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DOOB–MARTIN BOUNDARY OF RÉMY’S TREE GROWTH CHAIN

BY STEVEN N. EVANS1, RUDOLF GRÜBEL AND ANTON WAKOLBINGER2

University of California, Leibniz Universität Hannover and Goethe-Universität

Rémy’s algorithm is a Markov chain that iteratively generates a sequence
of random trees in such a way that the nth tree is uniformly distributed over
the set of rooted, planar, binary trees with 2n+ 1 vertices. We obtain a con-
crete characterization of the Doob–Martin boundary of this transient Markov
chain and thereby delineate all the ways in which, loosely speaking, this pro-
cess can be conditioned to “go to infinity” at large times. A (deterministic)
sequence of finite rooted, planar, binary trees converges to a point in the
boundary if for each m the random rooted, planar, binary tree spanned by
m+ 1 leaves chosen uniformly at random from the nth tree in the sequence
converges in distribution as n tends to infinity—a notion of convergence that
is analogous to one that appears in the recently developed theory of graph
limits.

We show that a point in the Doob–Martin boundary may be identified with
the following ensemble of objects: a complete separable R-tree that is rooted
and binary in a suitable sense, a diffuse probability measure on the R-tree
that allows us to make sense of sampling points from it, and a kernel on the
R-tree that describes the probability that the first of a given pair of points is
below and to the left of their most recent common ancestor while the second
is below and to the right. Two such ensembles represent the same point in
the boundary if for each m the random, rooted, planar, binary trees spanned
by m + 1 independent points chosen according to the respective probability
measures have the same distribution. Also, the Doob–Martin boundary cor-
responds bijectively to the set of extreme point of the closed convex set of
nonnegative harmonic functions that take the value 1 at the binary tree with
3 vertices; in other words, the minimal and full Doob–Martin boundaries co-
incide. These results are in the spirit of the identification of graphons as limit
objects in the theory of graph limits.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
2. Background on Doob–Martin compactifications . . . . . . . . . . . . . . . . . . . . . . . . 234

Received November 2014; revised December 2015.
1Supported in part by NSF Grants DMS-09-07630 and DMS-15-12933, and NIH Grant

1R01GM109454-01.
2Supported in part by DFG priority program 1590.
MSC2010 subject classifications. Primary 60J50; secondary 60J10, 68W40.
Key words and phrases. Binary tree, tail σ -field, Doob–Martin compactification, Poisson bound-

ary, bridge, real tree, exchangeability, continuum random tree, Catalan number, graph limit, graphon,
partial order.

225

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/16-AOP1112
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


226 S. N. EVANS, R. GRÜBEL AND A. WAKOLBINGER

3. The Doob–Martin kernel of the Rémy chain . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4. Infinite Rémy bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5. Labeled infinite Rémy bridges and didendritic systems . . . . . . . . . . . . . . . . . . . . 249
6. A real tree associated with an extremal infinite Rémy bridge . . . . . . . . . . . . . . . . . 261
7. The sampling measure on the real tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8. Distinguishing between left and right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

1. Introduction. Rémy’s algorithm [28] iteratively generates a sequence of
random binary trees T1, T2, . . . in a Markovian manner in such a way that Tn is
uniformly distributed on the set of binary trees with 2n+ 1 vertices (see [4] for a
textbook discussion of this procedure). Here (and throughout this paper), a binary
tree is a finite rooted tree in which every vertex has zero or two children and the
tree is planar, so it is possible to distinguish between the left and right children of
a vertex with two children.

A binary tree has 2n + 1 vertices for some n ∈ N: n + 1 leaves and n interior
vertices. The number of binary trees with 2n + 1 vertices is the Catalan number
Cn := 1

n+1

(2n
n

)
[32].

Writing {0,1}� :=⊔∞
k=0{0,1}k for the set of finite words drawn from the alpha-

bet {0,1} (with the empty word ∅ allowed), any binary tree can be identified with
a unique finite subset t ⊂ {0,1}� that has the properties:

• v1 · · ·vk ∈ t =⇒ v1 · · ·vk−1 ∈ t,
• v1 · · ·vk0 ∈ t ⇐⇒ v1 · · ·vk1 ∈ t.

The empty word ∅ ∈ {0,1}� is the root of the tree. See Figure 1 for an example of
this representation. Rémy’s algorithm begins by setting T1 to be the unique binary
tree ℵ with 3 vertices (a root and two leaves). Supposing that T1, . . . , Tn have been
generated, the algorithm generates Tn+1 as follows (see Figures 2, 3 and 4 for a
depiction of the steps that make up a single iteration of the algorithm).

• Pick a vertex v of Tn uniformly at random.
• Cut off the subtree of Tn rooted at v and set it aside.
• Attach a copy of the tree ℵ with 3 vertices to the end of the edge in Tn that

previously led to v.
• Reattach the subtree that was rooted at v in Tn uniformly at random to one of

the two leaves in the copy of ℵ.

We call the two new vertices that are produced in the above iteration clones of v.
It is not too difficult to see that the algorithm does produce uniformly distributed

binary trees. Indeed, suppose that the algorithm is modified so that it starts with
the leaves of ℵ labeled with 1 and 2, with each of the two labelings being equally
likely, a random leaf-labeled tree that we denote by T̃1. Suppose further that we
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FIG. 1. An example of a binary tree as a subset of {0,1}�.

FIG. 2. First step in an iteration of Rémy’s algorithm: pick a vertex v uniformly at random.

FIG. 3. Second step in an iteration of Rémy’s algorithm: cut off the subtree rooted at v and attach
a copy of ℵ to the end of the edge that previously led to v.

FIG. 4. Third step in an iteration of Rémy’s algorithm: reattach the subtree rooted at v to one of
the two leaves of the copy of ℵ, and relabel the vertices appropriately. The solid circle is the new
location of v and the open circles are the clones of v.
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begin the (n + 1)st step with a leaf-labeled binary tree T̃n that has n + 1 leaves
labeled with [n+ 1] := {1, . . . , n+ 1} in some order and that this step produces a
random leaf-labeled binary tree T̃n+1 labeled with [n+ 2] as follows.

• Use the same randomization as in the algorithm described above to produce a
tree with a single new leaf.

• Leave the labels of the old leaves unchanged.
• Label the new leaf with n+ 2.

It will certainly suffice to show that this enhanced algorithm produces a sequence
T̃1, T̃2, . . . such that for all n ∈ N the random leaf-labeled binary tree T̃n is uni-
formly distributed on the set of binary trees with 2n + 1 vertices that have their
n + 1 leaves labeled by [n + 1]. This, however, is almost immediate from an in-
ductive argument and the observation that in order for the value of T̃n+1 to be a
particular labeled binary tree, there is a unique possibility for the value of T̃n, the
choice of vertex v to clone, and the left-right choice for reattaching the subtree
below v; see [4, 28] for more details.

Following [4, 28], we note that this argument also shows that if we let pn be the
common value of P{T̃n = t̃} as t̃ ranges over the binary trees with 2n+ 1 vertices
and their n + 1 leaves labeled by [n + 1], then pn+1 = 1

2n+1
1
2pn, so that pn =

1
1×3×···×(2n−1)

1
2n . It follows that the number of binary trees with 2n + 1 vertices

and their n+ 1 leaves labeled by [n+ 1] is

(
1× 3× · · · × (2n− 1)

)
2n = (2n)!

n! ,

and so the number of binary trees with 2n+ 1 vertices and n+ 1 leaves is

(2n)!
(n+ 1)!n! = Cn,

as expected.
As well as counting the number of binary trees with 2n+ 1 vertices for n ∈ N,

the Catalan number Cn counts the number of functions f : {0,1, . . . ,2n} → N0
such that f (0)= f (2n)= 0 and f (k + 1)= f (k)± 1 for 0 ≤ k < 2n. It is shown
in [25] that there are particular bijections φn (sometimes credited to Łukasiewicz
or Dwass) between the former and latter sets such that if fn := φn(Tn), then
(n− 1

2 fn(
2nt�))t∈[0,1] converges almost surely in the supremum norm to a stan-
dard Brownian excursion. A similar result is given in [27], Exercise 7.4.11, where
Tn is represented as a function from {0,1, . . . ,4n} to N0 using a coding where one
“walks around the outside” of the tree visiting left children before right children
(so that each edge is traversed twice, leaves are visited once and other vertices are
visited three times), and recording the distance from the root to the vertex visited
at each step—this coding, or a minor modification of it, is sometimes called the
Harris path of the tree.
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The standard Brownian excursion induces a random metric space, that is,
up to a scaling factor, Aldous’ Brownian continuum random tree (CRT) [1–3].
More precisely, if (Et )t∈[0,1] is the standard Brownian excursion, then d(s, t) :=
Es + Et − 2 minu∈[s,t]Eu, s, t ∈ [0,1] defines a pseudo-metric on [0,1] that be-
comes a metric on the collection of equivalence classes for the equivalence relation
s ≡ t ⇔ d(s, t) = 0, and the latter random metric space is a random R-tree, that
is, by definition, a scaled version of the Brownian CRT (see [13] for a general
treatment of R-trees directed at probabilists). This definition carries with it a nat-
ural rooting and hence a natural genealogical structure: the most recent common
ancestor of the equivalence classes containing s and t is the equivalence class of
the almost surely unique v ∈ [s, t] such that Ev = minu∈[s,t]Eu. The Brownian
CRT with this rooting is almost surely binary in the sense that almost surely for all
r, s, t ∈ [0,1] coming from distinct equivalence classes the most recent common
ancestors of the pairs (r, s), (r, t), (s, t) are not all equal. Moreover, this construc-
tion also endows the Brownian CRT with a natural planar structure: for s, t ∈ [0,1]
coming from distinct equivalence classes, the equivalence class containing s may
be consistently declared to be below and to the left of the most recent common an-
cestor of the two equivalence classes (and the equivalence class containing t is be-
low and to the right) if min{q : minu∈[q,s]Eu = Es}< min{r : minv∈[r,t]Ev = Et }
(in other words, the time parameter in the Brownian excursion induces a traversal
of the points of the Brownian CRT that starts and ends at the root, and we say that
one equivalence class is below and to the left of the most recent common ances-
tor it shares with another equivalence class if this traversal encounters the former
equivalence class before the latter).

Conversely, it is observed in [21] that if one samples i.i.d. uniformly distributed
points U0,U1, . . . from [0,1] and lets T̂n be the binary tree spanned by the equiv-
alence classes of U0, . . . ,Un for n ∈ N (more fully, one takes the subtree of the
rescaled Brownian CRT thought of as a random R-tree but equipped with the addi-
tional rooting and left–right ordering described above, forgets the metric structure
on the subtree, but keeps the rooting and left–right ordering), then (T̂n)n∈N has the
same distribution as (Tn)n∈N; that is, (T̂n)n∈N is an instance of Rémy’s chain.

As we shall explain soon, these last two results and several more are parallels
of classical results about the simplest Pólya urn scheme in which one starts with
an urn containing one black and one white ball and at each step one picks a ball
uniformly at random and replaces it along with another of the same color.

If we write Nn for the number of new black balls that have been added to the urn
up to and including the nth step of the Pólya urn chain, then ((Nn,n−Nn))n∈N is a
Markov chain with the following properties. For each n ∈ N, the random variable
Nn is uniformly distributed on {0,1, . . . , n} and Nn/n converges almost surely
as n →∞ to a random variable U that is uniformly distributed on the interval
[0,1]. If (Xn)n∈N is a sequence of {0,1}-valued random variables that are condi-
tionally independent given U with P{Xn = 1|U} = U , then [6] (Nn)n∈N has the
same distribution as (X1 + · · · +Xn)n∈N. It follows from this observation and the
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Hewitt–Savage zero–one law that the tail σ -field of the Pólya urn chain is gen-
erated up to null sets by the random variable U . By the martingale convergence
theorem, the vector space of bounded harmonic functions for the Pólya urn chain
(i.e., the Poisson boundary of the chain) can thus be identified with L∞ of the
unit interval equipped with Lebesgue measure. Another consequence is the well-
known fact that the colors of the successive balls form an exchangeable sequence
and so the backward dynamics of the Pólya urn chain from step n to step n−1 can
be thought of as removing one of the n added balls present at step n uniformly at
random and discarding it.

We will show that the backward transitions of the Rémy chain are as follows:

• Pick a leaf uniformly at random.
• Delete the chosen leaf and its sibling (the sibling may or may not be a leaf).
• Close up the gap if there is one (there will be a gap if the sibling is not a leaf).

Note how these dynamics are reminiscent of the backward transitions of the Pólya
urn chain. It is a consequence of the exchangeability inherent in these dynamics
and the Hewitt–Savage zero–one law that the tail σ -field of the Rémy chain is gen-
erated up to null sets by the limiting Brownian CRT augmented by the additional
rooting and left–right ordering described above. More precisely, we may assume
that the entire Rémy chain has been built from a Brownian excursion (equiva-
lently, the augmented Brownian CRT) and an independent, identically distributed
sequence (Uk)k∈N0 of random variables that are each uniformly distributed on
[0,1]. If the first n+1 of these random variables are permuted in any way, then the
values of the Rémy chain from time n onward are unchanged, and so the Hewitt–
Savage zero–one law gives that the tail σ -field of the Rémy chain is, up to null sets,
contained in the σ -field generated by the augmented Brownian CRT. Conversely,
since one can build the Brownian CRT as an almost sure limit (as n→∞) of the
rescaled Rémy chain, the tail σ -field is equal to the σ -field generated by the aug-
mented Brownian CRT up to null sets. Hence, the Poisson boundary of the Rémy
chain can be identified with L∞ of a space of suitably defined “rooted, planar, bi-
nary” R-trees equipped with the distribution of the augmented Brownian CRT or,
equivalently, with L∞ of the space of continuous excursion paths indexed by [0,1]
equipped with the standard Brownian excursion measure.

The Rémy chain is not the only Markov chain which at step n produces uni-
formly distributed binary trees with 2n + 1 vertices. Another example is the
Markov chain proposed in [24] which, unlike the Rémy chain, has the property
that the state at time n is a subtree of the state at time n + 1 for all n ∈ N. The
Poisson boundary of this chain, which was described in [14], turns out to be quite
different from that of the Rémy chain.

The object of the present paper is to go further and investigate the Doob–
Martin compactification of the Rémy chain. Before giving a formal definition of
the Doob–Martin compactification in Section 2, let us illustrate the concept with
the archetypal example of the Pólya urn chain. Given (b,w) ∈ (N0 ×N0) \ {0,0},
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let N
(b,w)
1 , . . . ,N

(b,w)
b+w be the bridge process obtained by conditioning the initial

segment N1, . . . ,Nb+w of the Pólya urn chain on the event {Nb+w = b}. The
backward transitions of such a bridge are the same as those of the Pólya urn
chain itself and it is not hard to show that if ((bk,wk))k∈N is a sequence such
that bk + wk → ∞ as k → ∞, then the finite-dimensional distributions of the
corresponding bridges converge if and only if limk→∞ bk

bk+wk
∈ [0,1] exists. It

is a classical result ([20], Chapter 10) that a sequence ((bk,wk))k∈N such that
bk + wk →∞ as k →∞ converges in the Doob–Martin compactification of the
Pólya urn chain if and only if limk→∞ bk

bk+wk
∈ [0,1] exists and, as we recall in

Section 2, a general result from [15] establishes the equivalence between con-
vergence of bridges and convergence in the Doob–Martin compactification under
suitable conditions. It follows that the Doob–Martin boundary of the Pólya urn
chain is (homeomorphic to) the unit interval [0,1]. There is thus a nonnegative
harmonic function associated with each point u ∈ [0,1] and the corresponding
Doob h-transform process can be interpreted as (Nn)n∈N conditioned on the event
{U = u}. As one would expect, the distribution of the Doob h-transform process
is nothing other than that of the process of partial sums of independent, identically
distributed Bernoulli random variables with success probability u.

We will investigate the bridges of the Rémy chain and thereby identify its Doob–
Martin boundary. This boundary of the space of (finite) binary trees determines
the compact convex set of nonnegative harmonic functions normalized to take the
value 1 at the binary tree with two leaves. We show that the set of extreme points of
the latter compact convex set corresponds bijectively to the Doob–Martin bound-
ary, and hence the boundary delineates all the ways that the Rémy chain can be
conditioned to “behave at infinity” in such a way that any randomness disappears
asymptotically in the sense that the tail σ -field of the conditioned chain is trivial.

We will show that a sequence of finite binary trees with the number of vertices
going to infinity converges in the Doob–Martin topology if and only if for all m the
sequence of random binary trees spanned by m + 1 leaves sampled uniformly at
random from those of the nth tree in the original sequence converges in distribution
as n→∞. Moreover, two convergent sequences converge to the same limit if and
only if the corresponding limit distributions of these “sampled subtrees” are the
same for all m. (The analogous fact is also true for the Pólya urn: a sequence of
states converges in the Doob–Martin topology if and only if for any m when we
sample m balls uniformly at random from the urn composition specified by the nth
state, the distribution of the number of black balls in the sample converges as n→
∞.) This type of convergence of a sequence of large combinatorial objects in terms
of the convergence in distribution of randomly sampled sub-objects of a given but
arbitrary size is similar to a notion of convergence of finite graphs investigated in
the theory of graph limits where a sequence of graphs with increasing numbers
of vertices converges if for each m the distributions of the random finite graphs
induced by m vertices sampled uniformly at random converge (see [22] for a recent
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monograph and [5, 7–9, 11, 23, 33] for some examples of papers in this area).
A binary tree encodes two partial orders on its set of vertices [one vertex can be
below and to the left (resp., right) of another vertex], and so the work in [18]
on limits of large partially ordered sets is particularly close in spirit to our work.
A further connection between our work and graph limits is the result of [16] that
the above notion of graph convergence is nothing other than convergence in the
Doob–Martin topology for the graph-valued Erdős–Rényi chain in which at each
step an additional vertex is added with the possible edges connecting it to each
of the existing vertices independently present with probability p and absent with
probability 1 − p for some fixed 0 < p < 1 (the Doob–Martin compactification
does not depend on the value of p).

