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LARGE COMPLEX CORRELATED WISHART MATRICES:
FLUCTUATIONS AND ASYMPTOTIC INDEPENDENCE

AT THE EDGES

BY WALID HACHEM1, ADRIEN HARDY2 AND JAMAL NAJIM1

Télécom ParisTech, KTH Royal Institute of Technology and Université Paris-Est

We study the asymptotic behavior of eigenvalues of large complex cor-
related Wishart matrices at the edges of the limiting spectrum. In this setting,
the support of the limiting eigenvalue distribution may have several connected
components. Under mild conditions for the population matrices, we show
that for every generic positive edge of that support, there exists an extremal
eigenvalue which converges almost surely toward that edge and fluctuates ac-
cording to the Tracy–Widom law at the scale N2/3. Moreover, given several
generic positive edges, we establish that the associated extremal eigenvalue
fluctuations are asymptotically independent. Finally, when the leftmost edge
is the origin (hard edge), the fluctuations of the smallest eigenvalue are de-
scribed by mean of the Bessel kernel at the scale N2.
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1. Introduction. Correlated Wishart matrices and more generally empiri-
cal covariance matrices are ubiquitous models in applied mathematics. After
Marčenko and Pastur’s seminal contribution [48], a systematic study of their large
dimension properties has been undertaken (see, e.g., [2, 56] and the many refer-
ences therein), which found many applications, for example, in multivariate statis-
tics [1], electrical engineering [26], mathematical finance [44, 52], etc.

Now that many global properties of their spectrum are well understood (cf. [4–
6, 53, 62]), attention has shifted to local properties (cf. [8, 20, 31], etc.) and their
underlying universal phenomenas; cf. [43] and references therein.

The main contribution of this article is to provide a local analysis of the spec-
trum of large complex correlated Wishart matrices near the edges of the limiting
support: it is well known that such random Hermitian matrices have a real spectrum
whose limiting support may display several disjoint intervals. Beside the behavior
of the largest and smallest random eigenvalues, we investigate here the fluctuations
of the eigenvalues that converge to any endpoint of the limiting support. These
eigenvalues are referred to as extremal eigenvalues, for which we shall provide a
precise definition later.

The model. Let XN be a N × n matrix with independent and identically dis-
tributed (i.i.d.) standard complex Gaussian entries NC(0,1), and let �N be a n×n

deterministic positive definite Hermitian matrix. The random matrix of interest
here is the N × N matrix

MN = 1

N
XN�NX∗

N(1)

which has N nonnegative eigenvalues 0 ≤ x1 ≤ · · · ≤ xN , but which may be of
different nature: min(n,N) of them are nonnegative random (i.e., nondetermin-
istic) eigenvalues, while the other N − min(n,N) eigenvalues are deterministic
and equal to zero. A companion matrix of interest is the n × n sample covariance
matrix

M̃N = 1

N
�

1/2
N X∗

NXN�
1/2
N ,(2)
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which models the empirical covariance of a sample of N independent observations{
�

1/2
N

[
X∗

N

]
k,1 ≤ k ≤ N

}
,

where [X∗
N ]k stands for the kth column of X∗

N , with population covariance ma-
trix �N . Indeed, matrices MN and M̃N share the same nonnull eigenvalues with
the associated multiplicities.

We shall consider the asymptotic regime where n = n(N), N → ∞ and

lim
N→∞

n

N
= γ ∈ (0,∞).(3)

This regime will be simply referred to as N → ∞ in the sequel.
The random matrix MN can also be interpreted as a multiplicative deforma-

tion of the Laguerre unitary ensemble (LUE) and is related to multiple Laguerre
polynomials. A close matrix model is the additive deformation of the Gaussian
unitary ensemble (GUE), also known as GUE with an external source; it involves
multiple Hermite polynomials instead. For further information, see [17] and ref-
erences therein. Capitaine and Péché [25] recently studied the fluctuations of ex-
tremal eigenvalues for this model.

We now briefly review the literature and present our contribution.

Global regime. Denote by μN the empirical distribution of the eigenvalues
of MN , also called spectral measure (or distribution) of MN in the sequel. Namely,

μN = 1

N

N∑
i=1

δxi
,

where δx is the Dirac measure at point x. In the uncorrelated case where �N = In,
it is well known [48] that μN almost surely (a.s.) converges weakly toward the
Marčenko–Pastur (M̌P) distribution of parameter γ ,

μ
γ
MP(dx) = (1 − γ )+δ0 + 1

2πx

√
(b− x)(x − a)1[a,b](x)dx,(4)

where x+ = max(x,0) and the endpoints of its support read a = (1 − √
γ )2 and

b= (1 + √
γ )2.

In the general case where �N is not the identity, say with eigenvalues 0 < λ1 ≤
· · · ≤ λn, a similar result holds true [62] under the additional assumption that the
spectral measure

νN = 1

n

n∑
j=1

δλj
(5)

of �N converges weakly toward a limiting distribution ν. In the latter case, the
limit μ of μN only depends on the limiting parameters γ and ν but is no longer
explicit; this dependence μ = μ(γ, ν) will be indicated when needed. However, its
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Cauchy–Stieltjes transform satisfies an explicit fixed-point equation from which
many properties of μ can be inferred. For example, it is known that if ν({0}) = 0,
then

μ(dx) = (1 − γ )+δ0 + ρ(x)dx,(6)

where ρ(x) is a nonnegative and continuous function on (0,+∞). Depending on
the properties of γ and ν, the support of ρ(x)dx may have several connected
components; see Section 2 for more precise informations. Alternatively, one can
describe μ(γ, ν) in terms of the free multiplicative convolution of M̌P distribu-
tion (4) with ν; see [70]. From now we shall refer to the support of ρ(x)dx as the
bulk and to the endpoints of its connected components as the edges. Also, a posi-
tive edge is called soft edge and the terminology hard edge is here used when the
edge is the origin.

Left and right edges. We say that an edge a is a left edge, respectively, b is a
right edge, if for every δ > 0 small enough,∫ a+δ

a
ρ(x)dx > 0, respectively,

∫ b

b−δ
ρ(x)dx > 0.

The leftmost edge can be a soft edge or a hard edge depending on the value of γ ,
as explained in Section 2. Of course, any other left edge and any right edge are soft
edges.

Local regime: Behavior at the rightmost edge. If �N is the identity, Geman
[35] proved the a.s. convergence of the largest eigenvalue xmax of MN to the right
edge of M̌P’s bulk b= (1 + √

γ )2, for independent, not necessarily Gaussian, real
entries of XN . Johansson [40] established Tracy–Widom fluctuations for xmax at
the scale N2/3 for complex Gaussian entries; Johnstone [41] established a similar
result for real Gaussian entries. Subsequent works [58, 59, 65, 72] then relaxed the
Gaussian assumption, illustrating a phenomenon of universality.

If �N is a finite-rank perturbation of the identity, the limiting eigenvalue dis-
tribution is still given by M̌P distribution (4). Baik and Silverstein [9] studied the
limiting behavior of xmax for general entries. In the complex Gaussian case, Baik et
al. [8] thoroughly described the fluctuations of the largest eigenvalues at the right
edge and unveiled a remarkable phase transition phenomenon (referred to as BBP
phase transition in the sequel). They established that the convergence and fluctu-
ations of xmax are actually highly sensitive to the way νN converges to δ1. More
precisely, depending on the strength of the perturbation, they established that de-
formed Tracy–Widom fluctuations near the right edge b at the scale N2/3 can arise,
and that xmax may also converge outside the bulk with Gaussian-like3 fluctuations

3By Gaussian-like, we mean that the largest eigenvalue of MN , when correctly centered and
rescaled and when associated to a large perturbation of the identity �N of finite multiplicity k,
asymptotically converges to the distribution of the largest eigenvalue of a fixed k × k GUE.
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at the scale N1/2; in the latter case xmax is referred to as an outlier. Thus, depending
on the way νN converges toward its limit, the universality phenomenon may break
down. Finally, Bloemendal and Virág [19, 20] and Mo [51] extended the results in
[8] for real Gaussian entries; see also [18] for further extensions.

