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LIMITS OF LOCAL ALGORITHMS OVER SPARSE
RANDOM GRAPHS1

BY DAVID GAMARNIK2 AND MADHU SUDAN

Massachusetts Institute of Technology and Harvard University

Local algorithms on graphs are algorithms that run in parallel on the
nodes of a graph to compute some global structural feature of the graph. Such
algorithms use only local information available at nodes to determine local as-
pects of the global structure, while also potentially using some randomness.
Recent research has shown that such algorithms show significant promise in
computing structures like large independent sets in graphs locally. Indeed the
promise led to a conjecture by Hatami, Lovász and Szegedy [Geom. Funct.
Anal. 24 (2014) 269–296] that local algorithms defined specifically as so-
called i.i.d. factors may be able to find approximately largest independent
sets in random d-regular graphs. In this paper, we refute this conjecture and
show that every independent set produced by local algorithms is multiplica-
tive factor 1/2+1/(2

√
2) smaller than the largest, asymptotically as d → ∞.

Our result is based on an important clustering phenomena predicted first
in the literature on spin glasses, and recently proved rigorously for a variety of
constraint satisfaction problems on random graphs. Such properties suggest
that the geometry of the solution space can be quite intricate. The specific
clustering property that we prove and apply in this paper shows that typically
every two large independent sets in a random graph either have a significant
intersection, or have a very small intersection. As a result, large independent
sets are clustered according to the proximity to each other. While the cluster-
ing property was postulated earlier as an obstruction for the success of local
algorithms, our result is the first one where the clustering property is used to
formally prove limits on local algorithms.

1. Introduction. Local algorithms are decentralized algorithms that run in
parallel on nodes of a graph using only information available from local neighbor-
hoods to compute some global function of data that is spread over the network. Lo-
cal algorithms have been studied in the past in various communities. They arise as
natural solution concepts in distributed computing (see, e.g., [25]). They also lead
to efficient sub-linear algorithms—algorithms that run in time significantly less
than the length of the input—and [19, 31, 32, 34] illustrate some of the progress in
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this direction. Finally, local algorithms have also been proposed as natural heuris-
tics for solving hard optimization problems with the popular Belief Propagation
algorithm (see, for instance, [28, 36]) being one such example.

In this work, we study the performance of a natural class of local algorithms on
random regular graphs and show limits on the performance of these algorithms.
The motivation for our work comes from the notion of local algorithms based the
concept of i.i.d. factors that has appeared recently in the context of the theory
of graph limits, developed in several papers, including [5–8, 12, 20, 26]. In the
realms of this theory, it was conjectured that every “reasonable” combinatorial op-
timization problem defined on a random graphs can be solved by means of some
local algorithms. This conjecture for the first time was formally stated in Hatami,
Lovász and Szegedy in [20], and thus, from now on, we will refer to it as Hatami–
Lovász–Szegedy (or HLS) conjecture, though informally it was posed by Szegedy
earlier, and was referenced in several papers, including Lyons and Nazarov [27],
and Csóka and Lippner [11]. In the concrete context of the problem of finding
largest independent sets in sparse random regular graphs, the conjecture is stated
as follows. Let Td,r be a rooted d-regular tree with depth r . Namely, every node in-
cluding the root, has degree r , except for the leaves, and the distance from the root
to every leaf is r . Consider a function fr : [0,1]Td,r → {0,1} which maps every
such tree whose nodes are decorated with real values from [0,1] to a “decision”
encoded by 0 and 1. In light of the fact that in a random d-regular graph Gd(n)

on n nodes the typical node has depth-r neighborhood isomorphic to Td,r , for any
constant r , such a function fr can be used to generate (random) subsets I of Gd(n)

as follows: decorate nodes of Gd(n) using i.i.d. uniform random values from [0,1]
and apply function fr in every node (ignoring the nodes whose r-neighborhood is
not isomorphic to Td,r ). The set of nodes for which fr produces value 1 defines I ,
and is called “i.i.d. factor.” It is clear that fr essentially describes a local algorithm
for producing sets I (sweeping the issue of the computability of fr under rug).
The HLS conjecture postulates the existence of a sequence of fr, r = 1,2, . . . ,

such that the set I thus produced is an independent subset of Gd(n) and asymp-
totically achieves the size of a largest independent set in Gd(n), as first n → ∞
and then r → ∞. Namely, largest independent subsets of random regular graphs
are i.i.d. factors. The precise connection between this conjecture and the theory of
graph limits is beyond the scope of this paper. Instead we refer the reader to the
relevant papers [12, 20]. The concept of i.i.d. factors appears also in one of the
open problem by David Aldous [2] in the context of coding invariant processes on
infinite trees.

It turns out that an analogue of the HLS conjecture is indeed valid for another
important combinatorial optimization problem—finding a largest matching of a
graph. Lyons and Nazarov [27] established this for the case of bi-partite locally
Td,r -tree-like graphs, and Csóka and Lippner established this result for general
locally Td,r -tree-like graphs. Further, one can modify the framework of i.i.d. fac-
tors by encapsulating non-Td,r type neighborhoods, for example, by making fr
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depend not only on the realization of random uniform in [0,1] values, but also
on the realization of the graph-theoretic neighborhoods around the nodes. Some
probabilistic bound on a degree might be needed to make this definition rigor-
ous (though we will not attempt this formalization in this paper). In this case, one
can consider, for example, i.i.d. factors when neighborhoods are distributed as r

generations of a branching process with Poisson distribution, and then ask which
combinatorial optimization problems defined now on sparse Erdős–Rényi graphs
G(n, d/n) can be solved as i.i.d. factors. Here, G(n, d/n) is a random graph on n

nodes with each of the
(n
2

)
edges selected with probability d/n, independently for

all edges, and d > 0 is a fixed constant. In this case, it is possible to show that when
d ≤ e, the maximum independent set problem on G(n, d/n) can be solved nearly
optimally by the well-known Belief Propagation (BP) algorithm with a bounded
number of iterations. Since the BP algorithm with a bounded number of iterations
is a local algorithm, then the maximum independent set on G(n, d/n) with d ≤ e

is an i.i.d. factor, in the extended framework defined above. (We should note that
the original proof of Karp and Sipser [22] of the very similar result, relied on a
different method.) Thus, the framework of local algorithms viewed as i.i.d. factors
is rich enough to solve several interesting combinatorial optimization problems.

Nevertheless, in this paper we refute the HLS conjecture in the context of max-
imum independent set problem on random regular graphs Gd(n). Specifically, we
show that for large enough d , with high probability (w.h.p.) as n → ∞, every in-
dependent set producible as an i.i.d. factor is a multiplicative factor γ < 1 smaller
than a largest independent subset of Gd(n). We establish that γ is asymptotically
at most 1

2 + 1
2
√

2
. In the earlier conference version of the paper [17], we have con-

jectured that the result should hold for γ = 1/2. The value γ = 1/2 is the tightest
possible, since applying algorithms described in [24] and [16], i.i.d. factors can be
used to generate independent sets which are half of the optimal value. Recently,
our conjecture was confirmed by Rahman and Virag [33] using a method similar
to the one employed in this work (more on this below).

