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HIGH TEMPERATURE LIMITS FOR (1 + 1)-DIMENSIONAL
DIRECTED POLYMER WITH HEAVY-TAILED DISORDER

BY PARTHA S. DEY AND NIKOS ZYGOURAS1

University of Illinois at Urbana-Champaign and University of Warwick

The directed polymer model at intermediate disorder regime was intro-
duced by Alberts–Khanin–Quastel [Ann. Probab. 42 (2014) 1212–1256]. It
was proved that at inverse temperature βn−γ with γ = 1/4 the partition func-
tion, centered appropriately, converges in distribution and the limit is given
in terms of the solution of the stochastic heat equation. This result was ob-
tained under the assumption that the disorder variables posses exponential
moments, but its universality was also conjectured under the assumption of
six moments. We show that this conjecture is valid and we further extend it
by exhibiting classes of different universal limiting behaviors in the case of
less than six moments. We also explain the behavior of the scaling exponent
for the log-partition function under different moment assumptions and values
of γ .

1. Introduction.

1.1. The model. We consider the (1+1)-dimensional directed polymer in i.i.d.
random environment with high temperature. In particular, let � := {ωv|v ∈ Z

2}
be a collection of i.i.d. random variables indexed by the vertices of Z2. We will
denote their joint law by P and the corresponding expectation by E. Let Pn(·)
be the measure corresponding to a nearest-neighbor simple random walk, starting
at the origin at time 0 and run up to time n. We will denote the set of nearest-
neighbor paths by S n

0 = {((i, si))ni=0|s0 = 0, |si − si−1| = 1,1 ≤ i ≤ n} and by 〈·〉
the expectation w.r.t. Pn. The energy of a path s = ((i, si))

n
i=0 ∈ S n

0 is defined as
Hω(s) := ∑n

i=1 ωi,si and the polymer measure Pn,βn on S n
0 is given by

dPn,βn

dPn

(s) = (
Zω

n,βn

)−1 exp
(
βnH

ω(s)
)
, s ∈ S n

0 ,(1)

where Zω
n,βn

is the partition function

Zω
n,βn

:= 〈
exp

(
βnH

ω)〉 = 2−n
∑

s∈S n
0

exp
(
βnH

ω(s)
)
,(2)
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and βn > 0 is the inverse temperature that we will allow to depend on n. In par-
ticular, we will consider dependencies that will make βn go to zero, as n tends to
infinity, thus considering a high temperature regime. The expectation with respect
to the polymer measure Pn,βn will be denoted by En,βn .

The directed polymer model was introduced in [16] as a model for the interface
of the two-dimensional Ising model with random interactions. Therein, numerical
evidence was provided indicating interesting super diffusive fluctuation exponents
of the interface. Soon after, a physical link to the fluctuation theory of Stochastic
Burgers equation [13] was provided in [12]. It is now well established that the di-
rected polymer model is linked to the Kardar–Parisi–Zhang (KPZ) equation, since
the logarithm of the partition function Zω

n,βn
can be viewed as a discretization of the

Hopf–Cole solution to the KPZ equation. Therefore, it provides a rigorous path to
verify the predictions made by Kardar–Parisi–Zhang on the fluctuation exponents
of the celebrated KPZ universality class.

In rough terms, the fluctuation exponent χ ∈ [0,1] characterizes the fluctuations
of logZω

n,βn
in the sense that

∣∣logZω
n,βn

−E logZω
n,βn

∣∣ ≈ nχ+o(1) for n → ∞.

The transversal exponent ξ ∈ [0,1] characterizes the fluctuations of the end-point
(n, sn) of a path s ∈ S n

0 chosen from the measure Pn,βn , that is,

EEn,βn |sn| ≈ nξ+o(1) for n → ∞.

So far, work in understanding the fluctuation exponents of the directed polymer
has been constrained to the case where the random variables ω have exponential
moments. The prediction, when βn equals a constant β , is that χ = 1/3 and ζ =
2/3. This has been confirmed, so far, only for the so-called log-gamma polymer,
where exp(−ω) has gamma distribution [24]. In fact, in this case, the full scaling
limit of the partition function, constrained to a fixed end point, for example, sn = 0,
is established to obey the Tracy–Widom GUE law, [8, 10, 22]. More precisely,
if we centre the point-to-point partition function logZω

n,βn
(0) by its free energy

f (β) := limn→∞ n−1 logZω
n,βn

(0) and scale with c(β)n1/3 [c(β) being a specific
constant], then

logZω
n,β(0) − nf (β)

c(β)n1/3

(d)−→
n→∞FGUE.(3)

Besides the log-gamma polymer, similar scaling behavior has been established
only for a handful of polymer models. Namely the continuum polymer (which is
directly related to the Hopf–Cole solution of the KPZ equation) [3, 23] and the
O’Connell–Yor semi-discrete polymer [7, 21]. However, the scaling limit is con-
jectured to hold universally, independently of the particular distribution, as long
as it possesses exponential moments. The only nonuniversal constants will be the
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free energy f (β) and the scaling constant c(β). In [6], based on a Flory-type argu-
ment, it is claimed that the 1/3,2/3 exponents should be valid as long as disorder
possesses more than five moments. Furthermore, based on numerical evidence, it
is claimed therein, that the same Tracy–Widom limit theorem (3) should be valid.
On the other hand, recent numerical studies [14] have indicated that when disorder
fails to have a fifth moment, then the 1/3,2/3 exponents should be replaced by
exponents which depend on the tails of the disorder. Furthermore, some guesses of
the nature of the limit laws are presented, although a concrete guess is still elusive.

In [1] and [2], the notion of weak universality was introduced. In that work, the
authors considered the case where βn = βn−1/4, that is, a high temperature regime,
and showed that under the assumption of exponential moments

logZω
n,βn

− nλ(βn)
(d)−→

n→∞ logZ√
2β

,(4)

where Z√
2β

is the solution of the stochastic heat equation and λ(βn) :=
logE[eβnω]. Moreover, it was conjectured therein that the same limit behavior
should be valid under only the assumption that disorder possesses more than six
moments. Notice that in the case of finite moments λ(βn) is not defined and there-
fore a different centering constant would be necessary.

In this article we prove this conjecture. Moreover, motivated by a Flory-type ar-
gument in [6], we show that this conjecture is part of a larger picture. The latter is
described by a phase diagram for the values of the exponents (χ, ξ) depending on
(γ,α) where βn ≈ βn−γ , γ ≥ 0 and the disorder satisfies P(ω > x) = x−α+o(1),
as x → ∞ for some α > 0. Let us also mention that in [1], based on Airy pro-
cess heuristic, it was conjectured that for disorder with exponentially decaying
tails, that is, α = ∞, and for γ ∈ [0,1/4] the scaling exponents should interpolate
linearly between the Gaussian and the KPZ exponents like χ = (1 − 4γ )/3, ξ =
2(1−γ )/3. This conjecture, which also fits inside our picture, was recently proved
in [19] for the stationary version of O’Connell–Yor, semi-discrete polymer in
Brownian environment. Another earlier work, which also fits the picture is [4],
where the authors proved that when α ∈ (0,2) and γ = 2/α −1 one has χ = ξ = 1
(see also [15] for the corresponding zero-temperature result).

Roughly speaking, the picture we propose (see Figure 1) can be described as
follows: given an exponent ξ ∈ [1/2,1] there exists in the (α, γ ) diagram a “level-
curve”

ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + α(1 − γ )

2α − 1
, for α ≤ 5 − 2γ

1 − γ
,

2(1 − γ )

3
, for α ≥ 5 − 2γ

1 − γ

along which the polymer in heavy tail disorder with “α moments” and at inverse
temperature βn = βn−γ has transversal fluctuation exponent ξ . We will present
this in more detail in the next section.
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FIG. 1. Phase diagram for fluctuation and transversal exponents.

In this article, we prove the validity of this picture on the ξ = 1/2 regime. In
other words, we rigorously identify the so called weak disorder regime, where the
polymer behaves diffusively. Moreover, in this regime, we identify the scaling limit
of the partition function and we see that three different scaling limits exist within
three sub-regimes. The three different limit behaviors are related to the Hopf–Cole
solution of KPZ, to Gaussian and to Poissonian, respectively for α ≥ 6, α ∈ (2,6)

and α ∈ (1/2,2). These different behaviors are linked to the impact of the “large”
weights, which is greater the smaller α gets. Before presenting the theorems, let us
present our assumptions that will be followed, throughout the article:

(A) The cumulative distribution function F(x) := P(ω ≤ x) has regularly vary-
ing right tail. In other words, we assume that

F̄ (x) := 1 − F(x) = x−αL(x) for all x > 0,

for some α > 0 and some slowly varying function L(x), that is, for any t > 0
it holds that L(tx)/L(x) → 1, as x → ∞. Moreover, the choice of L(·) is such
that F̄ (x) := x−αL(x) stays bounded, defining an honest cumulative distribution
function.

(B) When α > 2, we will also assume that

E[ω] = 0, E
[
ω2] = 1.

(C) When α ≤ 2, we will also assume that

F(−x) = (
c− + o(1)

)
F̄ (x), as x → ∞,

for some c− ≥ 0. In other words, the left tail is dominated by the right tail when
α ≤ 2.
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For t > 1, we define

the real number m(t) := inf
{
x|F̄ (x) ≤ 1/t

}
.(5)

Clearly, m(t) = t1/αL0(t) as t → ∞ for some slowly varying function L0. For
x ∈ R, define x+ = max{x,0} and x− = max{−x,0}.

We will prove the following theorem.

THEOREM 1.1 (α ≥ 6, γ ≥ 1/4). Assume that the weights satisfy assump-
tions (A) for some α ≥ 6 and (B).

• Let βn be a sequence of real numbers with βnn
1/4 → β as n → ∞, for some

β ∈ (0,∞). Then

logZω
n,βn

− n logE

(
e−βnω− +

4∑
i=1

βi
n

i! ωi+

)
(d)−→

n→∞ logZ√
2β

,

where

Z√
2β

:= 1 +
∞∑

k=1

(
√

2β)k
∫
�k

∫
Rk

k∏
i=1

ρ(ti − ti−1, xi − xi−1)W(dti dxi),(6)

with W(dt dx) is a white noise on R+ × R (formally, a Gaussian process with
covariance given by E[W(t, x)W(s, y)] = δ(t − s)δ(x − y)), �k = {0 = t0 <

t1 < t2 < · · · < tk ≤ 1} is the k-dimensional simplex, xi ∈ R with x0 = 0, and ρ

is the standard Gaussian heat kernel

ρ(t, x) = 1√
2πt

e−x2/2t , t ∈ (0,1), x ∈ R.

• If βnn
1/4 → 0 as n → ∞, then

1

βnn1/4

(
logZω

n,βn
− n logE

(
e−βnω− +

3∑
i=1

βi
n

i! ωi+

))
(d)−→

n→∞N
(
0,2π−1/2),

where N (0,2π−1/2) is the normal distribution with variance 2π−1/2.

Let us remark that Z√
2β

, which here is given in terms of a Wiener chaos expan-
sion, is in fact the mild solution to the one dimensional stochastic heat equation,
with flat initial condition {

∂tu = 1
2�u + √

2βẆu,

u(0, ·) = 1.

When α ≤ 6, we observe the following behavior.

THEOREM 1.2 (2 < α ≤ 6, γ ≥ 3/2α). Assume that the weights satisfy as-
sumption (A) for some α ∈ (2,6] and (B). Let βn be a sequence of real numbers
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such that βnm(n3/2) → β as n → ∞, for some β ≥ 0. For α = 6, we also assume
that βnn

1/4 → 0. Then

1

βnn1/4

(
logZω

n,βn
− n logE

(
e−βnω− +

2∑
i=1

βi
n

i! ωi+ + β3
n

3! ω3+1α>3

))

(d)−→
n→∞N

(
0,2π−1/2).

To state our result for α ∈ (1
2 ,2), we need to consider a Poisson point pro-

cess P on (w, t, x) ∈ S := R × [0,1] ×R with intensity measure η(dw dt dx) =
1
2α|w|−1−α(1w>0 + c−1w<0)dw dt dx. Recall that ρ is the standard Gaussian heat
kernel ρ(t, x) = (2πt)−1/2 exp(−x2/2t), x ∈ R, t ∈ [0,1]. We define the random
variables

W(α)
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
S

wρ(t, x)(P − η)(dw dt dx), if α ∈ (1,2),∫
S ∩{|w|>1}

wρ(x, t)P(dw dt dx)

+
∫
S ∩{|w|≤1}

wρ(t, x)(P − η)(dw dt dx), if α = 1,∫
S

wρ(t, x)P(dw dt dx), if α ∈ (0,1),

and for β ∈ (0,∞),

W(α)
β = 1

β

∫
S

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx) +W(α)

0 .