For general �N ’s and complex Gaussian matrices, El Karoui [31] (n/N ≤ 1)
and then Onatski [55] (n/N > 1) followed the approach developed in [8] to estab-
lish Tracy–Widom fluctuations for xmax, under mild conditions concerning �N ’s
spectral measure νN provided that the rightmost edge satisfies some regularity con-
dition. The Gaussian assumption has recently been relaxed by Bao et al. [10] (the
random variables remaining complex) and the complex one, by Lee and Schnelli
[45] who handle the real Gaussian case and also the real non-Gaussian case for
diagonal �N ’s. Knowles and Yin [42] extend [45] to general �N ’s; see also the
comment on universality in Section 3.2.

Local regime: Behavior at the leftmost edge. When �N is the identity, Bai and
Yin [7] established the a.s. convergence of the smallest eigenvalue xmin of MN to
M̌P’s left edge a = (1 − √

γ )2; see also [2], Chapter 5. The nature of the fluc-
tuations of xmin dramatically changes whether γ = 1 (hard edge) or γ �= 1 (soft
edge). In the soft edge case, the fluctuations remain of a Tracy–Widom nature; see
Borodin and Forrester [23] and further extensions by Feldheim and Sodin [33]. In
the hard edge case, the fluctuations of xmin arise at the scale N2; if n = N , then the
limiting distribution follows the exponential law as shown by Edelman [30] (cf.
[66] for further extensions), while if n = N +α with α independent of N , then the
limiting distribution has been described by Forrester [34] with the help of Bessel
kernels; see Section 3 for a precise definition. The Gaussian assumption has been
relaxed by Ben Arous and Péché [14].

To the best knowledge of the authors, no result for the fluctuations at the leftmost
edge in the general �N case is available in the literature.

Local regime: When ν is the weighted sum of two Dirac measures. When �N

has exactly two fixed eigenvalues, each with multiplicity of order N , a full asymp-
totic analysis is known for the correlation kernel KN(x, y) associated with the
eigenvalues of MN ; see Sections 4.2 and 4.3. More precisely, around each edge a
local uniform convergence for KN(x, y) has been obtained, using the connection
to multiple Laguerre polynomials, by Lysov and Wielonsky [47] and Mo [50]. This
provides a first step toward Tracy–Widom fluctuations.

Local regime: Asymptotic independence. When �N is the identity and γ > 1
(and also in the case of the GUE), Basor, Chen and Zhang [11] proved that
xmin and xmax, properly rescaled, are asymptotically independent as N → ∞.
Their approach heavily relies on orthogonal polynomials techniques, which are
not available for complex correlated Wishart matrices. Using different techniques,
the asymptotic independence for the GUE’s smallest and largest eigenvalues was
also obtained by Bianchi et al. [16] and Bornemann [21].
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Again, it seems there is no result concerning the asymptotic independence for
the extremal eigenvalues, even for the smallest and largest eigenvalues, in the gen-
eral �N case.

Main results. Recall the asymptotic regime (3) of interest. We first state the
main assumptions related to matrix MN [cf. (1)] and then informally state the main
results of the paper; pointers to the precise definitions and statements are provided
in the next paragraph.

ASSUMPTION 1. The entries of XN are i.i.d. standard complex Gaussian ran-
dom variables.

ASSUMPTION 2. The following properties hold true:

(1) The spectral measure νN of �N weakly converges toward a limiting proba-
bility distribution ν as N → ∞.

(2) The eigenvalues 0 < λ1 ≤ · · · ≤ λn of �N stay in a compact subset of
(0,+∞) which is independent of N , namely,

lim inf
N→∞ λ1 > 0, lim sup

N→∞
λn < +∞.(7)

In particular, ν({0}) = 0.

Another important assumption is the fact that the considered edges need to be
regular. By this, we mean an edge which satisfies the regularity condition of Defi-
nition 2.5. This condition essentially rules out pathological behaviors at edges, for
example, when the limiting eigenvalue density does not vanish like a square root.
It does, however, enable the appearance of outliers.

THEOREM 1. Let Assumptions 1 and 2 hold true. Then:

(a) Extremal eigenvalues: Given a regular right (resp., left) edge, there are per-
fectly located maximal (resp., minimal) eigenvalues which converge a.s. toward
this edge as N → ∞; these eigenvalues are called extremal eigenvalues.

(b) Tracy–Widom fluctuations: Given a regular right (resp., left) soft edge, the
associated extremal eigenvalue, properly rescaled, converges in law to the Tracy–
Widom distribution (resp., reversed Tracy–Widom distribution) at the scale N2/3.

(c) Asymptotic independence: Given a finite family of regular soft edges, the as-
sociated extremal eigenvalues, properly rescaled, are asymptotically independent
as N → ∞.

(d) Hard edge fluctuations: In the case where γ = 1, the bulk displays a hard
edge at 0. If n = N + α with α ∈ Z independent of N , then the fluctuations of the
smallest eigenvalue, properly rescaled, are described by mean of the Bessel kernel
with parameter α ∈ N at the scale N2.
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Close to our work is the recent paper by Capitaine and Péché [25] where the
fluctuations of the extremal eigenvalues for the additive deformation of the GUE
are established, that is the counterpart of part (b) of Theorem 1, together with
Gaussian-like fluctuations for outliers and fluctuations of the eigenvalue process
at cusp points (i.e., when two bulks merge together) with the appearance of the
Pearcey process. As the involved techniques are extremely model-dependent, the
technical difficulties are substantially different for the model under study. The
study of the fluctuations of the eigenvalue process at a cusp point for large complex
correlated Wishart matrices will appear elsewhere [39].

Let us now briefly comment on Theorem 1.
In part (a), we rely on results by Silverstein et al. [4, 5, 63] on the support of

limiting spectral distributions and on fine asymptotic properties of the empirical
spectrum to define regular edges and to properly express the convergence of ex-
tremal eigenvalues.

In part (b), we first obtain an asymptotic Fredholm determinantal representation
of the extremal eigenvalues’ distribution and then perform an asymptotic analysis
of the associated kernels to prove convergence toward the Airy kernel. The latter
analysis is based on a steepest descent analysis involving contours deformations.
Contrary to the analysis performed by Baik, Ben Arous and Péché [8], El Karoui
[31] and Capitaine and Péché [25], who work out explicit deformed contours, our
analysis relies on a more abstract argument where the existence of appropriate con-
tours is obtained by mean of the maximum principle for subharmonic functions.
This argument has the advantage to work for every regular right or left edge (and
also for cusp points, cf. [39]) up to minor modifications. Let us also stress that we
do not follow the same strategy as in [8, 31], concerning the involved operators
convergence.

In part (c), our proof of the asymptotic independence builds upon the operator-
theoretic approach developed by Bornemann [21] in the context of the GUE. We
actually show that a weaker mode of convergence for the involved operators than
the one required in [21] is sufficient to establish the asymptotic independence; it
has the advantage to be compatible with the previous asymptotic analysis.

Part (d) also relies on an asymptotic analysis of the rescaled kernel. It is based
on an appropriate representation of the Bessel kernel as a double complex integral.

