγ i+2] for each i = 1,2.

The next lemma shows that if the initial configuration γ is good and γ =k γ ′,
then the probability of An(γ ) is close to that of An(γ

′).

LEMMA 3.4. There exists c0 < ∞ such that if l < 2n, k ≥ 1, γ ∈ Goodl,k ,
γ ′ ∈ �(l) and γ =k γ ′, then we have

∣∣ql,n(γ ) − ql,n

(
γ ′)∣∣≤ c0

1√
k
ql,n(γ ).

PROOF. Let wi (i = 1,2) be the endpoint of γ i . Since γ =k γ ′, the endpoint
of γ i+2 is wi . Let Si be the simple random walk started at wi . For each i = 1,2,
let

Fi =
{
Si[0, τ i

n

]∩ B

(
l

k

)
= ∅

}
.

Since γ =k γ ′, when F1 and F2 occur, the probability of An(γ ) is same as that of
An(γ

′). So we have

P w1,w2(
An(γ ) ∩ F1 ∩ F2

)= P w1,w2(
An

(
γ ′)∩ F1 ∩ F2

)
.

Thus,

∣∣ql,n(γ ) − ql,n

(
γ ′)∣∣≤ 2∑

i=1

P w1,w2(
An(γ ) ∩ Fc

i

)+ 2∑
i=1

P w1,w2(
An

(
γ ′)∩ Fc

i

)
.

We will only show that

P w1,w2(
An(γ ) ∩ Fc

1
)≤ c

1√
k
ql,n(γ ).

The other three terms can be estimated similarly. We first consider when d = 3.
Recall that we define u1 := inf{t | S1(t) ∈ B( l

k
)} and let u2 := inf{t ≥ u1 | S1(t) ∈
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∂B(l)} in the proof of the previous lemma. Assume that Fc
1 occurs. Then u1 <

u2 < τ 1
n . Thus, using the Markov property and Proposition 1.5.10 of [16],

P w1,w2(
An(γ ) ∩ Fc

1
)≤ P w1,w2(

u1 < u2 < ξn,S
1[u2, τ

1
n

]∩ S2[0, τ 2
n

]= ∅
)

≤ P w1(
u1 < τ 1

n

)
max

x,y∈∂B(l)
P x,y(S1[0, τ 1

n

]∩ S2[0, τ 2
n

]= ∅
)

≤ c

k
max

x,y∈∂B(l)
P x,y(S1[0, τ 1

n

]∩ S2[0, τ 2
n

]= ∅
)
.

By Corollary 4.6 in [18],

max
x,y∈∂B(l)

P x,y(S1[0, τ 1
n

]∩ S2[0, τ 2
n

]=∅
)≤ c

(
n

l

)−ξ3

.

Therefore, if γ ∈ Goodl,k , by (3.9) we have

P w1,w2(
An(γ ) ∩ Fc

1
)≤ c

1√
k
ql,n(γ ),

which completes the proof when d = 3.
Now we will show the lemma when d = 2. Note that by using the strong Markov

property and Corollary 4.6 in [18] again,

P w1,w2(
An(γ ) ∩ Fc

1
)

≤ P w1,w2(
u1 < u2 < ξn,S

1[0, u2] ∩ γ 2 = ∅, S1[u2, τ
1
n

]∩ S2[0, τ 2
n

]=∅
)

≤ P w1(
u1 < u2 < ξn,S

1[0, u2] ∩ γ 2 = ∅
)

× max
x,y∈∂B(l)

P x,y(S1[0, τ 1
n

]∩ S2[0, τ 2
n

]= ∅
)

≤ c

(
n

l

)−ξ2

P w1(
u1 < u2 < ξn,S

1[0, u2] ∩ γ 2 = ∅
)
.

However, if we apply the Beurling estimate (see Theorem 6.8.1 of [23]) to two
events {S1[0, u1] ∩ γ 2 = ∅} and {S1[u1, u2] ∩ γ 2 = ∅}, we have

P w1(
u1 < u2 < ξn,S

1[0, u2] ∩ γ 2 = ∅
)≤ c

k
.

Therefore, if γ ∈ Goodl,k , by (3.9) we have

P w1,w2(
An(γ ) ∩ Fc

1
)≤ c

1√
k
ql,n(γ ),

which completes the proof when d = 2. �
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3.1.3. Coupling. The goal of this subsection is Theorem 3.7. Theorem 3.7
roughly states that the conditional law of S1, S2 after exiting a large ball con-
ditioned on An(γ ) is almost independent of the initial configuration γ . To state
more precisely, we write μl,n(γ ) for the probability measure on the space of two-
sided paths, which is induced by (S1[0, τ 1

n ], S2[0, τ 2
n ]) conditioned on the event

An(γ ). In Theorem 3.7, we want to show that μl,n(γ ) is close to μl,n(γ
′) in “out-

side” a large ball. To achieve this, we will consider a coupling. This approach is
based on the same spirit as in Theorem 4.1 of [26]. If γ =k γ ′ for large k, then
we can couple μl,n(γ ) and μl,n(γ

′) with high probability such that they are close
(see Proposition 3.5). But if k is not large, then we can couple them with positive
probability (see Proposition 3.6). Using these propositions, we will prove Theo-
rem 3.7. Proposition 3.5, Proposition 3.6 and Theorem 3.7 are discrete analogs of
Proposition 4.4, Proposition 4.5 and Theorem 4.1 of [26], respectively.

For γ ∈ �(l) and l < m < n, let μl,m,n(γ ) be the probability measure on the
space of two-sided paths, which is induced by (S1[0, τ 1

m], S2[0, τ 2
m]) conditioned

on the event An(γ ). Note that a two-sided path λ = (λ1, λ2) is in the support of
μl,m,n(γ ) if and only if λi(0) = wi for each i = 1,2 and (γ 1 + λ1, γ 2 + λ2) ∈
�(m).

We will first prove the following proposition which states that if γ =k γ ′ for k

large enough, then the paths stay coupled with high probability.

PROPOSITION 3.5. There exists C0 such that we have the following: Suppose
that k, l,m,n are positive integers with 2l < m and 2m < n. Let γ , γ ′ ∈ �(l).
Assume that γ ∈ Goodl,k and γ =k γ ′. Then we can define λl,m,λ

′
l,m on the same

probability space (�,F,P ) such that λl,m has the distribution μl,m,n(γ ), λ
′
l,m has

the distribution μl,m,n(γ
′), and that

P
(
λl,m = km

l
λ

′
l,m

)≥ 1 − C0
1√
k
,

P (λl,m ∈ Goodm,k) ≥ 1 − C0
1√
k
.

PROOF. Take γ = (γ 1, γ 2), γ ′ = (γ 3, γ 4) ∈ �(l). Assume that γ ∈ Goodl,k

and γ =k γ ′. In order to prove the lemma, as in the proof of Proposition 4.4 of [26],
it suffices to estimate the total variation distance between μl,m,n(γ ) and μl,m,n(γ

′).
Let wi be the endpoint of γ i (i = 1,2).

Take a pair of paths λ = (λ1, λ2) with λi(0) = wi for each i = 1,2 and (γ 1 +
λ1, γ 2 +λ2) ∈ �(m). Suppose that λi ∩B( l

k
) =∅ for each i = 1,2. Since γ =k γ ′,

we see that (γ 3 + λ1, γ 4 + λ2) ∈ �(m). We write vi for the endpoint of λi . Let
γ + λ := (γ 1 + λ1, γ 2 + λ2) and we write γ ′ + λ for (γ 3 + λ1, γ 4 + λ2). Suppose
that γ + λ ∈ Goodm,k . Note that by the strong Markov property:

μl,m,n(γ )[λ] = P w1,w2
(Si[0, τ i] = λi for i = 1,2)P v1,v2

(An(γ + λ))

P w1,w2
(An(γ ))

.
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Since γ + λ ∈ Goodm,k , γ ′ + λ ∈ �(m) and γ =k γ ′, by using Lemma 3.4, we see
that ∣∣μl,m,n(γ )[λ] − μl,m,n

(
γ ′)[λ]∣∣≤ c√

k
μl,m,n(γ )[λ].

Let H be the set of pairs of paths λ = (λ1, λ2) with λi(0) = wi such that (γ 1 +
λ1, γ 2 + λ2) ∈ �(m), λi ∩ B( l

k
) = ∅, and γ + λ ∈ Goodm,k . Then by Lemma 3.3,

μl,m,n(γ )
[
Hc]≤ c√

k
.

Therefore, we have

P
(
λl,m �= km

l
λ

′
l,m

)= 1

2

∥∥μl,m,n(γ ) − μl,m,n

(
γ ′)∥∥≤ C0

1√
k
,

for some C0 < ∞. The second inequality follows from Lemma 3.3 and we com-
plete the proof. �

What about the case that γ =k γ ′ for small k, or γ and γ ′ do not have the same
end points? In such cases, we will show that the coupling still can be started, with
positive probability in the next proposition.

We fix an integer K such that C0
2√
K

< 1
2 where C0 is the constant as in Propo-

sition 3.5. For the case that k is not large, or γ and γ ′ do not have the same end
points, we will use the following coupling.

PROPOSITION 3.6. There exists b > 0 such that if l < n are positive integers
with Kl < n and γ , γ ′ ∈ �(l), then we can couple μl,Kl,n(γ ) and μl,Kl,n(γ

′) such
that with probability at least b,

λl,Kl =K
4

λ
′
l,Kl,

and

λl,Kl ∈ Good
Kl,K

4
.

PROOF. Take γ = (γ 1, γ 2), γ ′ = (γ 3, γ 4) ∈ �(l). We attach (S1[0, τ 1
Kl],

S2[0, τ 2
Kl]) to γ and γ ′ in the following way. By Proposition 3.1, with posi-

tive conditional probability conditioned on An(γ ) [resp., An(γ
′)], we can attach

(S1[0, τ 1
2l], S2[0, τ 2

2l]) to γ (resp., γ ′) such that γ + (S1[0, τ 1
2l], S2[0, τ 2

2l]) [resp.,
γ ′ + (S1[0, τ 1

2l], S2[0, τ 2
2l])] satisfies Sep(l). Next, we can attach (S1[τ 1

2l , τ
1
4l],

S2[τ 2
2l , τ

2
4l]) with positive conditional probability such that γ + (S1[0, τ 1

4l],
S2[0, τ 2

4l]) and γ ′ + (S1[0, τ 1
4l], S2[0, τ 2

4l]) have the same endpoints and both of
them satisfy Sep(2l). Finally, since they are separated, with positive probabil-
ity, we can attach the same random walks (S1[τ 1

4l , τ
1
Kl], S2[τ 2

4l , τ
2
Kl]) such that

λl,Kl =K
4

λ
′
l,Kl and λl,Kl ∈ GoodKl,K . So we complete the proof. �
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For γ ∈ �(l) and l < n, we write μl,n(γ ) for μl,n,n(γ ). Recall that μl,n,n(γ ) is
the probability measure induced by (S1[0, τ 1

n ], S2[0, τ 2
n ]) conditioned that An(γ )

holds. For any two paths γ , γ ′ ∈ �(l), we want to say μl,n(γ ) and μl,n(γ
′) are

close. Clearly, if the endpoints for γ are not same as those of γ ′, μl,n(γ ) and
μl,n(γ

′) are not close near B(l). So we will show that (S1[0, τ 1
n ], S2[0, τ 2

n ]) con-
ditioned that An(γ ) and (S1[0, τ 1

n ], S2[0, τ 2
n ]) conditioned that An(γ

′) are close in
the outside a large ball. To show this, we construct two random variables λl,n, λ

′
l,n

on the same probability space (�,F,P ) such that λl,n has the distribution μl,n(γ ),
λ

′
l,n has the distribution μl,n(γ

′) and they are close in outside a large ball with high
probability, that is, we will show the following coupling result.

THEOREM 3.7. There exist 0 < c,β < ∞ such that for all integers l,m,n

with 0 < 2l < m ≤ n and all γ , γ ′ ∈ �(l), we can define λl,n, λ
′
l,n on the same

probability space (�,F,P ) such that λl,n has the distribution μl,n(γ ), λ
′
l,n has

the distribution μl,n(γ
′), and that

(3.10) P
(
λl,n = n

m
λ

′
l,n

)≥ 1 − c

(
m

l

)−β

.

PROOF. Recall that K is the constant as in Proposition 3.6. We write J

for the largest integer such that KJ l ≤ m
2 . We will first construct a coupling

of μl,KJ l,n(γ ) and μl,KJ l,n(γ
′). To achieve it, we first define a coupling of

γ + (S1[0, τ 1
Kl], S2[0, τ 2

Kl]) and γ ′ + (S1[0, τ 1
Kl], S2[0, τ 2

Kl]), and then we define a
coupling of γ + (S1[0, τ 1

K2l
], S2[0, τ 2

K2l
]) and γ ′ + (S1[0, τ 1

K2l
], S2[0, τ 2

K2l
]), etc.

For each j ≤ J , we write σ(j) for the largest integer k such that in the coupling at
j th stage,

γ + (
S1[0, τ 1

Kj l

]
, S2[0, τ 2

Kj l

])=k γ ′ + (
S1[0, τ 1

Kj l

]
, S2[0, τ 2

Kj l

])
and (γ + (S1[0, τ 1

Kj l
], S2[0, τ 2

Kj l
])) ∈ GoodKj l,k . Given γ + (S1[0, τ 1

Kj l
],

S2[0, τ 2
Kj l

]) and γ ′ + (S1[0, τ 1
Kj l

], S2[0, τ 2
Kj l

]) after j th stage, we proceed the
next step as follows:

• We construct a coupling of γ + (S1[0, τ 1
Kj+1l

], S2[0, τ 2
Kj+1l

]) and γ ′ +
(S1[0, τ 1

Kj+1l
], S2[0, τ 2

Kj+1l
]) using Proposition 3.5 if σ(j) ≥ K

4 .

• We construct a coupling of γ + (S1[0, τ 1
Kj+1l

], S2[0, τ 2
Kj+1l

]) and γ ′ +
(S1[0, τ 1

Kj+1l
], S2[0, τ 2

Kj+1l
]) using Proposition 3.6 if σ(j) < K

4 .

Given γ + (S1[0, τ 1
Kj l

], S2[0, τ 2
Kj l

]) and γ ′ + (S1[0, τ 1
Kj l

], S2[0, τ 2
Kj l

]) with

σ(j) = k ≥ K
4 . Then Proposition 3.5 shows that the conditional probability of

σ(j + 1) being equal to kK is bounded below by 1 − C0
1√
k

. On the other hand,

given a configuration after j th stage, the conditional probability that σ(j +1) ≥ K
4
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is bounded below by b by Proposition 3.6. Therefore, by comparison with a one-
dimensional Markov chain as in the proof of Theorem 4.1 [26], we see that there
exist 0 < c,β < ∞ such that

P
(
σ(J ) ≤ K

J
2
)≤ c

(
m

l

)−β

.

Therefore, we can construct a coupling of μl,KJ l,n(γ ) and μl,KJ l,n(γ
′) such that,

with probability at least 1 − c(m
l
)−β ,(

γ + (
S1[0, τ 1

KJ l

]
, S2[0, τ 2

KJ l

]))=
K

J
2

(
γ ′ + (

S1[0, τ 1
KJ l

]
, S2[0, τ 2

KJ l

]))
,

and (γ + (S1[0, τ 1
KJ l

], S2[0, τ 2
KJ l

])) ∈ Good
KJ l,K

J
2

.

Once we have constructed the coupling as above, by using Proposition 3.5, we
can couple μl,n(γ ) and μl,n(γ

′) such that, with probability ≥ 1 − c(m
l
)−β , (3.10)

holds. Thus, we complete the proof of the theorem. �

3.2. Local dependence of global cut points and mixing. In this subsection,
we will show that the shift θ is mixing in Theorem 3.8. As we discussed at the
beginning of Section 3, we need to control the independence between two events
{S[0, T 1] = λ} and {S[T n,T n+1] − S(T n) = γ } with given two paths λ and γ . To
achieve it, we want to replace the global cut times T 1 and T n in the events into

“local cut times”. By definition, the event “k is a global cut time for S
1
” depends

on both S
1[0,∞) and S

2[0,∞). However, using the transience of S
i
, it turns out

that if S
1[ak, k]∩S

1[k+1, bk] = ∅ for suitable times 0 < ak < bk < ∞ depending
on k, then with high probability k becomes in fact a global cut time. Such “local
dependence” of global cut points were also used in [32] to give a lower bound of
the number of global cut points using the second moment method and Markovian-
type “iteration arguments” (see Proposition 3.6 of [32] for the details).

THEOREM 3.8. The translation shift θ is mixing.

PROOF. Recall that Bead was defined as in (2.3). In order to prove the theo-
rem, by the π -λ Theorem (see [10], Theorem A.1.4), it suffices to show that

(3.11) lim
n→∞P

(
A ∩ θ

−n
B
)= P (A)P (B),

where we write

(3.12) A = {
S[0, T 1] = λ

}
, B = {

S[0, T 1] = γ
}
,

with λ,γ ∈ Bead. In order to prove (3.1) for those events, we want to show that
two events:

(3.13)
{
S[0, T 1] = λ

}
and

{
S[T n,T n+1] − S(T n) = γ

}
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are asymptotically independent as n → ∞. With this in mind, take λ,γ ∈ Bead
and let

A = {
S[0, T 1] = λ

}
, Bn = {

S[T n,T n+1] − S(T n) = γ
}
.

We will show that ∣∣P (A ∩ Bn)− P(A)P (B)
∣∣→ 0,

as n → ∞.
For each L, by the transience of S,

(3.14) P
(
S[τ+

L,∞)∩ λ �=∅) ≤ cL− 1
2 ,

for some constant c depending on λ. (For this inequality, we used the following
fact proved in Lemma 3.8 of [32]: for each m < n,

(3.15) P
(
S[τ+

n ,∞)∩ B(m) �=∅) ≤ C

(
n

m

)− 1
2
,

for d = 2,3.)
We call k a cut time up to τ+

L if

S[0, k] ∩ S
[
k + 1, τ+

L

]=∅.

Let T
L

1 be the first cut time up to τ+
L and

AL = {
S
[
0, T

L

1
]= λ

}
.

Using (3.14), we see that
∣∣P (A ∩ Bn)− P

(
AL ∩ Bn)∣∣≤ cL− 1

2 .

Note that

(3.16) P
(∣∣S(T n)

∣∣> n1/4)≥ 1 − Cn− 1
24 .

To see this, it follows that T n ≥ n and that

P
(

max
0≤j≤n

∣∣S(j)
∣∣< n1/3

)
≤ Ce−cn

1
6
.

(See Proposition 2.4.5 of [23] for this inequality.) So we can assume that τ+
n1/3 ≤

n ≤ T n with probability at least 1 − Ce−cn
1
6 . Now suppose that τ+

n1/3 ≤ n ≤ T n

and |S(T n)| ≤ n1/4. This implies that S[τ+
n1/3,∞) ∩ B(n1/4) �= ∅. However, by

(3.15), we have

P
(
S
[
τ+

n1/3,∞
)∩ B

(
n1/4) �= ∅

)≤ Cn− 1
24 ,
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which gives (3.16). So we can assume that τ+
n1/4 ≤ T n with probability ≥ 1 −

Cn− 1
24 .

Combining (3.16) with (3.15), we see that for all n ≥ L16

(3.17) P
(
S[T n,∞)∩ B

(
L2) �= ∅) ≤ CL− 2

3 .

However, if we assume that S[T n,∞)∩B(L2) =∅, whether Bn holds or not does
not depend on S[0, τ+

L2]. So if we define an event

Fn := Bn ∩ {
S[T n,∞) ∩ B

(
L2)= ∅

}
,

then Fn is measurable for S[τ+
L2,∞), and we have

∣∣P (A ∩ Bn)− P
(
AL ∩ Fn)∣∣≤ CL− 1

2 .

Let

�′(L) = {
γ ∈ �(L) | P (AL,

(
S

1[
0, τ 1

L

]
, S

2[
0, τ 2

L

])= γ
)
> 0

}
be the set of pairs of paths γ ∈ �(L) such that with positive probability

two events AL and (S
1[0, τ 1

L], S2[0, τ 2
L]) = γ occur. Then by conditioning

(S
1[0, τ 1

L], S2[0, τ 2
L]), we have

(3.18)

P
(
AL ∩ Fn)= ∑

γ∈�′(L)

P
((

S
1[

0, τ 1
L

]
, S

2[
0, τ 2

L

])= γ
)

× P
(
Fn | (S1[

0, τ 1
L

]
, S

2[
0, τ 2

L

])= γ
)
.

Applying Theorem 3.7 to the conditional probability in the right-hand side of
(3.18), we see that for all γ ,∣∣P (Fn | (S1[

0, τ 1
L

]
, S

2[
0, τ 2

L

])= γ
)− P

(
Fn)∣∣≤ cL−β,

for some absolute constants 0 < c,β < ∞. Therefore, taking sum for γ ∈ �′(L),
we have∣∣∣∣ ∑

γ∈�′(L)

P
((

S
1[

0, τ 1
L

]
, S

2[
0, τ 2

L

])= γ
)
P
(
Fn | (S1[

0, τ 1
L

]
, S

2[
0, τ 2

L

])= γ
)

− P
(
AL)P (Fn)∣∣∣∣≤ cL−β.