One of the major achievements of the theory of graph limits has been to ob-
tain concrete representations of the limit objects corresponding to a convergent
sequence of graphs as so-called graphons. A graphon is a symmetric Borel func-
tion K : [0,1]2 →[0,1] and a random graph with the distribution of the limit of the
randomly sampled subgraphs of size m corresponding to a convergent sequence of
graphs is obtained by choosing m points U1, . . . ,Um uniformly at random from
[0,1] and connecting vertex i and j with conditional probability K(Ui,Uj ).

In our main result, Theorem 8.2, we obtain a similar concrete representation
of a point in the Doob–Martin boundary of the Rémy chain as a rooted R-tree S
equipped with a probability measure μ and a function V : S2 → [0,1]. The limit
in distribution of the subtrees spanned by m + 1 uniformly chosen leaves is ob-
tained by, loosely speaking, looking at the subtree of S spanned by independent
random points ξ1, . . . , ξm+1 with distribution μ and declaring that with probability
V (ξi, ξj ) leaf i is below and to the left while j is below and to the right of the
most recent common ancestor of leaves i and j . Like all transient Markov chains,
the Rémy chain has the property that Tn converges almost surely as n→∞ in the
Doob–Martin topology to a random element of the Doob–Martin boundary. The
distribution of the limit may be identified with that of the augmented Brownian
CRT described above: the underlying R-tree and its root come from the Brown-
ian excursion, and the probability measure on the R-tree is the one lifted by the
Brownian excursion from Lebesgue measure on [0,1]. In this case the function V

takes values in the set {0,1} and is determined by the left–right ordering coming
from the Brownian excursion. We will see that it is not always possible to have the
left–right ordering be induced from one on the underlying R-tree S and that cases
do arise where it is necessary to work with functions V that take values strictly
between 0 and 1.

Briefly, the strategy of the proof of Theorem 8.2 will be as follows.

(i) First, we determine the backward transition dynamics of the Rémy chain
in Section 4. Understanding the Doob–Martin compactification is equivalent to
understanding all Markov chains with initial state ℵ that have these backward
transition dynamics. We call any such chain (T ∞

n )n∈N an infinite Rémy bridge:
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the class of infinite Rémy bridges corresponds bijectively with the class of Doob
h-transforms of the original Rémy chain as h ranges over the nonnegative har-
monic functions for the original chain normalized so that h(ℵ) = 1. This class of
nonnegative harmonic functions is a compact convex set, and an arbitrary such
function has a unique representation as an integral over extremal elements. For a
general Markov chain, an extremal nonnegative harmonic function corresponds to
a point in the Doob–Martin boundary, but there may be points in the Doob–Martin
boundary that correspond to harmonic functions which are not extremal. We show
that this is not the case for the Rémy chain, and it follows that the elements of the
Doob–Martin boundary of the Rémy chain correspond bijectively to the infinite
Rémy bridges that are extremal in the sense that they are not nondegenerate mix-
tures of infinite Rémy bridges (equivalently, to the infinite Rémy bridges that have
trivial tail σ -fields).

(ii) A key tool for obtaining a concrete characterization of the extremal infinite
Rémy bridges will be the introduction of an auxiliary labeling of the n+ 1 leaves
of the tree T ∞

n by [n+ 1] := {1, . . . , n+ 1} that has the properties that the labeling
is uniformly distributed over the (n + 1)! possible labelings for each n and the
new leaf added at step n + 1 is labeled with n + 2 while the other leaves keep
the labels they had at step n. Such a labeling scheme is “projective” in the sense
that the leaf-labeled subtree of T ∞

m+n spanned by the leaves with labels in [m+ 1]
coincides with the leaf-labeled version of T ∞

m ; more precisely, T ∞
m embeds into

T∞
m+n in the manner defined in Section 3 via an injective map from the vertices

of T ∞
m into the vertices of T ∞

m+n that maps leaves to leaves in such a way that the
image of the leaf labeled k in T ∞

m is mapped to the leaf labeled k in T ∞
m+n for

k ∈ [m+ 1]. As we observe in Section 5, for any i, j, k ∈ [m+ 1] there are twelve
possibilities for how the leaves labeled i, j, k in the tree T ∞

m sit in relation to each
other; for example, one possibility is that the most recent common ancestor of i

and j is a descendant of the most recent common ancestor of i and k which is also
the most recent common ancestor of j and k, that i is below and to the left and j

is below and to the right of their most recent common ancestor, that i is below and
to the left and k is below and to the right of their most recent common ancestor,
and that j is below and to the left and k is below and to the right of their most
recent common ancestor. Moreover, knowing which of these possibilities holds
for each triple i, j, k uniquely determines the tree T∞

m and its leaf labels. A key
feature of this labeling is that the relative positions of the leaves labeled i, j, k in
the tree T ∞

m is the same as the relative positions of the leaves labeled i, j, k in
the tree T ∞

m+n. Because of this consistency there is a well-defined random array
indexed by {(i, j, k) ∈ N3 : i, j, kdistinct} that for any indices (i, j, k) records for
all m such that {i, j, k} ⊆ [m + 1] which of the twelve possibilities holds for the
relative positions of the leaves labeled i, j, k in the tree T ∞

m . This random array
is jointly exchangeable. It is possible to reconstruct the entire leaf-labeled version
of the infinite Rémy bridge (T ∞

n )n∈N from this array, and hence the infinite Rémy
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bridge itself by then simply discarding the leaf labels. The infinite Rémy bridge
is extremal if and only if this jointly exchangeable random array is ergodic in the
usual sense for jointly exchangeable random arrays.

(iii) In Sections 6, 7 and 8, we use ideas related to those in [10, 26] and the
Aldous–Hoover–Kallenberg theory of jointly exchangeable random arrays to ob-
tain a concrete description of the jointly exchangeable random arrays that can arise
from extremal infinite Rémy bridges, and it is the ingredients in this description
that appear in our above sketch of the statement of Theorem 8.2. The {0,1}-valued
random variables W(ξi,Ui, ξj ,Uj ) figuring in the actual statement of Theorem 8.2
indicate whether leaf i is below and to the left while j is below and to the right
of the most recent common ancestor of leaves i and j , with the above-mentioned
V (ξi, ξj ) as the corresponding probabilities.

2. Background on Doob–Martin compactifications. We restrict the follow-
ing sketch of Doob–Martin compactification theory for discrete time Markov
chains to the situation of interest in the present paper. The primary reference is
[12], but useful reviews may be found in [20], Chapter 10, [29], Chapter 7, [31],
[35], Chapter 7, [30], Chapter III.

Suppose that (Xn)n∈N0 is a discrete time Markov chain with countable state
space E and transition matrix P . Suppose in addition that E can be partitioned
as E = ⊔

n∈N0
En, where E0 = {e} for some distinguished state e, each set En

is finite, and the transition matrix P is such that P(k, �) = 0 unless k ∈ En and
� ∈En+1 for some n ∈N0. Define the Green kernel or potential kernel G of P by

G(i, j) :=
∞∑

n=0

P n(i, j)= Pi{Xn = j for some n ∈N0} =: Pi{X hits j },

i, j ∈E, and assume that G(e, j) > 0 for all j ∈E, so that any state can be reached
with positive probability starting from e. The Rémy chain belongs to this class. The
state space E of the Rémy chain is the set of all binary trees, the distinguished state
e is the binary tree ℵ with 3 vertices and En is the set of binary trees with 2n+ 3
vertices.

If Z is a Pe-a.s. bounded random variable that is measurable with respect to the
tail σ -field of (Xn)n∈N0 , then Ee[Z|X0, . . . ,Xn] = h(Xn) for some bounded har-
monic function h; that is,

∑
j∈E P (i, j)h(j) = h(i) for i ∈ E. By the martingale

convergence theorem, limn→∞ h(Xn) = Z Pe-a.s. Conversely, if h is a bounded
harmonic function, then limn→∞ h(Xn) exists Pe-a.s. and the limit random vari-
able is Pe-a.s. equal to a random variable that is measurable with respect to the tail
σ -field of (Xn)n∈N0 .

In order to characterize the bounded harmonic functions (and hence the tail σ -
field), it certainly suffices to determine what the nonnegative harmonic functions
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are. The key to doing so is the introduction of the Doob–Martin kernel with refer-
ence state e given by

K(i, j) := G(i, j)

G(e, j)
= Pi{X hits j }

Pe{X hits j } .

Observe that ∑
j∈E

P (i, j)K(j, k)=K(i, k), i �= k,

and so the function K(·, k) is, in some sense, “almost harmonic” and becomes
closer to being harmonic as k “goes to infinity”. With this intuition in mind, it
is natural to investigate sequences (jn)n∈N in E such that the sequence of real
numbers (K(i, jn))n∈N converges for all i ∈E.

These considerations lead to the following construction. If j, k ∈E with j �= k,
then K(·, j) �=K(·, k), and so E can be identified with the collection of functions
K(·, j), j ∈E. Note that

0 ≤K(i, j)≤ Pi{X hits j }
Pe{X hits i}Pi{X hits j } =

1

Pe{X hits i} ,

and so the set of functions {K(·, j) : j ∈ E} is a pre-compact subset of RE+
equipped with the usual product topology. Its closure Ē is the Doob–Martin com-
pactification of E. The set ∂E := Ē \ E is the Doob–Martin boundary of E. By
construction, a sequence (jn)n∈N in E converges to a point in Ē if and only if the
sequence of real numbers (K(i, jn))n∈N converges for all i ∈E, and each function
K(i, ·) extends continuously to Ē. The resulting function K : E × Ē → R is the
extended Doob–Martin kernel.

A specific subset ∂minE, the minimal boundary, of the full boundary ∂E is of
particular importance from a geometric as well as probabilistic point of view. Let
H1,+ be the set of harmonic functions h : E → R+ with h(e) = 1. This is a com-
pact convex set, and its extreme points are those harmonic functions h ∈ H1,+
with the property that ag < h implies g = h whenever 0 < a < 1 and g ∈ H1,+.
We have K(·, y) ∈ H1,+ for all y ∈ ∂E, and we write ∂minE for the set of those
boundary points that correspond to extremal harmonic functions. The set ∂minE is
a Gδ . With this notation in place, any h ∈H1,+ has a unique representation

h(x)=
∫

K(x, y)μ(dy),

where μ is a probability measure that assigns all of its mass to ∂minE.
A first major probabilistic consequence of the Doob–Martin compactification is

that the limit X∞ := limn→∞Xn exists Pe-almost surely in the topology of Ē and
that the distribution of this limit is given by the measure μ representing the trivial
element h≡ 1 of H1,+.
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In terms of analysis, the vector space Hb of bounded harmonic functions en-
dowed with the supremum norm is a Banach space (the Poisson boundary of the
Markov chain) and this Banach space is isomorphic to the L∞ space associated
with the measure space consisting of ∂E equipped with its Borel σ -field and the
probability measure given by the distribution of X∞ under Pe. The tail σ -field
of (Xn)n∈N0 coincides Pe-almost surely with the σ -field generated by X∞ and
so the Poisson boundary captures how the process can “go to infinity” and what
probabilities are associated with the various alternatives.

The second consequence of the Doob–Martin compactification is that not only
does it contain information about how the Markov chain behaves at large times
when “left to its own devices”, but also, somewhat loosely speaking, how it can
be conditioned to behave at large times. Each j ∈ E = ⊔

n∈N0
En belongs to a

unique En whose index n we denote by N(j). If the chain starts in state e, then
N(j) is the only time that there is positive probability the chain will be in state j .
Write (X

j
0 , . . . ,X

j
N(j)) for the bridge obtained by starting the chain in state e and

conditioning it to be in state j at time N(j). This process is a Markov chain with
forward transition probabilities

P
{
X

j
n+1 = i ′′|Xj

n = i ′
}= Pe{Xn = i ′,Xn+1 = i′′,XN(j) = j}

Pe{Xn = i′,XN(j) = j}

= Pe{X hits i ′}P(i′, i ′′)Pi′′ {X hits j}
Pe{X hits i′}Pi′ {X hits j}

= P(i ′, i′′)Pi′′ {X hits j}/Pe{X hits j}
Pi′ {X hits j}/Pe{X hits j}

=K
(
i ′, j

)−1
P

(
i ′, i ′′

)
K

(
i ′′, j

)
.

Moreover,

P
{
Xj

n = i ′|Xj
n+1 = i′′

}= Pe{Xn = i′,Xn+1 = i′′,XN(j) = j}
Pe{Xn+1 = i′′,XN(j) = j}

= Pe{Xn = i′,Xn+1 = i′′}Pi′′ {XN(j) = j}
Pe{Xn+1 = i′′}Pi′′ {XN(j) = j}

= Pe{Xn = i′|Xn+1 = i′′
}
,

and so (X
j
0 , . . . ,X

j
N(j)) has the same backward transition probabilities as

(Xn)n∈N0 .
Suppose now that (jk)k∈N is a sequence of elements of the state space E

that converges to infinity in the one-point compactification of E or, equivalently,
N(jk)→∞ as k →∞. As observed in [15], such a sequence (jk)k∈N converges in
the Doob–Martin topology if and only if finite initial segments of the correspond-
ing bridges converge in distribution. Moreover, two sequences of states converge to



RÉMY’S TREE GROWTH CHAIN 237

the same limit if and only if the limiting distributions of finite initial segments are
the same. For a sequence (jk)k∈N that converges to the point y in the Doob–Martin
boundary, the limiting distributions of the initial segments define the distribution
of an E-valued process (X

(h)
n )n∈N0 that is Markovian with forward transition prob-

abilities P (h) given by

P (h)(i, j) := h(i)−1P(i, j)h(j), i, j ∈E(h),

where h(i)= limk→∞K(i, jk)=K(i, y) and

E(h) := {
i ∈E : h(i) > 0

}= {
i ∈E : lim

k→∞P{XN(i) = i|XN(jk) = jk}> 0
}
,

and the same backward transition probabilities as (Xn)n∈N0 . This Markov chain

(X
(h)
n )n∈N0 is an h-transform using the harmonic function h. Moreover, if (yk)k∈N

is a sequence of points in the Doob–Martin boundary, then limk→∞ yk = y for
some point y in the Doob–Martin boundary if and only if the initial segments of
(X

(K(·,yk))
n )n∈N0 converge in distribution to the corresponding initial segments of

(X
(K(·,y))
n )n∈N0 .
We call any Markov process (Yn)n∈N0 with Y0 = e and the same backward tran-

sition probabilities as (Xn)n∈N0 an infinite bridge for (Xn)n∈N0 . The distribution
of an infinite bridge is a mixture of distributions of infinite bridges that have trivial
tail σ -fields, and we call the latter extremal infinite bridges. If (jk)k∈N converges
to a point y in the Doob–Martin boundary, then the corresponding harmonic func-
tion h = K(·, y) is extremal if and only if the limit infinite bridge (X

(h)
n )n∈N0 is

extremal.

3. The Doob–Martin kernel of the Rémy chain. We return from the gen-
eral setting of the previous section to consideration of the Rémy chain. Given two
binary trees s and t with 2m + 1 and 2(m + n) + 1 vertices, we wish to derive a
formula for the multi-step transition probability

p(s, t) := P{Tm+n = t|Tm = s}
and hence obtain a formula for the Doob–Martin kernel with reference state ℵ,
since

K(s, t) := p(s, t)
p(ℵ, t)

= P{Tm+n = t|Tm = s}
P{Tm+n = t}

= P{Tm+n = t, Tm = s}
P{Tm = s}P{Tm+n = t}

= 1

P{Tm = s}P{Tm = s|Tm+n = t}

= CmP{Tm = s|Tm+n = t},
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where we recall that the mth Catalan number Cm is the number of binary trees with
2m+ 1 vertices. For this, we need the notion of one binary tree being embedded
in another, and this requires us to introduce some preliminary definitions.

To begin, we define a partial order < on the vertices of a binary tree by declaring
that u < v for two vertices u and v if u �= v and u is on the (unique) path leading
from the root to v. We say that v is below u. Given two vertices x and y, there is a
unique vertex z such that z≤ x, z≤ y, and w < z for any other vertex w such that
w ≤ x and w ≤ y. We say that z is the most recent common ancestor of x and y

and write z= x ∧ y.
If u < v and the unique path from u to v passes through the left (resp., right)

child of u, then we write u <L v (resp., u <R v) and say that v is below and to the
left (resp., below and to the right) of u. Note that <L and <R are partial orders
with the property that if two vertices of the tree are comparable in one order, then
they are not comparable in the other. Note also that u < v if and only if u <L v or
u <R v.