Organization of the paper. In Section 2, we provide a precise description for
the bulk and the extremal eigenvalues and introduce the notion of regular edge. The
precise statement of part (a) of Theorem 1 is provided in Theorem 2 and proved.
In Section 3, we state our results concerning the fluctuations of the extremal eigen-
values and their asymptotic independence. Parts (b), (c) and (d) of Theorem 1 are,
respectively, stated in Theorems 3, 4 and 5. We also recall there the definition of
the Tracy–Widom distribution and the hard edge distribution described by mean of
the Bessel kernel (Sections 3.1 and 3.3). We close this section with an asymptotic
study of the condition number of large correlated Wishart matrices, a discussion on
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nonregular edges and spikes phenomena and provide some graphical illustrations.
Section 4 is devoted to the proof for Theorem 3 (Tracy–Widom fluctuations). Sec-
tion 5 is devoted to the proof of Theorem 4 (asymptotic independence for extremal
eigenvalues). Finally, Section 6 is devoted to the proof of Theorem 5 (hard edge
fluctuations).

2. Bulk description, regularity and extremal eigenvalues. In this section,
we introduce the notion of regular soft edges (cf. Definition 2.5) and extremal
eigenvalues (cf. Theorem 2), the main properties of which are gathered in Propo-
sitions 2.11 and 2.12. Theorem 2 provides a precise statement for Theorem 1(a).
Before this, we provide a precise description of the bulk, mainly based on [63].

2.1. Description of the limiting bulk. In [48], Marčenko and Pastur character-
ized the Cauchy–Stieltjes transform4 of the limiting distribution μ = μ(γ, ν) of
the eigenvalues of MN as N → ∞,

m(z) =
∫ 1

z − λ
μ(dλ), z ∈C+ = {

z ∈ C : Im(z) > 0
}
,

as the unique solution m ∈ C− = {z ∈ C : Im(z) < 0} of the fixed-point equation

m =
(
z − γ

∫
λ

1 − mλ
ν(dλ)

)−1

for any z ∈C+.(8)

Recall that by Assumption 1, γ = limn/N ∈ (0,+∞), the probability measure
ν is the limiting eigenvalue distribution of �N , and its compact support is included
in (0,+∞). In particular, ν({0}) = 0.

In [63], Silverstein and Choi showed that

μ(dx) = (1 − γ )+δ0 + ρ(x)dx,(9)

where ρ is a nonnegative and continuous function on (0,∞) which is analytic
wherever it is positive. Moreover, following a procedure already described by
Marčenko and Pastur, they showed rigorously how to extract from the fixed point
equation above a characterization of the support of μ, and thus of ρ(x)dx. Specif-
ically, the function m(z) has an explicit inverse on m(C+) given by

g(z) = 1

z
+ γ

∫
λ

1 − zλ
ν(dλ),(10)

and this inverse extends analytically to a neighborhood of C− ∪ D where D is the
open subset of the real line

D = {
x ∈ R :x �= 0, x−1 /∈ Supp(ν)

}
.(11)

4Note that our definition of the Cauchy–Stieltjes transform differs by a sign from the one in [48]
but will turn out to be more convenient in the sequel.



2272 W. HACHEM, A. HARDY AND J. NAJIM

Except in the proof of Proposition 2.7 below, we shall confine the notation g to the
restriction of this function to D. On any interval I of R \ Supp(μ), the function m

exists, is real and is decreasing (as a Cauchy–Stieltjes transform). Consequently,
its inverse also exists and is decreasing on m(I). Silverstein and Choi showed that
g is this inverse, and that R\Supp(μ) coincides with the values of g(x) where this
function is decreasing on D:

PROPOSITION 2.1 (Silverstein and Choi [63]). For any x ∈ R \ Supp(μ), let
p = m(x). Then p ∈ D, x = g(p) and g′(p) < 0. Conversely, let p ∈ D such that
g′(p) < 0. Then x = g(p) ∈ R \ Supp(μ) and p = m(x).

REMARK 2.2. This proposition has the following practical importance: in
order to find Supp(μ), plot the function g on D; whenever g is decreasing
(g′(x) < 0), remove the corresponding points g(x) from the vertical axis. What
is left is precisely Supp(μ).

As an example, a plot of the function g is provided in Figure 1 along with
Supp(μ) in the case where ν is the weighted sum of two Dirac measures and
γ < 1.

The soft edges of the bulk are described more precisely by the next proposition.

PROPOSITION 2.3 (Silverstein and Choi [63]). Any soft left edge a satisfies
one of the two following properties:

(a) There exists a unique c ∈ D such that a= g(c), g′(c) = 0 and g′′(c) < 0.

FIG. 1. Plot of g :D → R for γ = 0.1 and ν = 0.7δ1 + 0.3δ3. In this case, D = (−∞,0) ∪
(0, 1

3 ) ∪ ( 1
3 ,1) ∪ (1,∞). The two thick segments on the vertical axis represent Supp(μ). The right

edge b of the measure μ satisfies property (a) of Proposition 2.3.
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(b) There exists a unique c ∈ ∂D such that (c, c+ ε) ⊂ D for some ε > 0 small
enough, the function g is decreasing on (c, c + ε), and a = limx↓c g(x). In this
case, we write a = g(c).

Conversely, for any point c satisfying one of these properties, a = g(c) is a soft left
edge.

Similar, any (soft) right edge b of the measure μ satisfies one of the two follow-
ing properties:

(a) There exists a unique d ∈ D such that b = g(d), g′(d) = 0 and g′′(d) > 0.
(b) There exists a unique d ∈ ∂D such that (d− ε,d) ⊂ D for some ε > 0 small

enough, the function g is decreasing on (d − ε,d), and b = limx↑d g(x). In this
case, we write b = g(d).

Conversely, for any point d satisfying one of these properties, b = g(d) is a right
edge of the measure μ.

Hence any soft edge of the bulk coincides with a unique extremum c of the
function g, and it reads g(c). These extrema may or may not be attained on D. In
case they are, the second derivative of g is never equal to zero there, and it has
been proved in [63] that the density vanishes like a square root at the associated
edges. We shall see later that the Tracy–Widom fluctuations appear in this case.
A right edge b = g(d) together with its preimage d are plotted in Figure 1.

The next proposition provides additional information on the bulk that will be
useful in the sequel. Its proof is in Appendix A.

PROPOSITION 2.4. Let Assumption 2 hold true. Let a be the leftmost edge of
the bulk. The following facts hold true:

(a) If γ > 1, then a > 0. Moreover, the function g(x) increases from zero to a

then decreases from a to −∞ as x increases from −∞ to zero. In particular, a is
the unique maximum of g on (−∞,0).

(b) If γ ≤ 1, the function g is negative and decreasing on (−∞,0).
(c) If γ < 1, then a > 0. Moreover, if we set η = inf Supp(ν) > 0, then a =

g(c) is the supremum of g on (1/η,∞). In addition, g increases to a on (1/η, c)

whenever this interval is nonempty, then decreases from a to zero on (c,∞).

Let b= g(d) be a right edge of the bulk. Then the following facts hold true:

(d) [d,∞) �⊂ D.
(e) Assume b is the rightmost edge of the bulk. For any γ ∈ (0,∞), if we set

ξ = sup Supp(ν) < ∞, then g decreases from infinity to b on (0,d) and increases
on (d,1/ξ) if this last interval is not empty. In particular, d is the unique extremum
of g on (0,1/ξ).
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Fact (a) shows that when γ > 1, the study of g on (−∞,0) allows us to locate
the leftmost edge a and this edge only. Facts (a) and (b) show that if γ ≤ 1, then
it suffices to study g on D ∩ (0,∞) to locate the edges of the bulk. In particular,
if γ < 1, fact (c) shows that the location of a is provided by the study of g on
(1/η,∞). This is illustrated by Figure 1, where a is the rightmost maximum of the
function g. Fact (d) shows that when b = g(d) is a right edge of the bulk, then d

cannot belong to the unbounded connected component of D in (0,∞). Finally, the
behavior of g described by (e) is illustrated on Figure 1 by the plot of this function
on the interval (0,1/3).