Therefore, by using (3.14) and (3.17) again, for all n > L16

∣∣P (A ∩ Bn)− P(A)P
(
Bn)∣∣≤ cL−β,

which completes the proof since it follows from Theorem 2.1 that P (Bn) = P(B).
�
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4. Application. Recall that we call a random walk path between consecutive
cut points a piece. When we study a random walk path using the pieces, some is-
sues come from the fact that each piece has no common distribution and they are
strongly correlated. This is the one of main reason that we are interested in non-
intersecting random walks. Theorems 2.1 and 3.8 allow to use results of ergodic
theory when we study the nonintersecting random walk. In this section, we will
consider some application of Theorem 2.1 and 3.8 along with ergodic theory to
estimate quantities generated by the path of S in Theorem 4.2. The quantities that
we are interested in are the length of the loop-erasure, graph distance and effective
resistance of S[0, T n]. We will give the definitions of these quantities and briefly
explain backgrounds of them in Section 4.1. Then we will apply Aaronson’s results
derived in [1] to analyze the quantities in Section 4.2.

4.1. LERW, graph distance and effective resistance. In this subsection, we will
introduce three quantities generated by random walk paths. Those quantities are
loop-erased random walk (LERW), shortest path graph distance and effective re-
sistance. We will consider the growth rate of these quantities along with ergodic
theory in Section 4.2.

The first quantity that we are interested in is loop-erased random walk (LERW).
Loop-erased random walk is a model for a random simple path, which is cre-
ated by running a simple random walk and, whenever the random walk hits its
path, removing the resulting loop and continuing. We begin with the precise def-
inition of loop-erasing procedure of a given path in Z

d . For a deterministic path
λ with length m, we denote the loop-erasure of λ by LE(λ). More precisely, let
λ = [λ0, λ1, . . . , λm] be a path in Z

d . We let

s0 = sup{j : λj = λ0}
and, for i > 0,

si = sup{j : λj = λsi−1+1}.
Let

n = inf{i : si = m}.
Then

(4.1) LE(λ) = [λs0, λs1, . . . , λsn].
We are interested in a loop-erasure of a random walk path and we call it loop-

erased random walk (LERW). Let us give brief backgrounds of LERW here. Since
Lawler [15] introduced LERW, this process has played an important role both in
the statistical physics and mathematics literature. It is closely related to the uniform
spanning tree (UST). Let u and v be two vertices on UST. Then UST contains pre-
cisely one simple path between u and v. Pemantle [29] proved that the distribution
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of this simple path is identical to the distribution of the LERW from u to v. Fur-
thermore, the UST can be generated using LERWs by Wilson’s algorithm [36].
Concerning a scaling limit of LERW on Z

d , the followings are known. For d ≥ 4,
Lawler [16, 19] showed that the scaling limit of the LERW is Brownian motion
(note that Brownian motion is a simple curve almost surely for d ≥ 4). Lawler,
Schramm and Werner [25] showed that LERW has a conformally invariant scaling
limit for d = 2, SLE. Indeed, SLE was introduced by Schramm [31] as a candidate
for the scaling limit of LERW. For d = 3, Kozma [14] showed that the scaling limit
of LERW exists and is invariant to dilations and rotations.

Let Mn be the number of steps of LE(S[0, τn]), the loop-erasure of S[0, τn]. In
[13], using domino tilings, it was proved that for d = 2,

(4.2) lim
n→∞

logE(Mn)

logn
= 5

4
.

Recently, Lawler [22] showed that

(4.3) E(Mn) 
 n
5
4 ,

[see (1.15) for the definition of 
]. The quantity 5
4 is called the growth exponent

for planar loop-erased random walk.
In 3 dimensions, physicists conjecture that there exists β such that

(4.4) lim
n→∞

logE(Mn)

logn
= β,

and did numerical experiments to show that β = 1.62 ± 0.01 ([11, 37]). However,
rigorously, the existence of β is not proved. The best rigorous bounds are ([20])

1 < β ≤ 5

3
,

if β exists. We will prove the existence of the exponent β in Section 7 and Section 8
(see Theorem 7.4, Theorem 8.4 and Proposition 8.5).

While LERW is not a Markov chain, it satisfies the following “domain Markov
property”: for any Markov chain X, if we condition that the first k steps of LE(X)

is equal to a given path ω, the conditional distribution of the rest part of LE(X)

is same as the loop-erasure of X starting from the endpoint of ω conditioned to
avoid ω. More precisely, we have the following proposition.

PROPOSITION 4.1 (Domain Markov Property [16]). Let X be a Markov chain
in Z

d , A ⊂ Z
d and ω = [ω0,ω1, . . . ,ωm] be a path in A. We let τX

A := inf{k |
X(k) /∈ A} be the first time that X exits from A. Define a new Markov chain Y to
be X started at ωm conditioned that X[1, τX

A ] ∩ ω = ∅. We write τY
A for the first

time that Y exits from A. Suppose that ω′ = [ω′
0, . . . ,ω

′
m′ ] is a path satisfying that

ω′
0 = ωm and ω + ω′ := [ω0,ω1, . . . ,ωm,ω′

1, . . . ,ω
′
m′ ] is a path from ω0 to ∂A.

Then

P
(
LE
(
X
[
0, τX

A

])= ω + ω′ | LE
(
X
[
0, τX

A

])[0,m] = ω
)= P

(
LE
(
Y
[
0, τ Y

A

])= ω′).
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The second quantity that we are interested in is the graph distance. For a graph
G, let dG(·, ·) be the shortest path graph distance on G.

Finally, we will introduce the effective resistance on a graph G. To define it, we
first introduce a quadratic form E by

E(f, g) = 1

2

∑
x,y∈V,
{x,y}∈E

(
f (x) − f (y)

)(
g(x) − g(y)

)
.

If we regard G as an electrical network with a unit resistor on each edge in E, then
E(f, f ) is the energy dissipation when the vertices of V are at a potential f . Set

H 2 = {
f ∈R

V : E(f, f ) < ∞}
.

Let A,B be disjoint subsets of V . The effective resistance between A and B is
defined by

(4.5) RG(A,B)−1 = inf
{
E(f, f ) : f ∈ H 2, f |A = 1, f |B = 0

}
.

We write RG(x, y) = RG({x}, {y}) for the effective resistance between two points
x and y.

4.2. Critical exponents. Recall that T n stands for the nth global cut time for S.
We are interested in the growth rate of the following three quantities;

• len(LE(S[0, T n])), length of the loop-erasure of S[0, T n],
• dS[0,T n](0, S(T n)), graph distance between the origin and S(T n) on S[0, T n],
• RS[0,T n](0, S(T n)), effective resistance between the origin and S(T n) on

S[0, T n],
where for the second and third quantities, we think of S[0, T n] as a (random)
graph whose vertex set is {S(k) | k ∈ [0, T n]} and edge set is {[S(k), S(k + 1)] |
k ∈ [0, T n − 1]}.

If we let f = len(LE(S[0, T 1])) be the length of the loop-erasure of S[0, T 1],
then we see that

(4.6) len
(
LE
(
S[0, T n]))=

n−1∑
k=0

f ◦ θ
k
.

The graph distance and effective resistance also can be written in terms of the sum
along with the shift θ similarly. Recall that by Theorem 2.1 and Theorem 3.8, the
law of S is invariant under the shift θ and θ is mixing. Therefore, if f had a finite
first moment, we could apply Birkhoff’s theorem to show that the right-hand side
of (4.6) grows like cn for some constant c. However, this is not the case for three
quantities above. In order to study the growth rate of the sum in (4.6) for the case
that f does not have a finite first moment, we will use results from [1]. In the next
theorem, we will show that there exists a deterministic constant α such that the sum
in (4.6) divided by na converges to 0 almost surely when a > α, and it diverges
when a < α. Same results hold for the graph distance and effective resistance.
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THEOREM 4.2. Let d = 2,3. There exist α�(d),αg(d) and αr(d) such that the
following holds:

(1) 1 ≤ αr(d) ≤ αg(d) ≤ α�(d) < ∞
(2) for every α1 > α�(d), α2 > αg(d) and α3 > αr(d), we have

lim
n→∞

len(LE(S[0, T n]))
nα1

= 0, P -a.s.,(4.7)

lim
n→∞

dS[0,T n](0, S(T n))

nα2
= 0, P -a.s.,(4.8)

lim
n→∞

RS[0,T n](0, S(T n))

nα3
= 0, P -a.s.(4.9)

(3) for every α1 < α�(d), α2 < αg(d) and α3 < αr(d), we have

lim sup
n→∞

len(LE(S[0, T n]))
nα1

= ∞, P -a.s.,(4.10)

lim sup
n→∞

dS[0,T n](0, S(T n))

nα2
= ∞, P -a.s.,(4.11)

lim sup
n→∞

RS[0,T n](0, S(T n))

nα3
= ∞, P -a.s.(4.12)

PROOF. By Rayleigh’s monotonicity law (see Section 1.4 of [9]), we see that
dS[0,T n](0, S(T n)) ≥ RS[0,T n](0, S(T n)) ≥ n. Since the loop-erasure of S[0, T n]
is a path from the origin to S(T n) contained in S[0, T n], it is clear that
len(LE(S[0, T n])) ≥ dS[0,T n](0, S(T n)). Therefore, 1 ≤ αr(d) ≤ αg(d) ≤ α�(d)

if these exponents exist. On the other hand, by Theorem 1.1 in [32], it follows that

lim
n→∞

logT n

logn
= 2

2 − ξd

, P -a.s.,

where ξd is the constant as in (1.12). Since len(LE(S[0, T n])) ≤ T n, we see that
α�(d) < ∞ if it exists.

We will prove the existence of α�(d) such that the claims (4.7) and (4.10) hold.
The existence of αg(d) and αr(d) can be proved similarly. By Theorems 2.1 and
3.8, the law of S is invariant under the shift θ and θ is mixing. Therefore, by using
Theorem A′ in [1], we see that for all α > 1 either

lim
n→∞

len(LE(S[0, T n]))
nα

= 0, P -a.s.,

or

(4.13) lim sup
n→∞

len(LE(S[0, T n]))
nα

= ∞, P -a.s.
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With this in mind, we define

(4.14) α�(d) := inf
{
α > 1

∣∣∣ P( lim
n→∞

len(LE(S[0, T n]))
nα

= 0
)

= 1
}
.

Then this definition immediately gives (4.7). In order to see (4.10), take α1 <

α�(d). By (4.13), with probability one we have

lim sup
n→∞

len(LE(S[0, T n]))
nα1

= ∞,

which gives (4.10). For the exponents αg(d) and αr(d), we can define them by re-
placing len(LE(S[0, T n])) by the graph distance and effective resistance in (4.14).
So we complete the proof. �

5. LERW in two dimensions. Theorem 4.2 shows that len(LE(S[0, T n]))
divided by nα�(d)+ε converges to zero almost surely for all ε > 0, and
len(LE(S[0, T n])) divided by nα�(d)−ε diverges in the sense that the lim sup of the
ratio goes to infinity. It is natural to expect that len(LE(S[0, T n])) = nα�(d)+o(1)

a.s. as n → ∞. Unfortunately, (4.10) is not sufficient to show it. In order to prove
that len(LE(S[0, T n])) = nα�(d)+o(1), we need to show that the limit (not lim sup)
of len(LE(S[0, T n])) divided by nα�(d)−ε is infinity for all ε > 0. In this section,
we will prove this for d = 2. We will also give the exact value of α�(2). The goal
of this section is the following theorem.

THEOREM 5.1. Let d = 2. Then we have

(5.1) α�(2) = 5

3
.

Furthermore, it follows that with probability one:

(5.2) lim
n→∞

log len(LE(S[0, T n]))
logn

= 5

3
.

We will prove this theorem in Section 5.1 and 5.2. In Section 5.1, we will

show that α�(2) ≤ 5
3 by proving that len(LE(S[0, T n])) divided by n

5
3 +ε con-

verges to zero for all ε > 0; see Proposition 5.2. In Section 5.2, we will show

that α�(2) ≥ 5
3 by proving that len(LE(S[0, T n])) divided by n

5
3 −ε goes to infinity

for all ε > 0; see Proposition 5.3. Theorem 5.1 immediately follows from Propo-
sition 5.2 and 5.3.

Before going to the proof, we will explain the reason that α�(2) = 5
3 intuitively.

Theorem 1.1 in [32] gives that nth global cut time T n is of order n
2

2−ξ2 when d = 2.

In 2 dimensions, we have ξ2 = 5
4 ; see (1.4). Therefore, T n is of order n

8
3 . It is

known that the length of the loop-erasure of S[0, n] is of order n
5
8 in 2 dimensions

(see [13] for this). It turns out that the length of the loop-erasure of S[0, n] is also

of order n
5
8 . Thus, we expect that len(LE(S[0, T n])) ≈ (n

8
3 )

5
8 = n

5
3 .
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5.1. Upper bound for α�(2). In this subsection, we will show that α�(2) ≤ 5
3

by proving that len(LE(S[0, T n]) divided by n
5
3 +ε converges to zero for all ε > 0

in Proposition 5.2. The proof is based on the following steps. We first compare T n

with the first time that S exits from a ball so that τ+
n

4
3 −ε

≤ T n ≤ τ+
n

4
3 +ε

. Since T n is a

cut time, we see that len(LE(S[0, T n])) is bounded above by len(LE(S[0, τ+
n

4
3 +ε

])).
Now we use results from [3] which give exponential tail bounds for the length of
the loop-erasure of the usual simple random walk S in 2 dimensions. Theorem 1.1

of [3] gives that len(LE(S[0, τ
n

4
3 +ε

])) is bounded above by n
5
3 +3ε with high prob-

ability. Since the probability that len(LE(S[0, τ
n

4
3 +ε

])) ≥ n
5
3 +3ε is much smaller

than the probability that S1 and S2 do not intersect up to the first time that they
exit from B(τ

n
4
3 +ε

), we can conclude that len(LE(S[0, τ+
n

4
3 +ε

])) is also bounded

above by n
5
3 +3ε with high probability.

PROPOSITION 5.2. Let d = 2. For all α > 5
3 ,

(5.3) P

(
lim

n→∞
len(LE(S[0, T n]))

nα
= 0

)
= 1.

In particular, α�(2) ≤ 5
3 .

PROOF. Fix ε > 0. We write K
+
n for the number of global cut times of S in

[0, τ+
n ]. In the proof of Theorem 1.1 of [32], it was shown that

n
3
4 −ε ≤ K

+
n ≤ n

3
4 +ε for large n,P -a.s.

This gives that

(5.4) τ+
n

4
3 −2ε

≤ T n ≤ τ+
n

4
3 +2ε

for large n,P -a.s.

On the other hand, Theorem 1.1 of [3] gives the following upper tail bound of
the length of the loop-erasure of the usual simple random walk S for d = 2;

(5.5) P
(
len
(
LE
(
S[0, τ

n
4
3 +2ε

]))≥ n
5
3 +3ε)≤ c0e

−c1n
ε
4
,

for some 0 < c0, c1 < ∞.
Recall that Corollary 4.6 of [18] gives that for N > n

4
3 +2ε

max
x,y∈B(n

4
3 +2ε

)

P x,y(S1[0, τ 1
N

]∩ S2[0, τ 2
N

]= ∅
)≤ c

(
N

n
4
3 +2ε

)− 5
4
.
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Using this along with (5.5) and the strong Markov property, we see that

(5.6)

P
(
S1[0, τ 1

N

]∩ S2[1, τ 2
N

]= ∅, len
(
LE
(
S2[0, τ 2

n
4
3 +2ε

]))≥ n
5
3 +3ε)

≤ c0e
−c1n

ε
4
c

(
N

n
4
3 +2ε

)− 5
4 ≤ cN− 5

4 e− c1
2 n

ε
4
.

Theorem 1.3 of [18] gives that P(S1[0, τ 1
N ] ∩S2[1, τ 2

N ] = ∅) 
 N− 5
4 . By dividing

both sides of (5.6) by P(S1[0, τ 1
N ] ∩ S2[1, τ 2

N ] = ∅) first and then by letting N go
to infinity, we have

P
(
len
(
LE
(
S
[
0, τ+

n
4
3 +2ε

]))≥ n
5
3 +3ε)≤ ce− c1

2 n
ε
4
.

By the Borel–Cantelli lemma, we have

(5.7) len
(
LE
(
S
[
0, τ+

n
4
3 +2ε

]))≤ n
5
3 +3ε for large n,P -a.s.

Combining this by (5.4), with probability one T n ≤ τ+
n

4
3 +2ε

and len(LE(S[0,

τ+
n

4
3 +2ε

])) ≤ n
5
3 +3ε hold for large n. Since T n ≤ τ+

n
4
3 +2ε

, we see that len(LE(S[0,

T n])) is bounded above by len(LE(S[0, τ+
n

4
3 +2ε

])). Since ε > 0 is an arbitrary pos-

itive number, we complete the proof. �

5.2. Lower bound for α�(2). In this subsection, we will show that α�(2) ≥ 5
3

by proving that len(LE(S[0, T n]) divided by n
5
3 −ε goes to infinity for all ε > 0 in

Proposition 5.3. The proof is based on the same ideas as in the proof of Proposi-
tion 5.2. We compare T n with the first time that S exits from a ball as in (5.4).
Then we will give a lower bound on the length of the loop-erasure of S up to
τ+

n
4
3 −2ε

. However, there is an issue to achieve it. Since lenS[0, t1] may be larger

than lenS[0, t2] even if t1 < t2, we are not able to conclude that len(LE(S[0, T n]))
is bigger than len(LE(S[0, τ+

n
4
3 −2ε

])). In order to deal with this issue, we will

consider LE(S[0, τ+
n2]) up to the first time it exits from B(n

4
3 −2ε) instead of

LE(S[0, τ+
n

4
3 −2ε

]).

PROPOSITION 5.3. Let d = 2. For all α < 5
3 ,

(5.8) P

(
lim

n→∞
len(LE(S[0, T n]))

nα
= ∞

)
= 1.

In particular, α�(2) ≥ 5
3 .
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PROOF. Fix ε > 0. Recall that it follows from (5.4) that τ+
n

4
3 −2ε

≤ T n ≤ τ+
n

4
3 +2ε

for large n with probability one. Suppose that τ+
n

4
3 −2ε

≤ T n. We first show that

|S(T n)| ≥ n
4
3 −3ε with high probability. To show it, suppose that |S(T n)| ≤ n

4
3 −3ε .

This implies that S[τ+
n

4
3 −2ε

,∞) ∩ B(n
4
3 −3ε) �= ∅. However, (1.9) of [32] shows

that this return probability is bounded above by cn− ε
2 . Therefore, we have

(5.9) P
(
n

4
3 −3ε <

∣∣S(T n)
∣∣< n

4
3 +2ε)≥ 1 − cn− ε

2 .

We are interested in LE(S[0, τ+
n2]) up to the first time that it exits from

B(n
4
3 −3ε). Let

(5.10) u := inf
{
k | LE

(
S
[
0, τ+

n2

])
(k) ∈ B

(
n

4
3 −3ε)c}.

Suppose that n
4
3 −3ε < |S(T n)| < n

4
3 +2ε . Then we see that S(T n) lies in

LE(S[0, τ+
n2]), and that S(T n) appears in LE(S[0, τ+

n2]) after time u. So there

exists an unique time t such that LE(S[0, τ+
n2])(t) = S(T n) with t > u. Since T n

is a global cut time, we see that LE(S[0, τ+
n2])[0, t] = LE(S[0, T n]). Consequently,

it follows that with probability at least 1 − cn− ε
2 ,

(5.11) len
(
LE
(
S[0, T n]))= t > u.

Thus, we need to estimate u which was defined as in (5.10).
In order to estimate u, we will again use tail bounds on the length of LERW

derived in [3]. We are interested in LE(S2[0, τ 2
n2]) up to the first time that it exits

from B(n
4
3 −3ε). Let

(5.12) u := inf
{
k | LE

(
S2[0, τ 2

n2

])
(k) ∈ B

(
n

4
3 −3ε)c}.

Then Theorem 1.2 of [3] gives that

P
(
u < n

5
3 −6ε)≤ Ce−cnε

,

for some 0 < c,C < ∞. Using this, same estimates as in (5.6) gives that

P
(
u < n

5
3 −6ε)≤ Ce− c

2 nε

.

Combining this with (5.11), we can conclude that with probability at least 1 −
cn− ε

2 , len(LE(S[0, T n])) is bounded below by n
5
3 −6ε . Now we apply the Borel–

Cantelli lemma for n = 2k to see that

len
(
LE
(
S[0, T 2k ]))≥ (

2k) 5
3 −6ε for large k a.s.

