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EFRON-STEIN INEQUALITIES FOR RANDOM MATRICES
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This paper establishes new concentration inequalities for random matri-
ces constructed from independent random variables. These results are analo-
gous with the generalized Efron—Stein inequalities developed by Boucheron
et al. The proofs rely on the method of exchangeable pairs.

1. Introduction. Matrix concentration inequalities provide probabilistic
bounds for the spectral-norm deviation of a random matrix from its mean value.
The monograph [Tropp (2015)] contains an overview of this theory and an exten-
sive bibliography. This machinery has revolutionized the analysis of nonclassical
random matrices that arise in statistics [Koltchinskii (2011)], machine learning
[Morvant, Koco and Ralaivola (2012)], signal processing [Netrapalli, Jain and
Sanghavi (2013)], numerical analysis [Avron and Toledo (2014)], theoretical com-
puter science [Wigderson and Xiao (2008)] and combinatorics [Oliveira (2009)].

In the scalar setting, the core concentration results concern sums of indepen-
dent random variables. Likewise, in the matrix setting, the central results concern
independent sums. For example, the matrix Bernstein inequality [Tropp (2012),
Theorem 1.4] describes the behavior of independent, centered random matrices
that are subject to a uniform bound. There are also a few results that apply to more
general classes of random matrices, for example, the matrix bounded difference
inequality [Tropp (2012), Corollary 7.5] and the dependent matrix inequalities of
Mackey et al. (2014). Nevertheless, it is common to encounter random matrices
that we cannot treat using these techniques.

In the scalar setting, there are concentration inequalities that can provide infor-
mation about the fluctuations of more complicated random variables. In particular,
Efron—Stein inequalities [Boucheron, Lugosi and Massart (2003), Boucheron et al.
(2005)] describe the concentration of functions of independent random variables
in terms of random estimates for the local Lipschitz behavior of those functions.
These results have found extensive applications [Boucheron, Lugosi and Massart
(2013)].
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The goal of this paper is to establish new Efron—Stein inequalities that describe
the concentration properties of a matrix-valued function of independent random
variables. The main results appear below as Theorems 4.2 and 4.3.

To highlight the value of this work, we establish an improved version of the
matrix bounded difference inequality (Corollary 6.1). We also develop a more sub-
stantial application to compound sample covariance matrices (Theorem 7.1).

We anticipate that our results have many additional consequences. For instance,
we envision new proofs of consistency for correlation matrix estimation Cai and
Jiang (2011), Shao and Zhou (2014) and inverse covariance matrix estimation
Ravikumar et al. (2011) under sparsity constraints.

1.1. Technical approach. In the scalar setting, the generalized Efron—Stein in-
equalities were originally established using entropy methods Boucheron, Lugosi
and Massart (2003), Boucheron et al. (2005). Unfortunately, in the matrix setting,
entropy methods do not seem to have the same strength [Chen and Tropp (2014)].

Instead, our argument is based on ideas from the method of exchangeable pairs
[Stein (1972, 1986)]. In the scalar setting, this approach for proving concentration
inequalities was initiated in the paper Chatterjee (2007) and the thesis Chatterjee
(2005). The extension to random matrices appears in the recent paper Mackey et al.
(2014).

The method of exchangeable pairs has two chief advantages over alternative
approaches to matrix concentration. First, it offers a straightforward way to prove
polynomial moment inequalities, which are not easy to obtain using earlier tech-
niques. Second, exchangeable pair arguments also apply to random matrices con-
structed from weakly dependent random variables.

Mackey et al. (2014) focuses on sums of weakly dependent random matrices
because the techniques are less effective for general matrix-valued functionals.
In this work, we address this shortcoming by developing a matrix version of the
kernel coupling construction from Chatterjee (2005), Section 4.1. This argument
requires some challenging new matrix inequalities that may have independent in-
terest. We also describe some new techniques for controlling the evolution of the
kernel coupling.

We believe that our proof of the Efron—Stein inequality via the method of ex-
changeable pairs is novel, even in the scalar setting. As a consequence, our paper
contributes to the growing literature that uses Stein’s ideas to develop concentra-
tion inequalities.

2. Notation and preliminaries from matrix analysis. This section summa-
rizes our notation, as well as some background results from matrix analysis. The
reader may prefer to skip this material at first; we have included detailed cross-
references throughout the paper.
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2.1. Elementary matrices. First, we introduce the identity matrix I and the
zero matrix 0. The standard basis matrix E;; has a one in the (i, j) position and
zeros elsewhere. The dimensions of these matrices are determined by context.

2.2. Sets of matrices and the semidefinite order. We write M for the algebra
of d x d complex matrices. The trace and normalized trace are given by

d ) 14
uB=) b; and GB=-) b;  forBeM.
5 15
The symbol |-|| always refers to the usual operator norm on M¢ induced by the 6‘21
vector norm. We also equip M¢ with the trace inner product (B, C) := tr[B*C] to
form a Hilbert space.

Let H? denote the real-linear subspace of M consisting of d x d Hermitian
matrices. The cone of positive-semidefinite matrices will be abbreviated as H‘i
Given an interval I of the real line, we also define H9 (/) to be the convex set of
Hermitian matrices whose eigenvalues are all contained in /.

We use curly inequalities, such as <, for the positive-semidefinite order on the
Hilbert space H. That is, for A, B € H?, we write A < B if and only if B — A is
positive semidefinite.

2.3. Matrix functions. Let f : 1 — R be a function on an interval I of the
real line. We can lift f to form a standard matrix function f : H¢(I) — H¢. More
precisely, for each matrix A € H¢(I), we define the standard matrix function via
the rule

d d
f(A):= Z f )iy where A = Z Auguy
k=1 k=1
is an eigenvalue decomposition of the Hermitian matrix A. When we apply a famil-
iar scalar function to an Hermitian matrix, we are always referring to the associated
standard matrix function. To denote general matrix-valued functions, we use bold
uppercase letters, such as F, H, W.

2.4. Monotonicity and convexity of trace functions. The trace of a standard
matrix function inherits certain properties from the scalar function. Let / be an in-
terval, and assume that A, B € H(/). When the function f : I — R is increasing,2

2.1 A <B implies tr f(A) <tr f(B).

When the function f : I — R is convex,

22) rf(rtA+(1—-1)B)<ttr f(A)+ (1 —7)tr f(B) for T € [0, 1].
See Petz (1994), Propositions 1 and 2, for proofs.

2We place the convention that “increasing” means “nondecreasing.”
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2.5. The real part of a matrix and the matrix square. For each matrix M € M¢,
we introduce the real and imaginary parts,

1 * d
Re(M) := - (M+M") e H' and
(2.3)

1
Im(M) := E(M — M*¥) e HY.

Note the semidefinite bound
(2.4) Re(M)? < 5(MM* +M*M)  for each M € M?.

Indeed, Re(M)? + Im(M)? = L (MM* + M*M) and Im(M)? = 0.
The real part of a product of Hermitian matrices satisfies

AB+BA AZ4+B?
(2.5) Re(AB) = + < er

5 forall A, B e H.

This result follows when we expand (A — B)? = 0. As a consequence,

(2.6) for all A, B € HY.

(A+B>2< A% +B?
2 )

In other words, the matrix square is operator convex.

2.6. Some matrix norms. Finally, we will make use of two additional families
of matrix norms. For p € [1, oo], the Schatten p-norm is given by

2.7) IBis, := (tr|B|”)"/”  for each B € MY,

where |B| := (B*B)!/2. For p > 1, we introduce the matrix norm induced by the
Ejl, vector norm:

for each B e M.

B,
(2.8) 1Bl p 1= sup
w20 X[

In particular, the matrix norm induced by the E‘ll vector norm returns the maximum
E‘ll norm of a column; the norm induced by £, returns the maximum E‘l" norm of a
row.

3. Matrix moments and concentration. Our goal is to develop expectation
and tail bounds for the spectral norm of a random matrix. As in the scalar setting,
these results follow from bounds for polynomial and exponential moments. This
section describes the mechanism by which we convert bounds for matrix moments
into concentration inequalities.
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3.1. The matrix Chebyshev inequality. We can obtain concentration inequali-
ties for a random matrix in terms of the Schatten p-norm. This fact extends Cheby-
shev’s inequality.

PROPOSITION 3.1 (Matrix Chebyshev inequality). Let X € HY be a random
matrix. Forall t > 0,

; -p. p
P{IX 2 1} < inf 7 E X,

Furthermore,

: p\1/p
EIIXIIS;gfl(EIIXIISp) .

This statement repeats Mackey et al. (2014), Proposition 6.2. See also Ahlswede
and Winter (2002), Appendix, for earlier work.

3.2. The matrix Laplace transform method. We can also obtain exponential
concentration inequalities from a matrix version of the moment generating func-
tion.

DEFINITION 3.2 (Trace m.g.f.). Let X be a random Hermitian matrix. The
(normalized) trace moment generating function of X is defined as

m(9) :=mx(0) :=Ewre’*  ford eR.

We believe this definition is due to Ahlswede and Winter (2002).

The following proposition is an extension of Bernstein’s method. It converts
bounds for the trace m.g.f. of a random matrix into bounds on its maximum eigen-
value.

PROPOSITION 3.3 (Matrix Laplace transform method). Let X € H? be a ran-
dom matrix with normalized trace m.g.f. m(0) := Efre’X. For each t € R,

(3.1) P{Amax(X) > 1} <d - Gimgexp{—@t + logm(6)},
(3.2) P{amin(X) <1} <d - gngexp{—et + logm(6)}.
Furthermore,

1
(3.3) E Amax (X) < inf 5[logd +logm(8)],

1
(3.4) E Amin(X) > sup g[logd + logm(6)].

6<0
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Proposition 3.3 restates Mackey et al. (2014), Proposition 3.3, which collects re-
sults from Ahlswede and Winter (2002), Chen, Gittens and Tropp (2012), Oliveira
(2010), Tropp (2012).

