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We study continuum percolation on certain negatively dependent point
processes on R

2. Specifically, we study the Ginibre ensemble and the planar
Gaussian zero process, which are the two main natural models of transla-
tion invariant point processes on the plane exhibiting local repulsion. For the
Ginibre ensemble, we establish the uniqueness of infinite cluster in the super-
critical phase. For the Gaussian zero process, we establish that a non-trivial
critical radius exists, and we prove the uniqueness of infinite cluster in the
supercritical regime.

1. Introduction. Let � be a simple point process in Euclidean plane. We
place open disks of the same radius r around each point of �, and say that two
points are neighbours if the corresponding disks overlap. Two points in � are con-
nected if there is a sequence of neighbouring points of � that include these two
points. We can then study the statistical properties of the maximal connected com-
ponents (referred to as “clusters”) of the points of �. Of particular interest are the
infinite cluster(s). This is the basic setting of the continuum percolation model,
also referred to as the Boolean model.

Using an easy coupling argument, we will show (in Section 1.1) that the prob-
ability that an infinite cluster exists is an increasing function of the radius of the
disks. We say that there is a non-trivial critical radius if there exists an 0 < rc < ∞
such that the probability of having an infinite cluster is zero when 0 < r < rc and
the same probability is strictly positive when rc < r < ∞. For rc < r < ∞, one
can ask whether the infinite cluster is unique. For point processes which are er-
godic under the action of translations, the event that there is an infinite cluster is
translation-invariant and, therefore, its probability is either 0 or 1. Similarly, the
number of infinite clusters is a translation-invariant random variable and, there-
fore, a.s. a constant.

In this paper, we focus on the two main natural examples of repelling point
processes on the plane: the Ginibre ensemble, arising as weak limits of certain
random matrix eigenvalues, and the Gaussian zero process arising as weak limits
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of zeroes of certain random polynomials. The latter process will be abbreviated as
the GAF zero process. For details on these models, see Section 2.

In [1] (see Corollary 3.7 and the discussion thereafter), it has been shown that
there exists a non-zero and finite critical radius for the Ginibre ensemble.

In this paper, we prove the following theorems.

THEOREM 1.1. In the Boolean percolation model on the Ginibre ensemble,
a.s. there is exactly one infinite cluster in the supercritical regime.

THEOREM 1.2. In the Boolean percolation model on the GAF zero process,
there exists a non-zero and finite critical radius. Moreover, in the supercritical
regime, a.s. there is exactly one infinite cluster.

Continuum percolation is well studied in theoretical and applied probability, as
a model of communication networks, disease-spreading through a forest and many
other phenomena. This model, also referred to as the Gilbert disk model or the
Boolean model, is almost as old as the more popular discrete bond percolation the-
ory. It was introduced by Gilbert in 1961 [10]. In the subsequent years, it has been
studied extensively by different authors, such as [12, 17, 18] and [24], among oth-
ers. Closely related models such as random geometric graphs, random connection
models, face percolation in random Voronoi tessellations have also been studied.
For a detailed discussion of continuum percolation and related models, we refer
the reader to [17] and [3]. For further details on point processes, we refer to [5].

Much of the literature so far has focused on studying continuum percolation
where the underlying point process � is either a Poisson process or a variant
thereof. Most of these models exhibit some kind of spatial independence. This
property is extremely useful in the study of continuum percolation on these mod-
els, for example, the spatial independence enables us to carry over Peierls type
argument from discrete percolation theory for establishing phase transitions in the
existence of infinite clusters, or Burton and Keane-type arguments in order to prove
uniqueness of infinite clusters.

While the Poisson process is the most extensively studied point process, the
spatial independence built into it makes it less effective as a model for many natu-
ral phenomena. This makes it of interest to study point processes with non-trivial
spatial correlation, particularly those where the points exhibit repulsive behaviour.
On the complex plane, the main natural examples of translation-invariant point
processes exhibiting repulsion are the Ginibre ensemble and the Gaussian zero
process. The latter process is also known as the Gaussian analytic function (GAF)
zero process. The former arises as weak limits of eigenvalues of (non-Hermitian)
random matrices, while the latter arises as weak limits of zeros of Gaussian poly-
nomials. For precise definitions of these processes, we refer the reader to Section 2.

The Ginibre ensemble was introduced by the physicist Ginibre [11] as a physi-
cal model based on non-Hermitian random matrices. In the mathematics literature,
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it has been studied by [25] and [14] among others. The Gaussian zero process
also has been studied in either field; see, for example, [2, 7, 21, 26–28]. We re-
fer the reader to [19] for a survey. These models are distinguished elements in
broader classes of repulsive point processes. For example, the Ginibre ensemble is
essentially the unique determinantal process on the plane whose kernel K(z,w) is
holomorphic in the first variable, and conjugate holomorphic in the second [14].
The Gaussian zero process is essentially unique (up to scaling) among the zero sets
of Gaussian power series in that its distribution is invariant under translations [26].
For an exposition on both the processes, we refer the reader to [13].

The strong spatial correlation present in the above models severely limits the
effectiveness of standard independence-based arguments from the Poisson setting
while studying continuum percolation. Our aim in this paper is to study contin-
uum percolation on the two natural models of repulsive point processes mentioned
above, and establish the basic results. Namely, there is indeed a non-trivial critical
radius, and the infinite cluster is unique when we are in the supercritical regime.

While the spatial independence of the Poisson process is not available in these
models, we observe that this obstacle can be largely overcome if we can obtain
detailed understanding of spatial conditioning in these point processes. Recently,
such understanding has been obtained in [9], where it has been shown that for a
given domain D, the point configuration outside D determines a.s. the number of
points in D (in the Ginibre ensemble) and their number and the centre of mass
(in the Gaussian zeroes ensemble), and “nothing further”. For a precise statement
of the results, we refer the reader to the Theorems 5.3, 5.4, 5.5 and 5.6 quoted in
this paper. In the present work, we demonstrate that along with certain estimates
on the strength of spatial dependence, this understanding is sufficient to overcome
the problem of lack of independence, and answer the basic questions in continuum
percolation on these two processes.

For determinantal point processes in Euclidean space, it is known that a non-
trivial critical radius exists; see, for example, [1]. This covers the Ginibre ensem-
ble. The uniqueness of the infinite cluster (in the supercritical regime), however,
was not known, and this is proved in Section 5.2. For the Gaussian zero process,
both the existence of a non-trivial critical radius and the uniqueness of the infinite
cluster (when one exists) are new results, and are established in Sections 4 and 5.3,
respectively.

In the case of the GAF zero process, while proving our main results we derive
new estimates for hole probabilities. Let B(0;R) be the disk with centre at the
origin and radius R. The hole probability for B(0;R) is the probability p(R) that
B(0;R) has no GAF zeroes. It has been studied in detail in [27], and culminated in
the work of Nishry [23] where he obtained the precise asymptotics as R → ∞. It
turns out that as R → ∞ we have − logp(R)/R4 → c where c > 0 is a constant.
In the setting of our problem, however, we need to understand hole probabilities
for much more general sets than disks.



3360 S. GHOSH, M. KRISHNAPUR AND Y. PERES

Let us divide the plane into θ × θ squares given by the grid θZ2, each of them
being called a standard square. Then we have the following.

THEOREM 1.3. Let � be a connected set composed of L standard squares of
side length θ . Let E and Fk denote the events that that each standard square in
� has no zeroes and has ≥ k zeroes, respectively. Then, for θ bigger than some
universal constant, we have:

(i) P[E] ≤ exp
(−c1(θ)L

)
, (ii) P[Fk] ≤ exp

(−c2(θ, k)L
)
,

where c1(θ) → ∞ as θ → ∞ and limθ→∞ limk→∞ c2(θ, k) = ∞.

The techniques generally used in the literature to study hole probabilities do not
readily apply to this situation. Instead, we exploit a certain “almost independence”
property of GAF, and combine it with a Cantor set-type construction to obtain the
desired result.

In fact, it seems that the upper bound (i) on the hole probability is not far from
a lower bound which is only slightly worse. In [21] Section 9.1, the authors lower
bound the hole probability of a tubular region (see Figure 6 in [21]) of length R and
height 1 by exp(−cR(logR)3/2). Our method of obtaining (i) can also be applied
to such a domain, and would imply an upper bound of exp(−cR).

1.1. The Boolean model. Let � be a point process in R
2 whose one-point

and two-point intensity measures are absolutely continuous with respect to the
Lebesgue measure on R

2 and R
2 ×R

2, respectively, and fix a real number r > 0.
We say two points x, y of � are neighbours of each other if ‖x − y‖2 < 2r .
Equivalently, we can place open disks of radius r around each point; then two
points are neighbours if and only the corresponding disks intersect. Two points
x, y of � are connected if ∃ a finite sequence of points x0, x1, . . . , xn ∈ � such
that x0 = x, xn = y and xj+1 is the neighbour of xj for 0 ≤ j ≤ n − 1.