Our result is based on a powerful, though fairly easy to establish in our context,
clustering or equivalently shattering property of some combinatorial optimization
problems defined on random graphs. This property was first conjectured in the
theory of spin glasses and later confirmed by rigorous methods. For the first time,
this clustering property was discussed in terms of the so-called overlap structure
of the solutions of the Sherrington–Kirkpatrick model [35]. Later, it featured in the
context of the random K-SAT problem and was proved rigorously by Achlioptas,
Coja-Oghlan and Ricci-Tersenghi [1], and by Mezard, Mora and Zecchina [29], in-
dependently. We do not define the random K-SAT problem here and instead refer
the reader to the aforementioned papers. What these results state is that in certain
regimes, the set of satisfying assignments w.h.p. can be clustered into groups such
that two solutions within the same cluster agree on a certain minimum number of
variables, while two solutions from different clusters have to disagree on a certain
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minimum number of variables. In particular, one can identify a certain nonempty
interval [z1, z2] ⊂ [0,1], which we call overlap gap, such that for all z ∈ [z1, z2]
no two solutions of the random K-SAT problem agree on z fraction of variables.
One can further show that the onset of clustering property occurs when the density
of clauses to variables becomes at least 2K/K , while at the same time the for-
mula remains satisfiable w.h.p. when the density is below approximately 2K log 2.
Intriguingly, the known algorithms for finding solutions of random instances of
K-SAT problem also stop working around the 2K/K threshold. It was widely con-
jectured that the onset of this clustering phase is the main obstruction for finding
such algorithms. In fact, Coja-Oghlan [9] showed that the BP algorithm, which
was earlier conjectured to be a good contender for solving the random instances
of K-SAT problems, also fails when the density of clauses to variables is at least
2K logK/K , though Coja-Oghlan’s approach does not explicitly rely on the clus-
tering property, and one could argue that the connection between the clustering
property and the failure of the BP algorithm is coincidental. In fact, in the follow-
up paper by the authors [18], using the approach similar to the one developed in
this paper, it is shown that not only the BP algorithm but a more advanced ver-
sion of the message passing algorithm called Survey Propagation (SP) algorithm
with a bounded number of iterations fails to find solutions of a very related ran-
dom Not-All-Equal K-SAT (NAE-K-SAT) model, which also exhibits clustering
property. This is particularly interesting since the SP algorithm was put forward by
statistical physicists precisely as a technique to deal the clustering issue in random
constraint satisfaction problems [30].

Closer to the topic of this paper, the clustering property was also recently es-
tablished for independent sets in Erdős–Rényi graphs. In particular Coja-Oghlan
and Efthymiou [10] established the following result. It is known that the largest
independent subset of G(n, d/n) has size approximately (2 logd/d)n, when d is
large (see the next section for precise details). The authors of [10] show that the
set of independent sets of size at least approximately (logd/d)n (namely those
within factor 1/2 of the optimal), are also clustered. Namely, one can split them
into groups such that intersection of two independent sets within a group has a
large cardinality, while intersection of two independent sets from different groups
has a small cardinality. One should note that the known best algorithms for pro-
ducing large independent subsets of random graphs also stop short factor 1/2 of
the optimal, both in the case of sparse and in the dense random graph cases, as
exhibited by the well-known Karp’s open problem regarding independent subsets
of G(n,1/2) [23].

The result in [9] is almost what we need for our analysis with two exceptions.
First, we need to establish this clustering property for random regular as opposed
Erdős–Rényi graphs. Second, the result in [10] applies to typical independent sets
and does not rule out the possibility that there are two independent sets with some
“intermediate” intersection cardinality, though the number of such pairs is insignif-
icant compared to the total number of independent sets. For our result, we need to
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show that, without exception, every pair of “large” independent sets has either
large or small intersection. We indeed establish this, but at the cost of loosing ad-
ditional factor 1/(2

√
2). In particular, we show that for large enough d , w.h.p.

as n → ∞, every two independent subsets of Gd(n) with cardinality asymptoti-
cally (1 + β)(logd/d)n, where 1 ≥ β > 1

2 + 1
2
√

2
either have intersection size at

least (1 + z)(logd/d)n or at most (1 − z)(logd/d)n, for some z < β . The result
is established using a straightforward first moment argument: we compute the ex-
pected number of pairs of independent sets with intersection lying in the interval
[(1 − z)(logd/d)n, (1 + z)(logd/d)n], and show that this expectation converges
to zero exponentially fast.

With this result at hand, the refutation of the HLS conjecture is fairly simple
to derive. We prove that if local algorithms can construct independent sets of size
asymptotically (1 + β)(logd/d)n, then, by means of a simple coupling construc-
tion, we can construct two independent sets with intersection size z for all z in the
interval [(1 + β)2(logd/d)2n, (1 + β)(logd/d)n], clearly violating the clustering
property. The additional factor 1/(2

√
2) is an artifact of the analysis, and hence it

is natural to expect that our result holds for all β ∈ (0,1], as was later confirmed
in [33]. Namely, no local algorithm is capable of producing independent sets with
size larger than factor 1/2 of the optimal, asymptotically in d . We note again that
this coincides with the barrier for all known algorithms. It is noteworthy that our
result is the first one where algorithmic hardness derivation relies directly on the
geometry of the solution space, vis-à-vis the clustering phenomena, and thus the
connection between algorithmic hardness and clustering property is not coinciden-
tal.

The approach undertaken in [33] is very similar with one undertaken in the
present paper except for one important difference: the authors consider the overlap
structure of many and not just two independent sets. They show that the multi-
set of overlap values satisfies a certain set of constraints, and then show that if
independent sets with size γ (logd/d)n, γ > 1 can be produced by i.i.d. factors
these constraints are violated.

It thus appears that the approach of using clustering property as refutation tech-
nique for existence of local algorithms is very fruitful as is already demonstrated
in [18] and [33] along with the present paper.

The remainder of the paper is structured as follows. We introduce some basic
material and the HLS conjecture in the next section. In the same section, we state
our main theorem—nonvalidity of the conjecture (Theorem 2.5). We also state two
secondary theorems, the first describing the overlap structure of independent sets
in random graphs (Theorem 2.6)—the main tool in the proof of our result, and the
second describing overlaps that can be found if local algorithms work well (The-
orem 2.7). We prove our main theorem easily from the two secondary theorems
in Section 3. We prove Theorem 2.7 in Section 4. Sections 5 and 6 are devoted
to proofs of the theorem regarding the overlap property, for the case of Erdős–
Rényi and random regular graph, respectively. While technically we do not need
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such a result for the Erdős–Rényi graph, it is very simple to derive and provides
the road map for the case of the regular graphs (where the calculations are a bit
more tedious). The Erdős–Rényi case might also be useful for further studies of
i.i.d. factors on Erdős–Rényi graphs as opposed to random regular graphs, in the
framework described above.