We will use a special case of Proposition 3.3. This result delineates the conse-
quences of a specific bound for the trace m.g.f.

PROPOSITION 3.4. Let X € H be a random matrix with normalized trace
m.g.f. m(0) :=Eire?X. Assume that there are nonnegative constants c, v for which

logm(Q)fz(%zce) when 0 <6 < 1/c.
Then, for all t > 0,
2
(3.5) P{Amax(X) > 1} < dexp(m).

Furthermore,

E Amax(X) </2vlogd + clogd.

See Mackey et al. (2014), Section 4.2.4, for the proof of Proposition 3.4.

4. Matrix Efron—Stein inequalities. The main outcome of this paper is a
family of Efron—Stein inequalities for random matrices. These estimates provide
powerful tools for controlling the trace moments of a random matrix in terms of
the trace moments of a randomized “variance proxy.” Combining these inequalities
with the results from Section 3, we can obtain concentration inequalities for the
spectral norm.

4.1. Setup for Efron—Stein inequalities. Efron—Stein inequalities apply to ran-
dom matrices constructed from a family of independent random variables. Intro-
duce the random vector

Z:=(Z1,....Zp) €2,

where Zi, ..., Z, are mutually independent random variables. We assume that
Z is a Polish space to avoid problems with conditioning [Dudley (2002), Theo-
rem 12.2.2]. Let H: Z — H¢ be a measurable function that takes values in the
space of Hermitian matrices. We will assume that E |H(Z)|| < oo, and construct
the centered random matrix

X:=X(2):=H(Z) -EH(Z).

Our goal is to study the behavior of X, which describes the fluctuations of the
random matrix H(Z) about its mean value.
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A function of independent random variables will concentrate about its mean if it
depends smoothly on all of its inputs. We can quantify smoothness by assessing the
influence of each coordinate on the matrix-valued function. For each coordinate j,
construct the random vector

Z(j) = (Zl,...,Zj_l,Zj,Zj_H,...,Zn) EZ,

where Z j 1s an independent copy of Z;. It is clear that Z and Z (/) have the same
distribution, and they differ only in coordinate j. Form the random matrices

4.1) XD :=X(zW)=H(ZzYV)-EH(Z) forj=1,...,n.

Note that each XU follows the same distribution as X.

Efron—Stein inequalities control the fluctuations of the centered random matrix
X in terms of the discrepancies between X and the X, To present these results,
let us define the variance proxy

1 .
N _x()2
(4.2) V= 2J§:le[(x X2 7).

Efron—Stein inequalities bound the trace moments of the random matrix X in terms
of the moments of the variance proxy V. This is similar to the estimate provided
by a Poincaré inequality [Boucheron, Lugosi and Massart (2013), Section 3.5].

Passing from the random matrix X to the variance proxy V has a number of
advantages. There are many situations where the variance proxy admits an accu-
rate deterministic bound, so we can reduce problems involving random matrices
to simpler matrix arithmetic. Moreover, the variance proxy is a sum of positive
semidefinite terms, which are easier to control than arbitrary random matrices.
The examples in Sections 5, 6 and 7 support these claims.

REMARK 4.1. In the scalar setting, Efron—Stein inequalities [Boucheron, Lu-
gosi and Massart (2003), Boucheron et al. (2005)] can alternatively be expressed
in terms of the positive part of the fluctuations:

1 & )
Vi=2 D E[(X - x1)11Z],
=1

where (a)4+ :=max{0, a}. Our approach can reproduce these positive-part bounds
in the scalar setting but does not deliver positive-part expressions in the general
matrix setting. See Section 13.3 for more discussion.

4.2. Polynomial Efron—Stein inequalities for random matrices. The first main
result of the paper is a polynomial Efron—Stein inequality for a random matrix
constructed from independent random variables.
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THEOREM 4.2 (Matrix polynomial Efron—Stein). [Instate the notation of Sec-
tion 4.1. For each natural number p > 1,

Zp /@ 1/2
(EIXIIs] ) 2P < 22p - 1)(E Vi) /@p).

The proof appears in Section 11.

We can regard Theorem 4.2 as a matrix extension of the scalar concentration
inequality [Boucheron et al. (2005), Theorem 1], which was obtained using the
entropy method. In contrast, our results depend on a different style of argument,
based on the theory of exchangeable pairs [Chatterjee (2005), Stein (1986)]. Our
approach is novel, even in the scalar setting. Unfortunately, it leads to slightly
worse constants.

Theorem 4.2 allows us to control the trace moments of a random Hermitian
matrix in terms of the trace moments of the variance proxy. We can obtain prob-
ability inequalities for the spectral norm by combining this result with the matrix
Chebyshev inequality, Proposition 3.1.

4.3. Exponential Efron—Stein inequalities for random matrices. The second
main result of the paper is an exponential Efron—Stein inequality for a random
matrix built from independent random variables.

THEOREM 4.3 (Matrix exponential Efron—Stein). Instate the notation of Sec-
tion 4.1, and assume that | X|| is bounded. When (0| < /v /2,

- 1 1 -
logIE)treeX < 3 log(m) logEtre””V
4.3) )
0 _
< A logEtre?V.
1 —262/y

In general, without assuming that | X|| is bounded, we have
4.4) log R iref® < log]Et_reeezv.
In particular, when 10| < /v /e,
4.5) logEfre?® < (e0?/y) logEfre” Y.

The proof appears in Section 12.1.

Theorem 4.3 is a matrix extension of the exponential Efron—Stein inequalities
for scalar random variables established in Boucheron, Lugosi and Massart (2003),
Theorem 1, by means of the entropy method. As in the polynomial case, we use a
new argument based on exchangeable pairs.

Theorem 4.3 allows us to control trace exponential moments of a random Her-
mitian matrix in terms of the trace exponential moments of the variance proxy.
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We arrive at probability inequalities for the spectral norm by combining this result
with the matrix Laplace transform method, Proposition 3.3. Although bounds on
polynomial trace moments are stronger than bounds on exponential trace moments
[Mackey et al. (2014), Section 6], the exponential inequalities are often more use-
ful in practice.

4.4. Rectangular matrices. Suppose now that H: Z — C%14 js a measur-
able function taking rectangular matrix values. We can also develop Efron—Stein
inequalities for the random rectangular matrix X := H(Z) — EH(Z) as a formal
consequence of the results for Hermitian random matrices.

The approach is based on a device from operator theory called the Hermitian
dilation, which is defined as

0 B
B* 0
To obtain Efron-Stein inequalities for random rectangular matrices, we simply
apply Theorem 4.2 and Theorem 4.3 to the dilation 7 (X). We omit the details. For

more information about these arguments, see Tropp (2012), Section 2.6, Mackey
et al. (2014), Section 8, or Tropp (2015), Section 2.1.13.

H(B) := [ } € H4t4 for B € 41tz

5. Example: Self-bounded random matrices. As a first example, we con-
sider the case where the variance proxy is dominated by an affine function of the
centered random matrix.

COROLLARY 5.1 (Self-bounded random matrices). Instate the notation of
Section 4.1. Assume that ||X|| is bounded, and suppose that there are nonnega-
tive constants c, v for which

5.1 Vxuvl+cX almost surely.
Then, for all t > 0,

—12
P{imax(X) > 1} < dexp<7) and

4 4ct
(5.2) v+2c
—t
PiiminX) < —t} <d — .

{ min(X) < }_ eXp<4v—|—4ct
Furthermore,

EAmax(X) <,/4vlogd + 2clogd and
(5.3)

E Amin(X) > —/4vlogd — 2clogd.

Without assuming that | X|| is bounded, (5.2) and (5.3) hold with c and v replaced
by ec/2 and ev, respectively.
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PROOF. The result is a consequence of the exponential Efron—Stein inequality
for random matrices, Theorem 4.3. When 0 < 6 < /{//2, we may calculate that

- 1 1 _
logmx(6) = logIEtregX < 3 log<m> logEtrel/’V
< llog(;> log E fre¥ W1+eX)
-2 1—202/y
54
1
—1lo

1 - C
= 21 g(m>(wv +logEfire’<X)

_ @2/ —0%/y)
T 1-20%/y

Vv + log Etre’<X).
g

In the first inequality, we can introduce the bound (5.1) for V because the trace
exponential is monotone (2.1). The final inequality follows from the numerical
fact

log(1/(1—2x)) <2x(1 —x)/(1 —2x)  forx €[0,1/2).

Select ¥ = 6/c to obtain a copy of mx(0) on the right-hand side of (5.4). Solve
for mx(6), and appeal to the numerical fact

IT—x)1-2x)<1-3x(1—-x) for x € [0, 1/2)
to reach

v (1 — ch) v6?
5.5) logmx(0) < < hen 0 <6 < 1/(2c).
O:3) loemx®) =13 g1 o) “T—2c0  “en0=0<1/C0

Invoke Proposition 3.4 to complete the proof.

For the lower tails, notice that we can employ the same argument for —1/(2¢) <
6 <0 up to (5.4). Then we can choose ¥ := |f|/c and substitute the inequal-
ity (5.5) for |0 to obtain that

v9?
(5.6) logmx(0) < ——— when —1/(2c) <6 <0,
1 —2cl|6]

which implies the same bounds as for the upper tail. The advertised inequalities
without the boundedness assumption follows from an analogous argument based
on (4.5). O

Hypothesis (5.1) is analogous with the assumptions in the result Mackey et al.
(2014), Theorem 4.1. In Section 6, we explain how this estimate supports a ma-
trix version of the bounded difference inequality, but the result also extends well
beyond this example.
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6. Example: Matrix bounded differences. The matrix bounded difference
inequality [Mackey et al. (2014), Tropp (2012)] controls the fluctuations of a
matrix-valued function of independent random variables. This result has been used
to analyze algorithms for multiclass classification [Machart and Ralaivola (2012),
Morvant, Ko¢o and Ralaivola (2012)], crowdsourcing [Dalvi et al. (2013)], and
nondifferentiable optimization [Zhou and Hu (2014)].