This is the Boolean percolation model on the point process � with radius r ,
denoted by X(�, r).

Connectivity as defined above is an equivalence relation, and the maximal con-
nected components are called clusters. The size of a cluster is the number of points
of � in that cluster. We say that the model percolates if there is at least one infinite
cluster. We say that x0 ∈ R

2 is connected to the infinity if there is a point x ∈ �

such that ‖x − x0‖2 < r and x belongs to an infinite cluster. The probability of
having an infinite cluster and that of the origin being connected to infinity both
depend on the parameter r . For r ′ < r , a disk of radius r ′ is contained inside a disk
of radius r with the same centre. This gives us a coupling between the (random)
graphs obtained in the Boolean percolation models X(�, r ′) and X(�, r), with
the graph obtained in X(�, r ′) being a subgraph of the one obtained in X(�, r).
This coupling shows that both the probability that the model percolates and the
probability that a given point x0 is connected to the infinity are non-decreasing
in r .
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Notation. Let �(r) denote the number of infinite clusters when the disks are of
radius r .

�(r) is a measurable function of the point configuration. To see this, fix a > 0
and look at the disk B(0;a) of radius a and centre at the origin. Let �(r, a) de-
note the number of infinite clusters in X(π, r) which intersect this disk. Then
�(r) = lima→∞ �(r, a), so it suffices to prove that each �(r, a) is measurable.
To this end, consider b ≥ a and look at the graph obtained from X(�, r) restricted
to the points in B(0;b + r). Based on this, construct a new graph G(a,b) as fol-
lows. The vertices of G(a,b) are the those points of � in B(0;a) which are not
part of any finite cluster in the Boolean model contained inside B(0;b). Two ver-
tices in G(a,b) have an edge between them if the corresponding points are con-
nected in the Boolean model by a path that only involves points in B(0;b). Let
g(a, b) denote the number of connected components of G(a,b). Since G(a,b) is
defined with respect to the finitely many points of � in B(0;b + r), therefore,
g(a, b) is easily seen to be measurable with respect to �. However, �(r, a) =
limb→∞ g(a, b), which shows that �(r, a) is measurable, as desired.

DEFINITION 1. The point process � is said to have a critical radius 0 < rc <

∞ if �(r) = 0 a.s. when 0 < r < rc and P(�(r) > 0) > 0 when rc < r < ∞.

For any point process � in R
2, the group of translations of R2 acts in a natural

way on �: a translation T takes the point x ∈ � to T (x), the resulting point process
being denoted T∗�. The process � is said to be translation invariant if T∗� has
the same distribution as � for all translations T . The process is said to be ergodic
under translations if this action is ergodic.

For any translation invariant point process, the probability of the origin being
connected to infinity is the same as that for any x ∈ R

2, so by a simple union bound
over x ∈ R

2 with rational co-ordinates, the probability of having an infinite cluster
is positive if and only if the probability of the origin being connected to infinity is
positive.

Clearly, �(r) is a translation-invariant random variable. If the distribution of
� is ergodic under translations, �(r) is a.s. a non-negative integer constant. In
particular, the probability of having at least one infinite cluster is either 0 or 1.

1.2. The underlying graph. Consider the Boolean model with radius r on a
point process � in R

2. By the underlying graph g of this model we mean the
graph whose vertices are the points of � and two vertices x, y are neighbours iff
‖x − y‖2 < 2r . By �(g) we denote the subset of R2 formed by the union of the
points of � and straight line segments drawn between two such points whenever
their mutual distance is less than 2r . Since the two point intensity measure of � is
absolutely continuous with respect to the Lebesgue measure on R

2 ×R
2, therefore,

the probability that there are two points of � at a mutual distance 2r is 0. Hence,
if a take a large open disk D, then there exists an ε > 0 such that for each point
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x of � in D we have B(x; ε) ⊂ D and x can be moved to any new position in
the open disk B(x; ε) without changing the connectivity properties of g. In other
words, let � map each point of the configuration inside D to any point in its ε

neighbourhood, and let it map every other point of the configuration to itself. Then
�(x) and �(y) are neighbours if and only if x and y are neighbours.

2. The models.

2.1. The Ginibre ensemble. Let us consider an n × n matrix Xn,n ≥ 1 whose
entries are i.i.d. standard complex Gaussians. The vector of its eigenvalues, in uni-
form random order, has the joint density (with respect to the Lebesgue measure
on C

n) given by

p(z1, . . . , zn) = 1

πn
∏n

k=1 k!e
−∑n

k=0 |zk |2 ∏
i<j

|zi − zj |2.

Recall that a determinantal point process on the Euclidean space R
d with kernel

K and background measure μ is a point process on R
d whose k-point intensity

functions with respect to the measure μ⊗k are given by

ρk(x1, . . . , xk) = det
[(

K(xi, xj )
)k
i,j=1

]
.

Typically, K has to be such that the integral operator defined by K is a non-
negative trace class contraction mapping L2(μ) → L2(μ). For a detailed study
of determinantal point processes, we refer the reader to [13, 15] or [29]. A sim-
ple calculation involving Vandermonde determinants shows that the eigenvalues
of Xn (considered as a random point configuration) form a determinantal point

process in R
2. Its kernel is given by Kn(z,w) = ∑n−1

k=0
(zw̄)k

k! with respect to the

background measure dγ (z) = 1
π
e−|z|2 dL(z) where L denotes the Lebesgue mea-

sure on C. This point process is the Ginibre ensemble (of dimension n), which
we will denote by Gn. As n → ∞, these point processes converge, in distribution,

to a determinantal point process given by the kernel K(z,w) = ezw̄ = ∑∞
k=0

(zw̄)k

k!
with respect to the same background measure γ . This limiting point process is the
infinite Ginibre ensemble G. It is known that G is ergodic under the natural action
of the translations of R2.

2.2. The GAF zero process. Let {ξk}∞k=1 be a sequence of i.i.d. standard com-
plex Gaussians. Define, for n ≥ 0,

fn(z) =
n∑

k=0

ξk

zk

√
k! , f (z) =

∞∑
k=0

ξk

zk

√
k! .

These are complex Gaussian processes on C with covariance kernels given by

Kn(z,w) =
n∑

k=0

(zw̄)k

k! and K(z,w) =
∞∑

k=0

(zw̄)k

k! ,
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respectively. A.s. f is an entire function and the fn’s converge to f (in the sense
of the uniform convergence of functions on compact sets). It can be shown, using
Rouche’s theorem, that this implies that the corresponding point processes of ze-
roes, denoted by Fn, converge a.s. to the zero process F of the GAF (in the sense
of locally finite point configurations converging on compact sets). It is known that
F is ergodic under the natural action of the translations of the plane. For a detailed
study of the GAF zero process (including a proof of translation invariance and
ergodicity), we refer the reader to [13].

3. Discrete approximation and the critical radius. The first step in our
study of continuum percolation will be to relate our events of interest to events
defined with respect to a grid, so that the problem becomes amenable to techniques
similar to the ones that are effective in studying percolation in discrete settings.

DEFINITION 2. Let θ > 0 be a parameter, to be called base length, and con-
sider the grid formed by θZ2 (which includes the horizontal and vertical edges
connecting the points of θZ2). Each θ × θ closed square (including the interior)
whose vertices are the points of θZ2 will be referred to as a standard square. Two
(distinct) standard squares are said to be neighbours if their boundaries intersect.
So, each standard square has 8 neighbours.

NOTATION 1. For x ∈R
2 and R > 0, we will denote by B(x;R) the open disk

with centre x and radius R.
We define WR , the box of size R, to be the set WR := {x ∈R

2 : ‖x‖∞ = R}.
For a subset K ⊂R

2, we will denote by K the topological closure of K .

DEFINITION 3. Fix a radius r > 0 and a base length θ > 0.
A continuum path γ of length n is defined to be a piecewise linear curve whose

vertices are given by the sequence of points xj ∈ �,1 ≤ j ≤ n such that xi+1 is a
neighbour of xi for 1 ≤ i ≤ n − 1.

For a continuum path γ with vertices {x1, . . . , xn}, we denote by S(γ ) the set⋃n
i=1 B(xi; r).
A lattice path � of length n is defined to be a sequence of standard squares

{Xj }nj=1 such that Xi+1 is a neighbour of Xi for 1 ≤ i ≤ n − 1. A lattice path
{Xi}ni=1 is said to be non-repeating if Xi �= Xj for i �= j .

For a lattice path � = {X1, . . . ,Xn}, we denote by V (�) the set
⋃n

i=1 Xi .
We say that a continuum path γ connects the origin to WR if 0 ∈ S(γ ) and

S(γ ) ∩ WR �= φ. For R ∈ Z+, we say that a lattice path � connects the origin to
WRθ if 0 ∈ V (�) and V (�) ∩ WRθ �= φ.

