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INEQUALITIES FOR HILBERT OPERATOR AND ITS
EXTENSIONS: THE PROBABILISTIC APPROACH1

BY ADAM OSȨKOWSKI

University of Warsaw

We present a probabilistic study of the Hilbert operator

Tf (x) = 1

π

∫ ∞
0

f (y)dy

x + y
, x ≥ 0,

defined on integrable functions f on the positive halfline. Using appropriate
novel estimates for orthogonal martingales satisfying the differential subordi-
nation, we establish sharp moment, weak-type and �-inequalities for T . We
also show similar estimates for higher dimensional analogues of the Hilbert
operator, and by the further careful modification of martingale methods, we
obtain related sharp localized inequalities for Hilbert and Riesz transforms.

1. Introduction. As evidenced in numerous papers (see, e.g.,
[1–3, 5, 6, 13, 21, 23, 25]), martingale theory plays a fundamental role in ob-
taining various bounds for a wide class of singular integrals, Fourier multipliers
and other important operators, in many cases producing optimal or almost-optimal
constants. The problem of finding the exact values of various norms of such ob-
jects, most notably the Beurling–Ahlfors transform on the complex plane, has
gained considerable interest in the recent literature and has been approached with
the use of powerful probabilistic techniques developed by Burkholder [7, 9]. One
of the motivations for this direction of research comes from the papers of Donald-
son and Sullivan [11] and Iwaniec and Martin [19, 20], in which it was pointed
out that good estimates for the Lp norm of the Riesz transforms on R

n and the
Beurling–Ahlfors operator on C have important consequences in the study of qua-
siconformal mappings, related nonlinear geometric PDEs as well as in the Lp-
Hodge decomposition theory.

The purpose of this paper is to illustrate further the fruitful connection between
probability theory and the study of classical operators appearing in harmonic anal-
ysis. In particular, we will show how an appropriate “fine-tuning” of martingale
methods can be used in the study of the so-called Hilbert operator; see below for
the formal definition. This will lead us further to some interesting novel bounds
for Hilbert and Riesz transforms.
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To begin, let us describe the motivation, the results which interested many math-
ematicians at the beginning of the previous century. A celebrated inequality of
Hilbert asserts that if (an)n≥1, (bn)n≥1 are two sequences of real numbers, then we
have the sharp bound∣∣∣∣∣

∞∑
m,n=1

ambn

m + n

∣∣∣∣∣≤ π

( ∞∑
m=1

a2
m

)1/2( ∞∑
n=1

b2
n

)1/2

.

Actually, Hilbert proved this inequality with the constant 2π ; the above sharp ver-
sion is due to Schur [27]. This result was generalized by Hardy and Riesz (cf. [17]):
for any (an)n≥1, (bn)n≥1 as above and any constant 1 < p < ∞,∣∣∣∣∣

∞∑
m,n=1

ambn

m + n

∣∣∣∣∣≤ π

sin(π/p)

( ∞∑
m=1

|am|p
)1/p( ∞∑

n=1

|bn|q
)1/q

,

and constant π/ sin(π/p) cannot be replaced in general by any smaller number.
Here q = p/(p − 1) denotes the harmonic conjugate to p. See also the monograph
by Hardy, Littlewood and Polya [18] and the papers by Oleszkiewicz [22] and
Ullrich [29] for more on the subject. Clearly, the above inequalities imply that the
operator S, acting on sequences (an)n≥1 by the formula

Sa(n) = 1

π

∞∑
m=1

am

m + n
, n = 1,2, . . .

is bounded in �p , 1 < p < ∞, and ‖S‖�p→�p = sin−1(π/p) (note the normaliza-
tion factor 1/π used in the definition of S).

We will be interested in the continuous version of S. For any locally integrable
function f on (0,∞), define the Hilbert operator T by

Tf (x) = 1

π

∫ ∞
0

f (y)dy

x + y
, x > 0.

This operator arises naturally in many settings; for instance, one easily checks that
it is equal to the square of Laplace transform. By standard discretization argu-
ments, one easily verifies that the norms of ‖S‖�p→�p and ‖T ‖Lp(0,∞)→Lp(0,∞)

coincide. So, for 1 < p < ∞ we have the identity

‖T ‖Lp(0,∞)→Lp(0,∞) = 1

sin(π/p)
.

An alternative proof of this fact, using Schur’s lemma, can be found, for example,
in Grafakos [14].

Our purpose is to develop a completely different approach to the study of var-
ious estimates for T , which rests on the theory of martingales. Not only will it
allow us to give another proof of the above Lp bound, but it will also enable us
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to obtain certain weak-type and �-estimates for the operators S and T . Further-
more, it will also lead us to the study of higher-dimensional versions of Hilbert
operator. To introduce these, pick a positive integer d , fix j ∈ {1,2, . . . , d} and
let Rd

j+ = {x ∈ R
d :xj > 0}. For any locally integrable function on R

d
j+ and any

x ∈ R
d
j+, define

Tjf (x) = �((d + 1)/2)

π(d+1)/2

∫
R

d
j+

f (y)(xj + yj )

|x + y|d+1 dy.

Clearly, if d = 1, then the family {T1, T2, . . . , Td} contains only one element, the
Hilbert operator on (0,∞).

We are ready to formulate the main results of this paper; we start with the con-
tinuous setting. Our first statement concerns the Lp-boundedness of {Tj }dj=1.

THEOREM 1.1. For any d ≥ 1 and j ∈ {1,2, . . . , d}, we have

‖Tj‖Lp(Rd
j+)→Lp(Rd

j+) = sin−1(π/p).(1.1)

The Lp inequality fails to hold for when p = 1 or p = ∞. However, in these
boundary cases we will show certain weaker substitutes. Define the usual weak-L1
quasinorm by ‖f ‖L1,∞(Rd

j+) = supλ>0[λ|{x ∈ R
d
j+ : |f (x)| ≥ λ}|]. The first result

is a weak-type version of (1.1) for p = 1; unfortunately, martingale methods allow
us to establish this bound for d = 1 only.

THEOREM 1.2. We have

‖T ‖L1(0,∞)→L1,∞(0,∞) = π−1.(1.2)

The problem for d ≥ 2 arises from the fact that the passage from the martingale
theory to the operators Tj involves the use of a kind of a conditional expectation,
which is not a contraction on weak spaces; on the other hand, it is a contraction
on Lp , and hence Theorem 1.1 holds true; see Section 3.

The final result is a �-estimate for bounded and integrable functions. The rea-
soning will work for all dimensions.

THEOREM 1.3. Suppose that � : [0,∞) → [0,∞) is a convex, strictly in-
creasing function of class C1, satisfying �(0) = �′(0+) = 0. Then for any d ≥ 1,
j ∈ {1,2, . . . , d} and any integrable function f on R

d
j+ satisfying ‖f ‖L∞(Rd

j+) ≤ 1,

we have the sharp bound∫
R

d
j+

�
(∣∣Tjf (x)

∣∣)dx ≤ C�

∫
R

d
j+

∣∣f (x)
∣∣dx,(1.3)

where

C� =
∫ ∞

1

�((1/π) log s)

(s − 1)2 ds.(1.4)
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Clearly, by straightforward scaling, the above result extends to general bounded
integrable functions on R

d
j+.

The above results have their versions in the discrete setting. The following state-
ment is an immediate consequence of the above theorems, by standard approxima-
tion arguments.

THEOREM 1.4. Let a = (an)n≥1 be an arbitrary sequence of real numbers.

(i) We have

#
{
n :
∣∣Sa(n)

∣∣> 1
}≤ 1

π

∞∑
n=1

|an|.

(ii) If ‖(an)n≥1‖�∞ ≤ 1, then for any function � as in the statement of Theo-
rem 1.3 we have

∞∑
n=1

�
(∣∣Sa(n)

∣∣)≤ C�

∞∑
n=1

|an|.

The inequalities are sharp.

The remainder of the paper is divided into three sections. Section 2 contains our
probabilistic contribution, appropriate martingale versions of (1.1), (1.2) and (1.3).
In Section 3 we show how to exploit these estimates to deduce the bounds for
the operators S and T . The final part is devoted to certain localized estimates for
Hilbert and Riesz transforms, which can be regarded as extensions of the theorems
formulated above.

2. Martingale inequalities. This section is devoted to the probabilistic coun-
terparts of the results formulated in the Introduction. For the sake of clarity, we
have decided to split the material into a few parts.