The random variables W(α)
β are well defined, as stated in the following lemma, the

proof of which is given in Appendix:

LEMMA 1.3. For every β ≥ 0, α ∈ (1/2,2), the random variables W(α)
β are

finite a.s. Moreover, W(α)
0 has stable distribution with characteristic function given

by

E
P exp

(
iyW(α)

0

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(∫

S

(
eiywρ(t,x) − 1 − iywρ(t, x)

)
η(dw dx dt)

)
, if α ∈ (1,2),

exp
(∫

S ∩{|w|>1}
(
eiywρ(t,x) − 1

)
η(dw dx dt)

+
∫
S ∩{|w|≤1}

(
eiywρ(t,x) − 1 − iywρ(t, x)

)
η(dw dx dt)

)
,

if α = 1,

exp
(∫

S

(
eiywρ(t,x) − 1

)
η(dw dx dt)

)
, if α ∈ (0,1),

for y ∈ R, where E
P denotes expectation with respect to the Poisson process P .
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One can explicitly evaluate the integrals in the exponent to calculate the char-
acteristic function of W(α)

0 , as presented in the proof of Lemma 1.3. We can now
state the result in the regime α ∈ (1/2,2).

THEOREM 1.4 (1/2 < α < 2, γ ≥ 3/2α). Assume that the weights satisfy (A)
for some α ∈ (1/2,2) and (C) for some c− ≥ 0. Assume that E[ω] = 0 when α > 1.
Let βn be a sequence of real numbers such that βnm(n3/2) converges to β ∈ [0,∞),
as n → ∞. Then√

n

βnm(n3/2)

(
logZω

n,βn
− nβnE[ω1|ω|≤m(n3/2)]1α=1

) (d)−→
n→∞ 2W(α)

β .

REMARK 1. In the case of α = 2, that is, F̄ (x) = x−2L(x) for some slowly
varying function L(·) at infinity, one can prove that for βn “sufficiently small”
there exists a sequence an such that

an

(
logZω

n,βn
− n logE

(
e−βnω− + βnω+

)) (d)−→
n→∞N

(
0, σ 2),(7)

for some constant σ 2 > 0. In particular, define the function H(x) = E[ω21{|ω|≤x}]
for x > 0, which is slowly varying at infinity. Define m̂(t) := inf{x|x−2H(x) ≤
1/t} for t > 1. Under the assumption that

βnm̂
(
n3/2) → β as n → ∞ for some β ∈ [0,∞),

one can prove that (7) holds with cn = √
n/(βnm̂(n3/2)). The proof combines tech-

niques used in the proof of Theorem 1.4 and the method used in the proof of The-
orem 4.17 in Kallenberg [17] regarding the central limit behavior of renormalized
sums of random variables that barely fail to have second moment. Since this is
technical, we prefer to omit the details for simplicity.

For the sake of completeness, we mention the limiting behavior in the region
0 < α < 2, γ ≤ 2/α−1, which has been proved in [4] and [15]. Let P be a Poisson
Process on [0,∞) × [−1,1] × [0,1] with intensity one. Let P = {(wi, xi, ti) : i ≥
1} be the points in the point process with decreasing values of wi . Let L be the
set of all real-valued Lipschitz function on [0,1] with Lipschitz constant one and
vanishing at 0. The entropy of a curve γ ∈ L is −E(γ ) where

E(γ ) :=
∫ 1

0
e
(
γ ′(x)

)
dx,

and e : [−1,1] → R is defined as

e(x) = 1
2

(
(1 + x) log(1 + x) + (1 − x) log(1 − x)

)
.

Define the energy of a curve γ ∈ L as

π(γ ) = ∑
(wi,xi ,ti )∈P:γ (ti )=xi

w
−1/α
i .
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THEOREM 1.5 ([4, 15]). Assume that the weights satisfy P(ω > x) =
x−αL(x) for some α ∈ (0,2) and some slowly varying function L(x). Let βn

be a sequence of real numbers such that 1
n
m(n2)βn → β as n → ∞ for some

β ∈ (0,∞) ∪ {∞}. Then

1

m(n2)βn

logZω
n,βn

(d)−→
n→∞ sup

γ∈L

(
π(γ ) − 1

β
E(γ )

)
.

1.2. Heuristics. We will now describe the heuristics and the picture (see Fig-
ure 1) that gives the phase diagram for scaling exponents depending on γ and α

when F̄ (x) = x−α+o(1), x � 1. We divide the (γ,α) ∈ (0,∞)2 plane into regions
with different exponents behavior. We define the following regions:

R1 :=
{
(γ,α) : γ >

1

4
, γ ≥ 3

2α

}
, R2 := {

(1/4, α) : α ≥ 6
}
,

R3 :=
{
(γ,α) : 0 < γ < 1/4, α ≥ 5 − 2γ

1 − γ

}
, R4 := {

(0, α) : α > 5
}
,

R5 :=
{
(γ,α) : α > 1/2,max

{
0,

2

α
− 1,

α − 5

α − 2

}
< γ <

3

2α

}
,

R6 :=
{
(γ,α) : 0 < α < 2, γ = 2

α
− 1

}
and

R7 :=
{
(γ,α) : 0 < α < 2,0 ≤ γ <

2

α
− 1

}
.

The region R2 ∪ R3 ∪ R4 ∪ R5 ∪ R6 is divided along families of curves charac-
terized by the same exponent ξ (and hence χ ). More precisely, for any fixed value
of ξ ∈ [1/2,1], the curve in the (γ,α) plane determined by{

(α, γ ): ξ = 1 + α(1 − γ )

2α − 1
and α ≤ 5 − 2γ

1 − γ

}
(8)

∪
{
(α, γ ): ξ = 2(1 − γ )

3
and α ≥ 5 − 2γ

1 − γ

}
,

should give rise to a polymer measure with transversal-fluctuation-exponent ξ and
χ = 2ξ − 1. In the region R1 ∪ R7, the KPZ hyper-scaling relation χ = 2ξ − 1
fails. Inside the region R1 we still have ξ = 1

2 but χ = 1
4 − γ < 2ξ − 1. Similarly,

in region R7 we have ξ = 1 and χ = 2
α

− γ > 2ξ − 1.
In [1], a heuristic explanation is provided for the exponents χ = (1 − 4γ )/3,

ξ = 2(1 − γ )/3 when “α = ∞” (in the sense of finite exponential moments) and
γ ∈ (0,1/4) based on Airy process heuristics. However, this heuristic breaks down
when α is finite, since the largest weights may play an important role for the ex-
ponents, as instead of logarithmic growth the largest weights grow polynomially
and can compete with the Brownian fluctuations and entropy terms. To outline our
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approach, let us fix α > 0, γ ≥ 0 and define βn = βn−γ . Recall that the energy for
the path s is βnH

ω(s) and the fluctuation exponent χ gives the typical order of

logZω
n,βn

−E
[
logZω

n,βn

] = log
〈
exp

(
βn

(
Hω − λn,βn

))〉
,

as nχ+o(1), where

λn,βn := 1

βn

E
[
log

〈
exp

(
βnH

ω)〉],
is larger than 0 by Jensen’s inequality (and in fact, typically, it is much larger
than n1/2). Now, take a real number ζ ∈ [1/2,1] and a box Bn,ζ := ([0, n] ×
(−nζ , nζ )) ∩ Z

2. It is a classic result of order statistics [18] that (here, for sim-
plicity, we ignore slowly varying corrections)

max{ωv:v ∈ Bn,ζ } ≈ |Bn,ζ |1/α ≈ n(1+ζ )/α.

In fact, if (ω(j), j = 1,2, . . . , |Bn,ζ |) denotes the order statistics of the set {ωv:v ∈
Bn,ζ } in decreasing order and (t(j), x(j))j=1,...,|Bn,ζ | the location inside Bn,ζ where
the j th largest valued is attained, we have that, for any finite k,

{
n−(1+ζ )/αω(j), n−1t (j), n−ζ x(j)}

j=1,...,k

(d)−→
n→∞

{
w(j), t(j),x(j)}

j=1,...,k,

where are w(j) are nontrivial random variables and t(j),x(j) are independent uni-
form variables in [0,1]. Hence, the fluctuation of H around any centering will be
at least of the order n(1+ζ )/α . Since the location of the large weights is at scale
n × nζ and uniformly distributed in the box Bn,ζ , the entropy cost to catch the
large weights will be given by the moderate deviations of the simple random walk
(cf. [11])

− log Pn

(
snt(j) ≈ nζ x(j)) ≈ n2ζ−1 (x(j))2

2t(j)
.(9)

If we assume that the fluctuations of the partition function are driven by the strat-
egy, which dictates to catch the large weights in a box Bn,ζ (due to a negligi-
ble contribution of the rest of the disorder to the energy), then the corresponding
energy-entropy competition will lead to

nχ+o(1) ≈ logZω
n,βn

−E
[
logZω

n,βn

]
(10)

≈ βnn
(1+ζ )/α − n2ζ−1 = n(1+ζ )/α−γ − n2ζ−1.

The contribution of such strategy will be negligible unless

2ζ − 1 ≤ (1 + ζ )/α − γ that is, ζ ≤ (
1 + α(1 − γ )

)
/(2α − 1).

Since the largest exponent occurs when equality holds, one expects that the fluctu-
ation exponents will be given by

ξ = 1 + α(1 − γ )

2α − 1
and χ = 2ξ − 1 = 3 − 2αγ

2α − 1
.
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However, when the exponent χ = (3 − 2αγ )/(2α − 1), provided by this strategy,
becomes smaller than the fluctuation exponent χ = (1 − 4γ )/3 conjectured for
α = ∞ and same γ , we will have a situation where the strategy of catching the
large weights is not optimal. In this case, the strategy, which is intrinsic for α = ∞,
will prevail leading to exponents χ = (1− 4γ )/3 and ξ = 2(1−γ )/3 independent
of α. This leads to a decomposition of the (α, γ ) phase diagram determined by the
values of ξ ∈ [1/2,1] and the set of equations (8). The case ξ = 1/2, corresponding
to diffusive behavior of the polymer, determines that γ = 1/4 for α ≥ 6 (which is
consistent with the [2] conjecture) and γ = 3/2α for 1/2 < α ≤ 6.

REMARK 2. Let us remark that the restriction α > 1/2 is essential and not
just technical. In particular, we observe that the point (γ,α) = (3,1/2) is the in-
tersection point of the lines 2/α − 1 (corresponding to ξ = 1) and the line 3/2α

(corresponding to ξ = 1/2), as well as all other lines corresponding to the inter-
mediate values of ξ ∈ [1/2,1]. Therefore, below the line 2/α − 1 (and thus below
α = 1/2) the behavior of the polymer will always correspond to an exponent ξ = 1.
This can also be seen from equation (10), as the energy contribution strictly domi-
nates the entropy contribution for all values of ζ and is maximized for ζ = 1, when
α ∈ (0,1/2). So, in order to see a nontrivial free energy one would have to change
the scaling of logZω

n,βn
in Theorem 1.5 to correspond to an exponent χ = 2/α − γ

and since we are below the line 2/α − 1, we will have that χ > 1 = 2ξ − 1, which
means that in this regime the KPZ scaling relation fails.

1.3. Strategy. We will explain the strategy behind the proof of Theorems 1.1,
1.2 and 1.4. We will mainly focus on the case α > 6, as it is more transparent. To
formalize the heuristic, one needs to look first at the contribution from what we call
the bulk of the weights to the partition function. This is determined by the variables
{ωv}, which have a value less than a certain cutoff level kn. We will choose

kn =
⎧⎪⎨
⎪⎩

β−1
n , when α > 6,

β−1
n

m(n3/2(logn)η)

m(n3/2)
, when α ∈

(
1

2
,6
]
,

for some η ∈ (1/2, α). We then consider the modified environment given by

ω̃v = ωv1{ωv≤kn} for v ∈ Z
2.

The behavior of ω̃ is better compared to ω, in the sense that it is bounded and has
finite exponential moments. In particular, we have the following result, the proof
of which is given in Appendix.