With these notions in hand, we are ready to state the following.
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PROPOSITION 3.1. Consider the Boolean percolation model X(�, r). Let the
base length θ = r/

√
8. Suppose, for some L ∈ Z+, there exists a non-repeating

lattice path � = {X1, . . . ,Xn} that connects 0 to WLθ with each Xi containing at
least one point in �. Then there exists a continuum path γ that connects 0 to WLθ .

PROOF. The result follows from the fact that with θ = r/
√

8, disks of radius
r centred at any two points in adjacent standard squares intersect with each other.
This is true because the maximum possible distance between two points in adjacant
standard squares is θ

√
8. �

PROPOSITION 3.2. Fix a base length θ and an integer k ≥ 0. For any 0 < r <

θ/18k the following happens: Suppose in X(�, r) there exists a continuum path
γ connecting 0 to WLθ (where L ∈ Z+). Then there exists a non-repeating lattice
path � connecting 0 to WLθ such that each standard square in � contains ≥ k

points ∈ �.

PROOF. Let r be a radius such that k < θ/18r , and let γ be a continuum path
with vertices {xi}ni=1 connecting 0 to WLθ . A finite lattice path �1 is said to be
contained in another finite lattice path �2, denoted by �1 ⊂ �2, if V (�1) ⊂ V (�2).

Now, consider the set  of all finite lattice paths � (non-repeating or otherwise),
0 ∈ V (�), such that each standard square in � contains ≥ k points. Clearly, ⊂ is a
partial order on . Moreover,  is non-empty, because γ must reach L∞ distance
θ from the origin, and in doing so must have at least θ/2r points ∈ �. The 4
standard squares whose closures contain the origin contain these θ/2r points, so
at least one of them must have at least θ/8r ≥ k points in �.

Let � be a maximal element in  under ⊂. If � connects 0 to WLθ then we are
done. Otherwise, we define the surround �(�) of � as the union of all standard
squares which are neighbours of the standard squares in � and are contained in
the unbounded component of the complement of �. Since γ connects 0 to WLθ ,
therefore γ intersects ∂�(�) \ V (�). Let j be the least index ∈ [n] such that
the line segment (xj−1, xj ] intersects ∂�(�) \ V (�). Since r < θ , we must have
xj−1 ∈ Int(�(�)), where Int(H) denotes the interior of a set H . Let σ be a stan-
dard square in �(�) such that σ contains xj−1. Consider the continuum path γ ′
with vertices {xj , xj−1, . . . , xi} where i is the largest index ≤ j − 1 such that
xi ∈ �. In other words, we trace the vertices of γ backward from xj until we are
in �. Now the part of γ ′ contained in σ and its neighbouring standard squares
[that are in �(�)] is of length at least θ , therefore, it has at least θ/2r points ∈ �

contained in these squares. But

Total number of such squares (including σ)

≤ 1 + number of standard squares neighbouring σ = 9.
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Therefore, we have θ/2r points ∈ � contained in ≤ 9 squares in �(�). Therefore,
at least one square σ ′ in �(�) has at least θ/18r ≥ k points of γ . Let � = {Xi}Ni=1
and let σ ′ be a neighbour of Xj ∈ �. We define a new lattice path �′ ∈  by

�′ = {X1,X2 · · · ,XN,XN−1,XN−2 · · · ,Xj , σ },
that is, by backtracking along � until we reach Xj and then appending σ at the
end. Clearly, S(�′) ⊃ S(�) as a proper subset, contradicting the maximality of �.

Since the procedure described above must terminate after finitely many steps
because WLθ is a compact set, a maximal element � of  must connect 0 to WLθ .
Such a lattice path may not be non-repeating. However, we can erase the loops in
� in the chronological order to obtain a non-repeating lattice path of the desired
kind that connects 0 to WLθ . �

In the next theorem, we provide some general conditions under which there
exists a non-trivial critical radius for the Boolean percolation model.

THEOREM 3.3. Let � be a translation invariant and ergodic point process
with the property that for any connected set � of L standard squares (with base
length θ ) the following are true:

(i) For large enough θ , we have

P[� contains no points ∈ �] ≤ exp
(−c1(θ)L

)
,

with c1(θ) → ∞ as θ → ∞.
(ii) For large enough θ , we have

P[Each standard square in � has at least k points ∈ �] ≤ exp
(−c2(θ, k)L

)
with limθ→∞ limk→∞ c2(θ, k) = ∞.

In the Boolean percolation model X(�, r) on such a �, let r denote the radius
of each disk and let �(r) denote the number of infinite clusters. Then there exists
0 < rc < ∞ such that for 0 < r < rc, we have �(r) = 0 a.s. and for rc < r < ∞
we have �(r) > 0 a.s.

PROOF. The proof follows a Peierl’s type argument from the classical bond
percolation theory, after appropriate discretization using Propositions 3.1 and 3.2.
We first note that by translation invariance, it suffices to show that P[0 is connected
to ∞ with radius r] > 0 or = 0, respectively, in order to show that �(r) > 0
or = 0 a.s.

We want to show that for small enough r , there is no continuum path con-
necting 0 to ∞. Consider possible base lengths θ so large that our hypothesis
(ii) is valid. Fix base length θ and k a positive integer large enough such that
2 log 3 − c2(θ, k) < 0 where c2 is as in (ii). We call a non-repeating lattice path
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� to be k-full if each standard square in � contains ≥ k points ∈ �. By condi-
tion (ii), if there are L distinct standard squares in �, then the probability of �

being k-full ≤ exp(−c2(θ, k)L). Since each standard square has ≤ 9 neighbours,
therefore, the number of non-repeating lattice paths � containing 0 and having L

standard squares ≤ 9L. So,

P[There is a k-full lattice path of length L containing the origin]
≤ exp

((
2 log 3 − c2(θ, k)

)
L

)
.

The right-hand side is summable in positive integers L, hence by the Borell–
Cantelli lemma,

P[There exists a k-full lattice path connecting the origin to WLθ all L ∈ Z+] = 0.

If there was a continuum path γ connecting 0 to ∞, then for any integer t > 0
there will be a continuum path connecting 0 to Wtθ . We now appeal to Proposi-
tion 3.2 for this k and find an r small enough such that for any continuum path
γ connecting 0 to the box Wtθ we can find a k-full lattice path � connecting 0 to
Wtθ . But we have already seen that a.s. there are only finitely many k-full lattice
paths, which gives us a contradiction, and proves that there is no continuum path
connecting 0 to ∞, with probability 1.

By translation invariance, this proves that for small enough r , we have �(r) = 0
a.s.

Next, we want to show that for large enough r , with positive probability there
exists a continuum path connecting 0 to ∞. Fix a radius r in the Boolean model.
The event that there exists no continuum path from 0 to ∞, implies by Proposi-
tion 3.1 that (choosing the base length to be θ as in Proposition 3.1 with θ = r/

√
8)

there exists L ∈ Z+ such that there is no lattice path connecting the origin to WLθ .
The last statement implies that there exists a circuit of standard squares surround-
ing the origin such that the interiors of the standard squares in this circuit do not
contain any point from �. Therefore, it suffices to prove that the probability of this
event can be made < 1 by choosing r sufficiently large.

To this end, we recall that the number of circuits of standard squares contain-
ing the origin and consisting of L distinct standard squares is exp(cL) for some
constant c > 0. For details on this, we refer the reader to [3], Chapter 1, proof of
Lemma 2.

The probability that a specific circuit of standard squares surrounding the origin
and containing L standard squares is empty ≤ exp(−c1(θ)L) when base length
is θ , which follows from condition (i) in the present theorem. Therefore,

P[There exists an empty circuit surrounding the origin]
(1)

≤
∞∑

L=1

ec(d)Le−c1(θ)L.
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Now, by choosing r large enough, we can make θ large enough (by Proposi-
tion 3.1), so that condition (i) would imply that the right-hand side of (1) is less
than 1. This completes the proof that when r is large enough, 0 is connected to ∞
with positive probability. �

REMARK 3.1. Theorem 3.3 carries over verbatim to d dimensions instead
of 2, with standard squares replaced by d dimensional standard cubes, whose def-
inition is analogous. The proof works on similar lines.

4. Critical radius for Gaussian zeros. In this section, we aim to study the
Boolean model on the planar GAF zero process. First of all, we will prove an
estimate on hole probabilities and overcrowding probabilities in the Gaussian zero
ensemble, which is taken up in Section 4.1. It will subsequently be used to prove
the existence of critical radius for the Boolean percolation model on Gaussian
zeroes in Section 4.2.