2.1. Background and notation. We assume that (�,F,P) is a complete prob-
ability space, equipped with (Ft )t≥0, a nondecreasing family of sub-σ -fields of F ,
such that F0 contains all the events of probability 0. Let X, Y be two adapted real-
valued martingales with continuous trajectories. The maximal functions of X and
Y will be given by X∗ = supt≥0 |Xt |, Y ∗ = supt≥0 |Yt |. If the martingales converge
almost surely, their limits will be denoted by X∞ and Y∞, respectively. The sym-
bol [X,Y ] will stand for the quadratic covariance process of X and Y ; consult, for
instance, Dellacherie and Meyer [10] for details. The martingales X, Y are said
to be orthogonal if the process [X,Y ] is constant with probability 1. Following
Bañuelos and Wang [3] and Wang [30], Y is said to be differentially subordinate
to X if the process ([X,X]t − [Y,Y ]t )t≥0 is nonnegative and nondecreasing as a
function of t .
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The differential subordination (with or without orthogonality of martingales)
implies plenty of interesting inequalities comparing the sizes of X and Y (e.g.,
Lp estimates, weak-type bounds, etc.). This type of problem was first studied
by Burkholder in the eighties (see the seminal papers [7] and [9]), and by now,
the literature on the subject is quite extensive. It is impossible to give even a
short review here, and we refer the interested reader to the recent monograph by
Osȩkowski [24], which is devoted to the detailed exposition of this area. Here
we only mention one result, due to Bañuelos and Wang [30], which will be
needed in our further considerations. We use the notation ‖X‖p = supt≥0 ‖Xt‖p

for 1 ≤ p ≤ ∞.

THEOREM 2.1. Suppose that X, Y are orthogonal martingales such that Y is
differentially subordinate to X. Then for any 1 < p < ∞,

‖Y‖p ≤ cot
(

π

2p∗
)
‖X‖p,

where p∗ = max{p,p/(p − 1)}. The constant is the best possible.

In what follows, we will also work with a slightly stronger condition than the
differential subordination: in some estimates it will be necessary to assume that the
process [X,X]− [Y,Y ] is constant and nonnegative with probability 1. For lack of
a better word, in such a case we will say that X and Y are differentially equivalent.

The martingale inequalities we plan to study are of very unusual form. Let us
explain briefly their connection with the operators T and Tj . First, note that these
operators are closely related to the Hilbert transform H and the Riesz transforms
Rj , classical objects in harmonic analysis; cf. [28]. Recall that the latter operators
are given by the principal value integrals

Hf (x) = 1

π
p.v.

∫
R

f (y)

x − y
dy,

for sufficiently regular f :R→R, and

Rjf (x) = �((d + 1)/2)

π(d+1)/2 p.v.
∫
Rd

f (y)(xj − yj )

|x − y|d+1 dy, j = 1,2, . . . , d,

for sufficiently regular f :Rd → R. There is a well-established connection be-
tween the estimates for these operators and the theory of orthogonal martingales
satisfying the differential subordination. Actually, the two settings are essentially
parallel, and the optimal constants are the same: more precisely, the probabilis-
tic analogue of the pair (f,Hf ) or (f,Rjf ) is the pair (X,Y ). For instance, as
the reader immediately notices, the sharp Lp bound of Theorem 2.1 is precisely
the probabilistic version of the identity ‖H‖Lp(R)→Lp(R) = ‖Rj‖Lp(Rd )→Lp(Rd ) =
cot(π/(2p∗)), obtained by Bañuelos and Wang [3], Iwaniec and Martin [20] and
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Pichorides [26]. See the papers [3, 4, 21, 23] and the monograph [24] for a more
detailed study of this phenomenon. This will also be made more clear in Section 3
below.

Coming back to T and Tj , we see that if f is a function on [0,∞), and we
extend it to the whole real line by putting f (x) = 0 for x ≤ 0, then we have the
identity

Tf (x) = −Hf (−x) for x > 0.(2.1)

Similarly, if we take an arbitrary f :Rd
j+ →R and extend it to R

d by f (x) = 0 for

x /∈ R
d
j+, then

Tjf (x) = −Rjf (−x) for x ∈ R
d
j+.(2.2)

Consequently, any estimate for H or Rj (obtained, e.g., by probabilistic tools)
immediately yields the corresponding bound for T or Tj , respectively. However,
such an inequality is in general not sharp, and we can do better by appropriately
“fine-tuning” the martingale methods. For instance, it is evident that the operators
T and Tj are positive, and hence in the proof of any reasonable estimate one may
restrict oneself to the class of nonnegative functions. This, in the probabilistic set-
ting, leads to the restriction to nonnegative X’s, which, in general, improves the
constants (in comparison to the case of general X).

Unfortunately, this is still not good enough. The problem is of the following
type. Suppose we want to establish the Lp bound for T . If we use (2.1) and then
apply the appropriate bound for H (i.e., we write ‖Tf ‖Lp(0,∞) ≤ ‖Hf ‖Lp(R) ≤
cp‖f ‖Lp(0,∞)), we do not discard the behavior of Hf on the negative halfline,
which can be substantial. A similar problem occurs in the higher dimensions when
applying (2.2): here we do not control the contribution of Rjf coming from the
set Rd \Rd

j+. Fortunately, this difficulty can be overcome, as we will see now. In

analogy with the preceding reasoning, given a nonnegative function f on R
d
j+, let

us extend both f and Tjf to the whole R
d by putting f = Tjf = 0 on R

d \Rd
j+.

Then we have the following crucial estimate:

Tjf (x) ≤ (−Rjf (−x)
)
+1{f (−x)=0} for almost all x ∈ R

d
j+.(2.3)

Indeed, if xj < 0, then the left-hand side is zero, while the right-hand side is non-
negative; on the other hand, if xj > 0, then f (−x) = 0 and

Tjf (x) = −�((d + 1)/2)

π(d+1)/2

∫
R

d
j+

f (y)(−xj − yj )

|−x − y|d+1 dy = −Rjf (−x),

so both sides are equal.
We turn to the formulation of our main probabilistic results.
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THEOREM 2.2. Let 1 < p < ∞ be fixed. Suppose that X,Y are orthogonal
martingales such that Y is differentially subordinate to X. Assume further that X

is nonnegative and bounded in Lp , and Y0 ≡ 0. Then we have the sharp estimates∥∥(Y∞)+1{X∞=0}
∥∥
p ≤ sin−1(π/p)‖X∞‖p(2.4)

and

‖Y∞1{X∞=0}‖p ≤ Cp‖X∞‖p,(2.5)

where

Cp =
{

sin−1/p
(
(p − 1)π/2

)
, if 1 < p < 2,

sin−1(π/p), if p ≥ 2.

This statement is a version of moment inequalities for Tj . More precisely,
bound (2.4) will lead to (1.1), while estimate (2.5) will correspond to appropri-
ate Lp bound for the function x �→ Rjf (−x)1{f (−x)=0} (which is of independent
interest; see Section 4 below).

We should also briefly comment here on the existence of the pointwise limits
X∞ and Y∞. Since X is nonnegative, the almost sure convergence of this process
follows from the classical results of Doob [12]. On the other hand, Y is differ-
entially subordinate to X, so the existence of Y∞ is a consequence of the corre-
sponding escape inequalities; see Lemma 4 in Wang [30]. The same reasoning will
guarantee the existence of appropriate limits in the theorems below.

Next, we will establish the following weak-type inequality, which is a substitute
for (2.4) and (2.5) in the case p = 1. Here we will assume the stronger condition
of differential equivalence.

THEOREM 2.3. Suppose that X, Y are orthogonal, differentially equivalent
martingales such that X is nonnegative and Y0 ≡ 0. Then we have the sharp esti-
mates

P(Y∞1{X∞=0} > 1) ≤ π−1‖X0‖1(2.6)

and

P
(|Y∞|1{X∞=0} > 1

)≤ 2π−1‖X0‖1.(2.7)

Note that on the right we have the first moment of X0; actually, neither of the in-
equalities holds if we replace X0 by X∞ there. Indeed, take (X,Y ) to be the planar
Brownian motion starting from (1,0), stopped at y-axis. (Clearly, this counterex-
ample does not work for the preceding Lp estimates: X is not bounded in Lp .)

Finally, we establish the following inequality in the bounded case, which is a
martingale version of (1.3).
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THEOREM 2.4. Let � : [0,∞) → [0,∞) be a convex function of class C1

satisfying �(0) = �′(0+) = 0. Assume further that X, Y are orthogonal martin-
gales such that X takes values in the interval [0,1], Y0 ≡ 0 and Y is differentially
subordinate to X. Then we have the sharp estimates

E�
(
(Y∞)+1{X∞=0}

)≤ C�‖X∞‖1(2.8)

and

E�
(|Y∞|1{X∞=0}

)≤ 2C�‖X∞‖1,(2.9)

where C� is given in (1.4) above.

Each of the above estimates will be established in a separate subsection below.
However, as the arguments leading to the estimates share the same pattern, we
have decided to explain first the approach in a general setting. A similar abstract
description can be found in the work of Bañuelos and Wang [3], Wang [30] and
Osȩkowski [24].