LEMMA 1.6. I. Let F̄ (x) = P(ω > x) = x−αL(x), α ≥ 2, and any number
θ ∈ (1, α) such that E[ωθ+] < ∞ and denote p := �θ�. Let also limn→∞ βn = 0.
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Then, for any kn such that knβn is bounded away from zero and βα−θ
n eβnkn → 0,

as n tends to infinity, we have:

(i) lim
n→∞

1

βθ
n

∣∣∣∣∣E[eβnω+1ω≤kn
]− 1 −

p∑
i=1

βi
n

i! E
[
ωi+

]∣∣∣∣∣ = 0 and

(ii) lim
n→∞

1

βθ
n

∣∣∣∣∣logE
[
eβnω1ω≤kn

]− log

(
E
[
eβnω−]+

p∑
i=1

βi
n

i! E
[
ωi+

])∣∣∣∣∣ = 0.

II. Assume that F̄ (x) = P(ω > x) = x−αL(x), with α ∈ (1/2,2)\ {1}. Addition-
ally, assume that E[ω] = 0, if α ∈ (1,2). Then, for any kn we have:

(i)
∣∣E[eβnω1ω≤kn

]− 1
∣∣ ≤ const.eβnkn max

{
F̄
(
β−1

n

)
, F̄ (kn)

}
and

(ii)
∣∣E[eβnω1|ω|≤kn

]− 1
∣∣ ≤ C(βn, kn)e

βnkn max
{
F̄
(
β−1

n

)
, F̄ (kn)

}
,

where the constant C(βn, kn) converges to zero when βnkn → 0.

In the above lemma, we excluded the case α = 1 purely for exposition purposes
since we will not need this case, while the bounds are less explicit due to slowly
varying effects.

Lemma 1.6 indicates that if we could replace all “large” ωv’s by 0, the new
environment, ω̃v := ωv1{ωv≤kn}, behaves in a more regular way and we can then
try to prove a limit theorem for

bn

(
logZω̃

n,βn
− an(kn)

)
,

for appropriate an(kn), bn. In the case that α ≥ 6, the desired limit theorem for
logZω̃

n,βn
falls into the framework of [2, 9] and a limiting process exists with

bn = 1, kn = n1/4 and an(kn) as in Theorem 1.1. The next step is to prove that
the modified environment gives the dominant contribution in the partition function
in the sense that

bn

(
logZω

n,βn
− logZω̃

n,βn

) −→ 0, as n → ∞,

in probability for an appropriate choice of the cutoff kn. The strategy to achieve this
is as follows: Since we concentrate on the part of the phase space corresponding
to exponent ξ = 1/2, the main contribution to the partition function should come
from paths that stay within B = [0, n] × [−n(1+δ)/2, n(1+δ)/2], for δ > 0, chosen
appropriately small. Call this set of paths B. Restricting the partition function to
the set of such paths we have

0 ≤ logZω
n,βn

(B) − logZω̃
n,βn

(B) ≤ βn

∑
v∈B

ωv1ωv≥kn.
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The expected value of the right-hand side is

βnE

[∑
v∈B

ωv1ωv≥kn

]
≤ βn|B|E[ω1ω≥kn]

(11)
≤ const.βnn

(3+δ)/2k1−α
n E

[
ωα+

] = O
(
n(6−α)/4+δ/2),

where we made use of the choice kn = O(n1/4) and, for the sake of exposition,
we made the slightly stronger assumption that E[ωα+] < ∞. The assumption that
α > 6 and a choice of appropriately small δ will show that the partition func-
tions of the original and the truncated variables, when the paths are restricted
to box B is asymptotically zero, in probability. The contributions to the parti-
tion function from paths that exit the box B will be controlled by an energy-
entropy estimate in the spirit of (10). However, to succeed in this control, a multi-
scale argument is needed, which will consider the energy-entropy balance in a
sequence of boxes Bj := [0, n] × [−n(1+δj )/2, n(1+δj )/2], for appropriate choice
of increasing positive numbers (δj )j≥1. The basic principle is that the energy
collected by paths staying inside box Bj (but exiting box Bj−1) is bounded by
βnE[∑v∈Bj

ωv1ωv≥kn] = O(n(6−α)/4+δj /2), as in (11). However, the entropy cost
to exit the box Bj−1 (in order to catch the large weights outside of it) is of the
order O(nδj−1), by (9). For α ≥ 6 the entropy will dominate the energy, as long as
δj /2 < δj−1 and this relation can be iterated, to cover all the scales.

Similar strategy is applied in the case 1
2 < α ≤ 6. However, the cutoff has to be

chosen differently kn = m(n3/2(logn)η)/m(n3/2), with η ∈ (1/2, α), leading to a
more subtle multi-scale procedure with a logarithmic number of iterations, instead
of a finite that was sufficient in the α > 6 case.

Let us also give a brief explanation of the origins of the different scaling limits
obtained in the three theorems. As we already mentioned, once the truncation is
achieved, the limit behavior coincides with that of the truncated partition function
Zω̃

n,βn
. In the case α > 2, the necessary centering will correspond to normalizing

the partition function by the log moment generating function

λn(βn) := logE
[
eβnω̃],

of the truncated variables ω̃ = ω1{ω≤kn}. Denoting by ζ
(n)
i,x := eβnω̃i,x−λn(βn) − 1

and performing a binomial expansion, we write

e−nλn(βn)Zω̃
n,βn

= 〈
e
∑n

i=1(βnω̃i,si
−λn(βn))〉

=
〈

n∏
i=1

(
1 + ζ

(n)
i,si

)〉 = 1 + ∑
1≤i≤n,x∈Z

ζ
(n)
i,x pn(i, x)

+ ∑
1≤i1<i2≤n

x1,x2∈Z

ζ
(n)
i1,x1

ζ
(n)
i2,x2

pn(i1, x1)pn(i2, x2) + · · · .
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Thanks to the centering λn(βn) the random variables ζ
(n)
i,x have mean zero. Com-

puting the variance of the first nontrivial term in the above expansion, we have
that

Var
( ∑

1≤i≤n,x∈Z
ζ

(n)
i,x pn(i, x)

)
= (

eλn(2βn)−2λn(βn) − 1
) ∑

1≤i≤n,x∈Z

(
pn(i, x)

)2
.

Lemma 1.6 shows that when α > 2 then eλn(2βn)−2λn(βn) − 1 ≈ β2
n . Using the local

limit theorem that is,
√

npn(i, x) ≈ 2ρ(i/n, x/
√

n), (where we have also taken
into account the periodicity of the simple random walk), we finally see that

Var
( ∑

1≤i≤n,x∈Z
ζ

(n)
i,x pn(i, x)

)
≈ 2β2

n

√
n = (√

2βnn
1/4)2

.

In the case α > 2, the random variables ζ̃
(n)
i,x := β−1

n ζ
(n)
i,x will have uniformly inte-

grable second moments and we will be in a regime where the multilinear polyno-
mials, below, will have a well defined limit, that is,

e−nλn(βn)Zω̃
n,βn

= 1 + (βnn
1/4)

n3/4

∑
1≤i≤n,x∈Z

ζ̃
(n)
i,x

(√
npn(i, x)

)

+ (βnn
1/4)2

(n3/4)2

× ∑
1≤i1<i2≤n

x1,x2∈Z

ζ̃
(n)
i1,x1

ζ̃
(n)
i2,x2

(√
npn(i1, x1)

)(√
npn(i2 − i1, x2 − x1)

)+ · · ·

≈ 1 + (√
2βnn

1/4) ∫ 1

0

∫
R

ρ(t, x)W(dt dx)

+ (√
2βnn

1/4)2

×
∫

0<t1<t2<1

∫
R2

∏
i=1,2

ρ(ti − ti−1, xi − xi−1)W(dti dxi) + · · · .

When βnn
1/4 → β ∈ (0,∞), we will be in the regime covered by Theorem 1.1.

When βnn
1/4 → 0, which is the case of Theorem 1.2, the terms of order two or

higher will be negligible compared to the first two terms, while the distribution of
the linear term is asymptotically Gaussian, that is,

e−nλn(βn)Zω̃
n,βn

≈ 1 + (√
2βnn

1/4) ∫ 1

0

∫
R

ρ(t, x)W(dt dx) + o
(
βnn

1/4).(12)

In the case α < 2, the random variables ζ̃
(n)
i,x := β−1

n ζ
(n)
i,x fail to have uniformly

integrable second moments (or even a second moment), due to the necessary
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choice of the truncation level kn � β−1
n and so we come out of a central limit

theorem regime. The largest weights will now have a dominant role and the choice
of βn = β · m(n3/2)−1 will create an asymptotically Poissonian field P(dw dx dt)

for the values {(βnωi,x, x, i) : 1 ≤ i ≤ n, |x| = O(
√

n)}. Let us write a multilinear
expansion of the partition function Zω

n,βn
(without a truncation, although we will

eventually need to make a suitable truncation)

Zω
n,βn

= 1 + ∑
1≤i≤n,x∈Z

(
eβnωi,x − 1

)
pn(i, x)

+ ∑
1≤i1<i2≤n

x1,x2∈Z

∏
j=1,2

(
e
βnωij ,xj − 1

)
pn(ij − ij−1, xj − xj−1) + · · ·

≈ 1 + 1√
n

∑
1≤i≤n,x∈Z

(
eβnωi,x − 1

)(√
npn(i, x)

)+ O(1/n)

“ ≈ ” 1 + 1√
n

∫ (
eβw − 1

)
ρ(t, x)P(dw dx dt) + O(1/n),

where we put the last approximation in quotations, since a careful centering will
need to be made, in order to guarantee the well definiteness of the Poissonian
integrals. This will also alter the final formulation of the last line.

The limiting partition function will be a weighted summation over the Poisso-
nian field of eβw − 1 weighted by the Gaussian probability ρ(t, x). This is to be
interpreted that the polymer will search for all the sites with a large weight that
will give energy eβw − 1 and an entropy n−1/2ρ(t, x) will have to be paid. How-
ever, it will be too costly for the polymer to get simultaneous contribution from
two such sites, as the entropy that will be paid will be of order (1/

√
n)�{sites visited}.

Finally, it is also worth comparing the contribution to the scaling limit from a
Gaussian behavior, driven by the bulk of “small” weights. By (12) this will be of
order βnn

1/4 = m(n3/2)−1n1/4 ≈ n(α−6)/(4α) � n−1/2, for α < 2. Therefore, it is
also seen in this way that the Gaussian fluctuations, driven by the bulk of small
weights, is negligible compared to the Poissonian fluctuations, driven by the few
large ones.

1.4. Conjectured behavior in region R5. Let us close by discussing a conjec-
tured behavior for (α, γ ) in the region

R5 := {
(γ,α) : α > 1/2,max

{
0,2/α − 1, (α − 5)/(α − 2)

}
< γ < 3/2α

}
,

and ω satisfying (A). The heuristic idea presented in Section 1.2 shows that
weights outside a box of width much larger hn = nξ with ξ = (1 + α(1 − γ ))/

(2α − 1) should not contribute much, whereas the big weights in the box of width
hn should give the dominant contribution. The temperature is scaled as βn = β̂n−γ ,
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with γ = α−1(1 + ξ) − χ and χ = 2ξ − 1 and we are asking for a distributional
limit for

n−χ (logZω
n,βn

− an

)
,

for some centering an. The energy Hω(s) of a path s restricted to a box of width
hn will be

βnH
ω(s) := nχ

∑
v∈[0,n]×(−hn,hn),v∈s

n−(1+ξ)/αωv ≈ nχ
∑
P

ui,

where P = {(xi, ti , ui) : i ≥ 1} is the limiting Poisson point process consisting of
the locations (xi, ti) and sizes ui of the scaled variables n−(1+ξ)/αωv inside the
box of width hn. Moreover, an entropy cost will have to be paid for the path to
catch the big, scaled weights ui . The size of the cost to go from one point (xi, ti) ∈
P to another one (xj , tj ) ∈ P will be nχ |xi − xj |2/(2|ti − tj |) [cf. (9)] which
matches the size of the energy fluctuations. Therefore, one can expect that when
the logarithm of the partition function is scaled by nχ and is centered appropriately,
it will converge in distribution to a random variational problem described by the
random variable

T
β̂

:= sup
A⊂P:|A|<∞

∑
i∈A

(
β̂ui − |xi − xi−1|2

2|ti − ti−1|
)
.

We conjecture the following.

CONJECTURE 1.7. For α ∈ (1/2,2], T is well defined. Moreover, for (α, γ ) ∈
R5, α < 2, βn = β̂n−γ , with γ = α−1(1 + ξ) − χ and χ = 2ξ − 1 and ω satisfy-
ing (A), there exist constants an such that

n−χ (logZω
n,βn

− an

) (d)−→T
β̂
, as n → ∞.

