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INTERACTING PARTIALLY DIRECTED SELF AVOIDING WALK.
FROM PHASE TRANSITION TO THE GEOMETRY OF THE

COLLAPSED PHASE

BY PHILIPPE CARMONA∗, GIA BAO NGUYEN∗ AND NICOLAS PÉTRÉLIS†

Université de Nantes∗ and Universidad de Chile†

In this paper, we investigate a model for a 1 + 1 dimensional self-
interacting and partially directed self-avoiding walk, usually referred to by
the acronym IPDSAW. The interaction intensity and the free energy of the
system are denoted by β and f , respectively. The IPDSAW is known to un-
dergo a collapse transition at βc. We provide the precise asymptotic of the free
energy close to criticality, that is, we show that f (βc − ε) ∼ γ ε3/2 where γ

is computed explicitly and interpreted in terms of an associated continuous
model. We also establish some path properties of the random walk inside the
collapsed phase (β > βc). We prove that the geometric conformation adopted
by the polymer is made of a succession of long vertical stretches that attract
each other to form a unique macroscopic bead and we establish the conver-
gence of the region occupied by the path properly rescaled toward a deter-
ministic Wulff shape.

1. Introduction.

1.1. Model and physical insight. A solvent is said to be “poor” for a given ho-
mopolymer if the chemical affinity between the solvent and the monomers consti-
tuting the homopolymer is low. When dipped in such a solvent, the homopolymer
folds itself up to exclude the solvent and, therefore, adopts a collapsed confor-
mation that looks like a compact ball. If the quality of the solvent improves, the
chemical affinity raises until it reaches a threshold above which the polymer ex-
tends itself in such a way that a positive fraction of its monomers are in contact
with the solvent.

The interacting partially directed self-avoiding walk (IPDSAW) was introduced
in Zwanzig and Lauritzen (1968) as a partially directed model of an homopoly-
mer in a poor solvent. The spatial configurations of the polymer of length L (L
monomers) are modeled by the trajectories of a self-avoiding random walk on Z

2

that only takes unitary steps upward, downward and to the right. Thus, the set of
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FIG. 1. Example of a trajectory with 12 self-touchings in light grey.

allowed L-step paths is

WL = {
w = (wi)

L
i=0 ∈ (N0 ×Z)L+1 : w0 = 0,wL − wL−1= →,

wi+1 − wi ∈ {↑,↓,→} ∀0 ≤ i < L − 1,

wi 
= wj ∀i < j
}
.

Note that the choice of w ending with an horizontal step is made for convenience
only. We consider two different a priori laws on WL, uniform and nonuniform.

(1) The uniform model: all L-step paths have the same probability, that is,

PL(w) = 1

|WL| , w ∈ WL.(1.1)

(2) The nonuniform model: the L-step paths have the following law:

• At the origin or after an horizontal step: the walker must step north, south or
east with equal probability 1/3.

• After a vertical step north (resp. south): the walker must step north (resp. south)
or east with probability 1/2.

Henceforth, we will focus on the uniform model since all our results can be
adapted straightforwardly to the nonuniform model modulo a shift in the critical
point βc and in the value of the constant aβ defined before the shape theorem.

The monomer-solvent interactions are not taken into account directly in the
IPDSAW. We rather consider that, when dipped in a poor solvent, the monomers
try to exclude the solvent and, therefore, attract one another. For this reason, any
nonconsecutive vertices of the walk though adjacent on the lattice are called self-
touchings (see Figure 1) and the interactions between monomers are taken into ac-
count by assigning an energetic reward β ≥ 0 to the polymer for each self-touching
(consequently, a lower chemical affinity corresponds to a larger β). Thus, we as-
sociate with every random walk trajectory w = (wi)

L
i=0 ∈ WL the Hamiltonian

HL(w) :=
L∑

i,j=0
i<j−1

1{‖wi−wj‖=1},(1.2)
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which allows to define the law PL,β of the polymer in size L as

PL,β(w) = eβHL,β(w)

ZL,β

PL(w),(1.3)

where ZL,β is the normalizing constant known as the partition function of the
system. Henceforth, we remove the term 1/|WL| from the definition of PL [re-
call (1.1)] and from the computation of the partition function ZL,β . Although PL

is not a probability law anymore, the latter simplification is harmless, because it
does not change the polymer law PL,β and because it only induces a constant shift
of the free energy f (β) introduced in Section 1.2 below.

1.1.1. From random walk paths to vertical stretches. It is easy to see that any
path in WL can be decomposed into a collection of vertical stretches separated by
one horizontal step. Thus, we set �L :=⋃L

N=1 LN,L, where LN,L is the set of all
possible configurations consisting of N vertical stretches that have a total length L,
that is,

LN,L =
{
l ∈ Z

N :
N∑

n=1

|ln| + N = L

}
.(1.4)

We build the natural one to one correspondence between �L and WL by associ-
ating with a given l ∈ �L the path of WL that starts at 0, takes |l1| vertical steps
north if l1 > 0 and south if l1 < 0, then takes one horizontal step, then takes |l2|
vertical steps north if l2 > 0 and south if l2 < 0 then takes one horizontal step and
so on... (see Figure 2). The Hamiltonian associated with a given path of WL can
be rewritten in terms of its associated collection of vertical stretches l ∈ �L as

HL(l1, . . . , lN ) =
N−1∑
n=1

(ln ∧̃ ln+1),(1.5)

where

x ∧̃ y =
{ |x| ∧ |y|, if xy < 0,

0, otherwise.
(1.6)

Therefore, the partition function can be rewritten under the form

ZL,β =
L∑

N=1

∑
l∈LN,L

eβ
∑N−1

i=1 (li ∧̃li+1).(1.7)

1.2. Free energy and collapse transition. The sequence {logZL,β}L is super-
additive and the Hamiltonian in (1.2) is obviously bounded from above by βL. As
a consequence, we can define the free energy per step f : (0,∞) →R as

f (β) = lim
L→∞

1

L
logZL,β = sup

L∈N
1

L
logZL,β ≤ β.(1.8)
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FIG. 2. Example of a trajectory with N = 5 vertical stretches and length L = 16.

The collapse transition corresponds to a loss of analyticity of β �→ f (β) at
some critical parameter βc ∈ (0,∞) above which the density of self-touchings
performed by the polymer equals 1. In this collapsed phase, the expression of the
free energy per step is rather simple, that is, β +κ , where κ is the entropic constant
associated to those trajectories in WL whose self-touching density is equal to 1 +
o(1). To achieve such a saturation of its self-touching, the polymer must choose its
configuration among those satisfying two major geometric restrictions, that is,

• the number of horizontal steps is o(L);
• most pairs of consecutive vertical stretches are of opposite directions.

It turns out that an appropriate choice of a trajectory satisfying both restric-
tions above is sufficient to exhibit the collapsed free energy. To that aim, we
pick L ∈ N:

√
L ∈ N and consider the trajectory l∗ ∈ L√

L,L
defined as l∗i =

(−1)i−1(
√

L − 1) for i ∈ {1, . . . ,
√

L}. By computing the contribution of l∗ to
ZL,β one immediately obtain that,1 for β > 0,

f (β) ≥ β.(1.9)

At this stage, we can define the excess free energy f̃ (β) := f (β) − β , which is
always nonnegative by (1.9). We define the critical parameter

βc := inf
{
β ≥ 0 : f̃ (β) = 0

}
,(1.10)

and the convexity of β �→ f̃ (β) allows us to partition [0,∞) into a collapsed phase
denoted by C and an extended phase denoted by E , that is,

C := {
β : f̃ (β) = 0

}= {β : β ≥ βc}(1.11)

and

E := {
β : f̃ (β) > 0

}= {β : β < βc}.(1.12)

1In a previous paper, Nguyen and Pétrélis (2013) the authors obtained the lower bound of f (β) ≥
β − log(1 + √

2). The difference comes from the omission of the normalizing factor 1/|WL|.
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1.3. Main results. The main results of this paper are Theorems A, B, C, D, E
and F. Theorems A and B are dedicated to the investigation of the phase transition
while the path properties of the polymer inside its collapsed phase are studied with
Theorems C, D, E and F.

Before stating the theorems, we need to introduce Pβ the law of an auxiliary
symmetric random walk V := (Vn)n∈N with geometric increments, that is, V0 = 0,
Vn = ∑n

i=1 Ui for n ∈ N and (Ui)i∈N is an i.i.d. sequence under the law Pβ , with
distribution

Pβ(U1 = k) = e−(β/2)|k|

cβ

∀k ∈ Z with cβ := 1 + e−β/2

1 − e−β/2 .(1.13)

Then, for δ ≥ 0 we set

hβ(δ) := lim
N→∞

1

N
log Eβ

(
e−δAN(V )),(1.14)

where AN(V ) := ∑N
i=1 |Vi | gives the geometric area below the V trajectory after

N steps. We will prove in Section 2.2 below that the limit in (1.14) exists and that
δ �→ hβ(δ) is nonpositive, nonincreasing and continuous on [0,∞). We finally
define �(β) an energetic term of crucial importance as

�(β) = cβ

eβ
,(1.15)

and we will see, for instance, in (1.36) below that �(β) penalizes the horizontal
steps when it is smaller than 1 and favors them when it is larger than 1.

1.3.1. A sharper asymptotic of the free energy close to criticality. With Theo-
rem A, we give a new expression of the excess free energy.

THEOREM A (Free energy equation). The excess free energy f̃ (β) is the
unique solution of the equation log(�(β))− δ +hβ(δ) = 0 if such a solution exists
and f̃ (β) = 0 otherwise.

Note that Theorem A and the obvious equality hβ(0) = 0 are sufficient to check
that the critical parameter βc is the unique solution of �(β) = 1. One of the main
interest of Theorem A is that it allows us to use the analytic properties of δ �→
hβ(δ) at 0+ to investigate the regularity of β �→ f̃ (β) at βc.

THEOREM B (Phase transition asymptotics). The phase transition is second
order with critical exponent 3/2 and the first order asymptotic of the excess free
energy at (βc)

− is given by

lim
ε→0+

f̃ (βc − ε)

ε3/2 =
(

ς1

ς2

)3/2

,(1.16)
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where

ς1 = 1 + e−βc/2

1 − e−βc
,(1.17)

and where

ς2 = − lim
T →∞

1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt )= 2−1/3|a′

1|σ 2/3
βc

,(1.18)

with σ 2
β = Eβ(U2

1 ), with a′
1 the smallest zero (in absolute value) of the first deriva-

tive of the Airy function and with (Bs)s∈[0,∞) a standard Brownian motion.

REMARK 1.1. The Laplace transform E(e−s
∫ 1

0 |Bs |ds) for s > 0 was first com-
puted analytically in Kac (1946) and studied by Takács (1993) [see, e.g., the survey
by Janson (2007)].

REMARK 1.2. The critical exponent 3/2 is given by the leading term of the
Taylor expansion of hβ at 0+, that is, hβ(γ ) ∼ −cγ 2/3 (with c > 0). The method
of proof we used consists in cutting the trajectories into blocs of size γ −2/3. This
very method was used in van der Hofstad, den Hollander and König (2003), in di-
mension d = 1, to prove that discrete Domb–Joyce- type models converge toward
continuous Edwards-type models in the weak coupling limit.

REMARK 1.3. The asymptotic hβ(γ ) ∼ −cγ 2/3 is closely related to the inves-
tigation of the so-called pre-wetting phenomenon [see Hryniv and Velenik (2004),
where the scaling exponent is obtained from a renormalization procedure similar
to ours]. The pre-wetting phenomenon is observed when a thermodynamically sta-
ble gas is in contact with a substrate (hard-wall) that has a strong preference for the
liquid phase. In such a situation, a thin layer of liquid may appear that separates
the substrate from the gas. When the temperature T gets closer to the liquid/gas
boiling temperature Tb, the layer of liquid becomes thicker. The liquid-gas inter-
face can therefore be modeled by a random walk trajectory constrained to remain
positive and whose area is penalized via a Gibbs factor δAN(V ) where δ vanishes
as T → Tb. Close to criticality (δ = 0), the correlation length of the system varies
as δ−2/3 which explains the 2/3 exponent of hβ at 0+.

The determination of the precise asymptotics of the free energy close to βc

brings the IPDSAW into a thin class of statistical mechanical models for which the
behavior of the free energy close to criticality is well understood. This is the case,
for instance, for the pinning/wetting model [see Giacomin (2011), Chapter 2]. Per-
turbing such models by adding a weak random component to their interactions is
physically relevant [see Derrida, Hakim and Vannimenus (1992)] and gives rise
to complex mathematical issues [see Alexander and Sidoravicius (2006)]. For the
model of a polymer pinned by a linear interface, the issue of the disorder relevance
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FIG. 3. Example of a trajectory with 3 beads.

on the phase transition was controversial until it was settled recently [see Derrida
et al. (2009) or Giacomin (2011), Chapters 4 and 5, for a survey]. For the IPD-
SAW, a natural way of introducing the disorder would be to assign an energetic
price β + sξi,j to the self-touching between monomers i and j . The mechanism
governing the phase transition being quite different from its counterpart in the pin-
ning model, the investigation of the disorder effect is relevant both mathematically
and physically.

1.3.2. Path properties inside the collapsed phase. The main result of this pa-
per is concerned with the path behavior of the polymer inside its collapsed phase
(β > βc). We divide each trajectory into a succession of beads. Each bead is made
of vertical stretches of strictly positive length and arranged in such a way that two
consecutive stretches have opposite directions (north and south) and are separated
by one horizontal step (see Figure 3). A bead ends when the polymer gives the
same direction to two consecutive vertical stretches or when a zero length stretch
appears, which corresponds to two consecutive horizontal steps. We will prove that
the polymer folds itself up into a unique macroscopic bead and we will identify
its horizontal extension and its asymptotic deterministic shape. To quantify these
results, we need the following notation.

1.3.3. Number of beads. Let l ∈ �L and denote by NL(l) its horizontal ex-
tension, that is, NL(l) is the integer N such that l ∈ LN,L. Pick l ∈ LN,L and
let (uj )

N
j=1 be the sequence of accumulated lengths of the polymer after each

vertical stretch, adding the lengths of the one step horizontal steps, that is uj =
|l1|+ · · ·+ |lj |+j for j ∈ {1, . . . ,N}. For convenience only, set lN+1 = 0. Set also
x0 = 0 and for j ∈ N such that xj−1 < N , set xj = inf{i ≥ xj−1 + 1: li ∧̃ li+1 = 0}
(see Figure 4). Finally, let nL(l) be the index of the last xj that is well defined, that
is, xnL(l) = N . Thus, we can decompose any trajectory l ∈ �L into a succession of
nL(l) beads, each of them being associated with a subinterval of {1, . . . ,L} written
as

Ij = {uxj−1 + 1, . . . , uxj
} for j ∈ {

1, . . . , nL(l)
}

(1.19)

and, therefore, we can partition {1, . . . ,L} into
⋃nL(l)

j=1 Ij . At this stage, we can
define the largest bead of a trajectory l ∈ �L as Ijmax with

jmax = arg max
{|Ij |, j ∈ {

1, . . . , nL(l)
}}

.(1.20)
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FIG. 4. An example of a trajectory l = (li )
20
i=1 with 6 beads is drawn on the upper picture. The

auxiliary random walk V associated with l, that is, (Vi)
21
i=0 = (T20)−1(l) is drawn on the lower

picture.

With Theorem C below, we claim that, in the collapsed phase, there is only one
macroscopic bead.

THEOREM C (One bead theorem). For β > βc, there exists a c > 0 such that

lim
L→∞PL,β

(|Ijmax | ≥ L − c(logL)4)= 1.(1.21)

REMARK 1.4. Dividing trajectories into beads does not give rise to an under-
lying renewal process as, for instance, for the homogeneous pinning model when
the trajectory is divided into excursions away from the origin [see, e.g., Giacomin
(2007), Chapter 2]. The fact that, after a bead of length 1 the first stretch of the fol-
lowing bead can be either positive or negative whereas its orientation is constrained
when the former bead is strictly larger than 1 creates a dependency between con-
secutive beads that prevents us from rewriting the partition function with the help
of an associated renewal process. However, if we omit the dependency between
consecutive beads then, thanks to Proposition 4.2, the “bead process” (uxj

)
nL(l)
j=0 un-

der PL,β can be related to a sub-exponential defective renewal process τ = (τi)i≥0
conditioned on L ∈ τ . This latter process is characterized by an inter-arrival law
K : N → [0,1] that satisfies K(∞) > 0 and K(n) = k(n)e−c

√
n with k : N → N

a slowly varying function. Once conditioned by {L ∈ τ }, it can be proven [see
Giacomin (2007), Appendix A.5 for the heavy tailed case or more recently Torri
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(2014) where the sub-exponential case is explicitly treated] that the number of re-
newals is O(1) and that again there is only one macroscopic renewal [see, e.g.,
Asmussen (2003) for a general background on renewal theory].