2.2. On a method of proof. Fix a Borel, locally bounded function V : [0,∞)×
R→R, and suppose that our goal is to establish the estimate

EV (X∞, Y∞) ≤ 0(2.10)

for any pair (X,Y ) of almost surely convergent, orthogonal martingales such that
X is nonnegative, Y0 ≡ 0 and such that one of the following conditions holds:

(A) Y is differentially subordinate to X;
(B) X and Y are differentially equivalent.

In order to study this problem, we use Burkholder’s method, which, generally
speaking, rests on the construction of an appropriate special function. Suppose
that U : [0,∞) × R → R is a continuous function, which is of class C1 in the
interior of its domain. Assume further that there are pairwise disjoint open sets
D1,D2, . . . ,Dn ⊂ [0,∞) × R, satisfying D1 ∪ D2 ∪ · · · ∪ Dn = [0,∞) × R and
such that U is of class C2 on each Dj . Finally, consider the following structural
conditions the function U might satisfy:

U(x,0) ≤ 0 for all x ≥ 0,(2.11)

U(x, y) ≥ V (x, y) for all (x, y) ∈ [0,∞) ×R,(2.12)

U is superharmonic,(2.13)

Uxx ≤ 0 for all (x, y) ∈ D1 ∪ D2 ∪ · · · ∪ Dn.(2.14)

The existence of such a function brings us very close to the validity of (2.10).
Roughly speaking, if we can find U satisfying all the above conditions, then (2.10)
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holds true for any orthogonal pair (X,Y ) satisfying (A). Furthermore, the existence
of U satisfying the above regularity and conditions (2.11), (2.12) and (2.13) [(2.14)
is not required] implies the validity of (2.10) under (B).

To see this, we first use the mollification trick and approximate U by a func-
tion which has appropriate regularity; this argument goes back to the works of
Burkholder [8], Bañuelos and Wang [3] and Wang [30]. Fix a nonnegative func-
tion g of class C∞, supported on the unit ball of R2, satisfying

∫
R2 g = 1. For a

given δ > 0, let Uδ stand for the convolution of U and g: that is,

Uδ(x, y) =
∫
R2

U(x + δu, y + δv)g(u, v)dudv,

where x ≥ δ and y ∈ R. Clearly, this function is of class C∞, inherits the super-
harmonicity property and satisfies Uδ

xx(x, y) ≤ 0 for all x > δ and y ∈R.
Next, fix a pair (X,Y ) of almost surely convergent, orthogonal martingales such

that X is nonnegative, Y0 ≡ 0 and such that Y is differentially subordinate to X.
(The case of differential equivalence will be studied later.) Consider the stopping
time

τN = inf
{
t ≥ 0 : |Xt | + |Yt | ≥ N

}
,(2.15)

where N is a given large positive integer. Next, pick ε ≥ δ. Since Uδ is of
class C∞, we may apply Itô’s formula to this function and the pair Zt = (ε +
XτN 1{τN>0}, Y τN 1{τN>0}), where XτN = (XτN∧t )t≥0 (we need to add ε to XτN to
make sure that the composition of Uδ and the pair makes sense). As a result, we
obtain, for any t ≥ 0,

Uδ(Zt) = I0 + I1 + I2 + I3/2,(2.16)

where

I0 = Uδ(Z0),

I1 =
∫ τN∧t

0+
Uδ

x (Zs)dXs +
∫ τN∧t

0+
Uδ

y (Zs)dYs,

I2 =
∫ τN∧t

0+
Uδ

xy(Zs)d[X,Y ]s,

I3 =
∫ τN∧t

0+
Uδ

xx(Zs)d[X,X]s +
∫ τN∧t

0+
Uδ

yy(Zs)d[Y,Y ]s .

Let us now analyze the terms I0 through I3 separately. As we have assumed above,
the martingale Y starts from the origin. Therefore, (2.11) gives that I0 = U(ε +
X01{τN>0},0) ≤ 0. The term I1 has zero expectation, by elementary properties of
stochastic integrals. We have I2 = 0, since the orthogonality implies d[X,Y ]s = 0.
To handle I3, we exploit the differential subordination and the inequality Uδ

xx ≤ 0.
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We get

I3 ≤
∫ τN∧t

0+
Uδ

xx(Zs)d[Y,Y ]s +
∫ τN∧t

0+
Uδ

yy(Zs)d[Y,Y ]s

=
∫ τN∧t

0+
�Uδ(Zs)d[Y,Y ]s ≤ 0,

where in the last passage we have exploited the superharmonicity of Uδ . Plugging
all these facts into (2.16) and taking expectation of both sides yields EUδ(Zt) ≤ 0.
Now let δ → 0; since the function U is continuous, we have the pointwise con-
vergence Uδ(x, y) → U(x, y) for all (x, y) ∈ (0,∞). However, the process Z is
bounded, so Lebesgue’s dominated convergence theorem gives EU(Zt) ≤ 0. Next,
we let t → ∞. By the continuity of the trajectories and the boundedness of the
process Z, we get EU(ε + XτN

1{τN>0}, YτN
1{τN>0}) ≤ 0. Finally, let ε → 0 to get

EU(XτN
1{τN>0}, YτN

1{τN>0}) ≤ 0, again by Lebesgue’s dominated convergence
theorem. Essentially, this is as far as the general method can take us. Our plan
is to let N → ∞ to obtain EU(X∞, Y∞) ≤ 0 and then apply (2.12) to get (2.10).
However, we cannot do this passage to the limit without some further boundedness
conditions on U , X and Y , which may be dependent on the specific inequality we
study.

Now suppose we want to handle the more restrictive case in which X and Y

are assumed to be differentially equivalent. Then it is enough to find U satisfying
the above regularity and conditions (2.11)–(2.13) [i.e., we may remove condition
(2.14) from the list of the requirements]. Indeed, the whole above analysis remains
valid; the only change concerns the term I3. If X and Y are differentially equiva-
lent, then d[X,X]t = d[Y,Y ]t and hence

I3 =
∫ t

0+
�Uδ(ε + Xs,Ys)d[X,X]s ≤ 0,

by the superharmonicity of Uδ . So, as in the case of the differential subordination,
we obtain the estimate EU(XτN

1{τN>0}, YτN
1{τN>0}) ≤ 0, and we need to carry

out a limiting procedure basing on the boundedness conditions imposed on U , X

and Y .

REMARK 2.5. The method described above admits plenty of modifications.
Let us mention here two of them, which will be useful in our further consider-
ations. First, we do not have to assume that U is continuous on the whole half-
plane [0,∞) × R. For example, suppose we replace this condition with the fol-
lowing, weaker property: U is locally bounded, continuous on (0,∞)×R, and for
each y, the function x �→ U(x, y) is continuous. Then one easily checks that the
above proof works fine, as the passage limε↓0 EU(ε + XτN

1{τN>0}, YτN
1{τN>0}) =

EU(XτN
1{τN>0}, YτN

1{τN>0}) is still valid.
Another extension, which will be needed below, is the following. Suppose that

we want to establish (2.10) under (A) and the additional assumption that X takes
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values in the interval [0,1]. Then we do not have to construct U on the whole half-
plane: it is enough to find U : [0,1] ×R → R, satisfying (2.11), (2.12), (2.13) and
(2.14) there. This is also very easy to see. For any δ ∈ (0,1/2), pick ε ∈ (δ,1/2),
and let Uδ be a function given by the same convolution as above. This function is
well defined only on the strip [δ,1−δ]×R; therefore, if we want to apply Itô’s for-
mula, we need to make sure that the stochastic pair we use takes values in this set.
This causes us to use, for instance, the martingale (ε+ (1−2ε)X

τN
t , (1−2ε)Y

τN
t ).

(We do not need to include the indicator 1{τN>0}: if N is large, this indicator
is 1, since X0 ∈ [0,1] and Y0 ≡ 0.) The remaining arguments are the same: Itô’s
formula combined with the analysis of the corresponding terms I1 to I4 gives
EUδ(ε + (1 − 2ε)X

τN
t , (1 − 2ε)Y

τN
t ) ≤ 0, and then we let δ → 0, t → ∞ and

ε → 0 to obtain EU(XτN
,YτN

) ≤ 0. This puts us in the same position as in the
preceding setting.

2.3. Proof and sharpness of (2.4). Now we will show how the above method-
ology can be used to establish the moment estimate (2.4). This inequality is
in the form of (2.10), with V (x, y) = (y+)p1{x=0} − sin−p(π/p)xp . Consider
U : [0,∞) ×R→R, given by

U(x, y)

=
⎧⎪⎨⎪⎩

− sin−p(π/p) · Rp cosp θ, if θ ∈ [−π/2, π/2 − π/p],
− sin−1(π/p) · Rp sin(pθ − πp/2 − π/p),

if θ ∈ (π/2 − π/p,π/2],
where we have used the polar coordinates x = R cos θ , y = R sin θ with R ≥ 0 and
θ ∈ [−π/2, π/2]. Furthermore, put D1 = {(x, y) :R > 0, θ ∈ (−π/2, π/2−π/p)}
and D2 = {(x, y) :R > 0, θ ∈ (π/2 −π/p,π/2)}. We will check that U has all the
required properties.