4.1. Exponential decay of hole and overcrowding probabilities. The main goal
of this section is to prove Theorem 1.3, which is an estimate on the hole and over-
crowding probabilities of connected sets composed of standard squares.

We will perform a certain Cantor-type construction which will be used in prov-
ing Theorem 1.3. For the rest of this section, the symbol “log” denotes logarithm
to the base 2.

We consider the normalised GAF f ∗(z) = e−1/2|z|2f (z). We will make use of
the following almost independence theorem from [20].

THEOREM 4.1. Let F be a GAF. There exists numerical constant A > 1 with
the following property. Given a family of compact sets Kj in C with diameters

d(Kj ), let ρj ≥
√

log(3 + d(Kj )). Suppose that Aρj -neighbourhoods of the sets
Kj are pairwise disjoint. Then

F ∗ = F ∗
j + G∗

j on Kj,

where Fj are independent GAFs and for a positive numerical constant C we have

P

{
max
Kj

∣∣G∗
j

∣∣ ≥ e
−ρ2

j

}
≤ C exp

[−e
ρ2

j
]
.

Our construction will be parameterised by two parameters: θ > 0 and 0 < λ < 1.
We will think of θ to be large enough and λ to be small enough; the exact condi-
tions demanded of θ and λ will be described as we proceed along the construction.
It turns out that the resulting choice of θ and λ can be made to be uniform in all
the other variables in the construction (like the length L), and it suffices to take
λ smaller than some universal constant and θ large enough, depending on λ. To
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begin with, we demand that θ be so large that C exp[−e(log θ)2] < 1, for C as in
Theorem 4.1, and √

log(3 + xθ
√

2) < θ logx for all x ≥ 1.(2)

4.1.1. A Cantor-type construction. Let B be a square in R
2 of dimension Lθ ×

Lθ . Let 0 < λ < 1/2 be a fixed number, to be specified later. To begin with, we
demand λ to be so small that 2A log(1/4λ) > 3. Observe that this guarantees the
following: inside any square of side length 2Aθ log(1/4λ) in R

2, there exists at
least one standard square of side length θ . This fact will be used later, in the proof
of Theorem 1.2. Let N = �logλL�. In this section, we will construct a subset
BN ⊂ B which satisfies the following conditions:

(a) BN consists of 4N connected components that are translates of each other.
(b) Each connected component is a square of side length ≥ 2Aθ log(1/4λ).
(c) Euclidean distance between any two such components is

≥ 2Aθ log
(
L/2N ) ≥ 2Aθ log(1/2λ).

Notice that the connected components of BN are squares of side length ≥
2Aθ log(1/4λ), and since λ is so small that 2A log(1/4λ) > 3, each such com-
ponent contains at least one standard square of side θ . We arbitrarily select one
standard square from each connected component in BN , and denote their union
by ϒN .

To this end, we proceed inductively as follows. For 0 ≤ j < N , we will start
with a set Bj and describe how to obtain a set Bj+1 from there. Set B0 = B and
l0 = Lθ . In our construction, Bj will satisfy the following inductive hypothesis:

(i) Bj consists of 4j connected components, denoted {Bi
j }4j

i=1 that are trans-
lates of each other.

(ii) Each connected component is a square of side length lj ≥
2Aθ log(L/2j+1). Furthermore, lj ≤ θL/2j .

(iii) Euclidean distance between any two such components is ≥ 2Aθ log(L/2j ).

These conditions are trivially true for B0.
We will now describe an operation on an lj × lj square, that will give rise to 4

smaller squares of side length lj+1. This operation will be performed on each of
the connected components of Bj , and the union of the resulting 4 · 4j = 4j+1

smaller squares will be Bj+1. Of course, we would need to verify that the inductive
hypotheses remain valid.

We consider Sj to be the lj × lj square formed by the points in R
2 whose

Cartesian co-ordinates are (0,0), (lj ,0), (0, lj ), (lj , lj ). Set lj+1 = (lj − 2Aθ ×
log(L/2j+1))/2. Consider the region

Rj := {
(x, y) ∈ R

2 : lj+1 ≤ x ≤ lj − lj+1 or lj+1 ≤ y ≤ lj − lj+1
}
.
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A moment’s thought would convince the reader that Sj \ Rj is a disjoint union of
four squares in R

2, each of side length lj+1. In what follows, we will refer to these
as “surviving squares”. A general lj × lj square in R

2 is a translate of Sj , so the
construction on Sj under the same translation defines a similar construction on the
general lj × lj square.

We perform this construction on each of the connected components of Bj . The
union of the surviving squares formed as a result is Bj+1.

We need to verify that the inductive hypotheses remain valid for Bj+1.
This is the content of the following proposition.

PROPOSITION 4.2. There is a number λ0 ∈ (0,1/2) such that for any pos-
itive λ < λ0 and N = �logλL�, the sets Bj in the above construction, for
0 ≤ j < N satisfy conditions (i), (ii) and (iii) in the inductive hypothesis. With
ρj = θ log(L/2j ), the Aρj -neighbourhoods of the connected components {Bi

j }4j

i=1
of Bj are disjoint. Furthermore, we have

ρj ≥
√

log
(
3 + Diam

(
Bi

j

))
.

PROOF. The fact that Bj has 4j connected components, each of which are
squares, is clear from the construction. This deals with condition (i) in the inductive
hypothesis.

To check that lj ≥ 2Aθ log(L/2j+1), it suffices to check that for 0 ≤ j <

N , we have lj+1 = (lj − 2Aθ log(L/2j+1))/2 ≥ 0. Substituting lk = (lk−1 −
2Aθ log(L/2k))/2 for k = j, j − 1, . . . ,0, we deduce that we need to prove, for
each 0 ≤ j < N , the inequality

1

2j+1

[
l0 −

j∑
k=0

2k · 2Aθ log
L

2k+1

]
≥ 0.

Recalling that l0 = Lθ , it suffices to show that

N−1∑
k=0

2k · 2Aθ log
L

2k+1 ≤ Lθ.

But the left-hand side above is equal to

2A
(
2N − 1

)
θ logL − 2Aθ(N − 1)2N − 2Aθ

= 2N+1Aθ(logL − N) − 2Aθ logL + 2N+1Aθ − 2Aθ

≤ 4A

(
λ log

1

λ

)
Lθ + 4AλLθ,

where in the last step we have used

λL ≤ 2N ≤ 2λL.(3)
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By choosing λ small enough (less than some universal constant λ0), we can ensure
that 4A(λ log 1

λ
)Lθ + 4AλLθ ≤ 1

2Lθ . Finally,

lj = (
lj−1 − 2Aθ log

(
L/2j ))

/2 ≤ lj−1/2 ≤ · · · ≤ l0/2j = θL/2j .

This completes the proof of condition (ii) in the inductive hypothesis.
Condition (iii) in the inductive hypothesis follows from the definition. It suf-

fices to verify that the distance between two components in Bj , which have been
created by subdividing the same component of Bj−1, is ≥ 2Aθ log(L/2j ). This is
because, the distance between any two of the other components in Bj is greater
than or equal to the least distance between components of Bj−1, which is at least
2Aθ log(L/2j−1) ≥ 2Aθ log(L/2j ). By our procedure for constructing the com-
ponents of Bj (recall the definition of Rj ), the minimal distance between com-
ponents of Bj obtained from the same component of Bj−1 is indeed at least
2Aθ log(L/2j ).

The fact that the Aρj -neighbourhoods of the distinct Bi
j ’s (for the same j ) fol-

lows from the lower bound on the Euclidean distance between the components
of Bj . The inequality

ρj ≥
√

log
(
3 + Diam

(
Bi

j

))
follows from the fact that Diam(Bi

j ) ≤ lj
√

2 = θL
√

2/2j and applying equation

(2) with x = L/2j . In doing so, we use the fact that for all j ≤ N , we have 2j ≤
2λL [see (3)] and 1 ≤ 1/2λ (recall that λ was chosen to be less than 1/2), in order
to ensure that x ≥ 1, as required in (2). �

4.1.2. Functional decomposition in the Cantor construction. In this section,
we prove that the Cantor-type decomposition in the previous section leads to a
decomposition of f ∗ (restricted to BN ) into a part that is essentially independent
across the components of BN and a residual part whose size, for a positive fraction
of the components, is very small with high probability. In what follows, C will be
a numerical quantity whose value might change from one line to another, but is not
dependent on any of the parameters of our model.

PROPOSITION 4.3. There are functions {f ∗
i ,G∗

i }4N

i=1 such that f ∗ = f ∗
i + G∗

i

on Bi
N for each i, f ∗

i are i.i.d. copies of f ∗ and with probability ≥ 1 −
exp(−c(θ)L2), the functions G∗

i satisfy

supBi
N

∣∣G∗
i

∣∣ ≤ e−5θ2

for at least 1
2λ2L2 of the sets Bi

N .