One difficulty to establish this is the identification of the centering an, which
would cancel the contributions from moderate size disorder weights. Since in re-
gion R5 it holds that ξ > 1/2, we are not any more in the weak disorder regime
and one would expect that an is not any more identical to a truncated log-moment
generating function.

1.5. Roadmap. We perform the truncation via the above mentioned multi-
scale argument in Section 2. In Section 3, we show that the partition function with
truncated disorder converges to the desired limits when α > 2. Finally, we identify
the scaling limit in the case of α < 2 in Section 5. In the Appendix we provide the
proofs of some auxiliary estimates. Regarding notation, we will be writing const.
for a generic constant that does not depend on specific parameters. We will use
freely the symbols o(·),O(·) and when we want to put emphasis on the parame-
ters, we will add these as subscripts, for example, we will write on(1), if we want
to emphasize that a quantity converges to zero when n tends to infinity. We will
often interchange freely between the notation v and (i, x) for points in N×Z.
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2. Comparing the original and truncated partition functions. Recall that
the original environment is given by � = {ωv : v ∈ Z

2} and the truncated envi-
ronment by �̃ = {ω̃v : v ∈ Z

2} where ω̃ = ω1{ω≤kn}. To show that the difference
logZω

n,βn
− logZω̃

n,βn
is “small,” we use the multi-scale argument, outlined in the

heuristics. Let us set up the framework introducing some notation.
Given a sequence of integers 0 = h0 < h1 < h2 < · · · < h� such that h�−1 <

n ≤ h�, for some � ≥ 1, we define the corresponding cylinder blocks as

Bj = [0, n] × (−hj ,hj ) for j = 1,2, . . . , �,(13)

and the set of paths restricted to Bj as

Bj =
{(

(i, si)
)n
i=0 ∈ S n

0 : max
1≤i≤n

|si | < hj

}
, for i = 1,2, . . . , �.(14)

In other words, Bj is the collection of random walk paths contained in the cylinder
Bj and the set Bj \ Bj−1 is the set of paths that exit the cylinder Bj−1 by time n

but not the cylinder Bj . Here �, {hi, i ≥ 1} will depend on n and the tail behavior
of ω. We define B0 = B0 =∅.

We also need to recall the well known fact, that the probability of the set Bc
j

under the simple random walk path measure is bounded by 4 exp(−h2
j /2n):

LEMMA 2.1 [cf. Feller (1968)]. Under the simple random walk measure Pn

and for any positive integer r we have

Pn

(
max

0≤i≤n
si ≥ r

)
= 2Pn(sn ≥ r) − Pn(sn = r).

Thus,

Pn

(
max

0≤i≤n
|si | ≥ r

)
≤ 2Pn(sn ≥ r) ≤ 4e−r2/2n.

Let us now define Zω
n,βn

(A) := 2−n∑
s∈A exp(βnH

ω(s)) for any A ⊆ S n
0 so

that

Zω
n,βn

=
�∑

j=1

Zω
n,βn

(Bj \Bj−1) and Zω̃
n,βn

=
�∑

j=1

Zω̃
n,βn

(Bj \Bj−1).(15)

For every j = 1,2, . . . , �, we define

Mj := ∑
v∈Bj

(ωv − ω̃v) = ∑
v∈Bj

ωv1{ωv>kn},(16)

as the total excess weight in block Bj . Note that for any path s = ((i, si))
n
i=0 ∈ Bj

we have 0 ≤ Hω(s) − Hω̃(s) ≤ Mj and thus

Zω
n,βn

(Bj \Bj−1) ≤ eβnMj Zω̃
n,βn

(Bj \Bj−1) for all j = 1,2, . . . , �.(17)

Combining (15), (16) and (17), we have the following lemma.
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LEMMA 2.2. For any real number A > 0, we have

P
(
logZω

n,βn
− logZω̃

n,βn
> A

)

≤ |B1| · F̄ (kn) + P

(
�∑

j=2

exp(βnMj)Pω̃
n,βn

(
Bc

j−1
)
> A

)
.

PROOF. Using decomposition (15) and estimate (17), in the second inequality
below, we have

1 ≤ Zω
n,βn

Zω̃
n,βn

= 1 + Zω
n,βn

− Zω̃
n,βn

Zω̃
n,βn

≤ 1 + Zω
n,βn

(B1) − Zω̃
n,βn

(B1)

Zω̃
n,βn

+
�∑

j=2

(
eβnMj − 1

) · Pω̃
n,βn

(Bj \Bj−1)

≤ 1 + Zω
n,βn

(B1) − Zω̃
n,βn

(B1)

Zω̃
n,βn

+
�∑

j=2

eβnMj · Pω̃
n,βn

(Bj \Bj−1).

Using log(1 + x) ≤ x, this immediately implies that

0 ≤ logZω
n,βn

− logZω̃
n,βn

(18)

≤ Zω
n,βn

(B1) − Zω̃
n,βn

(B1)

Zω̃
n,βn

+
�∑

j=2

eβnMj · Pω̃
n,βn

(Bj \Bj−1).

Note that on the event {maxv∈B1 ωv ≤ kn} we have Zω
n,βn

(B1) = Zω̃
n,βn

(B1).

Moreover, we have P(maxv∈B1 ωv > kn) ≤ |B1| · F̄ (kn) and our claim follows.
�

Now, E[ω1{ω>kn}] = k1−α
n L1(kn) with the slowly varying function

L1(t) := L(t) +
∫ ∞

1
x−αL(tx)dx.

For α �= 1, it is easy to check that there exist constants c > 1, t0 > 1, such that

L(t) ≤ L1(t) ≤ cL(t) for all t ≥ t0.(19)

Clearly, E[Mj ] = E[∑v∈Bj
ω1{ω>kn}] = |Bj |k1−α

n L1(kn) = nhjk
1−α
n L1(kn).

Thus, if

βnnhjk
1−α
n � h2

j−1/n,

then the expected energy accumulated by the path (this corresponds to the left-
hand side of the above inequality) will be dominated by the entropy cost (that
corresponds to the right-hand side of the above inequality). Hence, the contribu-
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tion of the set of paths in Bj \ Bj−1 will be small. The following Proposition 2.3
makes this argument rigorous. Recall the function m : (1,∞) �→R from (5), which
satisfies t F̄ (m(t)) = 1.

PROPOSITION 2.3. Consider a sequence (βn)n≥1 such that

sup
n≥1

βn max
{
n1/4,m

(
n3/2)} < ∞.

Assume that α > 1/2 and let

kn =
⎧⎪⎨
⎪⎩

β−1
n , when α > 6,

β−1
n

m(n3/2(logn)η)

m(n3/2)
, when α ∈

(
1

2
,6
]
,

for some η ∈ (1/2, α). Assume, also, that

lim
ε↓0

lim sup
n→∞

P
(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

]) = 0.(20)

Then, for any a ≥ 0

na(logZω
n,βn

− logZω̃
n,βn

) P−→
n→∞ 0.

PROOF. Recall the definitions of Bj ,Bj ,Mj , j = 1,2, . . . , �, from equa-
tions (13), (14) and (16) for a given sequence of heights

√
n � h1 < h2 < · · · < h�

with h�−1 < n ≤ h�, that will be determined later on. We distinguish between three
cases:

Case 1 (α > 8). First, we consider the case α > 8 and choose kn ≥ n1/4. If we
take � = 1 with h1 = n, we have by Lemma 2.2, with A = n−a and arbitrary a > 0
(notice that in this case the second term in the inequality does not appear) that

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a) ≤ |B1| · F̄ (kn) ≤ |B1|F̄ (

n1/4)
= n(2n + 1)n−α/4L

(
n1/4) −→ 0, as n → ∞,

which proves the claim in this case.
Let us now work toward the case α ≤ 8. To prepare, we start by using

Lemma 2.2 with the value A, therein, chosen again to be n−a . Choosing an ar-
bitrary number ε > 0 and making elementary probability estimates, we have

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a)

≤ |B1| · F̄ (kn) + P

(
�∑

j=2

exp(βnMj)Pω̃
n,βn

(
Bc

j−1
)
> n−a

)

(21)
≤ |B1| · F̄ (kn) + P

(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

])

+
�∑

j=2

P

(
βnMj + log

Zω̃
n,βn

(Bc
j−1)

E[Zω̃
n,βn

] > log
(
ε�−1n−a)).
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Furthermore, we estimate

P

(
βnMj + log

Zω̃
n,βn

(Bc
j−1)

E[Zω̃
n,βn

] > log
(
ε�−1n−a))

≤ P
(
Zω̃

n,βn

(
Bc

j−1
) ≥ ε−1�P

(
Bc

j−1
)
E
[
Zω̃

n,βn

])
(22)

+ P
(
βnMj > log

((
ε�−1)2

n−a)− log P
(
Bc

j−1
))

.

Assuming that log((ε�−1)2n−a) − log P(Bc
j−1) > 0 (this assumption will be satis-

fied by the choices of the parameters ε, �,hj ), we use Chebyshev’s inequality in
both terms of (22) and the fact that

E
[
Zω̃

n,βn
(A)

] = P(A)E
[
Zω̃

n,βn

]
for any A⊆ S n

0 ,

to estimate (22) as

P

(
βnMj + log

Zω̃
n,βn

(Bc
j−1)

E[Zω̃
n,βn

] > log
(
ε�−1n−a))

≤ ε

�
+ βnE[Mj ]

log((ε�−1)2n−a) − log P(Bc
j−1)

(23)

≤ ε

�
+ βn|Bj |E[ω1{ω>kn}]

log((ε�−1)2n−a) − log P(Bc
j−1)

≤ ε

�
+ βn|Bj |E[ω1{ω>kn}]

log((ε�−1)2n−a/4) + h2
j−1/2n

,

where the last inequality follows by the result that P(Bc
j ) ≤ 4 exp(−h2

j /2n), for all
j ≥ 1, by Lemma 2.1. Combining (23) and (21), we have

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a)

≤ |B1|F̄ (kn) + P
(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

])+ ε(24)

+
�∑

j=2

βn|Bj |E[ω1{ω>kn}]
log((ε�−1)2n−a/4) + h2

j−1/2n
.

We are now ready for the next case.
Case 2 (6 < α ≤ 8). Here the cutoff is kn = β−1

n . Note that if βn � n−2/α then
as in Case 1, we can take h1 := n with � = 1 to get the result and avoid the multi-
scale argument. Thus, w.l.o.g. we can assume that βn � n−2/α . From the assump-
tion supn≥1 βn max{n1/4,m(n3/2)} < ∞, we have kn ≥ const.n1/4 and we choose

hj = ⌊
n(1+δj )/2⌋ for j ≥ 1,
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with

δ1 = 1

4
(α − 6) and

δj = 2δj−1 + α − 6

4
= 2j − 1

4
(α − 6) for j = 2,3, . . . , �,

and � = �log2(1+4/(α −6))�, so that δ� ≥ 1, which guarantees h� ≥ n. We notice
that, for all large enough n, we have

log
((

ε�−1)2
n−a/4

)+ h2
j−1/2n ≥ h2

j−1/4n.(25)

Moreover, we have that

|B1|F̄ (kn) ≤ const.|B1|F̄ (
n1/4) ≤ const.nh1 · n−α/4L

(
n1/4)

(26)
≤ const.n(6−α)/8L

(
n1/4) = o(1),

since α > 6. Using the choice kn = β−1
n and the assumption that βnn

1/4 is bounded
we also have

βn|Bj |E[ω1{ω>kn}] = βn(2nhj )k
1−α
n L1(kn) = (2nhj )β

α
n L1(kn)

≤ const.n1+(1+δj )/2−α/4L1(kn)

= const.nδj /2+(6−α)/4L1
(
n1/4)(27)

= const.nδj−1+(6−α)/8L1
(
n1/4)

= const.n−1h2
j−1n

(6−α)/8L1
(
n1/4).

Inserting the bounds (25), (26), (27) into (24) we obtain

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a)

≤ const.n(6−α)/8L
(
n1/4)+ P

(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

])+ ε

+ const.n(6−α)/8L1
(
n1/4),

and so

lim sup
n→∞

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a) ≤ lim sup

n→∞
P
(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

])+ ε.

Taking ε ↓ 0 we have the result for α ∈ (6,8], by the assumption that in this limit
the first term on the right hand side vanishes.