1.3.4. Shape theorem. First, recall the one-to-one correspondence between
�L and WL described in Section 1.1 and denote by wl the path in WL associ-
ated with a given family of vertical stretches l ∈ �L. Then, identify each l ∈ �L

with a connected compact subset of R2 denoted by SL(l) that extends the sites of
Z

2 occupied by wl to squares of length 1, that is,

SL(l) =
{

L⋃
i=0

wl(i) +
[
−1

2
,

1

2

]2
}
, l ∈ �L.(1.22)

With Theorem D below, we prove that, once rescaled horizontally and vertically
by

√
L the subset SL(l) converges in probability and for the Hausdorff distance

toward Sβ a deterministic subset of R
2. Before defining Sβ , we need to settle

some notation.
First, we denote by L(h), h ∈ (−β

2 ,
β
2 ) the logarithmic moment generating func-

tion of the random variable U1, that is,

L(h) := log Eβ

[
ehU1

]
,(1.23)

and we introduce L


L
(h) :=
∫ 1

0
L(xh0 + h1) dx,(1.24)

which is defined on

D :=
{

h = (h0, h1) ∈ R
2:h1 ∈

(
−β

2
,
β

2

)
, h0 + h1 ∈

(
−β

2
,
β

2

)}
.(1.25)

Then we let h̃(q,0) := (h̃0(q,0), h̃1(q,0)) be the unique solution of the equation

∇L
(h) = (q,0).(1.26)

Since for β > βc, the function

G̃(a) := a log�(β) − 1

a
h̃0

(
1

a2 ,0
)

+ aL


(
h̃
(

1

a2 ,0
))

,(1.27)

defined on (0,∞) is C∞, strictly concave and negative (see Section 4.4), we let
aβ > 0 be its unique maximizer.

We let γ ∗
β be the Wulff shape minimizing the rate function of Mogulskii large

deviation principle [see Dembo and Zeitouni (2010), Theorem 5.1.2] applied to the
random walk of law Pβ , on the set containing the cadlag functions γ : [0,1] → R
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satisfying γ (1) = 0 and
∫ 1

0 γ (t) dt = 1/a2
β and endowed with the supremum norm

‖ · ‖∞. The following explicit formula holds (see Section 4.5):

γ ∗
β (s) =

∫ s

0
L′
[(

1

2
− x

)
h̃0

(
1

a2
β

,0
)]

dx, s ∈ [0,1].(1.28)

Eventually, we define the limiting shape

Sβ = {
(x, y) ∈ R

2:x ∈ [0, aβ], y ∈ [−1
2aβγ ∗

β (x/aβ), 1
2aβγ ∗

β (x/aβ)
]}

(1.29)

and we denote by dH the Hausdorff distance between subsets of R2.

THEOREM D (Shape theorem). For β > βc, we have convergence in PL,β

probability for the Hausdorff distance toward a deterministic shape

lim
L→∞PL,β

(
dH

(
SL(l)√

L
,Sβ

)
> ε

)
= 0 (∀ε > 0).(1.30)

This shape theorem is equivalent to the combination of Theorems E and F below.
We display in Appendix A a proof of this equivalence.

THEOREM E (Horizontal extension). For β > βc, for all ε > 0

lim
L→∞PL,β

(∣∣∣∣NL(l)√
L

− aβ

∣∣∣∣> ε

)
= 0.(1.31)

REMARK 1.5. Determining the horizontal extension is challenging in the ex-
tended regime (β < βc) and in the critical regime (β = βc) as well. In the extended
regime, we can already derive from the variational formula of the free energy in
Nguyen and Pétrélis (2013), Theorem 1.2, that there exists c2 > c1 > 0 so that
limL→∞ PL,β(NL(l)/L ∈ [c1, c2]) = 1. The extension is therefore of order L and
we expect that a law of large numbers also holds so that NL(l)/L converges in
PL,β probability toward some constant eβ ∈ (0,1). The critical regime is more
delicate. In view of the random walk representation and since �(βc) = 1, the
law of NL(l) when l is sampled from PL,β is exactly that of the stopping time
τL := inf{n ≥ 1:n + An(V ) ≥ L} of a random walk V of law Pβ conditioned on
{VτL

= 0,AτL
= L − τL}. We expect that a Donsker-type invariance principle will

hold there so that typically AτL
∼ τ

3/2
L and thus we expect NL(l)/L2/3 to be tight

under PL,β .

The next theorem gives the scaling limit of the upper and lower envelopes of the
path in the collapsed phase. Pick l ∈ LN,L and let E+

l = (E+
l,i )

N+1
i=0 be the path that

links the top of each stretch consecutively (see Figure 5), while E−
l = (E−

l,i)
N+1
i=0
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FIG. 5. Example of the upper envelope of a trajectory.

is the counterpart of E+
l that links the bottom of each stretch consecutively. Thus,

E+
l,0 = E−

l,0 = 0,

E+
l,i = max{l1 + · · · + li−1, l1 + · · · + li}, i ∈ {1, . . . ,N},(1.32)

E−
l,i = min{l1 + · · · + li−1, l1 + · · · + li}, i ∈ {1, . . . ,N},(1.33)

and E+
l,N+1 = E−

l,N+1 = l1 + · · · + lN . Then let Ẽ+
l and Ẽ−

l be the time–space
rescaled cadlag processes associated with E+

l and E−
l and defined as

Ẽ+
l (t) = 1

N + 1
E+

l,�t (N+1)� and
(1.34)

Ẽ−
l (t) = 1

N + 1
E−

l,�t (N+1)�, t ∈ [0,1].

THEOREM F (Wulff shape). For β > βc and ε > 0,

lim
L→∞PL,β

(∥∥∥∥Ẽ+
l − γ ∗

β

2

∥∥∥∥∞
> ε

)
= 0,

(1.35)

lim
L→∞PL,β

(∥∥∥∥Ẽ−
l + γ ∗

β

2

∥∥∥∥∞
> ε

)
= 0.

Note that Ẽ+
l − Ẽ−

l [resp., (Ẽ+
l + Ẽ−

l )/2] is the rescaled version of the process
that associates with each index i ∈ {1, . . . ,NL(l)} the length |li | of the ith stretch
(resp., the height of the middle of the ith stretch l1 + · · · + li−1 + li

2 ). In view of
Theorem F, the Wulff shape γ ∗

β happens to be the limit, as L → ∞, of Ẽ+
l − Ẽ−

l .
Such Wulff shape was identified, for instance, in Dobrushin and Hryniv (1996), as
the limit of a random walk trajectory conditioned by fixing a large algebraic area
between the path and the x-axis. However, the latter convergence is not sufficient to
prove (1.35). We must indeed show that (Ẽ+

l + Ẽ−
l )/2 converges to 0 in probability.

REMARK 1.6. The Wulff shape construction, initially displayed in Wulff
(1901) appears in many models of statistical mechanics to describe the limiting
shape of properly rescaled interfaces separating pure phases. Their construction
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is achieved by minimizing the integral of the surface tension along the continu-
ous contours that satisfy some particular geometric constraint. A famous example
arises from 2D Ising model in the phase transition regime. When considering a
large square box of size N with boundary condition and T < Tc, and by condi-
tioning the total magnetization to be shifted from its mean (−m∗N2) by a factor
aN � N4/3, it was proven in Dobrushin, Kotecký and Shlosman (1992) at low
temperature and then in Ioffe (1994, 1995) and Ioffe and Schonmann (1998) up to
Tc that this magnetization shift is due to a unique + island whose boundary, once
rescaled by 1/

√
aN , converges toward a Wulff shape.

1.4. Relationship to earlier work. The IPDSAW and its continuous versions
have attracted a lot of attention from physicists until very recently [see, e.g.,
Brak et al. (2009) or Samanta and Thirumalai (2013)]. The main method that
has been employed to investigate the IPDSAW involves combinatorial techniques
[see Brak, Guttmann and Whittington (1992), Brak, Owczarek and Prellberg
(1993) or more recently Owczarek and Prellberg (2007)]. To be more specific,
this method consists in providing an analytic expression of the generating function
G(z) = ∑∞

L=1 ZL,βzL whose radius of convergence R satisfies f = − logR. For
a detailed version of the computations, we refer to Caravenna, den Hollander and
Pétrélis (2012), pages 371–375.

The computation of the generating function G allows us to determine the exact
value of βc and to predict the behavior of the free energy close to criticality. How-
ever, the analytic expression of G is very complicated and only gives an indirect
access to the free energy. Furthermore, this combinatorial method does not allow
to study an observable which does not grow like L, for instance, inside the col-
lapsed phase, the horizontal extension is of order

√
L and this cannot be proven by

such method.
A new approach has been developed in Nguyen and Pétrélis (2013) to work with

the partition function directly. With the help of an algebraic manipulation of the
Hamiltonian that will be described in Section 2.1, it is indeed possible to rewrite
the partition function in (1.7) under the form

ZL,β = cβeβL
L∑

N=1

(
�(β)

)NPβ(VN+1,L−N),(1.36)

where we recall (1.13) and (1.15) and where Vn,k is the set of those n-step trajec-
tories of the random walk V whose geometric area An =∑n

i=1 |Vi | equals k, that
is,

Vn,k := {
(Vi)

n
i=0 : An = k,Vn = 0

}
.(1.37)

Thus, the excess free energy f̃ (β) is the exponential growth rate of the summation
in (1.36). In this new expression of the partition function, the term indexed by
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N ∈ {1, . . . ,L} in the summation corresponds to the contribution to the partition
function of those trajectories l ∈ LN,L (making N horizontal steps).

This new approach was used in Nguyen and Pétrélis (2013), Theorem 1.2, to
derive a variational expression of the excess free energy, which allowed us to prove
that the collapsed transition is second order with critical exponent 3/2.

THEOREM 1.7 [Nguyen and Pétrélis (2013), Theorem 1.4]. The phase tran-
sition is of order 3/2. That is, there exist two constants c1, c2 > 0 such that for ε

small enough

c1ε
3/2 ≤ f̃ (βc − ε) ≤ c2ε

3/2.(1.38)

With the present paper, we take the analysis of the phase transition two steps
further (see Theorem B). In the first step, we establish the precise asymptotic:
f̃ (βc − ε) ∼ γ ε3/2 as ε ↘ 0 with γ an explicit constant. In the second step, we
give an expression of γ in terms of the free energy of an auxiliary continuous
model, that is, Fc = limT →∞ 1

T
log E[exp(− ∫ T

0 |B(t)|dt)]. Moreover, the Laplace

transform of
∫ T

0 |B(t)|dt was computed in Kac (1946) and this allows us to express
Fc with the smallest zero (in modulus) of the derivative of the Airy function.

The question of the geometric conformation adopted by the polymer inside the
collapsed phase has been raised and discussed by physicists in several papers, as
for instance Brak et al. (1993). It was believed that the monomers arrange them-
selves in a succession of long vertical stretches of opposite directions that consti-
tute large beads. In this paper, we prove with Theorem C, that the polymer makes
only one macroscopic bead and that the number of monomers (located at the be-
ginning and at the end of the polymer) which do not belong to this bead grows at
most like (logL)4. We also make rigorous the conjecture concerning the horizon-
tal extension of the polymer, since we identify the limit in probability of NL/

√
L,

which turns out to be the constant extracted from an optimization procedure. We
also establish the convergence of properly rescaled lower and upper envelopes to
a deterministic Wulff shape. In particular, the typical vertical displacement of the
middle point, the L/2th monomer in a chain of length L, is of order

√
L.

There are numerical evidences that the vertical displacement of the endpoint
grows as L1/4 [see Brak et al. (1993), Table II, page 2394]. This turns out to be
a consequence of the typical behavior of the fluctuations of the envelopes around
the Wulff shape, and this is not the topic of the present paper.

Finally, let us stress the fact that the convergence, in the collapsed phase, to a
deterministic Wulff shape (see Theorem E) comes from a fairly complex procedure
that needs to establish three properties:

(i) The horizontal extension NL is of order
√

L;
(ii) There is only one macroscopic bead;
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(iii) When conditioned to be abnormally large, the geometric area of the asso-
ciated V random walk (

∑
i |Vi |) is close to the modulus of its algebraic counterpart

(|∑Vi |).
There is no clear order in which to establish these properties and the proofs are
intricate. For example, we need weak versions of (i) and (iii) to prove (ii) and then
get a stronger version of (i).

2. Preparation: The main tools. In this section, we introduce the three main
tools that are used in this paper. In Section 2.1, we show how the partition function
can be rewritten in terms of the random walk V of law Pβ [recall (1.13)] and
how studying this random walk under an appropriate conditioning can be used to
derive some path properties under the polymer measure. In Section 2.2, we define
the function δ �→ hβ(δ) that appears in the expression of the excess free energy in
Theorem A and we study its regularity. In Section 2.3, we consider the probability
of some large deviations events under Pβ , and following Dobrushin and Hryniv
(1996), we introduce an appropriate tilting under which the probability of such
events decays only polynomially fast.

2.1. Probabilistic representation of the partition function. In the first part of
this section, we prove formula (1.36) and we show how the polymer measure can
be expressed as the image measure by an appropriate transformation of the geo-
metric random walk V introduced in (1.13). In the second part of the section, we
focus on those trajectories that make only one bead and we show that, in terms
of the auxiliary random walk V , these beads become excursions away from the
origin.

2.1.1. Auxiliary random walk. We display here the details of the proof of for-
mula (1.36). Recall (1.4)–(1.7) and note that the ∧̃ operator can be written as

x ∧̃ y = (|x| + |y| − |x + y|)/2 ∀x, y ∈ Z.(2.1)

Hence, for β > 0 and L ∈ N, the partition function in (1.7) becomes

ZL,β =
L∑

N=1

∑
l∈LN,L

l0=lN+1=0

exp

(
β

N∑
n=1

|ln| − β

2

N∑
n=0

|ln + ln+1|
)

(2.2)

= cβeβL
L∑

N=1

(
cβ

eβ

)N ∑
l∈LN,L

l0=lN+1=0

N∏
n=0

exp (−(β/2)|ln + ln+1|)
cβ

,

where cβ was defined in (1.13). At this stage, we pick N ∈ {1, . . . ,L} and
we introduce the one-to-one correspondence TN : VN+1,L−N �→ LN,L defined
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as TN(V )i = (−1)i−1Vi for all i ∈ {1, . . .N}. We pick l ∈ LN,L, we consider
V = (TN)−1(l) (see Figure 4) and we note that the increments (Ui)

N+1
i=1 of V

necessarily satisfy Ui := (−1)i−1(li−1 + li). Thus, the partition function in (2.2)
becomes

ZL,β = cβeβL
L∑

N=1

(
cβ

eβ

)N ∑
V ∈VN+1,L−N

Pβ(V ),(2.3)

which immediately implies (1.36). A useful consequence of formula (2.3) is that,
once conditioned on taking a given number of horizontal steps N , the polymer
measure is exactly the image measure by the TN -transformation of the geometric
random walk V conditioned to return to the origin after N + 1 steps and to make
a geometric area L − N , that is,

PL,β

(
l ∈ ·|NL(l) = N

)= Pβ

(
TN(V ) ∈ ·|VN+1 = 0,AN = L − N

)
.(2.4)

2.1.2. From beads to excursions. We define �◦
L as the subset of �L containing

those trajectories l ∈ �L that have only one bead, that is, nL(l) = 1. Thus, we can
rewrite �◦

L :=⋃L
N=1 L◦

N,L, where Lo
N,L is the subset of LN,L defined as

L◦
N,L = {

l ∈ LN,L: li ∧̃ li+1 
= 0 ∀i ∈ {1, . . . ,N − 1}},(2.5)

and we denote by Z◦
L,β the contribution to the partition function of those trajecto-

ries in �◦
L, that is,

Z◦
L,β = ∑

l∈�◦
L

eβHL(l).(2.6)

We let also V+
n,k be the subset containing those trajectories that return to the origin

after n steps, satisfy An = k and are strictly positive on {1, . . . , n}, that is,

V+
n,k := {

V :Vn = 0,An = k,Vi > 0 ∀i ∈ {1, . . . , n − 1}}.(2.7)

By mimicking (2.2) and by noticing that by the TN -transformation, the subset
L◦

N,L becomes V+
N+1,L−N we obtain

Z◦
L,β = 2cβeβL

L∑
N=1

(
�(β)

)NPβ

(
V+

N+1,L−N

)
.(2.8)

2.2. Construction and regularity of hβ . We define the function hβ in a slightly
different way from (1.14), but we will see at the end of this section that the two
definitions are equivalent. For N ∈ N, δ ≥ 0, define

hN,β(δ) := 1

N
log Eβ

(
e−δAN 1{VN=0}

)
and let hβ(δ) = lim

N→∞hN,β(δ).(2.9)
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LEMMA 2.1. (i) hβ(δ) exists and is finite, nonpositive for all β > 0, δ ≥ 0.
(ii) δ �→ hβ(δ) is continuous, convex and nonincreasing on [0,∞).