For a general index n, by considering k with 2k ≤ n < 2k+1, we see that with
probability one,

len
(
LE
(
S[0, T n]))≥ len

(
LE
(
S[0, T 2k ]))≥ (

2k) 5
3 −6ε ≥ cn

5
3 −6ε,

for large n. Since ε is an arbitrary positive number, we complete the proof. �
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6. Estimates on escape probabilities. From this section, we will focus on
loop-erased random walks in 3 dimensions. In the rest of the present article, the
goal is to establish an analog of Theorem 5.1 in three dimensions. Namely, we
want to prove that for d = 3:

(6.1) lim
n→∞

log len(LE(S[0, T n]))
logn

= α�(3) a.s.,

where α�(3) is the exponent as in Theorem 4.2. We will prove (6.1) in Section 9.
Section 6–Section 8 will be devoted to establish various results for LERW in 3
dimensions to show (6.1). The purpose of this section is to give various relations
between escape probabilities on various scales (see Section 6.2 for the escape prob-
abilities).

The proof of Theorem 5.1 was based on Proposition 5.2 and 5.3. In order to
prove these two propositions, we strongly relied on results of [3] which give ex-
ponential tail bounds on the length of LERW in 2 dimensions. Therefore, we need
to establish similar tail bounds in 3 dimensions. The key ingredient in [3] is the
probability that a random walk and an independent LERW do not intersect up to
the first time that they exit from a large ball, which is referred to as an escape
probability (see Section 6.2 for the precise definition of the escape probability).
We recall that one of the main step in [3] is to give bounds on the kth moment
of the length of LERW in terms of escape probabilities. Such moment estimates
allow to establish the exponential tail bounds on the length of LERW; see (1.5)
of [3].

Several estimates on the escape probability derived in [27] were used to give
the tail bounds on the length of LERW in [3]. In this section, we will establish
such estimates on the escape probability in 3 dimensions that will be needed later.
We will give various relations between the escape probabilities on various scales
in Propositions 6.7, 6.8 and 6.10. These propositions are analogs of Lemma 5.1,
Proposition 5.2 and Proposition 5.3 of [27]. We point out that the separation lemma
(see Theorem 4.7 of [27]) was a key result in order to prove these results in [27].
The separation lemma (Theorem 4.7 of [27]) roughly claims that a random walk
and an independent LERW that are conditioned not to intersect are likely to be not
very close at their endpoints, which is an analog of Proposition 3.1 for a random
walk and an independent LERW. Unfortunately, the separation lemma was proved
only in 2 dimensions in [27], and to our knowledge it has not been proved in 3
dimensions. So we need to prove it in 3 dimensions.

In the next subsection, we will prove the separation lemma in 3 dimensions (see
Theorem 6.5). Using this lemma, we will give various relations between the escape
probabilities on various scales in Section 6.2.

6.1. Separation lemma—SRW vs. LERW. As we discussed above, in order to
give various relations between the escape probabilities on various scales, we need
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to prove the separation lemma (see Theorem 6.5). The lemma says that a random
walk and an independent LERW that are conditioned not to intersect are likely to
be “well-separated”. We start by giving preliminary results to show the separation
lemma.

Let D = {(x, y, z) ∈ R
3 : x = 1, y2 + z2 ≤ 1} and Dn = ∂B(n) ∩ {rw : r ≥

0,w ∈ D}. We write xn = (n,0,0).
Suppose that we have a random walk conditioned that it exits from a ball without

hitting a given set K contained in the “left” side of the ball. The next proposition
says that this conditioned random walk exits from the “right” side of the ball with
positive probability. This is an analog of Proposition 3.5 of [27] in 3 dimensions.
Claim 3.4 of [30] gave the proof of the proposition in 3 dimensions.

PROPOSITION 6.1. Let d = 3. There exist N and c > 0 such that for all n ≥
N , we have the following. Suppose that K ⊂ Z

3 \ B(xn,n). Recall that σK :=
inf{j ≥ 1 | S(j) ∈ K}. Then

(6.2) P
(
S(τn) ∈ Dn | τn < σK

)≥ c,

where Dn stands for the “right” side of the boundary of B(n) defined as above.

For a subset A ⊂ Z
3, we write A+ = {x = (x1, x2, x3) ∈ A | x1 > 0} and

A− = {x = (x1, x2, x3) ∈ A | x1 < 0} for the “right” and “left” side of A. For
x = (x1, x2, x3) ∈ Z

3, we write x = (−x1, x2, x3) ∈ Z
3 for the reflection of x with

respect to the yz-plane. We let A = {x | x ∈ A} be the reflection of A with re-
spect to the yz-plane. We will need the following lemma which is an analog of
Lemma 4.4 of [3] in 3 dimensions.

LEMMA 6.2. Let d = 3. Take two subsets A ⊂ B ⊂ Z
3 satisfying that B+ ⊂

B− and A+ ⊂ A−. Then it follows that for all x ∈ B−:

(6.3) P x(τB < σA) ≤ P x(τB < σA).

PROOF. The proof is same as the proof of Lemma 4.4 of [3]. Thus, we will
give only the sketch of it here. The lemma follows from a reflection argument as
follows. Take x ∈ B−. When the event τB < σA occurs, Either of the following
two cases must occur:

• The random walk exits from B without hitting A and the yz-plane.
• The random walk hits the yz-plane before hitting A and exiting B . Then it exits

from B without hitting A.

Since we assume that B+ ⊂ B− and A+ ⊂ A−, if we consider the reflection of
the random walk path in the first case, the reflected path starts from x and it exits
from B without hitting A and the yz-plane. For the second case, we consider the
reflection of the random walk path up to the first time that it hits the yz-plane. Then
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FIG. 3. An(x).

the reflected path starts from x and it hits yz-plane without hitting A. After hitting
the yz-plane, it exits from B without hitting A. Therefore, the reflected path for
both cases will be a random walk path started at x which satisfies τB < σA. So we
get the lemma. �

In order to state the next lemma, we need the following definition.

DEFINITION 6.3. (See Figure 3.) Take integers m,n,N with
√

3m + n ≤ N .
We set Am := [−m,m]3 for the cube of side length 2m centered at the origin. We
take a point x lying in a face of Am. We write � for the infinite half line started at x

which lies in Ac
m and is orthogonal to the face of Am containing x (we choose one

such faces arbitrarily if x lies in a edge of Am). We write y for the unique point
which lies in � and satisfies |x−y| = n

2 . Then we let An(x) :=∏3
i=1[yi − n

4 , yi + n
4 ]

be the cube of length n
2 centered at y. The assumption

√
3m + n ≤ N ensures that

B(x,n) ⊂ B(N).

When we relate a random walk conditioned not to hit a given set to an usual
simple random walk, the next lemma is used many times.

LEMMA 6.4. Let d = 3. We take integers m,n,N with
√

3m + n ≤ N . We
suppose that Am is the cube as in Definition 6.3 and take a point x in the face of
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Am. Let K ⊂ Am be a subset of the cube. We also suppose that An(x) is the cube
as in Definition 6.3. Then there exists a universal constant C < ∞ such that

(6.4) max
z∈∂B(x, n

8 )
P z(τN < σK) ≤ CP w(τN < σK),

for all w ∈ An(x).

PROOF. Recall that the half line � started at x was defined as in Definition 6.3.
We write y′ for the unique point lying on � such that |x − y′| = n

4 . Let π1 be the
plane containing the middle point of x and y′ which is orthogonal to �. Applying
Lemma 6.2 to the plane π1, we see that

max
z∈∂B(x, n

8 )
P z(τN < σK) ≤ max

z∈∂B(y′, n
8 )

P z(τN < σK).

The discrete Harnack principle (see Theorem 1.7.6 of [16]) gives that there exists
a universal constant C < ∞ such that

max
z∈∂B(y′, n

8 )
P z(τN < σK) ≤ CP w(τN < σK),

for all w ∈ An(x). So we complete the proof. �

Consider two independent simple random walks S1 and S2 in Z
3. We are

interested in the conditional probability that the distance between S1(τ 1
n ) and

LE(S2[0, τ 2
n ]) and the distance between S2(τ 2

n ) and S1[0, τ 1
n ] is bounded below

by cn conditioned that S1[1, τ 1
n ] and LE(S2[0, τ 2

n ]) do not intersect. With this in
mind, let

(6.5) An := {
S1[1, τ 1

n

]∩ LE
(
S2[0, τ 2

n

])=∅
}

be the event that a simple random walk and an independent LERW do not intersect.
We also consider the infinite LERW as follows. Since S2 is transient, we may
consider the loop-erasure of S2[0,∞). So we let γ ∞ := LE(S2[0,∞)) be its loop-
erasure and we call it the infinite LERW. We set

(6.6) τ∞
n = inf

{
j | γ ∞(j) /∈ B(n)

}
for the first time that the infinite LERW exits from B(n). We denote the event that
S1 and γ ∞ do not intersect up to the first time that they exit from B(n) by

(6.7) An∞ := {
S1[1, τ 1

n

]∩ γ ∞[0, τ∞
n

]= ∅
}
.

We choose a “separation” event as in Proposition 3.1. Recall that I (r) and I ′(r)
were defined as in (3.5). With (3.6) in mind, we define

Sep(n) =
{
S1[0, τ 1

n

]⊂ B

(
3n

4

)
∪ I

(
2n

3

)}

∩
{

LE
(
S2[0, τ 2

n

])⊂ B

(
3n

4

)
∪ I ′

(
2n

3

)}
,

(6.8)
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FIG. 4. Sep(n).

Sep∞(n) =
{
S1[0, τ 1

n

]⊂ B

(
3n

4

)
∪ I

(
2n

3

)}

∩
{
γ ∞[0, τ∞

n

]⊂ B

(
3n

4

)
∪ I ′

(
2n

3

)}
.

(6.9)

Namely, Sep(n) stands for the event that S1[0, τ 1
n ] and LE(S2[0, τ 2

n ]) are well-
separated (see Figure 4). Sep∞(n) stands for the event that S1[0, τ 1

n ] and
γ ∞[0, τ∞

n ] are well-separated. Then the separation lemma for SRW and LERW
states the following.

THEOREM 6.5 (Separation Lemma). Let d = 3. There exists a constants c > 0
such that for all n,

P
(
Sep(n) | An)≥ c,(6.10)

P
(
Sep∞(n) | An∞

)≥ c.(6.11)

PROOF. We will prove only (6.10). The second inequality (6.11) can be proved
similarly. In the proof of (6.10), we will use the same ideas based on the induction
as in the proof of Proposition 2.1 in [32].

We let

�′(n) =
{
γ = (

γ 1, γ 2) ∈ �

(
n

2

)
: γ 2 is a simple path

}
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be the set of pairs of γ = (γ 1, γ 2) such that γ 1 and γ 2 do not intersect, and that γ 2

is a simple path [see Section 1.4 for �(n)]. Take γ = (γ 1, γ 2) ∈ �′(n). We write
wi = γ i(lenγ i) for the endpoint of γ i . Note that wi lies in the boundary of B(n

2 ).
We consider a simple random walk S3 started at w1 and an independent random
walk X started at w2 which is conditioned that X[1, τX

n ]∩γ 2 = ∅, where we write
τX
n for the first time that X exits from B(n). We set

η = LE
(
X
[
0, τX

n

])
for the loop-erasure of x up to τX

n . With (6.5) in mind, we let

An(γ ) =
⎧⎪⎨
⎪⎩

S3
[
0, τ 3

n

]∩ γ 2 = ∅,

η ∩ γ 1 =∅,

S3
[
0, τ 3

n

]∩ η = ∅

⎫⎪⎬
⎪⎭ .(6.12)

We are interested in the conditional probability that S3 and η are well-separated
conditioned on An(γ ). So we denote the separation event for S3 and η by

Sep(n, γ ) =
{
S3
[
0, τ 3

n

]⊂ B

(
3n

4

)
∪ I

(
2n

3

)}
∩
{
η ⊂ B

(
3n

4

)
∪ I ′

(
2n

3

)}
.

In order to prove (6.10), it suffices to show that there exists a c > 0 such that for
all n and γ = (γ 1, γ 2) ∈ �′(n),

(6.13) P w1,w2(
Sep(n, γ ) | An(γ )

)≥ c.

In order to see that (6.10) follows from (6.13), we set u1 = inf{j | LE(S2[0,

τ 2
n ])(j) /∈ B(n

2 )} and u2 = len(LE(S2[0, τ 2
n ])). Then by the strong Markov prop-

erty of S1 and the domain Markov property of LERW (see Proposition 4.1), we
see that

(6.14)

P
((

S1[0, τ 1
n
2

]
,LE

(
S2[0, τ 2

n

])[0, u1])= γ ,Sep(n),An)
= P

((
S1[0, τ 1

n
2

]
,LE

(
S2[0, τ 2

n

])[0, u1])= γ
)

× P w1,w2(
Sep(n, γ ),An(γ )

)
.

However, by (6.13), the left-hand side of (6.14) is bounded below by

cP
((

S1[0, τ 1
n
2

]
,LE

(
S2[0, τ 2

n

])[0, u1])= γ
)
P w1,w2(

An(γ )
)
,

which is, by the strong Markov property and the domain Markov property again,
equal to

cP
((

S1[0, τ 1
n
2

]
,LE

(
S2[0, τ 2

n

])[0, u1])= γ ,An).
By taking sum for γ = (γ 1, γ 2) ∈ �′(n), we get (6.10).

We will give a stronger estimate than (6.13) as follows. We write �′′(n) for the
set of pairs γ = (γ 1, γ 2) such that the following conditions are fulfilled:
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• γ 1 is a path started at the origin. γ 1 lies in B(n
2 ) except its endpoint. The end-

point γ 1(lenγ 1) lies in ∂B(n
2 ).

• γ 2 is a simple path started at the origin. γ 2 lies in B(n
2 ) except its endpoint. The

endpoint γ 2(lenγ 2) lies in ∂B(n
2 ).

• γ 1(lenγ 1) �= γ 2(lenγ 2).

Clearly, �′(n) ⊂ �′′(n). We will show that there exists a c > 0 such that for all n

and γ = (γ 1, γ 2) ∈ �′′(n),

(6.15) P w1,w2(
Sep(n, γ ) | An(γ )

)≥ c,

which gives (6.13).
We will prove (6.15) by induction. To achieve it, let

uk =
∞∑

j=k

j22−j .

We take N sufficiently Large so that uN ≤ 1
8 . For γ = (γ 1, γ 2) ∈ �′′(n) with wi =

γ i(lenγ i), we set D(γ ) = dist(w1, γ 2) ∧ dist(w2, γ 1). The definition of �′′(n)

gives that D(γ ) ≥ 1 for all γ ∈ �′′(n). For k ≥ N , we let hk be the infimum of

(6.16)
P w1,w2

(Sep(n, γ ),An(γ ))

P w1,w2
(An(γ ))

,

where the infimum is over n
2 ≥ 2k−1; 0 ≤ r ≤ uk ; and all γ = (γ 1, γ 2) ∈ �′′((1 +

r)n) such that D(γ )
n
2

≥ 2−k . Then in order to prove (6.15) it suffices to show that

(6.17) inf
k≥N

hk > 0.

Indeed, suppose that γ ∈ �′′(n) with n
2 ≥ 2N−1. Consider the unique integer k such

that 2k−1 ≤ n
2 < 2k . Then we see that k ≥ N and D(γ )

n
2

≥ 2−k (we choose r = 0 in

the definition of hk). Therefore, the ratio of (6.16) for this γ is bounded below by
infk≥N hk . For γ ∈ �′′(n) with n

2 < 2N−1, it is easy to see that the ratio of (6.16)
can be bounded below by some universal constant uniformly. So (6.15) follows
from (6.17).

We will prove (6.17) by showing that hk > 0 for each k ≥ N , and that there
exists a summable sequence δk < 1 such that

(6.18) hk+1 ≥ hk(1 − δk).

To achieve it, we start by proving that there exist 0 < c, δ < ∞ such that

(6.19) hk ≥ c2−δk.

We take γ = (γ 1, γ 2) ∈ �′′((1 + r)n) with n
2 ≥ 2k−1, 0 ≤ r ≤ uk , and D(γ )

n
2

≥ 2−k .

We write wi for the endpoint of γ i again. To show (6.19), we consider two cones
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FIG. 5. Cones.

O1,O2 starting from z1, z2 ∈ R
3 as follows. Suppose U is a relatively open subset

of {z ∈ R
3 : |z| = 1}. We let O denote the corresponding cone:

(6.20) O = {rw : r > 0,w ∈ U}.

Then it is easy to see that we can find two cones O1,O2 as in (6.20) and vertices
z1, z2 ∈ R

d such that the following hold for i = 1,2 (see Figure 5):

(a)
D(γ )

100
≤ ∣∣zj − wi

∣∣≤ D(γ )

20
.

(b) wi ∈ Oi + zi and
D(γ )

100
≤ dist

(
wi, ∂(zi + Oj)

)≤ D(γ )

20
.

(c) (Oi + zi) ∩ B

(
n

2

)
⊂ B

(
wi,

D(γ )

10

)
.

(d) If Vi = (Oi + zi) ∩ B

(
9n

14

)c

then dist
(
Vi, (O3−i + z3−i )

)≥ n

1000
.
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We leave it to the reader to see that such cones can be found. Using the strong
Markov property, we see that there exist 0 < c, δ < ∞ such that

(6.21) P w1
(
S3
[
0, τ 3

(
9n

14

)]
⊂ O1 + z1

)
≥ c2−δk.

Recall that η = LE(X[0, τX
n ]) is the loop-erasure of the random walk X condi-

tioned to avoid γ 2. We let τ
η
m := inf{j | η(j) /∈ B(m)} be the first time that η exits

from B(m). We want to show that there exist 0 < c, δ < ∞ such that

(6.22) P w2
(
X

[
0, τX

(
9n

14

)]
⊂ O2 + z2

)
≥ c2−δk.

The definition of X gives that

P w2
(
X

[
0, τX

(
9n

14

)]
⊂ O2 + z2

)

≥ P w2
(S4[0, τ 4(9n

14 )] ⊂ O2 + z2, S
4[1, τ 4

n ] ∩ γ 2 = ∅)

P w2
(S4[1, τ 4

D(γ )
1000

] ∩ γ 2 = ∅)
.

However, by using Proposition 6.1, we see that the right-hand side of the inequality
above is bounded below by

c min
y

P y

(
S4
[
0, τ 4

(
9n

14

)]
⊂ O2 + z2, S

4[0, τ 4
n

]∩ B
(
(1 + r)n

)= ∅

)
,

where the minimum is over y such that dist(y,O2 + z2) ≥ D(γ )
2000 and dist(y,B((1+

r)n)) ≥ D(γ )
2000 . It is easy to see that this minimum is bounded below by c2−δk for

some 0 < c, δ < ∞. So we get (6.22). Once S3 and X lie in cones as in (6.21)
and (6.22), with positive probability we can attach paths to S3[0, τ 3(9n

14 )] and
X[0, τX(9n

14 )] so that Sep(n, γ ) and An(γ ) are fulfilled. Thus, we have

P w1,w2(
Sep(n, γ ),An(γ )

)≥ c2−δk,

which gives (6.19).
We will next prove (6.18). Suppose that γ = (γ 1, γ 2) ∈ �′′((1 + r)n) satisfies

n
2 ≥ 2k , 0 ≤ r ≤ uk+1, and D(γ )

n
2

≥ 2−k−1. We write wi for the endpoint of γ i

again. We define a sequence of balls {Bj }j≥0 by

Bj = B(aj ),

where aj = (1 + r)n
2 + 4j2−kn. We let

ρ ′ = inf
{
j : dist

(
S3(τ 3

aj

)
, η
[
0, τ η

aj

]∪ γ 2)∧ dist
(
η
(
τη
aj

)
, S3[0, τ 3

aj

]∪ γ 1)≥ 2−kn
}
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be the first index j such that both endpoints of S3 and η up to the first time they
exit from B(aj ) have a distance 2−kn from the other path. We write ρ = ρ′ ∧ k2

4 .
We set

Dj = dist
(
S3(τ 3

aj

)
, η
[
0, τ η

aj

]∪ γ 2)∧ dist
(
η
(
τη
aj

)
, S3[0, τ 3

aj

]∪ γ 1)
for the distance from the endpoints of S3 and η up to the first time they exit
from B(aj ) to the other path. We will show that there is a universal constant
p > 0 such that conditioned on S3[0, τ 3

aj
] and η[0, τ

η
aj ], the conditional proba-

bility that Dj+1 ≥ 2−kn is at least p. To show it, take two paths λ1 and λ2 such
that λi(0) = wi , λi lies in B(aj ) except its endpoint, and the endpoint of λi lies in
∂B(aj ). We denote the endpoint of λi by vi . We are interested in the conditional
probability that Dj+1 ≥ 2−kn conditioned that S3[0, τ 3

aj
] = λ1 and η[0, τ

η
aj ] = λ2.

Under this conditioning, by the strong Markov property, the conditional law of S3

after time τ 3
aj

is just the law of a simple random walk started at v1. For η, using the

domain Markov property (see Proposition 4.1), conditioned that η[0, τ
η
aj ] = λ2,

the conditional law of η after time τ
η
aj is same as the law of the loop-erasure

of a random walk Y up to the first time that it exits from B(n) conditioned that
Y [1, τ Y

n ] ∩ (γ 2 + λ2) = ∅ [we write τY
n for the first time that Y exits from B(n)].