2. Preliminaries and main result. For convenience, we repeat here some of
the notions and definitions already introduced in the first section.

Basic graph terminology. All graphs in this paper are understood to be sim-
ple undirected graphs. Given a graph G with node set V (G) and edge set E(G),
a subset of nodes I ⊂ V (G) is an independent set if (u, v) /∈ E(G) for all u, v ∈ I .
A path between nodes u and v with length r is a sequence of nodes u1, . . . , ur−1
such that (u,u1), (u1, u2), . . . , (ur−1, v) ∈ E(G). The distance between nodes u

and v is the length of the shortest path between them. For every positive integer
value r and every node u ∈ V (G), BG(u, r) denotes the depth-r neighborhood of
u in G. Namely, BG(u, r) is the subgraph of G induced by nodes v with distance at
most r from u. When G is clear from context, we drop the subscript. The degree of
a vertex u ∈ V (G) is the number of vertices v such that (u, v) ∈ E(G). The degree
of a graph G is the maximum degree of a vertex of G. A graph G is d-regular if
the degree of every node is d .

Random graph preliminaries. Given a positive real d , G(n, d/n) denotes
the Erdős–Rényi graph on n nodes {1,2, . . . , n} � [n], with edge probability
d/n. Namely each of the

(n
2

)
edges of a complete graph on n nodes belongs to

E(G(n, d/n)) with probability d/n, independently for all edges. Given a positive
integer d , Gd(n) denotes a graph chosen uniformly at random from the space of
all d-regular graphs on n nodes. This definition is meaningful only when nd is
an even number, which we assume from now on. Given a positive integer m, let
I(n, d,m) denote the set of all independent sets in G(n, d/n) with cardinality m.
Id(n,m) stands for a similar set for the case of random regular graphs. Given in-
tegers 0 ≤ k ≤ m, let O(n, d,m, k) denote the set of pairs I, J ∈ I(n, d,m) such
that |I ∩ J | = k. The definition of the set Od(n,m, k) is similar. The sizes of the
sets O(n, d,m, k) and Od(n,m, k), and in particular whether these sets are empty
or not, is one of our focuses.

Denote by α(n, d) the size of a largest in cardinality independent subset of
G(n, d/n), normalized by n. Namely,

α(n, d) = n−1 max
{
m : I(n, d,m) 
=∅

}
.

αd(n) stands for the similar quantity for random regular graphs. It is known that
α(n, d) and αd(n) have deterministic limits as n → ∞.
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THEOREM 2.1. For every d ∈ R+ there exists α(d) such that w.h.p. as
n → ∞,

α(n, d) → α(d).(2.1)

Similarly, for every positive integer d there exists αd such that w.h.p. as n → ∞
αd(n) → αd.(2.2)

Furthermore,

α(d) = 2 logd

d

(
1 − od(1)

)
,(2.3)

αd = 2 logd

d

(
1 − od(1)

)
,(2.4)

as d → ∞.

From here onward, the standard notation od and Od stand for asymptotics when
d → ∞. Specifically, for any nonnegative function f (d), od(f ) stands for any
function g(d) satisfying limd→∞ |g(d)|/f (d) = 0 and Od(f ) stands for any func-
tion g(d) satisfying lim supd |g(d)|/f (d) < ∞. The same notation with subscripts
stand for asymptotics when n → ∞.

The convergence (2.1) and (2.2) was established in Bayati et al. [3] with some
generalizations established in Gamarnik [15]. The limits (2.3) and (2.4) follow
from much older results by Frieze [13] for the case of Erdős–Rényi graphs and by
Frieze and Łuczak [14] for the case of random regular graphs, which established
these limits in the lim supn and lim infn sense. The fallout of these results is that
graphs G(n, d/n) and Gd(n) have independent sets of size up to approximately
(2 logd/d)n, when n and d are large, namely in the doubly asymptotic sense when
we first take n to infinity and then d to infinity.

Local graph terminology. A decision function is a measurable function f =
f (u,G,x) which returns a Boolean value {0,1}, where G is a graph on vertex
set [n] for some positive integer n, u ∈ [n] is a vertex and x ∈ [0,1]N is a se-
quence of real numbers for some N ≥ n. A decision function f is said to compute
an independent set if for every graph G and every sequence x and for every pair
(u, v) ∈ E(G) it is the case that either f (u,G,x) = 0 or f (v,G,x) = 0, or both.
We refer to such an f as an independence function. For an independence func-
tion f , graph G on vertex set [n] and x ∈ [0,1]N for N ≥ n, we let IG(f,x) denote
the independent set of G returned by f , i.e., IG(f,x) = {u ∈ [n] | f (u,G,x) = 1}.
We will assume later that x is chosen randomly according to some probability
distribution. In this case IG(f,x) is a randomly chosen independent set in G.

We now define the notion of a “local” decision function, that is, one whose
actions depend only on the local structure of a graph and the local randomness.
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The definition is a natural one, but we formalize it below for completeness. Let
G1 and G2 be graphs on vertex sets [n1] and [n2], respectively. Let u1 ∈ [n1] and
u2 ∈ [n2]. We say that π : [n1] → [n2] is an r-local isomorphism mapping u1 to u2
if π is a graph isomorphism from BG1(u1, r) to BG2(u2, r) [so in particular it is a
bijection from BG1(u1, r) to BG2(u2, r), and further it preserves adjacency within
BG1(u1, r) and BG2(u2, r)]. For G1,G2, u1, u2 and an r-local isomorphism π ,
we say sequences x(1) ∈ [0,1]N1 and x(2) ∈ [0,1]N2 are r-locally equivalent if for
every v ∈ BG1(u1, r) we have x

(1)
v = x

(2)
π(v). Finally, we say f (u,G, x) is an r-local

function if for every pair of graphs G1,G2, for every pair of vertices u1 ∈ V (G1)

and u2 ∈ V (G2), for every r-local isomorphism π mapping u1 to u2 and r-locally
equivalent sequences x(1) and x(2) we have f (u1,G1, x

(1)) = f (u2,G2, x
(2)). We

often use the notation fr to denote an r-local function.
Let nd,r � 1 + d · ((d − 1)r − 1)/(d − 2) denote the number of vertices in a

rooted tree of degree d and depth r . We let Td,r denote a canonical rooted tree on
vertex set [nd,r ] with root being 1. For n ≥ nd,r ,x ∈ [0,1]n and an r-local function
fr , we let fr(x) denote the quantity fr(1,Td,r ,x). Let X be chosen according to
a uniform distribution on [0,1]n. The subset of nodes IGd (n)(fr ,X) is called the
i.i.d. factor produced by the r-local function fr . As we will see below, the α(fr)�
1
n

·EX[fr(X)] accurately captures [to within an additive o(1) factor] the density of
an independent returned by an r-local independence function fr on Gd(n). From
this point on, we write I (fr ,X) in place of IGd (n)(fr ,X) for simplicity.