Case 3 (1/2 < α ≤ 6). Now we consider the case when 1/2 < α ≤ 6. We
choose

kn = m(n3/2(logn)η)

βnm(n3/2)
≥ const.m

(
n3/2(logn)η

)
,
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for some η ∈ (1/2, α). As before, we can assume that βn � n−2/α , otherwise the
proof is trivial. We now choose hj = �√n(logn)δj � for j ≥ 1, with

δj := 1

2
+ (2j − 1)

4
(2η − 1) for j = 1,2, . . . , �,

and � = �n := �log2(1 + 2 logn
(2η−1) log logn

)�, so that h� ≥ n. We first notice that this
choice of hj implies, similarly to (25), that

log
((

ε�−1)2
n−a/4

)+ h2
j−1/2n

≥ log
((

ε�−1)2
n−a/4

)+ n(logn)2δj−1

2n
(28)

= log
((

ε�−1)2
n−a/4

)+ 1

2
(logn)1+(2j−1−1)/2(2η−1)

≥ h2
j−1/4n,

for every j ≥ 2, since η > 1/2. Moreover, we have

|B1|F̄ (kn) ≤ const.|B1|F̄ (
m
(
n3/2(logn)η

))
(29)

≤ const.n−1/2h1 · (logn)−η = const.(logn)1/4−η/2 = o(1),

by the choice η ∈ (1/2, α). Using (19) in the first inequality below and the defini-
tion of m(·) in the second equality, we also have

βn|Bj |E[ω1{ω>kn}] ≤ const.βn(nhj )k
1−α
n L1(kn) ≤ const.nhjβnknF̄ (kn)

≤ const.nhjβnknF̄
(
m
(
n3/2(logn)η

))
(30)

= const.nhj

m(n3/2(logn)η)

m(n3/2)

1

n3/2(logn)η

= const.
h2

j−1

n
(logn)δj−2δj−1−η m(n3/2(logn)η)

m(n3/2)
,

where in the last step we used the definition of hj−1, hj . We will establish this in
Lemma 2.4 after the end of this proof that for any ϑ > 0, which we will choose to
be small, we have for large enough n that

m(n3/2(logn)η)

m(n3/2)
< (logn)η/((1−ϑ)α),(31)

and inserting this into (30) we obtain

βn|Bj |E[ω1{ω>kn}] ≤ const.
h2

j−1

n
(logn)δj−2δj−1−η(1−1/((1−ϑ)α))

(32)

= o(1)
h2

j−1

n
,
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where the last equality holds if we choose 1/2 < η < α and ϑ appropriately small,
since

δj − 2δj−1 − η

(
1 − 1

(1 − ϑ)α

)
= −3

4
+ η

2 − α(1 − ϑ)

2α(1 − ϑ)
,

which for α > 1/2 is bounded by

−3

4
+ 2 − α(1 − ϑ)

2(1 − ϑ)
= −(2α + 3)(1 − ϑ) + 4

4(1 − ϑ)
< 0,

for ϑ small enough. Inserting (28), (29) and (32) into (24), we obtain

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a) ≤ const.(logn)1/4−η/2 + P

(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

])
+ ε + const.�(logn)δj−2δj−1−η(1−1/((1−ϑ)α)).

The choice of � = �log2(1 + 2 logn
(2η−1) log logn

)�, as well as of (δj )j≥1, η ∈ (1/2, α)

and (small) ϑ , implies that

lim sup
n→∞

P
(
logZω

n,βn
− logZω̃

n,βn
> n−a) ≤ ε + lim sup

n→∞
P
(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

])
,

from which the result follows by taking ε ↓ 0. �

It only remains to check the validity of (31). This is done in the next lemma
with the help of Karamata’s theorem (see Theorem 1.3.1 in [5]), which states that
any slowly varying function L(·) has the form c(n) exp(

∫ n
1 ε(s)/s ds), where c(·)

is an asymptotically constant function and ε(·) is asymptotically zero.

LEMMA 2.4. For any arbitrarily small ϑ > 0 we have, for all large enough n,
that

m(n3/2(logn)η)

m(n3/2)
< (logn)η/((1−ϑ)α).

PROOF. By the definition of m(·), we have that(
m(n3/2(logn)η)

m(n3/2)

)−α L(m(n3/2(logn)η))

L(m(n3/2))
= 1

(logn)η
,

which implies by Karamata’s theorem that

m(n3/2(logn)η)

m(n3/2)
= (logn)η/α

(
L(m(n3/2(logn)η))

L(m(n3/2))

)1/α

≤ const.(logn)η/α exp
(
α−1

∫ m(n3/2(logn)η)

m(n3/2)
ε(s)/s ds

)

< const.(logn)η/α

(
m(n3/2(logn)η)

m(n3/2)

)ϑ

,

where in the last step we bound ε(s) by αϑ with ϑ arbitrarily small, for all s >

m(n3/2) and all n large enough. �
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3. Proof of Theorem 1.1. We need to establish that the limiting distribution
of the (centered) partition function with truncated disorder converges to the de-
sired quantity. We do this via a multilinear expansion of the partition function and
establish that these series converge. In order to check this, we may apply (a version
of) Theorem 4.5 in [2] or Theorem 3.8 of [9].

THEOREM 3.1. Let (p(i, x))i∈N,x∈Z be the transition kernel of a one-
dimensional simple random walk, that is, p(i, x) = P(si = x), for i ∈ N, x ∈ Z.
Let also (ζ

(n)
i,x )i∈N,x∈Z that is, be a family of independent random variables, such

that:

• E[ζ (n)] = 0,
• Var(ζ (n)) = 1 + o(1), as n → ∞,
• The family ((ζ (n))2)n≥1 is uniformly integrable.

Then we have the convergence in distribution and in L2(P) of the multilinear series

1 +
n∑

k=1

βk
n

∑
1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
j=1

p(ij − ij−1, xj − xj−1)ζ
(n)
ij ,xj

−→ Z√
2β

,

whenever βnn
1/4 → β , with Z√

2β
the Wiener chaos expansion (6).

PROPOSITION 3.2. Assume that the weights satisfy E[ω] = 0,E[ω2] = 1 and
P(ω > x) = x−αL(x) for some α ≥ 6 and some slowly varying function L(x).
Let βn be a sequence of real numbers with βnn

1/4 → β > 0 as n → ∞ and
ω̃ = ω1ω≤kn with kn = β−1

n , if α > 6 and kn = β−1
n m(n3/2(logn)η)/m(n3/2) with

1/2 < η < α, if α = 6. Then

logZω̃
n,βn

− n logE

(
e−βnω− +

4∑
i=1

βi
n

i! ωi+

)
(d)−→

n→∞ logZ√
2β

.

PROOF. Let the truncated log-moment generating function be

λn(x) := logE
[
exω̃].

We will rewrite Zω̃
n,βn

e−nλn(βn) in the form of a multilinear polynomial

e−nλn(βn)Zω̃
n,βn

=
〈
exp

(
n∑

i=1

(
βnω̃i,si − λn(βn)

))〉

(33)

= 1 +
n∑

k=1

∑
1≤i1<···<ik≤n

x1,...,xk∈Z

βk
n

k∏
j=1

p(ij − ij−1, xj − xj−1)ζ
(n)
ij ,xj

,
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where

ζ (n)
v := β−1

n

(
eβnω̃v−λn(βn) − 1

)
for v ∈ Z

2.(34)

It is immediate that E[ζ (n)
v ] = 0 and using Lemma 1.6 that

E
[(

ζ (n)
v

)2] = β−2
n e−2λn(βn)(eλn(2βn) − e2λn(βn)) = 1 + O(βn),

(notice that the condition eβnknβα−θ
n → 0 is satisfied, since βnkn ≤ m(n3/2 ×

(logn)η)/m(n3/2) ≤ (logn)η/(1−ϑ)α � logn, for η < α and ϑ small). Moreover,
ζ (n) have uniformly integrable second moments as the following computation, for
2 < p < p′ < α, shows: Denote ‖ω‖p := (E|ω|p)1/p ,∥∥ζ (n)

∥∥
p = β−1

n

∥∥eβnω̃−λn(βn) − 1
∥∥
p

≤ β−1
n e−λn(βn)

∥∥eβnω̃ − 1
∥∥
p + β−1

n

∣∣1 − e−λn(βn)
∣∣

≤ e−λn(βn)
∥∥ω̃eβnω̃+∥∥

p + β−1
n

∣∣1 − e−λn(βn)
∣∣

≤ e−λn(βn) · ∥∥ω∥∥p′ · ‖eβnω̃+‖pp′/(p′−p) + β−1
n

∣∣1 − e−λn(βn)
∣∣,

where in the third inequality we used the fact that |1 − ex | ≤ |x|max{1, ex}, for
all x ∈ R. Lemma 1.6 shows that the last term in right-hand side is uniformly
bounded. Since p′ < α, we also have that ‖ω‖p′ < ∞ and it remains to check the
boundedness of ‖eβnω̃+‖pp′/(p′−p). This follows immediately in the case α > 6
since the truncation level equals kn = β−1

n and so βnω̃+ ≤ 1. In the case α = 6,
the truncation is kn = β−1

n m(n3/2(logn)η)/m(n3/2). Denoting, for conciseness,
q = pp′/(p′ − p) we have∥∥eβnω̃

∥∥q
q = E

[
eqβnω̃+;ω ≤ β−1

n

]+E
[
eqβnω̃+;ω ≥ β−1

n

] ≤ eq + eqβnknF̄
(
β−1

n

)
≤ eq + exp

(
qm

(
n3/2(logn)η

)
/m

(
n3/2))βα

n L
(
β−1

n

)
.

Using Lemma 2.4 and the assumption that βnn
1/4 → β > 0, we estimate the above,

for all large enough n, by

eq + exp
(
q(logn)η/((1−ϑ)α) − const. logn

)
,

which is uniformly bounded since η < α and ϑ can be chosen arbitrarily small.
Thus, the assumptions of Theorem 3.1 are satisfied and we have that

e−nλn(βn)Zω̃
n,βn

(d)−→
n→∞Z√

2β
,

when βnn
1/4 → β > 0. Finally, by Lemma 1.6 we check that, for n → ∞ we have∣∣∣∣∣nλn(βn) − n logE

(
e−βnω− +

4∑
i=1

βi
n

i! ωi+

)∣∣∣∣∣ = no(β4
n) = o(1).

�
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We can now conclude the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Proposition 2.3 states that

na(logZω
n,βn

− logZω̃
n,βn

) P−→
n→∞ 0,

for any a ≥ 0, under the assumption that

lim
ε↓0

lim sup
n→∞

P
(
Zω̃

n,βn
< εE

[
Zω̃

n,βn

]) = 0.(35)

However, Zω̃
n,βn

/E[Zω̃
n,βn

] = e−λn(βn)Zω̃
n,βn

converges in distribution to Z√
2β

,

when βnn
1/4 → β > 0, which is a.s. strictly positive [20] and so the assumption is

readily checked.
When βnn

1/4 → 0, we can see from (33) that

e−λn(βn)Zω̃
n,βn

= 1 + (
βnn

1/4) 1

n3/4

∑
1≤i≤n,x∈Z

(√
np(i, x)

)
ζ

(n)
i,x + o

(
βnn

1/4),
where the o(βnn

1/4) is in an L2(P) sense. Thus, clearly, assumption (35) is satis-
fied. Moreover,

1

n3/4

∑
1≤i≤n,x∈Z

ζ
(n)
i,x

(√
np(i, x)

) (d)−→
n→∞

√
2
∫
(0,1)×R

ρ(t, x)W(dt dx),

which is a mean zero Gaussian with variance 2π−1/2. �

4. Proof of Theorem 1.2.

PROPOSITION 4.1. Assume that the weights satisfy E[ω] = 0,E[ω2] = 1
and P(ω > x) = x−αL(x) for some α ∈ (2,6] and some slowly varying func-
tion L(x). Let βn be a sequence of real numbers such that βnm(n3/2) stays
bounded, as n → ∞, but βnn

1/4 converges to zero. Let ω̃ = ω1ω≤kn , with kn =
β−1

n m(n3/2(logn)η)/m(n3/2) and η ∈ (1/2, α). Then

1

βnn1/4

(
logZω̃

n,βn
− n logE

(
e−βnω− +

2∑
i=1

βi
n

i! ωi+ + β3
n

3! ω3+1α>3

))

(d)−→
n→∞N

(
0,2π−1/2).