We denote the loop-erasure of Y [0, τY
n ] by η′. We attach S3[0, τ 3

aj+1
] [we assume

S3(0) = v1 here] and η′[0, τ
η′
aj+1] to γ 1 +λ1 and γ 2 +λ2, respectively, in two cones

as in (6.21) and (6.22). By choosing those cones suitably and using Proposition 6.1
as in (6.22), we see that there exists a universal constant p > 0 such that for all λi

as above,

(6.23) P w1,w2(
Dj+1 ≥ 2−kn | S3[0, τ 3

aj

]= λ1, η
[
0, τ η

aj

]= λ2)≥ p.

Using (6.23) k2

4 times, we see that there exist 0 < c, δ < ∞ such that

(6.24) P w1,w2
(
ρ = k2

4

)
≤ c2−δk2

.

On the event ρ < k2

4 , we have Dρ ≥ 2−kn. The definition of hk gives that

P w1,w2(
Sep(n, γ ),An(γ )

)≥ P w1,w2
(

Sep(n, γ ),An(γ ),

{
ρ <

k2

4

})

≥ hkP
w1,w2

(
An(γ ),

{
ρ <

k2

4

})
.

However, (6.19) and (6.24) imply that

P w1,w2
(
An(γ ),

{
ρ <

k2

4

})
≥ P w1,w2(

An(γ )
)− c2−δk2

≥ P w1,w2(
An(γ )

)(
1 − c2−δk2+δk).
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Therefore, (6.18) follows with δk = c2−δk2+δk and we complete the proof. �

As in Theorem 4.10 of [27], using a similar technique, one can prove a “re-
verse” separation lemma as follows. Let Z be a random walk started uniformly
on ∂Bn and conditioned to hit 0 before hitting the boundary of Bn. Let W be the
time reversal of LE(S[0, τn]) which is independent of Z. Note that W is a process
starting from ∂Bn and its endpoint is the origin. We write σZ

k for the first time that
Z hits B(k) and define σW

k similarly. For k ≤ n, we define the event A(k) by

A(k) = {
Z
[
0, σZ

k

]∩ W
[
0, σW

k

]= ∅
}
.

We are interested in the distance defined by

D(k) = min
{
dist

(
Z
(
σZ

k

)
,W

[
0, σW

k

])
,dist

(
W
(
σW

k

)
,Z
[
0, σZ

k

])}
.

The next theorem says that the time reverse of a simple random walk and the
time reverse of LERW that are conditioned not to intersect are likely to be not
very close at their endpoints, which is referred to as the reverse separation lemma
in [27].

THEOREM 6.6 (Reverse Separation Lemma). Let d = 3. There exists a c > 0
such that for all n:

(6.25) P
(
D(k) ≥ ck | A(k)

)≥ c.

6.2. Escape probabilities. In this subsection, we will study the probability that
a simple random walk and an independent LERW do not intersect up to the first
time that they exit from a large ball. This probability is referred to as an escape
probability in [27] and [3]. In order to establish exponential tail bounds on the
length of LERW, escape probabilities are key tools and those were used to give
a bound on the kth moment of the length of LERW for d = 2 in [3]; see (1.5)
of [3]. Several estimates on escape probabilities derived in [27] were needed to
give such higher moment estimates of the length of LERW in [3]. The purpose of
this subsection is to establish those estimates on escape probabilities on various
scales in 3 dimensions (see Proposition 6.7, Proposition 6.8 and Proposition 6.10).
The separation lemmas (Theorem 6.5 and Theorem 6.6) allow to achieve them.

In order to define escape probabilities, we start by giving some definitions. We
consider a path λ and a point z ∈ Z

3. Take two integers m ≤ n. We write η1
z,m(λ)

for the path λ up to the first time that λ exits from B(z,m). Namely, if we let
u = inf{j | λ(j) /∈ B(z,m)} then η1

z,m(λ) = λ[0, u]. We write η1
m(λ) for η1

0,m(λ).
We set s = inf{j | λ(j) /∈ B(z,n)} for the first time λ exits from B(z,n) and set
t = sup{j ≤ s | λ(j) ∈ B(z,m)} for its last visit to B(z,m) up to time s. We let
η2

z,m,n(λ) = λ[t, s] be the path λ between the last visit to B(z,m) and the first time
that it exits from B(z,n). Again we write η2

m,n(λ) for η2
0,m,n(λ) (see Figure 6 for

η1 and η2).
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FIG. 6. A thick curve is η1
l (λ). A thick dotted curve is η2

m,n(λ).

Now we define escape probabilities as follows. Suppose that S1 and S2 are
independent simple random walks in Z

3. Recall that An is the event that S1 up to
the first time that S1 exits from B(n) and the loop-erasure of S2 up to the first time
it exits from B(n) do not intersect; see (6.5). We also recall that we write γ ∞ for
the infinite loop-erased random walk and that An∞ stands for the event that S1 up
to the first time that S1 exits from B(n) and the infinite LERW up to the first time
it exits from B(n) do not intersect; see (6.7). We set

Es(n) = P
(
An),

and set

Es∞(n) = P
(
An∞

)
.

We take two integers m ≤ n. We are also interested in the probability that S1 up to
τ 1
n and the loop-erasure of S2 up to τ 2

n from its last visit to B(m) do not intersect.
Namely, we let

Es(m,n) = P
(
S1[1, τ 1

n

]∩ η2
m,n

(
LE
(
S2[0, τ 2

n

]))= ∅
)
.

[See Figure 7 for Es(m,n).]
We will give various relations between the escape probabilities on various

scales. We start by proving the following proposition which says that Es(n) is
comparable to Es(4n) and Es∞(n). This proposition is an analog of Lemma 5.1 of
[27] in 3 dimensions.
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FIG. 7. Es(m,n).

PROPOSITION 6.7. Let d = 3. Then we have

(6.26) Es∞(n) 
 Es(4n) 
 Es∞(4n).

PROOF. We will first show that Es∞(n) 
 Es∞(4n). The definition of Es∞(n)

immediately gives that Es∞(n) ≥ Es∞(4n). So we need to show that Es∞(4n) ≥
c Es∞(n) for some c > 0. Recall that we write γ ∞ for the infinite loop-erased
random walk and write τ∞

n for the first time that it exits from B(n) [see (6.6)].
We also recall that Sep∞(n) stands for the event that S1[0, τ 1

n ] and γ ∞[0, τ∞
n ] are

“well-separated” [see (6.9) for Sep∞(n)]. By Theorem 6.5, we see that

P
(
Sep∞(n),An∞

)≥ cP
(
An∞

)
.

With this in mind, we condition that (S1[0, τ 1
n ], γ ∞[0, τ∞

n ]) = (γ 1, γ 2) so that
(γ 1, γ 2) satisfies Sep∞(n) and An∞. Namely γ 1 and γ 2 are well separated and
they do not intersect. We write wi for the endpoint of γ i . By the strong Markov
property, under this conditioning, the law of S1 after τ 1

n is same as the law of
a simple random walk started at w1. The domain Markov property (see Propo-
sition 4.1) ensures that conditioned that γ ∞[0, τ∞

n ] = γ 2, the law of γ ∞ after
τ∞
n is given by the law of the loop-erasure of a random walk X starting from

w2 conditioned that X[1,∞) do not hit γ 2. We write �i for the infinite half line
starting from wi which is orthogonal to the yz-plane and lies in B(n)c. We let
Gi := {x ∈ R

3 | dist(x, �i) ≤ n
8 } be a n

8 -neighborhood of �i . Then it is easy to see
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that

(6.27) P w1(
S1[0, τ 1

4n

]⊂ G1)≥ c,

for some c > 0. We let η := LE(X[0,∞)) be the loop-erasure of the conditioned
random walk X. We want to show that

(6.28) P w2(
η
[
0, τ

η
4n

]⊂ G2)≥ c,

where τ
η
4n stands for the first time that η exits from B(4n). We let τX

m be the
first exit time for X similarly. Suppose that X[0, τX

8n] ⊂ G2 and that X[τX
8n,∞) ∩

B(4n) = ∅. Then we have η[0, τ
η
4n] ⊂ G2. Therefore, the probability in (6.28) is

bounded below by

(6.29) P w2(
X
[
0, τX

8n

]⊂ G2,X[τX
8n,∞

)∩ B(4n) = ∅).

By definition of X, the probability of (6.29) is bounded below by

(6.30)
P w2

(S2[1,∞) ∩ γ 2 = ∅, S2[0, τ 2
8n] ⊂ G2, S2[τ 2

8n,∞) ∩ B(4n) =∅)

P w2
(S2[1, τ 2

n
16

] ∩ γ 2 = ∅)
.

Using Proposition 6.1 along with Proposition 1.5.10 of [16], we see that the ratio of
(6.30) is bounded below by a constant c > 0. So we get (6.28). The separation event
ensures that Gi ∩ (γ 3−i ∪ G3−i ) = ∅ for each i = 1,2. Therefore, by attaching
S1[0, τ 1

4n] [we assume S1(0) = w1 here] and η[0, τ
η
4n] to S1[0, τ 1

n ] and γ ∞[0, τ∞
n ],

respectively, as in (6.27) and (6.28), we see that Es∞(4n) ≥ c Es∞(n). So we get
Es∞(n) 
 Es∞(4n).

We will next show Es∞(n) 
 Es(4n). To achieve it, by Corollary 4.5 of [27], it
suffices to prove that

(6.31) P
(
S1[1, τ 1

n

]∩ η1
n

(
LE
(
S2[0, τ 2

4n

]))=∅
)
 P

(
A4n).

(Recall that η1 was defined at the beginning of this subsection.) It is clear that
the left-hand side of (6.31) is bounded below by the right-hand side. To prove
the other inequality, we use the separation lemma (see Theorem 6.5) again. By
Theorem 6.5, conditioned on S1[1, τ 1

n ] ∩ η1
n(LE(S2[0, τ 2

4n])) = ∅, with positive
conditional probability they are separated. Then we can attach paths to them as
above, and conclude (6.31). We leave the details to the reader. �

Take two integers m ≤ n. We will next relates Es(n) with the product of Es(m)

and Es(m,n). Namely, we will show that Es(n) 
 Es(m)Es(m,n) in Proposi-
tion 6.8 and Proposition 6.10. We start by proving Es(n) is bounded above by
C Es(m)Es(m,n) for some C < ∞.

PROPOSITION 6.8. Let d = 3. There exists C < ∞ such that for all m,n with
m ≤ n,

(6.32) Es(n) ≤ C Es(m)Es(m,n).
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PROOF. We set η1 = η1
m
4
(LE(S2[0, τ 2

n ])) for LE(S2[0, τ 2
n ]) up to its first exit

time of B(m
4 ). We also write η2 = η2

m,n(LE(S2[0, τ 2
n ])) for LE(S2[0, τ 2

n ]) from its
last visit to B(m). The definition of Es(n) gives that

(6.33) Es(n) ≤ P
(
S1[1, τ 1

m
4

]∩ η1 =∅, S1[τ 1
m
4
, τ 1

n

]∩ η2 = ∅
)
.

Using the strong Markov property first and then applying the discrete Harnack
principle (see Theorem 1.7.6 of [16]), we see that the probability in the right hand
side of (6.33) is bounded above by

(6.34) CE2
{
P1
(
S1[1, τ 1

m
4

]∩ η1 =∅
)
P1
(
S1[1, τ 1

n

]∩ η2 =∅
)}

.

(Recall that we write Pi for the probability of Si and write Ei for its expectation.)
However, Proposition 4.6 of [27] shows that η1 and η2 are independent “up to
constant” (see Proposition 4.6 of [27] for it). From this, it follows that the quantity
of (6.34) is bounded above by

(6.35)
CP

(
S1[1, τ 1

m
4

]∩ η1 = ∅
)
P
(
S1[1, τ 1

n

]∩ η2 = ∅
)

= CP
(
S1[1, τ 1

m
4

]∩ η1 = ∅
)

Es(m,n).

Corollary 4.5 of [27] gives that the distribution of η1 is same as the distribution
of γ ∞[0, τ∞

m
4

] up to multiplicative constants (see Corollary 4.5 of [27] for this).

Therefore, we have

(6.36) P
(
S1[1, τ 1

m
4

]∩ η1 = ∅
)
 P

(
S1[1, τ 1

m
4

]∩ γ ∞[0, τ∞
m
4

]= ∅
)= Es∞

(
m

4

)
.

Finally, Proposition 6.7 shows that Es∞(m
4 ) 
 Es(m) and we complete the proof.

�

In order to prove that Es(n) ≥ c Es(m)Es(m,n), we need the next lemma. The
next lemma estimates the conditional probability that a random walk lies in a given
set conditioned that the random walk avoids some sets and that the endpoint of the
random walk is equal to a given point. This lemma is an analog of Corollary 3.8 of
[27] in 3 dimensions. To state the lemma, we start by giving some definitions.

Take κ ∈ (0,1). We write π(κ) = {x = (x1, x2, x3) ∈ R
3 | x1 = κ} for the plane

which is orthogonal to the x1-axis and has a distance κ from the origin. We set
H(κ) = {|x| < 1} ∩π(κ) for the intersection of π(κ) and the unit open ball. Using
this set, we define a cone O(κ) by O(κ) = {rx | r > 0, x ∈ H(κ)}.

LEMMA 6.9. Let d = 3. Suppose that κ ∈ (0,1) and 0 < a < 1 < b < ∞.
There exists a constant c = c(κ, a, b) which depends on constants κ , a and b such
that the following holds. We consider a subset W of a cone defined by

W = {
x ∈ O(κ) | an ≤ |x| ≤ 4bn

}
.



736 D. SHIRAISHI

FIG. 8. W,K1 and K2 in Lemma 6.9.

We take two subsets K1 and K2 satisfying that K1 ⊂ B(n) and K2 ∩ B(4n) = ∅

(see Figure 8 for W,K1 and K2). We set K = K1 ∪ K2 ∪ B(4bn)c. Then it follows
that for all z ∈ ∂B(n) and y ∈ ∂iB(4n) with z, y ∈ O(κ+1

2 ),

(6.37) P z(S[0, σy] ⊂ W | σy < σK

)≥ c.

PROOF. We consider a subset W ′ defined by

W ′ =
{
x ∈ O

(
3κ + 1

4

) ∣∣∣ an ≤ |x| ≤ 2n

}
.

Using Proposition 6.1, we see that

P z(S[0, τ2n] ⊂ W ′ | τ2n < σK

)≥ c,

for some c > 0. Therefore, in order to prove (6.37), it suffice to show that there
exists a c > 0 such that for all w ∈ ∂B(2n) ∩ W ′

(6.38) P w(S[0, σy] ⊂ W | σy < σK

)≥ c.

However, by Lemma 3.1 of [27], we see that the probability in the left-hand side
of (6.38) is equal to

(6.39)
G(w,w,W ∩ ({y} ∪ K)c)P y(σw < τW ∧ σK ∧ σy)

G(w,w, ({y} ∪ K)c)P y(σw < σK ∧ σy)
.
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[Recall that G(·, ·,W) stands for Green’s function in W and that σy = inf{j ≥ 1 |
S(j) = y}.] Note that by the transience of S in 3 dimensions both Green’s functions
in (6.39) are constants. Therefore, we need to show that

(6.40)
P y(σw < τW ∧ σK ∧ σy)

P y(σw < σK ∧ σy)
≥ c.

Using Proposition 6.1 along with Proposition 1.5.10 of [16], we get (6.40) and
complete the proof of the lemma. �

Now we are ready to show that Es(n) ≥ c Es(m)Es(m,n) in the next proposi-
tion. In the proof of the proposition, we will use the separation lemmas (Theo-
rem 6.5 and Theorem 6.6) along with Lemma 6.9.

PROPOSITION 6.10. Let d = 3. There exists c > 0 such that for all m,n with
m ≤ n,

(6.41) Es(n) ≥ c Es(m)Es(m,n).

PROOF. Recall that for κ ∈ (0,1) we define a cone O(κ) just before stating
Lemma 6.9. Let

W := O

(
3

4

)
∩
(
B

(
5m

4

) ∖
B

(
m

5

))

be a subset of a cone O(3
4) restricted to (B(5m

4 ) \ B(m
5 )). We write W− =

{(−x1, x2, x3) | (x1, x2, x3) ∈ W } for the reflection of W with respect to the x2x3-
plane. We also define a set W ′ by

W ′ := O

(
1

2

)
∩
(
B

(
5m

4

) ∖
B

(
m

5

))
.

Note that W ⊂ W ′. We write W ′− for the reflection of W ′ with respect to the x2x3-
plane similarly.

Throughout the proof of this proposition, we write λ = S1[0, τ 1
n ] for the path of

S1 up to τ 1
n and γ = LE(S2[0, τ 2

n ]) for the loop-erasure of S2 up to its first exit time
of B(n). We next define several random times as follows. We write u1 = τ 1

m
4

and

let u2 = max{j ≤ τ 1
n | S1(j) ∈ B(m)} be its last visit to B(m) up to τ 1

n . Similarly,
we write t1 = τ

γ
m
4

and let t2 = max{j ≤ τ
γ
n | γ (j) ∈ B(m)} be its last visit to B(m)

up to the first time that γ exits from B(n).
Suppose that all of the following three events are fulfilled:

(a) λ[1, u1] ∩ γ [0, t1] = ∅, λ[0, u1] ⊂ B(m
5 ) ∪ W− and γ [0, t1] ⊂ B(m

5 ) ∪ W .
(b) λ[u1, u2] ⊂ W ′− and γ [t1, t2] ⊂ W ′.
(c) λ(u2) ∈ W−, γ (t2) ∈ W and (λ[u2, len(λ)] ∪ W ′−) ∩ (γ [t2, len(γ )] ∪

W ′) = ∅.
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Then the definitions of W,W ′,W− and W ′− ensure that λ[1, len(λ)] ∩ γ [0,

len(γ )] = ∅. Therefore, we see that Es(n) is bounded below by the probability
that the events (a), (b) and (c) hold. So we need to estimate P((a), (b), (c)).

Conditioned that λ[0, u1] and γ [0, t1] satisfy (a), and that λ[u2, len(λ)] and
γ [t2, len(γ )] satisfy (c), then by using the strong Markov property and the domain
Markov property (see Proposition 4.1) along with Lemma 6.9, the conditional
probability that the event (b) holds is bounded below by some constant c > 0.
Namely, we have

P
(
(b) | (a), (c)

)≥ c,

which gives that Es(n) ≥ cP ((a), (c)). However, Proposition 4.6 of [27] ensures
that the event (a) and (c) are independent up to multiplicative constants (see Propo-
sition 4.6 of [27] for this). Thus, we see that Es(n) ≥ cP ((a))P ((c)). So in order
to prove this proposition, it suffices to show that

P
(
(a)
)≥ c Es(m),(6.42)

P
(
(c)
)≥ c Es(m,n).(6.43)

We will first show (6.42) using Theorem 6.5. Recall that Theorem 6.5 shows
that conditioned on λ[1, u1] ∩ γ [0, t1] = ∅, then they are well-separated with pos-
itive conditional probability. Therefore, Theorem 6.5 gives that P((a)) is bounded
below by cP (λ[1, u1] ∩ γ [0, t1] = ∅). But using Corollary 4.5 of [27], we can
replace γ [0, t1] by γ ∞[0, τ∞

m
4

] (recall that γ ∞ stands for the infinite LERW).

So P(λ[1, u1] ∩ γ [0, t1] = ∅) is bounded below by cP (λ[1, u1] ∩ γ ∞[0, τ∞
m
4

] =
∅) which is equal to c Es∞(m

4 ). Finally, it follows from Proposition 6.7 that
Es∞(m

4 ) 
 Es(m) which gives (6.42).
We will prove (6.43) by using Theorem 6.6. To achieve it, we first set u3 =

max{j ≤ len(λ) | λ(j) ∈ B(2m)} and t3 = max{j ≤ len(γ ) | γ (j) ∈ B(2m)} for
the last time that λ and γ visit to B(2m). We let d := dist(λ(u3), γ [t3, len(γ )]) ∧
dist(γ (t3), λ[u3, len(λ)]) be the distance between the endpoint and the other path.
Then Theorem 6.6 gives that

P
(
λ
[
u3, len(λ)

]∩ γ
[
t3, len(γ )

]= ∅, d ≥ cm
)

≥ cP
(
λ
[
u3, len(λ)

]∩ γ
[
t3, len(γ )

]=∅
)
,

for some c > 0. Conditioned that λ[u3, len(λ)] ∩ γ [t3, len(γ )] = ∅ and d ≥ cm,
by using the strong Markov property and the domain Markov property (see Propo-
sition 4.1) along with Proposition 6.1, we can find two subset J1 and J2 which
satisfy the following conditions:

• λ(u3) ∈ J1 and γ (t3) ∈ J2.
• (J1 ∪ W ′−) ∩ (J2 ∪ W ′) = ∅, (J1 ∩ B(5m

4 )) ⊂ W− and (J2 ∩ B(5m
4 )) ⊂ W .