2.2. Regularity condition and its consequences. So far, we have thoroughly
described the edges of the limiting eigenvalue distribution. Remember, however,
that BBP phase transition [8] may occur regardless of the limiting spectral distri-
bution (which is always M̌P distribution in [8]). As we shall see later, the notion of
a regular endpoint captures a joint condition on the limiting spectral distribution μ

and on the convergence νN → ν, which will guarantee Tracy–Widom fluctuations;
cf. Theorem 3.

DEFINITION 2.5 (Regular edge). Recall that the λi’s are the eigenvalues of
matrix �N ; a soft edge a = g(c) is regular if

lim inf
N→∞

n

min
j=1

∣∣c− λ−1
j

∣∣ > 0.(12)

In particular, c ∈ D.

REMARK 2.6. The following facts will illustrate the range of the definition:

(a) If a = g(c) is a regular soft edge, then the weak convergence νN → ν stated
in Assumption 2 rules out the options labeled (b) in Proposition 2.3.

(b) If a is an endpoint satisfying one of the options labeled (a) in Proposi-
tion 2.3, and if, furthermore, the distance dist(λi,Supp(ν)) satisfies

max
1≤j≤n

dist
(
λj ,Supp(ν)

) −→
N→∞ 0,

then a is a regular endpoint of Supp(μ). However, this last condition is not neces-
sary. Further comments will be made in Section 3.1 below.

(c) If γ > 1, then the leftmost edge is regular. [For a proof of this fact, simply
write the leftmost edge as g(c), then Proposition 2.4(a) shows that c < 0, which
immediately implies (12).]

Let γN = n/N , and consider now the probability measure μ(γN, νN), which is
the unique solution of the fixed point equation (8) associated with the data γN, νN .
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It is a finite-N deterministic equivalent of the spectral measure of MN . Associated
to μ(γN, νN) is the function

gN(z) = 1

z
+ γN

∫
λ

1 − zλ
νN(dλ) = 1

z
+ 1

N

n∑
j=1

λj

1 − zλj

;(13)

cf. (10). Similarly to μ(γ, ν), the measure μ(γN, νN) has a density on (0,∞) and
its support can also be characterized with the help of Proposition 2.1 (by simply
replacing g by gN ). We furthermore have the following proposition:

PROPOSITION 2.7. Let Assumption 2 hold true. Let g(c) be a regular soft
edge. Then for N large enough:

(a) gN is analytic in a complex neighborhood of c which is independent of N ;
(b) gN converges to g uniformly on the compact sets of this neighborhood, and

so does its kth order derivative g
(k)
N to g(k), for any k ≥ 1;

(c) There exists a sequence of real numbers cN , unique up to a finite number
of terms, such that cN → c, g′

N(cN) = 0 and g
(k)
N (cN) → g(k)(c) as N → ∞ for

any k.

This proposition shows in particular that when a soft edge g(c) is regular, there
is a sequence gN(cN) of endpoints of Supp(μ(γN, νN)) that converge to g(c), and
cN satisfies

lim inf
N→∞

n

min
j=1

∣∣cN − λ−1
j

∣∣ > 0.(14)

PROOF OF PROPOSITION 2.7. Set η = min(|c|/2, lim infN minj |λ−1
j − c|),

and let B = B(c, η/2) be the open ball with center c and radius η/2. Since

λj

|1 − zλj | = 1

|λ−1
j − z| ≤ 1

|λ−1
j − c| − |z − c| ≤ 3

η

for z ∈ B and for all N large, the functions gN are analytic and uniformly bounded
on B for all N large. This establishes (a) in particular. Moreover, this yields
that the family of analytic functions gN is uniformly bounded on B . Thus by
Montel’s theorem, the family gN is normal. It follows from the convergences
γN → γ and νN → ν provided by Assumption 1 that gN converges pointwise
to g on B . Consequently, gN converges to g uniformly on the compact sub-
sets of B , and the same is true for the convergence of the g

(k)
N to g(k) by [60],

Theorem 10.28. Turning to (c), notice that c is a zero of g′ by the regularity
assumption; see Remark 2.6(a). Since g′

N converges to g′ uniformly on the com-
pact sets of B and g′ is analytic there, Hurwitz’s theorem shows that g′

N has
a zero cN that converges to the zero c of g′ and that this zero is unique pro-
vided N is large enough. Moreover this zero is real since g′

N(z) = g′
N(z). Write
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|g(k)
N (cN) − g(k)(c)| ≤ |g(k)

N (cN) − g(k)(cN)| + |g(k)(cN) − g(k)(c)|. Since for any

k, g
(k)
N converge uniformly to gk on the compact subsets of B , the first term at the

right-hand side vanishes as N → ∞. The second term vanishes as N → ∞ by the
continuity of g(k). This establishes (c). �

2.3. Extremal eigenvalues and their convergence. Our purpose is now to lo-
cate the eigenvalues of MN that converge to a prescribed edge, or equivalently
those of M̃N (denoted by x̃1 ≤ · · · ≤ x̃n). The idea is the following: given an in-
terval (u, v) outside Supp(μ(γN, νN)), its preimage (m(v),m(u)) by g then lies
in between two groups of λ−1

j ’s, provided N is sufficiently large. Thus there is a

unique integer φ(N) for which λ−1
φ(N)+1 < m(v) < m(u) < λ−1

φ(N). This φ(N) de-
fines the deterministic index for which xφ(N) converges a.s. toward the prescribed
edge. Figure 1 illustrates this phenomenon. The following proposition formalizes
this.

REMARK 2.8 (Convention). In the remaining, we shall systematically use the
notational convention λ0 = x̃0 = 0 and λn+1 = x̃n+1 = ∞.

PROPOSITION 2.9 (Bai and Silverstein [4, 5]). Let Assumptions 1 and 2
hold true. Assume that [u, v] with u > 0 lies in an open interval outside
Supp(μ(γN, νN)) for N large enough, and recall definition (8) of the fixed-point
solution m. Then the following facts hold true:

(a) If γ > 1, then x̃n−N+1 → a almost surely as N → ∞, where a > 0 is the
leftmost edge of the bulk.

(b) In the following cases: (i) γ ≤ 1 or (ii) γ > 1 and [u, v] �⊂ [0,a], it holds
that m(v) > 0. Let φ(N) be the integer defined as

λφ(N)+1 > m(v)−1 and λφ(N) < m(u)−1.(15)

Then

P(x̃φ(N)+1 > v, x̃φ(N) < u for all large N) = 1.(16)

REMARK 2.10. Bianchi et al. [15] established the result for matrices XN

taken from a doubly infinite array of i.i.d. random variables with finite fourth mo-
ment. If the entries are Gaussian, one can relax the doubly infinite array assumption
and establish Proposition 2.9 by using the completely different tools of [46].

We are now in a position to properly state and prove part (a) of Theorem 1.