Regularity. It is straightforward to check that U is continuous on [0,∞) × R

and of class C1 in the interior of its domain. It is also obvious that U is of class C2

on D1 and D2.
Condition (2.11). If 1 < p < 2, then

U(x,0) = xp · sin(π/p) sin(πp/2 + π/p) ≤ 0,

since π/p ∈ [0, π] and πp/2 + π/p ∈ [π,2π ]. On the other hand, if p ≥ 2, then

U(x,0) = −xp sin−p(π/p) ≤ 0.

Majorization (2.12). If θ < π/2 − π/p or θ = π/2, then both sides are equal;
hence, we must prove the inequality for θ ∈ (π/2 − π/p,π/2). For these values
of θ , the majorization can be rewritten as

−sin(pθ − πp/2 − π/p)

cosp θ
≥ − sin1−p(π/p).
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As we have observed above, both sides are equal in the boundary case θ =
π/2 − π/p. Furthermore, if we denote the left-hand side by F(θ), then we easily
compute that F ′(θ) = −p cos−p−1 θ cos((p − 1)θ − πp/2 − π/p). This is posi-
tive for θ ∈ (π/2 − π/p,π/2), since then the angle (p − 1)θ − πp/2 − π/p lies
between −3π/2 and −π/2 − π/p (and hence the corresponding cosine function
is negative).

Superharmonicity. It suffices to note that U is of class C1 and satisfies �U =
Uxx < 0 on D1 and �U = 0 on D2.

Condition (2.14). If θ < π/2 − π/p, then U(x, y) = − sinp(π/p)xp and hence
Uxx(x, y) = −p(p−1) sinp(π/p)xp−2 < 0. On the other hand, if θ > π/2−π/p,
then some straightforward computations show that

Uxx(x, y) = −p(p − 1) sin(π/p) · Rp−2 sin
(
(p − 2)θ − πp/2 − π/p

)
.

It is enough to observe that for the above values of θ , the angle (p −2)θ −πp/2−
π/p lies between −π − π/p and −2π + π/p, and hence the sine function is
positive; this implies Uxx < 0 and completes the analysis of (2.14).

Thus the reasoning from the preceding subsection implies that

EU(XτN
1{τN>0}, YτN

1{τN>0}) ≤ 0(2.17)

[recall that τN is given by (2.15)]. Clearly, U enjoys the upper bound |U(x, y)| ≤
C(|x|p + |y|p) for some constant C depending only on p. Consequently,∣∣U(XτN

,YτN
)
∣∣≤ C

((
X∗)p + (

Y ∗)p).
Recall that we have assumed in the statement of the theorem that the martingale
X is bounded in Lp . Hence, by Theorem 2.1, Y also has this property. Thus, by
Doob’s maximal estimate (cf. [12]), the right-hand side above is integrable. So,
by Lebesgue’s dominated convergence theorem, we are allowed to let N → ∞
in (2.17). This gives EU(X∞, Y∞) ≤ 0, and the use of (2.12) establishes the de-
sired inequality (2.4).

Sharpness. The fact that the constant sin−1(π/p) is the best possible will fol-
low from the arguments of Section 3. Therefore, for the reader’s convenience, we
will only describe an example which implies the optimality (and skip the verifica-
tion of its properties). Fix 1 < p < ∞, a number ϕ < π/p and consider the sector
Aϕ = {(x, y) :π/2 −ϕ ≤ θ ≤ π/2}. Let B = (B1,B2) denote the two-dimensional
Brownian motion starting at (1

2 tanϕ,1) and stopped upon exiting Aϕ . Finally, set
X = B1 and Y = B2 − 1. Of course, then X, Y are orthogonal and differentially
equivalent martingales; furthermore, X is nonnegative and Y0 = 0, so all the re-
quirements on the processes are met. One can show that

lim
ϕ→π/p

‖(Y∞)+1{X∞=0}‖p

‖X∞‖p

= sin−1(π/p).
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2.4. Proof and sharpness of (2.5). When p ≥ 2, then the calculations are es-
sentially the same as in the previous case. The inequality is in the form of (2.10)
with V (x, y) = |y|p1{x=0} − sin−p(π/p)xp . Let U : [0,∞) ×R→R be given by

U(x, y)

=
⎧⎪⎨⎪⎩

− sin−p(π/p) · Rp cosp θ, if |θ | ≤ π/2 − π/p,

− sin−1(π/p) · Rp sin
(
p|θ | − πp/2 − π/p

)
,

if |θ | ∈ (π/2 − π/p,π/2].
This is a “symmetrized” version of the function U from the preceding estimate in
the sense that both objects agree on [0,∞)×[0,∞), and the function we have just
introduced satisfies U(x, y) = U(x,−y) for all x ≥ 0 and y ∈ R. Letting D1 =
{(x, y) : |θ | ≤ π/2 − π/p} and D2 = {(x, y) : |θ | ∈ (π/2 − π/p,π/2], we repeat
the above calculations and show that U has all the required properties. Thus (2.17)
holds true, and the same limiting arguments as above yield (2.5).

In the case 1 < p < 2, some new objects have to be introduced. We must take
V (x, y) = |y|p1{x=0} − sin−1((p − 1)π/2)xp and define U : [0,∞) ×R →R by

U(x, y) = Rp cos(pθ)

cos(pπ/2)
.

There is only one region D1 = (0,∞) ×R. Let us check that all the requirements
are met:

Regularity. This is trivial: U is of class C∞ on D1.
Condition (2.11). This is also evident, since cos(pπ/2) < 0.
Majorization (2.12). We may restrict ourselves to the case θ ≥ 0, since both U

and V are symmetric with respect to the x-axis. If θ = 0 or θ = π/2, then both
sides are equal. For the remaining θ ’s, note that the bound reads

Rp cos(pθ)

cos(pπ/2)
≥ Rp cosp θ

cos(pπ/2)
,

or, equivalently, cos(pθ)/ cosp θ ≤ 1. Denoting the left-hand side by F(θ), we see
that F(0) = 1 and

F ′(θ) = −sin((p − 1)θ)

cosp+1 θ
≤ 0 for |θ | < π/2.

This yields (2.12).
Superharmonicity. This is trivial: U is harmonic on (0,∞) ×R.
Condition (2.14). A little calculation shows that

Uxx(x, y) = p(p − 1)Rp−2 cos((p − 2)θ)

cos(pπ/2)
.

Since |θ | < π/2 and 1 < p < 2, we see that the numerator is positive; on the
other hand, the denominator is negative, so (2.14) holds true. So, the reasoning
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from Section 2.2 gives (2.17), and the same limiting argument as above yields the
validity of (2.5).

Sharpness. When p ≥ 2, the optimality of the constant Cp follows from the
sharpness of (2.4) (which, in turn, will be a consequence of the reasoning of Sec-
tion 3). So, let us assume that 1 < p < 2. Let c > 1 be a large positive num-
ber, and consider the set Ac = ([0,∞) × R) \ ([c,∞) × {0}). Let (X,Y ) be a
two-dimensional Brownian motion starting at (1,0) and stopped at the bound-
ary of Ac. Then it is not difficult to see that both X and Y are Lp bounded, and
limc→∞ ‖X‖p = limc→∞ ‖Y‖p = ∞. Since the above function U is harmonic on
(0,∞) ×R, an application of Itô’s formula yields

EU(X∞, Y∞) = U(1,0).

On the other hand, the functions U and V coincide at the boundary of Ac, so the
above equality implies

E|Y∞|p1{|X∞|=0} = sin−1((p − 1)π/2
)
EXp∞ + U(1,0).

Since EX
p∞ explodes as c → ∞, the constant sin−1((p − 1)π/2) cannot be re-

placed by a smaller number. This establishes the sharpness.

2.5. Proof and sharpness of (2.6) and (2.7). Now we turn our attention to the
weak-type inequality. Actually, it is enough to establish the first bound: indeed,
having done this, we write

P
(|Y∞|1{X∞=0} > 1

)
(2.18)

= P
(
(Y∞)+1{X∞=0} > 1

)+ P
(
(−Y∞)+1{X∞=0} > 1

)
and bound each probability on the right by ‖X0‖1/π . [To see that this is permitted
for the second term, note that the pair (X,−Y) satisfies the assumptions.]

Put V (x, y) = 1{y1{x=0}>1} − 1
π
x. Then inequality (2.6) is not exactly in the form

of (2.10), since in the former bound we have the appearance of the variable X0.
However, let us not worry about this and introduce the special function U by

U(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1

2
− 1

π
arctan

(
1 − y

x

)
− x

π
, if x > 0,

1{y>1} + 1

2
1{y=1}, if x = 0.