Let us explain how to derive a refined version of the matrix bounded differences
inequality from Theorem 4.3.

COROLLARY 6.1 (Matrix bounded differences). Instate the notation of Sec-
tion 4.1. Assume there is a deterministic matrix A € H¢ for which

n

Z(H(Z],---,Zn)_H(Zl,-~-,z‘,l',---,Zn))2%Az
j=1

fO’”Cl”y 21, ---,Zn,Z/l, ...,Z;,Deﬁne
Then, for all t > 0,
P{dmax (H(Z) —EH(Z)) >t} <d - ¢ /%D  and
P{imin(H(Z) —EH(Z)) < —t} <d - o—12/20Y)

Furthermore,

Eimax(H(Z) —EH(Z)) <0,/2logd and
Emin(H(Z) — EH(2)) = —0 2 logd.

PROOF. Observe that the variance proxy satisfies

1 & N2
V=—_ X —XW)%|1z
> Y E[(X - X)Z]
j=1
=3 Y E[H(Z) -H(zV))"|Z] < 5A :
j=1
It follows from definition (6.1) that V < %O’ZI. Invoke Corollary 5.1 to complete
the argument. Finally, we obtain the same results for the lower tail by applying the
argument to —H(Z). U

REMARK 6.2 (Related work). Previous results in the literature made assump-
tions of the type

(H(Zl,...,zn)—H(Zl,...,z/j,...,zn))Q<A2-

F for each index j,
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for some deterministic matrices Aj,..., A, € HY, and let o2 := ||Z§:1A§||.
Corollary 6.1 is more general, it improves the constants in Tropp (2012), Corol-
lary 7.5, and it removes an extraneous assumption from Mackey et al. (2014),
Corollary 11.1. It is possible to further improve the constants in the exponent by a
factor of 2 to obtain a bound of the form d - e~**/
Paulin, Mackey and Tropp (2013).

; see the original argument in

7. Application: Compound sample covariance matrices. In this section, we
consider the compound sample covariance matrix:
- 1
7.1 A, :=—-ZBZ".
n
The central matrix B € H" is fixed, and the columns of Z € CP*" are random
vectors drawn independently from a common distribution on C?.,

When the matrix B = n~'I, the compound sample covariance matrix A, re-
duces to the classical empirical covariance n~'ZZ*. The latter matrix can be writ-
ten as a sum of independent rank-one matrices, and its concentration properties
are well established [Adamczak et al. (2011)]. For general B, however, the random
matrix A, cannot be expressed as an independent sum, so the behavior becomes
significantly harder to characterize. See, for example, the analysis of Soloveychik
(2014).

The most common example of a compound sample covariance matrix is the
compound Wishart matrix [Speicher (1998)], where the columns of Z are drawn
from a multivariate normal distribution. These matrices have been used to estimate
the sample covariance under correlated sampling [Burda et al. (2011)]. They also
arise in risk estimation for portfolio management [Collins, McDonald and Saad
(2013)].

We will use Theorem 4.3 to develop an exponential concentration inequality for
one class of compound sample covariance matrices.

THEOREM 7.1 (Concentration of compound sample covariance). Suppose
that the entries of 1. € CP*" are independent random variables with mean zero,
variance o2, and magnitude bounded by L. Let B € H" be fixed. For any t > 0 we
have

P{|ZBZ* — E[ZBZ"]| > 1}

2
—t
< 2pexp( )
44(po? + L?)|BIIE + 32v/3Lpl[B|z

Furthermore,

E|ZBZ* — E[ZBZ*]| < 2,/44(po? + L2)log p|B|12 + 32v/3Lplog p|B].
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Let us emphasize that Theorem 7.1 is valid even when B is not positive semidef-
inite, in contrast to some previous work on this problem. Our proof gives finer
results when B is positive semidefinite. We have also made a number of loose
estimates in order to obtain a clear statement of the bound.

7.1. Setup. Let Z be a p x n random matrix whose entries are independent,
identically distributed, zero-mean random variables with variance o> and bounded
in magnitude by L = 1. The general case follows by a homogeneity argument.
Define the centered random matrix

X(Z) =7ZBZ* — E[ZBZ*],
where B € H?. By direct calculation, the expectation takes the form
(7.2) E[ZBZ*] = o*(r B)L.

As in Section 4.1, we introduce independent copies Zi ; of the entries Z;; of Z and
define the random matrices

Z(ij)=Z+(ZU—Z[j)E,'j fori:1,...,pandj:1,...,n.

Introduce the variance proxy

(7.3) V= % i Z E[(X(Z) — X(Z))*|Z].

i=1j=1
Theorem 4.3 allows us to bound Apax (X(Z)) in terms of the trace m.g.f. of V. Our
task is to develop bounds on the trace m.g.f. of V in terms of the problem data.

7.2. A bound for the variance proxy. We begin with a general bound for V.
First, we use the definitions to simplify the expression (7.3), and then we invoke
the operator convexity (2.6) of the square function:

| - N
V=2 > E[(2(Zi; — Zij) Re(E;jBZ*) + | Z;; — Zij|2El~jBE;kj)2|Z]
ij

1 ~ ~
<3 > E[81Zij — Zij*Re(EyjBZ*) + 21 Zij — Zij|*|bjj1*Eai |Z),
ij

where {b;;}1<i, j<n denote the elements of B. Since Z;; and Z- ;j are centered vari-
ables that are bounded in magnitude by one,

E[|Zij — Zij*|1Z]) <2 and E[|Z;; — Z;j|*|Z] <8.
Using the bound (2.4) for the square of the real part, we obtain
V <) [4(BZ*ZB) ; E;; + 4ZBE ;;BZ* + 8|b,;|°E;;]
(7.4) X
= 4pir[ZB*Z* |1 + 4pZB*Z* + 8(2 Ibjj |2)I.
j
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In the first term on the right-hand side of (7.4), we have used cyclicity of the
standard trace, and then we have rescaled to obtain the normalized trace.

7.3. A bound for the trace m.g.f. of the random matrix. Next, we apply the
matrix exponential Efron—Stein inequality, Theorem 4.3, to bound the logarithm
of the trace m.g.f. of the random matrix,

02/ v
1-202/y

Let us focus on the trace m.g.f. of V. The trace exponential is monotone (2.1), so
we can introduce the bound (7.4) for V and simplify the expression

(7.5) logE frefX < logEtre?V.

logEfre?Y <log E[e4'/’p&[ZB2Z*]t_reprBzZ*] + SW(Z bjj |2>
J

=

P * 1 - *
log B HEB2) 1 Jog  ip MV P sw(Z 1bjj |2)
J

N —

< log R irefVPZBZ" | gy (Z |b,-j|2).
j

To reach the second line, we use the Cauchy—Schwarz inequality for expectation,
and we use Jensen’s inequality to pull the normalized trace through the square. To
arrive at the last expression, we apply Jensen’s inequality to draw out the normal-
ized trace from the exponential. Substitute the last display into (7.5) and write out
the definition of X to conclude that

log E if o0 (ZBZ*—E[ZBZ"))

(7.6)

0%/ _ 275
e L 8"’@ i)

This m.g.f. bound (7.6) is the central point in the argument. The rest of the proof
consists of elementary (but messy) manipulations.

7.4. The positive-semidefinite case. First, we develop an m.g.f. bound for
a compound sample covariance matrix based on a positive-semidefinite matrix
A = 0. Invoke the bound (7.6) with the choice B = A, and introduce the estimate
A% < ||A|A to reach

log E it ¢’ (ZAZ*—E[ZAZ*))

0>/

~ .8 A||ZAZ*
< =202y [logEtre vpIAl + Sw(mjz_lxajj>(trA)].
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Select v =6/(8p||A]l), which yields

log Eire (ZAZ*—E[ZAZ*])

1 _ -
<———|8plA|0log Efre’?A%" 1 802 (maxa;; ) (trA)|.
= T TepiAfs SPIAIPI02E +86% (maxaj; ) A
Referring to the calculation (7.2), we see that

log | fre’ZA%" = log | ire? PAL EIZAZ) 4 52(¢r A)0.
Combine the last two displays, and rearrange to arrive at
0(ZAZ*~E[ZAZ*]) _ 867 tr A
~1=24p|A|6

At this point, we can derive probabilistic bounds for Amax (ZAZ* — E[ZAZ*]) by
applying Corollary 5.1.

(1.7)  logRfre <p02||A|| +mj'€1xajj>-

7.5. The general case. To analyze the case where B € H" is arbitrary, we be-
gin once again with (7.6). To control the m.g.f. on the right-hand side, we need to
center the random matrix ZB>Z*. Applying the calculation (7.2) with B — B2, we
obtain

log Et—resprBzz* —logE t‘re81//p(ZB2Z*—IE[ZB2Z*]) + 8p02 IIBII%VL
We have used the fact that tr B> = |B ||12:. Since B? is positive semidefinite, we may
introduce the bound (7.7) with A = B? and @ = 8y p. This step yields

sypzpiz _ S12P7 IBIZIBI?(po? + Dy
B 1 —192p2|B|2y
This argument relies on the estimate max (B?) jji =< IBJ|2.

Introduce the latter display into (7.6). Select ¥ = (384p?||B||*)~!, and invoke
the inequality }_ j1bjj 1> < ||B||12:. A numerical simplification delivers

+8po? B3y

logEtre

20, 2
oz —zznzy _ LLIBIE(po® + 1)o?
~ 1-768p%||B|262
B 11|B|Z(po? + 1)6?
(1 =+768p|B|0)(1 + 768 p|B||6)
_ 1IBJE(po® +1)6?
1—-/768p|Bl6
Tail and expectation bounds for the maximal eigenvalue follow from Proposi-
tion 3.4 with v = 22| B||2(po? + 1) and ¢ = 16+/3p|B||.
The bounds for the minimum eigenvalue follow from the same argument. In
this case, we must consider negative values of the parameter 6, but we can transfer
the sign to the matrix B and proceed as before, since (7.8) remains unchanged by

the transformation B — —B. Together, the bounds on the maximum and minimum
eigenvalue lead to estimates for the spectral norm.

logRtre

(7.8)
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8. Random matrices, exchangeable pairs and kernels. Now, we embark on
our quest to prove the matrix Efron—Stein inequalities of Section 4. This section
outlines some basic concepts from the theory of exchangeable pairs; cf. Chatterjee
(2007, 2005), Stein (1972, 1986). Afterward, we explain how these ideas lead to
concentration inequalities.