THEOREM 2 (Extremal eigenvalues). Let Assumptions 1 and 2 hold true.5

5In view of Remark 2.10, one can relax the Gaussianity assumption in Theorem 2 and replace it
by the fact that XN ’s entries are extracted from a doubly infinite array of i.i.d. random variables.
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(a) If γ > 1 and a is the leftmost edge of the bulk, then set ϕ(N) = n − N + 1.
Otherwise, let a = g(c) be a regular soft left edge, and let ϕ(N) = min{j :λ−1

j <

c}. Then, almost surely,

lim
N→∞ x̃ϕ(N) = a and lim inf

N→∞ (a− x̃ϕ(N)−1) > 0.

(b) Let b = g(d) be a regular right edge, and let φ(N) = max{j :λ−1
j > d}.

Then, almost surely

lim
N→∞ x̃φ(N) = b and lim inf

N→∞ (x̃φ(N)+1 − b) > 0.

Eigenvalues x̃ϕ(N) and x̃φ(N) are called extremal eigenvalues.

PROOF. We shall only prove the result for a right edge b. By Proposition 2.7,
we can choose a compact neighborhood B of d such that gN and g′

N uniformly
converge to g and g′. Let p,q, r, s be real numbers such that p < q < r < s < d,
[p, s] ⊂ B , and g′(x) < 0 for x ∈ [p, s]. This last condition is made possible by
the fact that b is a right edge of Supp(μ); cf. Figure 1. Let u = g(r) and v =
g(q). Since gN and g′

N converge uniformly to g and g′, respectively, on [p, s],
it holds that g′

N(x) < 0 on [p, s], and [u, v] ⊂ [gN(s), gN(p)] for all N large.
Proposition 2.1 applied to μ(γN, νN) shows then that [u, v] lies in an open set
outside Supp(μ(γN, νN)) for all N sufficiently large.

Now the integer φ(N) defined in the statement is characterized by the inequali-
ties

λ−1
φ(N)+1 < d < λ−1

φ(N).

Since no λ−1
j ’s belong to B for N large enough, we can equivalently write

λ−1
φ(N)+1 < q = m(v) < r = m(u) < λ−1

φ(N)

which is (15). By Proposition 2.9, we get (16).
Since v > b, we have lim infN(x̃φ(N)+1 − b) > 0 with probability one. More-

over, we know that a.s., the number of x̃i in [b− ε,b] is nonzero for any ε > 0 and
for all large N . Making r ↑ d, we get u = g(r) ↓ b. Since x̃φ(N) < u a.s. for all
large N , we get that x̃φ(N) → b a.s. when N → ∞. �

2.4. Summary of the properties of regular edges. For the reader’s convenience
and constant use in the sequel, we gather in the two following propositions some
of the most important properties of regular edges introduced above. Recall the
convention in Remark 2.8.

PROPOSITION 2.11 (Left regular soft edges). Let Assumption 2 hold true. Let
a be a left edge.

(a) Consider first the case where a is the leftmost edge:
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– If γ > 1, then a= g(c) > 0 with c< 0, and a is a regular soft edge.
– If γ < 1, then a = g(c) > 0 with c > 0; a is a soft edge, but its regularity is a

priori not granted.

(b) Assume now that a is a regular left soft edge. Then

a = g(c)

with {
g′(c) = 0,

g′′(c) < 0
and

{
c < 0, if a is the leftmost edge and γ > 1,
c > 0, otherwise.

For N large enough, there exists a unique sequence cN such that g′
N(cN) = 0 and

cN −→
N→∞ c, g

(k)
N (cN) −→

N→∞g(k)(c) for any k ≥ 0,

where by g
(0)
N , g(0) we mean gN,g. Finally, there exists a deterministic sequence

(ϕ(N)) such that almost surely,

lim
N→∞ x̃ϕ(N) = a and lim inf

N→∞ (a− x̃ϕ(N)−1) > 0.

PROPOSITION 2.12 (Right regular soft edges). Let Assumption 2 hold true,
and assume that b is a regular right soft edge. Then

b= g(d) with
{

g′(d) = 0,

g′′(d) > 0
and d> 0.

For N large enough, there exists a unique sequence dN such that g′
N(dN) = 0 and

dN −→
N→∞d, g

(k)
N (dN) −→

N→∞g(k)(d) for any k ≥ 0.

Finally, there exists a deterministic sequence (φ(N)) such that almost surely,

lim
N→∞ x̃φ(N) = b and lim inf

N→∞ (x̃φ(N)+1 − b) > 0.

3. Fluctuations around the edges. In this section, we state the main results of
the paper, namely the fluctuations of the extremal eigenvalues and their asymptotic
independence. Parts (b), (c) and (d) of Theorem 1 are respectively formalized in
Theorem 3 (Section 3.1), Theorem 4 (Section 3.2) and Theorem 5 (Section 3.3).
We also provide a discussion on nonregular edges and spikes phenomena with
graphical illustrations.

As an application, we obtain in Section 3.4 new results for the asymptotic be-
havior of the condition number of complex correlated Wishart matrices.
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3.1. Tracy–Widom fluctuations at the regular soft edges. We first introduce
the Tracy–Widom distribution. The Airy function Ai is the unique solution of the
differential equation Ai′′(x) = xAi(x) which satisfies the asymptotic behavior

Ai(x) = 1

2
√

πx1/4 e−(2/3)x3/2(
1 + o(1)

)
, x → +∞.

With a slight abuse of notation, denote by KAi the integral operator associated with
the Airy kernel

KAi(x, y) = Ai(x)Ai′(y) − Ai(y)Ai′(x)

x − y
.(17)

A real-valued random variable X is said to have Tracy–Widom distribution if

P(X ≤ s) = det(I − KAi)L2(s,∞), s ∈ R,

where the right-hand side stands for the Fredholm determinant of the restriction
to L2(s,∞) of the operator KAi (see also Section 4.2). Tracy and Widom [67]
established the famous representation

det(I − KAi)L2(s,∞) = exp
(
−

∫ ∞
s

(x − s)q(x)2 dx

)
,

where q is the Hastings–McLeod solution of the Painlevé II equation, namely the
unique solution of q ′′(x) = 2q(x)3 +xq(x) with boundary condition q(x) ∼ Ai(x)

as x → ∞.
We are now in position to state our result concerning the Tracy–Widom fluctu-

ations. Recall that gN has been introduced in (13).

THEOREM 3. Let Assumptions 1 and 2 hold true.

(a) Let a be a left regular soft edge, and x̃ϕ(N) and (cN)N be as in Proposi-
tion 2.11. Set

aN = gN(cN), σN =
(

2

−g′′
N(cN)

)1/3
.

Then, for every s ∈R,

lim
N→∞P

(
N2/3σN(aN − x̃ϕ(N)) ≤ s

) = det(I − KAi)L2(s,∞).(18)

(b) Let b be a right regular soft edge, and x̃φ(N) and (dN)N be as in Proposi-
tion 2.12. Set

bN = gN(dN), δN =
(

2

g′′
N(dN)

)1/3

.

Then, for every s ∈R,

lim
N→∞P

(
N2/3δN(x̃φ(N) − bN) ≤ s

) = det(I − KAi)L2(s,∞).(19)

The proof is deferred to Section 4, and an outline is provided in Section 4.1.
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Connexion with El Karoui’s result. Let us first comment the last theorem in
the light of El Karoui’s result [31]; see also Onatski’s work [55]. If we assume

lim inf
N→∞ dNλn < 1,(20)

then, as a consequence of the analysis provided in Section 2, the sequence (dN)N
is associated with the rightmost edge b, and the associated extremal eigenvalue
has to be the largest eigenvalue of M̃N (or equivalently of MN ). Moreover, (20)
implies that b is regular, so that Theorem 3 applies. This is the result of El Karoui,
announced in the Introduction, which he actually proves in a more general setting.