Here there is only one domain D1 = (0,∞) × R. Let us verify that the function
has the required properties.

Regularity. The first problem is that U is not continuous at the point (0,1). How-
ever, it is of class C2 on (0,∞)×R, and for each y ∈ R, the function x �→ U(x, y)

is continuous on [0,∞), which is sufficient for our purposes; see Remark 2.5
above.
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Condition (2.11). For any x ≥ 0, we have

U(x,0) = 1

2
− 1

π
arctan

1

x
− x

π
= 1

π
(arctanx − x) ≤ 0,

as needed.
Majorization (2.12). Observe that arctan((1 − y)/x) ≤ π/2, and hence

U(x, y) ≥ − x
π

= V (x, y) when y < 1 or x > 0. Next, we have U(0,1) = 1/2 >

V (0,1). For remaining (x, y) (i.e., for x = 0 and y > 1), both sides of (2.12) are
equal.

Superharmonicity. This is evident: as one easily verifies, U is actually harmonic
on (0,∞) ×R.

Therefore, the reasoning of Section 2.2 gives us EU(XτN
1{τN>0}, YτN

1{τN>0}) ≤
0, which by the nonnegativity of X, can be rewritten as

E
[
U(XτN

1{τN>0}, YτN
1{τN>0}) + π−1XτN

1{τN>0}
]≤ π−1

EX01{τN>0}.

The expression in the square brackets is bounded from below, so the use of Fatou’s
lemma and Lebesue’s monotone convergence theorem yields

E
[
U(X∞, Y∞) + π−1X∞

]≤ π−1
EX0.

However, by (2.12), the left-hand side is not smaller than P(Y∞1{X∞=0} > 1). This
completes the proof of (2.6).

Sharpness. It is enough to show that the constant in (2.7) is optimal; by the
argumentation in (2.18), this will also imply that improving (2.6) is impossible. Fix
a positive number c. Let (X,Y ) be a two-dimensional Brownian motion, starting
at a point (c,0) and stopped upon hitting the y-axis. Then ‖X0‖1 = c, X∞ = 0 and
the law of Y∞ is the Cauchy distribution with parameter c. Hence

P
(|Y∞|1{X∞=0} > 1

)= P
(|Y∞| > 1

)=
∫
R\[−1,1]

c dt

t2 + c2 = 1 − 2

π
arctan

(
1

c

)
and therefore

lim
c→0

P(|Y∞|1{X∞=0} > 1)

‖X0‖1
= 2

π
.

This proves the desired sharpness.

2.6. Proof and sharpness of (2.8) and (2.9). It is enough to establish the first
estimate; arguing as in the preceding subsection, we see that then (2.9) follows.
Here the reasoning will be a little more involved, as the special function is more
complicated. Assume that � : [0,∞) → [0,∞) is a fixed convex function satisfy-
ing �(0) = �′(0+) = 0. Clearly, we may assume in addition that C� < ∞, since
otherwise there is nothing to prove. Inequality (2.8) is in the form of (2.10), with
V (x, y) = �(y+1{x=0})−C�x. As we have observed in Remark 2.5 above, it suf-
fices to construct an appropriate special function on the strip [0,1] ×R. This will
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be done with the following two-step procedure: First define an auxiliary function
U :R× (0,∞) →R by the Poisson integral

U(α,β) = 1

π

∫ −1

−∞
β�((1/π) log(−t))

(α − t)2 + β2 dt.

Obviously, U is harmonic and satisfies

lim
(α,β)→(z,0)

U(α,β) =
⎧⎨⎩�

(
1

π
log(−z)

)
, if z < −1,

0, if z > −1.
(2.19)

Next, consider a conformal mapping ϕ(z) = −e−iπz, or, in real coordinates,

ϕ(x, y) = (−eπy cos(πx), eπy sin(πx)
)
.

One easily verifies that ϕ maps (0,1) ×R onto the halfplane R× (0,∞). Now we
are ready to define U on the strip (0,1) ×R: put

U(x, y) = U
(
ϕ(x, y)

)− C�x.(2.20)

The function U is harmonic on (0,1) × R, as a composition of a harmonic
function with a conformal mapping. Furthermore, by (2.19), it can be extended
to the continuous function on the whole strip [0,1] × R by U(0, y) = �(y+),
U(1, y) = −C�. As one easily verifies, U admits the following explicit formula in
the interior of its domain:

U(x, y) = 1

π

∫ ∞
1

�(((1/π) log s + y)+) sin(πx)

(s − cos(πx))2 + sin2(πx)
ds − C�x.(2.21)

To complete the description of the setting, let us note that we consider only one
domain D1 = (0,1) × R. We will now verify that the function U enjoys all the
required properties.

Regularity. This is clear: as we have already noted above, U is continuous on
the strip and is obviously of class C∞ in its interior.

Superharmonicity. This is trivial, since U is harmonic inside its domain.
Conditions (2.11) and (2.14). For any fixed s ∈ R, the function y �→

�(( 1
π

log s + y)+) is convex, and hence, by (2.21), the function U is “vertically
convex”; that is, we have Uyy ≥ 0 on (0,1) × R. This, by the harmonicity of U ,
implies Uxx(x,0) ≤ 0 for x ∈ (0,1). Thus condition (2.11) follows at once from
the equalities U(0,0) = 0 and

Ux(0+,0) = lim
x �→0

U(x,0)

x
(2.22)

= lim
x→0

[
sin(πx)

πx

∫ ∞
1

�((1/π) log s) sin(πx)

(s − cos(πx))2 + sin2(πx)
ds − C�

]
= 0.

Majorization (2.12). We will study a stronger estimate,

U(x, y) ≥ �(y+)(1 − x) − C�x.(2.23)
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Note that for a fixed y ∈ R, the left-hand side is a concave function of x [we have
shown above that Uxx ≤ 0 on (0,1) ×R], while the right-hand side is linear in x.
Consequently, it is enough to prove the bound for x = 0 and x = 1; however, in
both these cases, estimate (2.23) becomes an equality.

Consequently, for any N we have EU(XτN
1{τN>0}, YτN

1{τN>0}) ≤ 0, and hence,
by the stronger majorization (2.23), we have the bound

E�
(
(YτN

)+1{τN>0}
)
(1 − XτN

1{τN>0}) ≤ C�EXτN
1{τN>0}.

Now we let N → ∞. The right-hand side converges to EX∞, by Lebesgue’s domi-
nated convergence theorem (X is bounded). The left-hand side is dealt with Fatou’s
lemma. As a result, we get

E�
(
(Y∞)+

)
(1 − X∞) ≤ C�EX∞,

which is stronger than inequality (2.8). The desired bound follows.
Sharpness. It suffices to prove that (2.9) is sharp. Fix a parameter c ∈ (0,1) close

to 0, and let (X,Y ) be a planar Brownian motion, started at (c,0) and stopped
upon exiting the strip [0,1] × R. Then, of course, we have X∞ ∈ {0,1} almost
surely and EX∞ = c. The distribution of Y∞ on the set {X∞ = 0} is well known,
and one can compute directly that E�(|Y∞|1{X∞=0}); however, for the reader’s
convenience, let us present here a quick derivation of this quantity, based on the
above function U . Clearly, the distribution of Y∞ is symmetric, so

E�
(|Y∞|1{X∞=0}

)= 2E�
(
(Y∞)+1{X∞=0}

)= 2E
[
U(X∞, Y∞) + C�X∞

]
= 2U(c,0) + 2C�c.

Consequently, by (2.22), we have

lim
c↓0

E�(|Y∞|1{X∞=0})
EX∞

= 2C� + lim
c↓0

U(c,0)

c
= 2C�,

which gives the claim.

3. Inequalities for S, T and Tj . Throughout this section, d is a fixed positive
integer. Inequality (2.3) shows us how to handle inequalities for the operator Tj by
means of the corresponding bounds for the positive part of the Riesz transform. To
handle the latter estimates, we will exploit the well-known probabilistic represen-
tation of Riesz transforms in terms of the so-called background radiation process,
introduced by Gundy and Varopoulos [16]. Let us briefly describe this connection.
Suppose that X is a Brownian motion in R

d , and let Y be an independent Brow-
nian motion in R (both processes starting from the appropriate origins). For any
y > 0, introduce the stopping time τ(y) = inf{t ≥ 0 :Yt ∈ {−y}}. If f belongs to
S(Rd), the class of rapidly decreasing functions on R

d , let Uf :Rd × [0,∞) →R

stand for the Poisson extension of f to the upper half-space. That is,

Uf (x, y) := Ef (x + Xτ(y)).
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For any (d + 1) × (d + 1) matrix A we define the martingale transform A ∗ f by

A ∗ f (x, y) =
∫ τ(y)

0+
A∇Uf (x + Xs, y + Ys)d(Xs,Ys).