First, we recall the following folklore proposition which we will also use often
in this paper.

PROPOSITION 2.2. As n → ∞, with probability tending to 1 almost all local
neighborhoods in Gd(n) are isomorphic to a tree Td,r . Formally, for every d , r

and ε, and for all sufficiently large n,

PGd (n)

(∣∣{u ∈ [n] | BGd (n)(u, r) not isomorphic to Td,r

}∣∣ ≥ εn
) ≤ ε.

This immediately implies that the expected value of the independent set
I (fr ,X) produced by fr is α(fr)n + o(n). In fact, the following concentration
result holds.

PROPOSITION 2.3. As n → ∞, with probability tending to 1 the independent
set produced by an r-local function f on Gd(n) is of size α(f )n+ o(n). Formally,
for every d , r , ε and every r-local function f , for sufficiently large n,

PGd (n),X∈[0,1]N
(∣∣∣∣I (fr ,X)

∣∣ − α(fr)n
∣∣ ≥ εn

) ≤ ε.

PROOF. The proof follows from the fact that the variance of |IGd (n),X| is O(n)

and its expectation is α(fr)n + o(n), and so the concentration follows by Cheby-
shev’s inequality. The bound on the variance in turn follows from the fact that
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for every graph G, there are at most O(n) pairs of vertices u and v for which
the events f (u,G,X) and f (v,G,X) are not independent for random X. Details
omitted. �

The Hatami–Lovász–Szegedy conjecture and our result. We now turn to de-
scribing the Hatami–Lovász–Szegedy (HLS) conjecture and our result. Recall αd

defined by (2.2). The HLS conjecture can be stated as follows.

CONJECTURE 2.4. There exists a sequence of r-local independence functions
fr, r ≥ 1 such that almost surely I (fr , n) is an independent set in Gd(n) and
α(fr) → αd as r → ∞.

Namely, the conjecture asserts the existence of a local algorithm (r-local inde-
pendence function fr ) which is capable of producing independent sets in Gd(n) of
cardinality close to the largest that exist. For such an algorithm to be efficient, the
function fr(u,G,x) should also be efficiently computable uniformly. Even setting
this issue aside, we show that there is a limit on the power of local algorithms to
find large independent sets in Gd(n) and in particular the HLS conjecture does
not hold. Let α̂d = supr supfr

α(fr), where the second supremum is taken over all
r-local independence functions fr .

THEOREM 2.5 (Main). For every ε > 0 and all sufficiently large d ,

α̂d

αd

≤ 1

2
+ 1

2
√

2
+ ε.

That is, w.h.p. for every ε > 0 and for all sufficiently large d , a largest independent
set obtainable by r-local functions is at most (1

2 + 1
2
√

2
+ ε)αdn for all r .

Thus for all large enough d , there is a multiplicative gap between α̂d and the
independence ratio αd . That being said, our result does not rule out that for small
d , α̂d in fact equals αd , thus leaving the HLS conjecture open in this regime.

The two main ingredients in our proof of Theorem 2.5 both deal with the over-
laps between independent sets in random regular graphs. Informally, our first result
on the size of the overlaps shows that in random graphs the overlaps are not of “in-
termediate” size—this is formalized in Theorem 2.6. We then show that we can
apply any r-local function fr twice, with coupled randomness, to produce two in-
dependent sets of intermediate overlap where the size of the overlap depends on
the size of the independent sets found by fr and the level of coupling. This is for-
malized in Theorem 2.7. Theorem 2.5 follows immediately by combining the two
theorems (and appropriate setting of parameters).



2362 D. GAMARNIK AND M. SUDAN

Overlaps in random graphs. We now state our main theorem about the overlap
of large independent sets. We interpret the statement after we make the formal
statement.

THEOREM 2.6. For β ∈ (1/
√

2,1) and 0 < z <

√
2β2 − 1 < β and d , let

s = (1 + β)d−1 logd and let K(z) denote the set of integers between (1−z)n logd
d

and (1+z)n logd
d

. Then, for all large enough d , we have

lim
n→∞P

( ⋃
k∈K(z)

O
(
n,d, �sn�, k) 
= ∅

)
= 0,(2.5)

and

lim
n→∞P

( ⋃
k∈K(z)

Od

(
n, �sn�, k) 
= ∅

)
= 0.(2.6)

In other words, both in the Erdős–Rényi and in the random regular graph mod-
els, when β > 1/

√
2, and d is large enough, with probability approaching unity

as n → ∞, one cannot find a pair of independent sets I and J with size �ns�,
such that their overlap (intersection) has cardinality at least n(1−z) logd

d
and at most

n(1+z) logd
d

.

Note that for all β > 1/
√

2, there exists z satisfying 0 < z <

√
2β2 − 1 and so

the theorem is not vacuous in this setting. Furthermore, as β → 1, z can be chosen
arbitrarily close to 1 making the forbidden overlap region extremely broad. That
is, as the size of the independent sets in consideration approaches the maximum
possible (namely as β ↑ 1), and as d → ∞, we can take z → 1. In other words,
with probability approaching one, two nearly largest independent sets either over-
lap almost entirely or almost do not have an intersection. This is the key result for
establishing our hardness bounds for existence of local algorithms.

A slightly different version of the first of these results can be found as Lemma 12
in [10]. It is shown in [10] that if an independent set I with size nearly (1 +
β)n logd/d is chosen uniformly at random from the set of all independent sets of
this size, then w.h.p. (with respect to the graph randomness and the choice of I ),
there exists an empty overlap region in the sense described above with respect to
all other independent sets J of the same cardinality. In fact, this empty overlap
region exists for every β ∈ (0,1), as opposed to just 1 > β > 1/2 + 1/(2

√
2) as

in our case. Unfortunately, this result cannot be used for our purposes, since this
result does not rule out the existence of rare sets I for which no empty overlap
region exists.

Overlapping from local algorithms. Fix an r-local independence function fr .
Given a vector X = (Xu,1 ≤ u ≤ n) of variables Xu ∈ [0,1], recall that
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IG(fr ,X) denotes the independent set of G given by u ∈ IG(fr ,X) if and only
if fr(u,G,X) = 1.

Recall that X is chosen according to the uniform distribution on [0,1]n. Namely,
Xu are independent and uniformly distributed over [0,1]. In what follows, we
consider some joint distributions on pairs of vectors (X,Y) such that marginal
distributions on the vector X and Y are uniform on [0,1]n, though X and Y are
dependent on each other. The intuition behind the proof of Theorem 2.5 is as
follows. Note that if X = Y then IG(fr ,X) = IG(fr ,Y). As a result the overlap
IG(fr ,X) ∩ IG(fr ,Y) between IG(fr ,X) and IG(fr ,Y) is α(fr)n + o(n) in ex-
pectation. On the other hand, if X and Y are independent, then the overlap between
IG(fr ,X) and IG(fr ,Y) is α2(fr)n + o(n) in expectation, since the decision to
pick a vertex u in I is independent for most vertices when X and Y are indepen-
dent. [In particular, note that if the local neighborhood around u is a tree, which
according to Proposition 2.2 happens with probability approaching unity, then the
two decisions are independent, and u ∈ I with probability α(fr).] Our main theo-
rem shows that by coupling the variables, the overlap can be arranged to be of any
intermediate size, to within an additive o(n) factor. In particular, if α(fr) exceeds
1
2 + 1

2
√

2
we will be able to show that the overlap can be arranged to be between

the values (1−z)n logd
d

and (1+z)n logd
d

, described in Theorem 2.6 which contradicts
the statement of this theorem.