Indeed, in [31] the weak convergence of νN toward some limiting probability
distribution and the convergence of n/N to some limit were not assumed; it is only
assumed that n/N stays in a bounded set of (0,1] (actually of (0,+∞) after [55])
together with (20). Let us mention that only under these assumptions, by compact-
ness, one can always extract converging subsequences for νN and n/N so that our
result applies along a subsequence.

Notice also that condition (20) is stronger than our regularity condition, since
b can be regular with lim infN dNλn > 1. In this case, the extremal eigenvalue
associated with the rightmost edge is no longer the largest eigenvalue of M̃N ; this
entails the presence of outliers, as we shall explain in the next paragraph. Our result
then states that the largest eigenvalue which actually converges to the rightmost
edge b fluctuates for large N , according to the Tracy–Widom law.

Nonregular edges and spikes phenomena. In Remark 2.6(b), we explained that
when a soft edge reads b = g(d) with d /∈ ∂D, and when the Hausdorff distance
between Supp(νN) and Supp(ν) converges to zero, then the endpoint b is regular.
Still assuming that d /∈ ∂D, let us now assume instead that

νN = k

n
δζ + ν̃N ,

where k is a fixed positive integer, ζ > 0 is fixed and lies outside Supp(ν) and
the Hausdorff distance between Supp(ν̃N) and Supp(ν) converges to zero. The
eigenvalue ζ of �N with multiplicity k is often called a spike. Assume without
loss of generality that b is a right edge and that 1/ζ belongs to the same connected
component of D as d. Three situations that we describe without formal proofs are
of interest:

(1) The spike ζ satisfies g′(1/ζ ) < 0. This can only happen if 1/ζ < d, as
shown in Figure 2. In this case, ζ produces k outliers, that is, eigenvalues of
M̃N which converge to a value outside the bulk; see [9, 13]. In terms of the sup-
port of μ(γN, νN), the location of these outliers corresponds to a small interval in
Supp(μ(γN, νN)) (see Figure 2) which is absent from Supp(μ(γ, ν)). The width
of this new interval is of order N−1/2.

Since 1/ζ < d, the regularity condition still holds for b, and Tracy–Widom fluc-
tuations around bN = gN(dN) will be observed.
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FIG. 2. Plot of gN(x) for n = 300, γN = 0.1 and νN = 1
300 δ1.7 + 209

300 δ1 + 90
300 δ3. The spike

ζ = 1.7 produces an outlier. The asymptote at 1/ζ is not shown for better visibility.

Let us say a few words on the fluctuations of the outliers. Notice that ζ incurs
the presence of a local minimum and a new local maximum in gN which are absent
from g; see Figures 1 and 2. Considering, for example, the minimum reached at,
say d′

N , one can show that |1/ζ −d′
N | is of order N−1/2. In particular, the regularity

assumption (14) is not satisfied for d′
N . In fact, it is known that when they are scaled

by N1/2, the k outliers asymptotically fluctuate up to a multiplicative constant as
the eigenvalues of a k × k matrix taken from the GUE ensemble; see [3, 8, 12]
among others.

(2) The spike ζ satisfies g′(1/ζ ) > 0. The case where 1/ζ > d is shown in
Figure 3. Here, the spike ζ does not create an outlier, and the regularity condition
on b is still satisfied. Tracy–Widom fluctuations around bN = gN(dN) will be also
observed here.

(3) The spike depends generally on N and satisfies 1/ζ → d as N → ∞. Here,
we are at the crossing point of the phase transition discovered in [8] between the
“Tracy Widom regime” and the “GUE regime.” More specifically, under an addi-
tional condition [see (172)] we shall briefly outline in Appendix B that at the scale
N2/3 the asymptotic fluctuations are described by the so-called deformed Tracy–
Widom law whose distribution function Fk is defined in [8], equation (17). One can
also be interested in the regime where k = k(N) → ∞ as N → ∞. In the setting
of additive perturbations of Wigner matrices, this situation has been considered by
Péché when k/N → 0, and she proved Tracy–Widom fluctuations arise; see [57],
Theorem 1.5. We do not pursue this direction here.

All these arguments can be straightforwardly generalized to the case where a
finite number of different spikes are present.
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FIG. 3. Plot of gN(x) for n = 300, γN = 0.1 and νN = 1
300 δ1.1 + 209

300 δ1 + 90
300 δ3. The spike

ζ = 1.1 does not produce an outlier. The asymptote at 1/ζ is not shown for better visibility.

As explained in the third point above and in Appendix B, we can tackle the sit-
uation where an edge satisfies a weak kind of nonregularity. Nevertheless, our
approach breaks down in the case of a limiting measure ν for which Proposi-
tion 2.3(b) occurs.

3.2. Asymptotic independence. Our next result states that the fluctuations of
the extremal eigenvalues associated with any finite number of regular soft edges
are asymptotically independent.

THEOREM 4. Let Assumptions 1 and 2 hold true, and let I and J be finite sets
of indices. Denote by (ai )i∈I left regular soft edges and by (bj )j∈J right regular
soft edges.

Let x̃ϕi(N) and ci,N be associated to ai as in Proposition 2.11, and set

ai,N = gN(ci,N ), σi,N =
(

2

−g′′
N(ci,N )

)1/3

.

Similarly, let x̃φj (N) and dj,N be associated to bj as in Proposition 2.12, and

bj,N = gN(dj,N ), δj,N =
(

2

g′′
N(dj,N )

)1/3

.

Then, for every real numbers (si)i∈I , (tj )j∈J , we have

lim
N→∞P

(
N2/3σi,N(ai,N − xϕi(N)) ≤ si,

i ∈ I,N2/3δj,N(xφj (N) − bj,N ) ≤ tj , j ∈ J
)

= ∏
i∈I

det(I − KAi)L2(si ,∞)

∏
j∈J

det(I − KAi)L2(tj ,∞).



COMPLEX CORRELATED WISHART MATRICES 2283

We prove Theorem 4 in Section 5. Our strategy is to build on the operator-
theoretic proof of Bornemann in the case of the smallest and largest eigenvalues
of the GUE [21]; it essentially amounts to proving that the off-diagonal entries of
a two-by-two operator valued matrix decay to zero in the trace class norm. In our
setting, the problem involves a larger operator valued matrix, and we show that ob-
taining the decay to zero for the off-diagonal entries in the Hilbert–Schmidt norm
is actually sufficient. We establish the latter by using the estimates established in
Section 4.

A comment on universality. The results presented in this paper rely on the fact
that the entries of XN are complex Gaussian random variables, a key assumption
in order to take advantage of the determinantal structure of the eigenvalues of the
model under study. A recent work by Knowles and Yin [42] enables one to trans-
fer the results presented here (except the hard edge fluctuations; see Theorem 5
below) to the case of complex, but not necessarily Gaussian, random variables. In-
deed, by combining the local convergence to the limiting distribution established
in [42] together with Theorems 3 and 4, one obtains Tracy–Widom fluctuations
and asymptotic independence in this more general setting, provided that the en-
tries of matrix XN fulfill some moment condition. This also provides a similar
generalization of our Proposition 3.2, describing the asymptotic behavior for the
condition number of MN when γ > 1. Let us stress that the case of real Gaussian
random variables (except the largest one covered in [45]), of great importance in
statistical applications, remains open.