Note that A ∗ f (x, y) is a random variable for each x, y. Now, for any f ∈ C∞
0 ,

any y > 0 and any matrix A as above, define T y
A f :Rd → R through the bilinear

form ∫
Rd

T y
A f (x)g(x)dx =

∫
Rd

E
[
A ∗ f (x, y)g(x + Xτ(y))

]
dx,(3.1)

where g runs over C∞
0 (Rd). Less formally, T yf is given as the following condi-

tional expectation with respect to the measure P̃ = P⊗ dx (dx denotes Lebesgue’s
measure on R

d ): for any z ∈ R
d ,

T y
A f (z) = Ẽ

[
A ∗ f (x, y)|x + Xτ(y) = z

]
.

See Gundy and Varopoulos [16] for the rigorous statement of this equality. The
interplay between the operators T y

A and Riesz transforms is explained in the fol-
lowing theorem; consult [16] or Gundy and Silverstein [15].

THEOREM 3.1. Let Aj = [aj
�m], j = 1,2, . . . , d be the (d + 1) × (d + 1)

matrices given by

a
j
�m =

⎧⎨⎩
1, if � = d + 1,m = j,

−1, if � = j,m = d + 1,

0, otherwise.

Then T y

Aj f → Rjf almost everywhere as y → ∞.

We will also require the following auxiliary fact; see [23], for instance. Namely,
in definition (3.1), g runs over the class C∞

0 (Rd); however, having successfully
defined the operator T y

A , we may extend the validity of (3.1) to a wider class of
functions g.

LEMMA 3.2. Let f ∈ C∞
0 (Rd) and A = Aj for some j . Then for any 1 < q <

∞ and any g ∈ Lq(R
d), equality (3.1) holds true.

We are ready to establish inequalities (1.1), (1.2) and (1.3).

PROOF OF ‖Tj‖Lp(Rd
j+)→Lp(Rd

j+) ≤ sin−1(π/p). Fix j ∈ {1,2, . . . , d}, x ∈ R

and y > 0. By a standard density argument, it suffices to establish estimate (1.1)
for f ∈ C∞

0 (Rd). Furthermore, since Tj is a positive operator, we may assume that
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f is nonnegative. Consider the pair ξ = (ξt )t≥0, ζ = (ζt )t≥0 of martingales given
by

ξt = Uf (x + Xτ(y)∧t , y + Yτ(y)∧t )

= Uf (x, y) +
∫ τ(y)∧t

0+
∇Uf (x + Xs, y + Ys)d(Xs,Ys)

and

ζt = −
∫ τ(y)∧t

0+
Aj∇Uf (x + Xs, y + Ys)d(Xs,Ys),

for t ≥ 0. Then the martingale ζ is differentially subordinate to ξ , since

[ξ, ξ ]t − [ζ, ζ ]t = ∣∣Uf (x, y)
∣∣2 + ∑

k /∈{j,d+1}

∫ τ(y)∧t

0+

∣∣∣∣∂Uf

∂xk

(x + Xs, y + Ys)

∣∣∣∣2 ds

is nonnegative and nondecreasing as a function of t . Furthermore, ξ and ζ are
orthogonal, which is a direct consequence of the equality 〈Ajx, x〉 = 0, valid for
all x ∈ R

d . Indeed,

[ξ, ζ ]t = −
∫ τ(y)∧t

0+
〈
Aj∇Uf (x + Xs, y + Ys),∇Uf (x + Xs, y + Ys)

〉
ds = 0.

Finally, note that ξ is nonnegative (since so are f and Uf ) and ζ0 ≡ 0. By (2.4),
we have E(ζτ(y))

p
+1{ξτ(y)=0} ≤ sin−p(π/p)Eξ

p
τ(y), or

E
(−Aj ∗ f (x, y)

)p
+1{f (x+Xτ(y))=0} ≤ sin−p(π/p)Ef (x + Xτ(y))

p.

Integrating this estimate with respect to x ∈ R
d and using Fubini’s theorem yields∫

Rd
E
(−Aj ∗ f (x, y)

)p
+1{f (x+Xτ(y))=0} dx ≤ sin−p(π/p)

∫
Rd

(
f (x)

)p dx.

Now take an arbitrary positive function g ∈ Lq(R
d). By the above estimate and

Hölder’s inequality, we get∫
Rd

E
[(−Aj ∗ f (x, y)

)
1{f (x+Xτ(y))=0}g(x + Xτ(y))

]
dx

≤ sin−1(π/p)‖f ‖Lp(Rd )‖g‖Lq(Rd ),

or, by the definition of T
y

Aj and Lemma 3.2 [applied to x �→ 1{f (x)=0}g(x)],∫
Rd (−T

y

Aj f (x))1{f (x)=0}g(x)dx

‖g‖Lq(Rd )

≤ sin−1(π/p)‖f ‖Lp(Rd ).

Since g was an arbitrary positive function, the above inequality implies∥∥(−T
y

Aj f
)
+1{f =0}

∥∥
Lp(Rd ) ≤ sin−1(π/p)‖f ‖Lp(Rd ).(3.2)
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Letting y → ∞ and combining this estimate with Lemma 3.1 and Fatou’s lemma
yields ∥∥(−Rjf )+1{f =0}

∥∥
Lp(Rd ) ≤ sin−1(π/p)‖f ‖Lp(Rd ).

It remains to apply (2.3),

‖Tjf ‖
Lp(R

d,j
+ )

≤ ∥∥(−Rjf )+1{f =0}
∥∥
Lp(Rd ) ≤ sin−1(π/p)‖f ‖Lp(Rd ). �

SHARPNESS OF (1.1) IN THE CASE d = 1. See Hardy [17]. �

PROOF OF (1.3). We use a similar reasoning as above. It is enough to handle
nonnegative f ’s only. An application of (2.8) to the martingales ξ and ζ gives

E�
((−A ∗ f (x, y)

)
+1{f (x+Xτ(y))=0}

)≤ C�Ef (x + Xτ(y)),

so integrating over x ∈ R
d yields∫

Rd
E�

((−A ∗ f (x, y)
)
+1{f (x+Xτ(y))=0}

)≤ C�

∫
Rd

f (x)dx.

Pick q ∈ (1,∞) and a nonnegative g ∈ Lq(R
d). Let � be the Legendre trans-

form of �, that is, the strictly increasing, C1 convex function satisfying �(0) =
� ′(0+) = 0 such that � ′ and �′ are the inverses of each other. We obtain, by
Young’s inequality,∫

Rd
E
[(−A ∗ f (x, y)

)
1{f (x+Xτ(y))=0}g(x + Xτ(y))

]
dx

≤
∫
Rd

E
[(−A ∗ f (x, y)

)
+1{f (x+Xτ(y))=0}g(x + Xτ(y))

]
dx

≤
∫
Rd

E�
((−A ∗ f (x, y)

)
+1{f (x+Xτ(y))=0}

)
dx

+
∫
Rd

E�
(
g(x + Xτ(y))

)
dx

≤ C�

∫
Rd

f (x)dx +
∫
Rd

�
(
g(x)

)
dx.

Hence, (3.1) and Lemma 3.2 give∫
Rd

[(−T y

Aj f (x)
)
1{f (x)=0}g(x) − �

(
g(x)

)]
dx ≤ C�

∫
Rd

f (x)dx.

Now fix M > 0. Then the above bound clearly yields∫
Rd

[
min

{(−T y

Aj f (x)
)
1{f (x)=0},M

}
g(x) − �

(
g(x)

)]
dx

(3.3)
≤ C�

∫
Rd

f (x)dx.



HILBERT-TYPE OPERATORS 555

Apply this inequality with g(x) = �′(min{(−T y

Aj f (x))+1{f (x)=0},M}). It is easy
to see that g ≤ c(−T y

Aj f )+1{f =0} for some positive c = c(M,K) and hence g ∈
Lq(Rd), since the same is true for (−T

y

Aj f )+1{f =0} [using (3.2) and the fact that
f ∈ C∞

0 (Rd) ⊂ Lq(Rd)]. Since g vanishes on the set {T y

Aj f > 0}, inequality (3.3)
implies∫

Rd

[
min

{(−T y

Aj f (x)
)
+1{f (x)=0},M

}
g(x) − �

(
g(x)

)]
dx ≤ C�

∫
Rd

f (x)dx.

Therefore, since �(�′(t)) + �(t) = t�′(t) for all t , we get∫
Rd

�
(
min

{(−T y

Aj f (x)
)
+1{f (x)=0},M

})
dx ≤ C�

∫
Rd

f (x)dx.

Letting M → ∞ and applying Fatou’s lemma gives∫
Rd

�
((−T y

Aj f (x)
)
+1{f (x)=0}

)
dx ≤ C�

∫
Rd

f (x)dx.