If we think of a binary tree as a subset of {0,1}∗, then for two vertices u =
u1 · · ·um and v = v1 · · ·vn we have:

• u < v if and only if m < n and uk = vk for 1 ≤ k ≤m,
• the most recent common ancestor u∧ v of u and v is the vertex w =w1 · · ·wp ,

where p = max{k : uk = vk} (where the maximum of the empty set is 0) and
wk = uk = vk for 1 ≤ k ≤ p,

• u <L v if and only if m < n, uk = vk for 1 ≤ k ≤m, and vm+1 = 0,
• u <R v if and only if m < n, uk = vk for 1 ≤ k ≤m, and vm+1 = 1.

DEFINITION 3.1. An embedding of a binary tree s into a binary tree t is a map
from the vertex set of s into the vertex set of t such that the following hold:

• The image of a leaf of s is a leaf of t.
• If u, v are vertices of s such that v is below and to the left (resp., right) of u,

then the image of v in t is below and to the left (resp., right) of the image of u

in t.

Figure 5 illustrates this definition.

REMARK 3.2. Note that an embedding of s into t is uniquely determined by
the images of the leaves of s, because if x and y are vertices of s, then the image of
the most recent common ancestor of x and y in s must be the most recent common
ancestor in t of the images of x and y.

NOTATION 3.3. Write N(s, t) for the number of embeddings of s into t. For
k = 1,2, . . . , write tck for the complete binary tree with 2k leaves, that is the binary
tree with 2k leaves such that every leaf is graph distance k from the root. (In the
representation of binary trees as subsets of {0,1}�, tck is the subset consisting of
words with length at most k and the leaves are the words with length k.)
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FIG. 5. All the embeddings of the unique binary tree s = ℵ with 3 vertices into a particular tree t
with 7 vertices.

EXAMPLE 3.4. We want to identify the number N(s, tck) of embeddings of a
given tree s into tck , the complete binary tree with 2k leaves.

It will be useful to introduce the infinite complete binary tree. This is the set
{0,1}∗ � {0,1}∞. For distinct points x and y in {0,1}∞ with x = u1u2 · · · and y =
v1v2 · · · , set x∧y = u1 · · ·uh = v1 · · ·vh ∈ {0,1}�, where h= max{g : u1 · · ·ug =
v1 · · ·vg}. We say that x is below and to the left of x ∧ y and y is below and to the
right of x ∧ y if uh+1 = 0 and vh+1 = 1.

Using the same notation, put r(x, y)= 2−h and set r(z, z)= 0 for z ∈ {0,1}∞.
Then r is a metric on {0,1}∞ that induces the (compact) product topology on
{0,1}∞. We can equip {0,1}∞ with the probability measure κ that is the product
of the uniform probability measures on each of the factors (i.e., κ is fair coin-
tossing measure). The κ-measure of any ball with diameter 2−� is 2−�.

If x1, . . . , xm+1 are distinct points in {0,1}∞, then these points induce a (fi-
nite) binary tree with m+ 1 leaves in the obvious way: we may identify the most
recent common ancestor of the leaves corresponding to xi and xj with xi ∧ xj

and say that the point corresponding to xi is below and to the left of the most
recent common ancestor of the points corresponding to xi and xj in the reduced
tree if xi is below and to the left of xi ∧ xj , etc. Call this tree T (x1, . . . , xm+1).
Observe that T (x1, . . . , xm+1) = T (xπ(1), . . . , xπ(m+1)) for any permutation π of
{1,2, . . . ,m+ 1}.

Suppose that the tree s has m + 1 leaves. If the leaves of an embed-
ding of s into tck are yi = ui1 · · ·uik for 1 ≤ i ≤ m + 1 and we set xi =
ui1 · · ·uikui,k+1ui,k+2 · · · for any choice of ui,k+1, ui,k+2, . . . ,1 ≤ i ≤m+ 1, then
T (x1, . . . , xm+1) = s. Conversely, if xi = ui1ui2 · · · ∈ {0,1}∞, 1 ≤ i ≤ m+ 1, are
such that T (x1, . . . , xm+1) = s and r(xi, xj ) > 2−k for 1 ≤ i �= j ≤ m + 1, then
putting yi = ui1 · · ·uik for 1 ≤ i ≤ m + 1 gives the leaves of an embedding of s
into tck .
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With the notation x = (x1, . . . , xm+1), it follows that

1

(m+ 1)!
κ⊗(m+1){x : T (x)= s and r(xi, xj ) > 2−k for 1 ≤ i �= j ≤m+ 1}

κ⊗(m+1){x : r(xi, xj ) > 2−k for 1 ≤ i �= j ≤m+ 1}
= 2−(m+1)kN

(
s, tck

)
.

Indeed, the left-hand side counts the fraction of all those of the (in total 2k(m+1))
mappings from [m+ 1] to [2k] which correspond to an embedding of s into tck . In
particular,

lim
k→∞2−(m+1)kN

(
s, tck

)

= 1

(m+ 1)!κ
⊗(m+1){(x1, . . . , xm+1) : T (x1, . . . , xm+1)= s

}
.

THEOREM 3.5. Suppose that s and t are two binary trees with, respectively,
2m+ 1 and 2(m+ n)+ 1 vertices. Then the probability that the Rémy chain tran-
sitions from s to t in n steps is

p(s, t)= n! 1

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

1

2n
N(s, t),

where N(s, t) is the number of ways of embedding s into t.

PROOF. We condition on the event {Tm = s} and say that a vertex of Tm+n is a
clonal descendant of a vertex v ∈ s if it is v itself, a clone of v, a clone-of-a-clone
of v, etc. We can then decompose Tm+n into connected pieces according to their
clonal descent from the vertices of s; see Figure 6 for a schematic representation
of such a decomposition.

It follows from the definition of the Rémy chain that the numbers of clonal
descendants of the 2m + 1 vertices of s are the result of n steps in a Pólya urn

FIG. 6. Decomposition of the tree Tm+n via clonal descent from the vertices of the tree Tm = s.
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that starts with 2m+ 1 balls of different colors and at each stage a ball is chosen
uniformly at random and replaced along with two balls of the same color.

Because the Rémy chain generates uniformly distributed binary trees, it further
follows that conditional on the various numbers of clonal descendants, the respec-
tive binary trees of clonal descendants are independent and uniformly distributed.

Moreover, a straightforward induction shows that, conditional on the trees of
clonal descendants, the ancestral vertices from s are located at independently and
uniformly chosen leaves of their respective trees of clonal descendants.

Therefore, if we label the vertices of s with 1, . . . ,2m+ 1, then the conditional
probability given {Tm = s} that the operation of a further n steps of Rémy’s al-
gorithm results in a binary tree t enhanced with a particular clonal descent de-
composition in which 2nj + 1 vertices are clonal descendants of vertex j of s for
1 ≤ j ≤ 2m+ 1 is

n!
n1! · · ·n2m+1!

∏2m+1
j=1 [1× 3× · · · × (2nj − 1)]

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

×
2m+1∏
j=1

1

Cnj

2m+1∏
j=1

1

nj + 1

= n! 1

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

1

2n
,

and the result is immediate. �

REMARK 3.6. An alternative method for proving Theorem 3.5 is to use argu-
ments similar to those used in the Introduction to show that Rémy’s algorithm does
indeed generate uniform random binary trees. More precisely, let s̃ be a tree with
m+ 1 leaves labeled by [m+ 1] and let t̃ be a tree with (m+ n)+ 1 leaves labeled
by [(m+n)+ 1]. Recalling the construction of the enhanced chain T̃1, T̃2, . . . , the
conditional probability of the event {T̃m+n = t̃} given the event {T̃m = s̃} is either
zero if the leaf-labeled binary tree induced by the leaves of t̃ labeled with [m+ 1]
is not s̃ or

1

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

1

2n

if it is, because, as in the Introduction, the leaf-labeling dictates the order in
which vertices must be cloned, as well as the associated choices of left-right re-
attachments. If s and t are unlabeled binary trees with m + 1 and (m + n) + 1
leaves, respectively, then for any labeling of the leaves of s to give a leaf–labeled
binary tree s̃, the number of ways of labeling t to give a leaf-labeled binary tree t̃
such that the leaf-labeled binary tree induced by the leaves labeled with [m+ 1] is
just n!N(s, t), because any admissible labeling of t corresponds to an embedding
of s into t composed with a labeling [with {m + 1, . . . , (m + n) + 1}] of those
leaves of t that are not in the image of s.
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COROLLARY 3.7. Suppose that s and t are two binary trees with, respectively,
2m+ 1 and 2(m+n)+ 1 vertices. Then the corresponding Doob–Martin kernel is

K(s, t)= Cm+np(s, t)= 2m 1× 3× · · · × (2m− 1)

(n+ 1)× (n+ 2)× · · · × (m+ n+ 1)
N(s, t).

PROOF. This is immediate from the definition of the Doob–Martin kernel and
Theorem 3.5. �

NOTATION 3.8. Given m ∈ N and a binary tree t with 2(m+ n)+ 1 vertices
for some n ∈ N, define St

m to be the random binary tree embedded in t that is
obtained by picking m+ 1 leaves of t uniformly at random without replacement;
see Figure 7.

COROLLARY 3.9. Suppose that s and t are two binary trees with, respectively,
2m+ 1 and 2(m+ n)+ 1 vertices. Then

P
{
St

m = s
}= 1

Cm

K(s, t).

PROOF. It suffices to observe that

P
{
St

m = s
} = N(s, t)(m+n+1

m+1

)

= (m+ 1)!
(n+ 1)× (n+ 2)× · · · × (m+ n+ 1)

N(s, t)

FIG. 7. Two possible realizations of the random tree St
m when m = 2, n = 3 and t is the binary

tree with 11 = 2(2 + 3) + 1 vertices depicted twice on the left-hand side along with an indication
of its representation as a subset of {0,1}∗. Picking the m+ 1 = 3 leaves 000, 01 and 100 out of the
(m + n) + 1 = 6 leaves of t as shown in the top row results in a realization of St

m that has leaves
00, 01 and 1 in its representation as a subset of {0,1}∗, while picking the leaves 001, 100 and 11
of t as shown in the bottom row results in a realization of St

m that has leaves 0, 10 and 11 in its
representation as a subset of {0,1}∗.
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= (m+ 1)!
2m × 1× 3× · · · × (2m− 1)

K(s, t)

= 1

Cm

K(s, t). �

The following result is immediate from Corollary 3.9. It shows that convergence
of a sequence of binary trees to a point in the Doob–Martin boundary is equivalent
to the convergence in distribution of the random embedded subtrees resulting from
sampling a finite number of leaves uniformly at random. Thus, convergence in our
setting is, as remarked in the Introduction, analogous to the notion of convergence
of dense graph sequences as explored in the theory of graph limits, where a se-
quence of larger and larger graphs converges to a limit if the random subgraphs
defined by restriction to a finite number of vertices sampled uniformly at random
converge in distribution (see, e.g., [22], Chapter 13). The latter notion of conver-
gence is metrized by a very natural metric called the cut metric that is, a priori,
unrelated to sampling from a graph and it would be interesting to know if there is
an analogous object that metrizes the notion of convergence of binary trees in our
setting.

COROLLARY 3.10. A sequence (tk)k∈N of binary trees with the number of
leaves of tk going to infinity as k →∞ converges in the Doob–Martin compactifi-
cation if and only if for each m ∈N the sequence of random binary trees (S

tk
m)k∈N

converges in distribution. Moreover, two such convergent sequences of binary trees
(t′k)k∈N and (t′′k)k∈N converge to the same point in the Doob–Martin boundary if

and only if for all m ∈N the limiting distribution of S
t′k
m as k →∞ coincides with

the limiting distribution of S
t′′k
m as k →∞.

EXAMPLE 3.11. Recall that tck is the complete binary tree with 2k leaves. It
follows from Corollary 3.7, the last equality in Example 3.4 and Corollary 3.10
that the sequence (tck)k∈N converges in the Doob–Martin topology with

lim
k→∞K

(
s, tck

)= 2m(
1× 3× · · · × (2m− 1)

) 1

(m+ 1)!
× κ⊗(m+1){(x1, . . . , xm+1) : T (x1, . . . , xm+1)= s

}
= Cmκ⊗(m+1){(x1, . . . , xm+1) : T (x1, . . . , xm+1)= s

}
for a binary tree s with m+ 1 leaves. Equivalently,

lim
k→∞P

{
Tm = s|T2k−1 = tck

}= κ⊗(m+1){(x1, . . . , xm+1) : T (x1, . . . , xm+1)= s
}
.

The latter probability can be evaluated quite explicitly. Let X1, . . . ,Xm+1 be in-
dependent, identically distributed {0,1}∞-valued random variables with common
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distribution κ . We label the balls of {0,1}∞ that have diameter 2−k with the ele-
ments of {0,1}k by declaring that Bu1···uk

is the unique ball containing all points of
the form u1 · · ·ukuk+1uk+2 · · · for arbitrary uk+1, uk+2, . . . ∈ {0,1}. There is a ran-
dom integer R such that {X1, . . . ,Xm+1} ⊂ Bu1···uR

for some u1, . . . , uR ∈ {0,1},
but {X1, . . . ,Xm+1} �⊂ Bu1···uR0 and {X1, . . . ,Xm+1} �⊂ Bu1···uR1. Observe that

P
{
#{i :Xi ∈ Bu1···uR0} = h,#{j :Xj ∈ Bu1···uR1} =m+ 1− h|R,u1, . . . , uR

}

=
(m+1

h

)
(1

2)m+1

1− 2(1
2)m+1

for 1 ≤ h ≤ m. Moreover, given that #{i : Xi ∈ Bu1···uR0} = h and #{j : Xj ∈
Bu1···uR1} = m + 1 − h, the set of locations of the Xi that fall in Bu1···uR0 and
the set of locations of the Xi that fall in Bu1···uR1 are independent, with the former
random set being conditionally distributed as h i.i.d. draws from the probability
measure κ restricted to Bu1···uR0 and renormalized to be a probability measure,
and with the latter random set being conditionally distributed as m + 1 − h i.i.d.
draws from the probability measure κ restricted to Bu1···uR1 and renormalized to be
a probability measure. Label the internal vertices of s with 1, . . . ,m. Let α� (resp.,
β�) be the number of leaves of s that are below and to the left (resp., below and to
the right) of vertex � and write γ� := α� + β� for the total number of leaves below
the vertex labeled �. It follows that

κ⊗(m+1){(x1, . . . , xm+1) : T (x1, . . . , xm+1)= s
}

=
m∏

�=1

(α� + β�)!
α�!β�!

(
1

2

)α�+β�
(

1−
(

1

2

)α�+β�−1)−1

= (m+ 1)! 1

2m

m∏
�=1

(
2α�+β�−1 − 1

)−1

= (m+ 1)! 1

2m

m∏
�=1

(
2γ�−1 − 1

)−1
,

where the second equality results from a telescope product along the binary tree s.
In particular, the function that maps s to

Cm(m+ 1)! 1

2m

m∏
�=1

(
2γ�−1 − 1

)−1 = 1× 3× · · · × (2m− 1)×
m∏

�=1

(
2γ�−1 − 1

)−1

is harmonic for the Rémy chain. We can write this function more compactly as

h : s �→ 1× 3× · · · × (2m− 1)×∏
v

(
2#s(v)−1 − 1

)−1
,

where the product is over the interior vertices of s, and #s(v) is the number of
leaves below the interior vertex v.
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It is instructive to check directly that this function is indeed harmonic. Suppose
that in one step of the chain starting from the tree s with 2m+ 1 vertices the vertex
v of s is chosen to be cloned. This produces a tree t with 2m+1 old vertices that we
can identify with the vertices of s and two new vertices that we will call x and y,
with x an interior vertex and y a leaf. If u �= v is an interior vertex of s that is on
the path from the root to v (i.e., u is an ancestor of v), then #t(u)= #s(u)+ 1. For
any other interior vertex u of s, we have #t(u)= #s(u). Lastly, #t(x)= #s(v)+ 1,
where we put #s(v)= 1 if v is a leaf of s. Therefore, if v is an interior vertex of s,
then

1× 3× · · · × (2m+ 1)×∏
w

(
2#t(w)−1 − 1

)−1

= 1× 3× · · · × (2m+ 1)×
[∏
u<v

(
2#s(u) − 1

)−1
]

× (
2#s(v)−1 − 1

)−1 × (
2#s(v) − 1

)−1

×
[∏
u�≤v

(
2#s(u)−1 − 1

)−1
]
,

whereas if v is a leaf, then

1× 3× · · · × (2m+ 1)×∏
w

(
2#t(w)−1 − 1

)−1

= 1× 3× · · · × (2m+ 1)×
[∏
u<v

(
2#s(u) − 1

)−1
]
×

[∏
u�≤v

(
2#s(u)−1 − 1

)−1
]
.

Writing I for the set of internal vertices of s and L for the leaves, we therefore
see that harmonicity of h is equivalent to

∑
v∈I

∏
u<v

2#s(u)−1 − 1

2#s(u) − 1

1

2#s(v) − 1
+ ∑

v∈L

∏
u<v

2#s(u)−1 − 1

2#s(u) − 1

=∑
v∈s

∏
u<v

2#s(u)−1 − 1

2#s(u) − 1

1

2#s(v) − 1

= 1.