PROOF. We denote, again, the truncated log-moment generating function

λn(x) := logE
[
exω̃],
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with ω̃ := ω1ω≤kn and kn = β−1
n m(n3/2(logn)η)/m(n3/2). Write Zω̃

n,βn
e−nλn(βn)

in the form of a multilinear polynomial as in (33), (34). Denoting by ζ
(n)
i,x :=

β−1
n (eβnω̃i,x−λn(βn) − 1), we have

β−1
n n−1/4(e−nλn(βn)Zω̃

n,βn
− 1

)− n−1/4
∑

1≤i≤n,x∈Z
p(i, x)ζ

(n)
i,x

(36)

=
n∑

k=2

cn,kn
−k/4

∑
1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
j=1

p(ij − ij−1, xj − xj−1)ζ
(n)
ij ,xj

,

where cn,k := (βnn
1/4)k−1 −→ 0 since βnn

1/4 converges to zero and k ≥ 2. The
estimates in the proof of Proposition 3.2 show that

n∑
k=2

n−k/4
∑

1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
j=1

p(ij − ij−1, xj − xj−1)ζ
(n)
ij ,xj

,

is bounded in L2(P). Therefore the right-hand side of (36) converges to zero in
L2(P). Moreover,

n−1/4
∑

1≤i≤n,x∈Z
p(i, x)ζ

(n)
i,x

(d)−→N
(
0,2π−1/2).

Noticing that (βnn
1/4)−1 log(e−nλn(βn)Zω̃

n,βn
) ≈ (βnn

1/4)−1(e−nλn(βn)Zω̃
n,βn

− 1),
the result follows once we check the asymptotic behavior of the centering nλn(βn).
To this end, we invoke, again, Lemma 1.6 and get, for any θ < α,

(
βnn

1/4)−1

∣∣∣∣∣nλn(βn) − n logE

(
e−βnω− +

�θ�∑
i=1

βi
n

i! ωi+

)∣∣∣∣∣
= (

βnn
1/4)−1

no
(
βθ

n

)
= o

(
n3/4βθ−1

n

) = o
(
n(6−6θ+3α)/(4α)) = o(1),

since α > 2 and θ can be chosen to be arbitrarily close to α (Notice that in the pre-
vious display we ignored slowly varying corrections, since these are immaterial).
Finally, if α > 4 and hence we choose θ > 4, then

(
βnn

1/4)−1
n

∣∣∣∣∣logE

(
e−βnω− +

�θ�∑
i=1

βi
n

i! ωi+

)

− logE

(
e−βnω− +

2∑
i=1

βi
n

i! ωi+ + β3
n

3! ω3+1α>3

)∣∣∣∣∣
= (

βnn
1/4)−1

nO
(
β4

n

) = O
((

βnn
1/4)3) = o(1),
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whenever βnn
1/4 converges to zero. If α ≤ 4, then θ is chosen strictly less than 4

and the above difference is trivially equal to zero. �

PROOF OF THEOREM 1.2. The proof follows immediately from Proposi-
tions 4.1 and 2.3 once we check that assumption (20) in Proposition 2.3 is sat-
isfied. But this is clear from relation (36), which implies that e−nλn(βn)Zω̃

n,βn
=

1 + O(βnn
1/4) = 1 + o(1). �

5. Proof of Theorem 1.4. Note that we already have, by Proposition 2.3, that

n1/2(logZω
n,βn

− logZω̃
n,βn

) P−→
n→∞ 0,

where ω̃ = ω1ω≤kn with kn = β−1
n m(n3/2(logn)η)/m(n3/2) for some η ∈ (1/2, α).

So, as in the previous cases, it suffices to determine the limit of the partition func-
tion with truncated disorder, Zω̃

n,βn
. This will be the main effort in the proof. Below,

we will restrict attention to the case βnm(n3/2) → β > 0. The case β = 0 follows
by plain inspection of the bounds in the proof. This is also reflected in the fact that

W(α)
β

(d)−→
n→∞W(α)

0 , since for β tending to zero

1

β

∫
S

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx) ∼ β

2

∫
S

w2ρ(t, x)P(dw dt dx),

which tends to zero, since the last integral is P-a.s. finite, thanks to Lemma 1.3,

PROOF OF THEOREM 1.4. As explained, we assume βnm(n3/2) → β > 0.
Performing the usual multilinear expansion we have

e−nλn(βn)Zω̃
n,βn

= 1 +∑
i,x

(
eβnω̃i,x−λn(βn) − 1

)
pn(i, x) + Rn,

where the remainder Rn equals

Rn :=
∞∑

k=2

∑
1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
j=1

(
e
βnω̃ij ,xj

−λn(βn) − 1
)
pn(ij − ij−1, xj − xj−1).

We first show that nE[R2
n] = o(1), as n tends to infinity. Using the fact that

eβnω̃v−λn(βn) − 1 are mean zero, we have

nE
[
R2

n

] = n

∞∑
k=2

∑
1≤i1<···<ik≤n

x1,...,xk∈Z

(
eλn(2βn)−2λn(βn) − 1

)k

(37)

×
k∏

j=1

p2
n(ij − ij−1, xj − xj−1).



HEAVY TAILED RANDOM POLYMER 4033

From the second part of Lemma 1.6, we have that

eλn(2βn)−2λn(βn) − 1

≤ const.eβnknF̄ (kn) ≤ const.em(n3/2(logn)η)/m(n3/2)F̄
(
m
(
n3/2(logn)η

))
≤ const.e(logn)η/(1−ϑ)α

n−3/2(logn)−η ≤ const.e(logn)η/(1−ϑ)α

n−3/2,

for all large n and ϑ arbitrarily small, as in Lemma 2.4. Inserting this into (37) we
obtain

nE
[
R2

n

] ≤ n

∞∑
k=2

(
const.e(logn)η/(1−ϑ)α

n−3/2)k

× ∑
1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
i=1

pn(ij − ij−1, xj , xj−1)
2

= n

∞∑
k=2

(
const.e(logn)η/(1−ϑ)α

n−3/2)kn−k

× ∑
1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
i=1

(√
npn(ij − ij−1, xj , xj−1)

)2
.

Since the summation runs over k ≥ 2, η < α and

n−3k/2
∑

1≤i1<···<ik≤n

x1,...,xk∈Z

k∏
i=1

(√
npn(ij − ij−1, xj − xj−1)

)2

converges to a finite Riemann integral, it is easily seen that nE[R2
n] converges to

zero, as n tends to infinity.
To proceed further, we write

Zω̃
n,βn

= enλn(βn)

(
1 + ∑

1≤i≤n,x∈Z

(
eβnω̃i,x−λn(βn) − 1

)
pn(i, x) + Rn

)

= e(n−1)λn(βn)

(
eλn(βn) + ∑

1≤i≤n,x∈Z

(
eβnω̃i,x − eλn(βn))pn(i, x) + eλn(βn)Rn

)

= e(n−1)λn(βn)

(
1 + ∑

1≤i≤n,x∈Z

(
eβnω̃i,x − 1

)
pn(i, x)

− (n − 1)
(
eλn(βn) − 1

)+ eλn(βn)Rn

)
.
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As it will be checked, the terms inside the parenthesis, besides 1, tend to zero, in
probability, as n tends to infinity and in fact the third and fourth terms are o(n−1/2),
while the second term will be of order O(n−1/2). Hence,√

n logZω̃
n,βn

= √
n(n − 1)λn(βn)

+ √
n log

(
1 +∑

v

(
eβnω̃v − 1

)
pn(v) − (n − 1)

(
eλn(βn) − 1

)+ eλn(βn)Rn

)

= √
n
∑
v

(
eβnω̃v − 1

)
pn(v) − √

n(n − 1)
(
eλn(βn) − 1 − λn(βn)

)

+ √
neλn(βn)Rn + o(1)

= √
n
∑
v

(
eβnω̃v − 1

)
pn(v) − √

n(n − 1)
(
eλn(βn) − 1 − λn(βn)

)+ o(1).

Using the second part of Lemma 1.6, we have the estimate
√

n(n − 1)
∣∣eλn(βn) − 1 − λn(βn)

∣∣ ≤ const.n3/2(λn(βn)
)2

= const.n3/2(log
(
1 +E

[
eβnω1ω≤kn

]− 1
))2

≤ const.n3/2(
E
[
eβnω1ω≤kn

]− 1
)2

≤ const.n3/2e2βnkn
(
F̄
(
β−1

n

))2

≤ const.n3/2e2βnkn
(
F̄
(
m
(
n3/2)))2

= const.n−3/2e2βnkn,

which converges to zero as n tends to infinity, since βnkn = m(n3/2(logn)η)/

m(n3/2) and η ∈ (1/2, α). Therefore, to identify the distributional limit of√
n logZω̃

n,βn
it remains to do so for

√
n
∑

v(e
βnω̃v − 1)pn(v). For this, we first

notice that the field {(n−1i, n−1/2x,m(n3/2)−1ω(i,x)): i + x is even, |x| ≤ K
√

n}
converges to a Poisson field P on R × (0,1) × (−K,K) with intensity mea-
sure 1

2α|w|−(1+α)(1w>0 + c−1w<0)dw dt dx. To see this, denote for any set
A ⊂ (0,1) ×R and (without loss of generality) any positive r

NA := �
{
(i, x) ∈N×Z: i + x is even,

(
n−1i, n−1/2x

) ∈ A and
(38)

m
(
n3/2)−1

ω(i,x) > r
}
.

For every single (i, x) ∈ N × Z it holds P(m(n3/2)−1ω(i,x) > r) → 0, as n → ∞,
while

E[NA] = 1

2
n3/2(1 + o(1)

)|A|F̄ (
rm

(
n3/2))

= 1

2
n3/2(1 + o(1)

)|A|r−αm
(
n3/2)−α

L
(
rm

(
n3/2))
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= 1

2
n3/2(1 + o(1)

)|A|r−αF̄
(
m
(
n3/2)) = (

1 + o(1)
)|A|r−α

= 1

2

(
1 + o(1)

) ∫
A

∫ ∞
r

α dw

w1+α
dt dx,

where the factor 1/2 comes from the parity condition “i + x is even” and we also
used the defining property of slowly varying functions, that is, L(ry)/L(y) → 1,
for every r ∈ R and y → ∞. Hence, it follows that NA is a Poisson random
variable. To complete the check that the field (n−1i, n−1/2x,m(n3/2)−1ω(i,x))

converges to a Poisson field, it suffices to check that for any two disjoint
sets A1 × (a1, b1) and A2 × (a2, b2), where A1,A2 ⊂ (0,1) × R and w.l.o.g.
(a1, b1), (a2, b2) ⊂ R+, the random variables

NAr,ar ,br := ∑
(i,x):i+x is even

1{(n−1i,n−1/2x,m(n3/2)−1ω(i,x))∈Ar×(ar ,br )}, r = 1,2,

are asymptotically distributed as independent Poisson variables. This is clear in the
case that A1,A2 are disjoint, by the independence of the random variables ω(i,x)

and the above computation on NA. So, let us assume that A1 = A2 = A and the
intervals (a1, b1), (a2, b2) are disjoint and compute

E
[
eλ1NA,a1,b1+λ2NA,a2,b2

]
= E

[
e
λ11{ω∈m(n3/2)(a1,b1)}+λ21{ω∈m(n3/2)(a2,b2)}]1/2n3/2|A|(1+o(1))

= (
1 + (

eλ1 − 1
)
P
(
ω ∈ m

(
n3/2)(a1, b1)

)
+ (

eλ2 − 1
)
P
(
ω ∈ m

(
n3/2)(a1, b2)

))1/2n3/2|A|(1+o(1))
,

and an easy computation shows that the latter converges to

exp
((

eλ1 − 1
)1

2

∫
A

dt dx

∫ b1

a1

α dw

w1+α
+ (

eλ2 − 1
)1

2

∫
A

dt dx

∫ b2

a2

α dw

w1+α

)
,

from which the result follows.
We now proceed to identify the limit distribution of

√
n
∑

v(e
βnω̃v − 1)pn(v).