Let y → ∞, and combine Lemma 3.1 with Fatou’s lemma to obtain∫
Rd

�
((−Rjf (x)

)
+1{f (x)=0}

)
dx ≤ C�

∫
Rd

f (x)dx.

Hence, by (2.3),∫
R

d
j+

�
(
Tjf (x)

)
dx ≤

∫
Rd

�
((−Rjf (x)

)
+1{f (x)=0}

)
dx ≤ C�

∫
Rd

f (x)dx.

The proof is complete. �

SHARPNESS OF (1.3) IN THE CASE d = 1. It is enough to show the optimality
of the constant for the operator S. Suppose first that the constant C� is finite. Fix
a large integer N and consider the sequence a1 = a2 = · · · = aN = 1, aN+1 =
aN+2 = · · · = 0. Then ‖(an)n≥1‖�1 = N and for any m = 1,2, . . . we have

∞∑
n=1

an

m + n
=

N∑
n=1

1

m + n
≥ ln

(
1 + N

m + 1

)
,

where we use the elementary bound ln(1 + 1/k) ≥ 1/(k + 1) several times. Con-
sequently,∑∞

m=1 �((1/π)
∑∞

n=1 an/(m + n))

‖(an)n≥1‖�1

≥ 1

N

∞∑
m=1

�

(
1

π
ln
(

1 + N

m + 1

))
,

and the latter expression is a Riemann sum for the integral
∫∞

0 �( 1
π

ln(1 +
t−1))dt = C�. This proves the sharpness estimate (1.3). �
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PROOF OF ‖T ‖L1(0,∞)→L1,∞(0,∞) ≤ π−1. As previously, with no loss of gen-
erality we may assume that f is nonnegative. By homogeneity, we will be done if
we prove that ∣∣{x ∈ (0,∞) :Tf (x) > 1

}∣∣≤ π−1
∫
Rd

f (x)dx.

Recall that we study the estimate in the case d = 1 only. In this case, the mar-
tingales ξ and ζ are differentially equivalent. Furthermore, by Itô’s formula, we
have

A ∗ f (x, y) =Hf (x + Xτ(y)) − UHf (x, y).

Hence (2.6) gives

P
((−Hf (x + Xτ(y)) + UHf (x, y)

)
+1{f (x+Xτ(y))=0} > 1

)≤ π−1
Ef (x + Xτ(y)),

which, in turn, implies

P

((
−Hf (x +Xτ(y))+ inf

z∈RUHf (z, y)
)
+1{f (x+Xτ(y))=0} > 1

)
≤ 1

π
Ef (x +Xτ(y)).

Integrating over x ∈ R
d and using Fubini’s theorem, we obtain∣∣∣{x ∈ R :

(
−Hf (x) + inf

z∈RUHf (z, y)
)
+1{f (x)=0} > 1

}∣∣∣≤ π−1
∫
R

f (x)dx.

However, infz∈R UHf (z, y) converges to 0 as y → ∞ (see, e.g., [16]), and hence
Fatou’s lemma implies∣∣{x ∈ R :

(−Hf (x)
)
+1{f (x)=0} > 1

}∣∣≤ π−1
∫
R

f (x)dx.

This yields the claim, in the light of (2.3). �

PROOF OF ‖T ‖L1(0,∞)→L1,∞(0,∞) ≥ π−1. Note that as in the �-estimate, it is
enough to construct an appropriate example for the discrete operator S. Fix large
integers K , N and put a1 = a2 = · · · = aN = K , aN+1 = aN+2 = · · · = 0. Clearly,
we have ‖(an)n≥1‖�1 = KN and, arguing as above,

∞∑
n=1

an

m + n
≥ K ln

(
1 + N

m + 1

)
.

Therefore,

#

{
m :

1

π

∞∑
n=1

an

m + n
>

1

π

}
≥ #

{
m :K ln

(
1 + N

m + 1

)
> 1

}

=
⌊

N

e1/K − 1

⌋
− 1
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and hence

#{m :Sa(m) > 1/π}
‖(an)n≥1‖�1

≥ �N/(e1/K − 1)� − 1

KN
.

If we let N → ∞ and then K → ∞, then the right-hand side converges to 1. In
other words, given ε > 0, we can take sufficiently large K and N , such that the
above ratio is larger than 1 − ε. Hence the weak-type constant is at least 1/π . �

Sharpness of (1.1) and (1.3) for d ≥ 2. This will follow from the well-known
classical transference arguments; see, for example, [20]. Our reasoning will follow
the arguments from [25]. We will focus on estimate (1.1); inequality (1.3) can be
handled similarly. Of course, it suffices to deal with the operator T1 only. Suppose
that for a fixed 1 < p < ∞ and some cp we have∫

Rd

(−R1f (x)
)p
+1{f (x)=0} dx ≤ cp

p

∫
Rd

f p(x)dx(3.4)

for all f ∈ Lp(Rd) satisfying f > 0 on R
d
1+ and f = 0 on R

d \ R
d
1+. Clearly,

if we show that cp ≥ sin−1(π/p), this will yield the desired lower bound for
‖T1‖Lp(Rd )→Lp(Rd ). For t > 0, define the dilation operator δt as follows: for any

function g :R × R
d−1 → R, we let δtg(ξ, ζ ) = g(ξ, tζ ). By (3.4), the operator

Tt := δ−1
t ◦ R1 ◦ δt satisfies∫
Rd

(−Tt f (x)
)p
+1{f (x)=0} dx = td−1

∫
Rd

(−R1 ◦ δtf (x)
)p
+1{δt f (x)=0} dx

≤ td−1cp
p

∫
Rd

(
δtf (x)

)p dx(3.5)

= cp
p

∫
Rd

f p(x)dx,

provided f is as above [i.e., f ∈ Lp(Rd), f > 0 on R
d
1+ and f = 0 on R

d \Rd
1+].

Now suppose that additionally f belongs to L2(R
d). It is not difficult to check that

the Fourier transform F satisfies the identity F = td−1δt ◦ F ◦ δt , and hence the
operator Tt has the property that

T̂t f (ξ, ζ ) = −i
ξ

(ξ2 + t2|ζ |2)1/2 f̂ (ξ, ζ ), (ξ, ζ ) ∈ R×R
d−1.

By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂t f (ξ, ζ ) = T̂0f (ξ, ζ )

in L2(R
d), where T̂0f (ξ, ζ ) = −i sgn(ξ)f̂ . Combining this with Plancherel’s the-

orem, we conclude that there is a sequence (tn)n≥1 decreasing to 0 such that Ttnf

converges to T0f almost everywhere. Using Fatou’s lemma and (3.5), we obtain∫
Rd

(−T0f (x)
)p
+1{f (x)=0} dx ≤ cp

p

∫
Rd

f p(x)dx.(3.6)
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Note that Tt are bounded on Lp(Rd) for 1 < p < ∞ (in fact, ‖Tt‖p = ‖R1‖p),
so T0 also has this property, and thus the above estimate holds true without the
assumption f ∈ L2(R

d). Next, fix κp < sin−1(π/p), and let us use the sharpness
in the case d = 1, which we have already established above. There is a function h ∈
Lp(R), which vanishes on (−∞,0) and is strictly positive on [0,∞), satisfying∫

R

(−Hh(x)
)p
+1{h(x)=0} dx > κp

p

∫
R

hp(x)dx.(3.7)

Indeed, it suffices to take h : [0,∞) → [0,∞) which satisfies the condition
‖T h‖Lp(0,∞)/‖h‖Lp(0,∞) > κp , modify it slightly so that h is strictly positive on
[0,∞) and finally, extend it to the whole R by setting h = 0 on (−∞,0). Pick
an arbitrary function g :Rd−1 → [0,∞) satisfying g > 0 almost everywhere and
‖g‖Lp(Rd−1) = 1, and define f :R×R

d−1 →R by f (ξ, ζ ) = h(ξ)g(ζ ). Then f is

a p-integrable nonnegative function supported on R
d
1+, strictly positive on this set.

Furthermore, T0f (ξ, ζ ) = Hh(ξ)g(ζ ), which is due to the identity

T̂0f (ξ, ζ ) = −i sgn(ξ)ĥ(ξ)ĝ(ζ ).

Plug this into (3.6). Clearly, we have 1{f (ξ,ζ )=0} ≥ 1{h(ξ)=0}, so we obtain∫
R

(−Hh(ξ)
)p
+1{h(ξ)=0} dξ ≤ cp

p

∫
R

hp(ξ)dξ.

This implies cp > sin−1(π/p) by virtue of (3.7) and the fact that κp was an arbi-
trary number smaller than sin−1(π/p). The proof is complete.