8.1. Exchangeable pairs. In our analysis, the primal concept is an exchange-
able pair of random variables.

DEFINITION 8.1 (Exchangeable pair). Let Z and Z’ be random variables tak-
ing values in a Polish space Z. We say that (Z, Z’) is an exchangeable pair when
it has the same distribution as the pair (Z’, Z).

In particular, Z and Z’ have the same distribution, and E f(Z, Z") =E f(Z', Z)
for every integrable function f.

8.2. Kernel Stein pairs. We are interested in a special class of exchangeable
pairs of random matrices. There must be an antisymmetric bivariate kernel that
“reproduces” the matrices in the pair. This approach is motivated by Chatterjee
(2007).

DEFINITION 8.2 (Kernel Stein pair). Let (Z, Z’) be an exchangeable pair of
random variables taking values in a Polish space Z, and let ¥ : Z — H¢ be a
measurable function. Define the random Hermitian matrices

X:=¥(Z) and X :=W¥(Z').

We say that (X, X') is a kernel Stein pair if there exists a bivariate function K :
2% — H? for which

8.1) K(z,7') = -K(, 2) forallz,7/ € Z
and
(8.2) E[K(Z,Z)|Z]=X  almost surely.

When discussing a kernel Stein pair (X, X’), we assume that E X% < oco. We
sometimes write K-Stein pair to emphasize the specific kernel K.

The kernel is always centered in the sense that
(8.3) E[K(Z, Z')] =0.

Indeed, E[K(Z, Z")] = —E[K(Z', Z)] = — E[K(Z, Z’)], where the first identity
follows from antisymmetry and the second follows from exchangeability.
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REMARK 8.3 (Matrix Stein pairs). The analysis in [Mackey et al. (2014)]
is based on a subclass of kernel Stein pairs called matrix Stein pairs. A matrix
Stein pair (X, X') derived from an auxiliary exchangeable pair (Z, Z’) satisfies the
stronger condition

(8.4) E[X-X'|Z] =aX for some o > 0.

That is, a matrix Stein pair is a kernel Stein pair with K(Z, Z’) = «~ (X — X).
Although Mackey et al. (2014) describe several classes of matrix Stein pairs, most
exchangeable pairs of random matrices do not satisfy (8.4). Kernel Stein pairs are
more common, so they are commensurately more useful.

8.3. The method of exchangeable pairs. Kernel Stein pairs are valuable be-
cause they offer a powerful tool for evaluating moments of a random matrix.
We express this claim in a fundamental technical lemma, which generalizes
both Chatterjee (2007), equation (6) and Mackey et al. (2014), Lemma 2.3.

LEMMA 8.4 (Method of exchangeable pairs). Suppose that (X, X') € HY x H?
is a K-Stein pair constructed from an auxiliary exchangeable pair (Z,Z') € Z°.
Let F : HY — H¢ be a measurable function that satisfies the regularity condition

(8.5) ]E”K(Z, Z"F(X) H < 00.
Then
(8.6) E[XF(X)] = %E[K(Z, Z’)(F(X) — F(X'))]

PROOF. Definition 8.2, of a kernel Stein pair, implies that
E[XF(X)]=E[E[K(Z, Z)|Z]FX)] = E[K(Z, Z")F(X)],

where we justify the pull-through property of conditional expectation using the
regularity condition (8.5). The antisymmetry (8.1) of the kernel K delivers the
relation

E[K(Z, Z')FX)|=E[K(Z', Z)F(X)] = —E[K(Z, Z")F(X")].

Average the two preceding displays to reach the identity (8.6). [J

Lemma 8.4 has several immediate consequences for the structure of a K-Stein
pair (X, X’) constructed from an auxiliary exchangeable pair (Z, Z’). First, the
matrix X must be centered:

8.7) EX = 0.

This result follows from the choice F(X) =1.
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Second, we can develop a bound for the variance of the random matrix X. Since
X is centered,

Var[X] = E[X*] = 1 E[Re(K(Z, Z)(X — X))].

This claim follows when we apply Lemma 8.4 with F(X) = X and extract the real
part (2.3) of the result. Invoke the matrix inequality (2.5) to obtain

(8.8) var[X] < 1 E[K(Z, Z')* + (X - X))*].

In other words, we can obtain bounds for the variance in terms of the variance of
the kernel K and the variance of X — X'.

8.4. Conditional variances. To each kernel Stein pair (X, X’), we may asso-
ciate two random matrices called the conditional variance and kernel conditional
variance of X. We will see that X is concentrated around the zero matrix whenever
the conditional variance and the kernel conditional variance are both small.

DEFINITION 8.5 (Conditional variances). Suppose that (X, X') is a K-Stein
pair, constructed from an auxiliary exchangeable pair (Z, Z’). The conditional
variance is the random matrix

(8.9) Vx = LE[(X - X')*|Z],
and the kernel conditional variance is the random matrix
(8.10) vE.= I g[K(Z, )% Z].

Because of the bound (8.8), the conditional variances satisfy
Var[X] < S E[Vx + V¥],
so it is natural to seek concentration results stated in terms of these quantities.
9. Polynomial moments of a random matrix. We begin by developing a
polynomial moment bound for a kernel Stein pair. This result shows that we can

control the expectation of the Schatten p-norm in terms of the conditional variance
and the kernel conditional variance.

THEOREM 9.1 (Polynomial moments for a kernel Stein pair). Let (X, X') be
a K-Stein pair based on an auxiliary exchangeable pair (Z,Z'). For a natural
number p > 1, assume the regularity conditions

EHXII?gfp <00 and E|K(Z,Z)) ||2p - oo
Then, for each s > 0,
©IXIF)CP < \2p ~ 1B 5 (sVx+57 VE)[§) 2.

The symbol |-||s, refers to the Schatten p-norm (2.7), and the conditional vari-
ances Vx and VK are defined in (8.9) and (8.10).
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We establish this result, which holds equally for infinite dimensional opera-
tors X, in the remainder of this section. The pattern of argument is similar to the
proofs of Chatterjee (2005), Theorem 3.14, and Mackey et al. (2014), Theorem 7.1,
but we require a nontrivial new matrix inequality.

9.1. The polynomial mean value trace inequality. The main new ingredient in
the proof of Theorem 9.1 is the following matrix trace inequality.

LEMMA 9.2 (Polynomial mean value trace inequality). For all matrices A, B,
Ce Hd, all integers q > 1, and all s > 0, it holds that

|tr[C(A? —B9)]| < %tr[(s(A —B) 45 'CY)(JA[ + Bl

Lemma 9.2 improves on the estimate [Mackey et al. (2014), Lemma 3.4], which
drives concentration inequalities for matrix Stein pairs. Since the result does not
have any probabilistic content, we defer the proof until Appendix B.

9.2. Proof of Theorem 9.1. The argument follows the same lines as the proof
of Mackey et al. (2014), Theorem 7.1, so we pass lightly over certain details. Let
us examine the quantity of interest:

E=E|X|{ =EuX? =Eu[X - X>],

where - denotes the usual matrix product. To apply the method of exchangeable
pairs, Lemma 8.4, we first check the regularity condition (8.5):

EHK(Z, Z’) .x2r-1 H < IE(”K(Z, Z/) H ”XHZp—l)
= E[K(z, 2)*") /P @ X |Pr) 2P~ P < oo,

where we have applied Holder’s inequality for expectation and the fact that the
spectral norm is dominated by the Schatten 2p-norm. Thus, we may invoke
Lemma 8.4 with F(X) = X*~! to reach

E = EulK(z,Z) - (X! - (X)),

Next, fix a parameter s > 0. Apply the polynomial mean value trace inequality,
Lemma 9.2, with ¢ = 2p — 1 to obtain the estimate

<2p—1

E

Etl(s(X - X')* +s7'K(Z, Z')}) - (X272 + (X))

2p—1
- p4 Et[(s(X — X)? +57'K(Z, Z')%) - X2 2]

1
=Q2p-— 1)Etr[§(svx +571VK) .XZP—Z].
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The second line follows from the fact that (X, X’) is an exchangeable pair, and the
third line depends on the definitions (8.9) and (8.10) of the conditional variances.
We have used the regularity condition E ||X||§f , <ooto justify the pull-through
property of conditional expectation.

Now, we apply Holder’s inequality for the trace followed by Holder’s inequality
for the expectation. These steps yield

E < Cp—DE[S(sVx+sVE)§) P EIXIE )P
= 2p— DE[F(Vx +s~VE)[§ )P ECDP,

Solve this algebraic identity for E to determine that

BV < op 1| (Vx5 VR ).

This completes the proof of Theorem 9.1.

10. Constructing a kernel via Markov chain coupling. Theorem 9.1 is one
of the main steps toward the polynomial Efron—Stein inequality for random ma-
trices. To reach the latter result, we need to develop an explicit construction for
the kernel Stein pair along with concrete bounds for the conditional variance. We
present this material in the current section, and we establish the Efron—Stein bound
in Section 11. The analysis leading to exponential concentration inequalities is
somewhat more involved. We postpone these results until Section 12.

10.1. Overview. For a random matrix X that is presented as part of a kernel
Stein pair, Theorem 9.1 provides strong bounds on the polynomial moments in
terms of the conditional variances. To make this result effective, we need to address
several more questions.