THEOREM 2.7. Fix a positive integer d . For constant r , let fr(u,G,x) be
an r-local independence function and let α = α(fr). For every γ ∈ [α2, α] and
ε > 0, and for every sufficiently large n, there exists a distribution on variables
(X,Y) ∈ [0,1]n × [0,1]n such that

PGd (n),(X,Y)

(∣∣IGd (n)(fr ,X) ∩ IGd (n)(fr ,Y)
∣∣ /∈ [

(γ − ε)n, (γ + ε)n
]) ≤ ε.

3. Proof of Theorem 2.5. We now show how Theorems 2.6 and 2.7 immedi-
ately imply Theorem 2.5.

PROOF OF THEOREM 2.5. Fix an r-local function fr and let α = α(fr). Fix
an arbitrary 0 < η < 1. We will prove below that for sufficiently large d we have

α

αd

≤ 1 + 1/
√

2 + 2η

2 − η
.(3.1)

The theorem will then follow by making η sufficiently small.
Let ε = η logd

d
and let β = 1√

2
+ η. Elementary algebra implies that for this

choice of β we have 0 < η <

√
2β2 − 1 < β < 1 for sufficiently large β . By Propo-

sition 2.3, we have that w.h.p. an independent set returned by fr on Gd(n) is of size
at least (α − ε)n. Furthermore, for every γ ∈ [α2, α], we have, by Theorem 2.7,
that w.h.p. Gd(n) has two independent sets I and J , with

(3.2) |I |, |J | ≥ (α − ε)n and |I ∩ J | ∈ [
(γ − ε)n, (γ + ε)n

]
.
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Finally, by Theorem 2.1, we have that for sufficiently large d , |I |, |J | ≤
(2d−1 logd)(1+η)n ≤ 4d−1 logdn and so for sufficiently large d , α2 ≤ d−1 logd ,
allowing us to set γ = d−1/ logd .

Now we apply Theorem 2.6 with z = η and the given choice of β . Theorem 2.6
asserts that w.h.p. Gd(n) has no independent sets of size �(1 +β)d−1 logdn� with
intersection size in [(1 − η)d−1 logdn, (1 + η)d−1 logdn]. This implies that there
are no independent sets of size at least (1 + β)d−1 logdn with intersection size in
[(1 −η)d−1 logdn, (1 +η)d−1 logdn], since we can simply delete the appropriate
number of nodes outside of the intersection and since η < β .

Since |I ∩ J | ∈ [(γ − ε)n, (γ + ε)n] = [(1 − η)d−1 logdn, (1 + η)d−1 logdn],
we conclude that min{|I |, |J |} ≤ (1 + β)d−1 logdn. Combining with equation
(3.2) we get that (α − ε)n ≤ min{|I |, |J |} ≤ (1 + β)d−1 logdn and so α ≤
(1 + β)d−1 logd + ε, which by the given bound on β yields

α ≤ (1 + 1/
√

2 + 2η)d−1 logd.

On the other hand, by the second part of Theorem 2.1, we also have αd ≥ (2 −
η)d−1 logd for all sufficiently large d . This implies (3.1). �

4. Proof of Theorem 2.7. For parameter p ∈ [0,1], we define the p-correla-
ted distribution on vectors of random variables (X,Y) to be the following: Let X,Z
be independent uniform vectors over [0,1]n. Now let Yu = Xu with probability p

and Yu = Zu with probability 1 − p independently for every u ∈ V (G).
Let f (u,G,x) and α be as in the theorem statement. Recall that f (x) =

f (1,Td,r ,x) is the decision of f on the canonical tree of degree d and depth r

rooted at the vertex 1. Let γ (p) be the probability that f (X) = 1 and f (Y) = 1,
for p-correlated variables (X,Y). As with Proposition 2.3, we have the following.

LEMMA 4.1. For every d , r , ε > 0 and r-local function f , for sufficiently
large n, we have

PGd (n),(X,Y)

(∣∣∣∣IGd (n)(f,X) ∩ IGd (n)(f,Y)
∣∣ − γ (p) · n∣∣ ≥ εn

) ≤ ε,

where (X,Y) are p-correlated distributions on [0,1]n.

PROOF. By Proposition 2.2, we have that almost surely almost all local neigh-
borhoods are trees and so for most vertices u the probability that u is chosen to be
in the independent sets I (f,X) and I (f,Y) is γ (p). By linearity of expectations,
we get that E[|I (f,X) ∩ I (f,Y)|] = γ (p) · n + o(n). Again observing that most
local neighborhoods are disjoint we have that the variance of |I (f,X) ∩ I (f,Y)|
is O(n). We conclude, by applying the Chebyshev bound, that |I (f,X) ∩ I (f,Y)|
is concentrated around the expectation and the lemma follows. �

We also note that for p = 1 and p = 0 the quantity γ (p) follow immediately
from their definition.
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PROPOSITION 4.2. γ (1) = α and γ (0) = α2.

Now to prove Theorem 2.7 it suffices to prove that for every γ ∈ [α2, α] there
exists a p such that γ (p) = γ . We show this next by showing that γ (p) is contin-
uous.

LEMMA 4.3. For every r , γ (p) is a continuous function of p.

PROOF. Let (Wu,u ∈ Td,r ) be random variables associated with nodes in
Td,r , uniformly distributed over [0,1], which are independent for different u and
also independent from Xu and Zu. We use Wu as generators for the events Yu = Xu

versus Yu = Zu. In particular, given p, set Yu = Xu if Wu ≤ p and Yu = Zu other-
wise. This process is exactly the process of setting variables Yu to Xu and Zu with
probabilities p and 1 − p, respectively, independently for all nodes u. Now fix
any p1 < p2, and let δ < (p2 − p1)/d

r+1. We use the notation fr(Xu,Zu,Wu,p)

to denote the value of fr when the seed variables realization is (Wu,u ∈ Td,r ),
and the threshold value p is used. Namely, fr(Xu,Zu,Wu,p) = fr(Xu1{Wu ≤
p} + Zu1{Wu > p}, u ∈ Td,r ). Here, for ease of notation, the reference to the tree
Td,r is dropped. Utilizing this notation, we have

γ (p) = P
(
fr(Xu) = fr(Xu,Zu,Wu,p) = 1

)
.