This, however, is clear by induction. It is certainly true if s is the trivial binary
tree with a single vertex or the binary tree ℵ with three vertices. Assuming for
some binary tree s with m+ 1 leaves that it is true for all binary trees with fewer
leaves, we see from a consideration of the left and right subtrees below the root of
s that the sum in question is

1

2m+1 − 1
+ 2m − 1

2m+1 − 1
[1+ 1] = 1,

as required.
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The one-step transition probability for the corresponding Doob h-transformed
chain is, for binary trees s and t with 2m+ 1 and 2m+ 3 vertices,[

1× 3× · · · × (2m− 1)×∏
u

(
2#s(u)−1 − 1

)−1
]−1

× 1

2(2m+ 1)
N(s, t)

× 1× 3× · · · × (2m+ 1)×∏
v

(
2#t(v)−1 − 1

)−1

= 1

2

∏
u(2

#s(u)−1 − 1)∏
v(2#t(v)−1 − 1)

N(s, t),

where the products in u run over the interior vertices of s and the products in v run
over the interior vertices of t.

It is apparent from the above that one step of the h-transformed chain starting
from the state s can be described as follows:

• Pick a vertex v of s with probability

∏
u<v

2#s(u)−1 − 1

2#s(u) − 1

1

2#s(v) − 1
.

• Cut off the subtree rooted at v and set it aside.
• Attach a copy of the tree ℵ with 3 vertices to the end of the edge that previously

led to v.
• Reattach the subtree rooted at v uniformly at random to one of the two leaves in

the copy of ℵ.

4. Infinite Rémy bridges. Given a binary tree t with 2m(t) + 1 vertices,
write T t

1(= ℵ), T t
2 , . . . , T t

m(t) for the bridge process obtained by conditioning
T1, . . . , Tm(t) on the event {Tm(t) = t}.

Recall from Section 2 that a sequence (tk)k∈N with m(tk) → ∞ converges
in the Doob–Martin topology if and only if for each � ∈ N the random �-tuple
(T

tk
1 , . . . , T

tk
� ) converges in distribution. Moreover, the various limits define a set

of consistent distributions, and hence the distribution of a Markov chain (T ∞
n )n∈N

with T ∞
1 =ℵ.

Note that if s, t are binary trees with 2m+ 1 and 2m+ 3 vertices, respectively,
then, using Theorem 3.5,

P
{
T tk

m = s|T tk
m+1 = t

} = P{T tk
m = s, T tk

m+1 = t}
P{T tk

m+1 = t}

= P{T tk
m+1 = t|T tk

m = s}P{T tk
m = s}

P{T tk
m+1 = t}
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= p(ℵ, s)p(s, t)p(t, tk)
p(ℵ, t)p(t, tk)

= C−1
m

1

2m+ 1

1

2
N(s, t)/C−1

m+1

= (m+ 1)!m!
(2m)!

1

2m+ 1

1

2
N(s, t)

(2(m+ 1))!
(m+ 2)!(m+ 1)!

= 1

m+ 2
N(s, t).

Therefore, any finite bridge (T t
n)

m(t)
n=1 and any limit of finite bridges (T ∞

n )n∈N
evolves one step backward in time as follows:

• Pick a leaf uniformly at random.
• Delete the chosen leaf and its sibling (which may or may not be a leaf).
• If the sibling is not a leaf, then close up the resulting gap by attaching the subtree

below the sibling to the parent of the chosen leaf and the sibling.

As we have already explained in the Introduction, understanding the Doob–
Martin compactification is equivalent to understanding all Markov chains with
initial state ℵ that have these backward transition dynamics. We call any such a
process an infinite Rémy bridge.

EXAMPLE 4.1. Suppose that (tk)k∈N is the binary tree depicted in Fig-
ure 8. It is not hard to see that the sequence (tk)k∈N converges in the Doob–
Martin topology and that the value at time n of the corresponding limit bridge
(T ∞

n )n∈N can be represented as the subset of {0,1}� that consists of the ver-
tices ∅, ε1, ε1ε2, . . . , ε1ε2 · · · εn, where ε1, . . . , εn are independent {0,1}-valued
random variables with P{εi = 0} = P{εi = 1} = 1

2 for 1 ≤ i ≤ n, plus the ver-
tices ε̄1, ε1ε̄2, . . . , ε1ε2 · · · ε̄n, where ε̄i = 1 − εi for 1 ≤ i ≤ n. In other words,
T ∞

n consists of a “spine” that moves to the left or right depending on the suc-

FIG. 8. The binary tree tk of Example 4.1. This tree has 2k + 1 vertices and consists of a single
spine with leaves hanging off to the left and right alternately.
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FIG. 9. A realization at time n = 9 of the infinite Rémy bridge arising from the sequence of trees
depicted in Figure 8. The random tree consists of leaves hanging off a single spine that moves to the
left or right according to successive tosses of a fair coin.

cessive tosses of a fair coin plus the minimal set of extra leaves that are required
to yield a valid binary tree; see Figure 9. We stress that T ∞

n+1 is not obtained by
simply appending an extra independent fair coin toss εn+1 to the end of the se-
quence ε1, . . . , εn. Rather, if we write εn

1 , . . . , εn
n for the coin tosses that corre-

spond to T ∞
n and εn+1

1 , . . . , εn+1
n+1 for the coin tosses that correspond to T ∞

n+1, then

εn+1
1 , . . . , εn+1

n+1 is obtained from εn
1 , . . . , εn

n by inserting an additional independent
toss uniformly at random into one of the n + 1 “slots” associated with the latter
sequence—before the first toss, between two successive tosses, or after the last
toss.

EXAMPLE 4.2. We know from Example 3.11 that if tck is the complete bi-
nary tree with 2k leaves, then the sequence (tck)k∈N converges in the Doob–Martin
topology. Moreover, it is clear that the value at time n of the corresponding infinite
Rémy bridge (T ∞

n )n∈N is obtained by picking n+ 1 points from {0,1}∞ indepen-
dently according to the probability measure κ and taking the finite binary tree they
induce; see Figure 10.

FIG. 10. If tck is the complete binary tree with 2k leaves, then limk tck exists in the Doob–Martin
topology. The random value at time n of the resulting infinite Rémy bridge can be built by choosing
n+1 points independently and uniformly at random from the leaves at infinity of the infinite complete
binary tree and constructing the tree they induce.
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5. Labeled infinite Rémy bridges and didendritic systems. Consider a bi-
nary tree T ′′ with n+ 2 leaves. Label the leaves of T ′′ with [n+ 2] uniformly at
random [i.e., all (n+2)! labelings are equally likely]. Now apply the following de-
terministic procedure to produce a binary tree T ′ with n+ 1 leaves and a labeling
of those leaves by [n+ 1]:
• Delete the leaf labeled n+ 2, along with its sibling (which may or may not be a

leaf).
• If the sibling of the leaf labeled n + 2 is also a leaf, then assign the sibling’s

label to the common parent (which is now a leaf).
• If the sibling of the leaf labeled n+ 2 is not a leaf, then attach the subtree below

the sibling to the common parent with its leaf labels unchanged and leave all
other leaf labels unchanged.

Clearly, the distribution of T ′ is that arising from one step starting from T ′′ of
the backward Rémy dynamics (i.e., the common backward dynamics of all infinite
Rémy bridges). Moreover, the labeling of T ′ by [n + 1] is uniformly distributed
over the (n+ 1)! possible labelings.

Now suppose that (T ∞
n )n∈N is an infinite Rémy bridge. For some N , let SN be

a random binary tree with the same distribution as T ∞
N . Label SN uniformly at

random with [N + 1] to produce a labeled binary tree S̃N . Apply the above de-
terministic procedure successively for n=N − 1, . . . ,1 to produce labeled binary
trees S̃N−1, . . . , S̃1, where S̃n has n+1 leaves labeled by [n+1] for 1 ≤ n≤N−1.
Write Sn for the underlying binary tree obtained by removing the labels of S̃n. It
follows from the observation above that the sequence (S1, . . . , SN) has the same
joint distribution as (T ∞

1 , . . . , T∞
N ). Note that the distribution of the sequence

(S̃1, . . . , S̃N ) is uniquely determined by the distribution of T ∞
N , and hence, a for-

tiori, by the joint distribution of (T ∞
n )n∈N. Note also that if we perform this con-

struction for two different values of N , say N ′ < N ′′, to produce, with the obvious
notation, sequences (S̃′1, . . . , S̃′N ′) and (S̃′′1 , . . . , S̃′′N ′′), then (S̃′1, . . . , S̃′N ′) has the
same distribution as (S̃′′1 , . . . , S̃′′N ′).

By Kolmogorov’s extension theorem, we may therefore suppose that there is
a Markov process (T̃ ∞

n )n∈N such that for each n ∈ N the random element T̃ ∞
n is

a leaf-labeled binary tree with n+ 1 leaves labeled by [n+ 1] and the following
hold:

• The binary tree obtained by removing the labels of T̃ ∞
n is T ∞

n .
• For every n ∈ N, the conditional distribution of T̃ ∞

n given T ∞
n is uniform over

the (n+ 1)! possible labelings of T ∞
n .

• In going backward from time n + 1 to time n, T̃ ∞
n+1 is transformed into T̃ ∞

n

according to the deterministic procedure described above.

The distribution of (T̃n)n∈N is uniquely specified by the distribution of (T ∞
n )n∈N

and the above requirements. Because of this distributional uniqueness, we refer
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to (T̃ ∞
n )n∈N as the labeled version of (T ∞

n )n∈N and (T ∞
n )n∈N as the unlabeled

version of (T̃ ∞
n )n∈N. In a similar vein, we will talk about objects such as the “leaf

of T ∞
n labeled with i ∈ [n+ 1]”.

We have just described the construction of a labeled infinite Rémy bridge from
an unlabeled one. Using the Doob–Martin boundary, we can view this construction
from a slightly different point of view as follows.

REMARK 5.1. Recall that for binary trees s and t with n+ 1 and n+ 2 leaves,
respectively, the backward transition probability q(s, t) := P{T ∞

n = s|T ∞
n+1 = t}

is the same for all infinite Rémy bridges (T ∞
n )n∈N. For y in the Doob–Martin

boundary of the Rémy chain, write Qy for the distribution of the infinite Rémy
bridge associated with y; that is, Qy is the distribution of the Doob h-transform
of the Rémy chain for the harmonic function K(·, y). Thus, Qy assigns mass
q(t1, t2)q(t2, t3) · · ·q(tn−1, tn)K(tn, y) to the set of paths that begin with the
sequence of states t1, t2, . . . , tn−1, tn. The distribution of an arbitrary infinite
Rémy bridge is of the form

∫
Qyμ(dy) for some probability measure μ con-

centrated on the Doob–Martin boundary of the Rémy chain, and this represen-
tation is unique if μ is required to be concentrated on the minimal boundary.
For labeled binary trees s̃ and t̃ with n + 1 and n + 2 leaves, respectively, write
q̃(s̃, t̃) := P{T̃ ∞

n = s̃|T̃ ∞
n+1 = t̃} for the backward transition probability common to

all labeled infinite Rémy bridges (T̃ ∞
n )n∈N. The construction of a labeled infinite

Rémy bridge (T̃ ∞
n )n∈N corresponding to an infinite Rémy bridge (T ∞

n )n∈N can be
described as follows: if (T ∞

n )n∈N has distribution
∫
Qyμ(dy), then (T̃ ∞

n )n∈N has
distribution

∫
Q̃yμ(dy), where Q̃y is the probability measure that assigns mass

q̃(t̃1, t̃2)q̃(t̃2, t̃3) · · · q̃(t̃n−1, t̃n) 1
(n+1)!K(tn, y) to the set of paths that begin with

the sequence of states t̃1, t̃2, . . . , t̃n−1, t̃n and tn is the binary tree obtained by re-
moving the labels from t̃n.

It will be convenient for later use to be more concrete about the structure of the
extra randomness introduced by labeling.

DEFINITION 5.2. Define a sequence of random variables (Ln)n∈N by set-
ting Ln := k ∈ [n + 1] if the leaf labeled n + 1 in T̃ ∞

n (and hence the one re-
moved to form T ∞

n−1 from T ∞
n and T̃ ∞

n−1 from T̃ ∞
n ) is the kth smallest of the

leaves of T ∞
n in the lexicographic order on {0,1}∗ (recall that v1 · · ·vs is smaller

than w1 · · ·wt in the lexicographic order if there is some r < s ∧ t such that
vq = wq for q ≤ r , vr+1 = 0, and wr+1 = 1). For any n ∈ N, it is clear that
L1,L2, . . . ,Ln, (T

∞
n , T∞

n+1, . . .) are independent and that Ln is uniformly dis-
tributed on [n+ 1].

By construction, (T̃ ∞
1 , . . . , T̃∞

n ) is a measurable function of (L1, . . . ,Ln) and
T ∞

n . It might be expected from this observation that the entire labeled infinite
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Rémy bridge (T̃ ∞
n )n∈N [and hence, a fortiori, the infinite Rémy bridge (T ∞

n )n∈N]
may be constructed from (Ln)n∈N and “boundary conditions” in the tail σ -field⋂

m∈N σ {T ∞
n : n≥m}. The next result shows that this is indeed the case.

LEMMA 5.3. For an infinite Rémy bridge (T ∞
n )n∈N, its labeled version

(T̃ ∞
n )n∈N, and the selection sequence (Ln)n∈N,

σ
{
T̃ ∞

n : n ∈N
}= ⋂

m∈N
σ

{
T̃ ∞

n : n≥m
}

= σ {Lp : p ∈N} ∨ ⋂
m∈N

σ
{
T ∞

n : n≥m
}
, P-a.s.

PROOF. Because T̃ ∞
m is a measurable function of T̃ ∞

n for m < n, the first
two σ -fields are clearly equal, and since (Ln)n∈N and (T ∞

n )n∈N are measurable
functions of (T̃ ∞

n )n∈N, it is also clear that these two σ -fields both contain the third
σ -field. Now T̃ ∞

m is a measurable function of T ∞
n and L1, . . . ,Ln for m < n, and

so to complete the proof it suffices to show that

σ {Lp : p ∈N} ∨ ⋂
m∈N

σ
{
T ∞

n : n≥m
}

⊇ ⋂
m∈N

(
σ {Lp : p ∈N} ∨ σ

{
T ∞

n : n≥m
})

, P-a.s.

That is, setting F := σ {Lp : p ∈ N}, Gm := σ {T ∞
n : n ≥ m}, and G∞ :=⋂

m∈N Gm, it is enough to establish that⋂
m∈N

(F ∨ Gm)=F ∨ G∞.

Let (ω,A) �→ PF (ω,A), ω ∈ �, A ∈ G1, be the conditional probability kernel
on G1 given F . Because each σ -field Gm is countably generated, the desired
equality will follow from the implication (d) =⇒ (a) of the main theorem of
[34] if we can show that there is a countably generated σ -field H such that
G∞ = H mod PF (ω, ·) for P-a.e. ω ∈ �. Because F and G∞ are independent,
PF (ω, ·) restricted to G∞ coincides with P restricted to G∞ for P-a.e. ω ∈�. Now
(ω,A) �→ P(A), ω ∈ �, A ∈ G1, is certainly the conditional probability kernel on
G1 given the trivial σ -field {∅,�}. Moreover, since⋂

m∈N

({∅,�} ∨ Gm

)= {∅,�} ∨ G∞

obviously holds, it follows from the implication (a) =⇒ (d) of the main theorem of
[34] that such a countably generated H does indeed exist. Alternatively, because
G1 is countably generated, L1(�,G1,P) contains a countable dense subset C. Let
D be a collection of random variables that contains a version of E[ξ |G∞] for each
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ξ ∈ C. It is clear that D is dense in L1(�,G∞,P) and it suffices to take H to be
the σ -field generated by D. �

We now want to use the labeled infinite Rémy bridge to build an infinite binary-
tree-like structure for which the set N plays the role of the leaves. Interior vertices
in this infinite binary-tree-like structure have a left child and a right child, but
we show that if we forget about this ordering, then there is an R-tree such that,
loosely speaking, the tree-like structure is that of the tree spanned by countably
many points picked independently according to a certain probability measure on
the R-tree. The R-tree is nonrandom when the infinite Rémy bridge is extremal,
but even in that case further randomization may be necessary to reconstitute the
left versus right ordering of children.

As will become clear in Section 8, Example 4.1 gives rise to a situation in which
additional randomization is required to “distinguish left from right” after the count-
able collection of points has been sampled in order to fully reconstitute the binary
tree-like structure; that is, it is not possible to impose a planar structure on the R-
tree so that the left versus right ordering of children in the subtree spanned by the
sampled points is inherited from the planar structure on the R-tree. The essential
point here is that there is no Borel subset A of the unit interval with Lebesgue mea-
sure 1

2 such that if U is a uniform random variable on the unit interval the random
variables U and 1A(U) are independent.

However, no such additional randomization is necessary in Example 4.2 and the
associated R-tree can be augmented with a planar structure that induces the desired
one on the subtree spanned by the sampled points.