We distinguish three cases

Case 1 (1/2 < α < 1). Denote by x(v) the x coordinate of v = (i, x) ∈ {0,

1, . . . , n} ×Z and write
√

n
∑
v

(
eβnω̃v − 1

)
pn(v)

= √
n

∑
|x(v)|<K

√
n

(
eβnω̃v − 1

)
pn(v)

+ √
n

∑
|x(v)|>K

√
n

(
eβnω̃v − 1

)
pn(v).
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Lemma 5.1 below will show that the second term converges in probability to zero,
as K ↗ ∞, uniformly in n. We, therefore, concentrate on the first term. To this,
consider a partition Pδ of R×[0,1]×R into disjoint rectangles of diameter δ > 0.
For any π ∈ Pδ denote by (wπ, tπ , xπ) its centre and write the first term as

√
n

∑
|x(v)|<K

√
n

(
eβnω̃v − 1

)
pn(v)

= ∑
π∈Pδ

∑
1≤i≤n,|x|≤K

√
n

(
eβnω̃i,x − 1

)

× √
npn

(
n

i

n
,
√

n
x√
n

)
1(ωi,x/(m(n3/2)),i/n,x/

√
n)∈π

= ∑
π∈Pδ

(
1 + oδ(1)

)(
eβwπ − 1

)
2ρ(tπ , xπ)

× ∑
1≤i≤n,|x|≤K

√
n

i+x is even

1(ωi,x/(m(n3/2)),i/n,x/
√

n)∈π ,

where we used the fact that βnm(n3/2) → β and the local limit theorem for the
convergence

√
npn(·) → 2ρ(·). The notation oδ(1) is used to denote errors that

are negligible as δ ↘ 0 due to the continuity of the functions involved in the ex-
pression. Moreover, ∑

1≤i≤n,|x|≤K
√

n

i+x is even

1(ωi,x/(m(n3/2)),i/n,x/
√

n)∈π −→ P(π),

as n tends to infinity, where the Poisson measure P(π) has intensity η(dw dt dx) =
1
2α|w|−1−α(1w>0 + c−1w<0)dw dt dx.

Therefore, the above expression converges in the limit n → ∞ followed by the
limit δ ↘ 0 to

2
∫
R×(0,1)×(−K,K)

(
eβw − 1

)
ρ(t, x)P(dw dt dx).

Taking the limit K ↗ ∞ and thanks to Lemma 1.3, we obtain the limit

2
∫
R×(0,1)×R

(
eβw − 1

)
ρ(t, x)P(dw dt dx)

= 2
∫
R×(0,1)×R

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx)

+ 2β

∫
R×(0,1)×R

wρ(t, x)P(dw dt dx).
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Case 2 (1 < α < 2). Denoting by ω̃ε
v := ωv1|ωv |≤εm(n3/2) = ω̃v1|ωv |≤εm(n3/2),

for ε small and n large, we decompose
√

n
∑
v

(
eβnω̃v − 1

)
pn(v)

= √
n

∑
|x(v)|≤K

√
n,|ωv |≥εm(n3/2)

(
eβnω̃v − 1

)
pn(v)

+ √
nβnE

[
ω̃ε

v

] ∑
|x(v)|≤K

√
n

pn(v)

(39)
+ √

n
∑

|x(v)|≤K
√

n

(
eβnω̃ε

v −E
[
eβnω̃ε

v
])

pn(v)

+ √
n

∑
|x(v)|>K

√
n

(
eβnω̃v − 1

)
pn(v)

+ √
nE

[
eβnω̃ε

v − 1 − βnω̃
ε
v

] ∑
|x(v)|≤K

√
n

pn(v).

Moreover, a simple computation, using the fact that ω has mean zero, shows
that

n3/2βnE
[
ω̃ε

v

] = −n3/2βnE[ωv1|ωv |≥εm(n3/2)]
−→
n→∞ −βα

∫
|w|>ε

|w|−α(1w>0 − c−1w<0)dw

= −βα

∫
|w|>ε

w
1

|w|1+α
(1w>0 + c−1w<0)dw.

Notice that the integral is well defined since α > 1. In combination with the local
limit theorem, we see that

√
nβnE

[
ω̃ε

v

] ∑
|x(v)|≤K

√
n

pn(v)

−→
n→∞−βα

∫
|w|>ε

w
1

|w|1+α
(1w>0 + c−1w<0)dw

×
∫
(0,1)×(−K,K)

ρ(t, x)dt dx

= −2β

∫
Aε,K

wρ(t, x)η(dw dt dx),

where Aε,K := [−ε, ε]c × (0,1) × (−K,K). This fact together with the Poisson
convergence [as in Case 1, cf. (38)] implies that the first line of (39) converges, as
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n tends to infinity, to

2
∫
Aε,K

(
eβw − 1

)
ρ(t, x)P(dw dt dx) − 2β

∫
Aε,K

wρ(t, x)η(dw dt dx)

= 2
∫
Aε,K

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx)

+ 2β

∫
Aε,K

wρ(t, x)
(
P(dw dt dx) − η(dw dt dx)

)
.

Notice that in the last step we centered appropriately, in order to be able to take
the limit ε ↘ 0 in a legitimate, L2(P), way. This is done using the Poisson L2

isometry (cf. [17], Theorem 10.15), since for any arbitrary M > 0 we have

E
P
(∫

{ε<|w|<M}×(0,1)×(−K,K)
wρ(t, x)

(
P(dw dt dx) − η(dw dt dx)

))2

=
∫
{ε<|w|<M}×(0,1)×(−K,K)

w2ρ(t, x)2η(dw dt dx),

which is uniformly bounded as ε tends to zero, thanks to the fact that α < 2. Sim-
ilarly, using an L1 estimate, we have

E
P
∫
{ε<|w|<M}×(0,1)×(−K,K)

|eβw − 1 − βw|ρ(t, x)P(dw dt dx)

≤ const.
∫
{ε<|w|<M}×(0,1)×(−K,K)

w2ρ(t, x)η(dw dt dx),

which is, again, uniformly bounded as ε tends to zero, for α < 2. Lemma 5.1 below
will allow us to take the limit K ↗ ∞ and finally get convergence to

2
∫
R×(0,1)×R

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx)

+ 2β

∫
R×(0,1)×R

wρ(t, x)
(
P(dw dt dx) − η(dw dt dx)

)
.

To conclude, we need to check that the rest of the terms in (39) are negligible
when n tends to infinity and ε ↘ 0,K ↗ ∞. For the first term in the third line,
this follows from Lemma 5.1, below. For the term in the second line, this follows
by an L2(P) estimate, using the second part of Lemma 1.6 with kn = εm(n3/2) =
εβ−1

n . Regarding the last term, it suffices to show that n3/2β2
nE[(ω̃ε

v)
2] converges

to zero, since n−3/2 ∑|x(v)|≤K
√

n

√
npn(v) converges to a finite Riemann integral

and E[|eβnω̃ε
v − 1 − βnω̃

ε
v|] ≤ const.β2

nE[(ω̃ε
v)

2]. To this end we have,

n3/2β2
nE

[(
ω̃ε

v

)2] = n3/2β2
n

(∫ εm(n3/2)

0
x2 dF(x) +

∫ 0

−εm(n3/2)
x2 dF(x)

)
.
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Thanks to assumption (C) it suffices to estimate the first term and we have

n3/2β2
n

∫ εm(n3/2)

0
x2 dF(x)

= n3/2β2
n

(
−(

εm
(
n3/2))2

F̄
(
εm

(
n3/2))+ 2

∫ εm(n3/2)

0
x1−αL(x)dx

)

≤ 2n3/2β2
n

∫ εm(n3/2)

0
x1−αL(x)dx

≤ const.n3/2β2
n

(
εm

(
n3/2))2−α

L
(
εm

(
n3/2))

≤ const.ε2−αn3/2(βnm
(
n3/2))2

F̄
(
m
(
n3/2))

= const.ε2−α(βnm
(
n3/2))2

.

Since βnm(n3/2) → β and α < 2, the last is easily seen to converge to 0, as ε ↘ 0,
uniformly for all large n.

Case 3 (α = 1). Even though we work with the assumption that α = 1, we will
still use the general symbol α in the computations below. We make a similar de-
composition as in (39), with ε = 1, and denote ω̂v = ω̃1

v = ωv1|ωv |≤m(n3/2).
√

n
∑
v

(
eβnω̃v − 1

)
pn(v) − n3/2βnE[ω̂v]

= √
n

∑
|x(v)|≤K

√
n,|ωv |≥m(n3/2)

(
eβnω̃v − 1

)
pn(v)

+ n3/2βnE[ω̂v]
(
n−1

∑
|x(v)|≤K

√
n

pn(v) − 1
)

(40) + √
n

∑
|x(v)|≤K

√
n

(
eβnω̂v − 1 − βnω̂v

)
pn(v)

+ √
n

∑
|x(v)|>K

√
n

(
eβnω̃v − 1

)
pn(v)

+ √
nβn

∑
|x(v)|≤K

√
n

(
ω̂v −E[ω̂v])pn(v).

As n tends to infinity and then K ↗ ∞ the second term converges to zero, thanks
to the term inside the parenthesis. Similarly, so does the fourth term thanks to
Lemma 5.1. On the other hand, similarly to previous cases, the sum of the first and
third term converge, for n → ∞ and K ↗ ∞, to

2
∫
{|w|>1}×(0,1)×R

(
eβw − 1

)
ρ(t, x)P(dw dt dx)

+ 2
∫
{|w|<1}×(0,1)×R

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx)
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= 2
∫
R×(0,1)×R

(
eβw − 1 − βw

)
ρ(t, x)P(dw dt dx)

+ 2
∫
{|w|>1}×(0,1)×R

βwρ(t, x)P(dw dt dx).

These integrals are again well defined thanks to Lemma 1.3. Finally, the last term
in (40) converges, via the Poisson L2(P) isometry, to

2
∫
{|w|<1}×(0,1)×R

wρ(t, x)
(
P(dw dt dx) − η(dw dt dx)

)
,

in the limit n → ∞ followed by K ↗ ∞. This concludes the proof. �

It remains to check the following lemma.

LEMMA 5.1. For every ε > 0, the following estimate holds true:

lim
K→∞ sup

n
P

(√
n

∑
|x(v)|>K

√
n

(
eβnω̃v − 1

)
pn(v) > ε

)
= 0.

PROOF. Denote

BK
j := [0, n] × (

(j − 1)K
√

n, jK
√

n
]
, j = 1, . . . ,

⌈
K−1√n

⌉
.

We then have, for all large enough n, the estimate

P

(√
n

∑
|x(v)|>K

√
n

(
eβnω̃v − 1

)
pn(v) > ε

)

≤ P

(√
n

∑
|x(v)|>K

√
n

(
eβnω̃v − 1

)
1

ωv≤β−1
n

pn(v) > ε/2
)

+
�K−1√n�∑

j=2

P

(√
n

∑
v∈BK

j \BK
j−1

(
eβnω̃v − 1

)
1

ωv>β−1
n

pn(v) > ε2−j−2
)
.

The first term can be made arbitrarily small, uniformly in n, for K large, since we
can use Lemma 1.6 to obtain the L1(P) estimate
√

nE
∑

|x(v)|>K
√

n

(
eβnω̃v − 1

)
1

ωv≤β−1
n

pn(v) ≤ const.F̄
(
β−1

n

) ∑
|x(v)|>K

√
n

√
npn(v)

≤ const.n−3/2
∑

|x(v)|>K
√

n

√
npn(v)

≤ const.
∫ 1

0

∫
|x|>K

ρ(t, x)dx dt.
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Let us now estimate the second term, which we decompose according to whether
there is a large number of sites v ∈ BK

j \ BK
j−1, such that ωv exceeds the value β−1

n

or not. In this way, we arrive at the bound

�K−1√n�∑
j=2

P

( ∑
v∈BK

j \BK
j−1

1
ωv>β−1

n
≥ K2j2

)

+
�K−1√n�∑

j=2

P

(√
n

∑
v∈BK

j \BK
j−1

(
eβnω̃v − 1

)
1

ωv>β−1
n

pn(v) > ε2−j−2;

∑
v∈BK

j \BK
j−1

1
ωv>β−1

n
< K2j2

)

≤ K−2F̄
(
β−1

n

)∑
j≥2

∣∣BK
j \ BK

j−1
∣∣j−2

+ ∑
j≥2

P

(
K2j2√n max

v∈BK
j \BK

j−1

(
eβnωvpn(v)

)
> ε2−j−2

)

≤ const.K−1
∑
j≥2

j−2

+ ∑
j≥2

P

(
K2j2 exp

(
βn max

v∈BK
j \BK

j−1

ωv − const.(Kj)2
)

> ε2−j−2
)
,

where we used the fact that F̄ (β−1
n )|BK

j \ BK
j−1| = KF̄(β−1

n )n3/2 = O(1), by the
choice of βn and that

√
nmaxv∈BK

j \BK
j−1

pn(v) converges to the maximum of the

heat kernel inside the box (0,1) × (K(j − 1),Kj ]. A manipulation of the terms
inside the last probability, choosing K large enough, leads further to the estimate

const.K−1
∑
j≥2

j−2 + ∑
j≥2

P

(
βn max

v∈BK
j \BK

j−1

ωv ≥ const.(Kj)2
)

≤ const.K−1
∑
j≥2

j−2 + ∑
j≥2

∣∣BK
j \ BK

j−1
∣∣F̄ (

β−1
n (Kj)2)

≤ const.K−1
∑
j≥2

j−2 + const.K1−2α
∑
j≥2

j−2α.