PROOF. We can consider the sets Bi
j to be the vertices of a tree T of depth N

where each vertex has 4 children (except at depth N ). The children of the vertex
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Bi
j are the vertices Bi′

j+1 where Bi′
j+1 are obtained by applying the (j + 1)th level

of the construction in Section 4.1.1 to Bi
j .

Corresponding to the tree T , we can perform a decomposition of the normalised
GAF f ∗ using Theorem 4.1. We start with f ∗, which we also call f ∗

0 . We apply
Theorem 4.1 to the compact sets Bi

1,1 ≤ i ≤ 4 to obtain i.i.d. normalised GAFs
f ∗

1,i and corresponding errors g∗
1,i . These are the functions corresponding to the

first level of the tree. At the next level, we perform a similar decomposition on
each f ∗

1,i to obtain f ∗
2,j and g∗

2,j ,1 ≤ j ≤ 42. So, on Bi
2 we have f ∗ = f ∗

2,i +
g∗

2,i + g∗
1,i′ where Bi

2 ⊂ Bi′
1 . We continue this decomposition recursively until we

reach level N in T . At level N , we have f ∗ = f ∗
N,i + G∗

i on Bi
N,1 ≤ i ≤ 4N

where the f ∗
N,i i.i.d. normalised GAFs. The G∗

i are the cumulative errors given

by G∗
i = ∑N

k=1 g∗
k,n(k,i) where n(k, i) are such that Bi

N ⊂ B
n(k,i)
k . The g∗

j,i’s are

not independent. However, for any two distinct vertices Bi
j ,B

i′
j at the same level

j in T , the errors corresponding to the descendants of Bi
j and those of Bi′

j are

independent. Thus, at level j , the 4j functions gj,i can be grouped into 4j−1 groups
Jj,i′′,1 ≤ i ′′ ≤ 4j−1 (each group consisting of 4 functions whose vertices have the
same parent at level j − 1 in T ). Thus, the index i ′′ in Jj,i′′ can be thought to be
varying over the vertices in T at level j −1. Clearly, Jj,i and Jj,i′ are independent
sets of functions for i �= i′. We call Jj,i to be “good” if each gj,k ∈ Jj,i satisfies

maxBk
j
|g∗

j,k| ≤ e
−ρ2

j , otherwise we call it “bad”. Recall from Theorem 4.1 (and a

simple union bound) that P{Jj,i is bad} ≤ C exp[−e
ρ2

j ].
Set pj = C exp[−e

ρ2
j ] as in the last line. Denote by bj the number of Jj,i at

level j which are not good. By a simple large deviation bound, we have, for any
0 < xj < 1,

P
(
bj > xj · 4j−1) ≤ exp

(−4j−1Ij

)
,(4)

where Ij = xj ln xj

pj
+ (1 − xj ) ln 1−xj

1−pj
(for reference, see [6] Theorem 2.1.10).

We set xj = 1/4N−j+1, whereas recall that pj = C exp(−e
ρ2

j ), and

ρj = θ log
(
L/2j ) = ρN + (N − j)θ.

Further, θ log 1
2λ

≤ ρN ≤ θ log 1
λ

(recall that N = �logλL�). Combining all these
facts, we have

−xj lnpj =
[
exp

(
θ2

(
1

θ
ρN + (N − j)

)2)
− lnC

]/
4N−j+1.

By choosing θ larger than and λ smaller than certain absolute constants, we can
make the numerator of the above expression ≥ 2θ42(N−j+1) for all N ≥ 1 and
1 ≤ j ≤ N . Since |xj | ≤ 1/4 for each 1 ≤ j ≤ N , we have |xj lnxj | ≤ 1

4 ln 4. Also,
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for θ bigger than and λ smaller than some absolute constants, we have c1 ≤ |(1 −
xj ) ln 1−xj

1−pj
| ≤ c2 ∀j ≤ N where c1 and c2 are two positive constants. The upshot

of all this is that by choosing θ larger than a constant we can make Ij ≥ θ4N−j+1

for all j , where we recall that Ij = xj ln xj

pj
+ (1 − xj ) ln 1−xj

1−pj
.

Hence, we have

P
(
bj > xj · 4j−1) ≤ exp

(−θ4j−14N−j+1) = exp
(−θ4N ) ≤ exp

(−θλ2L2)
.

We denote by � the event {bj ≥ xj · 4j for some j ≤ N}. By a union bound
over 1 ≤ j ≤ N , we have P(�) ≤ N exp(−θλ2L2) ≤ exp(−c2(θ)L2) when θ is
large enough, depending only on λ. Here, we recall again that N = �logλL�.

We call Gi
N to be “good” if each summand g∗

k,n(k,i) in G∗
i = ∑N

k=1 g∗
k,n(k,i)

belongs to good J’s. If Gi
N is not good then we call it “bad”. Now, each bad J at

level j gives rise to 4N−j+1 bad Gi
N ’s at level N . Outside the event �, there are

at most xj 4j−1 bad J’s at level j , leading to xj 4N bad G∗
i ’s. But

∑N
j=1 xj < 1/2,

hence except with probability ≤ exp(−c2(θ)L2), we have ≥ 1
24N ≥ 1

2λ2L2 good
G∗

i ’s. For any good G∗
i , we have, for θ larger than and λ smaller than absolute

constants,

supBi
N

∣∣G∗
i

∣∣ ≤
N∑

k=1

sup
B

n(k,i)
k

∣∣g∗
k,n(k,i)

∣∣ ≤
N∑

k=1

e−ρ2
k ≤ 2e−ρ2

N ≤ e−5θ2
.

�

For the specific scenario under our consideration, we would require a result sim-
ilar to Proposition 4.3, which states that with high probability, a positive fraction
of the constituent squares are good for a general set (which is not necessarily a
box). We state this formally as the following.

PROPOSITION 4.4. Let γ be a fixed positive number and � ⊂ BN be a set of
the form

⋃
i∈� Bi

N , where � ⊂ {1, . . . ,4N } with |�| ≥ γL (here N = log�λL� as
before). Then the functions f ∗

i and G∗
i as constructed in Proposition 4.3 are such

that, with probability ≥ 1 − exp(−c(θ, γ )L) for some positive quantity c(θ, γ ),
the functions G∗

i satisfy

supBi
N

∣∣G∗
i

∣∣ ≤ e−5θ2

for at least 1
2γL of the sets {Bi

N : i ∈ �}. The quantity c(θ, γ ) → ∞ as θ → ∞
for fixed γ .

Remark. Note that the statement of the proposition holds no matter where the
starting set B0 (and hence the final set BN ) is located in R

2. In particular, it works
for any translate of BN . The statement also holds when we restrict to subsets of
Bi

N ’s, for example, any collection of standard squares that are in ϒN .
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PROOF. We refer to the proof of Proposition 4.3 for the construction of the
tree T . The connected components of � correspond to some subset of the leaves
of T . We say that a leaf in T is in � if it corresponds to one such component. Such
leaves, after being connected to the root, define a subtree of T . At each level j of
the tree, we would like to consider the Jj,i ’s which pertain to this subtree (for a
definition of Jj,i look at the proof of Proposition 4.3). Define

Nj := {
Jj,i : ∃k with gj,k ∈ Jj,i such that the vertex Bk

j ∈
T is connected to a leaf in �

}
.

Let Nj = |Nj |.
As in the proof of Proposition 4.3, recall that pj = C exp[−e

ρ2
j ], where ρj =

θ logL/2j and C is as in Theorem 4.1. Set xj = θ4N−j+1/(− lnpj ) and Ij =
xj ln xj

pj
+ (1 − xj ) ln 1−xj

1−pj
. As before, observe that the dominant term in Ij is

−xj lnpj , and hence Ij ≥ C′θ4N−j+1, for some positive number C′. We call Jj,i

to be “good” if each gj,k ∈ Jj,i satisfies maxBk
j
|g∗

j,k| ≤ e
−ρ2

j , otherwise we call it

“bad”. Recall from Theorem 4.1 (and a simple union bound) that P{Jj,i is bad} ≤
C exp[−e

ρ2
j ]. Denote by bj the number of Jj,i at level j which are not good. By a

large deviation bound, we have

P(bj > xjNj ) ≤ exp(−NjIj ).(5)

Clearly, Nj ≥ 1 for each j , and Nj is non-decreasing in j . Note that NN is
the number of leaves of T which are in �, and hence NN ≥ γL ≥ c(γ )4(1/2)N .
Notice that Nj ≥ Nj+1/4. Hence, we have Nj ≥ NN/4N−j ≥ c(γ )4j−(1/2)N . So,
by summing equation (5), we see that

P
(
bj > xjNj for some j ∈ {1, . . . ,N})

≤
N∑

j=1

exp(−NjIj )

≤
�(1/2)N�∑

j=1

exp(−Ij ) +
N∑

j=�(1/2)N�
exp

(−c(γ )Ij 4j−(1/2)N )
,

where we have used the inequality Nj ≥ 1 for j ≤ �1
2N� and Nj ≥ c(γ )4j−(1/2)N

for j ≥ �1
2N�. But exp(−c(γ )Ij 4j−(1/2)N ) ≤ exp(−c(γ )θ4(1/2)N+1) ≤

exp(−c(γ, θ)L). For j ≤ �N/2�, we have Ij ≥ Cθ4N−j+1 ≥ C′θ4N/2 ≥ C′′θL.
Therefore,

P
(
bj > xjNj for some j ∈ {1, . . . ,N}) ≤ exp

(−c1(θ, γ )L
)
.