PROOF. (i) For N,M ∈ N, we restrict the partition of size N + M to those
trajectories that return to the origin at time N and use the Markov property to
obtain

Eβ

(
e−δAN+M 1{VN+M=0}

)≥ Eβ

(
e−δAN 1{VN=0}

)
Eβ

(
e−δAM 1{VM=0}

)
.(2.10)

Thus, {log Eβ(e−δAN 1{VN=0})}N∈N is a super-additive sequence that is bounded
above by 0 and therefore the limit in (2.9) exists, is finite and satisfies

hβ(δ) = sup
N∈N

1

N
log Eβ

(
e−δAN 1{VN=0}

)≤ 0.(2.11)

(ii) The fact that AN ≥ 0 for all N ∈ N immediately entails that δ �→ hβ(δ) is
nonincreasing on [0,∞). By Hölder’s inequality, the function δ �→ hN,β(δ) is
convex for all N ∈ N and hence so is δ �→ hβ(δ). Convexity and finiteness im-
ply continuity on (0,∞). In order to prove the continuity at 0, we first note that
limδ→0 hβ(δ) = supδ≥0 hβ(δ). Then, with the help of formula (2.11) and via an
exchange of suprema we obtain

lim
δ→0

hβ(δ) = sup
δ≥0

sup
N∈N

1

N
log Eβ

(
e−δAN 1{VN=0}

)
(2.12)

= sup
N∈N

1

N
log Pβ(VN = 0) = 0. �

It remains to show that the two definitions of hβ in (1.14) and (2.9) coincide. To
that aim, it suffices to show that

lim sup
N→∞

1

N
log Eβ

(
e−δAN

)≤ lim
N→∞

1

N
log Eβ

(
e−δAN 1{VN=0}

)
.(2.13)

We set IN2 := [−N2,N2] ∩ Z and we decompose Eβ(e−δAN ) into the two parti-
tion functions CN,β and BN,β defined as

CN,β = Eβ

(
e−δAN 1{VN∈I

N2 }
)

and BN,β = Eβ

(
e−δAN 1{VN /∈I

N2 }
)
.(2.14)

Since AN ≥ 0 and since Eβ[eβ|U1|/4] < ∞, Markov’s inequality gives

BN,β ≤ Eβ[1{VN /∈I
N2 }] ≤ Pβ

(
N∑

i=1

|Ui | ≥ N2

)
≤ Eβ[eβ|U1|/4]N

e(β/4)N2 ,(2.15)

which immediately implies that lim supN→∞ 1
N

logBN,β = −∞. Consequently,

lim sup
N→∞

1

N
log Eβ

(
e−δAN

)= lim sup
N→∞

1

N
logCN,β,(2.16)
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and since the cardinality of IN2 grows polynomially, the proof of (2.13) will be
complete once we show that

lim sup
N→∞

1

N
log sup

x∈I
N2

Eβ

(
e−δAN 1{VN=x}

)
(2.17)

≤ lim
N→∞

1

N
log Eβ

(
e−δAN 1{VN=0}

)
.

For x ∈ Z, we denote by Pβ,x the law of x + V where V is the random walk of
law Pβ . We consider the partition function of size 2N and use Markov property at
time N to obtain

Eβ

(
e−δA2N 1{V2N=0}

)
(2.18)

≥ Eβ

(
e−δAN 1{VN=x}

)
Eβ,x

(
e−δAN 1{VN=0}

)
, x ∈ Z.

By using the time reversal property of the random walk V , we can assert that

(VN −VN−n,0 ≤ n ≤ N)
d= (Vn −V0,0 ≤ n ≤ N) and consequently, for all x ∈ Z,

it comes that

Eβ,x

(
e−δ

∑N
n=1 |Vn|1{VN=0}

)= Eβ

(
e−δ

∑N
n=1 |Vn+x|1{VN=−x}

)
= Eβ

(
e−δ

∑N
n=1 |VN−VN−n+x|1{VN=−x}

)
(2.19)

= Eβ

(
e−δ

∑N−1
n=1 |Vn|1{VN=−x}

)
.

Thanks to the symmetry of V and since
∑N−1

n=1 |Vn| ≤ AN , the inequalities (2.18)
and (2.19) allow us to write

Eβ

(
e−δA2N 1{V2N=0}

)≥
[

sup
x∈I

N2

Eβ

(
e−δAN 1{VN=x}

)]2
.(2.20)

It remains to apply 1
2N

log in both sides of (2.20) and to let N → ∞ to obtain
(2.17), which completes the proof.

2.3. Large deviation estimates. In this section, we introduce the techniques
that will be required to estimate the probability of some large deviation events
associated with trajectories making a large arithmetic area. Such estimates will
be needed in Section 4 to approximate the probability that, under the polymer
measure, the trajectories make only one bead.

Following Dobrushin and Hryniv [Dobrushin and Hryniv (1996)], for n ∈N, we
define

Yn := 1

n
(V0 + V1 + · · · + Vn−1),(2.21)

and for a given q ∈ (0,∞) ∩ N

n
, we focus on both probabilities Pβ(Yn = nq,Vn =

0) and Pβ(Yn = nq,Vn = 0,Vi > 0 ∀i ∈ {1, . . . , n − 1}). Our aim is to identify the
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exponential rate at which such probabilities are decreasing and their asymptotic
polynomial correction. To that aim, we will use an exponential tilting of the prob-
ability measure Pβ (through the Cramér transform) in combination with a local
limit theorem. Under the tilted probability measure, the event {Yn = nq,Vn = 0}
is not of large deviation type anymore since its probability decays at polynomial
speed instead of exponential speed, as will be seen in Section 6.

For the ease of notation, we set 
n := (Yn,Vn) and we denote its logarithmic
moment generating function by L
n(h) for h := (h0, h1) ∈ R

2, that is,

L
n(h) := log Eβ

[
eh0Yn+h1Vn

]=
n∑

i=1

L

((
1 − i

n

)
h0 + h1

)
.(2.22)

Clearly, L
n(h) is finite for all h ∈Dn with

Dn :=
{
(h0, h1) ∈R

2:h1 ∈
(
−β

2
,
β

2

)
,

(
1 − 1

n

)
h0 + h1 ∈

(
−β

2
,
β

2

)}
.(2.23)

With the help of (2.22) and for h = (h0, h1) ∈ Dn, we define the h-tilted distri-
bution by

dPn,h

dPβ

(V ) = eh0Yn+h1Vn−L
n(H).(2.24)

For a given n ∈ N and q ∈ N

n
, the exponential tilt is given by hq

n := (h
q
n,0, h

q
n,1)

which, by Lemma 5.4 in Section 5.1, is the unique solution of

En,h

(

n

n

)
= ∇

[
1

n
L
n

]
(h) = (q,0)(2.25)

and, therefore, we have the equality

Pβ

(

n = (nq,0)

)= Pn,hq
n

(

n = (nq,0)

)
e
n(−h

q
n,0q+(1/n)L
n(hq

n))
.(2.26)

From (2.26), it is easy to deduce that the exponential decay rate of Pβ(
n =
(nq,0)) is given by the quantity −h

q
n,0q + 1

n
L
n(h

q
n) and that the polynomial cor-

rection is associated with Pn,hq
n
(
n = (nq,0)). To be more specific, we first state

a proposition which gives a local central limit theorem for the tilted law Pn,hq
n
.

PROPOSITION 2.2. For [q1, q2] ⊂ (0,∞), there exist C > 0, n0 > 0 such that
for all2 q ∈ [q1, q2] and n ≥ n0 we have

1

Cn2 ≤ Pn,hq
n
(Yn = nq,Vn = 0) ≤ C

n2 .(2.27)

2To be thorough, we should restrict ourselves to q such that n2q ∈ N. To ease notation, we shall
omit this restriction in the sequel.
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The following proposition shows that the exponential decay rate induced by the
change of probability in (2.24) can be controlled uniformly in n.

PROPOSITION 2.3 (Decay rate of large area probability). For [q1, q2] ⊂
(0,+∞), there exist c1, c2 > 0 and n0 ∈ N such that∣∣∣∣[1

n
L
n

(
hq

n

)− h
q
n,0q

]
−
[
L


(̃
h(q,0)

)− h̃0(q,0)q

]∣∣∣∣≤ c1

n
(2.28)

for n ≥ n0, q ∈ [q1, q2]
and ∥∥hq

n − h̃(q,0)
∥∥≤ c2

n
for n ≥ n0, q ∈ [q1, q2].(2.29)

Propositions 2.2 and 2.3 will be proven in Sections 6 and 5.1, respectively. With
the help of (2.26) and by applying Propositions 2.2 and 2.3 we can finally give
some sharp upper and lower bounds of Pβ(Yn = nq,Vn = 0).

PROPOSITION 2.4. For [q1, q2] ⊂ (0,∞), there exist C1 > C2 > 0 and n0 ∈
N such that for all q ∈ [q1, q2] and n ≥ n0 we have

C2

n2 en[−h̃0(q,0)q+L
(h̃(q,0))] ≤ Pβ(Yn = nq,Vn = 0)

(2.30)

≤ C1

n2 en[−h̃0(q,0)q+L
(h̃(q,0))].

In addition, we shall need in this paper a precise lower bound on the probabil-
ity that, under Pβ , the random walk V makes only one excursion away from the
origin, conditionally on having a large prescribed area. To our knowledge, such
an estimate is not available in the existing literature. Recall the definition of Yn

in (2.21).

PROPOSITION 2.5 (Unique excursion for large area). For [q1, q2] ⊂ (0,∞),
there exist C > 0,μ > 0 and n0 ∈ N such that for all q ∈ [q1, q2] and every n ≥ n0

Pβ(Vi > 0,0 < i < n|Yn = nq,Vn = 0) ≥ C

nμ
.(2.31)

Although we can show that for the tilted law Pn,hq
n

(thanks to the positive,
resp., negative drifts of the increments close to 0, resp., close to n) there exists
a C(q1, q2) > 0 so that for q ∈ [q1, q2] and n large enough

Pn,hq
n
(Vi > 0,0 < i < n|Vn = 0) > C(q1, q2),

and although we think that a similar result holds true for the LHS in (2.31), we are
unable to handle the conditioning by Yn = nq satisfactorily.
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3. The order of the phase transition. In Section 3.1 below, we prove Theo-
rem A that expresses the excess free energy as the solution of an equation involving
the function hβ introduced in Section 2.2. In Section 3.2, we first state Lemma 3.1
which provides the behavior of hβ(f̃ (β)) close to βc and then we combine this
lemma with Theorem A to complete the proof of Theorem B. Finally, in Sec-
tion 3.3 we give a proof of Lemma 3.1.

3.1. Proof of Theorem A (Free energy equation). By the representation for-
mula (1.36) and the definition of f̃ , we have f̃ (β) = limL→∞ 1

L
log Z̃L,β , where

Z̃L,β :=
L∑

N=1

(
�(β)

)NPβ(VN+1,L−N).(3.1)

As a consequence, the excess free energy satisfies f̃ (β) = − logR where R is the
radius of convergence of the generating function G(z) =∑∞

L=1 Z̃L,βzL, that is,

f̃ (β) = sup

{
δ ≥ 0:

∞∑
L=1

Z̃L,βe−δL = +∞
}
,(3.2)

if the set is nonempty and f̃ (β) = 0 otherwise. We recall (1.37) and we use (3.1)
to rewrite the sum in (3.2) as

∞∑
L=1

Z̃L,βe−δL =
∞∑

L=1

L∑
N=1

(
�(β)e−δ)N ∑

V0=VN+1=0
AN=L−N

Pβ(V )e−δ(L−N)

=
∞∑

L=1

L∑
N=1

(
�(β)e−δ)NEβ

(
e−δAN 1{AN=L−N,VN+1=0}

)
(3.3)

=
∞∑

N=1

(
�(β)e−δ)NEβ

(
e−δAN 1{VN+1=0}

)
.

Since AN = AN+1 on the set {VN+1 = 0} and by using the definition of hN,β(δ)

in (2.9), the equality (3.3) becomes

∞∑
L=1

Z̃L,βe−δL =
∞∑

N=1

exp
(
N

[
log�(β) − δ + N + 1

N
hN+1,β(δ)

])
,(3.4)

which together with (3.2) gives f̃ (β) = sup{δ ≥ 0: log�(β) − δ + hβ(δ) > 0}.
Since hβ(δ) ≤ 0, it follows that f̃ (β) = 0 if �(β) ≤ 1. When �(β) > 1, Lemma 2.1
gives that δ �→ −δ+hβ(δ) is continuous, decreasing, nonpositive on [0,∞), equals
0 at δ = 0 and tends to −∞ when δ → ∞. Therefore, f̃ (β) > 0 and is the unique
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solution of the equation log�(β)−δ+hβ(δ) = 0. In addition, by recalling the def-
inition of the collapsed phase (1.11) and the extended phase (1.12), we can observe
that

C = {
β:�(β) ≤ 1

}
and E = {

β:�(β) > 1
}
.(3.5)

We note that β �→ �(β) is decreasing on [0,∞) [recall (1.13) and (1.15)] and
therefore, the collapse transition occurs at βc, the unique positive solution of the
equation �(β) = 1.

3.2. Proof of Theorem B (Phase transition asymptotics). We display here the
proof of Theorem B subject to Lemma 3.1 below, that will be proven in Section 3.3
afterward.

LEMMA 3.1.

lim
β→βc

hβ(f̃ (β))

f̃ (β)2/3
= −ς2,(3.6)

where we recall that ς2 was defined in (1.18).

Our aim is to study the asymptotic behavior of the equation in Theorem A near
the critical point. We recall (1.15) and we perform a first-order Taylor expansion
of �(β) near βc which gives log�(βc − ε) = ς1ε(1 + o(1)) as ε ↘ 0. Next, we
consider the function hβ near βc and it follows from Lemma 3.1 that when ε ↘ 0

hβc−ε

(
f̃ (βc − ε)

)= −ς2f̃ (βc − ε)2/3(1 + o(1)
)
.(3.7)

Therefore, by plugging (3.7) and the expansion of log�(βc − ε) in the equation in
Theorem A that is verified by the excess free energy, we obtain that

ς1ε
(
1 + o(1)

)− f̃ (βc − ε) − ς2f̃ (βc − ε)2/3(1 + o(1)
)= 0,(3.8)

which allows to conclude that

f̃ (βc − ε) ∼
(

ς1

ς2

)3/2

ε3/2 as ε ↘ 0,(3.9)

and the proof is complete.

3.3. Asymptotics of hβ .

3.3.1. Heuristics. Let us give the heuristic explanation of why hβ(δ) ∼
−cδ2/3 for some constant c > 0. The main idea is to decompose the trajectory
of the random walk V into independent blocks of length T δ−2/3 for T ∈ N and δ

small enough: we have approximately N/(T δ−2/3) such blocks. Hence, as δ ↘ 0,
we can estimate

lim
N→∞

1

N
log Eβ

(
e−δAN

)∼ lim
T →∞

δ2/3

T
log Eβ

(
e−δA

T δ−2/3
)
.(3.10)
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It is well known that for such random walks (assume that Eβ(U2
1 ) = 1) [see Durrett

(2010), page 405]

k−3/2
T k∑
i=1

|Vi | → L
∫ T

0

∣∣B(t)
∣∣dt as k → ∞,(3.11)

where B is a standard Brownian motion. Now, let k = δ−2/3 and since
|e−δA

T δ−2/3 | ≤ 1, we conclude that

Eβ

(
e−δA

T δ−2/3
)→ E

(
e− ∫ T

0 |B(t)|dt ) as δ → 0.(3.12)

This convergence and (3.10) would immediately imply hβ(δ) ∼ −cδ2/3 where c

can be estimated via the distribution of the Brownian area, that is,

c = − lim
T →∞

1

T
log E

(
e− ∫ T

0 |B(t)|dt )> 0.(3.13)

3.3.2. Proof of Lemma 3.1.

3.3.2.1. Upper bound. Pick T ∈ N, δ > 0 such that δ−2/3 ∈ N and let � :=
δ−2/3. We take N that satisfies N/(T �) ∈ N and partition {1, . . . ,N} into k =
N/(T �) intervals of length T �. By the Markov property of V , we decompose
Eβ(e−δAN ) with respect to the position occupied by the random walk V at times
T �,2T �, . . . , (k − 1)T �,

Eβ

(
e−δAN

)= ∑
x0=0,xi∈Z
i=1,...,k

k−1∏
i=0

Eβ,xi

(
e−δAT �1{VT �=xi+1}

)
(3.14)

≤
[
sup
x∈Z

Eβ,x

(
e−δAT �

)]k
.

With the help of Lemma 3.2 below, we can replace the supremum in the RHS
of (3.14) by the term indexed by x = 0 only. The proof of Lemma 3.2 is postponed
to Appendix B.

LEMMA 3.2. For all δ > 0, n ∈ N and x, x ′ ∈ Z such that |x′| ≥ |x|, the
following inequality holds true

Eβ,x′
(
e−δAn

)≤ Eβ,x

(
e−δAn

)
.(3.15)

Therefore, (3.14) becomes

Eβ

(
e−δAN

)≤ [
Eβ

(
e−δAT �

)]N/(T �)
.(3.16)

Recall that � := δ−2/3, apply 1
N

log to both sides of (3.16) and let N → ∞ to
obtain, for β > 0 and δ > 0, that

hβ(δ)

δ2/3 ≤ 1

T
log Eβ

(
e−δAT �

)
.(3.17)
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In what follows, we need a uniform version (in β) of the convergence of

Eβ(e−δAT �) toward E(e− ∫ T
0 |B(t)|dt ) as δ → 0. For this reason, we introduce the

strong approximation theorem [Sakhanenko (1980)] to approximate the partial
sums of independent random variables U in the RHS in (3.17) by independent
normal random variables.