3.3. Fluctuations at the hard edge. Proposition 2.4 shows that when the left-
most edge is a hard edge, γ = 1. (Actually, one can show that this is an equiva-
lence.) In order to study the smallest random eigenvalue fluctuations at the hard
edge, we restrict ourselves to the case where n = N + α, where α ∈ Z is indepen-
dent of N . Thus the smallest random eigenvalue of MN is

xmin =
{

x1 = x̃α+1, if α ≥ 0,
x1−α = x̃1, if α < 0.

We shall prove that the fluctuations of xmin around the origin are described by
mean of the Bessel kernel with parameter α, that we introduce now.

The Bessel function of the first kind Jα with parameter α ∈ Z is defined by

Jα(x) =
(

x

2

)α ∞∑
n=0

(−1)n

n!�(n + α + 1)

(
x

2

)2n

, x > 0.(21)

Note that when α < 0, the first |α| terms in the series vanish since the Gamma func-
tion � has simple poles on the nonpositive integers. Denote by KBe,α the Bessel
kernel

KBe,α(x, y) =
√

yJα(
√

x)J ′
α(

√
y) − √

xJ ′
α(

√
x)Jα(

√
y)

2(x − y)
,(22)
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and by extension, KBe,α , the associated integral operator. Given a nonnegative real-
valued random variable X, the following probability distribution will be of partic-
ular interest:

P(X ≥ s) = det(I − KBe,α)L2(0,s), s > 0,

where the right-hand side stands for the Fredholm determinant of the restriction to
L2(0, s) of the integral operator KBe,α . When α = 0, this is actually the distribution
of an exponential law of parameter 1, namely det(I − KBe,0)L2(0,s) = e−s . Also of
interest is the alternative representation due to Tracy and Widom [68],

det(I − KBe,α)L2(0,s) = exp
(
−1

4

∫ s

0
(log s − logx)q(x)2 dx

)
,

where q is the solution of a differential equation which is reducible to a particu-
lar case of the Painlevé V equation (involving α in its parameters) and boundary
condition q(x) ∼ Jα(

√
x) as x → 0.

Let us now state our result for the fluctuations around the hard edge.

THEOREM 5. Let Assumptions 1 and 2 hold true; assume moreover that n =
N + α, where α ∈ Z is independent of N . Set

σN = 4

N

n∑
j=1

1

λj

.(23)

Then, for every s > 0, we have

lim
N→∞P

(
N2σNxmin ≥ s

) = det(I − KBe,α)L2(0,s).(24)

In particular, if N = n, then we have for every s > 0,

lim
N→∞P

(
N2σNxmin ≥ s

) = e−s .(25)

REMARK 3.1. The assumption that νN converges weakly toward some limit ν

is actually not used in the proof of Theorem 5. Namely, this result holds true under
Assumptions 1 and 2(2) only.

We provide a proof for Theorem 5 in Section 6. It is also based on an asymptotic
analysis for the rescaled kernel; the key observation here is that when an edge is
the hard edge, the associated critical point c should be located at infinity (when
embedding the complex plane into the Riemann sphere).

3.4. Application: Condition numbers. The condition number of the matrix
MN with eigenvalues 0 ≤ x1 ≤ · · · ≤ xN is defined by

κN = xN

x1
,
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provided it is finite, that is, n/N ≥ 1. If n/N < 1, one may instead consider the
condition number associated to M̃N , defined as κ̃N = x̃n/x̃1. The study of condi-
tion numbers is important in numerical linear algebra [38, 71], and random matrix
theory has already provided interesting theoretical [11, 30] and applied [15, 49]
results. As a consequence of our former results, we provide an asymptotic study
for κN . (One can easily derive similar results for κ̃N .)

Notation. We use the notation
D→ for the convergence in distribution of random

variables.

PROPOSITION 3.2. Let Assumptions 1 and 2 hold true and γ > 1. Let a be the
leftmost edge, assume it is regular and let (cN)N and c be as in Proposition 2.11.
Let b be the rightmost edge, assume it is regular and let (dN)N and d be as in
Proposition 2.12. Set

aN = gN(cN), σN =
(

2

−g′′
N(cN)

)1/3

,

bN = gN(dN), δN =
(

2

g′′
N(dN)

)1/3

.

Assume moreover that x1 → a and xN → b a.s. Then

κN
a.s.−→

N→∞
b

a
and N2/3

(
κN − bN

aN

)
D−→

N→∞
X

δa
+ bY

σa2 ,

where X and Y are two independent Tracy–Widom distributed random variables,
and where

σ =
(

2

−g′′(c)

)1/3

= lim
N→∞σN and δ =

(
2

g′′(d)

)1/3

= lim
N→∞ δN .

REMARK 3.3. The condition that x1 → a and xN → b a.s. imposes that nei-
ther xN nor x1 are outliers; otherwise their fluctuations (together with those of κN )
would be of order N1/2, and a different (somewhat easier) asymptotic analysis
should be conducted. We do not pursue in this direction here.

PROOF OF PROPOSITION 3.2. Only the convergence in distribution requires
an argument. Write

N2/3
(
κN − bN

aN

)
= N2/3

(
xN

x1
− bN

aN

)
= N2/3

(
aNxN − bNx1

x1aN

)

= N2/3

x1aN

{
aN(xN − bN) − bN(x1 − aN)

}
= 1

x1δN

N2/3δN(xN − bN) + bN

x1aNσN

N2/3σN(aN − x1).



2286 W. HACHEM, A. HARDY AND J. NAJIM

Using the asymptotically independent Tracy–Widom fluctuations of N2/3δN(xN −
bN) and N2/3σN(aN − x1) (cf. Theorems 3 and 4) together with the a.s. conver-
gence x1 → a and the convergences aN → a, bN → b, δN → δ and σN → σ (cf.
Proposition 2.7), one can conclude using Slutsky’s lemma [69], Lemma 2.8. �

We now handle the case where γ = 1.

PROPOSITION 3.4. Let Assumptions 1 and 2 hold true, and let n = N + α

where α ∈ N is independent of N . Let

σN = 4

N

n∑
j=1

1

λj

and σ = 4
∫ 1

x
dν(x) = lim

N→∞σN.

Assume that a.s. xN → b for some b> 0. Then

1

N2 κN
D−→

N→∞
bσ

X
,

where X is a random variable with distribution

P(X ≥ s) = det(I − KBe,α)L2(0,s), s > 0.

PROOF. Write
κN

N2 = σN(xN − b)

N2σNx1
+ σNb

N2σNx1
.

Since by assumption xN − b → 0 a.s. and by Theorem 5 (N2σNx1)
−1 → X−1 in

distribution, where X has the distribution specified in the statement, we have

σN(xN − b)

N2σNx1

D−→
N→∞ 0.

By Slutsky’s lemma, N−2κN then converges toward bσX−1 in distribution. �

REMARK 3.5. Interestingly, in the square case where γ = 1, the fluctuations
of the largest eigenvalue xN (either of order N1/2 if xN is an outlier or of order
N2/3 in the Tracy–Widom regime) have no influence on the fluctuations of κN as
these are imposed by the limiting distribution of x1 at the hard edge.

4. Proof of Theorem 3: Tracy–Widom fluctuations. This section is devoted
to the proof of Theorem 3.

4.1. Outline of the proof.

Step 1 (preparation). As in [8] and [31], the starting point to establish Tracy–
Widom fluctuations is that the random eigenvalues of MN or M̃N form a determi-
nantal point process, so that the gap probabilities can be expressed as Fredholm
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determinants of an integral operator KN with kernel KN(x, y). We provide all the
necessary material from operator theory in Section 4.2. In Section 4.3 we first re-
call the double contour integral formula for KN(x, y) obtained in [8, 55]. Next, we
show using Theorem 2 that one can represent the cumulative distribution functions
for the extremal eigenvalues as Fredholm determinants involving KN asymptot-
ically. As a consequence, proving the Tracy–Widom fluctuations boils down to
establishing the appropriate convergence of rescaled versions K̃N(x, y) of the ker-
nel KN(x, y) toward the Airy kernel. To this end, we split K̃N(x, y) into two parts,
K(0)

N (x, y) and K(1)
N (x, y), each involving different integration contours.