Therefore, except on an event � with probability ≤ exp(−c1(θ, γ )L), we have
bj ≤ xjNj ∀j . As before, we call Gi

N to be “good” if each summand g∗
k,n(k,i) in
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G∗
i = ∑N

k=1 g∗
k,n(k,i) belongs to good J’s. If Gi

N is not good, then we call it “bad”.

Now, each bad J at level j gives rise to 4N−j+1 bad Gi
N ’s at level N . Outside

the event �, there are at most xjNj bad J’s at level j , leading to xjNj 4N−j+1

bad G∗
i ’s. Observe that, as N − j increases, xj decreases super-exponentially in

N − j . Moreover, xN = −(lnpN)−1 can be made arbitrarily small by choose λ

to be appropriately small. Hence,
∑N

j=1 xj 4N−j+1 = ∑N
j=1 −(lnpj )

−1 < 1/2 (for
small enough λ). Also recall that Nj ≤ NN for each j . Thus, outside the event
�, the number of bad Gi

N ’s is at most
∑N

j=1 xjNj 4N−j+1 ≤ 1
2NN . Hence, except

with probability ≤ exp(−c(θ, γ )L), we have ≥ 1
2NN ≥ 1

2γL good G∗
i ’s. �

4.1.3. Proof of Theorem 1.3. Suppose we have a connected set � of stan-
dard squares of base length θ and consisting of L standard squares. Then
there is a square B of side length Lθ , consisting of L2 standard squares
of base length θ , such that � ⊂ B . Let B0 denote the square with vertices
(0,0), (0,Lθ), (Lθ,0), (Lθ,Lθ). Denote by T [m,n] the translation map on R

2

by the vector (mθ,nθ). Because of the translation invariance of the GAF zero pro-
cess, without loss of generality we can consider B to be the square T [L,L](B0).

Consider the set of translations I := {T [m,n] : 1 ≤ m,n ≤ 2L}. Observe that
each T [m,n] maps standard squares to standard squares (for base length θ ). For
standard squares σ1 ∈ B0 and σ2 ∈ B , it is an easy check that there exists an ele-
ment Tσ1,σ2 of I such that Tσ1,σ2(σ1) = σ2. Moreover, since this equation uniquely
determines Tσ1,σ2 , there is only one such translation in I .

Let τ be a translation chosen uniformly at random from I . Then P[τ(σ1) =
σ2] = 1/4L2. Now suppose K1 ⊂ B0 such that K1 is a union of |K1| standard
squares in B0. Then P[σ2 ⊂ τ(K1)) = |K1|/4L2. Now suppose K2 ⊂ B such that
K2 is a union of |K2| standard squares. For a set H that is a union of standard
squares (of base length θ ), let S(H) denote the set of constituent standard squares
of H . Then

E
[∣∣τ(K1) ∩ K2

∣∣] = E

[ ∑
i∈S(K2)

1i⊂τ(K1)

]

= ∑
i∈S(K2)

P
(
i ⊂ τ(K1)

) = |K1||K2|/4L2.

Let, as in Section 4.1.1, ϒN be the set of standard squares obtained by perform-
ing the Cantor-type construction on B0. Then, applying the above argument with
K1 = ϒN and K2 = �, we get

E
[∣∣τ(ϒN) ∩ �

∣∣] = |ϒN ||�| ≥ (λL)2 · L/4L2 = λ2L/4.

This implies that there exists T ∈ I such that |T (ϒN) ∩ �| ≥ λ2L/4. Fix such
a T . The set T (ϒN) ∩ � is a union of at least λ2L/4 standard squares, the dis-
tance between any two of which is at least ≥ 2Aθ log(1/2λ), and which satisfy a
functional decomposition on the lines of Proposition 4.4.
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Recall from Proposition 4.4 that on T (ϒN)∩�, we have that except on an event
� of probability < e−c(θ,λ2/4)L, we have at least 1

2 of the constituent standard
squares of T (ϒN) ∩ � to be good (where, in the Cantor-type construction, a stan-
dard square S ⊂ Bi

N is good if supBi
N
|G∗

i | ≤ e−5θ2
). Let �i,1 ≤ i ≤ L denote the

standard squares in �. Call a standard square to be “empty” or “full” according as
it contains respectively 0 or ≥ k points in F (recall from Section 2 that F denotes
the GAF zero process). Call � “empty” or “full” if all standard squares in � are
empty or full, respectively. In what follows, we treat the state “empty”, but in all
steps it can be replaced by the state “full”.

We observe that

{� is empty} ⊂ � ∪ {Some subset of
⌊
λ2L/8

⌋
standard squares in �,

are all good and empty}.
We have, via a union bound,

P(� is empty) ≤ P(�) + ∑
F

P

( ⋂
{�ik

}∈S
{�ik is empty and good}

)
,

where the last summation is over F which is the collection of all possible subsets
{�ik } of �λ2L/8� standard squares in T (ϒN) ∩ �. Since there are at most 2L sub-
sets of standard squares in �, it suffices to show that for any fixed {�ik } ∈ F, we
have for large enough θ

P

( ⋂
{�ik

}∈F
{�ik is empty and good}

)
≤ exp

(−c1(θ)L
)
,(6)

P

( ⋂
{�ik

}∈F
{�ik is full and good}

)
≤ exp

(−c2(θ, k)L
)
,(7)

where c1(θ) → ∞ as θ → ∞ and limθ→∞ limk→∞ c2(θ, k) = ∞.
Let Aik denote the event that {�ik is empty and good}. Recall that �ik being

empty implies that f ∗|�ik
does not have any zeros, and �ik being good implies

that max�ik
|G∗

ik
| ≤ e−5θ2

, where G∗
ik

are the cumulative errors in the cantor set
construction, as estimated in Section 4.1.2.

Define A′
ik

to be the event that f ∗
ik
|�ik

does not have any zeros. Here, f ∗
ik

are
the final independent normalised GAFs obtained in Proposition 4.4. Clearly, the
events A′

ik
are independent.

We will show that Aik ⊂ A′
ik

∪�ik , where the �ik ’s are independent events with
P(�ik ) < e−cθ . To this end, we note that on �ik , we have f ∗ = f ∗

ik
+ G∗

ik
, and also

max�ik
|G∗

ik
| ≤ e−5θ2

. Applying Corollary 4.6 to the square �ik , we deduce that

except for a bad event �ik of probability ≤ e−cθ , we have |f ∗
ik
| > e−5θ2

on ∂�ik .
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Hence, the equation f ∗ = f ∗
ik

+ G∗
ik

on �ik along with Rouche’s theorem implies
that f ∗ and f ∗

ik
have the same number of zeros in �ik . So, on Aik ∩�c

ik
we have that

A′
ik

holds, in other words Aik ⊂ A′
ik

∪ �ik , as desired. The �ik ’s are independent
since �ik is defined in terms of f ∗

ik
which are independent normalised GAFs.

Therefore, we can write, for a fixed {�ik } ∈ S

P

(⋂
k

Aik

)
≤ P

(⋂
k

(
A′

ik
∪ �ik

)) = ∏
k

P
(
A′

ik
∪ �ik

)
.

But it is not hard to see that for the state “empty” we have P(A′
ik

∪�ik) ≤ P(A′
ik
)+

P(�ik ) ≤ e−c(θ) where c(θ) → ∞ as θ → ∞. This is because, P(�ik ) ≤ e−cθ by
definition of �ik as in the previous paragraph. On the other hand, by the translation
invariance of the zero set of f ∗, we have

P
[
A′

ik

] = P
[
f ∗ has no zeroes in a box of size θ with centre at the origin

]
.

The probability on the right-hand side of the above equation clearly decreases with
increasing θ and converges to 0 as θ → ∞. Combining these two observations, we
deduce the decay of P(A′

ik
∪ �ik) to 0 as θ → ∞.

It can also be seen that if we consider the state “full” instead of “empty” (and
define Aik and A′

ik
accordingly), then we have P(A′

ik
) ≤ e−c(θ,k) where c(θ, k) →

∞ as k → ∞ for fixed θ , and P(�ik ) ≤ e−cθ . To see the upper bound on P(A′
ik
),

notice that by the translation invariance of the zero set of f ∗, we have

P
[
A′

ik

] = P
[
f ∗ has no zeroes in a box of size θ with centre at the origin

]
.