THEOREM 3.3 [Shao (1995), Theorem B]. Denote by σ 2
β the variance of the

random variable U1 under Pβ . We can redefine {Ui, i ≥ 1} (denoted by Uβ ) on a
richer probability space together with a sequence of independent standard normal
random variables {Xi, i ≥ 1} such that for every p > 2, x > 0,

P

(
max
i≤n

∣∣∣∣∣
i∑

j=1

U
β
j − σβ

i∑
j=1

Xj

∣∣∣∣∣≥ x

)
≤ (Ap)px−p

n∑
i=1

E
∣∣Uβ

i

∣∣p,(3.18)

where A is an absolute positive constant.

We let also, for n ∈ N, Yn = ∑n
i=1 Xi , An(Y ) = ∑n

i=1 |Yi | and redefine V
β
n =∑n

i=1 U
β
i , An(V

β) =∑n
i=1 |V β

i |. We pick T > 0, p > 2, ϑ > 0 and K a compact

subset of (0,∞). We use Theorem 3.3 and the fact that [recall (1.13)] E[|Uβ
1 |p]

is bounded from above uniformly in β ∈ K , to assert that there exists a constant
cp,K > 0 such that for all � > 0 and β ∈ K

P
(

max
i≤T �

∣∣V β
i − σβYi

∣∣≥ �ϑ
)

≤ cp,KT �1−ϑp.(3.19)

Note that on the event {maxi≤T � |V β
i − σβYi | < �ϑ }, we obviously have

|AT �(V β)−σβAT �(Y )| ≤ T �ϑ+1. Therefore, since x �→ exp(−x) is 1-Lipschitz
on [0,∞) and since � = δ−2/3, we can write that for β ∈ K and δ > 0∣∣E(e−δAT �(V β) − e−δσβAT �(Y ))∣∣

≤ P
(

max
i≤T �

∣∣V β
i − σβYi

∣∣≥ �ϑ
)

+ δT �ϑ+1(3.20)

≤ cp,KT δ(2/3)(ϑp−1) + T δ(1/3)(1−2ϑ).

We chose p = 3 and ϑ ∈ (1/3,1/2) and plug it in the RHS of (3.17) to obtain that
for β ∈ K and δ > 0,

hβ(δ)

δ2/3 ≤ 1

T
log

[
E
(
e−δσβAT �(Y ))+ c3,KT δ2(3ϑ−1)/3 + T δ(1−2ϑ)/3].(3.21)

LEMMA 3.4. Let K be a compact subset of (0,+∞). For T > 0 and ε > 0
there exists a δ0 > 0 such that for δ ≤ δ0 (with � = δ−2/3),

sup
β∈K

∣∣E(e−δσβAT �(Y ))− E
(
e−σβ

∫ T
0 |B(t)|dt )∣∣< ε,(3.22)

where B is a standard Brownian motion.
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PROOF. We can consider {B(t), t ≥ 0} and {yi, i ≥ 1} on the same probability
space by letting yi = B(i) − B(i − 1), and thus Yi := y1 + · · · + yi = B(i) for
i ∈ N. We recall that AT �(Y ) = ∑T �

i=1 |B(i)| and therefore, by Brownian scaling
we note that

�−3/2AT �(Y )
d= �−1

T �∑
i=1

∣∣B(i/�)
∣∣.

Consequently, by recalling that δ = �−3/2 we can replace E(e−δσβAT �(Y )) in the
LHS of (3.22) by E(e−σβ�−1 ∑T �

i=1 |B(i/�)|). Since the exponential function is 1-
Lipschitz on (−∞,0], we have

sup
β∈K

∣∣E(e−σβ�−1 ∑T �
i=1 |B(i/�)|)− E

(
e−σβ

∫ T
0 |B(t)|dt )∣∣

≤ max
β∈K

{σβ}E
[∣∣∣∣∣�−1

T �∑
i=1

∣∣B(i/�)
∣∣− ∫ T

0

∣∣B(t)
∣∣dt

∣∣∣∣∣
]
.

Since maxβ∈K{σβ} < ∞, since by Riemann sum approximation we know that

�−1
T �∑
i=1

∣∣B(i/�)
∣∣ a.s.−→
�→∞

∫ T

0

∣∣B(t)
∣∣dt.(3.23)

It is easy to see that

sup
�>0

E

(
�−1

T �∑
i=1

∣∣B(i/�)
∣∣2)< ∞,

and this implies uniform integrability which, combined with the almost sure con-
vergence implies the convergence in L1

lim
�→∞ E

[∣∣∣∣∣�−1
T �∑
i=1

∣∣B(i/�)
∣∣− ∫ T

0

∣∣B(t)
∣∣dt

∣∣∣∣∣
]

= 0.(3.24)

This completes the proof. �

We resume the proof of the upper bound. Since ϑ ∈ (1/3,1/2), the RHS of
(3.20) vanishes as δ → 0 uniformly in β ∈ K . Thus, we can replace δ by f̃ (βc)

in (3.21) and use Lemma 3.4 and the fact that limε→0+ f̃ (βc − ε) = 0 to conclude
that, for all T > 0,

lim sup
ε→0+

hβ(f̃ (βc − ε))

f̃ (βc − ε)2/3
≤ 1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt ).(3.25)

It remains to let T tend to infinity and to recall (1.18) to obtain

lim sup
ε→0+

hβ(f̃ (βc − ε))

f̃ (βc − ε)2/3
≤ −ς2.(3.26)



3258 P. CARMONA, G. B. NGUYEN AND N. PÉTRÉLIS

3.3.2.2. Lower bound. Recall that T ∈ N, δ > 0 and � = δ−2/3 ∈ N. We also take
N ∈ N such that N/(T �) ∈ N. Pick η > 0 and use the decomposition in (3.14) to
obtain

Eβ

(
e−δAN

)≥ ∑
x0=0,xi∈[−η

√
�,η

√
�]

i=1,...,k

k−1∏
i=0

Eβ,xi

(
e−δAT �1{VT �=xi+1}

)
(3.27)

≥
[

inf
x∈[−η

√
�,η

√
�]

Eβ,x

(
e−δAT �1{VT �∈[−η

√
�,η

√
�]}

)]N/(T �)
.(3.28)

For any integer x ∈ [−η
√

�,η
√

�], we consider the two sets of paths

�x
1 = {

(Vi)
T �
i=0:V0 = x,VT � ∈ [−η

√
�,η

√
�]}(3.29)

and

�2 = {
(Vi)

T �
i=0:V0 = 0,VT � ∈ [−η

√
�,0]}.(3.30)

Clearly, if V = (Vi)
T �
i=0 ∈ �2, then the trajectory V + x starts at x ∈ [0, η

√
�] and

is an element of �x
1 . Similarly, for x ∈ [−η

√
�,0], �′

2 + x ⊆ �x
1 where

�′
2 = {

(Vi)
T �
i=0:V0 = 0,VT � ∈ [0, η

√
�]}.(3.31)

Since Pβ(V ∈ �2) = Pβ(V ∈ �′
2), we conclude that

Pβ,x

(
V ∈ �x

1
)≥ Pβ

(
V ∈ �′

2
)

for all x ∈ [−η
√

�,η
√

�].(3.32)

Moreover, for any V � ∈ �x
1 ,

δ

T �∑
i=1

∣∣V �
i

∣∣= δ

T �∑
i=1

|x + Vi | ≤ δ

T �∑
i=1

|Vi | + δT �|x| ≤ δ

T �∑
i=1

|Vi | + ηT ,(3.33)

where the trajectory V satisfies V0 = 0. Combining (3.32) and (3.33), we then
have, for x ∈ [−η

√
�,η

√
�],

Eβ,x

(
e−δAT �1{VT �∈[−η

√
�,η

√
�]
)≥ e−ηT Eβ

(
e−δAT �1{VT �∈[0,η

√
�]
)
.(3.34)

By plugging the lower bound above into (3.27) and by using the symmetry of V

we immediately get

Eβ

(
e−δAN

)≥ [
e−ηT Eβ

(
e−δAT �1{VT �∈[0,η

√
�]}

)]N/T �
,(3.35)

which, by applying 1
N

log to both sides in (3.35) and by letting N → ∞, gives, for
all β > 0,

hβ(δ)

δ2/3 ≥ 1

T
log Eβ

(
e−δAT �1{VT �∈[0,η

√
�]}

)− η, δ, η > 0.(3.36)
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At this stage, we proceed as in the upper bound [from (3.17)] to obtain, for all
T ∈ N, η > 0,

lim inf
β→βc

hβ(f̃ (β))

f̃ (β)2/3
≥ 1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt1{B(T )∈[0,η]}

)− η.(3.37)

It remains to show that for all η > 0 we have

lim
T →∞

1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt1{B(T )∈[0,η]}

)
(3.38)

= lim
T →∞

1

T
log E

(
e−σβc

∫ T
0 |B(t)|dt ),

but the latter convergence can be obtained by adapting the proof of (2.13) to the
continuous setting and for conciseness we will not give the details of the proof
here. Then, by recalling (1.18), we achieve the bound

lim inf
β→βc

hβ(f̃ (β))

f̃ (β)2/3
≥ −ς2 − η,(3.39)

for all η > 0. It remains to let η → 0 to complete the proof.

4. Geometry of the collapsed phase. In Section 4.1 below, a proof of The-
orem C is displayed subject to Lemma 4.1, which ensures that the horizontal ex-
tension of the polymer inside the collapsed phase is of order

√
L, and to Propo-

sition 4.2, which provides a sharp estimate of the partition function restricted to
those trajectories making only one bead. Proposition 4.2 is proven in Section 4.2
subject to Lemma 4.4, which is the counterpart of Lemma 4.1 for the one bead
trajectory and to Proposition 2.5, which gives a lower bound on the probability
that the random walk V makes an n-step excursion away from the origin condi-
tioned on the large deviation event {Yn = qn,Vn = 0}. Lemmas 4.1 and 4.4 are
proven in Section 4.3 whereas the proof of Proposition 2.5 is postponed to Sec-
tion 6.2 because it requires more preparation. Section 4.4 is dedicated to the proof
of Theorem E and Section 4.5 to the proof of Theorem F.

4.1. Proof of Theorem C (One bead theorem). The proof of Theorem C will
be displayed subject to Lemma 4.1 and Proposition 4.2 that are stated below.

LEMMA 4.1. For β > βc, there exist a, a1, a2 > 0 such that

PL,β

(
NL(l) ≥ a1

√
L
)≤ a2e

−a
√

L, L ∈ N.(4.1)

Recall (2.6)–(2.8).

PROPOSITION 4.2. For β > βc, there exist c, c1, c2 > 0 and κ > 1/2 such that
c1

Lκ
eβL−c

√
L ≤ Z◦

L,β ≤ c2√
L

eβL−c
√

L, L ∈ N.(4.2)
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4.1.1. Proof of Theorem C. We will first show that, for β > βc and under the
polymer measure, the probability that there is exactly one macroscopic bead in
the polymer tends to 1 as L → ∞. Then we will show that, with a probability
converging to 1 as L → ∞, the first step and the last step of this macroscopic bead
are at distance less than (logL)4 from 0 and L, respectively. For r ∈ N, we denote
by ZL,β[r] the partition function restricted to those trajectories that do not have
any bead larger than r , that is,

ZL,β[r] = ∑
l∈�L:|Ijmax |≤r

eβHL(l).(4.3)

At this stage, we pick s > 0 and we let AL,s be the subset consisting of those
trajectories having at most one bead larger than s(logL)2, that is,

AL,s = {
l ∈ �L:

∣∣{j ∈ {
1, . . . , nL(l)

}
: |Ij | ≥ s(logL)2}∣∣≤ 1

}
.(4.4)

Partition Ac
L,s with respect to the locations of the two subintervals {i1 + 1, . . . , i2}

and {i3 + 1, . . . , i4} associated with the first two beads that are larger than
s(logL)2. For notational convenience we let L1 := i2 − i1 and L2 := i4 − i3 be
the length of these two first large beads. We do not have Markov property but, with
the help of Lemma 4.3 below, we can estimate the partition function restricted to
those trajectory that make a bead between two given steps.

Recall (cf. notation introduced in Section 1.3 prior to Theorem C) that x1 de-
notes the horizontal extension of the first bead, and that ux1 corresponds to its total
length.

LEMMA 4.3. For L ∈ N,

1
2Z◦

L′,βZL−L′,β ≤ ZL,β

(
ux1 = L′)

(4.5)
≤ Z◦

L′,βZL−L′,β for L′ ∈ {1, . . . ,L}.

PROOF. In the case ux1 = 1, the first bead contains only one horizontal step,
hence the sign of the stretch after x1 is arbitrary, so that obviously ZL,β(ux1 = 1) =
Z◦

1,βZL−1,β . In case ux1 = L′ > 1, note that the stretch lx1 is nonzero, therefore
the next stretch has the same sign as lx1 . By concatenating the trajectories,

ZL,β

(
ux1 = L′)

= Z◦
L′,β(lNL′ > 0)ZL−L′,β(l1 ≥ 0) + Z◦

L′,β(lNL′ < 0)ZL−L′,β(l1 ≤ 0)(4.6)

= Z◦
L′,βZL−L′,β(l1 ≥ 0).

In both cases, thanks to the symmetry of the stretches, we have

1
2Z◦

L′,βZL−L′,β ≤ ZL,β

(
ux1 = L′)

(4.7)
≤ Z◦

L′,βZL−L′,β for L′ ∈ {1, . . . ,L}. �
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We resume the proof of Theorem C and, we use Lemma 4.3 to obtain

PL,β

(
Ac

L,s

)
(4.8)

≤ ∑
1≤i1<i2<i3<i4≤L

L1,L2≥s(logL)2

Zi1,β[s(logL)2]Z◦
L1,β

Zi3−i2,β[s(logL)2]Z◦
L2,β

ZL−i4,β

ZL,β

,

and we write the lower bound

ZL,β ≥ (1
2

)3
Zi1,β

[
s(logL)2]Z◦

L1+L2,β
Zi3−i2,β

[
s(logL)2]ZL−i4,β(4.9)

such that

PL,β

(
Ac

L,s

)≤ 8
∑

1≤i1<i2<i3<i4≤L

L1,L2≥s(logL)2

Z◦
L1,β

Z◦
L2,β

Z◦
L1+L2,β

.(4.10)

By using Proposition 4.2 and the convex inequality√
L1 +√

L2 −√
L1 + L2 ≥ 1

2

√
min{L1,L2},(4.11)

we can bound from above the quantity in the sum in (4.10) by

Z◦
L1,β

Zo
L2,β

Z◦
L1+L2,β

≤ c2
1(L1 + L2)

κ

c2
√

L1L2
e−G̃(aβ)[√L1+√

L2−√
L1+L2](4.12)

≤ c2
1(L1 + L2)

κ

c2
√

L1L2
e−G̃(aβ)

√
s logL/2(4.13)

and since (L1+L2)
κ√

L1L2
≤ Lκ we can state that, for L large enough, (4.10) becomes

PL,β

(
Ac

L,s

)≤ 8c2
1

c2
Lκ+4e−G̃(aβ)

√
s logL/2.(4.14)

Therefore, it suffices to choose
√

s = 4(κ+4)
c

to conclude that

lim
L→∞PL,β

(
Ac

L,s

)= 0.

At this stage, we set BL,s = AL,s ∩ {NL(l) ≤ a1
√

L} and we can use
Lemma 4.1 and the fact that PL,β(Ac

L,s) vanishes as L → ∞ to conclude that
limL→∞ PL,β(BL,s) = 1. Moreover, it comes easily that under the event BL,s

there is exactly one bead larger than s(logL)2 because if there were no bead larger
than s(logL)2, then the total number of beads nL(l) would be larger than L

s(logL)2

which contradicts the fact that NL(l) ≤ a1
√

L because each bead contains at least
one horizontal step and consequently NL(l) ≥ nL(l). Under the event BL,s we de-
note by i1 and i2 the end-steps of the maximal bead, that is, Ijmax = {i1 +1, . . . , i2}.
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Then the proof of Theorem C will be complete once we show that there exists a
v > 0 such that

lim
L→∞PL,β

(
BL,s ∩ {

i1 ≥ v(logL)4})= 0,(4.15)

lim
L→∞PL,β

(
BL,s ∩ {

i2 ≤ L − v(logL)4})= 0.(4.16)

We can bound from above

PL,β

(
BL,s ∩ {

i1 ≥ v(logL)4})
=

L∑
t=v(logL)4

PL,β

(
BL,s ∩ {i1 = t})

≤
L∑

t=v(logL)4

PL,β

(∃j ∈ {
1, . . . , nL(l)

}
:uxj

= t,

|Id | ≤ s(logL)2 ∀d ∈ {1, . . . , j})
≤ 1

2

L∑
t=v(logL)4

Zt,β[s(logL)2]ZL−t,β

Zt,βZL−t,β

,

which finally gives

PL,β

(
BL,s ∩ {

i1 ≥ v(logL)4})≤ 1

2

L∑
t=v(logL)4

Pt,β

(|Ijmax | ≤ s(logL)2).(4.17)

We note that, under Pt,β and on the event {|Ijmax | ≤ s(logL)2}, the number
of beads is larger than t

s(logL)2 , therefore, Nt(l) ≥ t
s(logL)2 and since

√
t ≥√

v(logL)2 we obtain that Nt(l) ≥ √
t(

√
v/s). By choosing v = (a1s)

2, we can
apply Lemma 4.1 to get

PL,β

(
BL,s ∩ {

i1 ≥ v(logL)4})≤ 1

2

L∑
t=v(logL)4

Pt,β

(
Nt(l) ≥ a1

√
t
)

(4.18)

≤ 1

2
a2

L∑
t=v(logL)4

e−a
√

t .