Notice the crucial fact that, since α > 1/2, the last sum is finite and therefore we
can let K be arbitrarily large to show that it is negligible and finally obtain the
desired estimate. �
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APPENDIX: AUXILIARY ESTIMATES

PROOF OF LEMMA 1.6. I. Assuming (i), we can easily establish (ii). Indeed,
we have

logE
[
eβnω1ω≤kn

] = log
(
1 +E

[
eβnω1ω≤kn − 1

])
= log

(
1 +E

[(
eβnω1ω≤kn − 1

)
1ω<0

]+E
[(

eβnω1ω≤kn − 1
)
1ω≥0

])
= log

(
1 +E

[
eβnω− − 1

]+E
[
eβnω+1ω≤kn − 1

])
= log

(
E
[
eβnω−]+E

[
eβnω+1ω≤kn − 1

])
,

and the result will follow by estimate (i), which we will now establish. Define the
function

ϕp(x) := ex −
p∑

i=0

xi/i!, x ∈ R.

For any k > 0, we have∣∣∣∣∣E[eβnω+1ω≤k
]−

p∑
i=0

βi
n

i! E
[
ωi+

]∣∣∣∣∣
=

∣∣∣∣∣E[ϕp(βnω+)1ω+≤k

]−
p∑

i=1

βi
n

i! E
[
ωi+1ω+>k

]∣∣∣∣∣
≤ E

[∣∣ϕp(βnω+)
∣∣1ω+≤k

]+
p∑

i=1

βi
nk

i−θ

i! E
[
ωθ+1ω+>k

]
.

The assumption E[ωθ+] < ∞ implies that E[ωθ+1ω>k] → 0 as k → ∞. Thus,

p∑
i=1

βi
nk

i−θ

i! E
[
ωθ+1ω+>k

] = o
(
max

{
(βnk)1−θ , (βnk)p−θ} · βθ

n

)
, as k → ∞

= o(1)βθ
n ,

since βnk is assumed to stay bounded away form zero and θ ∈ (1, α). We now
choose arbitrary constant a > 0, such that aβ−1

n < k. It follows that

β−θ
n E

[∣∣ϕp(βnω+)
∣∣1

ω+≤aβ−1
n

] = E
[∣∣(βnω+)−θϕp(βnω+)

∣∣1
ω+≤aβ−1

n
ωθ+

] = o(1),

as βn → 0, thanks to dominated convergence and the facts that θ ∈ [p,p +
1), limx→0 x−θϕp(x) = 0 and |x−θϕp(x)| ≤ ϕp(1), for 0 ≤ x ≤ 1. We, now, need



HEAVY TAILED RANDOM POLYMER 4043

to upper bound
0 ≤ E

[
ϕp(βnω+) · 1

aβ−1
n <ω≤k

]
=

∫ k

aβ−1
n

βnϕp−1(βnx)F̄ (x)dx − (
ϕp(βnk)F̄ (k) − ϕp(a)F̄

(
aβ−1

n

))

≤ βn

∫ k

aβ−1
n

eβnxF̄ (x)dx + ϕp(a)F̄
(
aβ−1

n

)

≤ βne
βnk

∫ k

aβ−1
n

x−αL(x)dx + ϕp(a)F̄
(
aβ−1

n

)

= βα
n eβnk

∫ kβn

a
x−αL

(
xβ−1

n

)
dx + ϕp(a)F̄

(
aβ−1

n

)

≤ const.βα
n L

(
β−1

n

)
eβnk

∫ kβn

a

dx

xα−δ
+ ϕp(a)F̄

(
aβ−1

n

)
,

where the last inequality is valid for arbitrarily chosen δ > 0, such that α − δ >

1 thanks to Karamata’s representation, which provides the estimate L(xβ−1
n )/

L(β−1
n ) < const.xδ , for all large n and x > a. Since θ < α, we obtain the esti-

mate of order o(βθ
n), whenever kβn has the asymptotic behavior prescribed by the

assumptions, that is, eβnknβα−θ
n → 0.

II. We will only prove the second inequality, since it is more detailed, while the
proof of the first is the same. We need to distinguish cases:

Case A (α ∈ (1/2,1)). In this case, we have

E
[
eβnω1|ω|≤kn

]− 1 = E
[(

eβnω − 1
)
1|ω|≤kn

] =
∫ kn

−kn

(
eβnx − 1

)
dF(x)

=
∫ kn

0

(
eβnx − 1

)
dF(x) +

∫ 0

−kn

(
eβnx − 1

)
dF(x).

Integrating by parts in both integrals, we obtain

−(
eβnkn − 1

)
F̄ (kn) + βn

∫ kn

0
eβnxF̄ (x)dx

− (
e−βnkn − 1

)
F(−kn) − βn

∫ 0

−kn

eβnxF (x)dx.

Using assumption (C), this is bounded in absolute value by

(βnkn)e
βnknF̄ (kn) + βn

∫ kn

0
eβnxF̄ (x)dx + βn

∫ 0

−kn

eβnxF (x)dx.

The first term clearly satisfies the desired bound. Regarding the second term, we
have

βn

∫ kn

0
eβnxF̄ (x)dx = βn

∫ kn

0
eβnxx−αL(x)dx ≤ βne

βnkn

∫ kn

0
x−αL(x)dx

≤ const.βne
βnknk1−α

n L(kn) = const.(βnkn)e
βnknF̄ (kn).
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Similarly, using assumption (C) we see that the last term is bounded by
const.(βnkn)F̄ (kn) and this completes the estimate, in this case.

Case B (α ∈ (1,2)). The computation is similar. However, in this case we need
to perform a centering and for this we use the assumption E[ω] = 0 (in the second
line below)

E
[
eβnω1|ω|≤kn

]− 1 = E
[(

eβnω − 1
)
1|ω|≤kn

] =
∫ kn

−kn

(
eβnx − 1

)
dF(x)

=
∫ kn

−kn

(
eβnx − 1 − βnx

)
dF(x) − βn

∫
|x|>kn

x dF(x)

=
∫ kn

0

(
eβnx − 1 − βnx

)
dF(x)

+
∫ 0

−kn

(
eβnx − 1 − βnx

)
dF(x) − βn

∫
|x|>kn

x dF(x).

We will only show how to estimate the integrals over the positive real axis, as the
ones over the negative is similar thanks to assumption (C). Integration by parts
gives

βn

∫ ∞
kn

x dF(x) = βnknF̄ (kn) + βn

∫ ∞
kn

x−αL(x)dx ≤ const.(βnkn)F̄ (kn).

Similarly, we have∫ kn

0

(
eβnx − 1 − βnx

)
dF(x)

= −(
eβnkn − 1 − βnkn

)
F̄ (kn) + βn

∫ kn

0

(
eβnx − 1

)
F̄ (x)dx(41)

≤ (βnkn)e
βnknF̄ (kn) + βn

∫ kn

0

(
eβnx − 1

)
F̄ (x)dx.

Choose, now, δ = min{βnkn/2,1} and estimate the second term above by

βn

∫ kn

0

(
eβnx − 1

)
F̄ (x)dx

= βn

∫ kn

0

(
eβnx − 1

)
x−αL(x)dx

= βn

∫ δβ−1
n

0

(
eβnx − 1

)
x−αL(x)dx + βn

∫ kn

δβ−1
n

(
eβnx − 1

)
x−αL(x)dx

≤ const.β2
n

∫ δβ−1
n

0
x1−αL(x)dx + βn

(
eβnkn − 1

) ∫ kn

δβ−1
n

x−αL(x)dx

≤ const.
(
β2

n

(
δβ−1

n

)2−α
L
(
δβ−1

n

)+ βn

(
eβnkn − 1

)(
δβ−1

n

)1−α
L
(
δβ−1

n

))
.
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When βnkn stays bounded away from zero, then δ is chosen to be equal to 1
and this bound reads as const.eβnknF̄ (β−1

n ) and when βnkn tends to zero then
δ = βnkn/2 and the last bound writes as O((βnkn)

2−α)eβnknF̄ (k−1
n ). Inserting this

into (41) we obtain the desired estimate, since α < 2. �

PROOF OF LEMMA 1.3. We only need to check that the random variables
W(α)

β are well-defined, that is, achieve a.s. finite values. Once this is established,

the fact that W(α)
0 has stable distribution with the prescribed characteristic function

is standard. To this end, we define the sets

A1 := {
(w,x, t) : |w| ≥ 1 + x2/4βt

}
,

A2 := {
(w,x, t) : 1 ≤ |w| < 1 + x2/4βt

}
and

A3 := {
(w,x, t) : 0 < |w| < 1

}
.

It is easy to check that

η(A1) =
∫
A1

2αw−1−α dw dt dx

= 2
∫ ∞
−∞

∫ 1

0

(
1 + x2/4βt

)−α dx dt

= 8
∫ ∞

0

∫ 1

0

√
t
(
1 + x2/β

)−α dx dt < ∞,

for α > 1/2. This means that a.s. there will only be finite number of points of P
that take values in A1 and therefore∫
A1

eβwρ(t, x)P(dw dt dx) < ∞ and
∫
A1

|w|ρ(t, x)P(dw dt dx) < ∞ a.s.

Similarly, for every α > 1/2, we have∫
A2

eβwρ(t, x)P(dw dt dx) < ∞ and
∫
A2

|w|ρ(t, x)P(dw dt dx) < ∞ a.s.

since eβwρ(t, x) ≤ eβ(2πt)−1/2 and w > 1 on A2. Finally, checking the finiteness
of the integrals over A3, we have: first, using the Poisson-L2 isometry we have

E
P
(∫

A3

wρ(t, x)(P − η)(dw dt dx)

)2

=
∫
A3

w2ρ(t, x)2η(dw dt dx)

= α

2

∫
A3

w2ρ(t, x)2 (1w>0 + c−1w<0)dw

|w|1+α
dx dt < ∞,
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for α ∈ [1,2), while for the same values of α ∈ [1,2) we have

E
P
∫
A3

∣∣eβw − 1 − βw
∣∣ρ(t, x)P(dw dt dx)

=
∫
A3

∣∣eβw − 1 − βw
∣∣ρ(t, x)η(dw dt dx)

≤ const.
∫
A3

w2ρ(t, x)
(1w>0 + c−1w<0)dw

|w|1+α
dx dt < ∞.

Finally,

E
P
∫
A3

|w|ρ(t, x)P(dw dx dt)

=
∫
A3

|w|ρ(t, x)η(dw dx dt)

= α

2

∫
A3

|w|ρ(t, x)
(1w>0 + c−1w<0)dw

|w|1+α
dx dt < ∞,

for α < 1. The claim now follows by putting the above estimates together.
To evaluate the integrals explicitly, let us define

ψα(y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
S

(
eiywρ(t,x) − 1 − iywρ(t, x)

)
η(dw dx dt), if α ∈ (1,2),∫

S ∩{|w|>1}
(
eiywρ(t,x) − 1

)
η(dw dx dt)

+
∫
S ∩{|w|≤1}

(
eiywρ(t,x) − 1 − iywρ(t, x)

)
η(dw dx dt),

if α = 1,∫
S

(
eiywρ(t,x) − 1

)
η(dw dx dt), if α ∈ (0,1).

It is easy to see that ψα(−y) = ψα(y). Assuming, w.l.o.g. that y > 0 and restricting
to the case α ∈ (0,1), we have

ψα(y) = yα ·
∫
R

(1w>0 + c−1w<0)
(
eiw − 1

) α dw

|w|1+α
·
∫ 1

0

∫
R

1

2
ρ(t, x)α dx dt.

Using the result that
∫∞

0 (eiw − 1) α dw
w1+α = −�(1 − α)e−iαπ/2 for α ∈ (0,1) and∫ 1

0
∫
R

1
2ρ(t, x)α dx dt = (2π)(1−α)/2

(3−α)
√

α
we finally have

ψα(y) = −|y|α · (2π)(1−α)/2 cos(απ/2)�(1 − α)

(3 − α)
√

α

×
(
(1 + c−) − i sgn(y)(1 − c−) tan

απ

2

)
.

One can also explicitly evaluate ψα(y) for α ∈ [1,2) in a similar fashion. �
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