DEFINITION 5.4. If i, j ∈ [n + 1] are the labels of two leaves of T ∞
n that

are represented by the words u1 · · ·uk and v1 · · ·v� in {0,1}�, then set [i, j ]n :=
u1 · · ·um = v1 · · ·vm, where m := max{h : uh = vh}. That is, [i, j ]n is the most
recent common ancestor in T ∞

n of the leaves labeled i and j . Note that [i, i]n is
just the leaf labeled i and every internal vertex of T ∞

n is of the form [i, j ]n for at
least one pair (i, j) with i �= j .

DEFINITION 5.5. Define an equivalence relation ≡ on the Cartesian product
N × N by declaring that (i′, j ′) ≡ (i′′, j ′′) if and only if [i′, j ′]n = [i′′, j ′′]n for
some (and hence all) n such that i ′, j ′, i ′′, j ′′ ∈ [n + 1]. We write 〈i, j〉 for the
equivalence class of the pair (i, j). We will see that we can think of the equivalence
classes as being the vertices of a binary-tree-like object. For i ∈N the equivalence
class of the pair (i, i) has only one element and it will sometimes be convenient to
denote this equivalence class simply by i. With this convention, we regard 〈i, j〉 as
being the most recent common ancestor of the leaves i and j .

DEFINITION 5.6. Define a partial order <L on the set of equivalence classes
by declaring for (i ′, j ′), (i′′, j ′′) ∈N×N that 〈i ′, j ′〉<L 〈i ′′, j ′′〉 if and only if for
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some (and hence all) n such that i′, j ′, i ′′, j ′′ ∈ [n+1] we have [i ′, j ′]n = u1 · · ·uk

and [i ′′, j ′′]n = u1 · · ·uk0v1 · · ·v� for some u1, . . . , uk, v1, . . . , v� ∈ {0,1}. We in-
terpret the ordering 〈i ′, j ′〉 <L 〈i ′′, j ′′〉 as the “vertex” 〈i ′′, j ′′〉 being below and
to the left of the “vertex” 〈i ′, j ′〉. Similarly, we define another partial order <R

by declaring that 〈i ′, j ′〉 <R 〈i ′′, j ′′〉 if and only if for some (and hence all)
n such that i ′, j ′, i′′, j ′′ ∈ [n + 1] we have [i ′, j ′]n = u1 · · ·uk and [i ′′, j ′′]n =
u1 · · ·uk1v1 · · ·v� for some u1, . . . , uk, v1, . . . , v� ∈ {0,1}. We interpret the order-
ing 〈i ′, j ′〉<R 〈i ′′, j ′′〉 as the “vertex” 〈i ′′, j ′′〉 being below and to the right of the
“vertex” 〈i′, j ′〉.

REMARK 5.7. The equivalence relation ≡ and the partial orders <L and <R

have a number of simple properties that it is useful to record:

• For i, j ∈N, (i, j)≡ (j, i).
• For i, j, k ∈N, (i, j) �≡ (k, k) unless i = j = k.
• For i, j ∈ N with i �= j , either 〈i, j〉 <L 〈i, i〉 and 〈i, j〉 <R 〈j, j〉, or 〈i, j〉 <R

〈i, i〉 and 〈i, j〉<L 〈j, j〉.
• For h, i, j, k ∈N, if 〈h, i〉<L 〈j, k〉, then 〈h, i〉≮R 〈j, k〉.
• For h, i, j, k ∈N, if 〈h, i〉<R 〈j, k〉, then 〈h, i〉≮L 〈j, k〉.
• For f,g,h, i, j, k ∈ N, if 〈f,g〉 <L 〈h, i〉 and 〈h, i〉 <R 〈j, k〉, then 〈f,g〉 <L

〈j, k〉.
• For f,g,h, i, j, k ∈ N, if 〈f,g〉 <R 〈h, i〉 and 〈h, i〉 <L 〈j, k〉, then 〈f,g〉 <R

〈j, k〉.

DEFINITION 5.8. An equivalence relation on N × N and two partial orders
on the associated equivalence classes form a didendritic system if they satisfy the
conditions listed in Remark 5.7. (We have coined the word “didendritic” from the
Greek roots “δις” = “two, twice or double” and “δενδριτης” = “of or pertaining
to a tree, tree-like” as an adjective meaning “binary tree-like”.)

NOTATION 5.9. From now on, we will use the notation ≡, 〈·, ·〉, <L and <R

to denote the equivalence relation, equivalence classes and the two partial orders
of an arbitrary didendritic system.

REMARK 5.10. Given a didendritic system (≡, 〈·, ·〉,<L,<R) and n ∈ N,
there is a unique binary tree with n+1 leaves labeled by i = 〈i, i〉, i ∈ [n+1], and
internal vertices labeled by 〈i, j〉, i, j ∈ [n + 1], i �= j . Using the representation
of binary trees as subsets of {0,1}∗, the root ∅ is labeled by the unique equiv-
alence class 〈p,q〉, p,q ∈ [n + 1], such that there is no equivalence class 〈r, s〉,
r, s ∈ [n+1], for which 〈r, s〉<L 〈p,q〉 or 〈r, s〉<R 〈p,q〉. If the equivalence class
〈h, i〉, h, i ∈ [n+ 1], is the label of the vertex v1 · · ·vr of the tree and the equiva-
lence class 〈j, k〉, j, k ∈ [n+1] is such that 〈h, i〉<L 〈j, k〉 (resp., 〈h, i〉<R 〈j, k〉)
and there is no equivalence class 〈�,m〉 with 〈h, i〉<L 〈�,m〉 (resp., and 〈h, i〉<R



254 S. N. EVANS, R. GRÜBEL AND A. WAKOLBINGER

〈�,m〉) and 〈�,m〉 <L 〈j, k〉 or 〈�,m〉 <R 〈j, k〉, then v1 · · ·vr0 (resp., v1 · · ·vr1)
is a vertex of the tree with label 〈j, k〉.

If a labeled binary tree is constructed in this way and another one is constructed
from the same didendritic system with n replaced by n+ 1, then the first labeled
binary tree can be produced from the second as follows:

• The leaf labeled n+ 2 = 〈n+ 2, n+ 2〉 is deleted, along with its sibling (which
may or may not be a leaf).

• If the sibling of the leaf labeled n + 2 is also a leaf, then the common parent
(which is now a leaf) is assigned the sibling’s label.

• If the sibling of the leaf labeled n+ 2 is not a leaf, then the subtree below the
sibling is attached to the common parent. The labelings of the vertices in the
subtree are unchanged and the common parent is assigned the sibling’s label.

DEFINITION 5.11. Given a didendritic system D = (≡, 〈·, ·〉,<L,<R) and a
permutation σ of N such that σ(i) = i for all but finitely many i ∈ N, the diden-
dritic system Dσ = (≡σ , 〈·, ·〉σ ,<σ

L,<σ
R) is defined by:

• (i ′, j ′)≡σ (i ′′, j ′′) if and only if (σ (i ′), σ (j ′))≡ (σ (i ′′), σ (j ′′)),
• 〈i, j〉σ is the equivalence class of the pair (i, j) for the equivalence relation ≡σ ,
• 〈h, i〉σ <σ

L 〈j, k〉σ if and only if 〈σ(h), σ (i)〉<L 〈σ(j), σ (k)〉,
• 〈h, i〉σ <σ

R 〈j, k〉σ if and only if 〈σ(h), σ (i)〉<R 〈σ(j), σ (k)〉.
A random didendritic system D = (≡, 〈·, ·〉,<L,<R) is exchangeable if for each
permutation σ of N such that σ(i) = i for all but finitely many i ∈ N the random
didendritic system Dσ has the same distribution as D.

In view of the similarity of the procedure described before Definition 5.11 and
the procedure described at the beginning of this section, the following result is ob-
vious and shows that characterizing the family of infinite Rémy bridges is equiva-
lent to characterizing the family of exchangeable random didendritic systems.

LEMMA 5.12. The random didendritic system corresponding to the labeled
version of an infinite Rémy bridge is exchangeable. Conversely, the sequence of
random labeled binary trees produced from an exchangeable random didendritic
system by the procedure described in Remark 5.10 is an infinite Rémy bridge.

With this result in mind, we now explore what sort of information is required to
uniquely specify a didendritic system. From Remark 5.10, the subtree spanned by
three distinct labeled leaves i, j, k ∈N is one of twelve isomorphism types that we
depict in Figure 11 along with notation for each one.

LEMMA 5.13. Any didendritic system (≡, 〈·, ·〉,<L,<R) is uniquely deter-
mined by the isomorphism types of the subtrees spanned by all triples of distinct
labeled leaves.
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FIG. 11. The isomorphism types for the subtree spanned by 3 leaves of a leaf-labeled binary
tree. Going left to right and from top to bottom, we denote these types by ((i, k), j), ((k, i), j),
((i, j), k), . . . , (i, (j, k)), (j, (i, k)), (j, (k, i)).

PROOF. Observe that, 〈h, i〉<L 〈j, k〉 for h, i, j, k ∈N if and only if either one
of the following six conditions holds or one of the three similar sets of six condi-
tions with the roles of h and i interchanged or the roles of k and j interchanged
holds:

• ((i, j), h) and ((i, k), h) and ((j, k), h) and (i, (j, k)),
• ((j, i), h) and ((k, i), h) and ((j, k), h) and ((j, k), i),
• ((i, j), h) and ((i, k), h) and ((j, k), h) and ((i, j), k),
• ((j, i), h) and ((i, k), h) and ((j, k), h) and ((j, i), k),
• ((j, i), h) and ((i, k), h) and ((j, k), h) and (j, (i, k)),
• ((j, i), h) and ((k, i), h) and ((j, k), h) and (j, (k, i)).

Moreover, (h, i) ≡ (j, k) (that is, 〈h, i〉 = 〈j, k〉 if and only if for all �,m ∈ N,
〈h, i〉<L 〈�,m〉⇐⇒ 〈j, k〉<L 〈�,m〉 and 〈h, i〉<R 〈�,m〉⇐⇒ 〈j, k〉<R 〈�,m〉).

�

REMARK 5.14. It follows from Lemma 5.13 that any didendritic system has
a unique coding as an array indexed by {(i, j, k) ∈ N3 : i, j, kdistinct}, where the
(i, j, k) entry records the isomorphism type of the subtree spanned by the leaves
labeled i, j, k. The triply indexed random array corresponding to an exchangeable
random didendritic system is jointly exchangeable in the usual sense for random
arrays (see, e.g., [19], Section 7.1).

DEFINITION 5.15. Define a third partial order < on the set of equivalence
classes of N × N by declaring that 〈h, i〉 < 〈j, k〉 if either 〈h, i〉 <L 〈j, k〉 or
〈h, i〉 <R 〈j, k〉. We interpret the ordering 〈h, i〉 < 〈j, k〉 as the “vertex” 〈j, k〉
being below the “vertex” 〈h, i〉.
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REMARK 5.16. It is easy to see that if 〈h, i〉 and 〈j, k〉 are two equivalence
classes, then there is a unique “most recent common ancestor” 〈�,m〉 such that
〈�,m〉 ≤ 〈h, i〉, 〈�,m〉 ≤ 〈j, k〉, and if 〈p,q〉 also has these two properties, then
〈p,q〉 ≤ 〈�,m〉. Moreover, we can choose �,m so that � ∈ {h, i} and m ∈ {j, k}.
Indeed, for any n ∈ N we can, by Remark 5.10, think of the equivalence classes
{〈i, j〉 : i, j ∈ [n + 1]} as the vertices of a binary tree with its leaves labeled by
[n + 1]. When the didendritic system was constructed from the labeled version
(T̃ ∞

n )n∈N of an infinite Rémy bridge (T ∞
n )n∈N, this leaf-labeled binary tree is

just T̃ ∞
n .

LEMMA 5.17. Any didendritic system (≡, 〈·, ·〉,<L,<R) is uniquely deter-
mined by the equivalence relation ≡, the partial order <, and a determination for
each pair of distinct labeled leaves i, j ∈N whether

〈i, j〉<L i and 〈i, j〉<R j

or

〈i, j〉<L j and 〈i, j〉<R i.

PROOF. Because of Lemma 5.13, it suffices to show that it is possible to re-
construct from the given data the isomorphism types of the subtrees spanned by
all triples of distinct labeled leaves. For distinct i, j, k ∈ N, the isomorphism type
assignment ((i, k), j) is equivalent to

〈i, j〉 = 〈k, j〉< 〈i, k〉
and

〈i, k〉<L i and 〈i, k〉<R k,

〈i, j〉<L i and 〈i, j〉<R j,

〈k, j〉<L k and 〈k, j〉<R j.

Similar observations for the other eleven isomorphism types establish the result.
�

REMARK 5.18. We have seen that any infinite Rémy bridge (T ∞
n )n∈N has a

uniquely defined labeled version (T̃ ∞
n )n∈N [in the sense that the distribution of

the sequence (T̃ ∞
n )n∈N is uniquely specified by the distribution of the sequence

(T ∞
n )n∈N] and also that a labeled infinite Rémy bridge corresponds, via a bijection

between infinite bridge paths and didendritic systems, to a unique exchangeable
random didendritic system.

Our aim is to find concrete representations of the extremal infinite Rémy bridges
(recall that an infinite Rémy bridge is extremal if it has a trivial tail σ -field). To
this end, it will be useful to relate the extremality of an infinite Rémy bridge to
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properties of the associated exchangeable random didendritic system. We say that
an exchangeable random didendritic system D is ergodic if

P
({D ∈A}�{

Dσ ∈A
})= 0

for all permutations σ of N such that σ(i) = i for all but finitely many i ∈ N
implies that

P{D ∈A} ∈ {0,1}.
By classical results on ergodic decompositions (see, e.g., [19], Theorem A 1.4), an
exchangeable random didendritic system with distribution ε is ergodic if and only
if there is no decomposition ε = p′ε′ +p′′ε′′, where ε′, ε′′ are distinct distributions
of exchangeable random didendritic systems, p′,p′′ > 0, and p′ +p′′ = 1. Also, it
follows from Remark 5.14 and a result of Aldous (see, e.g., [19], Lemma 7.35) that
ergodicity is further equivalent to the independence of the exchangeable random
didendritic systems induced by disjoint subsets of N, where here we extend the
definition of a didendritic system in the obvious manner to allow an equivalence
relation and partial orders that are defined on an underlying countable (possibly
finite) set other than N.

PROPOSITION 5.19. An infinite Rémy bridge is extremal if and only if the
associated exchangeable random didendritic system is ergodic.

PROOF. Let T be the set of sequences of binary trees that can arise as a sample
path of an infinite Rémy bridge and let T̃ be the set of sequences of leaf-labeled
binary trees that can arise as a sample path of a labeled infinite Rémy bridge.

The distribution α of an infinite Rémy bridge has a unique representation of
the form α = ∫

Qyμ(dy) for a probability measure μ concentrated on the minimal
Doob–Martin boundary of the Rémy chain, where Qy is the distribution of the
infinite Rémy bridge corresponding to the boundary point y. The infinite Rémy
bridge is extremal if and only if μ is a point mass, which is in turn equivalent to
the condition that it is not possible to write α = p′α′ + p′′α′′, where α′, α′′ are
distributions of infinite Rémy bridges, p′,p′′ > 0, and p′ + p′′ = 1.

Recall from Remark 5.1 that if α = ∫
Qyμ(dy) is the distribution of an infinite

Rémy bridge, where Qy is the distribution of the infinite Rémy bridge correspond-
ing to the boundary point y, then �(α) := ∫

Q̃yμ(dy) is the distribution of the as-
sociated labeled infinite Rémy bridge, where Q̃y is the distribution of the labeled
infinite Rémy bridge corresponding to the boundary point y. Writing φ : T̃ → T
for the map that removes the labels from each tree in a path, we see that the map
� is bijective with inverse ϒ given by ϒ(α̃)= α̃ ◦ φ−1 when α̃ is the distribution
of a labeled infinite Rémy bridge.

It is clear that if α,α′, α′′ are distributions of infinite Rémy bridges, p′,p′′ > 0,
p′ + p′′ = 1 and α = p′α′ + p′′α′′, then �(α) = p′�(α′)+ p′′�(α′′). Similarly,
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if α̃, α̃′, α̃′′ are distributions of labeled infinite Rémy bridges, p′,p′′ > 0, p′ +
p′′ = 1, and α̃ = p′α̃′ + p′′α̃′′, then ϒ(α̃) = p′ϒ(α̃′) + p′′ϒ(α̃′′). In short, an
infinite Rémy bridge has a nontrivial tail σ -field if and only if it is distributed as
a nontrivial mixture of infinite Rémy bridges, and this in turn is equivalent to the
associated labeled infinite Rémy bridge being distributed as a nontrivial mixture
of labeled infinite Rémy bridges.

Let D be the set of didendritic systems. Write ψ : T̃ →D for the map that takes
a sequence that can arise as a sample path of a labeled infinite Rémy bridge and
turns it into a didendritic system.

Because ψ is a bijection, a probability measure γ on T̃ that is the distribution
of a labeled infinite Rémy bridge is a nontrivial mixture γ = p′γ ′ + p′′γ ′′, where
p′,p′′ > 0, p′ + p′′ = 1 and γ ′, γ ′′ are distinct distributions of labeled infinite
Rémy bridges, if and only if γ ◦ ψ−1 = p′ε′ + p′′ε′′, where ε′, ε′′ are distinct
probability measures on D (in which case ε′ = γ ′ ◦ψ−1 and ε′′ = γ ′′ ◦ψ−1).