• P(λ[u2, u3] ⊂ J1, γ [t2, t3] ⊂ J2 | λ[u3, len(λ)] ∩ γ [t3, len(γ )] = ∅,

d ≥ cm) ≥ c.
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Suppose that λ[u3, len(λ)] ∩ γ [t3, len(γ )] = ∅, d ≥ cm, and λ[u2, u3] ⊂ J1,

γ [t2, t3] ⊂ J2. Then we see that the event (c) holds. Therefore, the probability
of the event (c) is bounded below by

P
(
λ[u2, u3] ⊂ J1, γ [t2, t3] ⊂ J2, λ

[
u3, len(λ)

]∩ γ
[
t3, len(γ )

]= ∅, d ≥ cm
)
.

But we have already proved that the probability above is bounded below by

(6.44)
P
(
λ
[
u3, len(λ)

]∩ γ
[
t3, len(γ )

]= ∅, d ≥ cm
)

≥ cP
(
λ
[
u3, len(λ)

]∩ γ
[
t3, len(γ )

]= ∅
)
.

The definition of the escape probability immediately gives that the right-hand
side of (6.44) is bounded below by Es(2m,n). Consequently, we get Es(n) ≥
c Es(m)Es(2m,n) [we let Es(k, l) = 1 for k > l here]. But Proposition 6.7 shows
that Es(m) 
 Es(2m), and thus we have Es(n) ≥ c Es(2m)Es(2m,n). Replacing
m by m

2 , we complete the proof. �

From Proposition 6.8 and Proposition 6.10, we see that Es(n) 
 Es(m)Es(m,n).
Recall that Es(m,n) stands for the probability that a simple random walk up to its
first exit of B(n) and the loop-erasure of an independent simple random walk up
to the first exit of B(n) after last time that the loop-erasure visits to B(m) do not
intersect. We want to show that this probability is comparable to the probability
that a simple random walk starting from (−m,0,0) up to its first exit of B(n) and
the loop-erasure of an independent simple random walk starting from (m,0,0) up
to the first time that the simple random walk exits from B(n) do not intersect. Us-
ing the separation lemma and attaching paths as in the proof of Proposition 6.10,
we have the following proposition, which will be used in the next section.

PROPOSITION 6.11. Let d = 3. We write xn = (2n,0,0) for a pole of B(2n).
Then there exists c > 0 such that for each k,m,n:

(6.45)

cP −xk,xk (
S1[0, τ 1

2k+n

]∩ LE
(
S2[0, τ 2

2k+n

])= ∅
)

× P −xk+n,xk+n(
S1[0, τ 1

2k+n+m

]∩ LE
(
S2[0, τ 2

2k+n+m

])= ∅
)

≤ P −xk,xk (
S1[0, τ 1

2k+n+m

]∩ LE
(
S2[0, τ 2

2k+n+m

])= ∅
)

≤ 1

c
P −xk,xk (

S1[0, τ 1
2k+n

]∩ LE
(
S2[0, τ 2

2k+n

])= ∅
)

× P −xk+n,xk+n(
S1[0, τ 1

2k+n+m

]∩ LE
(
S2[0, τ 2

2k+n+m

])=∅
)
.

PROOF. Recall that η2·,·(·) was defined in the beginning of this subsection. We
let

Es
(
2k,2k+n,2k+n+m)

= P −xk,xk (
S1[0, τ 1

2k+n+m

]∩ η2
2k+n,2k+n+m

(
LE
(
S2[0, τ 2

2k+n+m

]))=∅
)
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FIG. 9. Es(2k,2k+n,2k+n+m).

be the probability that S1[0, τ 1
2k+n+m] and LE(S2[0, τ 2

2k+n+m]) after its last visit to
B(2k+n) do not intersect [see Figure 9 for Es(2k,2k+n,2k+n+m)]. Similar argu-
ments as in the proof of Proposition 6.8 and Proposition 6.10 allow to show that

(6.46)

P −xk,xk (
S1[0, τ 1

2k+n+m

]∩ LE
(
S2[0, τ 2

2k+n+m

])= ∅
)


 P −xk,xk (
S1[0, τ 1

2k+n

]∩ LE
(
S2[0, τ 2

2k+n

])= ∅
)

× Es
(
2k,2k+n,2k+n+m).

Therefore, in order to prove (6.45), it suffices to show that

(6.47)
Es
(
2k,2k+n,2k+n+m)


 P −xk+n,xk+n(
S1[0, τ 1

2k+n+m

]∩ LE
(
S2[0, τ 2

2k+n+m

])= ∅
)
.

To show (6.47), we will introduce two cubes as follows. Let y = (y1,0,0) :=
xk+xk+n

2 be the middle point of xk and xk+n. We write W 1 = {z = (z1, z2, z3) ∈
Z

3 | |z1 − y1| ≤ 2k+n+2, |z2| ≤ 2k+n+2, |z3| ≤ 2k+n+2} for the cube of side length
2k+n+3 centered at y. We also write W 2 for the cube of side length of 2k+n+m+3

centered at y. These definitions of W 1 and W 2 ensure that B(2k+n) ⊂ W 1 ⊂
B(2k+n+4) and B(2k+n+m) ⊂ W 2 ⊂ B(2k+n+m+4). For a path λ, we define
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η2
W 1,W 2(λ) as follows. We let s1 := inf{j | λ(j) /∈ W 2} be the first time that λ

exits from W 2. We set s2 := sup{j ≤ s1 | λ(j) ∈ W 1} for the last visit to W 1 up to
time s1. Then we write η2

W 1,W 2(λ) = λ[s2, s1]. We let τ l
Wi = inf{j | Sl(j) /∈ Wi}

be the first time that Sl exits from Wi for each i = 1,2 and l = 1,2. Then similar
arguments as in the proof of Proposition 6.8 and Proposition 6.10 give that

P −xk,xk (
S1[0, τ 1

W 2

]∩ LE
(
S2[0, τ 2

W 2

])= ∅
)


 P −xk,xk (
S1[0, τ 1

W 1

]∩ LE
(
S2[0, τ 2

W 1

])=∅
)

× P −xk,xk (
S1[0, τ 1

W 2

]∩ η2
W 1,W 2

(
LE
(
S2[0, τ 2

W 2

]))= ∅
)
.

This comparison is an analog of (6.46) for cubes.
We will next see that the nonintersecting probability up to the first exit of the

cube is comparable to the nonintersecting probability up to the first exit of the
ball. Namely, Proposition 6.7 gives that P −xk,xk

(S1[0, τ 1
W 2] ∩ LE(S2[0, τ 2

W 2]) =
∅) is comparable to P −xk,xk

(S1[0, τ 1
2k+n+m] ∩ LE(S2[0, τ 2

2k+n+m]) = ∅). Simi-

larly, we see that P −xk,xk
(S1[0, τ 1

W 1] ∩ LE(S2[0, τ 2
W 1]) = ∅) is comparable to

P −xk,xk
(S1[0, τ 1

2k+n] ∩ LE(S2[0, τ 2
2k+n]) = ∅). Therefore, it follows that Es(2k,

2k+n,2k+n+m) is comparable to

(6.48) P −xk,xk (
S1[0, τ 1

W 2

]∩ η2
W 1,W 2

(
LE
(
S2[0, τ 2

W 2

]))= ∅
)
.

Namely we may consider the nonintersecting probability of S1 up to τ 1
W 2

and the loop-erasure of S2 up to τ 2
W 2 after its last visit to W 1 instead of

Es(2k,2k+n,2k+n+m). Since P −xk+n,xk+n
(S1[0, τ 1

W 1] ∩ LE(S2[0, τ 2
W 1]) = ∅) is

bounded below by a constant, similar arguments as above show that
P −xk+n,xk+n

(S1[0, τ 1
2k+n+m] ∩ LE(S2[0, τ 2

2k+n+m]) =∅) is comparable to

(6.49) P −xk+n,xk+n(
S1[0, τ 1

W 2

]∩ η2
W 1,W 2

(
LE
(
S2[0, τ 2

W 2

]))= ∅
)
.

Consequently, in order to complete the proof, it suffices to show that the proba-
bility of (6.48) is comparable to the probability of (6.49). To achieve it, we will use
a simple reflection argument as follows. We start by replacing a staring point of S1

by y. Since η2
W 1,W 2(LE(S2[0, τ 2

W 2]) lies in (W 1)c, the discrete Harnack principle
(see Theorem 1.7.6 of [16]) shows that the probability of (6.48) is comparable to

(6.50) P y,xk (
S1[0, τ 1

W 2

]∩ η2
W 1,W 2

(
LE
(
S2[0, τ 2

W 2

]))=∅
)
.

Similarly, we see that the probability of (6.49) is comparable to

(6.51) P y,xk+n(
S1[0, τ 1

W 2

]∩ η2
W 1,W 2

(
LE
(
S2[0, τ 2

W 2

]))=∅
)
.
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However, by using a reflection of paths with respect to the plane {(y1, z2, z3) |
(z2, z3) ∈ Z

2} (recall that y = (y1,0,0) is the middle point of xk and xk+n), we
can conclude that the probability of (6.50) is equal to the probability of (6.51), and
thus we complete the proof. �

7. Rate of convergence for Es(n). As we discussed at the beginning of the
previous section, we want to establish exponential tail bounds on the length of
LERW in 3 dimensions. In order to achieve it, we need to give bounds on the
higher moments of the length of LERW in terms of the escape probability. To
derive such moment estimates, it turns out that we need to show the existence of
some exponent α > 0 such that

(7.1) lim
n→∞

log Es(n)

logn
= −α,

for d = 3. We point out that 1
3 ≤ α < 1 if α exists (see [20]). In this section, we

will prove that the limit in (7.1) exists.
Before going to the proof, we will explain the strategy of it here. To show the

existence of α, we first consider

(7.2) am,n = P −xn,xn(
S1[0, τ 1

2m+n

]∩ LE
(
S2[0, τ 2

2m+n

])=∅
)

the probability that S1 starting from −xn up to τ 1
2m+n and the loop-erasure of S2

starting from xn up to τ 2
2m+n do not intersect, which was considered in Proposi-

tion 6.11 (recall that xn = (2n,0,0) is a pole of B(2n)). Fixing m, we are interested

in the existence of limit of am,n as n → ∞. Suppose that
S1[0,τ 1

2m+n ]
2n stands for the

rescaled simple random walk obtained by multiplying S1[0, τ 1
2m+n] by 2−n. We

also consider the rescaled LERW
LE(S2[0,τ 2

2m+n ])
2n similarly. Note that the rescaled

simple random walk and LERW start from (−1,0,0) and (1,0,0), respectively,
and run until the first exit from B(2m). We also mention that the probability am,n

is equal to the probability that these rescaled walks do not intersect. Fixing m and
letting n → ∞, we know that the rescaled simple random walk converges to a
Brownian motion and that the limit of the rescaled LERW exists (see [14]). There-
fore, it is natural to expect that the limit of am,n as n → ∞ exists for each fixed m.
Unfortunately, the existence of the limit of am,n is not an immediate consequence
of the existence of the scaling limit of LERW shown in [14]. For the scaling limit
of LERW in 3 dimensions, the topology considered in [14] is the topology of the
space of compact subsets with the Hausdorff metric, which is somewhat weak for
our purpose. In addition to that, little is known about the scaling limit when d = 3.
Therefore, in order to prove the existence of the limit of am,n as n → ∞, we need
more work and it will be done in the next subsection.

Once we have showed that the limit of am,n exists as n → ∞ for each m, we may
write am = limn→∞ am,n for its limit. Then Proposition 6.11 immediately gives
that ak+m 
 akam. A standard subadditive argument shows that there exists α > 0
such that am 
 2−αm. Using this, we will prove that Es(n) ≈ n−α in Theorem 7.4.
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7.1. limn→∞ am,n exists. Recall that am,n was defined as in (7.2). the goal of
this subsection is to prove that the limit of am,n exists as n → ∞ for each fixed
m in the next proposition. In the proof, we will compare am,n with the probability
that a Wiener sausage and the loop-erasure of an independent simple random walk
do not intersect. Some results derived in [14] will be used to compare them.

PROPOSITION 7.1. Let d = 3. Recall that am,n was defined as in (7.2). Then
for each m, the limit

(7.3) lim
n→∞am,n =: am

exists.

PROOF. For a path λ, t ≥ 0 and L > 0, we write

λL[0, t] = {
λ(s) + B(L) : 0 ≤ s ≤ t

}
for a “sausage” of λ, which is a set of points x with dist(x, λ) ≤ L.

Fix m ∈N. We start by showing that for each 0 < ε < 1, there exists δ > 0 such
that

(7.4)
∣∣am,n − P −xn,xn(

S1
2(1−ε)n

[
0, τ 1

2n+m

]∩ LE
(
S2[0, τ 2

2n+m

])= ∅
)∣∣≤ c2−δn,

for large n. Namely, we want to replace S1 by its 2(1−ε)n-neighborhood in the
nonintersecting event.

To show (7.4), note that the difference in the left-hand side of (7.4) is equal to
the probability that S1 and the loop-erasure of S2 do not intersect while the sausage
of S1 and the loop-erasure of S2 intersect. Therefore, we have∣∣am,n − P −xn,xn(

S1
2(1−ε)n

[
0, τ 1

2n+m

]∩ LE
(
S2[0, τ 2

2n+m

])=∅
)∣∣

= P −xn,xn
(
S1[0, τ 1

2m+n

]∩ LE
(
S2[0, τ 2

2m+n

])= ∅,

S1
2(1−ε)n

[
0, τ 1

2n+m

]∩ LE
(
S2[0, τ 2

2n+m

]) �= ∅
)
.

With this in mind, we define two events F1 and F2 by

F1 = {
S1[0, τ 1

2m+n

]∩ LE
(
S2[0, τ 2

2m+n

])= ∅
}
,

F2 = {
S1

2(1−ε)n

[
0, τ 1

2n+m

]∩ LE
(
S2[0, τ 2

2n+m

]) �= ∅
}
.

We write γ = LE(S2[0, τ 2
2m+n]) for the loop-erasure of S2[0, τ 2

2m+n]. Suppose
that F1 and F2 occur. Then S1 has a point within a distance 2(1−ε)n of γ while S1

and γ do not intersect. Thus we see that the following event F3 occurs:

F3 = {∃w ∈ B
(
2n+m) s.t.

dist(w,γ ) ≤ 2(1−ε)n, σ 1
w ≤ τ 1

2n+m, S1[0, τ 1
2n+m

]∩ γ =∅
}
,
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where we recall that σ 1
w = inf{j ≥ 1 | S1(j) = w} stands for the first time that S1

hits w.
We first want to show that with high probability, w is not very close to

∂B(2n+m). To show this, let y := S1(τ 1
2n+m−2(1− ε

2 )n
). We define a sequence of stop-

ping times tk (k = 0,1, . . . , εn
4 ) by

tk = inf
{
j ≥ τ 1

2n+m−2(1− ε
2 )n | ∣∣S1(j) − y

∣∣≥ 2(1− ε
2 )n+k}.

Namely, tk is the first time after hitting the boundary of B(2n+m − 2(1− ε
2 )n) that

S1 exits from B(y,2(1− ε
2 )n+k). It is easy to check that for each k, the probability

that S1[tk, tk+1] hits the boundary of B(2n+m) is bounded below by some universal
constant c > 0. Therefore, iterating this along with the strong Markov property, we
see that there exists δ > 0 such that

P −xn(
S1[τ 1

2n+m−2(1− ε
2 )n , τ

1
2n+m

]⊂ B
(
y,2(1− ε

4 )n))≥ 1 − 2−δεn.

Now suppose that S1[τ 1
2n+m−2(1− ε

2 )n
, τ 1

2n+m] lies in B(y,2(1− ε
4 )n) and that F3 holds

with w lying in B(2n+m −2(1− ε
2 )n)c. This implies that S1 hits w after τ 1

2n+m−2(1− ε
2 )n

and that the distance between w and y is bounded above by 2(1− ε
4 )n. Since w is a

point within a distance 2(1−ε)n of γ , we see that the distance between y and γ is
bounded above by 2(1− ε

8 )n. However, using Proposition 1.5.10 of [16], we have

P −xn,xn(
S2[0, τ 2

2n+m

]∩ B
(
y,2(1− ε

8 )n) �= ∅
)≤ c

2(1−ε/8)n

2n
= c2− εn

8 .

Consequently, if we write

F4 = {∃w ∈ B
(
2n+m − 2(1− ε

2 )n)c s.t.

dist(w,γ ) ≤ 2(1−ε)n, σ 1
w ≤ τ 1

2n+m, S1[0, τ 1
2n+m

]∩ γ = ∅
}

for the event that F3 occurs with w which is close to the boundary of B(2n+m),
then we see that P −xn,xn

(F4) ≤ 2−δεn.
Therefore, in order to prove (7.4), it suffices to show that the probability of the

following event F5 is bounded above by c2−δn:

F5 = {∃w ∈ B
(
2n+m − 2(1− ε

2 )n) s.t.

dist(w,γ ) ≤ 2(1−ε)n, σ 1
w ≤ τ 1

2n+m, S1[0, τ 1
2n+m

]∩ γ = ∅
}
,

the event that F3 occurs with w which is not close to the boundary of B(2n+m)

(see Figure 10 for F5). To estimate the probability of F5, we will use Lemma 4.8 in
[14] as follows. Suppose that F5 occurs. Given γ , we may define the stopping u by
u = inf{j | dist(S1(j), γ ∩B(2n+m −2(1− ε

2 )n−1)) ≤ 2(1−ε)n}. Namely, u is the first
time that S1 hits the 2(1−ε)n-neighborhood of γ restricted in B(2n+m −2(1− ε

2 )n−1).
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FIG. 10. Event F5.

Then u < τ 1
2n+m and S1[u, τ 1

2n+m] ∩ γ = ∅ on F5. Thus, we are interested in the
probability:

(7.5) P −xn

1

(
u < τ 1

2n+m, S1[u, τ 1
2n+m

]∩ γ = ∅
)
,

which is a function of γ . Lemma 4.8 in [14] along with the strong Markov prop-
erty gives that there exists δ > 0 such that with very high probability of γ , the
probability in (7.5) is bounded above by 2−δn, that is,

P xn

2
(
P −xn

1

(
u < τ 1

2n+m, S1[u, τ 1
2n+m

]∩ γ = ∅
)
> 2−δn)≤ c2−10n.

By using this, we see that

P −xn,xn

(F5) ≤ P −xn,xn(
u < τ 1

2n+m, S1[u, τ 1
2n+m

]∩ γ = ∅
)≤ 2−δn,

which gives (7.4).
Next, we want to show that |am,n+1 −am,n| is small. To achieve this, we consider

a Wiener sausage as follows. Let W = (W(t))t≥0 be a Brownian motion in R
3

started at −xn, which is independent of S2. We write τW
R = inf{t ≥ 0 | W(t) /∈

B(R)} for the first time that W exits from B(R). We let

bm,n = P −xn,xn(
γ ∩ W

2
2n
3

[
0, τW

2n+m

]=∅
)
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be the probability that γ and a 2
2n
3 -neighborhood of W [0, τW

2n+m] do not intersect.
We want to compare am,n with bm,n. To so it, we consider the following coupling
of S1 and W . Lemma 3.2 of [18] shows that we can couple W and S1 in the same
probability space such that the following holds: W(0) = S1(0) = −xn and there
exists δ > 0 such that

P −xn
(

max
0≤t≤τW

2n+m+1

∣∣W(t) − S1(3t)
∣∣≥ 2

2n
3 −1

)
≤ ce−2δn

.

Namely, we can couple S1 and W up to the first exit of B(2n+m+1) so that

S1 lies in a 2
2n
3 −1-neighborhood of W with high probability. From now on,

we will consider S1 and W assuming that they are coupled as above. We set

F6 = {max0≤t≤τW

2n+m+1
|W(t) − S1(3t)| ≤ 2

2n
3 −1} for the event that S1 stays close

to W . Suppose that F6 holds. Then it is easy to see that S1

2
2n
3 −2

[0, τ 1
2n+m] is con-

tained in a Wiener sausage W
2

2n
3
[0, τW

2n+m]. Similarly we see that W
2

2n
3
[0, τW

2n+m] is

contained in S1

2
2n
3 +2

[0, τ 1
2n+m]. Therefore, we have

∣∣bm,n − P −xn,xn(
F6, γ ∩ W

2
2n
3

[
0, τW

2n+m

]= ∅
)∣∣≤ ce−2δn

,

and

P −xn,xn(
γ ∩ S1

2
2n
3 +2

[
0, τ 1

2n+m

]= ∅
)− ce−2δn

≤ P −xn,xn(
F6, γ ∩ W

2
2n
3

[
0, τW

2n+m

]= ∅
)

≤ P −xn,xn(
γ ∩ S1

2
2n
3 −2

[
0, τ 1

2n+m

]= ∅
)
.

(7.6)

Using (7.4) with ε = 1
3 , we can conclude that

(7.7) |bm,n − am,n| ≤ c2−δn.

Next, we want to compare bm,n with am,n+1 by using a result derived in [14].
To achieve it, we define the event F7 by

F7 = {
W
[
0, τW

2n+m

]∩ B
(
xn,2n−√

n)= ∅
}
.