For fixed θ , this probability clearly decreases to zero as k → ∞ because a.s. f is
an entire function whose zero set does not have any accumulation point. Therefore,
we have P(A′

ik
∪ �ik) ≤ exp(−c2(θ, k)) where limθ→∞ limk→∞ c2(θ, k) = ∞.

This proves equations (6) and (7), and hence completes the proof of the theorem.

4.1.4. Lower bound on the size of f ∗. Our goal in this section is to establish
that with large probability, the size of a normalised GAF on the perimeter of a
circle (or a square) cannot be too small. Of course, there is a trade-off between
the “largeness” of the probability and “smallness” of the GAF, depending on the
radius of the circle or the side length of the square. Such estimates, along with
Rouche’s theorem, would be useful in replacing f ∗|�ik

with the independent f ∗
ik

on “good” �ik ’s in Section 4.1.3.
To this end, we will use Lemma 8 from [22], which we quote here the following.

PROPOSITION 4.5 (Lemma 8, [22]). Let γ be a curve of length at most r ≥ 1.
Then, for any positive ε ≤ 1/4,

P

{
min
z∈γ

∣∣f ∗(z)
∣∣ < ε

}
< 100rε

√
log

1

ε
.

Here, f ∗(z) = e−1/2|z|2f (z) where f is the standard planar GAF.
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For our purposes, the precise form in which we will use this result is given by
the following.

COROLLARY 4.6. Let us consider a square B of side length S > 1, and let
ν > 1. Then we have

P
(∣∣f ∗(z)

∣∣ ≤ e−νS2
for some z ∈ ∂B

) ≤ e−C(ν)S(8)

for some constant C(ν) > 0. Here, f ∗(z) = e−(1/2)|z|2f (z) where f is the standard
planar GAF.

PROOF. We apply Proposition 4.5 with r = S and ε = e−νS2
, and obtain an

upper bound of 100
√

νS2e−νS2
. We then find C(ν) > 0 such that for all ν > 1 and

S > 1 we have

100
√

νS2e−νS2 ≤ e−C(ν)S. �

4.2. Proof of Theorem 1.2: Existence of critical radius. We simply observe
that Theorem 1.3 proves that the criteria outlined in Proposition 3.3 are valid for F ,
thereby establishing that a critical radius exists for F .

5. Uniqueness of infinite cluster. In this section, we will prove that in the su-
percritical regime for the Boolean percolation models (G, r) and (F, r), a.s. there
is exactly one infinite cluster.

5.1. An approach to uniqueness. We will first describe a proposition which
has important implications regarding such uniqueness for a translation invariant
point process �.

PROPOSITION 5.1. Let r > rc for the Boolean percolation model X(�, r),
where � is a translation invariant point process on R

2, and 0 < rc < ∞ is the
critical radius. For R > 0, let BR denote the set {x ∈ R

2 : ‖x‖∞ ≤ R}. Define the
event

E(R) = {There is an infinite cluster C′ with the property that C′ ∩ (BR)c contains

at least three infinite clusters, any two of which are connected via a path

lying inside BR , and such that there is at least one point from

� in C′ ∩ BR}.
Then P(E(R)) = 0.

The proof of the above proposition is on the lines of the proof of Theorem 3.6
in [17]. The event E(R) from Proposition 5.1 corresponds to the event E0(N)

there. For the sake of completeness, we provide an outline of the proof (from [17])
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here. The central ideas of the proof can be traced back to [4] and [8] in the discrete
setting and [16] in the continuum.

PROOF. Let, if possible, the event E(R) occur with positive probability η. On
the event E(R) we call the components of C′ ∩ (BR)c as “branches”. Let K be a
large constant, whose value is to be decided later. Given K , for every M > 1 we
define the event

E(R,M) := E(R) ∩ {
Each branch of C′ ∩ (BR)c contain at least K

points of � in BMR \ BR

}
.

We choose M so large that the event E(R,M) has probability at least 1
2η. The

events Ez(R) and Ez(R,M) are defined by translating E(R) and E(R,M), re-
spectively, by the vector z ∈ R

2. For x ∈ R
2, let Bx

R denote the box x + BR . For
L > 0, define JL to be the (random) subset of Z2 given by

JL := {
z ∈ Z

2 : B2Rz
MR ⊂ BLR,E2Rz(R,M) occurs

}
.

Then, for large enough L (depending on R and M), we have E[|JL|] ≥ 1
4ηL2 (due

to translation invariance). Also observe that if z �= z′ are elements of Z2, then the
interiors of B2Rz

MR and B2Rz′
MR are disjoint.

For z ∈ JL, pick any infinite cluster C′ such that C′ ∩ (B2Rz
R )c has at least three

infinite clusters, any two of which are connected via a path lying inside BMR .
Group these clusters arbitrarily into three disjoint collections. Let C

(1)
z ,C

(2)
z and

C
(3)
z to be the points of � ∩ B2Rz

MR in these three collections, respectively. It is

clear that each C
(1)
z is contained in B2Rz

MR , and no two C
(i)
z ’s intersect, and each

one of them contains at least K points. Identify each z ∈ JL with an arbitrar-
ily chosen point of � lying in B2Rz

R [there exists one such point by the defini-
tion of E2Rz(R,M)]. Such identification enables us to invoke the combinatorial
Lemma 3.2 from [17] (quoted below as Lemma 5.2). It can be checked that if the
points of � in B2Rz

R and those in B2Rz′
R are in different components of C′ ∩ BLR

(for some infinite cluster C′), then (i) of part (b) in Lemma 5.2 holds. Otherwise,
(ii) of part (b) in the same lemma is satisfied. The conclusion of Lemma 3.2, com-
bined with the inequality E[|JL|] ≥ 1

4ηL2, then gives us

E
[|� ∩ BLR|] ≥ K

(
η

4
L2 + 2

)
.

But if μ is the first intensity of the translation invariant point process �, then
E[|� ∩ BLR|] = μ(2LR)2. This gives us the inequality

K

(
η

4
L2 + 2

)
≤ μ(2LR)2.

But for K large enough, this gives us a contradiction. �



CONTINUUM PERCOLATION 3379

We now complete this discussion by quoting Lemma 3.2 from [17] (for a more
general version see Lemma 2 in [8]).

LEMMA 5.2. Let S be a set and R be a non-empty finite subset of S. Suppose
that:

(a) For all r ∈ R, we have a family (C
(1)
r ,C

(2)
r ,C

(3)
r ) of disjoint non-empty

subsets (which we shall call branches of) S, not containing r , and |C(i)
r | ≥ K for

all i and r .
(b) For all r, r ′ ∈ R, one of the following events occurs, writing Cr for⋃3
i=1 C

(i)
r :

(i) ({r} ∪ Cr) ∩ ({r ′} ∪ Cr ′) = φ,
(ii) there exist i, j such that C

(i)
r ⊃ {r ′} ∪ (Cr ′ \ C

(j)

r ′ ) and C
(j)

r ′ ⊃ {r} ∪ (Cr \
C

(i)
r ).

Then |S| ≥ K(|R| + 2).

A general approach to a proof that a.s. there cannot be infinitely many infinite
clusters is to show that such an event would imply E(R) would occur for some R.

5.2. Uniqueness of infinite clusters: Ginibre ensemble. In this section, we
prove that in X(G, r) with r > rc, we have �(r) = 1 a.s.

To this end, we would need to have an understanding of the conditional distri-
bution of the points of G inside a domain given the points outside. This has been
obtained in [9] Theorems 1.1 and 1.2. We state these results below.

Let D be a bounded open set in C whose boundary has zero Lebesgue measure,
and let Sin and Sout denote the Polish spaces of locally finite point configurations
on D and Dc, respectively. Gin and Gout, respectively, denote the point processes
obtained by restricting G to D and Dc.

THEOREM 5.3. For the Ginibre ensemble, there is a measurable function N :
Sout →N∪ {0} such that a.s.

Number of points in Gin = N(Gout).

Let the points of Gin, taken in uniform random order, be denoted by the vector ζ .
Let ρ(ϒout, ·) denote the conditional measure of ζ given Gout = ϒout. Since a.s. the
length of ζ equals N(Gout), we can as well assume that each measure ρ(ϒout, ·) is
supported on DN(ϒout).

THEOREM 5.4. For the Ginibre ensemble, P[Gout]-a.s. ρ(Gout, ·) and the
Lebesgue measure L on DN(Gout) are mutually absolutely continuous.
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We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let r be such that �(r) > 0 a.s. In what follows,
we will repeatedly use the fact that if there are two points x, y ∈ R

2 at Euclidean
distance d , then there can be connected to each other by (1 + �d/2r�) overlap-
ping open disks of radius r , such that the centres of no two disks are exactly at a
distance 2r .