Combining all of the above equivalent conditions establishes the result. �

REMARK 5.20. The equivalence of Proposition 5.19 is central to the subse-
quent development and so we sketch the following alternative “bare hands” proof
that is also interesting in its own right.

Consider an infinite Rémy bridge (T ∞
n )n∈N, its labeled version (T̃∞

n )n∈N, the
corresponding sequence (Ln)n∈N defined in Definition 5.2, and the associated ex-
changeable random didendritic system D = (≡, 〈·, ·〉,<L,<R).

Fix m ∈ N. For n≥m, let T̃ ∞
m,n be the random partially leaf-labeled tree that is

obtained from T̃∞
n by removing those labels that belong to [m+ 1]. Thus, m+ 1

leaves of T̃ ∞
m,n have no labels and the remaining (n + 1) − (m + 1) leaves are

labeled by elements of [n + 1] \ [m + 1]. The σ -field consisting of events of the
form {D ∈A} where A is such that P({D ∈A}�{Dσ ∈A})= 0 for all permutations
σ of N that fix N \ [m+ 1] is P-a.s. equal to σ {T̃ ∞

m,n : n≥m}.
To establish Proposition 5.19, it will therefore suffice to show that the σ -field⋂
m∈N σ {T̃ ∞

m,n : n≥m} is P-trivial if and only if the σ -field
⋂

m∈N σ {T ∞
n : n≥m}

is P-trivial. The former σ -field contains the latter, and hence it further suffices
to show that if the latter σ -field is P-trivial, then so is the former. We therefore
suppose from now on that

⋂
m∈N σ {T ∞

n : n≥m} is P-trivial.
For any m≤ n≤ p, the random partially leaf-labeled tree T̃ ∞

m,n is a measurable
function of Lm+1, . . . ,Lp and T ∞

p , so that

σ
{
T̃ ∞

m,n : n≥m
}⊆ σ {Lk : k > m} ∨ σ

{
T ∞

q : q ≥ p
}
,

for any p ≥m.
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An argument similar to that in the proof of Lemma 5.3 combined with the P-
triviality of

⋂
p≥m σ {T ∞

q : q ≥ p} gives

σ
{
T̃ ∞

m,n : n≥m
}⊆ ⋂

p≥m

(
σ {Lk : k > m} ∨ σ

{
T ∞

q : q ≥ p
})

= σ {Lk : k > m} ∨ ⋂
p≥m

σ
{
T ∞

q : q ≥ p
}

= σ {Lk : k > m} P-a.s.

Since
⋂

m∈N σ {Lk : k > m} is P-trivial by Kolmogorov’s zero-one law, it fol-
lows that

⋂
m∈N σ {T̃ ∞

m,n : n≥m} is also P-trivial, as required.

The next result shows that identifying the Doob–Martin boundary of the Rémy
chain is equivalent to characterizing the extremal infinite Rémy bridges.

COROLLARY 5.21. If y is an element of the Doob–Martin boundary of the
Rémy chain, then the corresponding nonnegative harmonic function K(·, y) is ex-
tremal; equivalently, the corresponding infinite Rémy bridge is extremal. There is
thus a bijective correspondence between the Doob–Martin boundary of the Rémy
chain and the set of extremal infinite Rémy bridges.

PROOF. Suppose that (tp)p∈N is a sequence of binary trees, where tp
has m(tp) + 1 leaves and m(tp) → ∞ as p → ∞. Suppose, moreover, that
limp→∞ tp = y for some y in the Doob–Martin boundary of the Rémy chain. We
have to show that the harmonic function K(·, y) is extremal. Writing (T ∞

n )n∈N for
the infinite Rémy bridge associated with y, this is equivalent to showing that the
tail σ -field of (T ∞

n )n∈N is P-a.s. trivial. By Proposition 5.19, this is further equiva-
lent to establishing that the exchangeable random didendritic system D associated
with (T ∞

n )n∈N is ergodic, which as we observed in Remark 5.18, is the same as
proving that the exchangeable random didendritic systems D induces on disjoint
(finite) subsets of N are independent (recall from Remark 5.18 our comment about
generalizing the notion of a didendritic system from the setting where the under-
lying set is N to the setting where the underlying set is an arbitrary countable
set).

Recall that (T
tp

1 , . . . , T
tp
m(tp)) denotes the Rémy bridge to tp . For any � ∈ N,

T
tp
� converges in distribution to T ∞

� as p →∞. We can build a labeled version

(T̃
tp

1 , . . . , T̃
tp
m(tp)) of (T

tp
1 , . . . , T

tp
m(tp)) in much the same way that we built a labeled

version of an infinite Rémy bridge: T̃
tp
m(tp) consists of the binary tree T

tp
m(tp) = tp

with its m(tp) + 1 leaves labeled uniformly at random with [m(tp) + 1] and the
backward evolution of such a labeled finite Rémy bridge is the same as that of the

labeled infinite Rémy bridge. It is clear that T̃
tp
� converges in distribution to T̃ ∞

�
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as p →∞ for all � ∈ N: indeed, T̃
tp
� and T̃ ∞

� are just T
tp
� and T ∞

� , respectively,
equipped with uniform random labelings of their �+ 1 leaves by [�+ 1].

Suppose that �≤m(tp). The labeled binary tree T̃
tp
� (resp., T̃

tp
m(tp)) can be coded

bijectively by an exchangeable random didendritic system D�,p (resp., Dp) on the
finite set [�+ 1] (resp., [m(tp)+ 1]), and D�,p is the didendritic system on [�+ 1]
induced by Dp . The labeled tree T̃ ∞

� can be coded bijectively by an exchange-
able random didendritic system D�,∞ on the finite set [� + 1], and D�,∞ is the
didendritic system on [� + 1] induced by D. It follows from the convergence in

distribution of T̃
tp
� to T̃ ∞

� as p →∞ for all � ∈N that D�,p converges in distribu-
tion to D�,∞ as p →∞ for all � ∈N.

Let I denote the set of twelve possible isomorphism types for a labeled binary
tree with three leaves. We know from Lemma 5.13 that D can be coded bijectively
by a jointly exchangeable random array Z∞, say, indexed by {(i, j, k) : i, j, k ∈
N, i, j, k distinct} with values in I . Similarly, D�,p , Dp and D�,∞ can be coded
bijectively by arrays that we denote by Z�,p , Zp and Z�,∞. The array Z�,p (resp.,
Z�,∞) is just the subarray of Zp (resp., Z∞) consisting of the entries indexed by
{(i, j, k) : i, j, k ∈ [�+ 1], i, j, k distinct}. It follows from the convergence of D�,p

in distribution to D�,∞ that Z�,p converges in distribution to Z�,∞ as p →∞ for
all � ∈N.

Suppose that H1, . . . ,Hs are disjoint finite subsets of N. We need to show that
the exchangeable random didendritic systems that D induces on these sets are in-
dependent. This is equivalent to establishing that the subarrays of Z∞ consisting
of entries indexed by {(i, j, k) : i, j, k ∈ Hr, i, j, k distinct}, 1 ≤ r ≤ s, are inde-
pendent. Taking � so that H1 � · · · �Hs ⊆ [�+ 1], this is the same as proving that
the subarrays of Z�,∞ consisting of entries indexed by these same sets of triples
are independent.

We can build the array Z�,p using the binary tree tp and random variables
ξ1, . . . , ξ�+1 that form a sequence of uniform random draws without replacement
from the leaves of tp: the (i, j, k) entry of the array is the isomorphism type of
the subtree of tp spanned by the leaves ξi, ξj , ξk . Let † be an element not in I ,
take ζ1, . . . , ζ�+1 to be independent uniform random draws (with replacement)
from the leaves of tp , and define an array Z†

�,p with the same index set as Z�,p

but with values in I � {†} by letting the (i, j, k) entry of the array be the isomor-
phism type of the subtree of tp spanned by the leaves ζi, ζj , ζk if ζi, ζj , ζk are
distinct and † otherwise. A familiar coupling argument shows that it is possible
to construct ξ1, . . . , ξ�+1 and ζ1, . . . , ζ�+1 on the same probability space in such a
way that P{∃1 ≤ i ≤ �+ 1 : ξi �= ζi} depends on tp only through m(tp) and con-
verges to zero as m(tp) →∞; more specifically, we first construct ζ1, . . . , ζ�+1,
set (ξ1, . . . , ξ�+1) = (ζ1, . . . , ζ�+1) if ζ1, . . . , ζ� are distinct and let (ξ1, . . . , ξ�) be
some other independent sequence of uniform draws without replacement from the
leaves of tp otherwise. Thus, P{Z�,p �= Z†

�,p} depends on tp only through m(tp)
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and converges to zero as m(tp)→∞. The subarrays of Z†
�,p consisting of entries

indexed by {(i, j, k) : i, j, k ∈ Hr, i, j, k distinct}, 1 ≤ r ≤ s, are obviously inde-
pendent because they are built from the binary tree tp and the disjoint collections
of random variables {ζi : i ∈Hr}, 1 ≤ r ≤ s.

Combining the convergence in distribution of Z�,p to Z�,∞ as p →∞, the con-
vergence to zero as p →∞ of the total variation distance between the distribution
of Z�,p and the distribution of Z†

�,p , and the observation that the subarrays of Z†
�,p

consisting of entries indexed by {(i, j, k) : i, j, k ∈ Hr, i, j, k distinct}, 1 ≤ r ≤ s,
are independent, it is clear that the subarrays of Z�,∞ indexed by these same sets
of triples are independent, as required. �

6. A real tree associated with an extremal infinite Rémy bridge. With
Corollary 5.21 in hand, the task of identifying the Doob–Martin boundary of the
Rémy chain reduces to characterizing the extremal infinite Rémy bridges, where
we stress that such a characterization will also determine the topological structure
of the boundary because convergence of boundary points is equivalent to con-
vergence of finite-dimensional distributions of the corresponding infinite Rémy
bridges.

The construction of Section 5 used the labeled version of an infinite Rémy
bridge (equivalently, an exchangeable random didendritic system) to provide an
embedding of N as the leaves of a tree-like combinatorial object whose vertices
correspond to equivalence classes of the didendritic system’s equivalence relation.
In this section, we embed this tree-like object into an R-tree by constructing a
metric on the set of equivalence classes. We assume throughout this section that
(≡, 〈·, ·〉,<L,<R) is an ergodic exchangeable random didendritic system and that
(T̃ ∞

n )n∈N is the labeled version of the associated extremal infinite Rémy bridge.
Consider i, j ∈N. For p ∈N set

(6.1) Ip := 1
{〈i, j〉 ≤ p

}
(recall our convention of writing p for the equivalence class 〈p,p〉).

By construction, the sequence of random variables (Ip)p>i∨j is exchangeable.
Hence, by de Finetti’s theorem and the strong law of large numbers,

(6.2) d(i, j) := lim
n→∞

1

n

n∑
p=1

Ip

exists almost surely.

LEMMA 6.1. Almost surely, d is a ultrametric on N. That is, almost surely the
following hold:

• For all i, j ∈N, d(i, j)≥ 0, and d(i, j)= 0 if and only if i = j .
• For all i, j ∈N, d(i, j)= d(j, i).



262 S. N. EVANS, R. GRÜBEL AND A. WAKOLBINGER

• For all i, j, k ∈N, d(i, k)≤ d(i, j)∨ d(j, k).

A fortiori, d is almost surely a metric on N.

PROOF. We first show for fixed distinct i, j ∈N that d(i, j) > 0 almost surely.
By exchangeability, de Finetti’s theorem and the strong law of large numbers, the
event {d(i, j) = 0} coincides almost surely with the event {Ip = 0 ∀p /∈ {i, j}} =
{�p /∈ {i, j} : 〈i, j 〉 ≤ p}. For i, j ∈ [n + 1], the event {Ip = 0 ∀p ∈ [n + 1],p /∈
{i, j}} = {�p ∈ [n + 1] \ {i, j} : 〈i, j 〉 ≤ p} is the event that in the representation
of T̃ ∞

n as a subset of {0,1}∗ labeled by [n+ 1], there is an interior vertex u1 · · ·u�

such that i labels u1 · · ·u�0 and j labels u1 · · ·u�1 or vice versa (i.e., the two leaves
of T̃ ∞

n labeled by i and j are siblings and form what is often called a “cherry”).
Now, the number of cherries in T̃ ∞

n is at most 
n+1
2 �, and so the probability that i

and j label the leaves of the same cherry is at most 2
n+1
2 � 1

n+1
1
n

. Thus,

P
{
d(i, j)= 0

}= lim
n→∞P

{
Ip = 0 ∀p ∈ [n+ 1],p /∈ {i, j}}= 0.

It is clear that almost surely d(i, i)= 0 and d(i, j)= d(j, i).
Lastly, for i, j, k ∈ N we have that 〈i, j 〉 = 〈j, k〉 ≤ 〈k, i〉 or one of the two

other similar inequalities obtained by cyclically permuting i, j, k holds. Therefore,
d(k, i) ≤ d(i, j) = d(j, k) almost surely or one of the two other similar inequali-
ties obtained by cyclically permuting i, j, k holds. �

For t ∈ R+ define an equivalence relation ∼t on N by declaring that i ∼t j if
and only if d(i, j) ≤ t . Note that we can identify N with the equivalence classes
of ∼0. We now extend the metric d to a metric on the set Uo of pairs of the form
(B, t), where t ∈ R+ and B is an equivalence class of ∼t . Given an equivalence
class A of ∼s and an equivalence class B of ∼t , set

H
(
(A, s), (B, t)

) := inf{u≥ s ∨ t : k ∼u � ∀k ∈A,� ∈ B}
and

d
(
(A, s), (B, t)

) := 1

2

([
H

(
(A, s), (B, t)

)− s
]+ [

H
(
(A, s), (B, t)

)− t
])

.

For i, j ∈ N, we have H(({i},0), ({j},0)) = d(i, j) and so d(({i},0), ({j},0)) =
d(i, j), confirming that we have an extension of the original definition of d . It is
straightforward to check that this extension of d is a metric on Uo that satisfies
the four-point condition; that is, for 4 elements w,x, y, z ∈ U0 at least one of the
following conditions holds:

• d(w,x)+ d(y, z)≤ d(w,y)+ d(x, z)= d(w, z)+ d(x, y),
• d(w, z)+ d(x, y)≤ d(w,x)+ d(y, z)= d(w,y)+ d(x, z),
• d(w,y)+ d(x, z)≤ d(w, z)+ d(x, y)= d(w,x)+ d(y, z).



RÉMY’S TREE GROWTH CHAIN 263

It is, moreover, not difficult to show that the metric space (Uo, d) is connected and
hence it is an R-tree (see [13], Example 3.41, for more details). The completion
(U, d) of (Uo, d) is also an R-tree that is complete and separable.

There is a natural partial order on the R-tree (Uo, d) defined by the requirement
that the pair (A, s) precedes the pair (B, t) if A ⊇ B and s > t . If we consider
the subtree of (U, d) [equivalently, of (Uo, d)] spanned by the set {({i},0) : i ∈
[n + 1]}, then combinatorially we have a leaf-labeled tree. The vertices of this
combinatorial tree correspond to pairs of the form (Bij , d(i, j)), i, j ∈ [n + 1],
where Bij is the equivalence class {k ∈ N : d(i, k) ≤ d(i, j)} = {k ∈ N : d(j, k) ≤
d(i, j)}. Moreover, the combinatorial tree inherits the partial order from (Uo, d)

and the vertex (Bij , d(i, j)) is the most recent common ancestor of the leaves
({i},0) and ({j},0) in this partial order.

We claim that this leaf-labeled tree with its partial order is isomorphic to T̃ ∞
n ,

with the vertex (Bij , d(i, j)) corresponding to the vertex [i, j ]n and, in particu-
lar, the leaf ({i},0) corresponding to the leaf i. This is equivalent to showing the
following.

LEMMA 6.2. For distinct i, j, k ∈ [n+1], [i, k]n = [j, k]n < [i, j ]n if and only
if d(i, k)= d(j, k) > d(i, j).

PROOF. It suffices to show that [i, k]n = [j, k]n if and only if d(i, k)= d(j, k)

and [j, k]n < [i, j ]n if and only if d(j, k) > d(i, j). Note that [i, k]n = [j, k]n if
and only if it is not the case that [i, k]n < [j, k]n or [i, k]n > [j, k]n. Similarly,
d(i, k) = d(j, k) if and only if it is not the case that d(i, k) > d(j, k) or d(i, k) <

d(j, k). It will thus further suffice to show for distinct i, j, k ∈ [n+1] that [j, k]n <

[i, j ]n if and only if d(j, k) > d(i, j).
It is clear that if d(j, k) > d(i, j), then 〈j, k〉 < 〈i, j〉, and hence [j, k]n <

[i, j ]n. For the reverse implication, we certainly have that [j, k]n < [i, j ]n (and
hence 〈j, k〉< 〈i, j〉) implies that d(j, k)≥ d(i, j), and thus we only need to rule
out the possibility of equality.