Theorem 3.17 of [28] shows that P −xn
(F c

7 ) ≤ c2−√
n. So we may assume that

W does not hit B(xn,2n−√
n) with probability at least 1 − c2−√

n. We recall that
for r > 0 and a set D ⊂ R

3 we write rD = {rz : z ∈ D}. In order to show that
the difference between bm,n and am,n+1 is small, we will use Theorem 5 of [14]
as follows. Conditioned on the Brownian motion W [0, τW

2n+m] which satisfies F7,
we are interested in the probability P xn

(γ ∩ W
2

2n
3
[0, τW

2n+m] = ∅) (this probability

is a function of W [0, τW
2n+m]). Theorem 5 of [14] shows that there exist universal
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(deterministic) constants ε > 0 and c < ∞ such that if W [0, τW
2n+m] satisfies F7

then

(7.8)

P xn(
γ ∩ W

2
2n
3

[
0, τW

2n+m

]= ∅
)

= P xn+1(
LE
(
R
[
0, τR

2n+m+1

])∩ 2
(
W

2
2n
3

[
0, τW

2n+m

])= ∅
)

≥ P xn+1(
LE
(
S2[0, τ 2

2n+m+1

])∩ W ′
2(1−ε)n =∅

)− c2−εn,

where R = (R(j))j≥0 stands for a simple random walk on 2Z3 started at xn+1 and
τR
l stands for the first exit of B(l). We also mention that W ′ = 2W [0, τW

2n+m] stands
for an enlargement of the Brownian motion and that we write W ′

2(1−ε)n for a 2(1−ε)n-
neighborhood of W ′. Namely, Theorem 5 of [14] gives a comparison between the
probability that the loop-erasure of a simple random walk on 2Z3 does not hit a
set A and the probability that the loop-erasure of a simple random walk on Z

3

does not hit A. It was shown there that the difference between these probabilities
is small for a suitable set A, and thus we require W [0, τW

2n+m] to satisfy F7. Using
(7.8), we see that

bm,n ≥ E−xn{
P xn

2
(
γ ∩ W

2
2n
3

[
0, τW

2n+m

]= ∅
);F7

}
≥ E−xn{

P xn+1(
LE
(
S2[0, τ 2

2n+m+1

])∩ W ′
2(1−ε)n = ∅

)− c2−εn;F7
}

≥ E−xn{
P xn+1(

LE
(
S2[0, τ 2

2n+m+1

])∩ W ′
2(1−ε)n = ∅

)}− c2−√
n.

Now we use the scaling property of the Brownian motion to see that W ′ has the
same distribution as W [0, τW

2n+m+1] assuming that W(0) = −xn+1. Therefore, the

law of W ′
2(1−ε)n is same as the law of the 2(1−ε)n-neighborhood of W [0, τW

2n+m+1]
with W(0) = −xn+1. Thus, we have

E−xn{
P xn+1(

LE
(
S2[0, τ 2

2n+m+1

])∩ W ′
2(1−ε)n =∅

)}
= P −xn+1,xn+1(

LE
(
S2[0, τ 2

2n+m+1

])∩ W2(1−ε)n

[
0, τW

2n+m+1

]= ∅
)
.

As in the proof of (7.7), we can show that the difference between the probability
that the LERW and the Wiener sausage do not intersect and the probability that the
LERW and the simple random walk do not intersect is small. So we see that there
exists δ > 0 such that∣∣P −xn+1,xn+1(

LE
(
S2[0, τ 2

2n+m+1

])∩ W2(1−ε)n

[
0, τW

2n+m+1

]=∅
)− am,n+1

∣∣≤ c2−δn.

Combining these estimates, we can conclude that

am,n ≥ bm,n − c2−δn

≥ P −xn+1,xn+1(
LE
(
S2[0, τ 2

2n+m+1

])∩ W2(1−ε)n

[
0, τW

2n+m+1

]= ∅
)− c2−√

n

≥ am,n+1 − c2−√
n.
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Similar arguments as above gives that am,n+1 ≥ am,n − c2−√
n, and thus we have

(7.9) |am,n − am,n+1| ≤ c2−√
n,

which implies that {am,n}n is a Cauchy sequence and we complete the proof. �

REMARK 7.2. We expect that am can be written in terms of nonintersection
probability of Brownian motion and scaling limit of loop-erased random walk
in [14].

COROLLARY 7.3. Let d = 3. There exists α > 0 such that

(7.10) an 
 2−αn.

PROOF. By Proposition 6.11 and Proposition 7.1, we have

am+n 
 aman.

Using Lemma 8.5 of [21], we get the result. �

7.2. Proof of (7.1).

THEOREM 7.4. Suppose that d = 3. Let α be the positive number as in Corol-
lary 7.3. Then we have

(7.11) Es(n) ≈ n−α.

In particular, we have

(7.12)
1

3
≤ α < 1.

PROOF. Note that (7.12) follows from (7.11). Indeed suppose that we get
(7.11). The definition of Es(n) and Theorem 1.3 of [18] give that

Es(n) ≥ P
(
S1[1, τ 1

n

]∩ S2[0, τ 2
n

]= ∅
)≥ cn−ξ3,

where we recall that ξ3 is the intersection exponent with ξ3 ∈ (1
2 ,1) (see (1.12) for

the intersection exponent). This implies that α ≤ ξ3 < 1. For the lower bound on

α, the estimates (11.10) and (11.11) of [23] give that Es(n) ≤ cn− 1
3 . This implies

that α ≥ 1
3 . Thus, in order to complete the proof of the theorem, it suffices to show

(7.11).
Let ε > 0. By Corollary 7.3, there exist 0 < c1, c2 < ∞ such that for all m

c12−αm ≤ am ≤ c22−αm.

We fix a large constant M = Mε depending on ε. The precise form of M will be
defined later. By Proposition 7.1, we know that aM,n converges to aM as n → ∞.



GROWTH EXPONENT FOR 3D LERW 749

Therefore, we can take N = NM depending on M such that 1
2aM ≤ aM,n ≤ 2aM

for all n ≥ N . Consequently, for all n ≥ N , we have

c1

2
2−αM ≤ aM,n ≤ 2c22−αM.

On the other hand, using Proposition 6.11 for the case that k = 0, we see that
Es(2n)aM,n is comparable to Es(2n+M). However, Proposition 6.8 and Propo-
sition 6.10 show that Es(2n+M) is comparable to Es(2n)Es(2n,2n+M). Conse-
quently, we see that aM,n is comparable to Es(2n,2n+M). Thus, there exists c0 > 0
such that

(7.13) c02−αM ≤ Es
(
2n,2n+M)≤ 1

c0
2−αM,

for all n ≥ N .
For n ≥ N , we write n = N + jM + r with j ≥ 0 and 0 ≤ r < M . Hence, by

Proposition 6.8,

(7.14)

Es
(
2n)= Es

(
2N+jM+r)

≤ Cj+1 Es
(
2N+r ) j∏

k=1

Es
(
2N+r+(k−1)M,2N+r+kM)

≤ (C/c0)
j+1 Es

(
2N+r )2−αMj ,

where C is a constant as in Proposition 6.8. Now we choose M so that C
c0

< 2εM .
This choice of M ensures that the right hand side of (7.14) is bounded above by
CM2−(α−ε)n. This gives that

lim sup
n→∞

log Es(2n)

log 2n
≤ −α + ε.

Since ε > 0 is an arbitrary positive number, we have

lim sup
n→∞

log Es(2n)

log 2n
≤ −α.

Similar arguments as above also show that

lim inf
n→∞

log Es(2n)

log 2n
≥ −α.

For a general integer n, we find m with 2m ≤ n < 2m+1. Using Proposition 6.7 to
see that

Es
(
2m)
 Es(n) 
 Es

(
2m+1),

we get (7.11). �
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Before finishing this section, we will give the following two lemmas. These
lemmas will be used in the next section when we estimate the kth moment of the
length of LERW. We begin with the next lemma which says that Es(k, l) is of
order ( l

k
)−α where α is the constant as in Theorem 7.4. This lemma is an analog

of Lemma 3.12 of [3] for d = 3.

LEMMA 7.5. Let d = 3. Recall that α is the constant as in Theorem 7.4. Then
for all ε > 0, there exist cε > 0 and nε ∈ N such that

(7.15) cε

(
l

k

)−α−ε

≤ Es(k, l) ≤ c−1
ε

(
l

k

)−α+ε

,

for all nε ≤ k ≤ l.

PROOF. Since the proof is completely the same as the proof of Lemma 3.12
of [3], we will give a sketch here.

Let ε > 0. We take a large constant j = jε depending on ε. The precise form of
j will be defined later. As in (7.13), we see that C−1j−α ≤ Es(n, jn) ≤ Cj−α for
all large n. We choose i so that j i ≤ l

k
< j i+1. Then similar estimates as in (7.14)

show that

Es(k, l) ≤ C Es
(
k, j ik

)≤ Ci+1
i−1∏
q=0

Es
(
jqk, jq+1k

)≤ C2i+1(j−α)i .
Now we take j so that j

ε
2 ≥ C where C is a constant in the inequality above. This

choice of j ensures that the right-hand side of the inequality above is bounded
above by Cj(

l
k
)−α+ε . The lower bound of Es(k, l) can be proved similarly. So we

complete the proof. �

The next lemma gives a bound on the ratio of Es(k) and Es(l). This is an analog
of Lemma 3.13 of [3] for d = 3. We will use the next lemma many times in the
next section.

LEMMA 7.6. Let d = 3. Recall that α is the constant as in Theorem 7.4. Then
for all ε > 0, there exists Cε < ∞ such that

(7.16) kα+ε Es(k) ≤ Cεl
α+ε Es(l),

for all 1 ≤ k ≤ l.

PROOF. We will give a sketch here. Take ε > 0. By Theorem 7.4 and
Lemma 7.5, we see that there exist constants c > 0 and n such that for all
n ≤ k ≤ l, Es(k, l) is bounded below by c( l

k
)−α−ε and Es(k) is bounded below by
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ck−α− ε
2 . Therefore, using this along with Proposition 6.10, we see that lα+ε Es(l)

is bounded below by

clα+ε Es(k)Es(k, l) ≥ clα+ε Es(k)

(
l

k

)−α−ε

= ckα+ε Es(k)

for n ≤ k ≤ l.
For the case that k ≤ l ≤ n, it is easy to check that the claim holds. For the

case that k ≤ n ≤ l, we point out that kα+ε Es(k) ≤ Cn for all k ≤ n where Cn is
a constant depending on n. However, for every l ≥ n, we know that lα+ε Es(l) is
bounded below by clα+ε × l−α− ε

2 = cl
ε
2 ≥ c. Thus, the claim also holds for this

case. So we complete the proof. �

8. Tail estimates of the length of LERW. Recall that in order to prove (5.2)
of Theorem 5.1, we used exponential tail bounds on the length of LERW in 2
dimensions derived in [3] (see Proposition 5.2 and Proposition 5.3). Unfortunately,
such tail bounds in 3 dimensions have not been established up to now. The main
goal of this section to derive both upper and lower tail bounds on the length of
LERW in 3 dimensions.

In the next subsection, we will give an upper tail estimate in Theorem 8.6. Then
in Section 8.2, we will give a lower tail estimate in Theorem 8.12.

8.1. Upper tail estimates. Recall that Mn = len LE(S[0, τn]) stands for the
length of LERW assuming that S(0) = 0. The goal of this subsection is to derive
the following upper exponential tail bounds on Mn in 3 dimensions: there exist
0 < c,C < ∞ such that for all n ≥ 1 and κ > 0,

(8.1) P
(
Mn ≥ κE(Mn)

)≤ Ce−cκ .

This is an analog of Theorem 5.8 of [3] in 3 dimensions. To establish (8.1), we
will follow the same strategy as in the proof of Theorem 5.8 of [3]. Before going
to its proof, we recall the strategy of [3] here. The first key step is to give an upper
bound on the kth moment of Mn in terms of the escape probability, that is, we will
show that for all k ≥ 1:

(8.2) E
(
Mk

n

)≤ Ckk!(n2 Es(n)
)k

,

where C is some universal constant (see Theorem 8.4). The term n2 Es(n) comes
from the following reason. We first point out that the expectation of Mn is equal
to the sum of the probability that LE(S[0, τn]) hits z, where the sum is over all
z ∈ B(n). It turns out that the sum is comparable to∑

n
3 ≤|z|≤ 2n

3

P
(
z ∈ LE

(
S[0, τn])),

namely, the sum of the same probabilities for z which is not too close to the origin
and the boundary of the ball. Suppose that n

3 ≤ |z| ≤ 2n
3 . In order for z to lie in

LE(S[0, τn]), it is required that:
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(i) S hits z up to τn.
(ii) The loop-erasure of the random walk from the origin to z and the random

walk from z up to τn do not intersect.

Reversing a path and using the time reversibility of LERW (see Lemma 7.2.1 of
[16]), we see that the probability of (i) ∩ (ii) is same as the probability that a
random walk starting from z up to the first exit of B(n) and the loop-erasure of an
independent random walk from z to the origin do not intersect. We will show that
this probability is comparable to 1

n
Es(n), that is, the product of the probability that

the random walk from z hits the origin and the escape probability. Taking the sum
for z, it follows that E(Mn) is comparable to n2 Es(n), and thus we have

(8.3) E
(
Mk

n

)≤ Ckk!(E(Mn)
)k

,

which is sufficient to get (8.1) (see Theorem 8.6).
We begin with the next proposition (Proposition 8.1) which gives an exact ex-

pression of the probability that LERW hits given k points z1, . . . , zk in this order
in terms of Green’s functions and nonintersecting probabilities of random walks
and loop-erased random walks. In order to state it, we need some definitions.

Let z0, z1, . . . , zk be any distinct k + 1 points in a given set D ⊂ Z
3. We write

X for a Markov chain on Z
3 with X(0) = z0 and P z0(τX

D < ∞) = 1 (recall that
τX
D stands for the first time that X exits from D). We should write P

z0
X for the

probability of X instead of P z0 . However, to avoid complication of notation, we
will omit the superscript X throughout this section. We let γ = LE(X[0, τX

D ]) be
the loop-erasure of X up to its first exit of D. We are interested in the following
event;

(8.4)
FX

z0,...,zk
= {

there exist 0 ≤ t1 < · · · < tk ≤ lenγ s.t.

γ (ti) = zi,∀i = 1,2, . . . , k
}
,

which is the event that γ passes through points z0, z1, . . . , zk in this order. We
write zk+1 = ∂D.

We consider several independent versions of X as follows. For i = 0,1, . . . , k,
we let Xi be independent versions of X with Xi(0) = zi . We set Zi for Xi condi-
tioned on the event {σXi

zi+1
≤ τXi

D } (recall that σXi

z = inf{t ≥ 1 | Xi(t) = z}). So Zi

is a process from zi to zi+1. We write u(i) = max{l ≤ τZi

D : Zi
l = zi+1} for the last

time that Zi visits to zi+1 up to its first exit of D. Finally, define a nonintersecting
event by

(8.5) Fk
i =

{
LE
(
Zi−1[0, u(i − 1)

])∩ k⋃
j=i

Zj [1, u(j)
]= ∅

}
.

The next proposition writes the probability of FX
z0,...,zk

in terms of Green’s func-
tions of X and the probability of the nonintersecting event Fk

i .
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PROPOSITION 8.1. Let d = 3. Recall that zi,D,X,FX
z0,...,zk

,Xi,Zi, u(i) and

Fk
i were defined as above. Then we have

(8.6) P
(
FX

z0,...,zk

)=
[

k∏
i=1

GX(zi−1, zi,D)

]
P

(
k⋂

i=1

Fk
i

)
.

Here, GX(·, ·,D) is Green’s function in D for a Markov chain X.

PROOF. Proposition 5.2 of [3] claims the same statement as above in 2 di-
mensions. However, clearly the proof of Proposition 5.2 of [3] also works in 3
dimensions. So we omit the proof. �

In the next proposition, we will give an upper bound on the probability that
the loop-erasure of a Markov chain X hits k points z1, . . . , zk in terms of es-
cape probabilities. To state it, we introduce some notation here. Take a set D and
suppose that z0, . . . , zk are points (not necessarily distinct) lying in D. We write
�z = (z0, . . . , zk). For this pair of k + 1 points, we are interested in the distance
between zi and {zi−1, zi+1} ∪ ∂D. Namely, we set

d�z
i = |zi − zi−1| ∧ |zi − zi+1| ∧ dist(zi, ∂D)

for i = 1, . . . , k (recall that zk+1 = ∂D). We need to consider permutations
of z1, . . . , zk in the next proposition. So we let �k be the symmetric group
on {1,2, . . . , k} and for each element π ∈ �k we write π(0) = 0 and π(�z) =
(z0, zπ(1), . . . , zπ(k)) for the corresponding permutation of �z.

Now we are ready to state the next proposition which estimates the probability
that points z1, . . . , zk lie in LE(X[0, τX

D ]). This proposition is an analog of Propo-
sition 5.5 of [3] for d = 3.

PROPOSITION 8.2. Let d = 3. We consider either:

(I) D = B(n), z0 = 0, z1, . . . , zk are points in B(n), and X is a simple random
walk S started at the origin; or

(II) Recall that m,n,N , Am, x and An(x) were defined as in Definition 6.3. We
consider a subset K ⊂ Am. Suppose that X is a random walk starting from x con-
ditioned that X[1, τX

N ] ∩ K = ∅. We let D = B(N) and z0 = x. Points z1, . . . , zk

lie in An(x).

Then there exists a universal constant C < ∞ such that

(8.7)

P
(
z1, . . . , zk ∈ LE

(
X
[
0, τX

D

]))

≤ Ck
∑

π∈�k

k∏
i=1

GX(zπ(i−1), zπ(i),D)Es
(
d

π(�z)
π(i)

)
.
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PROOF. We will follow the same strategy as in the proof of Proposition 5.5
of [3]. We will only consider the first case (I). The claim for the second case will
be proved similarly.

Suppose that X is a simple random walk S started at the origin, z0 = 0, and
D = B(n). We first consider the case that z1, . . . , zk lie in D and they are distinct.
Recall that the event FX

z0,...,zk
was defined as in (8.4). This definition immediately

gives that the probability in the left-hand side of (8.7) is equal to

(8.8)
∑

π∈�k

P
(
FX

z0,zπ(1),...,zπ(k)

)
.

Thus, by using Proposition 8.1, in order to prove (8.7), it suffices to show that

(8.9) P

(
k⋂

i=1

Fk
i

)
≤ Ck Es

(
d�z
i

)
,

where Fk
i was defined as in (8.5). But the definition of Fk

i immediately gives that
the probability in the left-hand side of (8.9) is bounded above by

(8.10) P

(
k⋂

i=1

{
LE
(
Zi−1[0, u(i − 1)

])∩ Zi[1, u(i)
]= ∅

})
.

In order to estimate the probability above, we will consider a time reverse of a path.
For a path λ = [λ(0), λ(1), . . . , λ(l)], we write λR = [λ(l), λ(l − 1), . . . , λ(0)] for
its time reversal. Then by the time reversibility of LERW (see Lemma 7.2.1 of
[16]), we see that the probability in (8.10) is equal to

(8.11) P

(
k⋂

i=1

{
LE
(
Zi−1[0, u(i − 1)

]R)∩ Zi[1, u(i)
]= ∅

})
.

Namely, we can replace the loop-erasure of Zi−1 by the loop-erasure of its time
reversal. We write Bi = B(zi, d

�z
i /4) and write γ i for LE(Zi−1[0, u(i − 1)]R)

from zi up to its first exit of Bi for each i = 1, . . . , k (so that γ i is a subset of
LE(Zi−1[0, u(i − 1)]R)).

The domain Markov property (see Proposition 4.1) shows that conditioned on
γ i , the conditional distribution of Zi−1[0, u(i − 1)] is same as the distribution of
a random walk starting from zi−1 conditioned that it hits γ i(lenγ i) before hitting
∂B(n) and γ i \ {γ i(lenγ i)}. Using this fact along with the discrete Harnack prin-
ciple (see Theorem 1.7.6 of [16]), we see that the probability of (8.11) is bounded
above by

(8.12) Ck
k∏

i=1

P
(
γ i ∩ Zi[1, τZi

Bi

]=∅
)
,

where we recall that τZi

Bi stands for the first time that Zi exits from Bi . But using
the discrete Harnack principle (Theorem 1.7.6 of [16]) again, we see that the law
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of Zi up to τZi

Bi is same as the law of a simple random walk staring from zi up to its
first exit of Bi up to multiplicative constants. In addition to that Proposition 4.2 and
Proposition 4.4 of [27] show that the distribution of γ i is same as the distribution
of an infinite LERW starting from zi up to the first time that the infinite LERW
exits from Bi up to multiplicative constants. Therefore, we see that the quantity of
(8.12) is bounded above by

(8.13) Ck
k∏

i=1

Es∞(d�z
i /4

)
.