Therefore,

γ (p2) − γ (p1) = P
(
fr(Xu) = fr(Xu,Zu,Wu,p2) = 1

)
− P

(
fr(Xu) = fr(Xu,Zu,Wu,p1) = 1

)
= E

[
fr(Xu)fr(Xu,Zu,Wu,p2) − fr(Xu)fr(Xu,Zu,Wu,p1)

]
.

Observe that the event Wu /∈ [p1,p2] for all u ∈ Td,r implies fr(Xu,Zu,Wu,p1) =
fr(Xu,Zu,Wu,p2) for every realization of Xu and Zu. Therefore, by the union
bound and since |Td,r | < dr+1, we have∣∣γ (p2) − γ (p1)

∣∣ ≤ dr+1(p2 − p1).

Since r is fixed, the continuity of γ (p) is established. �

We are now ready to prove Theorem 2.7.

PROOF OF THEOREM 2.7. Given γ ∈ [α2, α] by Lemma 4.3, we have that
there exists a p such that γ = γ (p). For this choice of p, let (X,Y) be a pair
of p-correlated distributions. Applying Lemma 4.1 to this choice of p, we get
that with probability at least 1 − ε we have |IGd (n)(f,X) ∩ IGd (n)(f,Y)| ∈ [(γ −
ε)n, (γ + ε)n] as desired. �
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5. Theorem 2.6: Case of the Erdős–Rényi graph G(n,d/n). In this sec-
tion, we prove Theorem 2.6 for the case of the random Erdős–Rényi graph.

The proof is based on a simple moment argument. We first determine the ex-
pected number of pairs of independent sets with a prescribed overlap size and show
that this expectation converges to zero as n → ∞ and in fact converges to zero ex-
ponentially fast when the overlap size falls into the corresponding interval. The
result then follows from Markov inequality.

Fix positive integers k ≤ m ≤ n. Recall that O(n, d,m, k) is the set of all pairs
of independent sets of cardinality m with intersection size k in the random graph
G(n, d/n). It is straightforward to see that

E
[∣∣O(n, d,m, k)

∣∣]
(5.1)

= n!
k!(m − k)!(m − k)!(n − 2m + k)!

(
1 − d

n

)(2m−k
2 )−(m−k)2

.

Let m = �ns�, where we remind that s = (1+β)d−1 logd is given by the statement
of the theorem. Set k = �nx� for any

x ∈
(

(1 − z) logd

d
,
(1 + z) logd

d

)
.(5.2)

It suffices to show that there exists γ > 0 such that

lim sup
n→∞

n−1 logE
[∣∣O(

n,d, �ns�, �nx�)∣∣] ≤ −γ,(5.3)

for all x in the interval (5.2), as then we can use a union bound on the integer
choices

k ∈
(
n
(1 − z) logd

d
,n

(1 + z) logd

d

)
.

From this point on, we ignore �·� notation for the ease of exposition. It should
be clear that this does not affect the argument. From (5.1), after simplifying using
Stirling’s approximation [a! ≈ (a/e)a] and the fact that ln(1 − y) ≈ −y as y → 0,
we have

lim sup
n

n−1 logE
[∣∣O(

n,d, �ns�, �nx�)∣∣]
= x logx−1 + 2(s − x) log(s − x)−1 + (1 − 2s + x) log(1 − 2s + x)−1(5.4)

− d

(
(2s − x)2

2
− (s − x)2

)
.

We further simplify this expression as

x logx−1 + 2(s − x) log(s − x)−1

+ (1 − 2s + x) log(1 − 2s + x)−1 − ds2 + dx2/2.
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We have from (5.2) that for large enough d

x−1 ≤ d.

Also, for large enough d , since z < β , then

(s − x)−1 ≤
(

(1 + β) logd

d
− (1 + z) logd

d

)−1
≤ d.

Finally, we use the following asymptotics valid as d → ∞:

(1 − 2s + x) log(1 − 2s + x)−1 = O

(
logd

d

)
,(5.5)

which applies since 0 ≤ x ≤ s = Od(logd/d). Substituting the expression for s =
(1 + β)d−1 logd , we obtain a bound

n−1 logE
[∣∣O(ns, nx)

∣∣] ≤ x logd + 2
(

(1 + β) logd

d
− x

)
logd + Od(logd/d)

− d

(
(1 + β) logd

d

)2
+ dx2/2.

Writing x = (1 + ẑ) logd/d , where according to (5.2) ẑ varies in the interval
[−z, z], we can conveniently rewrite our bound as

log2 d

d

(
2(1 + β) − (1 + β)2 − (1 + ẑ) + (1 + ẑ)2/2

) + Od(logd/d).

Now we can force the expression to be negative for large enough d , provided that

2(1 + β) − (1 + β)2 − (1 + ẑ) + (1 + ẑ)2/2 < 0,

which is equivalent to |ẑ| <

√
2β2 − 1 which in turn follows from the conditions

on z in the hypothesis of the theorem statement.
This completes the proof of (2.5), and thus the proof of the theorem for the case

of Erdős–Rényi graph.

6. Theorem 2.6: Case of the random regular graph Gd(n). We now turn
to the case of random regular graphs Gd(n). We use a configuration model of
Gd(n) [4, 21], which is obtained by replicating each of the n nodes of the graph d

times, and then creating a random uniformly chosen matching connecting these dn

nodes. Since nd is assumed to be even, such a matching exists. Then for every two
nodes u, v ∈ [n] an edge is created between u and v, if there exists at least one edge
between any of the replicas of u and any of the replicas of v. This step of creating
edges between nodes in [n] from the matching on nd nodes we call projecting. It
is known that, conditioned on the absence of loops and parallel edges, this gives a
model of a random regular graph. It is also known that the probability of appearing
of at least one loop or at least two parallel edges is bounded away from zero when d
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is bounded. Since we are only concerned with statements taking place w.h.p., such
a conditioning is irrelevant to us and thus we assume that Gd(n) is obtained simply
by taking a random uniformly chosen matching and projecting. The configuration
model is denoted by Ḡd(n), with nodes denoted by (i, r) where i = 1,2, . . . , n and
r = 1, . . . , d . Namely, (i, r) is the r th replica of node i in the original graph. Given
any set A ⊂ [n], let Ā be the natural extension of A into the configuration model.
Namely, Ā = {(i, r) : i ∈ A, r = 1, . . . , d}.

Recall that Od(n,m, k) stands for the set of pairs of independent sets I, J in
Gd(n) such that |I | = |J | = m and |I ∩ J | = k. Note that there are possibly some
edges between Ī \ J̄ and J̄ \ Ī resulting in edges between I \ J and J \ I . Let
R(m, k, l) ⊂ Od(n,m, k) be the set of pairs I, J such that the number of edges
between Ī \ J̄ and J̄ \ Ī in the configuration graph model Ḡd(n) is exactly l. Here,
for the ease of notation we dropped the references to d and n. Observe that l is at
most d(m − k) and

⋃d(m−k)
l=0 R(m, k, l) = Od(n,m, k). In what follows, we will

bound the expected size of R(m, k, l) for every l, and thus the expected size of
their union.