By exchangeability, de Finetti’s theorem and the strong law of large numbers,
the event {〈j, k〉< 〈i, j〉, d(j, k)= d(i, j)} coincides almost surely with the event

{〈j, k〉< 〈i, j〉}∩ {
�p ∈N \ {k} : 〈j, k〉 ≤ p, 〈i, j〉 �≤ p

}
.

In order to show that the probability of the latter event is zero, it suffices to show
that for m≥ n the probability of the event

{[j, k]m < [i, j ]m}∩ {
�p ∈ [m+ 1] \ {k} : [j, k]m ≤ p, [i, j ]m �≤ p

}
converges to zero as m →∞. In words, the last event occurs when the sibling of
the most recent common ancestor in T̃∞

m of the leaves labeled i and j is a leaf and
that leaf is labeled by k. If we condition on T ∞

m and the locations of the leaves
labeled i and j , then the conditional probability of the last event is either 1

m−1
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or 0, depending on whether the sibling of the most recent common ancestor of the
leaves labeled i and j is a leaf, and so the (unconditional) probability of the last
event certainly converges to zero as m→∞. �

Write To for the subtree of Uo (and hence of U) spanned by the set {({i},0) : i ∈
N} and let T be the closure of To in U. We denote the restriction of the metric d to
T also by d . From the above considerations, we infer immediately the following.

PROPOSITION 6.3. There is an injective mapping from the set of equivalence
classes 〈i, j〉, i, j ∈ N, of the ergodic didendritic system (≡, 〈·, ·〉,<L,<R) into
the complete, separable R-tree T constructed above such that the distance d(i, j)

defined by (6.2) coincides with the distance in T between the images of equivalence
classes 〈i, i〉 and 〈j, j〉.

From now on we will, with a slight abuse of notation, think of the equivalence
classes 〈i, j〉, i, j ∈N, (including the leaves i = 〈i, i〉, i ∈N) as being elements of
the R-tree (T, d).

REMARK 6.4. Consider two equivalence classes 〈h, i〉 and 〈j, k〉. Recall that
the most recent common ancestor of 〈h, i〉 and 〈j, k〉 is of the form 〈�,m〉, where
� ∈ {h, i} and m ∈ {j, k}. In terms of the metric d , � and m are any such pair for
which d(�,m)= d(h, j)∨ d(h, k)∨ d(i, j)∨ d(i, k). We therefore have

d
(〈h, i〉, 〈j, k〉)= 1

2

([
d(�,m)− d(h, i)

]+ [
d(�,m)− d(j, k)

])

= d(h, j)∨ d(h, k)∨ d(i, j)∨ d(i, k)− 1

2

(
d(h, i)+ d(j, k)

)
.

In particular,

d
(
i, 〈i, j〉)= 1

2
d(i, j),

as we would expect.

REMARK 6.5. It follows from the construction of T that max{d(x, y) : x, y ∈
T} ≤ 1. For n ∈ N, let ρn be the most recent common ancestor of 1,2, . . . , n+ 1
with respect to the partial order <. Note that ρn = 〈i, j〉 ∈ T for distinct i, j ∈
[n+ 1]. The successive points ρ1, ρ2, . . . are linearly ordered along a geodesic ray
in T. Because T is a complete separable R-tree with a finite diameter, it follows
that (ρn)n∈N is a Cauchy sequence, and hence convergent to a point ρ ∈ T. We can,
as with any rooted R-tree, define a partial order on T by declaring that x precedes
y if and only if x �= y and x belongs to the geodesic segment [ρ,y] between ρ and
y (equivalently, [ρ,x]� [ρ,y]).
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The following result is now immediate.

PROPOSITION 6.6. The partial order on T defined by the root ρ extends the
partial order < on the equivalence classes {〈i, j〉 : i, j ∈ N}, and the most recent
common ancestor of 〈h, i〉 and 〈j, k〉 is the equivalence class 〈�,m〉 such that
[ρ, 〈�,m〉] = [ρ, 〈h, i〉] ∩ [ρ, 〈j, k〉].

EXAMPLE 6.7. Consider the infinite Rémy bridge in Example 4.1. A concrete
realization of the R-tree (T, d) can be constructed as follows. Let (Un)n∈N be a
sequence of independent random variables that each have the uniform distribution
on [0,1]. Take the interval [0, 1

2 ] and build an R-tree by, for each n ∈N, attaching
one end of a closed line segment of length 1

2Un to the point 1
2Un ∈ [0, 1

2 ] and
labeling the other end of the line segment with n. The distance between i and j in
the resulting R-tree is then∣∣∣∣1

2
Ui − 1

2
Uj

∣∣∣∣+ 1

2
Ui + 1

2
Uj =Ui ∨Uj .

For i �= j , we can identify 〈i, j〉 with 1
2(Ui ∨ Uj) ∈ [0, 1

2 ]. For i �= j and k �= �,
we have 〈i, j〉< k if Ui ∨Uj > Uk and 〈i, j〉< 〈k, �〉 if Ui ∨Uj > Uk ∨U�. Note
that, as required, the distance between i and j is

Ui ∨Uj = lim
n→∞

1

n

n∑
p=1

1{Ui ∨Uj ≥Up} = lim
n→∞

1

n

n∑
p=1

1
{〈i, j〉 ≤ p

}
.

The root ρ is the point 1
2 in the interval [0, 1

2 ].

EXAMPLE 6.8. Consider the infinite Rémy bridge in Example 4.2. A concrete
realization of the R-tree (T, d) can be constructed as follows. Take the complete
binary tree {0,1}∗ and join two elements of the form v1 · · ·vk and v1 · · ·vkvk+1
with a segment of length 1

2k+2 . This gives an R-tree such that if u1 · · ·um and
v1 · · ·vn are elements of {0,1}∗ for which p = max{j : uj = vj }, then the distance
between the corresponding points in the R-tree is

(
1

2p+2 +
1

2p+3 + · · · + 1

2m+1

)
+

(
1

2p+2 +
1

2p+3 + · · · + 1

2n+1

)
.

We can identify (T, d) with the completion of this R-tree. There is a bijective cor-
respondence between {0,1}∞ and the points “added” in passing to the completion.
The distance between the points in the completion corresponding to u1u2 · · · and
v1v2 · · · in {0,1}∞ with p = max{j : uj = vj } is

(
1

2p+2 +
1

2p+3 + · · ·
)
+

(
1

2p+2 +
1

2p+3 + · · ·
)
= 1

2p
.
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7. The sampling measure on the real tree. Throughout this section, let
(T, d) be the R-tree constructed in Section 6 from an ergodic exchangeable random
didendritic system D = (≡, 〈·, ·〉,<L,<R) [equivalently, from the labeled version
(T̃∞

n )n∈N of an extremal infinite Rémy bridge (T ∞
n )n∈N]. Recall from Proposi-

tion 6.6 that we can extend the partial order < to all of T.

DEFINITION 7.1. Suppose that V is a complete separable R-tree with finite
diameter. A leaf of V is a point x ∈ V such that there do not exist two points
y, z ∈ V for which x is in the interior of the segment between y and z. The R-tree
V is spanned by its set of leaves.

An isolated leaf of a complete separable R-tree V is a leaf x ∈ V such that for
some ε the open ball of radius ε centered at x is a half-open line segment with x at
the closed end of the segment. There is a maximal such ε and we write [x,�(x))

for the corresponding half-open line segment. For a leaf x that is not isolated, we
set �(x) := x.

The core of V is the subtree �(V) spanned by the set of points of the form �(x)

as x ranges over the leaves of V. It is not hard to show that �(V) is a closed R-tree
and that �(x) is the unique point of �(V) that is closest to the leaf x and so we
think of �(x) as the point of attachment of x to the core. Also, if for a leaf x ∈ V
we let Vx be the closure of the subtree of V spanned by the leaves of V other than
x, then �(V)=⋂

x Vx .

LEMMA 7.2. (a) The core of T is the closure of the subtree spanned by the set
{〈i, j〉 : i, j ∈N, i �= j}.

(b) For all i ∈N,

d
(
i,�(i)

)= inf
{
d
(
i, 〈i, j〉) : j ∈N, j �= i

}
= inf

{
d
(
j, 〈i, j〉) : j ∈N, j �= i

}

= 1

2
inf

{
d(i, j) : j ∈N, j �= i

}

and if (jn)n∈N is any sequence in N \ {i} such that limn→∞ d(i, 〈i, jn〉) =
d(i,�(i)), then �(i)= limn→∞〈i, jn〉.

(c) For i ∈N, �(i)≤ i.
(d) For i, j ∈N with i �= j , �(i) �=�(j).
(e) For i, j ∈N with i �= j , the most recent common ancestor of �(i) and �(j)

in the partial order that the core �(T) inherits from T is 〈i, j〉 and

d(i, j)= lim
n→∞

1

n

n∑
p=1

1
{〈i, j〉 ≤�(p)

}
.

(f) Under our standing ergodicity assumption, the isometry class of �(T) to-
gether with the partial order on �(T) inherited from the partial order < is constant
almost surely.
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PROOF. Parts (a), (b) and (c) are straightforward and are left to the reader.
For part (d), suppose that �(i) = �(j) for i �= j . By part (c), �(i) = �(j) ≤
〈i, j〉. Thus, by part (b), �(i) = �(j) = 〈i, j〉 and d(i,�(i)) = d(i,�(j)) =
d(j,�(i)) = d(j,�(j)) = d(i, 〈i, j〉) = d(j, 〈i, j〉) = 1

2d(i, j). This is not pos-
sible unless i and j are both isolated. By the definition of d(i, j), there are
infinitely many p ∈ N \ {i, j} such that 〈i, j〉 ≤ p. For any such p we must
have either 〈i, j〉 < 〈i, p〉 or 〈i, j〉 < 〈j,p〉, so that d(i, 〈i, p〉) < d(i, 〈i, j〉) or
d(j, 〈j,p〉) < d(j, 〈i, j〉), but this contradicts �(i)=�(j)= 〈i, j〉.

Part (e) is also clear and is left to the reader.
For part (f), note first of all that if σ is a permutation of N such that σ(i) = i

for all but finitely many i ∈N and (≡σ , 〈·, ·〉σ ,<σ
L,<σ

R) is the random didendritic
system defined in Definition 5.11, then the isometry class of �(T) as a random
complete separable metric space is unchanged if we replace (≡, 〈·, ·〉,<L,<R) by
(≡σ , 〈·, ·〉σ ,<σ

L,<σ
R). Our standing ergodicity assumption gives that the isometry

class of �(T) is constant almost surely.
The root ρ defined in Remark 6.5 is an element of �(T). It is clear that the

location of ρ is unchanged if we replace D = (≡, 〈·, ·〉,<L,<R) by Dσ = (≡σ ,

〈·, ·〉σ ,<σ
L,<σ

R), and so the restriction of the random partial order < to �(T) is
also constant. �

EXAMPLE 7.3. Consider the R-tree T constructed in Example 6.7 from the
infinite Rémy bridge introduced in Example 4.1. The core of T is the interval
[0, 1

2 ].
Consider the maps κ− : N→ N and κ+ : N→ N given by κ−(n) = 2n− 1 and

κ+(n) = 2n, n ∈ N. Define the exchangeable random didendritic systems D− =
(≡−, 〈·, ·〉−,<−,L,<−,R) and D+ = (≡+, 〈·, ·〉+,<+,L,<+,R) by

(h, i)≡− (j, k) ⇐⇒ (
κ−(h), κ−(i)

)≡ (
κ−(j), κ−(k)

)
and

(h, i)≡+ (j, k) ⇐⇒ (
κ+(h), κ+(i)

)≡ (
κ+(j), κ+(k)

)
,

〈i, j〉− is the ≡− equivalence class of (i, j)

and

〈i, j〉+ is the ≡+ equivalence class of (i, j),

〈h, i〉− <−,L 〈j, k〉− ⇐⇒ 〈
κ−(h), κ−(i)

〉
<L

〈
κ−(j), κ−(k)

〉
and

〈h, i〉+ <+,L 〈j, k〉+ ⇐⇒ 〈
κ+(h), κ+(i)

〉
<L

〈
κ+(j), κ+(k)

〉
,

and

〈h, i〉− <−,R 〈j, k〉− ⇐⇒ 〈
κ−(h), κ−(i)

〉
<R

〈
κ−(j), κ−(k)

〉
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and

〈h, i〉+ <+,R 〈j, k〉+ ⇐⇒ 〈
κ+(h), κ+(i)

〉
<R

〈
κ+(j), κ+(k)

〉
.

Define the partial orders <− and <+ on {〈i, j〉+ : i, j ∈N}, respectively, by declar-
ing that

〈h, i〉− <− 〈j, k〉− ⇐⇒ 〈
κ−(h)κ−(i)

〉
<

〈
κ−(j), κ−(k)

〉
and

〈h, i〉+ <− 〈j, k〉+ =⇒ 〈
κ+(h)κ+(i)

〉
<

〈
κ+(j), κ+(k)

〉
,

or, equivalently,

〈h, i〉− <− 〈j, k〉− ⇐⇒ 〈h, i〉− <−,L 〈j, k〉− or 〈h, i〉− <−,R 〈j, k〉−
and

〈h, i〉+ <+ 〈j, k〉+ ⇐⇒ 〈h, i〉+ <+,L 〈j, k〉+ or 〈h, i〉+ <+,R 〈j, k〉+.

By exchangeability, the random didendritic systems D−, D+ and D have the
same distribution. By the ergodicity of D, the random didendritic systems D−
and D+ are independent. Construct random partially ordered R-trees (T−,<−)

and (T+,<+) from D− and D+ in the same manner that (T,<) was constructed
from D.

By de Finetti’s theorem and the strong law of large numbers,

lim
n→∞

1

n

n∑
p=1

1
{〈i, j〉 ≤ p

} = lim
n→∞

1

n

n∑
p=1

1
{〈i, j〉 ≤ 2p − 1

}

= lim
n→∞

1

n

n∑
p=1

1
{〈i, j〉 ≤ 2p

}

for any i, j ∈ N. Therefore, the distance between k and � in T− (resp. T+) is
the same as the distance between κ−(k) and κ−(�) [resp. κ+(k) and κ+(�)] in T,
and hence we may (and will) identify T− and T+ with the closures in T of the
respective sets 2N− 1 and 2N.

The set �(T) is the closure of the subtree spanned by the set of attachment
points {�(i) : i ∈N} and, by part (a) of Lemma 7.2, also the closure of the subtree
spanned by the set of points {〈j, k〉 : j, k ∈N, j �= k}. It is clear that �(T−)⊆ �(T)

and �(T+)⊆ �(T). It follows from Remark 11.2 and the second proof of Proposi-
tion 3.16 in [17] that almost surely for any δ > 0 and i ∈N, there exists j, k ∈ 2N−
1 (resp. j, k ∈ 2N) with d(�(i), 〈j, k〉) < δ and hence �(T−)= �(T+)= �(T).

For the benefit of the reader, we sketch the argument from [17] in our notation.
Fix ε > 0 and a deterministic sequence 0 < h

(ε)
1 < h

(ε)
2 < . . . ↑∞ such that h

(ε)
1 <

ε, h
(ε)
n+1 − h

(ε)
n < ε, and P{d(i,�(i)) = h

(ε)
n } = 0 for all i, n ∈ N. Set h

(ε)
0 = 0.
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Define an exchangeable equivalence relation ∼ε on N by declaring that i ∼ε j ,
i, j ∈ N, i �= j , if d(i,�(i)), d(j,�(j)), d(i, 〈i, j〉) = d(j, 〈i, j〉) ∈ [h(ε)

n−1, h
(ε)
n )

for some n ∈N. Note that if i ∼ε j , i, j ∈N, i �= j , then

d
(
�(i), 〈i, j〉)∨ d

(
�(j), 〈i, j〉) < ε.

The crucial observation, stated and proved as (11.4) of [17], is that almost surely
the exchangeable equivalence relation ∼ε does not have any singleton equivalence
classes. It then follows from Kingman’s paintbox construction of exchangeable
equivalence relations that almost surely for any i ∈ N there exists j, k ∈ 2N − 1
(respectively, j, k ∈ 2N) with i, j, k distinct and i ∼ε j ∼ε k, and hence

d
(
�(i), 〈j, k〉)≤ d

(
�(i), 〈i, j〉)+ d

(〈i, j〉,�(j)
)+ d

(
�(j), 〈j, k〉) < 3ε.

Let �− and �+ be the analogues of � for (T−,<−) and (T+,<+). For i ∈N,
we have that �+(i), the closest point in �(T+) to i (where we stress that i la-
bels an element of T+), is an element of �(T−) = �(T+). It follows from the
exchangeability inherent in our construction that (�+(i))i∈N is an exchangeable
sequence of random elements of �(T−). By our standing ergodicity assumption
and de Finetti’s theorem, the random elements in this sequence are independent
and identically distributed, and it is a consequence of part (d) of Lemma 7.2 that
their common distribution is, prefiguring the notation in the statement of Propo-
sition 7.4 below, a diffuse probability measure μ on the R-tree S := �(T) that is
contained in T and rooted in θ := ρ. The probability measure μ and the R-tree S
are the objects addressed in this section’s title.