First, given an exchangeable pair of random matrices, we can ask whether it is
possible to equip the pair with a kernel that satisfies (8.2). In fact, there is a gen-
eral construction that works whenever the exchangeable pair is suitably ergodic.
This method depends on an idea [Chatterjee (2005), Section 4.1] that ultimately
relies on an observation of Stein; cf. Stein (1986). We describe this approach in
Sections 10.2 and 10.3.

Second, we can ask whether there is a mechanism for bounding the conditional
variances in terms of simpler quantities. We have developed some new tools for
performing these estimates. These methods appear in Sections 10.4 and 10.5.

10.2. Kernel couplings. Stein noticed that each exchangeable pair (Z, Z') of
Z-valued random variables yields a reversible Markov chain with a symmetric
transition kernel P given by

Pf(z):=E[f(Z)1Z =]
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for each function f : Z — R that satisfies [E | f(Z)| < co. In other words, for any
initial value Z () € Z, we can construct a Markov chain

Z(O) — Z(l) — Z(z) —> Z(3) —_ ey

where E[ f (Zi+1))|Z@)] = Pf(Z()) for each integrable function f. This require-
ment suffices to determine the distribution of each Z; ;1.

When the chain (Z;));>0 is ergodic enough, we can explicitly construct a kernel
that satisfies (8.2) for any exchangeable pair of random matrices constructed from
the auxiliary exchangeable pair (Z, Z’). To explain this idea, we adapt a definition
from Chatterjee (2005), Section 4.1.

DEFINITION 10.1 (Kernel coupling). Let (Z, Z’) € 22 be an exchangeable
pair. Let (Z;))i>0 and (Zzi)),-zo be two Markov chains with arbitrary initial values,
each evolving according to the transition kernel P induced by (Z, Z’). We call
(Zpy, Zzi))iZO a kernel coupling for (Z, Z') if

(10.1) Z(,‘) AL ZEO)|Z(0) and Zéi) AL Z(0)|ZEO) for all i.

The notation U 1L V|W means U and V are independent conditional on W.

For an example of kernel coupling, consider the simple random walk on the
hypercube {£1}* where two vertices are neighbors when they differ in exactly
one coordinate. We can start two random walks at two different locations on the
cube. At each step, we select a uniformly random coordinate from {1, ...,n} and
a uniformly random value from {3-1}. We update both of the walks by replacing
the same chosen coordinate with the same chosen value. The two walks arrive at
the same vertex (i.e., they couple) as soon as we have updated each coordinate at
least once.

10.3. Kernel Stein pairs from the Poisson equation. Chatterjee (2005), Sec-
tion 4.1, observed that it is often possible to construct a kernel coupling by solving
the Poisson equation for the Markov chain with transition kernel P.

PROPOSITION 10.2.  Let (Z;, Zé,-))izo be a kernel coupling for an exchange-

able pair (Z,7') € Z2 Let W : Z — HY be a bounded, measurable function with
EWY(Z) =0. Suppose there is a positive constant L for which

oo
(10.2) Y |E[W(Zw) —¥(Z)1Zoy =2, Zigy=2]| <L forallz,7 € Z.
i=0

Then (W(Z),¥(Z'")) is a K-Stein pair with kernel

o0
(103)  K(z.2):= ) E[¥(Za) — ¥(Z)I1Zo =2 Zg) =7
i=0
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The proof of this result is identical with that of Chatterjee (2005), Lemmas 4.1
and 4.2, which establishes Proposition 10.2 in the scalar setting. We omit the de-
tails.

REMARK 10.3 (Regularity). Proposition 10.2 holds for functions ¥ that sat-
isfy conditions weaker than boundedness. We focus on the simplest case to reduce
the technical burden.

10.4. Bounding the conditional variances 1. The construction described in
Proposition 10.2 is valuable because it leads to an explicit description of the ker-
nel. In many examples, this formula allows us to develop a succinct bound on
the conditional variances. We encapsulate the required calculations in a technical
lemma.

LEMMA 10.4. Instate the notation and hypotheses of Proposition 10.2, and
define the kernel Stein pair (X,X') = (W(Z),¥(Z")). For each i =0,1,2,...,
assume that

(104)  E[(B[¥(Z¢) — ¥(Z(;)|1Zo) = Z., Z{ = Z'])*1Z] < BT,

where B; is a nonnegative number and T; € H? is a random matrix. Then the
conditional variance (8.9) and kernel conditional variance (8.10) satisfy

Vx<58To and VE< (3 Bi) > AT
j=0 i=0

PROOF. By a continuity argument, we may assume that 8; > 0 for each in-
dex i. Write

Y; = E[‘I’(Z(,’)) - ‘I’(ZEI-))|Z(Q) =Z, ZEO) = Z/].
The definition (8.9) of the conditional variance Vx immediately implies
2
Vx =3 E[(X~X)"1Z] = 5 E[Y51Z] < 363 To.

The semidefinite relation follows from the hypothesis (10.4).
According to the definition (8.10) of the kernel conditional variance VK and the
kernel construction (10.3), we have

VE = _Eg[K(Z. Z))|1Z] = —E[(ZY) \z}

N —

= - > E[Re(Y;Y))|Z].

i=0 ;=0

l\.)l'—
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The semidefinite bound (2.5) for the real part of a product implies that

*AEE G i

i=0j=0

AEEAw )

i=0j=0

1 o0 o
—3(X8) Lo
j=0 i=0
The second relation depends on the hypothesis (10.4). [
10.5. Bounding the conditional variances II. The random matrices T'; that
arise in Lemma 10.4 often share a common form. We can use this property to
obtain a succinct bound for the conditional variance expression that appears in

Theorem 9.1. This reduction allows us to establish Efron—Stein inequalities.

LEMMA 10.5. Instate the notation and hypotheses of Lemma 10.4. Suppose

(10.5) I'i =E[W)|Z] where W ;) 4 Iy foreachi > 1.

Then, for each increasing and convex function f : R, — R,

o\ -2
]Etrf<,302VX + <Z,3i> VK) <Etr f(To).

i=0

PROOF. Abbreviate B =) 72 B;. Lemma 10.4 provides that
x<5hTo and VE<ZB) AT,
i=0

Since f is increasing and convex on R, the function tr f : Hﬁ — R is increas-
ing (2.1) and convex (2.2). Therefore,

Etr f(By*Vx + B~ 2V“)<Etrf< ro+—Zﬁl )

—Etrf(ro) +55 Zﬁ, Etr f(T;).

[\)

In view of (10.5), Jensen’s inequality and the tower property together yield
Etr f(T;) =Etr f(E[W»|Z]) <Etr f(W)) =Etr f(To).

Combine the latter two displays to complete the argument. [
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11. The polynomial Efron—Stein inequality for a random matrix. We are
now prepared to establish the polynomial Efron—Stein inequality, Theorem 4.2. We
retain the notation and hypotheses from Section 4.1, and we encourage the reader
to review this material before continuing. The proof is divided into two parts. First,
we assume that the random matrix is bounded so that the kernel coupling tools
apply. Then we use a truncation argument to remove the boundedness assumption.

11.1. A kernel coupling for a vector of independent variables. 'We begin with
the construction of an exchangeable pair. Recall that Z := (Z;,..., Z,) € Zisa
vector of mutually independent random variables. For each coordinate j,

~

zV=(2y,....Zj,....,Zy) € Z,
where Z j 18 an independent copy of Z;. Form the random vector
(11.1) Z':=7ZY  where J ~ UNIFORM(I, ..., n}.
We may assume that J is drawn independently from Z. It follows that (Z, Z’) is
exchangeable.
Next, we build an explicit kernel coupling (Z;), ZEZ.)) ;>0 for the exchangeable

pair (Z, Z). The Markov chains may take arbitrary initial values Z ) and Z,.
For each time i > 1, we let both chains evolve via the same random choice:

1. Independent of prior choices, draw a coordinate J; ~ UNIFORM({1, ..., n}.

2. Draw an independent copy Z(;) of Z.

3. Form Z;) by replicating Z(; 1) and then replacing the J;th coordinate with
the J;th coordinate of Z;y.

4. Form Zéi) by replicating Zzi—l) and then replacing the J;th coordinate with

the J;th coordinate of Z ;.

By construction, (Z;), Zéi))izo satisfies the kernel coupling property (10.1).
This coupling is drawn from Chatterjee (2005), Section 4.1. Note that this is just a
glorification of the hypercube example in Section 10.2.

11.2. A kernel Stein pair. Let H: Z — H¢ be a bounded, measurable func-
tion. Construct the random matrices

(11.2) X:=H(Z)—-EH(Z) and X :=H(Z')-EH(2).

To verify that (X, X’) is a kernel Stein pair, we use Lemma 10.2 to construct a
kernel. Forall 7,7’ € Z,

o
(11.3) K(z.2') =) E[H(Z4) — H(Z{;))|Z©) =z, Z{p) = 7).

i=0
To verify the regularity condition for the lemma, notice that the two chains couple
as soon as we have refreshed all n coordinates. According to the analysis of the
coupon collector problem [Levin, Peres and Wilmer (2009), Section 2.2], the ex-
pected coupling time is bounded by n(1 + logn). Since ||[H(Z)|| is bounded, the
hypothesis (10.2) is in force.
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11.3. The evolution of the kernel coupling. Draw a realization (Z, Z’) of the
exchangeable pair, and write J for the coordinate where Z and Z’ differ. Let
(Zy, ZE[))I'ZO be the kernel coupling described in the last section, starting at

Zy = Z and ZEO) = Z'. Therefore, the initial value of the kernel coupling is a

pair of vectors that differ in precisely one coordinate. Because of the coupling
construction,

H(Zi) —H(Z;)) = (H(Za) —H(Z(;)) - 1[J € (1, ..., i)
The operator Schwarz inequality [Bhatia (2007), equation (3.19)] implies that
(E[H(Za) — H(Z()1Z, 2'])?
— (E[(H(Za) ~ H(Z{)) - 1[J ¢ (... 7)]|Z. 2])?
<E[(H(Za) - H(Z())12, 2] E[1[J ¢ (1., JNIZ, 2]
= (1= 1/n)" - E[(H(Z@) — H(Z())*|1Z, Z'].