We will first deal with the case where a.s. �(r) > 1 but finite. A similar argu-
ment will show that if 3 ≤ �(r) ≤ ∞ then the event E(R) as in Proposition 5.1
occurs, with a suitable choice of R. This would rule out the possibility �(r) = ∞,
and complete the proof.

We argue by contradiction, and let if possible 1 < �(r) < ∞ a.s. Let D1 ⊂ D2
be two concentric open disks centred at the origin and respectively having radii
R1 < R2. Recall the definition of the underlying graph g from Section 1.2. Let E
be the event that:

(i) There are two infinite clusters C1 and C2 in the underlying graph g such that
C1 ∩D1 �= ∅ �= C2 ∩D1 (in the sense that there is at least one vertex from each Ci

in D1).
(ii) There exists a finite cluster C3 of vertices of g which has ≥ 1 + �2R1/r�

vertices such that C3 ⊂ Int(D2 \D1), where Int(A) is the interior of the set A.

It is not hard to see that the event E depends on the parameters R1 and R2, and
when R1 and R2 are large enough, we have P(E) > 0. Fix such disks D1 and D2.
We denote the configuration of points outside D2 by ω and those inside D2 by ζ .
Let the number of points in D2 be denoted by N(ω). Any two points of � inside
D1 are at most at a Euclidean distance of 2R1, and hence can be connected by at
most (1 + �R1/r�) open disks of radius r such that the centres of no two disks
are exactly at a distance 2r . We define an event E ′ as follows: corresponding to
every configuration (ζ,ω) in E , we define a new configuration (ζ ′,ω) where ζ ′ is
obtained by moving (1 + �R1/r�) points of C3 to the interior of D1 and placing
them such that in the new underlying graph g′ (for definition see Section 1.2) the
clusters C1 and C2 become connected with each other.

Similar to the observations made in Section 1.2, we can move each point in ζ ′ in
a sufficiently small disk around itself, resulting in new configurations (ζ ′′,ω) such
that the connectivity properties of g′ as well as the number of points in D2 remain
unaltered. The event E ′ consists of all such configurations (ζ ′′,ω) as (ζ,ω) varies
over all configurations in E . Observe that for each ω, the set of configurations {ζ ′′ :
(ζ ′′,ω) ∈ E ′} constitutes an open subset of DN(ω), when considered as a vector in
the usual way. Since P(E) > 0, by Theorem 5.4 applied to the domain D2, we also
have P(E ′) > 0. But on E ′, there is one less infinite cluster than on E . But �(r)

being a translation invariant random variable, and G being ergodic under the action
of translations, �(r) must be a.s. constant. This gives us the desired contradiction,
and proves that P(1 < �(r) < ∞) = 0.
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Had it been the case �(r) ≥ 3 a.s., observe that an argument analogous to the
previous paragraph can be carried through with three instead of two infinite clus-
ters (C1 and C2 above). The end result would be that with positive probability we
can connect all the three clusters with each other. If �(r) = ∞ a.s. then we carry
out the above argument with three of the infinite clusters, and observe that the event
E(R) as in Proposition 5.1 occurs with a set BR where R > R2, on the modified
event analogous to E ′ above. This proves that P(�(r) = ∞) = 0. �

Denote by T [m,n] the translation map on R
2 by the vector (mθ,nθ).

5.3. Uniqueness of infinite clusters: Gaussian zeroes. In this section, we prove
that in X(F, r) with r > rc, we have �(r) = 1 a.s.

To this end, we would need to have an understanding of the conditional dis-
tribution of the points of F inside a domain given the points outside. This has
been obtained in [9] Theorems 1.3 and 1.4. Fin and Fout, respectively, denote the
point processes obtained by restricting F to D and Dc respectively. We state these
results below. Some of the notation is from Section 5.2.

THEOREM 5.5. For the GAF zero ensemble:

(i) There is a measurable function N : Sout →N∪ {0} such that a.s.

Number of points in Fin = N(Fout).

(ii) There is a measurable function S : Sout →C such that a.s.

Sum of the points in Fin = S(Fout).

Define the set

�S(Fout) :=
{
ζ ∈ DN(Fout) :

N(Fout)∑
j=1

ζj = S(Fout)

}
,

where ζ = (ζ1, . . . , ζN(Fout)).
Since a.s. the length of ζ equals N(Fout), we can as well assume that each mea-

sure ρ(ϒout, ·) gives us the distribution of a random vector in DN(ϒout) supported
on �S(ϒout).

THEOREM 5.6. For the GAF zero ensemble, P[Fout]-a.s. ρ(Fout, ·) and the
Lebesgue measure L� on �S(Fout) are mutually absolutely continuous.

We are now ready to prove Theorem 1.2.

PROOF OF THEOREM 1.2: UNIQUENESS OF INFINITE CLUSTER. The proof
follows the contour of Section 5.2, with extended arguments to take care of the
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fact that for F there are two conserved quantities for local perturbations of the
zeros inside a disk: their number and their sum, unlike G where only the number
of points is conserved.

We first show that it cannot be true that a.s. 1 < �(r) < ∞. We argue by con-
tradiction, and let if possible 1 < �(r) < ∞ a.s. We will define events E and E ′ in
analogy to the proof of Theorem 1.1 such that on E ′ there one less infinite cluster
than on E and P(E) > 0 and P(E ′) > 0.

Let D1,D2 and D3 be two concentric open disks centred at the origin and re-
spectively having radii R1 < R2 < R3.

Let E be the event that:

(i) C1 ∩ D1 �= ∅ �= C2 ∩ D1 for two infinite clusters C1 and C2 (in the sense
that there is at least one vertex from each Ci inside D1),

(ii) ∃ a cluster C3 of vertices of the underlying graph g which has ≥ n = 1 +
�R1/r� vertices such that C3 ⊂ Int(D2 \D1),

(iii) ∃ a cluster C4 ⊂ Int(D3 \ D2) with ≥ n′ = �2R2n� vertices [where n is as
in (ii) above] such that

Euclidean dist(vertices in C4,vertices in g \ C4) > 10

(recall that g denotes the underlying graph; for the definition see Section 1.2).

It is not hard to see that P(E) > 0 when Ri, i = 1,2,3 are large enough. Fix
such disks Di , i = 1,2,3. We denote the configuration of points of F outside D3
by ω and those inside D3 by ζ . Let the number of points in D3 be denoted by N(ω)

and let their sum be S(ω).
We start with a configuration (ζ,ω) in E . With the vertices inside D2, we first

perform the same operations as in the proof of Theorem 1.1. However, in F , un-
like in G, we need to further ensure that the sum of the points inside D3 remain
unchanged at S(ω) in order to stay absolutely continuous. We note that due to the
operations already performed on the points inside D2, the sum of the points inside
D3 has changed by at most 2R2n, since ≤ n points have been moved and each of
them can move by at most 2R2 which is the diameter of D2. We observe that we
can compensate for this by translating each point in C4 by an distance ≤ 1 in an
appropriate direction. Due to the separation condition in (iii) in the definition of E ,
this does not change the connectivity properties of any vertex in g \ C4.

By the observations made in Section 1.2, we can move each point in ζ ′ in a
sufficiently small disk around itself, resulting in new configurations (ζ ′′,ω) such
that the connectivity properties of g′ as well as the number of the points in D3
remain unaltered. The event E ′ consists of all such configurations (ζ ′′,ω) as (ζ,ω)

varies over all configurations in E . Observe that for each ω, the set of configura-
tions {ζ ′′ : (ζ ′′,ω) ∈ E ′} constitutes an open subset of DN(ω)

3 , when considered as
a vector in the usual way. Hence, its intersection with �S(ω) is an open subset of
�S(ω). Since P(E) > 0, by Theorem 5.6 applied to the domain D3, we also have
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P(E ′) > 0. But in E ′, there is one less infinite cluster than in E . But �(r) being
a translation invariant random variable, and F being ergodic under the action of
translations, �(r) must be a.s. constant. This gives us the desired contradiction,
and proves that P(1 < �(r) < ∞) = 0.

We take care of the case �(r) = ∞ as we did in the proof of Theorem 1.1.
Had it been the case �(r) ≥ 3 a.s., an argument analogous to the previous para-
graph can be carried through with three instead of two infinite clusters (C1 and
C2 above), with the end result that with positive probability we can connect all
the three infinite clusters with each other. If �(r) = ∞ a.s. then we carry out the
above argument with three of the infinite clusters, and observe that the event E(R)

in Proposition 5.1 occurs on the modified event (analogous to E ′ above) with a set
BR where R > R3. This proves that P(�(r) = ∞) = 0. �
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