For i, j ∈ N with i �= j , part (e) of Lemma 7.2 gives that 〈i, j〉+ is the most
recent common ancestor of �+(i) and �+(j) in the partial order <+. More-
over, 〈i, j〉+ ≤+ �+(p) if and only if [ρ,�+(i)] ∩ [ρ,�+(j)] ⊆ [ρ,�+(i)] ∩
[ρ,�+(p)] or [ρ,�+(i)] ∩ [ρ,�+(j)] ⊆ [ρ,�+(j)] ∩ [ρ,�+(p)], where [ρ,x]
is the geodesic segment between ρ and x in �(T)= �(T−)= �(T+), and so if we
write d+(i, j) for the distance between i, j ∈ N, i �= j , in T+, we have from part
(e) of Lemma 7.2 that

d+(i, j)= lim
n→∞

1

n

n∑
p=1

1
({[

ρ,�+(i)
]∩ [

ρ,�+(j)
]⊆ [

ρ,�+(i)
]∩ [

ρ,�+(p)
]}

∪ {[
ρ,�+(i)

]∩ [
ρ,�+(j)

]⊆ [
ρ,�+(j)

]∩ [
ρ,�+(p)

]})
.

Because (T+,<+) has the same distribution as (T,<), we have established the
following result.

PROPOSITION 7.4. Suppose that ≡, 〈·, ·〉 and < are the equivalence rela-
tion on N×N, the equivalence classes and the partial order on those equivalence
classes arising from an ergodic exchangeable random didendritic system (equiv-
alently, from the labeled version of an extremal infinite Rémy bridge). There is a
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complete separable R-tree S, a point θ ∈ S, and a diffuse probability measure μ

on S such that the following hold. Let ξ1, ξ2, . . . be i.i.d. random elements of S with
common distribution μ. Define a random equivalence relation ≡# on N × N by
declaring that (i, i) ≡# (k, �) if and only if (i, i) = (k, �), and (i, j) ≡# (k, �) for
i �= j and k �= � if and only if [θ, ξi] ∩ [θ, ξj ] = [θ, ξk] ∩ [θ, ξ�], where [θ, x] is the
geodesic segment between θ and x, in S. Denote the equivalence class contain-
ing (i, j) ∈ N× N by 〈i, j〉#. Define a partial order <# on the set of equivalence
classes by declaring that 〈i, j〉# <# 〈i, i〉# for all i �= j and that 〈i, j〉# <# 〈k, �〉#
for i �= j and k �= � if [θ, ξi]∩ [θ, ξj ]� [θ, ξk]∩ [θ, ξ�]. The object (≡#, 〈·, ·〉#,<#)

has the same distribution as (≡, 〈·, ·〉,<).

8. Distinguishing between left and right. Throughout this section, let (T, d)

be the R-tree constructed in Section 6 from an ergodic exchangeable random di-
dendritic system D = (≡, 〈·, ·〉,<L,<R) [equivalently, from the labeled version
(T̃ ∞

n )n∈N of an extremal infinite Rémy bridge (T ∞
n )n∈N].

Let S, θ and μ be the objects described in Proposition 7.4. Thus, S is a complete
separable R-tree, θ is an element of S, and μ is a diffuse probability measure on S.
Further, let ξ1, ξ2, . . . be i.i.d. random elements of S with common distribution μ.
We may suppose that (i, i) ≡ (k, �) if and only if (i, i) = (k, �) and that (i, j) ≡
(k, �) for i �= j and k �= � if and only if [θ, ξi] ∩ [θ, ξj ] = [θ, ξk] ∩ [θ, ξ�], where
we recall that [θ, x] is the geodesic segment between θ and x in S.

Recall from Lemma 5.17 that if we know the equivalence relation ≡ and the
partial order < of the didendritic system D, then the partial orders <L and <R (and
hence the didendritic system) is uniquely determined by the specification for all
distinct i, j ∈N whether 〈i, j〉<L i and 〈i, j〉<R j or 〈i, j〉<R i and 〈i, j〉<L j .

Put

Jij := 1
{〈i, j〉<L i, 〈i, j〉<R j

}
for (i, j) ∈ N×N \ δ, where δ := {(k, k) : k ∈ N}. Note for all (i, j) ∈ N× N \ δ

that Jij = 1 if and only if Jji = 0.
It follows from the exchangeability and ergodicity of D that the random

array J is jointly exchangeable and ergodic and, indeed, the random array
(ξi, ξj , Jij )(i,j)∈N×N\δ is also jointly exchangeable and ergodic. Therefore, by the
Aldous–Hoover–Kallenberg theory of such random arrays, we may suppose that
on some extension of our underlying probability space there exist i.i.d. random
variables (Ui)i∈N, and (Uij )i,j∈N,i<j that are uniform on [0,1] and a function
F : (S× [0,1])2 × [0,1]→ {0,1} such that

Jij = F(ξi,Ui, ξj ,Uj ,Uij ),

where Uij = Uji for i > j (here < is the usual order on N) (see [19], Theo-
rem 7.22, Lemma 7.35). Because Jij = 1 − Jji , the function F has the property
F(y, v, x,u,w)= 1− F(x,u, y, v,w).
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If i, j, k ∈ N are distinct, we have Jij = Jik on the event {〈i, j〉 = 〈i, k〉 <

〈j, k〉} = {[θ, ξi] ∩ [θ, ξj ] = [θ, ξi] ∩ [θ, ξk]� [θ, ξj ] ∩ [θ, ξk]}. That is, F(ξi,Ui,

ξj ,Uj ,Uij ) = Jij = Jik = F(ξi,Ui, ξk,Uj ,Uik) ∈ {0,1} on the latter event. Sim-
ilarly, 1 − F(ξi,Ui, ξj ,Uj ,Uij ) = Jji = Jjk = F(ξj ,Uj , ξk,Uk,Ujk) ∈ {0,1} on
the event {〈j, i〉 = 〈j, k〉< 〈i, k〉} = {[θ, ξj ] ∩ [θ, ξi] = [θ, ξj ] ∩ [θ, ξk]� [θ, ξi] ∩
[θ, ξk]}.

By Lemma 6.1,

P
{〈k, i〉 = 〈k, j〉< 〈i, j〉 ∀k /∈ {i, j}}= 0,

and Lemma 8.1 below then gives that

(8.1) Jij =W(ξi,Ui, ξj ,Uj )

almost surely for some Borel function W : (S× [0,1])2 →{0,1}.
The intuition for (8.1) being true is firstly that if we had 〈k, i〉 = 〈k, j〉< 〈i, j〉

for all k /∈ {i, j}, so that {i, j} is a cherry, then there could be a need to use the
randomization provided by Uij to build Jij ; that is, F(ξi,Ui, ξj ,Uj ,Uij ) could
depend on Uij . However, cherries do not occur with positive probability because
of Lemma 6.1. Moreover, on the event where 〈i, j〉 = 〈i, k〉 < 〈j, k〉 for at least
one, and hence infinitely many, k /∈ {i, j}, it follows that F(ξi,Ui, ξj ,Uj ,Uij ) =
F(ξi,Ui, ξk,Uk,Uik) for all such k, which cannot happen if (x,u, y, v,w) �→
F(x,u, y, v,w) has a genuine functional dependence on (v,w), and hence only
the extra randomization provided by Ui (rather than that provided by Uj and
Uij ) might be needed to build Jij . Similarly, on the event where 〈i, j〉 = 〈j, k〉 <

〈i, k〉 for at least one, and hence infinitely many, k /∈ {i, j}, it follows that
F(ξi,Ui, ξj ,Uj ,Uij ) = F(ξk,Uk, ξj ,Uj ,Ukj ) for all such k and only the extra
randomization provided by Uj (rather than that provided by Ui and Uij ) might be
needed to build Jij . Lastly, on the event where 〈i, k〉 > 〈i, j〉 = 〈k, �〉 = 〈i, �〉 =
〈k, j〉< 〈j, �〉 for at least one, and hence infinitely many, pairs k, � /∈ {i, j}, it fol-
lows that F(ξi,Ui, ξj ,Uj ,Uij )= F(ξk,Uk, ξ�,U�,Uk,�) for all such pairs k, � and
there is no need for the extra randomization provided by Ui , Uj or Uij to build Jij .

We now give the promised formal argument for (8.1).

LEMMA 8.1. Consider on some probability space (�,F,P) independent ran-
dom elements X1, X2, X3 of some Borel space (D,D) and Y12, Y13, Y23 of
some Borel space (E,E). Suppose that X1, X2, X3 have the same diffuse prob-
ability distribution α and that Y12, Y13, Y23 have the same diffuse probability
distribution β . Write B for the subset of D3 that consists of triplets with dis-
tinct entries. Given an ordered listing i, j, k of {1,2,3} and a set C ⊆ B , put
Cijk := {(x1, x2, x3) ∈ B : (xi, xj , xk) ∈ C}. Suppose that there is a set A ∈ D3

such:

• A123 =A132,
• A213 =A231,
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• A312 =A321,
• these 3 sets are pairwise disjoint and their union is B .

Suppose further that

α⊗2{
(x1, x2) ∈D2 : α{

x3 ∈D : (x1, x2, x3) ∈ B \A312
}= 0

}
= α⊗2{

(x1, x2) ∈D2 : α{
x3 ∈D : (x1, x2, x3) ∈ B \A321

}= 0
}

= 0.

Consider a Borel function H :D2 ×E →{0,1} such that:

• H(X1,X2, Y12) = H(X1,X3, Y13) on the event {(X1,X2,X3) ∈ A} = {(X1,

X3,X2) ∈A},
• H(X1,X2, Y12) = 1 − H(X2,X3, Y23) on the event {(X2,X1,X3) ∈ A} =
{(X2,X3,X1) ∈A}.

Then there exists a Borel function K : D2 → {0,1} such that H(X1,X2, Y12) =
K(X1,X2) almost surely.

PROOF. For (x1, x2, y12) ∈D2 ×E with x1 �= x2, we have∫
D×E

H(x1, x2, y12)1A123(x1, x2, x3)α ⊗ β
(
d(x3, y13)

)

=
∫
D×E

H(x1, x3, y13)1A123(x1, x2, x3)α ⊗ β
(
d(x3, y13)

)

and ∫
D×E

H(x1, x2, y12)1A213(x1, x2, x3)α ⊗ β
(
d(x3, y23)

)

=
∫
D×E

(
1−H(x2, x3, y23)

)
1A213(x1, x2, x3)α ⊗ β

(
d(x3, y23)

)
.

Thus,

H(x1, x2, y12)

∫
D

1A123(x1, x2, x3)α(dx3)

=
∫
D×E

H(x1, x3, y13)1A123(x1, x2, x3)α ⊗ β
(
d(x3, y13)

)

and

H(x1, x2, y12)

∫
D

1A213(x1, x2, x3)α(dx3)

=
∫
D×E

(
1−H(x2, x3, y23)

)
1A213(x1, x2, x3)α ⊗ β

(
d(x3, y23)

)
.
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The last two equations specify the value of H(x1, x2, y12) as a quantity depending
on (x1, x2) alone except for those pairs (x1, x2) such that∫

D
1A123(x1, x2, x3)α(dx3)=

∫
D

1A213(x1, x2, x3)α(dx3)= 0,

but the set of such pairs has zero α⊗2-measure by assumption. �

The function W is not arbitrary; it must satisfy some obvious consistency con-
ditions. For example, for distinct i, j, k ∈ N when 〈i, j〉 = 〈i, k〉 < 〈j, k〉, it must
be the case that 〈i, j〉<L i if and only if 〈i, k〉<L i, and this translates into the re-
quirement that when [ρ, ξi] ∩ [ρ, ξj ] = [ρ, ξi] ∩ [ρ, ξk]� [ρ, ξj ] ∩ [ρ, ξk] it must
be the case that W(ξi,Ui, ξj ,Uj )= 1 if and only if W(ξi,Ui, ξk,Uk)= 1, which in
turn translates into the requirement that for (μ⊗λ)⊗3-a.e. ((x, u), (y, v), (z,w)) ∈
(S × [0,1])3 when [θ, x] ∩ [θ, y] = [θ, x] ∩ [θ, z] � [θ, y] ∩ [θ, z] it must be the
case that W((x,u), (y, v))=W((x,u), (z,w)).

The next result specifies fully these consistency conditions and combines, with-
out the need for significant further argument, the development leading to Propo-
sition 7.4 with the considerations so far in this section about resolving “left-vs.-
right” to give a complete characterization of the family of ergodic exchangeable
random didendritic systems, and hence a concrete description of the family of ex-
tremal infinite Rémy bridges. The result is thus an explicit determination of the
Doob–Martin boundary of the Rémy chain. The only point that deserves some
added explanation is the claim of ergodicity in the statement of the converse; how-
ever, this follows from the observation made in Remark 5.18 that ergodicity of an
exchangeable random didendritic system (on N) is equivalent to the independence
of the exchangeable random didendritic systems it induces on disjoint subset of N.

THEOREM 8.2. Consider a complete separable R-tree S, a point θ ∈ S, a
diffuse probability measure μ on S, and a Borel function W : (S × [0,1])2 →
{0,1}. Let λ be Lebesgue measure on [0,1]. Suppose that the following hold:

• For μ⊗3-a.e. (x, y, z) ∈ S3, two of the three geodesic segments [θ, x] ∩ [θ, y],
[θ, x] ∩ [θ, z], [θ, y] ∩ [θ, z] are equal and these two are strictly contained in
the third.

• For (μ ⊗ λ)⊗3-a.e. ((x, u), (y, v), (z,w)) ∈ (S × [0,1])3, [θ, x] ∩ [θ, y] =
[θ, x] ∩ [θ, z] � [θ, y] ∩ [θ, z] implies that W((x,u), (y, v)) = W((x,u),

(z,w)).
• For (μ ⊗ λ)⊗2-a.e. ((x, u), (y, v)) ∈ (S × [0,1])2, W((x,u), (y, v)) = 1 −

W((y, v), (x, u)).

Let (ξ1,U1), (ξ2,U2), . . . be i.i.d. random elements of S × [0,1] with common
distribution μ ⊗ λ. There is an ergodic exchangeable random didendritic sys-
tem (≡, 〈·, ·〉,<L,<R) defined as follows. The random equivalence relation ≡ on
N×N is given by declaring that

(i, i)≡ (k, �) if and only if (i, i)= (k, �),
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and

(i, j)≡ (k, �), i �= j, k �= �, if and only if [θ, ξi] ∩ [θ, ξj ] = [θ, ξk] ∩ [θ, ξ�].
The random partial orders <L and <R on the corresponding set of equivalence
classes {〈i, j〉 : i, j ∈N} are specified by declaring for i, j ∈N, i �= j , that

〈i, j〉<L i and 〈i, j〉<R j if and only if W(ξi,Ui, ξj ,Uj )= 1.

Conversely, any ergodic exchangeable random didendritic system has the same
probability distribution as one constructed in this manner for S, θ,μ,W satisfying
the assumptions above.

EXAMPLE 8.3. Recall the infinite Rémy bridge of Example 4.1. We know
from Example 6.7 that we may take:

• S to be [0,1] equipped with the usual metric,
• θ to be the point 0 ∈ [0,1],
• μ to be Lebesgue measure on [0,1].
We may then take

W(x,u, y, v)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if x < y and u <
1

2
,

0, if x < y and u >
1

2
,

1, if y < x and v <
1

2
,

0, if y < x and v >
1

2
,

0, otherwise.

EXAMPLE 8.4. Now consider the infinite Rémy bridge of Example 4.2. Here,
S is the R-tree T of Example 6.8. The leaves of S are in a bijective correspondence
with {0,1}∞ and μ may be identified with the fair coin-tossing measure κ on
{0,1}∞ introduced in Example 3.4. There is no need for genuine randomization
in this case. Indeed, for μ⊗2-a.e. (ξ1, ξ2) we have either W(ξ1, u1, ξ2, u2)= 0 for
λ⊗2-a.e. (u1, u2) or W(ξ1, u1, ξ2, u2) = 1 for λ⊗2-a.e. (u1, u2). That is, we can
just take the R-tree S and augment it with deterministic left–right choices because
in this case for any i, j we have 〈i, j〉 = 〈k, �〉 for infinitely many other k, �. The
resulting representation of the infinite Rémy bridge coincides with the one given
in Example 4.2.

REMARK 8.5. As we remarked in the Introduction, the distribution of the
limit in the Doob–Martin topology of the Rémy chain (i.e., the probability measure
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that appears in the Poisson boundary of the Rémy chain) is concentrated on points
that can be represented in terms of ensembles S, θ,μ,W such that W takes values
in {0,1}.

REMARK 8.6. Theorem 8.2 gives a concrete characterization of the family
of ergodic exchangeable random didendritic systems or, equivalently, the family
of extremal infinite Rémy bridges. Consequently, it gives an explicit description of
the points in the Doob–Martin boundary of the Rémy chain. Of course, the ingredi-
ents appearing in the representation afforded by the result are not unique. Also, the
Doob–Martin boundary is not just a set: it carries a metrizable topological struc-
ture. However, a sequence of representations corresponds to a convergent sequence
of boundary points if and only if the restrictions of the associated exchangeable
random didendritic systems to finite subsets of N converge in distribution. That
is, a sequence of representations corresponds to a convergent sequence of bound-
ary points if and only if for all m the sequence of random binary trees built by
sampling m + 1 points according to the associated sampling measure and deter-
mining left-versus-right orderings using extra randomness as necessary converges
in distribution.
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