Take the conditional expectation with respect to Z, and invoke the tower property
to reach

11.4)

E[(E[H(Z) - H(Z)1Z, Z'])*|1Z]

(11.5) . 2
< (1=1/n)"-E[(H(Zu) — H(Z;))) | Z].

11.4. Conditional variance bounds. To obtain a bound for the expres-
sion (11.5) that satisfies the prerequisites of Lemma 10.5, we will replace ZEi)
with a variable Z;, that satisfies

d
(Z(i), szi)) = (Z, Z,) and szi) AL Z|Z(,‘).
For i > 0, define Zz"i) as being equal to Z;) everywhere except in coordinate J,

where it equals Z';. Since (J, Z')) 1L Z|Z;), we have our desired conditional
independence. Moreover, this definition ensures that ZZ.) = Zéi) whenever J ¢
{Ji,..., J;}. Therefore,

E[(H(Z@) — H(Z(;)))*1Z] S E[(H(Z) — H(Z{;)*1 Z].
Consequently, the hypothesis (10.4) of Lemma 10.4 is valid with
(11.6) T, :=E[(H(Z¢) — H(Z;))’1Z]

and B; := (1 — 1/n)'/.
Now, let us have a closer look at the form of I';. The tower property and condi-
tional independence of (Z?‘l.), Z) imply that

T; = E[E[(H(Z4) — H(Z})) | Ze), Z]1Z]

= E[E[(H(Zq) — H(Z})) 1 Z0)]1Z].
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Since
(11.7) To=E[(H(Z) - H(Z)))*|Z],

we can express the latter observation as
;= E[W(,‘) |Z] where W(l‘) i I
by setting
2
W) :=E[(H(Z¢) —H(Z{)) 12w ]
This is the second hypothesis required by Lemma 10.5.

11.5. The polynomial Efron—Stein inequality: Bounded case. We are prepared
to prove the polynomial Efron—Stein inequality, Theorem 4.2, for a bounded ran-
dom matrix X of the form (11.2).

Let p be a natural number. Since (X, X') is a kernel Stein pair, Theorem 9.1
provides that for any s > 0,

(11.8)  (EIXI5)” < 2p — HE|5(sVx +57'VE)[§

1/2p)
p) .
The regularity condition holds because both the random matrix X and the kernel
K are bounded.
Rewrite the Schatten p-norm in terms of the trace:

p

1
(11.9) E 5(sVXJrs—IVK)

p
- Etr[i(VX + s‘ZVK)] :
s, 2

This expression has the form required by Lemma 10.5. Indeed, the function ¢ +
(st/2)? is increasing and convex on R . Furthermore, we may choose Sy = 1 and

s = 2,8,- = <1 — (1 — %)—1/2>—1 < 2n.

Lemma 10.5 now delivers the bound

s N L 1 p n p
(11.10) Etr[E(Vx—i-s A% )] SEtr[EsI‘o} SEHZ-ETO

Sp

Next, we observe that the random matrix %nro coincides with the variance
proxy V defined in (4.2). Indeed,

1 1
5o = SnE[(H(Z) - H(Z'))*|Z]

(11.11) =%ZE[(H(Z)—H(ZU)))2|Z]
j=1

— % Z E[(X - XP)*Z] =V,
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The first identity is (11.7). The second follows frqm the definition (11.1) of Z’.
The last line harks back to the definition (4.1) of X\/) and the variance proxy (4.2).
Sequence the displays (11.8)—(11.11) to reach

(11.12) (E ||X||§§p)1/(2”> </2@p - D(E ||V||§p)1/<2”) when X is bounded.

This complete the proof of Theorem 4.2 under the assumption that X is bounded.

11.6. The polynomial Efron—Stein inequality: General case. Finally, we es-
tablish Theorem 4.2 by removing the stipulation that X is bounded from (11.12).
Fix any truncation level R > 0, and introduce the truncation function ¢g : C - C
as

(11.13) or(2) :=z-]l[|z|§R]+R-|§—|-]l[|z| > R].

By convention, ¢g(0) = 0. It is straightforward to show that this function satisfies
the contraction property

(11.14)  |pr() —pr(w)| < |z — w| forany z,we Cand R e R..

We further define the truncated random matrix Wg(Z) by applying the function
g element-wise on each element of the matrix W(Z), and we set

Xg:=VYR(Z) —E(¥r(2)).
Finally, we let

1 ‘
V=2 Y E[(Xr - XY)%1Z].
=1

Since X is bounded, the results of Section 11.5 imply that

2p\1/Q2 1/2
(11.15) (EIXgl5) ) < \J22p = DEIVRIE, ).

Moreover, the contraction property (11.14) implies that each element of Vg is no
larger than the corresponding element of V. Hence, tr(Vg) < tr(V). By standard
Schatten p-norm inequalities, we now have

VRIS <IIVrIE =[u(VR)]” < [ec(W)] =[IVII§, <a?~' - |VI§ .
)4 1 1 r

Let us assume that £ ||V||§p < oo, for otherwise there is nothing to prove. Since

Vg ||§p 3 ||V||§p as R — oo, the dominated convergence theorem implies that

. P _ p
Rh—>mooE ”VR”Sp =E ”V”S,,'
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Finally, since || Xg ||§fp % ||X||§fp, Fatou’s lemma and (11.15) imply

2p _ .. 2p .. 2p
E XI5, = E(liminf [X5; ) < liminfE Xzl
— D)’ limi P o_ _1))? p
< (22p = D) iminfE [Vels, = (22p = D) ElIVIs,.
The claim of the theorem follows by taking the 1/(2p)th power of both sides.
12. Exponential concentration inequalities. In this section, we develop an
exponential moment bound for a kernel Stein pair. This result shows that we can
control the trace m.g.f. in terms of the conditional variance and the kernel condi-

tional variance.

THEOREM 12.1 (Exponential moments for a kernel Stein pair). Suppose that
(X, X') is a K-Stein pair, and assume that | X|| is bounded. For r > 0, define

_ 1. - 14 C1yK
(12.1) r(y) = m s1r>1(f)logEtr exp(2 (sVx+s—'V ))

When 0| < /Y,

x _yr) 1 r(y)6?
= 1°g<1—92/w)52<1—92/w)‘

The conditional variances Vx and V¥ are defined in (8.9) and (8.10).

log R tre?

The rest of this section is devoted to establishing this result. The pattern of ar-
gument is similar with the proofs of Chatterjee (2005), Theorem 3.13, and Mackey
etal. (2014), Theorem 5.1, but we require another nontrivial new matrix inequality.

Theorem 12.1 has a variety of consequences. In Section 12.1, we use it to de-
rive the exponential Efron—Stein inequality, Theorem 4.3. Additional applications
of the result appear in Section 13. The result is stated under the boundedness as-
sumption. In the general unbounded case, Theorem 4.3 is established in a different
way, by deduction from the polynomial Efron—Stein bounds.

12.1. Proof of exponential Efron—Stein inequality: Bounded case. Theo-
rem 12.1 is the last major step toward the matrix exponential Efron—Stein inequal-
ity, Theorem 4.3. The proof is similar to the argument in Section 11.5 leading up
to the polynomial Efron—Stein inequality so we proceed quickly.

Recall the setup from Section 4.1. In this section, we assume that X is bounded.
We rely on the kernel Stein pair (X, X’) that we constructed in Section 11.1, as
well as the analysis from Section 11.3. From Theorem 12.1 we obtain that for any
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s >0,

- 1 _
logI[z?jtregX < 3 log< ) logEtr exp(%(Vx + s_ZVK)>

1
1—602/y
2
_ Y
T 2(1-6%/y)
Since t > e*¥!/? is increasing and convex on R, by choosing s as in (11.5),
Lemma 10.5 implies that

E&exp(%(Vx + S_ZVK)) < Efrexp(%l‘o(Z))

logEt_rexp<%(Vx + szVK)>.

< E&exp(Z%I’MZ)) =Eire?’V.

The identity 5To(Z) =V was established in (11.11). Combine the two displays,
and make the change of variables » +— /2 to complete the proof of Theorem 4.3
in the bounded case.

12.2. The exponential Efron—Stein inequality: General case. Here, we will es-
tablish the exponential Efron—Stein inequality without the boundedness assump-
tion. The truncation argument we have used for the polynomial case does not seem
to be applicable here, so we use an alternative approach. Assume, without loss of
generality, that || V|| has finite moments of all order (otherwise there is nothing to
prove). From the polynomial Efron—Stein inequality (Theorem 4.2), we know that
forany p e N,

(12.2) Eir(X??) < (2@2p — )P B (V).
For any x, 0 € R, we have the numerical inequality

e@x < e@x +e—9x =2 Z

Therefore,

o0 2

00 _ 2
(12.3) <9 2@2p —1)ro-r

STo e

X ePy2p

Er(VP)

Eir(V?) =REire? V.

= '
p=0 p-
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To reach the second line, we invoke (12.2). The last inequality depends on the
numerical bound

2p)! _ 2C2p—1)?
p! 2e?

This inequality can be established using Robbins’s error estimate Robbins (1955)

for Stirling’s formula. We obtain (4.4) by taking the logarithm of (12.3). Finally,

(4.5) follows from the fact that r — r~!logEfr(e’Y) is monotone increasing for
t > 0 by virtue of Jensen’s inequality.

for each integer p > 0.

12.3. The exponential mean value trace inequality. To establish Theorem 12.1,
we require another trace inequality.

LEMMA 12.2 (Exponential mean value trace inequality). For all matrices
A,B,C e H? and all s > 0 it holds that

ir[C(e* — eP)]| < La[(s(A —=B)? +57'C?)(e* +¢P)].
We defer the proof to Appendix C.

12.4. Some properties of the trace m.g.f. For the proof, we need to develop
some basic facts about the trace moment generating function.