For (I, J ) ∈ R(m, k, l), the number of edges between the set I ∪ J and its
complement [n] \ (I ∪J ) is precisely (2m− k)d − 2l, since |I ∪J | = 2m− k. The
same applies to the configuration model: the number of edges between Ī ∪ J̄ and its
complement [nd]\(Ī ∪ J̄ ) is precisely (2m−k)d−2l. The value of E[|R(m, k, l)|]
is then computed as follows. Let R = 2m − k and l ≤ d(m − k).

LEMMA 6.1.

E
∣∣R(m, k, l)

∣∣ =
(

n

k,m − k,m − k,n − R

)(
md − kd

l

)2(
nd − Rd

Rd − 2l

)
l!(Rd − 2l)!

× (nd − 2Rd + 2l)!
(nd/2 − Rd + l)!2nd/2−Rd+l

(nd/2)!2 nd
2

(nd)! .

PROOF. The proof is based on the fact that the number of matchings on a set

of m nodes (for even m) is m!
(m/2)!2 m

2
. So the term (nd/2)!2 nd

2

(nd)! is precisely the inverse

of the number of configuration graphs Ḡd(n). The term
( n
k,m−k,m−k,n−R

)
is the

number of ways of selecting a pair of sets I and J with cardinality m each and
intersection size k. Finally, the remaining term(

md − kd

l

)2(
nd − Rd

Rd − 2l

)
l!(Rd − 2l)! (nd − 2Rd + 2l)!

(nd/2 − Rd + l)!2nd/2−Rd+l

is the number of graphs Gd(n) such that for a given choice of sets I and J , both sets
are independent sets, and the number of edges between I \ J and J \ I is l. Here,(md−kd

l

)2
represents the number of choices for end points of the l edges between
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I \J and J \I ; l! represents the number of matchings once these choices are made;(nd−Rd
Rd−2l

)
represents the number of choices for the end points of edges connecting

I ∪ J with its complement; (Rd − 2l)! represents the number of matchings once
these choices are made; and finally

(nd − 2Rd + 2l)!
(nd/2 − Rd + l)!2nd/2−Rd+l

represents the number of matching choices between the remaining nd − 2Rd + 2l

nodes in the complement of Ī ∪ J̄ . �

We write k = xn,m = sn, l = dyn, where x ≤ s ≤ 1. Then R = (2s − x)n and
y ≤ s − x. Our main goal is establishing the following analogue of (5.3).

LEMMA 6.2. There exists γ > 0 such that

lim sup
n→∞

n−1 logE
[∣∣R(�ns�, �nx�, �ny�)∣∣] ≤ −γ,(6.1)

for s = (1 + β)d−1 logd , for all x in the interval (5.2) and all 0 ≤ y ≤ s − x.

The claim (2.6) of Theorem 2.5 follows from Lemma 6.2 by an argument similar
to the one for the Erdős–Rényi graph. The rest of this section is devoted to proving
Lemma 6.2.

Next, we simplify the last two terms in the expression given in Lemma 6.1 using
Stirling’s approximtion. We have by this lemma

E
[∣∣R(m, k, l)

∣∣]

=
(

n

k,m − k,m − k,n − R

)(
md − kd

l

)2(
nd − Rd

Rd − 2l

)
l!(Rd − 2l)!(1 + o(1)

)

× (nd − 2Rd + 2l)
(nd−2Rd+2l)

2

e
(nd−2Rd+2l)

2

e
nd
2

(nd)
nd
2

(
1 + o(1)

)

= n!
k!((m − k)!)2(n − R)!

((md − kd)!)2

(l!)2((md − kd − l)!)2

(nd − Rd)!
(Rd − 2l)!(nd − 2Rd + 2l)!

× l!(Rd − 2l)!(nd − 2Rd + 2l)
(nd−2Rd+2l)

2 eRd−l(nd)−
nd
2

(
1 + o(1)

)
= n!

k!((m − k)!)2(n − R)!
((md − kd)!)2

l!((md − kd − l)!)2

(nd − Rd)!
(nd − 2Rd + 2l)!

× (nd − 2Rd + 2l)
(nd−2Rd+2l)

2 eRd−l(nd)−
nd
2

(
1 + o(1)

)
.
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Next, we consider the logarithm of the expression above normalized by n and
apply Stirling’s approximation to the remaining terms. We obtain

n−1 logE
[∣∣R(m, k, l)

∣∣]
= −x logx − 2(s − x) log(s − x) − (1 − 2s + x) log(1 − 2s + x)

+ 2(sd − xd) log(sd − xd) − 2(sd − xd) − dy logdy + dy

− 2(sd − xd − dy) log(sd − xd − dy) + 2(sd − xd − dy)

+ (d − 2ds + dx) log(d − 2ds + dx) − (d − 2ds + dx)

− (d − 4ds + 2dx + 2dy) log(d − 4ds + 2dx + 2dy)

+ (d − 4ds + 2dx + 2dy)

+ 1

2
(d − 4ds + 2dx + 2dy) log(d − 4ds + 2dx + 2y)

+ d(2s − x − y) − d

2
logd.

Grouping the terms not involving log, we see that they sum up to zero:

−2(sd − xd) + dy + 2(sd − xd − dy) − (d − 2ds + dx)

+ (d − 4ds + 2dx + 2dy) + d(2s − x − y)

= 0.

Consider terms of the form log(dA) = logd + logA and consider the multiplier
corresponding to the logd term:

2(sd − xd) − dy − 2(sd − xd − dy) + (d − 2ds + dx)

− 1

2
(d − 4ds + 2dx + 2dy) − d

2
,

which again is found to be zero. The final expression we obtain is then

= −x logx − 2(s − x) log(s − x) − (1 − 2s + x) log(1 − 2s + x)

+ 2d(s − x) log(s − x) − dy logy

− 2d(s − x − y) log(s − x − y)(6.2)

+ d(1 − 2s + x) log(1 − 2s + x)

− d

2
(1 − 4s + 2x + 2y) log(1 − 4s + 2x + 2y).

We claim that this expression is asymptotically upper bounded by the value similar
to the one given in the right-hand side of (5.4) for the case of Erdős–Rényi graph.
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Specifically, we claim that it is upper bounded by

−x logx − 2(s − x) log(s − x) − d

2
(2s − x)2 + d(s − x)2

(6.3)
+ od

(
log2 d/d

)
.

The remainder of the proof is then the same as for the Erdős–Rényi case.
The rest of the section is devoted to deriving the upper bound (6.3). We re-

call that s = (1 + β) logd/d and x lies in the interval (5.2). For convenience, we
start with the term (1 − 2s + x) log(1 − 2s + x) in (6.2). Using the first-order
Taylor approximation log(1 − t) = −t + o(t), and the fact s = Od(logd/d), x =
Od(logd/d), we have

(1 − 2s + x) log(1 − 2s + x) = Od(logd/d)

= od

(
log2 d/d

)
.