4. An inequality for Riesz transforms. The results obtained in the preceding
sections motivate the following related problem, which is interesting on its own.
Namely, suppose that D is an open, connected subset of Rd , and let f be a function
supported on D. What can be said about the size of Riesz transform Rjf restricted
to the compliment Dc of the set D? For example, if the size is measured by means
of Lp norms, what is the best constant cp in the estimate

‖Rjf ‖Lp(Dc) ≤ cp‖f ‖Lp(D)?

Note that if d = 1 and D is the positive halfline, this leads precisely to the prob-
lem of bounding the Hilbert operator T . What can be said for arbitrary d and an
arbitrary domain D?

We will study this question for convex domains only. The precise statement
can be found in the three theorems below. Recall the constant Cp , introduced in
Theorem 2.2.

THEOREM 4.1. Suppose that D is an open and convex subset of Rd and f is
a function supported on D. Then for any 1 < p < ∞ we have

‖Rjf ‖Lp(Dc) ≤ Cp‖f ‖Lp(D).(4.1)
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We will also establish the following weak-type and �-inequalities. The first
result concerns, as in the preceding sections, the one-dimensional case only.

THEOREM 4.2. Suppose that D is an open interval contained in R and f is a
function supported on D. Then we have

‖Hf ‖L1,∞(Dc) ≤ 2

π
‖f ‖L1(D).(4.2)

Our final result works in all dimensions. Recall the constant C�, defined
in (1.4).

THEOREM 4.3. Suppose that D is an open and convex subset of Rd and f

is an integrable function supported on D, satisfying ‖f ‖L∞(D) ≤ 1. Suppose that
� : [0,∞) → [0,∞) is a convex, strictly increasing function of class C1, satisfying
�(0) = �′(0+) = 0. Then we have∫

Dc
�
(∣∣Rjf (x)

∣∣)dx ≤ C�‖f ‖L1(D).(4.3)

Thus we see that in the one-dimensional case, we encounter a very interest-
ing phenomenon: the constants change when we pass from halflines to intervals
(except for the Lp bound for p ≥ 2).

There are several more or less informal comments which are worth stating here.
The first obstacle we face is that Riesz transforms are not positive operators, and
hence we cannot—at least, not immediately—restrict ourselves to the class of non-
negative functions f . Without this step, we would be led to estimates for martin-
gales without the assumption of nonnegativity for the dominated process, which
would increase the constants. To overcome this difficulty, we will study first the
one-dimensional case, in which the extremal functions still must be of constant
sign. To see this, fix an open interval (a, b) and consider an integrable function f

supported on (a, b). Then for x outside (a, b) we have

Hf (x) = 1

π

∫ b

a

f (y)

x − y
dy.

So, if we pass from f to |f |, then |Hf | does not decrease. Furthermore, we see
that Hf does not change the sign on (−∞, a) and does not change the sign on
(b,∞), the signs on these two halflines being different. Roughly speaking, this
implies that martingale counterpart will have to involve |Y |; this explains why
we have developed estimates (2.5), (2.7) and (2.9) in Section 2. Now, in order to
proceed to higher dimensions, we will need to exploit the method of rotations; we
have been unable to find a probabilistic argument here.

PROOF OF (4.1), (4.2) AND (4.3). We will focus on the Lp estimate; the
remaining bounds can be shown in a similar manner. We start with the one-
dimensional case; as we already know, we may assume that f is nonnegative.
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Based on inequality (2.5) and the reasoning of the preceding section, we establish
the bound

‖Hf ‖Lp(Dc) ≤ ‖Hf 1{f =0}‖Lp(R) ≤ Cp‖f ‖Lp(R) = Cp‖f ‖Lp(D),

as desired. Now we turn to the case d ≥ 2. Given a vector θ belonging to the unit
sphere S

d−1 ⊂R
d , we define the directional Hilbert transform Hθ by

Hθ (f )(x) = 1

π
p.v.

∫
R

f (x − tθ)

t
dt,

where f is a sufficiently regular real-valued function on R
d (e.g., belonging to the

Schwarz class). For example, if e1 stands for the vector (1,0,0, . . . ,0) ∈ R
d , then

He1 is obtained by applying the Hilbert transform in the first variable followed by
the identity operator in the remaining variables. Thus by the reasoning we have
just presented, inequality (4.1) holds true for He1 as well; here we use the fact that
the set D is convex. Next, if A is an arbitrary orthogonal matrix, we have

HAe1(f )(x) = He1(f ◦ A)
(
A−1x

)
,

which implies that (4.1) holds true if we replace Rj with Hθ with an arbitrary θ

(again, by the convexity of D). Repeating the classical arguments of Iwaniec and
Martin [20] (a convenient reference is also Grafakos [14]), we get that

Rjf (x) = ‖θj‖−1
L1(S

d−1)

∫
Sd−1

θjHθ (f )(x)dθ.

Consequently, if f is a function supported on D, then∫
Dc

∣∣Rjf (x)
∣∣p dx ≤ ‖θj‖−1

L1(S
d−1)

∫
Sd−1

|θj |
∫
Dc

∣∣Hθ (f )(x)
∣∣p dx dθ

≤ Cp
p‖f ‖p

Lp(D),

which is the claim. �

We turn our attention to the sharpness of the above estimates. It is enough to
prove the optimality of the constants in the case d = 1 only. The passage to higher
dimensions in (4.1) and (4.3) follows from a straightforward modification of the
transference argument presented in the preceding section. We start with the weak-
type and �-estimates.

SHARPNESS OF (4.2) AND (4.3). Let D = [−1,1], and consider the function
f = χ[−1,1]. Then Hf (x) = 1

π
log |x+1

x−1 | and, for a given λ > 0,

λ|{x ∈ Dc : |Hf (x)| > λ}|
‖f ‖L1(D)

= λ
∣∣{x ≥ 1 :Hf (x) > λ

}∣∣
= λ

∣∣{x ≥ 1 :x ≤ (
eπλ + 1

)
/
(
eπλ − 1

)}∣∣
= 2λ

eπλ − 1
λ→0−→ 2

π
,
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which yields the sharpness of (4.2). Inequality (4.3) is handled with the use of the
same extremal function f . We have ‖f ‖L1(D) = 2 and hence∫

Dc �(|Hf (x)|)dx

‖f ‖L1(D)

=
∫ ∞

1
�
(
Hf (x)

)
dx =

∫ ∞
1

�

(
1

π
log

x + 1

x − 1

)
dx = C�,

which is the desired claim. �

SHARPNESS OF (4.1). When p ≥ 2, the optimality of the constant Cp follows
from (1.1), so let us assume that 1 < p < 2. Here the reasoning will be slightly
more complicated. Let us look back at the almost-extremal example of Section 2,
which was used to prove the sharpness of (2.5). So, fix c > 1, let Ac = ([0,∞) ×
R) \ ([c,∞) × {0}) and let (X,Y ) be a planar Brownian motion, started at (1,0)

and stopped upon leaving Ac. There exists a conformal mapping Fc which maps
Ac onto K , the unit disc of C, which:

(i) sends (1,0) to the origin;
(ii) sends the halfline [c,∞) × {0} to a symmetric arc Aα = {eiθ : |θ | ≤ α}, for

some α depending on c.

Set uc = ReF−1
c and vc = ImF−1

c . Then uc and vc are conjugate harmonic func-
tions on K , and uc is nonnegative and supported on Aα . Furthermore, since the
distribution of (X∞, Y∞) is the harmonic measure on ∂Ac with respect to (1,0),
we get

‖vc1c
Aα

‖Lp(T)

‖uc1Aα‖Lp(T)

= ‖vc1c
Aα

‖Lp(T)

‖uc‖Lp(T)

= ‖Y∞1{X∞=0}‖p

‖X∞‖p

.(4.4)

However, we have vc(0) = 0 and hence vc is the periodic Hilbert transform of uc.
That is, if we identify the unit circle T with the interval (−π,π ], then

vc(x) = 1

2π
p.v.

∫ π

−π
uc(t) cot

x − t

2
dt.

However, the function uc is nonnegative, and we have the elementary estimate
cotu ≤ 1/u for |u| ≤ π/2. Consequently, if we take x /∈ Aα (more formally, x /∈
[−α,α]), and we extend uc to the whole R by setting uc = 0 outside (−π,π ], then∣∣Huc(x)

∣∣= ∣∣∣∣ 1

2π

∫
R

2uc(t)

x − t
dt

∣∣∣∣≥ ∣∣∣∣ 1

2π

∫
R

uc(t) cot
(

x − t

2

)
dt

∣∣∣∣= ∣∣vc(x)
∣∣.

Combining this with (4.4), we obtain

‖Huc‖Lp(Dc)

‖uc‖Lp(D)

≥ ‖Y∞1{X∞=0}‖p

‖X∞‖p

,

where D = [−α,α]. However, if c is sufficiently large, then the right-hand side
can be made arbitrarily close to Cp . This shows that the constant Cp is indeed the
best possible in (4.1). �
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