Since the sum in (4.18) vanishes as L → ∞, the proof is complete.

4.2. Proof of Proposition 4.2. We recall the definition of the one bead partition
function introduced in Section 2.1, equations (2.5)–(2.8). Henceforth, we will use
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the notation Z̃◦
L,β = Z

m,◦
L,βe−βL/cβ , so that Proposition 4.2 will be proven once we

show that there exist c1, c2 > 0 and κ > 1/2 such that
c1

Lκ
e−G̃(aβ)

√
L ≤ Z̃◦

L,β ≤ c2√
L

e−G̃(aβ)
√

L for L ∈ N .(4.19)

We will prove (4.19) subject to Lemma 4.4 below and Proposition 2.5. The
proof of Lemma 4.4 is given in Section 4.3 whereas the proof of Proposition 2.5 is
postponed to Section 6.2. For K ⊂ {1, . . . ,L}, we set

Z̃◦
L,β(N ∈ K) = 2

∑
N∈K

(
�(β)

)NPβ

(
V+

N+1,L−N

)
,(4.20)

and similarly we have

Z̃◦
L,β = 2

L∑
N=1

(
�(β)

)NPβ

(
V+

N+1,L−N

)
.(4.21)

LEMMA 4.4. For β > βc, there exists a2 > a1 > 0 such that for L ∈ N,

lim
L→∞

Z̃◦
L,β(a1

√
L ≤ N ≤ a2

√
L)

Z̃◦
L,β

= 1.(4.22)

By using Lemma 4.4, we note that it suffices to prove (4.19) with Z̃◦
L,β(N ∈√

L[a1, a2]) instead of Z̃◦
L,β . For the ease of notation, we will rather take a2 a bit

larger and consider Z̃◦
L,β(1 + N ∈ √

L[a1, a2]). In view of (4.20), we write

Z̃◦
L,β

(
1 + N ∈ √

L[a1, a2])
(4.23)

= 2
a2

√
L∑

N=a1
√

L

(
�(β)

)N−1Pβ

(
V+

N,L−N+1

)
.

For n ∈ N, we recall (1.37) and (2.21) and we note that nYn = An on the set
{Vn = 0,Vi > 0 ∀i ∈ [1,N − 1] ∩ N}. Therefore, we set qN,L := L−N+1

N2 for

N ∈ √
L[a1, a2] ∩N and we can write

V+
N,L−N+1 = {

V :YN = NqN,L,VN = 0,Vi > 0 ∀i ∈ [1,N − 1] ∩N
}
.(4.24)

At this stage, our aim is to bound from above and below the quantities
Pβ(V+

N,L−N+1) for N ∈ √
L[a1, a2] ∩N. The upper bound is obvious, that is,

Pβ

(
V+

N,L−N+1

)≤ Pβ(YN = NqN,L,VN = 0),(4.25)

while the lower bound is obtained as follows. Since qN,L ∈ [ 1
2a2

2
, 1

a2
1
] when N ∈

√
L[a1, a2], we can apply Proposition 2.5 to claim that, there exists C,μ > 0 such
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that for L large enough,

Pβ

(
V+

N,L−N+1

)
(4.26)

≥ C

Nμ
Pβ(YN = NqN,L,VN = 0), N ∈ √

L[a1, a2] ∩N.

By using again the fact that qN,L ∈ [ 1
2a2

2
, 1

a2
1
] when N ∈ √

L[a1, a2], we can ap-

ply Proposition 2.4, which provides a lower and an upper bound on Pβ(YN =
NqN,L,VN = 0). By combining these last two bounds with (4.25)–(4.26) and by
setting κ = 1 + μ/2, we can assert that there exists R1 > R2 > 0 such that for L

large enough and all N ∈ √
L[a1, a2] we have that

R2

Lκ
eN[−h̃0(qN,L,0)qN,L+L
(h̃(qN,L,0))]

(4.27)

≤ Pβ

(
V+

N,L−N+1

)≤ R1

L
eN[−h̃0(qN,L,0)qN,L+L
(h̃(qN,L,0))].

At this stage, we recall the definition of G̃ in (1.27) and we set

QL,β :=
a2

√
L∑

N=a1
√

L

e
√

LGL,N(4.28)

with

GL,N = N√
L

(qN,L)1/2G̃

(
1

(qN,L)1/2

)
(4.29)

and we use (4.20) and (4.27) to claim that there exists R3 > R4 > 0 (depending on
β only) such that for L large enough,

R4

Lκ
QL,β ≤ Z̃◦

L,β

(
N ∈ √

L[a1, a2])≤ R3

L
QL,β.(4.30)

We recall that a �→ G̃(a) is a strictly negative and strictly concave function on
(0,∞) and reaches its unique maximum at aβ , which obviously belongs to [a1, a2].
Since, by Lemma 5.3, a �→ G̃(a) is C1 on (0,∞), we can assert that it is Lips-
chitz on each compact subset of (0,∞). Moreover, there exists a C > 0 such that
|qN+1,L − qN,L| ≤ C/

√
L for N ∈ √

L[a1, a2] and we have that(
1 − a2√

L

)1/2

≤ N√
L

(qN,L)1/2 ≤
(

1 − a1√
L

)1/2

, N ∈ √
L[a1, a2],(4.31)

therefore, we can take the supremum of GL,N on N ∈ [a1
√

L,a2
√

L] ∩ N and it
comes that

sup
{
GL,N ;N ∈ √

L[a1, a2] ∩N
}= G̃(aβ) + O

(
1√
L

)
.(4.32)
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By putting together (4.28) and (4.32), we obtain that there exists R5 > R6 > 0 such
that for L large enough,

R6e
G̃(aβ)

√
L ≤ QL,β ≤ R5

√
LeG̃(aβ)

√
L.(4.33)

At this stage, it suffices to combine (4.30) with (4.33) to complete the proof of
(4.19) with κ = μ/2 + 1.

4.3. Proof of Lemmas 4.1 and 4.4. We will only display the proof of
Lemma 4.4 because the proof of Lemma 4.1 is obtained in a very similar man-
ner. We recall (4.20) and (4.21) and we will first show that there exists γ > 0 and
c > 0 such that

Z̃◦
L,β ≥ ce−γ

√
L, L ∈N.(4.34)

Then we will show that there exist a2 > a1 > 0 and c1, c2 > 0 such that

Z̃◦
L,β(N ≥ a2

√
L) ≤ c2e

−2γ
√

L, L ∈ N,
(4.35)

Z̃◦
L,β(N ≤ a1

√
L) ≤ c1e

−2γ
√

L, L ∈ N.

Putting together (4.34) and (4.35), we will immediately obtain (4.22). To be-
gin with, set r := � L

1+�√L��, u := L − r − (r − 1)�√L� and note that u ∈
{�√L�, . . . ,2�√L�}. Then consider the trajectory V ∗ ∈ V+

r+1,L−r defined as V0 =
Vr+1 = 0, V1 = · · · = Vr−1 = �√L� and Vr = u. One can therefore compute

Pβ

(
V ∗)=

(
1

cβ

)r+1

e−(β/2)(2u) ≥
(

1

cβ

)r+1

e−2β�√L�,(4.36)

and consequently by restricting the sum in (4.20) to N = r , by using (4.36) and
the inequality �√L� ≤ √

L, we obtain

Z̃◦
L,β ≥ 2

cβ

(
�(β)

cβ

)r

e−2β
√

L.(4.37)

It remains to note that r ≤ √
L and to recall that cβ > 1 and that �(β) < 1 because

β > βc. This is sufficient to obtain (4.34).
Proving the first inequality in (4.35) is easy because �(β) < 1, and thus, we can

use (4.20) to claim that there exists a C > 0 such that

Z̃◦
L,β(N ≥ a2

√
L) ≤ 2

∞∑
N=a2

√
L

(
�(β)

)N ≤ Cea2 log(�(β))
√

L.(4.38)

Since log(�(β)) < 0, it suffices to choose a2 large enough to obtain the first in-
equality in (4.35).
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To prove the last inequality in (4.35), we note that, for N ≤ a1
√

L and for all

(Vi)
N+1
i=0 ∈ V+

N+1,L−N we have max{Vj , j ∈ {1, . . . ,N}} ≥ L−N
N

≥
√

L
a1

− 1 and
therefore, for L large enough we have

Pβ

(
V+

N+1,L−N

)≤ Pβ

(
max{Vj , j ≤ a1

√
L} ≥

√
L

2a1

)
(4.39)

≤ Pβ

(
a1

√
L∑

i=1

|Ui | >
√

L

2a1

)
,(4.40)

and since U1 has some finite exponential moments, we can apply a standard
Cramér’s theorem to obtain that for L large enough, there exists g(a1) > 0 such
that lima1→0+ g(a1) = ∞ and that Pβ(V+

N+1,L−N) ≤ e−g(a1)
√

L for N ≤ a1
√

L.
Therefore, by taking a1 small enough we obtain the second inequality in (4.35),
which completes the proof of Lemma 4.4.

4.4. Proof of Theorem E (Horizontal extension). To begin this section, we
prove that G̃ is strictly concave and reaches its maximum at a unique point
aβ ∈ (0,∞). Recall (1.27) and compute its first two derivatives (by using that
∇L
(̃h(q,0)) = (q,0)), that is,

d

da
G̃(a) = log�(β) + 1

a2 h̃0

(
1

a2 ,0
)

+L


(
h̃
(

1

a2 ,0
))

,(4.41)

d2

da2 G̃(a) = − 2

a3 h̃0

(
1

a2 ,0
)

− 4

a5 ∂1h̃0

(
1

a2 ,0
)
.(4.42)

It suffices to show that d2

da2 G̃(a) < 0 on (0,∞) and that d
da

G̃(a) has a zero on
(0,∞). Since h̃0(x,0) = −2h̃1(x,0) (recall Remark 5.5), we consider R : u �→∫ 1

0 xL′((x − 1
2)u) dx so that ∂1(L
)(̃h(x,0)) = R(h̃0(x,0)). Clearly, R(0) = 0 and

R′(u) = 2
∫ 1

0 x2L′′(xu)dx because L is even [recall (1.23)]. Therefore, R′(u) > 0
when u 
= 0 and R < 0 on (−∞,0) and R > 0 on (0,∞). Since R(h̃0(x,0)) = x

for x ∈ R, we can claim that h̃0(x,0) > 0 for x ∈ (0,∞) and by differentiating
this latter equality we obtain that ∂1h̃0(x,0) = 1/R′(h̃0(x,0)), which is strictly
positive on (0,∞). This completes the proof.

Let us start the proof of Theorem E. Recall that i1 and i2 are the end-steps of
the largest bead Ijmax , that is, Ijmax = {i1 + 1, . . . , i2}. For v > 0, we let

TL,v := {
l ∈ �L: i1 ≤ v(logL)4, i2 ≥ L − v(logL)4,

(4.43)
Ijmax = {i1 + 1, . . . , i2}}.

By Theorem C, there exists a v > 0 such that limL→∞ PL,β(TL,v) = 1. Therefore,
the proof will be complete once we show that

lim
L→∞PL,β

({∣∣∣∣NL(l)√
L

− aβ

∣∣∣∣> ε

}
∩ TL,v

)
= 0.(4.44)
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Let NIjmax
denote the number of horizontal steps made by the random walk in its

largest bead. Pick ε′ < ε and since the first step and the last step of the largest bead
are at distance less than v(logL)4 from 0 and L, respectively, we can write that for
L large enough

PL,β

({∣∣∣∣NL(l)√
L

− aβ

∣∣∣∣> ε

}
∩ TL,v

)

≤ ∑
1≤i1≤v(logL)4

L−v(logL)4≤i2≤L

PL,β

(∣∣∣∣ NIjmax√
i2 − i1

− aβ

∣∣∣∣> ε′, Ijmax = {i1 + 1, . . . , i2}
)

(4.45)

≤ 4
∑

1≤i1≤v(logL)4

L−v(logL)4≤i2≤L

Z◦
i2−i1,β

(|(N/
√

i2 − i1) − aβ | > ε′)
Z◦

i2−i1,β

,

where the coefficient 4 in front of the RHS in (4.45) comes from a direct ap-
plication of Lemma 4.3. Now, we focus on the numerator of the RHS in (4.45)
and since G̃ is strictly concave and reaches its maximum at aβ we can claim
that the maximum of G̃ on (0, aβ − ε′] ∪ [aβ + ε′,∞) is given by T (ε′) =
max{G̃(aβ − ε′), G̃(aβ + ε′)}. We proceed as in (4.23)–(4.32) and we get that
there exist a C1 > 0 such that

Z◦
i2−i1,β

(∣∣∣∣ N√
i2 − i1

− aβ

∣∣∣∣> ε′
)

≤ C1√
i2 − i1

eβ(i2−i1)eT (ε′)
√

i2−i1 .(4.46)

We apply Proposition 4.2 and the denominator can be bounded from below as

Z◦
i2−i1,β

≥ C2

(i2 − i1)κ
eβ(i2−i1)eG̃(aβ)

√
i2−i1,(4.47)

for some constants κ > 1/2 and C2 > 0. Since L − 2v(logL)4 ≤ i2 − i1 ≤ L, we
can state that, for L large enough, (4.45) becomes

PL,β

({∣∣∣∣NL(l)√
L

− aβ

∣∣∣∣> ε

}
∩ TL,v

)
(4.48)

≤ C3L
κ−1/2 log8(L)e−(G̃(aβ)−T (ε′))

√
L−2v log4 L.

Since G̃(aβ) > T (ε′), the RHS vanishes as L → ∞, and this completes the proof.

4.5. Proof of Theorem F (Wulff shape). Before displaying the proof of Theo-
rem F, we provide a rigorous definition of γ ∗

β and we associate with each trajectory
l ∈ �L the process Ml that links the middle of each stretch consecutively.
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The Wulff shape γ ∗
β can be defined3 as

γ ∗
β = argmin

{
J (γ ), γ ∈ B[0,1],

∫ 1

0
γ (t) dt = 1

a2
β

, γ (0) = γ (1) = 0
}
,(4.49)

where B[0,1] is the set containing the cadlag real functions defined on [0,1], where
J : B[0,1] → [0,∞] is defined as

J (γ ) =
⎧⎨⎩
∫ 1

0
L∗(γ ′(t)

)
dt, if γ ∈ AC,

+∞, otherwise,
(4.50)

where AC is the set of absolutely continuous functions and where L∗ is the Leg-
endre transform of L, that is,

L∗(u) = sup
{
hu −L(h), h ∈

(
−β

2
,
β

2

)}
, u ∈ R.(4.51)

Using the duality between L and L∗, we easily obtain the formula (1.28) given in
the Introduction, which easily implies [recall (1.27)] that G̃(aβ) = aβ(log�(β) −
J (γ ∗

β )). Finally, we note that one can prove without further difficulty that

{−γ ∗
β , γ ∗

β

}= argmin
{
J (γ ), γ ∈ B[0,1],A(γ ) = 1

a2
β

, γ (0) = γ (1) = 0
}
,(4.52)

where A(γ ) := ∫ 1
0 |γ (s)|ds is the geometric area enclosed between the graph of γ

and the x-axis.
We recall the definition of E+

l and E−
l in (1.32) and we also associate with

each l ∈ LN,L the path Ml = (Ml,i)
N+1
i=0 that links the middles of each stretch

consecutively and is defined as Ml,0 = 0

Ml,i = l1 + · · · + li−1 + li

2
, i ∈ {1, . . . ,N},(4.53)

and Ml,N+1 = l1 + · · · + lN . We recall that the TN transformation, defined in
Section 2.1, associates with each l ∈ LN,L the path Vl = (TN)−1(l) such that
Vl,0 = 0, Vl,i = (−1)i−1li for all i ∈ {1, . . . ,N} and Vl,N+1 = 0. As a conse-
quence, E+

l = Ml + |Vl |
2 and E−

l = Ml − |Vl |
2 , that is,

E+
l,i = Ml,i + |Vl,i |

2
, i ∈ {0, . . . ,N + 1},

(4.54)

E−
l,i = Ml,i − |Vl,i |

2
, i ∈ {0, . . . ,N + 1},

3The set on the RHS of (4.49) is not empty since it contains the hat function γ (t) = γ (1 − t) = 2t
aβ

for 0 ≤ t ≤ 1
2 .
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and the path (Ml,i)
N+1
i=0 can be rewritten with the increments (Ui)

N+1
i=1 of the Vl

random walk as

Ml,i =
i∑

j=1

(−1)j+1 Uj

2
, i ∈ {1, . . . ,N}.(4.55)

Similarly to what we did to define Ẽ+
l and Ẽ−

l in (1.34), we let M̃l and Ṽl be the
time–space rescaled cadlag process associated to Ml and Vl .