Our next goal is to maximize the expression in (6.2) with respect to y. We consider
two cases. Specifically, we first consider the case

(β + z + 1)2 log2 d

d2 ≤ y ≤ s − x,(6.4)

and then consider the case

0 ≤ y ≤ (β + z + 1)2 log2 d

d2 .(6.5)

Assume first that (6.4) holds. Consider the terms containing y:

f (y) � −dy logy − 2d(s − x − y) log(s − x − y)

− d

2
(1 − 4s + 2x + 2y) log(1 − 4s + 2x + 2y).

We claim that for all sufficiently large d , the derivative of f is negative in the range
described by (6.4), and thus the largest value is obtained when y equals the left end
of the range and, therefore, we can restrict ourselves to the second case (6.5). To
establish the claim, we have

d−1ḟ (y) = − logy − 1 + 2 log(s − x − y) + 2 − log(1 − 4s + 2x + 2y) − 1

= − logy + 2 log(s − x − y) − log(1 − 4s + 2x + 2y).

Now by our assumption (6.4), we have y ≥ (β + z + 1)2d−2 log2 d implying

− logy ≤ −2 log(β + z + 1) + 2 logd − 2 log logd.

Also 4s − 2x − 2y ≤ 4s < 8 logd/d = Od(logd/d), implying that log(1 − 4s +
2x + 2y) = Od(logd/d). Finally, from (5.2) we have

s − x − y ≤ s − x

≤ (β + z) logd/d,
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implying that log(s − x − y) ≤ − logd + log logd + log(β + z). Combining, we
obtain that

d−1ḟ (y) ≤ −2 log(β + z + 1) + 2 logd − 2 log logd − 2 logd + 2 log logd

+ 2 log(β + z) + Od(logd/d)

= −2 log(β + z + 1) + 2 log(β + z) + Od(logd/d).

In particular, the derivative is negative for large enough d as claimed.
Thus, we now assume that the bound (6.5) holds. Next, we obtain asymptotic

upper bounds on terms in (6.2). We begin with the term d(1−2s +x) log(1−2s +
x). Using the approximation

(1 − t) log(1 − t) = −t + t2/2 + O
(
t3)

,

we obtain

d(1 − 2s + x) log(1 − 2s + x) = −d(2s − x) + d

2
(2s − x)2 + Od

(
d(2s − x)3)

.

Before we expand this term in terms of d , it will be convenient to obtain a similar
expansion for the last term in (6.2)

d

2
(1 − 4s + 2x + 2y) log(1 − 4s + 2x + 2y)

= −d

2
(4s − 2x − 2y) + d

4
(4s − 2x − 2y)2 + Od

(
d(4s + 2x + 2y)3)

= −d(2s − x) + dy + d(2s − x)2 − 2d(2s − x)y + dy2

+ Od

(
d(4s + 2x + 2y)3)

.

Applying the upper bound (6.5), we have Od(d(2s − x)3) = Od(log3 d/d2) =
od(log2 d/d), Od(d(4s +2x +2y)3) = od(log2 d/d), and dy2 = Od(log4 d/d3) =
od(log2 d/d). Combining, we obtain

d(1 − 2s + x) log(1 − 2s + x) − d

2
(1 − 4s + 2x + 2y) log(1 − 4s + 2x + 2y)

= −d

2
(2s − x)2 − dy + 2d(2s − x)y + od

(
log2 d/d

)
(6.6)

= −d

2
(2s − x)2 − dy + od

(
log2 d/d

)
,

where again applying bound (6.5) on y we have used

2d(2s − x)y = O

(
d

logd

d

log2 d

d2

)
= od

(
log2 d/d

)
.



LOCAL ALGORITHMS 2373

We conclude that the last two terms in (6.2) sum to at most

−d

2
(2s − x)2 − dy + od

(
log2 d/d

)
.(6.7)

Next, it is convenient to analyze the following two terms of (6.2) together:

2d(s − x) log(s − x) − 2d(s − x − y) log(s − x − y)

= 2d(s − x) log(s − x) − 2d(s − x) log(s − x − y) + 2dy log(s − x − y)

= 2d(s − x) log(s − x) − 2d(s − x) log(s − x)

− 2d(s − x) log
(
1 − y(s − x)−1)

+ 2dy log(s − x) − 2dy log
(
1 − y(s − x)−1)

= −2d(s − x) log
(
1 − y(s − x)−1) + 2dy log(s − x)

− 2dy log
(
1 − y(s − x)−1)

= 2d(s − x)y(s − x)−1 + Od

(
dy2(s − x)−1)

+ 2dy log(s − x) + 2dy2(s − x)−1 + Od

(
dy3(s − x)−2)

= 2dy + 2dy log(s − x) + 2dy2(s − x)−1 + Od

(
dy2(s − x)−1)

+ Od

(
dy3(s − x)−2)

= 2dy + 2dy log(s − x) + od

(
log2 d/d

)
,

where in the last step we have used the asymptotics y = Od(log2 d/d2) implied by
(6.5) to obtain 2dy2(s − x)−1 = od(log2 d/d).

We now analyze the remaining terms in (6.2) involving y and optimize with
respect to y. From (6.7), we have the term −dy. Combining with the asymptotics
above and the remaining term −dy logy from (6.2), we obtain

2dy + 2dy log(s − x) − dy − dy logy
(6.8)

= dy + 2dy log(s − x) − dy logy.

We compute the maximum value of this quantity in the relevant range of y given
by (6.5). The first derivative of this expression is

d + 2d log(s − x) − d − d logy = 2d log(s − x) − d logy

which is positive (infinite) at y = 0. At y = (β + z+1)2 log2 d/d2, the first deriva-
tive is

2d log(s − x) − 2d log(β + z + 1) − 2d log logd + 2d logd

≤ 2d log(β + z) + 2d log logd − 2d logd − 2d log(β + z + 1)
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− 2d log logd + 2d logd

= 2d log(β + z) − 2d log(β + z + 1)

< 0,

where the inequality relies on x ≥ (1 − z) logd/d implied by (5.2), which gives

s − x ≤ (β + z) logd/d.

The second derivative is −d/y which is negative since y ≥ 0. Thus, the function
is strictly concave with positive and negative derivatives at the ends of the relevant
interval (6.5). The maximum is then achieved at the unique point y∗ where the
derivative is zero, namely when 2d log(s − x) − d logy∗ = 0, giving

y∗ = (s − x)2.

Plugging this into the right-hand side of (6.8), we obtain

dy∗ + 2dy∗ log(s − x) − dy∗ logy∗

= d(s − x)2 + 2d(s − x)2 log(s − x) − d(s − x)2 log(s − x)2

= d(s − x)2.

Summarizing, and using (6.7), we find that the expression in (6.2) is at most

= −x logx − 2(s − x) log(s − x) − d

2
(2s − x)2 + d(s − x)2 + od

(
log2 d/d

)
,

namely we obtain (6.3) as claimed. This completes the proof of Lemma 6.2 and of
Theorem 2.6.
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