LEMMA 12.3 (Properties of the trace m.g.f.). Assume that X € H is a cen-

tered random matrix that is bounded in norm. Define the normalized trace m.g.f.
m(0) =Eire?X for 6 € R. Then

(12.4) logm(@) >0 and logm(0)=0.
The derivative of the trace m.g.f. satisfies
(12.5) m'(0) =E[Xe"*] and m'(0)=0.
The trace m.g.f. is a convex function; in particular
(12.6) m @) <0  for0<0 and m'@)>0  ford>0.

PROOF. The result m(0) = 0 follows immediately from the definition of the
trace m.g.f. Since EX =0,

logm(0) =logE fre?X > logfre?EX > 0.

The first inequality is Jensen’s, which depends on the fact (2.1) that the trace ex-
ponential is a convex function.
Next, consider the derivative of the trace m.g.f. For each 0 € R,

(12.7) m'(0) = Et‘r[%e”‘] =R ir[Xe?X],
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where the dominated convergence theorem and the boundedness of X justify the
exchange of expectation and derivative. The claim m’(0) = 0 follows from (12.7)
and the fact that EX = 0.

Similarly, the second derivative of the trace m.g.f. satisfies

m"(0) =Ei[X*e’*]>0  foreachd eR.

The inequality holds because X? and e?X are both positive semidefinite, so the
trace of their product must be nonnegative. We discover that the trace m.g.f. is
convex, which means that the derivative m’ is an increasing function. [J

12.5. Bounding the derivative of the trace m.g.f. The first step in the proof of
Theorem 12.1 is to bound the trace m.g.f. of the random matrix X in terms of the
two conditional variance measures.

LEMMA 12.4 (The derivative of the trace m.g.f.). [Instate the notation and
hypotheses of Theorem 12.1. Define the normalized trace m.g.f. m(0) := E fre?X.
Then

1 _
(12.8)  |m'®)| < 5161 inf E ir{ (s Vx + sTIVEY' X forall 6 eR.
5>

PROOF. Assume that the kernel Stein pair (X, X') is constructed from an aux-
iliary exchangeable pair (Z, Z’). By (12.5), the result holds trivially for 6 = 0, so
we may assume that 6 # 0. The form of the derivative (12.5) is suitable for an
application of the method of exchangeable pairs, Lemma 8.4. Since X is bounded,
the regularity condition (8.5) is satisfied, and we obtain

(12.9) m'(0) = %Et_r[K(Z, Z/)(eex _ eex/)]'

The exponential mean value trace inequality, Lemma 12.2, implies that

1 _ /
' ®)] < 5 - inf B (s(6X - 0X')* +s7'K(Z. Z')%) - ("X + X))
>

- inf Bir{(s (0X — 0X')* +s7'K(Z. Z')%) - ¢7X]
5S>

—_— ] =

= —|0] - inf Eir[(r(X — X')* +1'K(Z, Z')%) - ]

4 t>0
I VSR N2 ox , | N2 ex}
= J16) ;EgEtr[zE[(X X)17] X+ B[K(Z, 2)17] X |

The first equality follows from the exchangeability of (X, X); the second follows
from the change of variables s = |0|~!¢; and the final one depends on the pull-
through property of conditional expectation. We reach the result (12.8) by intro-
ducing the definitions (8.9) and (8.10) of the conditional variance and the kernel
conditional variance. [
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12.6. Decoupling via an entropy inequality. The next step in the proof uses an
entropy inequality to separate the conditional variances in (12.8) from the matrix
exponential.

FACT 12.5 (Young’s inequality for matrix entropy). Let U be a random matrix
in H that is bounded in norm, and suppose that W is a random matrix in Hi that
is subject to the normalization E tr W = 1. Then

Er(UW) < logRfre¥ + E r[Wlog W1.

This fact appears as Mackey et al. (2014), Proposition A.3; see also Carlen
(2010), Theorem 2.13.

12.7. A differential inequality. To continue the argument, we fix a parameter
Y > 0. Rewrite (12.8) as

Olm(© . X
m’©)] = | |’:;/( )3I>lgEtr[<%(st +s1VK)> : ;(9)]

Invoke Fact 12.5 to obtain

AAC -
lm'(0)] < O1m( )<inf10gEtrexp<£(st +s_1VK)>
v s>0 2
69X e@X
tr| ——log———| ).
FE e )
In view of (12.4),
€9X
log =0X—logm(9) -1 6X.
m(6)

Identify the function r (i) defined in (12.1) and the derivative of the trace m.g.f.
to reach

016
(12.10) ' (©)] < 161m@)r () + % ' (6).

This inequality is valid for all ¥ > 0, and all € R.

12.8. Solving the differential inequality. 'We begin with the case where 6 > 0.
The result (12.6) shows that m’(¢) > 0 for ¢ € [0, #]. Therefore, the differential
inequality (12.10) reads

m'(¢) < om(@)r(¥) + (¢*/¥)m'(9)  for ¢ €[0,6].

Rearrange this expression to isolate the log-derivative m'(¢)/m(p):

ilogm(w) < e

—_— when 0 < ¢ <60 < /Y.
dg 1—@?/y
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Recall the fact (12.4) that logm (0) = 0, and integrate to obtain

¢ d o ry)e yry) 1
lom9:/—lom df/ de = 10( >
gm(0) ) g %8 (p)dg o 1—g2y % 2 8\ 1Ty

when 0 < 8 < \/¥. Making an additional approximation, we find that
o re dg = r(y)6?
1-62/y 2(1 = 62/y)

logm(0) <
0

for the same parameter range.
Finally, we treat the case where 6 < 0. The result (12.6) shows that m’(¢) <0
for ¢ € [6, 0], so the differential inequality (12.10) becomes

m'(¢) > om(@)r(Y) + (¢?/¥)m'(p)  for ¢ €[6,0].

The rest of the argument parallels the situation where 6 is positive.

13. Complements. The tools in this paper are applicable in a wide variety of
settings. To indicate what might be possible, we briefly present two additional con-
centration results for random matrices arising as functions of dependent random
variables. We also indicate some prospects for future research.

13.1. Matrix bounded differences without independence. A key strength of
the method of exchangeable pairs is the fact that it also applies to random matrices
that are built from weakly dependent random variables. This section describes an
extension of Corollary 6.1 that holds even when the input variables exhibit some
interactions.

To quantify the amount of dependency among the variables, we use a Do-
brushin interdependence matrix [Dobrushin (1970)]. This concept involves a cer-

tain amount of auxiliary notation. Given a vector X = (x1, ..., X,), We write
Xoi= (X1, Xim 1, X1y ooy Xp)
for the vector with its ith component deleted. Let Z = (Zy, ..., Z,) be a vector

of random variables taking values in a Polish space Z with sigma algebra F. The
symbol w; (-|Z_;) refers to the distribution of Z; conditional on the random vector
Z_;. We also require the total variation distance dtv between probability measures
wand von (Z,F):

(13.1) dry (v, 1) 1= sup [v(A) — u(A)].
AeF

With this foundation in place, we can state the definition.
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DEFINITION 13.1 (Dobrushin interdependence matrix). Let Z = (Zy,...,
Z,) be a random vector taking values in a Polish space Z. Let D € R**" be a
matrix with a zero diagonal that satisfies the condition

n
(13.2) drv (i Clx=i), i Cly=i)) < D Dijl[x;j # y;]
j=1
for each index i and for all vectors X,y € Z. Then D is called a Dobrushin inter-

dependence matrix for the random vector Z.

The kernel coupling method extends readily to the setting of weak dependence.
We obtain a new matrix bounded differences inequality, which is a significant ex-
tension of Corollary 6.1. This statement can be viewed as a matrix version of Chat-
terjee’s result [Chatterjee (2005), Theorem 4.3].

COROLLARY 13.2 (Dobrushin matrix bounded differences). Suppose that
Z:=(Z1,...,2Zy) in a Polish space Z is a vector of dependent random variables
with a Dobrushin interdependence matrix D with the property that

(13.3) max{|[D[l1-1, [Dloo—oc} < 1.

LetH: Z — H9 be a measurable function, and let (A1, ..., A,) be a deterministic
sequence of Hermitian matrices that satisfy

(H(Z1,...,Zn)—H(Z1,...,z/j,...,zn))2<A§,

where zi, z), range over the possible values of Zy. for each k. Compute the bound-
edness and dependence parameters

>A7
j=1

Then, for all t > 0,

0'22=

1 —1
and b= [1—5(||D||H1+||D||OMO)} .

P{)\'max(H(Z) — EH(Z)) > l’} < d- e_tz/(bo2).

Furthermore,
E Amax(H(Z) — EH(Z)) < o/blogd.

Observe that the bounds here are a factor of b worse than the independent case
outlined in Corollary 6.1. The proof is similar to the proof in the scalar case in
Chatterjee (2005). We refer the reader to our earlier report [Paulin, Mackey and
Tropp (2013)] for details.
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13.2. Matrix-valued functions of Haar random elements. This section de-
scribes a concentration result for a matrix-valued function of a random element
drawn uniformly from a compact group. This corollary can be viewed as a matrix
extension of Chatterjee (2005), Theorem 4.6.

COROLLARY 13.3 (Concentration for Hermitian functions of Haar measures).
Let Z ~ wu be Haar distributed on a compact topological group G, and let V¥ :
G — H? be a measurable function satisfying EW(Z) =0. Let Y, Y1, Y, ... be
i.i.d. random variables in G satisfying

4

(13.4) YLy~ and vz'LY  forallzeG.

Assume
W) <R  forallzeG
and

$? = sup | E[(¥(g) — ¥ (¥g))*]| < oc.
geG
Compute the boundedness parameter

52 &
o= 23 min{l 4RS\drv (. ).
i=0

where l; is the distribution of the product Y; - - - Y. Then, for all t > 0,

P{kmax(\I’(Z)) > t} <d- eftz/(2az).

E Amax(¥(Z)) <o,/2logd.