Finally, using Proposition 6.7, we see that the quantity of (8.13) is bounded above
by

(8.14) Ck
k∏

i=1

Es
(
d�z
i

)
,

which gives (8.9).
For general points z1, . . . , zk (not necessarily distinct), the same argument as in

the proof of Proposition 5.5 of [3] works here. So we omit the proof for that case.
�

In order to estimate the kth moment of the length of LERW, we need the fol-
lowing Green’s function estimates. The next lemma shows that for every point
x ∈ B(n) the sum of Green’s functions G(x,y,Bn) is bounded above by Cr2,
where the sum is over all y ∈ B(n) whose distance from ∂B(n) is less than r .

LEMMA 8.3. Let d = 3 and take n and r ≥ 1 with n > r . We write

G(r) = {
y ∈ B(n) | dist

(
y, ∂B(n)

)≤ r
}

for the set of points in B(n) whose distance from ∂B(n) is bounded above by r .
Then there exists a universal constant C < ∞ such that for all x ∈ B(n),

(8.15)
∑

y∈G(r)

G
(
x, y,B(n)

)≤ Cr2.

PROOF. We will follow the same idea as in the proof of Lemma 4.1 of [3]. We
define entrance and exit times ti and ui by t1 = min{j | S(j) ∈ G(r)} and

ui = min
{
j ≥ ti | ∣∣S(j) − S(ti)

∣∣≥ 2r
}
,

ti+1 = min
{
ui ≤ j < τn | S(j) ∈ G(r)

}
,

for i ≥ 1, where we take ti+1 = ∞ if the set as above is empty. Conditioned on
ti < ∞, the conditional expectation ES(ti )(|ui − ti |) is bounded above by Cr2.
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Therefore, we see that

∑
y∈G(r)

G
(
x, y,B(n)

)= Ex

(
τn−1∑
j=1

1
{
S(j) ∈ G(r)

})≤ Ex

( ∞∑
i=1

(ui − ti)

)

≤ Cr2
∞∑
i=1

P x(ti < ∞).

We write τz,2r = min{j | S(j) /∈ B(z,2r)} for the first exit of B(z,2r). It is easy
to check that there exists a universal constant p > 0 such that for all z ∈ G(r),
P z(τn < τz,2r ) ≥ p. Thus, we have P x(ti < ∞) ≤ (1 − p)i−1, which completes
the proof. �

Recall that Mn stands for the length of LE(S[0, τn]). The next theorem gives a
bound on the kth moment of Mn in terms of the escape probability. This theorem
is an analog of Theorem 5.6 of [3] in 3 dimensions.

THEOREM 8.4. Let d = 3. It follows that there exists C < ∞ such that for all
n ≥ 1 and k ≥ 1,

(8.16) E
(
Mk

n

)≤ Ckk!(n2 Es(n)
)k

.

PROOF. Recall that �k is the symmetric group on {1,2, . . . , k} and that for
each element π ∈ �k we write π(0) = 0 and π(�z) = (z0, zπ(1), . . . , zπ(k)). Propo-
sition 8.2 shows that

E
(
Mk

n

)= ∑
z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk∈B(n)

P
(
z1, . . . , zk ∈ LE

(
S[0, τn]))

≤ Ck
∑

π∈�k

∑
z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk∈B(n)

k∏
i=1

G
(
zπ(i−1), zπ(i),B(n)

)
Es
(
d

π(�z)
π(i)

)

= Ckk! ∑
z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk∈B(n)

k∏
i=1

G
(
zi−1, zi,B(n)

)
Es
(
d�z
i

)
.

Thus, in order to prove (8.16), it suffices to show that

(8.17)
∑

z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk∈B(n)

k∏
i=1

G
(
zi−1, zi,B(n)

)
Es
(
d�z
i

)≤ Ck(n2 Es(n)
)k

.

To achieve (8.17), as in the proof of Theorem 5.6 of [3], we are interested
in only the terms involving zk in the sum of (8.17). With this in mind, we let
gi = G(zi−1, zi,B(n))Es(d�z

i ) and we write Gj = ∏j
i=1 gi . We also set d(z) =



GROWTH EXPONENT FOR 3D LERW 757

dist(z, ∂B(n)). Then the definition of d�z
i gives that

k∏
i=1

G
(
zi−1, zi,B(n)

)
Es
(
d�z
i

)= Gk−1G
(
zk−1, zk,B(n)

)
Es
(|zk − zk−1| ∧ d(zk)

)
.

Now we expand the sum of (8.17) and collect all terms involving zk as follows:

∑
z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk∈B(n)

k∏
i=1

G
(
zi−1, zi,B(n)

)
Es
(
d�z
i

)

≤ ∑
z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk−1∈B(n)

Gk−2G
(
zk−2, zk−1,B(n)

)

× ∑
zk∈B(n)

G
(
zk−1, zk,B(n)

)

× (
Es
(|zk−1 − zk−2| ∧ d(zk−1)

)+ Es
(|zk−1 − zk|))

× (
Es
(|zk − zk−1|)+ Es

(
d(zk)

))
,

where we used Es(r ∧ R) ≤ Es(r) + Es(R) in the inequality above. Therefore, we
need to estimate the following four terms:

• I1 = Es(|zk−1 − zk−2| ∧ d(zk−1))
∑

zk∈B(n) G(zk−1, zk,B(n))Es(|zk − zk−1|),
• I2 = Es(|zk−1 − zk−2| ∧ d(zk−1))

∑
zk∈B(n) G(zk−1, zk,B(n))Es(d(zk)),

• I3 =∑
zk∈B(n) G(zk−1, zk,B(n))Es(|zk − zk−1|)2,

• I4 =∑
zk∈B(n) G(zk−1, zk,B(n))Es(|zk − zk−1|)Es(d(zk)).

Using 2rR ≤ r2 + R2, if we define I5 by

I5 = ∑
zk∈B(n)

G
(
zk−1, zk,B(n)

)
Es
(
d(zk)

)2
,

then I4 is bounded above by I3 + I5. We start by estimating I3. To do it, we
set B1 = B(n) ∩ B(zk−1,

n
2 ) and B2 = B(n) \ B1. Note that Green’s function

G(zk−1, zk,B(n)) is bounded above by G(zk−1, zk,Z
3) which is comparable to

(|zk−1 − zk| + 1)−1 (see Theorem 4.3.1 of [23] for it). Thus, we have a bound on
the sum for zk ∈ B1 as follows:∑

zk∈B1

G
(
zk−1, zk,B(n)

)
Es
(|zk − zk−1|)2

≤ C
∑

zk∈B1

(|zk−1 − zk| + 1
)−1 Es

(|zk − zk−1|)2

≤ C

n∑
r=1

r Es(r)2.
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To estimate the last sum in the inequality above, we use Lemma 7.6. By (7.12),
we know that 1

3 ≤ α < 1 and thus we can take ε > 0 so that 1 − 2α − 2ε > −1.
Choosing ε > 0 with this condition and applying Lemma 7.6 to this ε, we see that
the last sum in the inequality above is bounded above by

C

n∑
r=1

r1−2α−2εn2α+2ε Es(n)2 ≤ Cn2 Es(n)2.

On the other hand, by Proposition 6.7, we see that Es(|zk − zk−1|)2 ≤ C Es(n)2

for zk ∈ B2. Therefore, the sum for zk ∈ B2 is bounded above by Cn2 Es(n)2. So
we see that I3 ≤ Cn2 Es(n)2. Similar arguments as above give that I1 is bounded
above by

(8.18) I1 ≤ C Es
(|zk−1 − zk−2| ∧ d(zk−1)

)
n2 Es(n).

We next consider I5. To estimate it, we recall that G(r) was defined as in
Lemma 8.3. Note that I5 is bounded above by

log2 n∑
j=0

∑
zk∈G(2j )\G(2j−1)

G
(
zk−1, zk,B(n)

)
Es
(
d(zk)

)2
,

which is, by Proposition 6.7, less than

C

log2 n∑
j=0

Es
(
2j )2 ∑

zk∈G(2j )

G
(
zk−1, zk,B(n)

)
.

Applying Lemma 8.3 to the sum for zk ∈ G(2j ) above, we see that I5 is bounded
above by

C

log2 n∑
j=0

22j Es
(
2j )2.

Since α < 1, we can take ε > 0 so that 2 − 2α − 2ε > 0. By applying Lemma 7.6
to this ε, we see that the sum above is bounded above by

Cn2α+2ε Es(n)2
log2 n∑
j=0

(
2j )2−2α−2ε ≤ Cn2 Es(n)2.

Thus we get I5 ≤ Cn2 Es(n)2. Similarly, we have

(8.19) I2 ≤ C Es
(|zk−1 − zk−2| ∧ d(zk−1)

)
n2 Es(n).
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Consequently, we see that

∑
z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk∈B(n)

k∏
i=1

G
(
zi−1, zi,B(n)

)
Es
(
d�z
i

)

≤ Cn2 Es(n)
∑

z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk−1∈B(n)

Gk−2G
(
zk−2, zk−1,B(n)

)

× [
Es
(|zk−1 − zk−2| ∧ d(zk−1)

)+ Es(n)
]

≤ Cn2 Es(n)
∑

z1∈B(n)

∑
z2∈B(n)

· · · ∑
zk−1∈B(n)

Gk−2G
(
zk−2, zk−1,B(n)

)

× Es
(|zk−1 − zk−2| ∧ d(zk−1)

)
.

Iterating this k − 1 times, we get (8.16). �

By Theorem 8.4, in order to prove that E(Mk
n) is bounded above by

Ckk!(E(Mn))
k , we need to show that E(Mn) is bounded below by cn2 Es(n).

This is proved in the next proposition.

PROPOSITION 8.5. Let d = 3. Then there exists c > 0 such that for all n ≥ 1,

(8.20) E(Mn) ≥ cn2 Es(n).

PROOF. Since the number of points in B(2n
3 ) \ B(n

3 ) is comparable to n3, it
suffices to prove that for x ∈ B(2n

3 ) \ B(n
3 ),

(8.21) P
(
x ∈ LE

(
S[0, τn]))≥ c

n
Es(n).

So suppose that x ∈ B(2n
3 )\B(n

3 ). We write Z for a random walk starting from the
origin conditioned that it hits x before exiting from B(n). We let u be the last time
that Z visits to x up to its first exit of B(n). Suppose that S1 is a simple random
walk started at x which is independent of Z. Then Proposition 8.1 gives that

P
(
x ∈ LE

(
S[0, τn]))= G

(
0, x,B(n)

)
P
(
LE
(
Z[0, u])∩ S1[1, τ 1

n

]= ∅
)
.

Proposition 1.5.10 of [16] gives that G(0, x,B(n)) is comparable to 1
n

. Thus, it
suffices to show that

(8.22) P
(
LE
(
Z[0, u])∩ S1[1, τ 1

n

]= ∅
)≥ c Es(n).

However, by the time reversibility of LERW (see Lemma 7.2.1 of [16]), the prob-
ability in (8.22) is equal to

P
(
LE
(
Z[0, u]R)∩ S1[1, τ 1

n

]= ∅
)
.

Suppose that Y is a random walk starting from x conditioned that it hits the origin
before exiting from B(n), which is independent of S1. We write σY

0 for the first
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time that Y hits the origin. Since the law of LE(Z[0, u]R) is same as the law of
LE(Y [0, σ Y

0 ]), the nonintersecting probability above is equal to

(8.23) P
(
LE
(
Y
[
0, σ Y

0
])∩ S1[1, τ 1

n

]= ∅
)
.

So we need to show that the probability of (8.23) is bounded below by c Es(n).
Note that by definition, that probability is equal to

P x,x(S1[1, τ 1
n ] ∩ LE(S2[0, σ 2

0 ]) = ∅, σ 2
0 < τ 2

n )

P x(σ 2
0 < τ 2

n )
,

which is, by Proposition 1.5.10 of [16], comparable to

nP x,x(S1[1, τ 1
n

]∩ LE
(
S2[0, σ 2

0
])= ∅, σ 2

0 < τ 2
n

)
.

To estimate the probability above, we set t i = inf{j | Si(j) /∈ B(x, n
4 )} for the first

time that Si exits from B(x, n
4 ) for each i = 1,2. Recall that the separation lemma

(Theorem 6.5) shows that conditioned that S1[1, t1] and LE(S2[0, t2]) do not in-
tersect, they are “well-separated” with positive conditional probability. Namely, if
we let

D = dist
(
S1(t1),LE

(
S2[0, t2]))∧ dist

(
S2(t2), S1[1, t1]),

then there exists c > 0 such that

P x,x(S1[1, t1]∩ LE
(
S2[0, t2])= ∅,D ≥ cn

)≥ c Es(n),

where we also used Proposition 6.7. Conditioned that S1[1, t1] and LE(S2[0, t2])
do not intersect and they are separated, we can attach S1[t1, τ 1

n ] and S2[t2, σ 2
0 ]

so that S1[1, τ 1
n ] and LE(S2[0, σ 2

0 ]) do not intersect and σ 2
0 < τ 2

n with conditional
probability at least c

n
. Therefore, we see that

P x,x(S1[1, τ 1
n

]∩ LE
(
S2[0, σ 2

0
])= ∅, σ 2

0 < τ 2
n

)≥ c Es(n)

n
,

which completes the proof. �

Now we are ready to give upper exponential tail bounds on Mn in the next
theorem.

THEOREM 8.6. Let d = 3. There exist 0 < c,C < ∞ such that for all k ≥ 1,
n ≥ 1 and κ > 0 the following holds:

E
(
Mk

n

)≤ Ckk!(E(Mn)
)k

,(8.24)

P
(
Mn ≥ κE(Mn)

)≤ 2e−cκ .(8.25)
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PROOF. Theorem 8.4 and Proposition 8.5 immediately give (8.24).
We let c1 = 1

2C
where C is a constant as in (8.24). Then we see that

E

(
exp

{
c1Mn

E(Mn)

})
=

∞∑
k=0

(c1)
kE(Mk

n)

k!(E(Mn))k
≤

∞∑
k=0

2−k = 2.

Therefore, (8.25) follows from Markov’s inequality. �

8.2. Lower tail estimates. In this subsection, we will give a lower tail estimate
on Mn the length of LERW in three dimensions. Namely, the goal of this section
is to show that for any ε > 0 there exist 0 < c = cε,C = Cε < ∞ such that for all
κ > 0 and n ≥ 1

(8.26) P

(
Mn ≤ E(Mn)

κ

)
≤ C exp

{−cκ
1

2−α
−ε},

where α is the exponent as in Corollary 7.3. This is an analog of Theorem 1.2 of
[3] in 3 dimensions. To prove (8.26), we will follow the same strategy as in the
proof of Theorem 1.2 of [3]. We will recall the idea of proof here briefly before
going to the proof.

Let k ∈ N and we write γ = LE(S[0, τkn]) for the loop-erasure of a simple
random walk up to the first exit of B(kn). For each i = 1, . . . , k, we set ui for the
first time that γ exits from B(in). We will show that there exist universal constants
c > 0 and p ∈ (0,1) such that conditioned on γ [0, ui], the conditional probability
that the length of γ [ui, ui+1] is bounded below by cE(Mn) is bigger than p for
each i, that is,

(8.27) P
(
lenγ [ui, ui+1] ≤ cE(Mn) | γ [0, ui])≤ p.

This gives that

(8.28) P
(
Mkn ≤ cE(Mn)

)≤ pk.

Once we have proved (8.28), by choosing suitable k and relating E(Mkn) to
E(Mn), we get (8.26).

In order to (8.27), by the domain Markov property (see Proposition 4.1), we
need to estimate the length of the loop-erasure of a random walk conditioned that
it does not hit γ [0, ui] before exiting B(kn). We will estimate the first and second
moments of its length. Then by using the second moment method, we will prove
(8.27).

We will start by introducing a random walk conditioned not to hit a given set as
follows.

DEFINITION 8.7. Suppose that m,n,N , Am, x, and An(x) are as in Defini-
tion 6.3. We take a subset K ⊂ Am. Let X be a random walk conditioned that
X[1, τX

N ]∩K = ∅, where τX
N is the first time that X exits from B(N). We set η for

LE(X[0, τX
N ]) up to the first time that LE(X[0, τX

N ]) exits from B(x,n). Finally,
we let JK

m,n,N,x = �(η∩An(x)) be the number of points lying in both η and An(x).
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We are interested in the first and second moments of JK
m,n,N,x defined as above.

The next lemma gives a lower bound on the probability that η hits a given point
lying in An(x).

LEMMA 8.8. Let d = 3. Suppose that m,n,N , and x are as in Definition 6.3
and that K , X, η, and JK

m,n,N,x are as in Definition 8.7. Then there exists c > 0
such that for all z ∈ An(x),

(8.29) P(z ∈ η) ≥ c

n
Es(n).

In particular, we have

(8.30) E
(
JK

m,n,N,x

)≥ cn2 Es(n).

PROOF. The second inequality immediately follows from the first inequality.
We will show (8.29).

Suppose that z ∈ An(x). We write Y for a random walk starting from x condi-
tioned that it hits z without hitting both K and ∂B(N) which is independent of X.
Let u be the last time that Y hits z before hitting ∂B(N). Then Proposition 8.1
gives that

(8.31)
P(z ∈ η) = GX(x, z,B(N)

)
× P

z,x
X,Y

(
LE
(
Y [0, u])∩ X

[
1, τX

N

]=∅,LE
(
Y [0, u])⊂ B(x,n)

)
,

where P
z,x
X,Y stands for the probability of X and Y assuming that X(0) = z, Y(0) =

x and that X and Y are independent.
We recall that � is the half infinite line defined as in Definition 6.3. We first

estimate Green’s function in (8.31). Note that GX(x, z,B(N)) is bounded below
by the probability that X hits z before τX

N . The definition of X gives that it is
bounded below by

(8.32)
P x(σz < σK ∧ τN)

P x(σK < τB(x, n
8 ))

,

where τB(x, n
8 ) is the first exit of B(x, n

8 ). However, Proposition 6.1 shows that
conditioned on σK < τB(x, n

8 ), with positive conditional positive probability, the
first exit point from B(x, n

8 ) lies in A = {w ∈ ∂B(x, n
8 ) | dist(w, �) ≤ n

20}. Then
with probability at least c

n
, it hits z before hitting K and ∂B(N). Thus, we have

P x(σz < σK ∧ τN) ≥ c

n
P x(σK < τB(x, n

8 )),

which gives that GX(x, z,B(N)) ≥ c
n

.
Next, we deal with the probability in the right-hand side of (8.31). To estimate

the probability, we will use Theorem 6.5. The definitions of X,Y and the time
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reversibility of LERW (see Lemma 7.2.1 of [16]) give that the probability in the
right-hand side of (8.31) is equal to

(8.33)
P z,z(S1[1, τ 1

N ] ∩ LE(S2[0, σ 2
x ]) = ∅, τ 1

N < σ 1
K,σ 2

x < σ 2
K ∧ τ 2

N)

P z,z(τ 1
N < σ 1

K,σ 2
x < σ 2

K ∧ τ 2
N)

.

We let xi = Si(τ i
B(z, n

20 )
) be the first exit point from B(z, n

20) for each Si . We set

d̃ = dist
(
x1,LE

(
S2[0, τ 2

B(z, n
20 )

]))∧ dist
(
x2, S1[0, τ 1

B(z, n
20 )

])
.

Then Theorem 6.5 shows that conditioned on S1[1, τ 1
B(z, n

20 )
] ∩ LE(S2[0,

τ 2
B(z, n

20 )
]) = ∅, with positive conditional probability, d̃ ≥ cn for some c > 0.

Once they are separated, we can find a path λ such that λ(0) = x2, λ(lenλ) = x,
λ ⊂ B(x,n) and that a n

100 -neighborhood of λ and S1[0, τ 1
B(z, n

20 )
] do not intersect.

We write F 2 for the n
100 -neighborhood of λ.

Conditioned on S1[1, τ 1
B(z, n

20 )
] ∩ LE(S2[0, τ 2

B(z, n
20 )

]) = ∅ and d̃ ≥ cn, we

first want to compare the probability that S1 started at x1 does not hit K ∪
LE(S2[0, τ 2

B(z, n
20 )

]) ∪ F 2 until its first exit of B(N) with the probability that S1

started at z does not hit K until its first exit of B(N). Since d̃ ≥ cn, we see that

P x1
(
S1[0, τ 1

B(x,Ln)

]∩ (
K ∪ LE

(
S2[0, τ 2

B(z, n
20 )

])∪ F 2)= ∅,

dist
(
S1(τ 1

B(x,Ln)

)
, �
)≤ Ln

20

)
≥ cL,

where L is a large constant which will be defined later and � is an half infinite
line as in Definition 6.3. We set G for the set of points in ∂B(x,Ln) lying in a
Ln
20 -neighborhood of �. Then by Proposition 1.5.10 of [16] and Lemma 6.4, we see
that for all v ∈ G,

P v(τ 1
N < σ 1

K,σ 1
B(x,n) < τ 1

N

)≤ C

L
P v(τ 1

N < σ 1
K

)
,

for some universal constant C. Choosing L large so that C
L

< 1
2 , we see that the

probability

P x1(
S1[0, τ 1

N

]∩ (
K ∪ LE

(
S2[0, τ 2

B(z, n
20 )

])∪ F 2)= ∅
)

is bounded below by

c min
v∈G

P v(S1[0, τ 1
N

]∩ K = ∅
)
.