PROOF OF THEOREM F. Equations (4.54) that allows to express E+
l and E−

l

with the help of the two processes Vl and Ml can be translated in terms of the

time–space rescaled processes as Ẽ+
l = M̃l + |Ṽl |

2 and Ẽ−
l = M̃l − |Ṽl |

2 . Therefore,
Theorem F is a straightforward consequence of the two following lemmas.

LEMMA 4.5. For β > βc and ε > 0,

lim
L→∞PL,β

(∥∥|Ṽl| − γ ∗
β

∥∥∞ > ε
)= 0.(4.56)

LEMMA 4.6. For β > 0 and ε > 0,

lim
L→∞PL,β

(‖M̃l‖∞ > ε
)= 0.(4.57)

�

PROOF OF LEMMA 4.5. For conciseness, we set UL,ε = {l ∈ �L:‖|Ṽl| −
γ ∗
β ‖∞ > ε}. Thanks to Theorem E, Lemma 4.5 will be proven once we show that

there exists an η > 0 such that

lim
L→∞PL,β

(
UL,ε ∩

{∣∣∣∣NL(l)√
L

− aβ

∣∣∣∣≤ η

})
= 0.(4.58)

We decompose the LHS in (4.58) with respect to the value taken by NL(l), that is,

PL,β

(
UL,ε ∩

{∣∣∣∣NL(l)√
L

− aβ

∣∣∣∣≤ η

})
(4.59)

= ∑
N∈Iη,L

PL,β

(
UL,ε ∩ {

NL(l) = N
})

,

where Iη,L = {(aβ − η)
√

L, . . . , (aβ + η)
√

L}. By recalling Section 2.1, the prob-
ability in the RHS of (4.59) can be rewritten, with the help of the random walk
representation, as

PL,β

(
UL,ε ∩ {

NL(l) = N
})

= (�(β))N

Z̃L,β

Pβ

(∥∥|ṼN+1| − γ ∗
β

∥∥∞ > ε,

ṼN+1(1) = 0,A(ṼN+1) = L − N

(N + 1)2

)
,
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where (Vi)
N+1
i=0 is a random walk of law Pβ and ṼN+1 is the time–space rescaled

process associated with (Vi)
N+1
i=0 , that is,

ṼN+1(t) = 1

N + 1
V�t (N+1)�, t ∈ [0,1],

and where Z̃L,β = ZL,βe−βL/cβ . Note that there exists a function g : R+ → R
+

such that limη→0 g(η) = 0 and such that for N ∈ Iη,L the probability in the RHS
of (4.60) is bounded from above by Pβ(ṼN ∈ Ḩε,η), where

Hε,η =
{
γ ∈ B[0,1]:A(γ ) ≥ 1

a2
β

− g(η), γ (0) = γ (1) = 0,

(4.60) ∥∥|γ | − γ ∗
β

∥∥∞ ≥ ε

}
.

Thus, we need to identify the exponential growth rate of Pβ(ṼN ∈ Hε,η). To that
aim, we apply the Mogulskii theorem [see Dembo and Zeitouni (2010), Theo-
rem 5.1.2] which ensures that (ṼN)N∈N follows a large deviation principle on the
set B([0,1]) endowed with the supremum norm ‖ ·‖∞ and with the good rate func-
tion J defined in (4.50). Since Hε,η is a closed subset of (B[0,1],‖ · ‖∞) we can
assert that

lim sup
n→∞

1

N
log Pβ(ṼN ∈ Hε,η) ≤ − inf

{
J (γ ), γ ∈ Hε,η

}
.(4.61)

We pick M > inf{J (γ ), γ ∈Hε,1} and set HM
ε,η = {γ ∈ Hε,η:J (γ ) ≤ M} such that

the inequality (4.61) becomes

lim sup
n→∞

1

N
log Pβ(ṼN ∈ Hε,η) ≤ − inf

{
J (γ ), γ ∈ HM

ε,η

}
.(4.62)

At this stage, it remains to show that there exists α > 0 and η0 > 0 such that for all
η ∈ (0, η0],

inf
{
J (γ ), γ ∈ HM

ε,η

}− α ≥ inf
{
J (γ ), γ ∈ H0,0

}= J
(
γ ∗
β

)
.(4.63)

Assume that (4.63) fails to be true, then there exists a strictly positive sequence
(zn)n∈N that tends to 0 as n → ∞ such that for all n ∈ N there exists a γn ∈ HM

ε,zn

satisfying J (γn) ≤ J (γ ∗
β ) + 1/n. Since J is a good rate function, we can assert

that HM
ε,1 is a compact set of (B[0,1],‖ · ‖∞) and consequently γn is converg-

ing by subsequence toward some γ∞ ∈ HM
ε,1. Since A and J are continuous and

lower semi-continuous on (B[0,1],‖ · ‖∞), respectively, it comes that γ∞ ∈ HM
ε,0

and J (γ∞) ≤ J (γ ∗
β ), which leads to a contradiction because −γ ∗

β and γ ∗
β are the

unique maximizer of J on H0,0 and γ∞ /∈ {−γ ∗
β , γ ∗

β }. At this stage, we go back to
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(4.60) and we can write, for η ∈ (0,1]
PL,β

(
UL,ε ∩ {∣∣NL(l) − aβ

∣∣≤ η
})

(4.64)

≤ 2η

Z̃L,β

√
L
(
�(β)

)(aβ−η)
√

LPβ(ṼN+1 ∈ Hε,η).

Thus, by (4.62) and (4.64) we can assert that for all η ∈ (0, η0] and for L large
enough

PL,β

(
UL,ε ∩ {∣∣NL(l) − aβ

∣∣≤ η
})

≤ 2η
√

L

Z̃L,β

(
�(β)

)(aβ−η)
√

L
e
−(aβ−η)

√
L(J (γ ∗

β )+α)
,(4.65)

≤ 2η
√

L

Z̃L,β

e
√

L(aβ−η)(log�(β)−J (γ ∗
β )−α)

.

Recall the equality G̃(aβ) = aβ(log�(β) − J (γ ∗
β )) and recall that for β > βc,

we have proved in (4.19) that there exists c1 > 0 and κ > 0 such that for L large
enough,

Z̃L,β ≥ c1

Lκ
e
√

LG̃(aβ).(4.66)

Thus, we can use (4.65) to claim that by choosing η small enough and L large
enough we have for a constant c2 > 0,

PL,β

(
UL,ε ∩ {∣∣NL(l) − aβ

∣∣≤ η
})≤ 1

c2
L1/2+κe−(α/2)aβ

√
L,(4.67)

which completes the proof of Lemma 4.5. �

PROOF OF LEMMA 4.6. Lemma 4.6 will be proven once we show that for all
ε > 0,

lim
L→∞PL,β

(
1

1 + NL(l)
max

i≤1+NL(l)
|Ml,i | ≥ ε

)
= 0.(4.68)

Proving (4.68) requires to control, under PL,β , the probability that, the gap be-

tween the modulus of the algebraic area (NL(l)|Yl | := |∑NL(l)
i=1 Vl,i |) and the ge-

ometric area (
∑NL(l)

i=1 |Vl,i |) of the random walk trajectory Vl = (TNL(l))
−1(l) as-

sociated with l ∈ �L does not exceed log(L)4. This is the object of Lemma 4.7
below.

LEMMA 4.7. For β > βc there exists a c > 0 such that

lim
L→∞PL,β

(
NL(l)|Yl| /∈ [

L − NL(l) − c(logL)4,L − NL(l)
])= 0.(4.69)
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PROOF. By Theorem C, there exists a c > 0 such that

lim
L→∞PL,β

[|Ijmax | ≤ L − c(logL)4]= 0.(4.70)

Note that for l ∈ �L, we have
∑NL(l)

i=1 |Vl,i | = ∑NL(l)
i=1 |li | = L − NL(l) and that,

with the definition of jmax and xjmax in (1.19) and (1.20) we have also

NL(l)∑
i=1

|Vl,i | − 2
∑
i /∈Ol

|Vl,i | ≤
∣∣∣∣∣
NL(l)∑
i=1

Vl,i

∣∣∣∣∣≤
NL(l)∑
i=1

|Vl,i |,(4.71)

where Ol = {xjmax−1 + 1, . . . , xjmax} gathers the indexes of those stretches in l =
(l1, . . . , lNL(l)) that belong to the largest bead described by l. Moreover, we note
that l ∈ {|Ijmax | ≥ L − c(logL)4} yields∑

i /∈Ol

|Vl,i | =
∑
i /∈Ol

|li | ≤ c(logL)4.(4.72)

At this stage, we recall that NL(l)Yl = ∑NL(l)
i=1 Vl,i and we use (4.71) and

(4.72) to assert that l ∈ {|Ijmax | ≥ L − c(logL)4} implies NL(l)|Yl| ∈ [L −
NL(l) − 2c(logL)4,L − NL(l)]. It remains to use (4.70) to complete the proof
of Lemma 4.7. �

Let us resume the proof of Lemma 4.6. For ε > 0 and for η > 0, we set

KL,ε =
{

1

1 + NL(l)
max

i≤1+NL(l)
|Ml,i | ≥ ε

}
,

RL,η =
{∣∣∣∣NL(l)√

L
− aβ

∣∣∣∣≤ η

}
(4.73)

∩ {
NL(l)|Yl | ∈ [

L − NL(l) − c(logL)4,L − NL(l)
]}

.

Thanks to Theorem E and Lemma 4.7, it suffices to show that there exists η > 0
such that for all ε > 0,

lim
L→∞PL,β(KL,ε ∩ RL,η) = 0.(4.74)

We decompose the LHS in (4.74) with respect to the value taken by NL(l) and Yl ,
that is,

PL,β(KL,ε ∩ RL,η)

= ∑
N∈Iη,L

∑
q∈FL,N

[
PL,β

(
KL,ε ∩ {

NL(l) = N
}∩ {

Yl = q(N + 1)
})

(4.75)

+ PL,β

(
KL,ε ∩ {

NL(l) = N
}∩ {

Yl = −q(N + 1)
})]

,
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where

Iη,L = {
(aβ − η)

√
L, . . . , (aβ + η)

√
L
}
,

FL,N = 1

N(N + 1)

{
L − N − c(logL)4, . . . ,L − N

}
.

We recall the definition of AN below (1.14) and of YN in (2.21). With the ran-
dom walk representation we obtain, for N ∈ Iη,L and q ∈ FL,N , that

PL,β

(
KL,ε ∩ {

NL(l) = N
}∩ {

Yl = q(1 + N)
})

= (�(β))N

Z̃L,β

Pβ

(
AN = L − N,YN+1 = q(N + 1),

(4.76)
1

1 + N
max

i≤1+N
|MN+1,i | ≥ ε,VN+1 = 0

)

≤ (�(β))N

Z̃L,β

Pβ

(
YN+1 = q(N + 1),VN+1 = 0

)
DN+1,q ,

where Z̃L,β = ZL,βe−βL/cβ , where the middle line (MN+1,i )
N+1
i=0 is defined

with the increments (Ui)
N+1
i=1 of the V random walk [recall (4.55)] as MN+1,i =∑i

j=1(−1)i+1 Ui

2 for i = 1, . . . ,N + 1, and where

DN,q = Pβ

(
1

N
max
i≤N

|MN,i | ≥ ε|YN = qN,VN = 0
)
.(4.77)

By picking η = aβ/2, we can easily check that there exists [q1, q2] ⊂ (0,∞) such
that for all N ∈ Iη,L we have FN,L ⊂ [q1, q2]. We recall (2.26) and we tilt Pβ into
PN,hq

N
so that we can use Proposition 2.2 and claim that there exists a c > 0 such

that for L large enough, we have

DN,q ≤
PN,hq

N
((1/N)maxi≤N |MN,i | ≥ ε)

PN,hq
N
(YN = qN,VN+1 = 0)

(4.78)
≤ cN2PN,hq

N

(
max
i≤N

|MN,i | ≥ εN
)
.

At this stage, we use (4.75), (4.76), (4.78) and the inequalities �(β) < 1 and (4.66)
to assert that the proof of Lemma 4.6 will be complete once we show that for
[q1, q2] ∈ (0,∞) and ε > 0 there exists a ϑ > 0 such that for N large enough we
have

sup
q∈[q1,q2]

PN,hq
N

(
max
i≤N

|MN,i | ≥ εN
)

≤ e−ϑN .(4.79)

We recall that, for 1 ≤ j ≤ N , we have EN,hq
N
(Uj ) = L′(hj

N) with h
j
N = (1 −

j
N

)h
q
N,0 + h

q
N,1. As a consequence, and because of Lemma 5.4, we can assert that,



3274 P. CARMONA, G. B. NGUYEN AND N. PÉTRÉLIS

for N large enough and uniformly in q ∈ [q1, q2], all hi
N belong to some compact

set K ⊂ (−β
2 ,

β
2 ). Therefore, we can show that there exists c1 > 0 and M1 > 0

such that for N large enough

sup
q∈[q1,q2]

sup
1≤i≤N

EN,hq
N

(
ec1|Ui |)≤ M1,(4.80)

which is sufficient to deduce, still for N large enough, that there exists c2 > 0 and
δ0 > 0 such that

sup
q∈[q1,q2]

sup
1≤i≤N

sup
δ∈[−δ0,δ0]

EN,hq
N

(
eδ(Ui−L′(hN,j )))≤ ec2δ

2
.(4.81)

Then we set

M̂N,i = MN,i − EN,hq
N
(MN,i) = 1

2

i∑
j=1

(−1)j+1(Uj −L′(hN,j )
)
,

(4.82)
i = 1, . . . ,N,

and since, under the law PN,hq
N

, the increments (Ui)
N
i=0 are independent, we de-

duce from (4.81) that, for N large enough, there exists c3 > 0 and δ0 > 0 such
that

sup
q∈[q1,q2]

sup
1≤i≤N

sup
δ∈[−δ0,δ0]

EN,hq
N

(
eδM̂N,i

)≤ ec3δ
2N.(4.83)

The inequality in (4.83) is sufficient to derive (4.79) with random variables
(M̂N,i)

N
i=1 instead of (MN,i)

N
i=1. Then we recover (4.79) by showing that

EN,hq
N
(MN,i) is bounded by some constant uniformly in q ∈ [q1, q2], N ≥ 2 and

i ∈ {1, . . . ,N}. The latter boundedness is obtained by writing, for all 1 ≤ i ≤ N

that

2
∣∣EN,hq

N
[MN,i]

∣∣= ∣∣∣∣∣
i∑

j=1

(−1)jL′(hj
N

)∣∣∣∣∣
≤ ∥∥L′∥∥∞,K +

∣∣∣∣∣
�i/2�∑
j=1

L′(h2j−1
N

)−L′(h2j
N

)∣∣∣∣∣(4.84)

≤ ∥∥L′∥∥∞,K + C
∥∥L′′∥∥∞,K ≤ C3,

with ‖f ‖∞,K = supx∈K |f (x)| being the sup norm on the compact K . �

5. Decay rate of large area probability.

5.1. Proof of Proposition 2.3 (Decay rate of large area probability). We will
display here the proof of Proposition 2.3 subject to Lemma 5.1, Corollary 5.2 and
Lemmas 5.3, 5.4 that are stated and proven below.
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In what follows, we use the notation ‖x‖ = max{|x1|, |x2|} and x · y = x1y1 +
x2y2 and d(x,F ) = infy∈F ‖x − y‖ for x = (x1, x2) ∈ R

2, y = (y1, y2) ∈ R
2 and

F ⊂ R
2. We also denote by ∂F the boundary of F ⊂R

2.

LEMMA 5.1. For all (j1, j2) ∈ (N∪{0})2 and all compact and convex subsets
K in D, there exists c > 0 such that

sup
h∈K

∣∣∣∣∂(j1,j2)

[
1

n
L
n

]
(h) − ∂(j1,j2)L
(h)

∣∣∣∣≤ c

n
, n ∈ N.(5.1)

PROOF. For all (j1, j2) ∈ N
2, we first differentiate inside the integral

∂(j1,j2)L
(h) =
∫ 1

0
∂

(j1,j2)
h0,h1

L(xh0 + h1) dx.(5.2)

Then, by using the error estimate for the Riemann sum of x �→ ∂
(j1,j2)
h0,h1

L(xh0 +h1),
we obtain the result. �

By applying Lemma 5.1 for (j1, j2) = (0,1) and (j1, j2) = (1,0), we immedi-
ately obtain the following.