Corollary 13.3 relates the concentration of Hermitian functions to the conver-
gence of random walks on a group. In particular, Corollary 13.3 can be used to
study matrices constructed from random permutations or random unitary matrices.
The proof is similar to the proof of the scalar result; see our earlier report [Paulin,
Mackey and Tropp (2013)] for details.

Furthermore,

13.3. Conjectures and consequences. We conjecture that the following trace
inequalities hold.

CONJECTURE 13.4 (Signed mean value trace inequalities). For all matrices
A, B, C € H?, all positive integers ¢, and any s > 0 it holds that

'[r[C(eA — eB)] < %tr[(s(A - B)%r + s_ICi)eA
+ (s(A=B)2 +s571C%)eP)]
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and
tr[C(Aq — Bq)]

< ~tr[(s(A—B)2 +5s71C%)|A[7!

RS

+(s(A=B)2 +s7'C2)BI77'].

This statement involves the standard matrix functions that lift the scalar func-
tions (a)+ :=max{a, 0} and (a)_ := max{—a, 0}. Extensive simulations with ran-
dom matrices suggest that Conjecture 13.4 holds, but we did not find a proof.

These inequalities would imply one-sided matrix versions of the exponential
Efron—Stein and moment bounds, similar to those formulated for the scalar set-
ting in Boucheron, Lugosi and Massart (2003) and Boucheron et al. (2005). In
the scalar case, Conjecture 13.4 is valid, so it is possible to obtain the results of
Boucheron, Lugosi and Massart (2003) and Boucheron et al. (2005) by the ex-
changeable pair method.

APPENDIX A: OPERATOR INEQUALITIES

Our main results rely on some basic inequalities from operator theory. We are
not aware of good references for this material, so we have included short proofs.

A.1. Young’s inequality for commuting operators. In the scalar setting,
Young’s inequality provides an additive bound for the product of two num-
bers. More precisely, for indices p, g € (1, 0o) that satisfy the conjugacy relation
p ' 4+4¢ =1, we have

1 1
(A.1) ab < —la|? + —|b|? foralla,b e R.
p q
The same result has a natural extension for commuting operators.

LEMMA A.l1 (Young’s inequality for commuting operators). Suppose that A
and B are self-adjoint linear maps on the Hilbert space M? that commute with
each other. Let p, q € (1, 00) satisfy the conjugacy relation p~' +q~' = 1. Then

1 1
AB < —| AP + —|B|1.
p q
PROOF. Since A and B commute, there exists a unitary operator ¢/ and diago-
nal operators D and M for which A =UDU* and B = UMU*. Young’s inequal-

ity (A.1) for scalars immediately implies that

1 1
DM =< —|D|P + —|M|?.
p q
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Conjugating both sides of this inequality by U/, we obtain
. 1 . 1 . 1 1
AB=U(DM)U* % ;U|D|PZ/I + gUIMqu/I = ;IAIP + nglq.

The last identity follows from the definition of a standard function of an operator.
O

A.2. An operator version of Cauchy—Schwarz. We also need a simple ver-
sion of the Cauchy—Schwarz inequality for operators. The proof follows a classical
argument, but it also involves an operator decomposition.

LEMMA A.2 (Operator Cauchy-Schwarz). Let A be a self-adjoint linear op-
erator on the Hilbert space M9, and let M and N be matrices in M? . Then

(ML AMN))| < [(M. |A](MD)) - (N, |A|(N))] 2.

The inner product symbol refers to the trace, or Frobenius, inner product.

PROOF. Consider the Jordan decomposition A = A, — A_, where A, and
A_ are both positive semidefinite. For all s > 0,

0= {(sM—s7'N). Ay (M —s7'N))
= 5%(M, Ay (M) + s 4N, AL (N)) — 2(M, A4 (N)).
Likewise,
0 <{(sM+s~'N), A_(sM+s~'N))
= 53 (M, A_ (M) + s (N, A_(N)) +2(M, A_(N)).
Add the latter two inequalities and rearrange the terms to obtain
2(M, A(N)) < s*(M, |A|(M)) + s (N, [AI(N)),

where we have used the relation |A| = A4 + A_. Take the infimum of the right-
hand side over s > 0 to reach

(A2) (M, ANN)) < [(M, |A[(MD) - (M, JA[(N))]'72.

Repeat the same argument, interchanging the roles of the matrices sM — s~'N
and sM + s~'N. We conclude that (A.2) also holds with an absolute value on the
left-hand side. This observation completes the proof. [
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APPENDIX B: THE POLYNOMIAL MEAN VALUE TRACE INEQUALITY

The critical new ingredient in Theorem 9.1 is the polynomial mean value trace
inequality, Lemma 9.2. Let us proceed with a proof of this result.

PROOF OF LEMMA 9.2.  First, we need to develop another representation for
the trace quantity that we are analyzing. Assume that A, B, C € H¢. A direct cal-
culation shows that

g—1
A1 -BY =) A*A-B)BI
k=0
As a consequence,
qg—1
(B.1) tr[C(A? —B9)] = > (C,A*(A —B)BI~'7F).
k=0

To bound the right-hand side of (B.1), we require an appropriate mean inequality.
To that end, we define some self-adjoint operators on M¢:

Ac(M) :=A*M and By(M):=MB*  foreachk=0,1,...,q — 1.
The absolute values of these operators satisfy
| A /M) =AM and  |By M) =M|B|f  foreachk=0,1,...,q — 1.

Note that |Ax| and |B;_x—1| commute with each other for each k. Therefore,
Young’s inequality for commuting operators, Lemma A.1, yields the bound

[ArBy—k—11 = | Al 1By —k—1]

k —k—1
(B.2) < 1A @Dk 1 4 |By_j_1|@=D/@=k=D)
qg—1 q—1
k o g—k—1 _
= —— A+ —— B9
qg—1 qg—1
Summing over k, we discover that
f q q
(B.3) D IABy k1l < LA+ DB
k=0

This is the mean inequality that we require.
To apply this result, we need to rewrite (B.1) using the operators Ay and
Ag—i—1. It holds that
tr[C(AY — BY)]
g—1
B4 = (C.(ABy—i—1)(A —B))
k=0

q—1 qg—1 1/2
< [DQ |ABy-11(C)- D (A =B, | ABy1—11(A — B))} :
k=0 k=0
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The second relation follows from the operator Cauchy-Schwarz inequality,
Lemma A.2, and the usual Cauchy—Schwarz inequality for the sum.

It remains to bound to two sums on the right-hand side of (B.4). The mean
inequality (B.2) ensures that

g—1

> (C, | ABy—k—11(C))

k=0
(B.5) %( (1A 4 1By ()

=9icar e+ i) = ufc2 (A + B )]

Likewise,

q—1
B.6) S (A—B, 4B, i 1I(A—B) < %tr[(A ~B)2(JA[! 4 B9 1)].

k=0

Introduce the two inequalities (B.5) and (B.6) into (B.4) to reach
tr[C(AY — BY)]
< %(tr[C2(|A|q_l + B Y] - u[A —B)2(JA1 + Bl H]) V2

The result follows when we apply the numerical inequality between the geometric
mean and the arithmetic mean. [J

APPENDIX C: THE EXPONENTIAL MEAN VALUE TRACE INEQUALITY
Finally, we establish the trace inequality stated in Lemma 12.2. See the

manuscript Paulin (2012) for an alternative proof.

PROOF OF LEMMA 12.2. To begin, we develop an alternative expression for
the trace quantity that we need to bound. Observe that

ierAe(l—r)B — e‘[A(A _ B)C(I_T)B.
dr
The fundamental theorem of calculus delivers the identity

1
A_. _/ T I)Bd_c_/ e™A(A — B)e! DB g7,
0

Therefore, using the definition of the trace inner product, we reach

1
(C.1) tI‘[C(eA — eB)] = /0 <C, eTA(A _ B)e(l_r)B>dt,
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We can bound the right-hand side by developing an appropriate matrix version of
the inequality between the logarithmic mean and the arithmetic mean.
Let us define two families of positive-definite operators on the Hilbert space
M:
A (M) =e™M and Bi_,M)=Me'"PB  foreach €0, 1].
In other words, A; is a left-multiplication operator, and Bj_; is a right-
multiplication operator. It follows immediately that 4; and B;_, commute for

each 7 € [0, 1]. Young’s inequality for commuting operators, Lemma A.1, implies
that

ABi_r St AT+ A —1) - 1B VI =1 | A+ A —1) - 1By

Integrating over t, we discover that

1 1 1
(C2) /O AcBi-cdr < 5 (1A +1B1]) = 5 (A + By).

This is our matrix extension of the logarithmic—arithmetic mean inequality.
To relate this result to the problem at hand, we rewrite the expression (C.1)
using the operators A; and Bj_;. Indeed,

tr[C(eA - eB)]

1
C3) = /0 (C. (A:B1_)(A — B))dr
1 1 12
§|:-/0 (c, (AfBl_,)(C))dr-/(; (A—B, (AIBI_,)(A—B))dr} .

The second identity follows from the definition of the trace inner product. The last
relation follows from the operator Cauchy—Schwarz inequality, Lemma A.2, and
the usual Cauchy—Schwarz inequality for the integral.

It remains to bound the two integrals in (C.3). These estimates are an immediate
consequence of (C.2). First,

1
fo (C. (A:B1_+)(C))dr

1

(C4 < 5(C, (A1 + B1)(O))

—_ N

1
= §<C’ eAC + CeB) =5 tr[Cz(eA + eB)].
The last two relations follow from the definitions of the operators .4; and B, the
definition of the trace inner product, and the cyclicity of the trace. Likewise,

1

1
(C.5) /0 (A= B, (ABi-) (A~ B))dr = S ul(A — B (e + )]
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Substitute (C.4) and (C.5) into inequality (C.3) to reach
tr[C(e* —eP)]
< L([C2 (A +eP)] - u[(A — B2 (e +B)]) /2

We obtain the result stated in Lemma 12.2 by applying the numerical inequality
between the geometric mean and the arithmetic mean. [
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