Using Lemma 6.4 again, this is bounded below by

cP z(τ 1
N < σ 1

K

)
.
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Conditioned on S1[1, τ 1
B(z, n

20 )
] ∩ LE(S2[0, τ 2

B(z, n
20 )

]) = ∅ and d̃ ≥ cn, we next

estimate the probability that S2 started at x2 satisfies that S2[0, σ 2
x − 1] ∩ K = ∅

and that S2[0, σ 2
x ] is contained in F 2. Namely, we want to show that the probability

P x2(
S2[0, σ 2

x

]∩ K =∅, S2[0, σ 2
x

]⊂ F 2)
is comparable to the probability P z(σ 2

x < σ 2
K ∧ τ 2

N). Reversing a path and using
Lemma 3.1 of [27], in order to prove that those two probabilities are comparable,
it suffices to show that the probability

P x(σ 2
x2 < σ 2

K ∧ σ 2
x ∧ τ 2

F 2

)
is comparable to the probability P x(σ 2

z < σ 2
K ∧ σ 2

x ∧ τ 2
N). But using Proposi-

tion 6.1, we see that those probabilities are comparable.
Consequently, we see that the ratio in (8.33) is bounded below by c Es( n

20).
Proposition 6.7 shows that Es(n) is comparable to Es( n

20), so we complete the
proof. �

Now we give a second moment estimate of JK
m,n,N,x in the next lemma. The

next lemma shows that the second moment of JK
m,n,N,x is comparable to the square

of its first moment, which allows us to use the second moment method.

LEMMA 8.9. Let d = 3. Suppose that m,n,N , and x are as in Definition 6.3
and that K and JK

m,n,N,x are as in Definition 8.7. Then there exists an absolute
constant C < ∞ such that

(8.34) E
((

JK
m,n,N,x

)2)≤ CE
(
JK

m,n,N,x

)2
.

In particular, there exists c > 0 such that

(8.35) P
(
JK

m,n,N,x ≥ cn2 Es(n)
)≥ c.

PROOF. The second inequality follows from Lemma 8.8, (8.34) and the sec-
ond moment method. We will show (8.34).

For z,w ∈ An(x), we write d1
z,w = dist(z, ∂B(N))∧|z−x|∧|z−w| and d2

z,w =
dist(z, ∂B(N))∧|z−w|. Then by Proposition 8.2, we see that the second moment
of JK

m,n,N,x is bounded above by∑
z,w∈An(x)

P (z,w ∈ η)

≤ C
∑

z,w∈An(x)

GX(x, z,B(N)
)
GX(z,w,B(N)

)
Es
(
d1
z,w

)
Es
(
d2
z,w

)
.

The definition of An(x) gives that both d1
z,w and d2

z,w are comparable to |z − w|.
Therefore, by using Proposition 6.7, we see that

E
((

JK
m,n,N,x

)2)≤ C
∑

z,w∈An(x)

GX(x, z,B(N)
)
GX(z,w,B(N)

)
Es
(|z − w|)2.
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We will first estimate GX(x, z,B(N)). Lemma 2.1 of [3] gives that GX(x, z,

B(N)) is equal to

G
(
z, z,B(N) \ K

)P x(σz < σK ∧ τN)P z(τN < σK)

P x(τN < σK)
.

Note that G(z, z,B(N) \ K) ≤ C. We write A = {w ∈ ∂B(x, n
8 ) | dist(w, �) ≤ n

20}
as in the proof of Lemma 8.8. Then the probability P x(τN < σK) is bounded below
by

P x(τN < σK,S(τB(x, n
8 )) ∈ A

)
,

which is, by Proposition 6.1 and the strong Markov property, bounded below by

cP x(τB(x, n
8 ) < σK)min

v∈A
P v(τN < σK).

However, the discrete Harnack principle (see Theorem 1.7.6 of [16]) gives that
minv∈A P v(τN < σK) is comparable to P z(τN < σK). On the other hand, using
Proposition 1.5.10 of [16], we see that P x(σz < σK ∧ τN) is bounded above by

C

n
P x(τB(x, n

8 ) < σK).

Thus, it follows that GX(x, z,B(N)) ≤ C
n

. Similarly, we see that GX(z,w,

B(N)) ≤ C
|z−w| . Consequently, we have

E
((

JK
m,n,N,x

)2)≤ C
∑

z,w∈An(x)

C

n|z − w| Es
(|z − w|)2.

Since α < 1 (see (7.12) for this), we can choose ε > 0 such that 1 − 2α − 2ε >

−1. Now we apply Lemma 7.6 to this ε to show that

∑
z,w∈An(x)

C

n|z − w| Es
(|z − w|)2 ≤ C

n

∑
z∈An(x)

n∑
r=1

r Es(r)2

≤ Cn2
n∑

r=1

r
(
nα+ε Es(n)r−α−ε)2

≤ Cn2
n∑

r=1

n2α+2ε Es(n)2r1−2α−2ε ≤ Cn4 Es(n)2.

But by Lemma 8.8, we have E(JK
m,n,N,x) ≥ cn2 Es(n) and complete the proof. �

Recall that γ ∞ = LE(S[0,∞)) stands for the infinite LERW and that τ∞
n is the

first time that γ ∞ exits from B(n). The next lemma relates E(Mkn) and E(τ∞
kn ) to

E(Mn).
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LEMMA 8.10. Let d = 3. Then for all ε > 0 there exists cε such that for all
k ≥ 1 and n ≥ 1, we have

E(Mkn) ≤ cεk
2−α+εE(Mn),(8.36)

E
(
τ∞
kn

)≤ cεk
2−α+εE(Mn),(8.37)

where α is the exponent as in Corollary 7.3.

PROOF. Since the proof of (8.37) is similar to the proof of (8.36), we will
only prove (8.36). Using Theorem 8.4 and Proposition 6.8, we see that E(Mkn) is
bounded above by Ck2n2 Es(n)Es(n, kn). On the other hand, Lemma 7.5 shows
that there exists cε such that for all n ≥ 1, Es(n, kn) is bounded above by cεk

−α+ε .
Since E(Mn) ≥ cn2 Es(n) by Proposition 8.5, we complete the proof. �

Using the domain Markov property (see Proposition 4.1) along with (8.35), we
get the following proposition which gives lower tail bounds on Mkn and τ∞

kn .

PROPOSITION 8.11. Let d = 3. There exist 0 < c1, c2 < ∞ such that for all
k ≥ 2 and n ≥ 1, we have

P
(
Mkn ≤ c1E(Mn)

)≤ e−c2k,(8.38)

P
(
τ∞
kn ≤ c1E(Mn)

)≤ e−c2k.(8.39)

PROOF. We will only prove (8.38). The second inequality (8.39) can be shown
similarly.

Let γ = LE(S[0, τkn]). We set k′ = � k√
3
�. Recall that Am = [−m,m]3 stands

for a cube of length 2m centered at the origin. We consider k′ cubes Ajn (j =
1,2, . . . , k′). For each j , we let tj be the first time that γ exits from Ajn. We
are interested in tj+1 − tj which is the length of γ [tj , tj+1] (see Figure 11 for
γ [tj , tj+1]). Suppose that Mkn ≤ c1E(Mn) (we will define c1 later). This implies
for all j = 1, . . . , k′, tj+1 − tj is bounded above by c1E(Mn). The domain Markov
property (see Proposition 4.1) gives that conditioned on γ [0, tj ], the law of γ after
time tj is same as the law of the loop-erasure of a random walk X starting from
xj := γ (tj ) conditioned that X[1, τX

kn] ∩ γ [0, tj ] = ∅. Therefore, conditioned on
γ [0, tj ], the law of tj+1 − tj is same as the law of the first time that LE(X[0, τX

kn])
exits from A(j+1)n, which is bounded below by J

γ [0,tj ]
jn,n,kn,xj

(see Definition 8.7 for
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FIG. 11. γ [tj , tj+1] in Proposition 8.11.

JK
m,n,N,x ). Thus, we have

P
(
Mkn ≤ c1E(Mn)

)

≤ P

(
k′⋂

j=1

{
tj+1 − tj ≤ c1E(Mn)

})

≤ E

[
k′−1⋂
j=1

{
tj+1 − tj ≤ c1E(Mn)

}
P
(
J

γ [0,tk′ ]
k′n,n,kn,xk′ ≤ c1E(Mn)

)]
.

However, Lemma 8.9 shows that there exists an absolute constant c1 > 0 such that

P
(
J

γ [0,tj ]
jn,n,kn,xj

≤ c1E(Mn)
)≤ 1 − c1,

for all j . Thus, for this c1, we have

(8.40) P
(
Mkn ≤ c1E(Mn)

)≤ (1 − c1)P

(
k′−1⋂
j=1

{
tj+1 − tj ≤ c1E(Mn)

})
.

Iterating this, we see that the left-hand side of (8.40) is bounded above by (1 −
c1)

k′
, which completes the proof. �
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Now we are ready to establish exponential tail bounds on Mn and τ∞
n . The next

theorem is an analog of Theorem 6.7 of [3] in 3 dimensions.

THEOREM 8.12. Let d = 3. Recall that α is the exponent as in Corollary 7.3.
For any ε ∈ (0,1), there exist c = c(ε) > 0 and C = C(ε) < ∞ such that for all
κ ≥ 1 and n ≥ 1,

P

(
Mn ≤ E(Mn)

κ

)
≤ C exp

(−cκ
1

2−α
−ε),(8.41)

P

(
τ∞
n ≤ E(Mn)

κ

)
≤ C exp

(−cκ
1

2−α
−ε).(8.42)

PROOF. We will only show (8.41). The second inequality can be proved simi-
larly.

We let k = κ
1

2−α
−ε so that

k2−α+ε = κ1+ ε
2−α

−(2−α+ε)ε.

On the other hand, by Lemma 8.10, we see that there exists cε such that E(Mkn)

is bounded above by

(8.43) cεk
2−α+εE(Mn) = cεκ

1+ ε
2−α

−(2−α+ε)εE(Mn),

for all n ≥ 1. Since α < 1 [see (7.12)], we have 1 + ε
2−α

− (2 − α + ε)ε < 1.
Therefore, we can find a large constant κε < ∞ depending on ε such that the right
hand side of (8.43) is bounded above by c1κE(Mn) for all κ ≥ κε , where c1 is the
constant as in Proposition 8.11. Consequently, by Proposition 8.11, if κ ≥ κε we
have

P

(
Mn ≤ E(Mn)

κ

)
= P

(
Mk(n

k
) ≤ E(Mk(n

k
))

κ

)
≤ P

(
Mk(n

k
) ≤ c1E(Mn

k
)
)

≤ e−c2k = e−c2κ
1

2−α
−ε

.

So we get the inequality (8.41) for n ≥ 1 and κ ≥ κε . For the case that 1 ≤ κ ≤ κε ,
it is easy to check that the inequality (8.41) holds if we choose Cε with Cε ≥
ec2κ

1
2−α

−ε

ε . So we complete the proof. �

REMARK 8.13. It is conjectured ([37]) that

(8.44) P

(
Mn <

E(Mn)

κ

)
= C exp

(−cκ
1

2−α
+o(1)).

We have proved in Theorem 8.12 that the left-hand side is bounded above by the
right-hand side in (8.44), but the other direction of the inequality remains open.
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9. Improvement of estimates on len LE(S[0,T n]) for d = 3. Recall that
Theorem 4.2 shows that len(LE(S[0, T n])) divided by nα�(3)+ε converges to zero
almost surely for all ε > 0, and len(LE(S[0, T n])) divided by nα�(3)−ε diverges in
the sense that the lim sup of the ratio goes to infinity. The goal of this section is to
improve the lower estimates to show that for all ε > 0,

(9.1) lim
n→∞

len(LE(S[0, T n]))
nα�(3)−ε

= ∞ a.s.

Combining this with Theorem 4.2, we have as n → ∞
(9.2) len

(
LE
(
S[0, T n]))≈ nα�(3) a.s.

We will also show that α�(3) = 2−α
2−ξ3

[see Corollary 7.3 for the exponent α and
(1.12) for ξ3]. These results will be obtained by by establishing Proposition 9.1
and Proposition 9.2 in Section 9.1 and Section 9.2, respectively.

9.1. Upper bound for α�(3). In this subsection, we will show that α�(3) ≤
2−α
2−ξ3

by proving that len(LE(S[0, T n]) divided by n
2−α
2−ξ3

+ε
converges to zero for

all ε > 0 in Proposition 9.1. The proof is completely same as Proposition 5.2. As
in the proof of Proposition 5.2, we will use upper tail bounds on Mn derived in
Theorem 8.6.

PROPOSITION 9.1. Let d = 3. For all b > 2−α
2−ξ3

,

(9.3) P

(
lim

n→∞
len(LE(S[0, T n]))

nb
= 0

)
= 1.

In particular, α�(3) ≤ 2−α
2−ξ3

.

PROOF. Fix ε > 0. We write K
+
n for the number of global cut times of S in

[0, τ+
n ]. In the proof of Theorem 1.1 of [32], it was shown that

n2−ξ3−ε ≤ K
+
n ≤ n2−ξ3+ε for large n,P -a.s.

This gives that

(9.4) τ+
n

1
2−ξ3

−2ε
≤ T n ≤ τ+

n
1

2−ξ3
+2ε

for large n,P -a.s.

By Theorem 8.4 and Proposition 8.5, we have E(Mn) 
 n2 Es(n). Furthermore,
Theorem 7.4 shows that Es(n) ≈ n−α . Therefore, we see that E(Mn) ≈ n2−α .
Combining this with Theorem 8.6, we have

(9.5) P
(
M

n
1

2−ξ3
+2ε

≥ n
2−α
2−ξ3

+6ε)≤ c0e
−c1n

ε
8
,

for some 0 < c0, c1 < ∞.
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Recall that Corollary 4.6 of [18] gives that for N > n
1

2−ξ3
+2ε

max

x,y∈B(n
1

2−ξ3
+2ε

)

P x,y(S1[0, τ 1
N

]∩ S2[0, τ 2
N

]= ∅
)≤ c

(
N

n
1

2−ξ3
+2ε

)−ξ3

.

Using this along with (9.5) and the strong Markov property, we see that

(9.6) P
(
S1[0, τ 1

N

]∩ S2[1, τ 2
N

]=∅,M
n

1
2−ξ3

+2ε
≥ n

2−α
2−ξ3

+6ε)≤ cN−ξ3e− c1
2 n

ε
8
.

Theorem 1.3 of [18] gives that P(S1[0, τ 1
N ]∩S2[1, τ 2

N ] = ∅) 
 N−ξ3 . By dividing
both sides of (9.6) by P(S1[0, τ 1

N ] ∩ S2[1, τ 2
N ] = ∅) first and then by letting N go

to infinity, we have

P
(
len
(
LE
(
S
[
0, τ+

n
1

2−ξ3
+2ε

]))≥ n
2−α
2−ξ3

+6ε)≤ ce− c1
2 n

ε
8
.

By the Borel–Cantelli lemma, we have

(9.7) len
(
LE
(
S
[
0, τ+

n
1

2−ξ3
+2ε

]))≤ n
2−α
2−ξ3

+6ε
for large n,P -a.s.

Using this and (9.4), with probability one, T n ≤ τ+
n

1
2−ξ3

+2ε
and len(LE(S[0,

τ+
n

1
2−ξ3

+2ε
])) ≤ n

2−α
2−ξ3

+6ε
hold for large n. This implies that len(LE(S[0, T n])) is

bounded above by n
2−α
2−ξ3

+6ε
. Since ε > 0 is an arbitrary positive number, we com-

plete the proof. �

9.2. Lower bound for α�(3). In this subsection, we will show that α�(3) ≥
2−α
2−ξ3

by proving that len(LE(S[0, T n]) divided by n
2−α
2−ξ3

−ε
goes to infinity for all

ε > 0 in Proposition 9.2. The proof is completely the same as Proposition 5.3.

PROPOSITION 9.2. Let d = 2. For all b < 2−α
2−ξ3

,

(9.8) P

(
lim

n→∞
len(LE(S[0, T n]))

nb
= ∞

)
= 1.

In particular, we have with probability one,

(9.9) len
(
LE
(
S[0, T n]))≈ n

2−α
2−ξ3 ,

as n → ∞ and α�(3) = 2−α
2−ξ3

.

PROOF. Since we have proved Proposition 9.1, it suffices to show (9.8).
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Fix ε > 0. By (9.4), we see that τ+
n

1
2−ξ3

−2ε
≤ T n ≤ τ+

n
1

2−ξ3
+2ε

for large n with

probability one. Furthermore, as in (5.9), we have

(9.10) P
(
n

1
2−ξ3

−3ε
<
∣∣S(T n)

∣∣< n
1

2−ξ3
+3ε)≥ 1 − cn− ε

2 .

We set

(9.11) t := inf
{
k | LE

(
S
[
0, τ+

n2

])
(k) ∈ B

(
n

1
2−ξ3

−3ε)c}
,

which is an analog of (5.10). Then same argument as in (5.11) gives that with
probability at least 1 − cn− ε

2 ,

(9.12) len
(
LE
(
S[0, T n]))> t.

We next estimate t by using Theorem 8.12. Let

(9.13) t := inf
{
k | LE

(
S2[0, τ 2

n2

])
(k) ∈ B

(
n

1
2−ξ3

−3ε)c}
.

Note that Corollary 4.5 of [27] shows that the distribution of LE(S2[0, τ 2
n2]) up to

time t is same as the distribution of the infinite LERW γ ∞ up to the first time that

γ ∞ exits from B(n
1

2−ξ3
−3ε

) up to multiplicative constants. With this in mind, we
apply Theorem 8.12 to show that

P
(
t < n

2−α
2−ξ3

−10ε)≤ Ce−cnε

,

which gives that

P
(
t < n

2−α
2−ξ3

−10ε)≤ Ce− c
2 nε

.

Thus we can conclude that with probability at least 1−cn− ε
2 , len(LE(S[0, T n]))

is bounded below by n
2−α
2−ξ3

−10ε
. Applying the Borel–Cantelli lemma to the case

that n = 2k first, and then by choosing k with 2k ≤ n < 2k+1 for a general index n,
we get the claim. �

REMARK 9.3. Similar arguments as in the proof of Proposition 9.1 and Propo-
sition 9.2 show that with probability one,

(9.14) len LE
(
S
[
0, τ+

n

])≈ n2−α as n → ∞,

where α is the exponent as in Corollary 7.3.

10. Discussion. In this final section, we will summarize our results and dis-
cuss further direction. What we have proved are:

• The law of S is invariant under the shift θ and θ is mixing for d = 2,3 (Theo-
rem 2.1 and Theorem 3.8).
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• Using Aaronson’s results in [1], several exponents are defined in Theorem 4.2.
These exponents describe asymptotic behaviors of the length of the loop-
erasure, graph distance and effective resistance of S[0, T n].

• There exists α ∈ [1
3 ,1) such that E(Mn) ≈ n2−α for d = 3, where Mn stands

for the length of the loop-erasure of S[0, τn] (Theorem 7.4, Theorem 8.4 and
Proposition 8.5).

• Exponential tail bounds on Mn are established for d = 3 (Theorem 8.6 and The-
orem 8.12).

• For d = 2,3, we have len LE(S[0, T n]) ≈ nα�(d) with probability one (Theo-
rem 5.1 and Proposition 9.2).

• Both Mn and len LE(S[0, τ+
n ]) are of order n

5
4 in 2 dimensions. Both of them

are of order n2−α in 3 dimensions.

Theorem 4.2 is the only place where we used results of ergodic theory. In an
early stage of this project, we tried to prove that three quantities as in Theorem 4.2,
the length of the loop-erasure, graph distance and effective resistance of S[0, T n]
are in fact logarithmically asymptotic to nα�(d), nαg(d) and nαr(d), respectively, just
by using some general results of ergodic theory. However, since we could not find
such a way to achieve it, we decided to deal with the length of its loop-erasure by
establishing necessary results for the loop-erasure of usual simple random walks.
It seems difficult to derive similar results (e.g., moments estimates, existence of the
exponent for the first moment, etc.) for the graph distance and effective resistance.
But still we conjecture the following.

CONJECTURE 10.1. For d = 2,3, with probability one, we have

dS[0,T n]
(
0, S(T n)

)≈ nαg(d),(10.1)

RS[0,T n]
(
0, S(T n)

)≈ nαr(d),(10.2)

as n → ∞.

Since we have proved that len LE(S[0, T n]) ≈ nα�(d), it is natural to ask how
the distribution of the ratio:

len LE(S[0, T n])
nα�(d)

behaves as n → ∞. Recently, some distributional limit theorems for a class of
positive, stationary and mixing processes are established in [2]. Unfortunately, it
has not been proved or disproved that our quantity len LE(S[0, T n]) belongs to
the class considered in [2]. However, we believe that our results derived in the
present article are useful to understand the behavior of the ratio and the structure
of random walk paths.
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