COROLLARY 5.2. For all compact and convex subsets K in D, there exist a
c > 0 such that

sup
h∈K

∥∥∥∥∇[1

n
L
n

]
(h) − ∇L
(h)

∥∥∥∥≤ c

n
, n ∈ N.(5.3)

For η > 0, we let Kη be the compact and convex subset of D defined as

Kη :=
{

h = (h0, h1) ∈ R
2:h1 ∈

[
−β

2
+ η,

β

2
− η

]
,

(5.4)

h0 + h1 ∈
[
−β

2
+ η,

β

2
− η

]}
.

LEMMA 5.3. The function ∇L
:D �→R
2 defined as

∇L
(h) = (∂h0L
, ∂h1L
)(h)
(5.5)

=
(∫ 1

0
xL′(xh0 + h1) dx,

∫ 1

0
L′(xh0 + h1) dx

)
is a C1 diffeomorphism. Moreover, for all M > 0 there exists a η > 0 such that
‖∇L
(h)‖ > M for h ∈D \ Kη.



3276 P. CARMONA, G. B. NGUYEN AND N. PÉTRÉLIS

PROOF. The fact that h �→ L′(h) is C1 and that L′′(h) is strictly positive on
(−β

2 ,
β
2 ) ensures that ∇L
 is C1 and that its Jacobian determinant that takes value

Jh∇L
 =
∫ 1

0
x2L′′(xh0 + h1) dx

∫ 1

0
L′′(xh0 + h1) dx

(5.6)

−
[∫ 1

0
xL′′(xh0 + h1) dx

]2

is, by Cauchy–Schwarz inequality, strictly positive. Thus, the proof that ∇L
 is a
C1 diffeomorphism from D to R

2 will be complete once we show that ∇L
 is a
bijection from D to R

2.
At this stage, we note that for each y ∈ R

2 the function

Ty : h → L
(h) − y · h(5.7)

is strictly convex and tends to ∞ as d(h, ∂D) → 0. Therefore, Ty admits a unique
minimum on D at h̃(y) that is also the unique solution of ∇L
(h) = y. Thus, ∇L


is a bijection from D to R
2.

We complete the proof of this lemma by assuming that there exists an M0 > 0
and a sequence (hn)

∞
n=0 in D so that d(hn, ∂D) → 0 as n → ∞ and ‖∇L
(hn)‖ ≤

M0. Then set yn = ∇L
(hn) and recall that hn is the minimum of Tyn for all
n ∈ N. However, Tyn(0,0) = 0 and consequently Tyn(hn) ≤ 0 for all n ∈ N and
then L
(hn) ≤ yn ·hn which brings a contradiction because limn→∞L
(hn) = ∞
[since d(hn, ∂D) → 0] whereas yn ·hn is smaller than M0 times the diameter of D.

�

LEMMA 5.4. For n ∈ N \ {0,1}, the function ∇[ 1
n
L
n]:Dn �→R

2 defined as

∇
[

1

n
L
n

]
(h) = ∂h0

[
1

n
L
n, ∂h1L
n

]
(h)(5.8)

=
(

1

n

n−1∑
i=0

i

n
L′
(

i

n
h0 + h1

)
,

1

n

n−1∑
i=0

L′
(

i

n
h0 + h1

))
(5.9)

is a C1 diffeomorphism. Moreover, for all M > 0 there exists a η > 0 and a n0 ∈N

so that ‖∇[ 1
n
L
n](h)‖ > M for n ≥ n0 and h ∈ Dn \ Kη.

PROOF. The first part of the proof, that is, showing that ∇[ 1
n
L
n] is a C1

diffeomorphism, is similar to that of Lemma 5.3 above. For the second part of the
lemma, we first note that limη→0+ min{L
(h): h ∈ ∂Kη} = ∞. Then, for a given
M > 0, we can pick η0 > 0 so that L
 remains larger than 2M on ∂Kη0 . Moreover,
Lemma 5.1 ensures that 1

n
L
n converges to L
 uniformly on Kη0 and, therefore,

there exists n0 ∈ N such that for all n ≥ n0, 1
n
L
n remains strictly larger than M on

∂Kη0 . Consider h ∈Dn \Kη and let t ∈ (0,1) be the unique solution of th ∈ ∂Kη0 .
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By convexity and since 1
n
L
n(0,0) = 0, we claim that 1

n
L
n(h) ≥ 1

n
L
n(th) > M

which completes the proof. �

REMARK 5.5. As in the proof of Lemma 5.3 above, we denote by h̃ :=
(h̃0, h̃1) the inverse function of ∇L
. Since L is an even function, we easily
obtain, for instance, by observing that T(q,0)(h0, h1) = T(q,0)(h0,−h0 − h1), that
h̃0(q,0) = −2h̃1(q,0) > 0 for all q > 0. We will also denote by hq

n := (h
q
n,0, h

q
n,1)

the unique solution of ∇[ 1
n
L
n](h) = (q,0) for all n ≥ 2 and q > 0. Again the fact

that L is even ensures that h
q
n,0(1 − 1

n
) = −2h

q
n,1 > 0.

At this stage, we have enough tools to prove Proposition 2.3.

PROOF OF PROPOSITION 2.3. Pick q ∈ [q1, q2], n ∈ N and note that∣∣∣∣[1

n
L
n

(
hq

n

)− h
q
n,0q

]
− [

L


(̃
h(q,0)

)− h̃0(q,0)q
]∣∣∣∣≤ A + B + C(5.10)

with

A =
∣∣∣∣1nL
n

(
hq

n

)−L


(
hq

n

)∣∣∣∣,
(5.11)

B = ∣∣L


(
hq

n

)−L


(̃
h(q,0)

)∣∣, C = q
∣∣hq

n,0 − h̃0(q,0)
∣∣.

From Lemma 5.4, we know that there exists an η > 0 and a n0 ∈ N such that hq
n ∈

Kη for all q ∈ [q1, q2] and n ≥ n0. By using Lemma 5.1 with (j1, j2) = (0,0) and
K = Kη, we can claim that there exists a c1 > 0 satisfying A ≤ c1

n
for n ≥ n0 and

q ∈ [q1, q2]. The B quantity is dealt with by applying Corollary 5.2 with K = Kη,
that is there exists a c2 > 0 such that

sup
x∈Kη

∥∥∥∥∇[1

n
L
n

]
(x) − ∇L
(x)

∥∥∥∥≤ c2

n
, n ≥ n0.(5.12)

Therefore, for q ∈ [q1, q2] and n ≥ n0 we can write

∇
[

1

n
L
n

](
hq

n

)= ∇L


(
hq

n

)+ εn,q,

(5.13)
(q,0) = ∇L


(
hq

n

)+ εn,q

with ‖εn,q‖ ≤ c2
n

. Therefore, by Lemma 5.3, we can claim that hq
n = h̃((q,0) −

εn,q). We set

Qn =
{
(x, y) ∈ R

2: d
(
(x, y), [q1, q2] × {0})≤ c2

n

}
,

so that there exists a n1 ≥ n0 such that Qn1 is a convex subset of D and since
x �→ h̃(x) is C1 on D we can claim that h̃ is Lipschitz on Qn1 . Thus, there exists a
c3 > 0 such that∥∥hq

n − h̃
(
(q,0)

)∥∥≤ c3‖εn,q‖ ≤ c2c3

n
, q ∈ [q1, q2], n ≥ n1,(5.14)
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and this proves (2.29). Moreover,

C ≤ q2
∥∥hq

n − h̃
(
(q,0)

)∥∥≤ q2c2c3

n
, q ∈ [q1, q2], n ≥ n1.(5.15)

Finally, since L
 is C1 on D, there exists a c4 > 0 such that L
 is Lipschitz with
constant c4 on Qn1 . Thus,

B ≤ c4
∥∥hq

n − h̃
(
(q,0)

)∥∥≤ c2c3c4

n
, q ∈ [q1, q2], n ≥ n1.(5.16)

This completes the proof of Proposition 2.3. �

6. Limit theorems for the joint distribution. In Section 6.1 below, we give
a proof of Proposition 2.2 which estimates, uniformly in q ∈ [q1, q2] ⊂ (0,∞),
the probability of the event {
n = (Yn,Vn) = (nq,0)} under the tilted law Pn,hq

n

[recall (2.26)]. To that aim, we state and prove Proposition 6.1, which gives a local
central limit theorem for (Yn,Vn) under Pn,hq

n
. In Section 6.2, we prove Propo-

sition 2.5 which allows us to bound from below the probability that, under Pβ

and conditioned on both Vn = 0 and Yn = nq the random walk V remains strictly
positive.

6.1. Proof of Proposition 2.2. We display the proof of Proposition 2.2 which
turns out to be a straightforward consequence of Proposition 6.1 below. The latter
proposition will be proven at the end of the section.

PROOF. Recall (2.21)–(2.26) and for any h ∈ D, define the matrix

B(h) := HessL
(h)(6.1)

and let � be the Gaussian random vector with zero mean and covariance matrix
B(h). We denote the density of � by

fh(X) = 1

2π
√

det B(h)
exp

(
−1

2

〈
B(h)−1X,X

〉)
, X ∈ R

2,(6.2)

and its characteristic function by

�̄h(T ) = exp
(−1

2

〈
B(h)T , T

〉)
, T ∈R

2.(6.3)

Consider now the case (YN,VN) = (NqN,L,0) as in Section 4.2 and recall that
qN,L ∈ [ 1

2a2
2
, 1

a2
1
]. We will show that the local central limit theorem below is valid

uniformly in q in some compact subsets.

PROPOSITION 6.1. For [q1, q2] ⊂ R, we have limN→+∞ τN = 0 with

τN := sup
q∈[q1,q2]

sup
x,y∈Z

∣∣∣∣N2PN,hq
N

(
NYN = N2q + x,VN = y

)
(6.4)

− fh̃(q,0)

(
x

N3/2 ,
y√
N

)∣∣∣∣.
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By applying Proposition 6.1 with x = y = 0, we obtain that

sup
q∈[q1,q2]

∣∣N2PN,hq
N

(
NYN = N2q,VN = 0

)− fh̃(q,0)(0,0)
∣∣≤ τN → 0,(6.5)

and since the Hessian matrix B(h̃(q,0)) is uniformly bounded in q ∈ [q1, q2], we
observe that there exists C > 0 such that

1

CN2 ≤ PN,hq
N

(
NYN = N2q,VN = 0

)≤ C

N2 for N large enough,(6.6)

which completes the proof of Proposition 2.2. �

6.1.1. Proof of Proposition 6.1. We follow closely the proof of Dobrushin and
Hryniv (1996), making sure that the result holds uniformly in q ∈ [q1, q2]. From
Lemmas 5.3 and 5.4, there exists η > 0 such that both h̃(q,0) and hq

N are in Kη

for all q ∈ [q1, q2] and for N large enough.
We let E(z) = Eβ(ezU1) be the holomorphic function defined on the strip {z ∈

C: Re(z) ∈ (−β/2, β/2)}. For any h ∈ (−β/2, β/2) and t ∈R, we set

ϕh(t) := E(h + it)/E(h).(6.7)

Let us state some properties of the function ϕh(t) that will be used in the sequel
[they are established in Dobrushin and Hryniv (1996)]. First of all, for any h ∈
K := [−β/2 + η,β/2 − η] and t ∈ R∣∣ϕh(t)

∣∣≤ ϕh(0) = 1.(6.8)

Second, for any δ ∈ (0, π), there exists a constant C = C(K, δ) > 0 such that for
every h ∈K and any t ∈ [δ,2π − δ], we have∣∣ϕh(t)

∣∣≤ e−C.(6.9)

And finally, there exists a constant α = α(K) > 0 such that for all h ∈ K and any t ,
|t | ≤ π , the following inequality holds:∣∣ϕh(t)

∣∣≤ exp
(−α2t2L′′(h)

)
.(6.10)

For any T = (t0, t1) ∈ R
2, let �N,hq

N
(T ) be the characteristic function of the ran-

dom vector 
N = (YN,VN). Let us rewrite it with the functions ϕh(t),

�N,hq
N
(T ) = EN,hq

N

[
ei〈T ,
N 〉]=

N∏
j=1

ϕhj,N
(tj,N ),(6.11)

where

hj,N =
(

1 − j

N

)
h

q
N,0 + h

q
N,1 and tj,N =

(
1 − j

N

)
t0 + t1.(6.12)

Note that

�̂N,hq
N
(T ) = �N,hq

n

(
N−1/2T

)
exp

(
− i√

N

〈
T ,EN,hq

N
(
N)

〉)
(6.13)
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is the characteristic function of the centered random vector 
�
N := 
N −

EN,hq
N
(
N).

Let vN = ( x
N3/2 ,

y√
N

). Using the well know inversion formula for the Fourier
transform, we rewrite the LHS of (6.4), that is,

RN = N2PN,hq
N

(
NYN = N2q + x,VN = y

)− fh̃(q,0)(vN)(6.14)

in the form

RN = 1

(2π)2

∫
A

�̂N,hq
N
(T )e−i〈T ,vN 〉 dT

(6.15)

− 1

(2π)2

∫
R2

�̄h̃(q,0)(T )e−i〈T ,vN 〉 dT ,

where

A = {
T = (t0, t1) ∈ R

2: |t0| ≤ πN3/2, |t1| ≤ π
√

N
}
.(6.16)

Following the proof in Dobrushin and Hryniv (1996), we bound the LHS of (6.15)
by the sum of four terms,

|RN | ≤ (2π)−2(J (q)
1 + J

(q)
2 + J

(q)
3 + J

(q)
4

)
,(6.17)

where, for some positive constants A and �,

J
(q)
1 =

∫
A1

∣∣�̂N,hq
N
(T ) − �̄h̃(q,0)(T )

∣∣dT , A1 = [−A,A]2,(6.18)

J
(q)
2 =

∫
A2

�̄h̃(q,0)(T ) dT , A2 = R
2 \A1,(6.19)

J
(q)
3 =

∫
A3

∣∣�̂N,hq
N
(T )

∣∣dT ,

(6.20)
A3 = {

T ∈ R
2: |tl| ≤ �

√
N, l = 0,1

} \A1,

J
(q)
4 =

∫
A4

∣∣�̂N,hq
N
(T )

∣∣dT , A4 = A \ (A1 ∪A3).(6.21)

For an arbitrary ε > 0, Dobrushin and Hryniv proved that for a convenient
choice of the constants A = A(ε) and �, we have the bounds J

(q)
i < ε/4 for

i = 1,2,3,4 for sufficiently large N . Therefore, the proof will be complete once
we show that this assertion is also valid uniformly in q ∈ [q1, q2]. It remains to
evaluate all J

(q)
i .

First, we bound J
(q)
1 . For h ∈Dn, define the matrix

Bn(h) := 1

n
HessL
n(h), n ∈N.(6.22)
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By Lemma 5.1 and Proposition 2.3, we obtain the relation

BN

(
hq

N

)= B
(̃
h(q,0)

)+ R′
N,(6.23)

with the bound |R′
N | ≤ C1(q1, q2)N

−1 uniform in q ∈ [q1, q2].
Recall that K = [−β/2 + η,β/2 − η]. Since E is holomorphic on {z ∈

C: Re(z) ∈ (−β/2, β/2)}, for any η > 0 there exists an A′ > 0 so that Re(E(z)) >

0 for z ∈K+ i[−A′,A′] and, therefore, we can use a branch of the complex loga-
rithm to extend the function L (that equals logE) to K + i[−A′,A′]. We observe
that h ∈ Kη and T ∈ 1

2 [−A′,A′]2 yield (1 − j
n
)h0 + h1 ∈ K and (1 − j

n
)t0 + t1 ∈

[−A′,A′] for all j ∈ {1, . . . ,N}. Thus, we can extend L
n to Kη × 1
2 [−A′,A′]2

with the formula

L
n(h + iT ) :=
n∑

j=1

L

((
1 − j

n

)
(h0 + it0) + h1 + it1

)
.(6.24)

Similarly, we extend L
 to Kη × 1
2 [−A′,A′]2 and Lemma 5.1 can, without

further difficulty, be extended to Kη × 1
2 [−A′,A′]2. In particular, any partial

derivative of order 3 of 1
n
L
n converges uniformly to its counterpart of L
 on

Kη × 1
2 [−A′,A′]2. Consequently, for N large enough, we make sure that for

q ∈ [q1, q2] and for T ∈ A1, we have hq
N ∈ Kη and T/N ∈ 1

2 [−A′,A′]2 so that
we can consider the remainder

R′′
N = L
N

(
hq

N + iN−1/2T
)−L
N

(
hq

N

)− i√
N

〈
T ,EN,hq

N
(
N)

〉
(6.25)

+ 1

2

〈
BN

(
hq

N

)
T ,T

〉
,

and apply a Taylor–Lagrange inequality to assert that there exists a constant
C(A,q1, q2) > 0 such that for N large enough |R′

N | ≤ C(A,q1, q2)/
√

N uni-
formly in q ∈ [q1, q2] and T ∈ A1.

Therefore, we can use (6.3), (6.7), (6.11)–(6.13) and (6.23) to get, as N → +∞,

sup
q∈[q1,q2],T ∈A1

∣∣�̂N,hq
N
(T ) − �̄h̃(q,0)(T )

∣∣
(6.26)

= sup
q∈[q1,q2],T ∈A1

∣∣e(1/2)R′
N‖T ‖2+R′′

N − 1
∣∣→ 0.

Hence, for every finite A > 0, we obtain the convergence J
(q)
1 → 0 as N → ∞

uniformly in q ∈ [q1, q2].
Let B be such that 0 < B ≤ B(h̃(q,0)) for all q ∈ [q1, q2]. Hence, we can bound

J
(q)
2 as follows:

sup
q∈[q1,q2]

J
(q)
2 ≤

∫
A2

e−(1/2)〈BT,T 〉 dT → 0 as A → ∞.(6.27)
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To estimate J
(q)
3 , we fix any T ∈ A3 and put � = π/2. Then all the numbers

tj,N in (6.12) satisfy the condition |tj,N | ≤ π
√

N , evaluating each factor in (6.11)
with the help of (6.10) and (6.23) we obtain the bound∣∣�̂N,hq

N
(T )

∣∣≤ exp
(−α2〈BN

(
hq

N

)
T ,T

〉)≤ C exp
(−α2〈B(̃h(q,0)

)
T ,T

〉)
,(6.28)

for some constant C > 0. As a result, as A → ∞,

sup
q∈[q1,q2]

J
(q)
3 = sup

q∈[q1,q2]

∫
A3

∣∣�̂N,hq
N
(T )

∣∣dT

(6.29)
≤ C

∫
A2

exp
(−α〈BT,T 〉)dT → 0.

To evaluate J
(q)
4 put δ = 1

17(2)2 and for any T ∈ A4 denote by NN(T ) the num-
ber of indexes j = 1,2, . . . ,N such that τj,N /∈ Oδ :=⋃

m∈Z[m− δ,m+ δ], where

τj,N := 1

2π
√

N
tj,N .(6.30)

Use (6.8) and (6.9) to estimate those factors in (6.11) and we have

∣∣�̂N,hq
N
(T )

∣∣= N∏
j=1

∣∣∣∣ϕhj,N

(
1√
N

tj,N

)∣∣∣∣≤ exp
(−CNN(T )

)
.(6.31)

A lower bound of NN(T ) is given in Dobrushin and Hryniv (1996), page 443: for
all T ∈ A4 and N large enough, there exists a constant κ > 0 such that NN(T ) ≥
κN . Then, uniformly in q ∈ [q1, q2],

J
(q)
4 =

∫
A4

∣∣�̂N,hq
N
(T )

∣∣dT ≤ (2π)2N2 exp(−CκN) → 0 as N → ∞.(6.32)

6.2. Proof of Proposition 2.5 (Unique excursion for large area). From now
on, the letters C,C′,C1, . . . shall denote constants that do not depend on N and on
q ∈ [q1, q2] ⊂ (0,∞). In other words, all the bounds we are going to establish are
uniform in N ≥ N0 and q ∈ [q1, q2].

To begin with, we prove Lemma 6.4 subject to Lemmas 6.2 and 6.3 below.
Lemma 6.4 is crucial in the proof of Proposition 2.5. It allows us indeed to bound
from below, for any j ∈ N, the probability that the random walk V , conditioned
on making a large area, is below 0 at time j . Such a lower bound was available in
Dobrushin and Hryniv (1996) but only for j of order N . Here, we deal with any
j ≤ N . The first step of the proof is an upper bound on the moment generating
function of the tilted random walk V .

LEMMA 6.2. There exist three positive constants C′,C1, λ such that for every
integer j ≤ N/2, the following bound holds:

EN,hq
N

[
e−λVj

]≤ C′e−C1j , N ∈N.(6.33)
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PROOF. Under the tilted law [see (2.24)] the increments Ui = Vi − Vi−1 are
still independent but no more identically distributed. For any positive λ, we have

log EN,hq
N

[
e−λVj

]= ∑
1≤i≤j

(
L
(−λ + hi

N

)−L
(
hi

N

))
(6.34)

with hi
N := (1 − i

N
)h

q
N,0 + h

q
N,1. By Remark 5.5, we know that for all q > 0 and

N ≥ 2,

h
q
N,0

(
1 − 1

N

)
= −2h

q
N,1 > 0.(6.35)

A straightforward consequence of (6.35) is that hi
N ≥ 0 for all i ≤ N/2. Then the

convexity of L(·) and the fact that L(0) = L′(0) = 0 yield that there exists a c > 0
so that for all i ≤ N/2 and λ small enough

L
(−λ + hi

N

)−L
(
hi

N

)≤ L(−λ) ≤ cλ2.(6.36)

We established in Proposition 2.3 the existence of C > 0 and N0 ∈ N such that
for all N ≥ N0, and every q ∈ [q1, q2], we have∥∥hq

N − h̃(q,0)
∥∥≤ C

N
.(6.37)

Thanks to Lemma 5.3 and Remark 5.5, there exists a constant R > 0 such that

h̃0(q,0) ≥ R > 0 ∀q ∈ [q1, q2].(6.38)

Thus, provided N0 is chosen large enough, we deduce from (6.37) and (6.38) that
h

q
N,0 ≥ R/2 for N ≥ N0 and q ∈ [q1, q2]. Moreover, thanks to (6.35), we also write

hi
N ≥ 1

4h
q
N,0 for i ≤ N/4 such that finally hi

N ≥ R/8 for i ≤ N/4. Observe that by
convexity of L(.),∑

1≤i≤j

(
L
(−λ + hi

N

)−L
(
hi

N

))≤ −λ
∑

1≤i≤j

L′(−λ + hi
N

)
.(6.39)

Hence, for j ≤ N/4 and for λ ≤ R/16 we have∑
1≤i≤j

(
L
(−λ + hi

N

)−L
(
hi

N

))≤ −λjL′
(

R

16

)
.(6.40)

For N/4 ≤ j ≤ N/2 in turn we split the sum in the LHS of (6.40) into a sum over
i ≤ N/4 [that is dealt with as in (6.40)] and a sum over i ≥ N/4 [that is dealt with
by using (6.36)]. Thus,∑

1≤i≤j

(
L
(−λ + hi

N

)−L
(
hi

N

))= −λ
N

4
L′
(

R

16

)
+ c

(
j − N

4

)
λ2

(6.41)

≤ N

4

(
cλ2 − λL′

(
R

16

))
.
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It remains to choose λ > 0 small enough to make sure that cλ2 − λL′(R/16) > 0
and then, (6.40) and (6.41) complete the proof. �

The next lemma ensures that we can restrict ourselves to j ≤ N/2.

LEMMA 6.3. For a ∈ R and j ∈ {1, . . . ,N}
Pβ(Vj ≤ a,YN = Nq,VN = 0)

(6.42)
= Pβ(VN−j ≤ a,YN = Nq,VN = 0).

PROOF. We just need to use time reversal, that is,

(VN − VN−j ,0 ≤ j ≤ N)
d= (Vj ,0 ≤ j ≤ N),(6.43)

to obtain that

Pβ(Vj ≤ a,YN = Nq,VN = 0)
(6.44)

= Pβ(−VN−j ≤ −a,−YN = Nq,VN = 0).

By using the symmetry of V , we complete the proof:

(−Vj ,0 ≤ j ≤ N)
d= (Vj ,0 ≤ j ≤ N).(6.45) �

At this stage, we need to use precise results for the local central limit theorem.
We recall (2.26) and for convenience we use the notation

α
q
N := PN,hq

N

(
NYN = N2q,VN = 0

)
and

(6.46)
ξ

q
N := exp

(
L
N

(
hq

N

)− Nh
q
N,0q

)
.

Hence, we have

Pβ(YN = Nq,VN = 0) = ξ
q
Nα

q
N .(6.47)

We can handle α
q
N with the help of Proposition 2.2: there exists a C2 > 0 such that

1

C2

1

N2 ≤ α
q
N ≤ C2

N2 .(6.48)

Proposition 2.3 allows us to write that there exists a positive constant C3 so that

e−C3eN(L
(h̃(q,0))−h̃0(q,0)q) ≤ ξ
q
N ≤ eC3eN(L
(h̃(q,0))−h̃0(q,0)q).(6.49)

We can state the following.

LEMMA 6.4. There exists a constant λ > 0 such that for all a > 0, q ∈
[q1, q2],N ≥ N0 and 0 ≤ j ≤ N

Pβ(Vj ≤ −a,YN = Nq,VN = 0) ≤ ξ
q
NC′e−C1(j∧(N−j))−λa.(6.50)
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PROOF. By the symmetry in Lemma 6.3, we can without loss of generality
assume j ≤ N/2. By using Lemma 6.2, we can write

Pβ(Vj ≤ −a,YN = Nq,VN = 0)

≤ Eβ

[
e−λVj , YN = Nq,VN = 0

]
e−λa

= ξ
q
Ne−λaEN,hq

N

[
e−λVj , YN = Nq,VN = 0

]
≤ ξ

q
Ne−λaEN,hq

N

[
e−λVj

]≤ ξ
q
NC′e−C1j−λa. �

PROOF OF PROPOSITION 2.5. Let uN = �ν logN� where ν > 0 will be cho-
sen afterward. The first step is to write

Pβ

(
Vi > 0,0 < i < N;NYN = N2q,VN = 0

)
≥ Pβ

(
V1 = VN−1 = uN,Vi > 0,2 < i < N − 2;(6.51)

NYN = N2q,VN = 0
)
.

By using Markov’s property at time 1 and N − 1, we obtain

Pβ

(
V1 = VN−1 = uN,Vi > 0,2 < i < N − 2;NYN = N2q,VN = 0

)
= Pβ(U1 = uN)2Pβ

(
Vi > −uN,1 < i < N − 3;(6.52)

(N − 2)YN−2 = N2q − (N − 1)uN,VN−2 = 0
)
.

We shall use a basic lower bound

Pβ

(
Vi > −uN,1 < i < N − 3; (N − 2)YN−2 = N2q − (N − 1)uN,VN−2 = 0

)
≥ Pβ

(
(N − 2)YN−2 = N2q − (N − 1)uN,VN−2 = 0

)
(6.53)

−
N−3∑
i=1

Pβ

(
Vi ≤ −uN, (N − 2)YN−2 = N2q − (N − 1)uN,VN−2 = 0

)
.

We take care of the second term by letting q ′ = N2q−(N−1)uN

(N−2)2 in Lemma 6.4

N−3∑
i=1

Pβ

(
Vi ≤ −uN, (N − 2)YN−2 = (N − 2)2q ′,VN−2 = 0

)
(6.54)

≤ ξ
q ′
N−2

N−3∑
i=1

C′e−C1(i∧(N−2−i))−λuN ≤ C4ξ
q ′
N−2e

−λuN .

Observe that thanks to the notation (6.46) we can write the first term in the RHS
of (6.53) as

Pβ

(
(N − 2)YN−2 = (N − 2)2q ′,VN−2 = 0

)= ξ
q ′
N−2α

q ′
N−2.(6.55)
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Hence,

Pβ

(
Vi > 0,0 < i < N;NYN = N2q,VN = 0

)
(6.56)

≥ Pβ(U1 = uN)2ξ
q ′
N−2

[
α

q ′
N−2 − C4e

−λuN
]
.

Observe that

Pβ(U1 = uN)2 = 1

c2
β

e−β�ν logN� ≥ 1

c2
β

N−βν(6.57)

and recall that Pβ(NYN = N2q,VN = 0) = ξ
q
Nα

q
N . Therefore,

Pβ

(
Vi > 0,0 < i < N |NYN = N2q,VN = 0

)
(6.58)

≥ N−βν

c2
β

ξ
q ′
N−2

ξ
q
N

α
q ′
N−2 − C4e

−λuN

α
q
N

.

We take care of the last factor with the help of the bound (6.48)

α
q ′
N−2 − C4e

−λuN

α
q
N

≥ 1

C2N2

(
1

C2(N − 2)2 − C5e
−λuN

)
≥ C5N

−4(6.59)

for N large, by choosing ν > 2
λ

. For the second factor, we use the bound (6.49),
and the Lipschitz nature of L and h̃ on a compact set, and the fact that |q − q ′| ≤
C6

logN
N

,

ξ
q ′
N−2

ξ
q
N

≥ e−2C3 exp
(
N
[
L


(̃
h
(
q ′,0

))− h̃0
(
q ′,0

)
q ′]

− [
L


(̃
h(q,0)

)− h̃0(q,0)q
])

(6.60)

≥ e−2C3e−NC7|q−q ′| ≥ e−2C3e−C7C6 logN ≥ C8N
−C9 .

Eventually, combining (6.58), (6.59) and (6.60), we obtain the lower bound, for
μ = 4 + C9 + βν and C > 0 a constant

Pβ

(
Vi > 0,0 < i < N |NYN = N2q,VN = 0

)≥ CN−μ. �

APPENDIX A: EQUIVALENCE BETWEEN THEOREM D AND
THEOREMS E AND F

Assume that Theorems E and F hold. We begin by observing that

dH

(
SL(l)√

L
,Sβ

)
≤ NL(l)√

L
dH

(
SL(l)

NL(l)
,

√
L

NL(l)
Sβ

)
(A.1)

≤ NL(l)√
L

dH

(
SL(l)

NL(l)
,
Sβ

aβ

)
+ NL(l)√

L
dH

(Sβ

aβ

,

√
L

NL(l)
Sβ

)
.
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Theorem E, and the inequality dH (
Sβ

aβ
,

√
L

NL(l)
Sβ) ≤ C|

√
L

NL(l)
− 1

aβ
| (C is the radius

of a ball containing Sβ ) ensure that the second term in the RHS of (A.1) converges
to 0 in PL,β probability. The same convergence holds for the first term in the RHS
of (A.1) and this is a consequence of Theorem F and of the inequality

dH

(
SL(l)

NL(l)
,
Sβ

aβ

)
≤ max

{∥∥∥∥Ẽ+
l − γ ∗

β

2

∥∥∥∥∞
,

∥∥∥∥Ẽ−
l + γ ∗

β

2

∥∥∥∥∞

}
+ 1

NL(l)
.

Thus, Theorem D is a consequence of Theorems E and F. Using similar arguments,
we can prove that Theorems E and F are implied by Theorem D but we do not give
the details here.

APPENDIX B: PROOF OF LEMMA 3.2

PROOF. Since V and An are symmetric, we can assume that x, x′ ∈ N0 :=
N ∪ {0}, and thus it is sufficient to show that the result holds for x′ = x + 1. We
will argue by induction. Since A0 = 0, the m = 0 case is trivial. Now, we assume
that the inequality holds true for m ∈ N. We consider the partition function of size
m + 1, and we can decompose it with respect to the position of V1, that is,

Eβ,x

(
e−δAm+1

)= ∑
y∈Z

Eβ,x

(
e−δ(|y|+|V2|+···+|Vm+1|)1{V1=y}

)
= ∑

y∈Z
Pβ(U1 = y − x)e−δ|y|Eβ,y

(
e−δAm

)
(B.1)

= ∑
y∈N

Rx(y)e−δyEβ,y

(
e−δAm

)+ Pβ(U1 = x)Eβ

(
e−δAm

)
,

where Rx(y) = Pβ(U1 = y − x) + Pβ(U1 = −y − x). Then we set R̄x(y) =∑
y′≥y Rx(y

′) for y ∈ N. Since R̄x(1) + Pβ(U1 = x) = 1, we can rewrite the RHS
in (B.1) as

Eβ,x

(
e−δAm+1

)
= Eβ

(
e−δAm

)
(B.2)

+ ∑
y∈N

R̄x(y)
[
e−δyEβ,y

(
e−δAm

)− e−δ(y−1)Eβ,(y−1)

(
e−δAm

)]
.

We will show that, for all y ∈ N, the function x �→ R̄x(y) is nondecreasing on N0.
First, if y ≥ x + 1, we obviously have

R̄x(y) = ∑
y′≥y

Rx

(
y′)≤ ∑

y′≥y

Rx+1
(
y′)= R̄x+1(y).(B.3)
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Then, if 1 ≤ y ≤ x, since

R̄x(y) +
y−1∑
y′=1

Rx

(
y′)+ Pβ(U1 = x)

(B.4)

= R̄x+1(y) +
y−1∑
y′=1

Rx+1
(
y′)+ Pβ(U1 = x + 1) = 1

and

Pβ(U1 = x) +
y−1∑
y′=1

Rx

(
y′)≥ Pβ(U1 = x + 1) +

y−1∑
y′=1

Rx+1
(
y′),(B.5)

we immediately obtain R̄x(y) ≤ R̄x+1(y). Coming back to (B.2), we use the in-
duction hypothesis to claim that

e−δyEβ,y

(
e−δAm

)− e−δ(y−1)Eβ,(y−1)

(
e−δAm

)≤ 0, y ∈ N,(B.6)

which, together with the monotonicity of x �→ R̄x(y) yields that

Eβ,x

(
e−δAm+1

) ≥ Eβ

(
e−δAm

)
+ ∑

y∈N
R̄x+1(y)

[
e−δyEβ,y

(
e−δAm

)− e−δ(y−1)Eβ,(y−1)

(
e−δAm

)]
= Eβ,x+1

(
e−δAm+1

)
. �
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