Step 2 (contours deformations). Anticipating the forthcoming asymptotic
analysis, we focus in Section 4.4 on right edges and prove the existence of ap-

propriate integration contours coming with K(0)
N (x, y) and K(1)

N (x, y); the case of
a left edge is deferred to Section 4.6. Obtaining appropriate explicit contours is
usually the hard part in the asymptotic analysis; see, in particular, [31]. Here, we
instead provide a nonconstructive proof for the existence of appropriate contours
by mean of the maximum principle for subharmonic functions, which has the ad-
vantage to work for every regular edge up to minor modifications.

Step 3 (asymptotic analysis). Still focusing on the right edge setting, we prove
in Section 4.5.1 that K(0)

N (x, y) does not contribute in the large N limit. Moreover,

we prove the convergence of kernel K(1)
N (x, y) to the Airy kernel in an appropriate

sense and then complete the proof of Theorem 3(b). For this last step, we use a
different approach than in [8, 31]: instead of relying on a factorization trick and
the Hölder inequality to obtain the trace class convergence, we use an argument
involving the regularized Fredholm determinant det2 to show the convergence of
the Fredholm determinants. Finally, in Section 4.6, we adapt the arguments to the
left edge setting and complete the proof of Theorem 3.

4.2. Operators, Fredholm determinants and determinantal processes.

Trace class operators and Fredholm determinants. We provide hereafter a few
elements of operator theory; for classical references, see [27, 37, 64]. Consider a
compact linear operator A acting on a separable Hilbert space H [we write A ∈
L(H)], and denote by (sn)

∞
n=1 the singular values of A repeated according to their

multiplicities, that is, the eigenvalues of (AA∗)1/2. The set

J1 =
{

A ∈ L(H),

∞∑
n=1

sn < ∞
}

is the (sub-)algebra of trace class operators and endowed with the norm ‖A‖1 =∑∞
n=1 sn; (J1,‖ · ‖1) is complete. If A ∈ J1 with eigenvalues (an)

∞
n=1 (repeated
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according to their multiplicities), then the trace and the Fredholm determinant
of A,

Tr(A) =
∞∑

n=1

an and det(I − A) =
∞∏

n=1

(1 − an),

are well defined and finite (Lidskii’s trace theorem). The maps A �→ Tr(A) and
A �→ det(I − A) are continuous on (J1,‖ · ‖1). If both AB and BA are trace class,
then we have the useful identity

det(I − AB) = det(I − BA).(26)

Similarly, let

J2 =
{

A ∈ L(H),

∞∑
n=1

s2
n < ∞

}
be the (sub-)algebra of Hilbert–Schmidt operators endowed with the norm ‖A‖2 =
{∑∞

n=1 s2
n}1/2. The set (J2,‖ · ‖2) is complete. If A ∈ J2 with eigenvalues (an)

∞
n=1

(repeated according to their multiplicities), then the regularized 2-determinant
of A,

det2(I − A) =
∞∏

n=1

(1 − an)e
an,(27)

is well defined and finite. Moreover, the map A �→ det2(I − A) is continuous on
(J2,‖ · ‖2).

The inclusion J1 ⊂ J2 is straightforward. The Hölder inequality ‖AB‖1 ≤
‖A‖2‖B‖2 yields that if A,B are Hilbert–Schmidt, then both AB and BA are trace
class. The following simple property will play a key role in the sequel:

PROPOSITION 4.1. If A ∈ J1, then

det2(I − A) = det(I − A)eTr(A).

As a consequence, if the operators An,A ∈ J1 are such that Tr(An) → Tr(A) and
‖An − A‖2 → 0 as n → ∞, then

det(I − An) −→
n→∞ det(I − A).

Integral operators. When working on H = L2(R), we identify a given kernel
(x, y) �→ K(x, y) with its associated integral operator Kf = ∫

K(·, y)f (y)dy act-
ing on L2(R), provided the latter makes sense. Let J ⊂R be a Borel set and 1J be
the orthogonal projection of L2(R) onto L2(J ). The restriction K|J of K to L2(J )

is defined by

K|J f (x) = 1J (x)

∫
J

K(x, y)f (y)dy, f ∈ L2(J ),
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and is associated to the kernel (x, y) �→ 1J (x)K(x, y)1J (y), namely K|J =
1J K1J . In order to keep track of these projections when dealing with Fredholm
determinants, we shall often write det(I − K)L2(J ) for det(I − 1J K1J ).

Given a measurable kernel K :R × R → R, the associated integral operator K
on L2(R) is Hilbert–Schmidt if and only if∫

R

∫
R

K(x, y)2 dx dy < ∞,

and in this case we have

‖K‖2 =
(∫

R

∫
R

K(x, y)2 dx dy

)1/2

.(28)

We finally recall (cf. [37], Theorem 8.1) that if K : [a, b] × [a, b] → R is a con-
tinuous kernel whose associated operator 1(a,b)K1(a,b) is trace class6 on L2(R),
then

Tr(1(a,b)K1(a,b)) =
∫ b

a
K(x, x)dx.(29)

Convention. From this point forward, the trace Tr and the Hilbert–Schmidt
norm ‖ · ‖2 will always refer to the Hilbert space L2(R).

Determinantal point process. Real random variables x1, . . . , xm are said to
form a determinantal point process with kernel K :R × R → R (and Lebesgue
measure for reference measure) if its gap probabilities are expressed as Fredholm
determinants; namely, for any Borel set J ⊂R, we have

P
(
�{1 ≤ k ≤ m :xk ∈ J } = 0

) = det(I − K)L2(J ),

provided that the right-hand side makes sense; the latter stands for the Fredholm
determinant of the restriction to L2(J ) of the integral operator with kernel K(x, y).

4.3. The kernel of a correlated Wishart matrix and its properties. The next
proposition will be of fundamental use in this paper.

PROPOSITION 4.2. Let Assumption 1 hold true. Then, for every N , the
min(n,N) random eigenvalues of M̃N (and equivalently of MN ) form a deter-
minantal point process associated with the kernel

KN(x, y) = N

(2iπ)2

∮
�

dz

∮
�

dw e−Nx(z−q)+Ny(w−q)

(30)

× 1

w − z

(
z

w

)N n∏
j=1

(w − λ−1
j

z − λ−1
j

)
,

6See, for instance, [37], Theorem 8.2, for sufficient conditions on K to be trace class.
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FIG. 4. The contours of integration.

where the real q ∈ (0, λ−1
n ) is a free parameter, and we recall that the λi’s are the

eigenvalues of �N . � and � are disjoint closed contours, both oriented counter-
clockwise, such that � encloses the λ−1

j ’s and lies in {z ∈ C : Re z > q}, whereas
� encloses the origin and lies in {z ∈ C : Re z < q}.

By convention, all the contours we shall consider will be assumed to be simple
and oriented counterclockwise. The integration contours are shown in Figure 4.

This proposition can be found in [8] (n/N ≤ 1) where it is attributed to Johans-
son, and in [55] (n/N > 1). Notice that since the pioneering work of Brézin and
Hikami [24], many such double integral representations appeared for determinan-
tal point processes.

REMARK 4.3. The assumption over q , that is, q ∈ (0, λ−1
n ), ensures that KN

with kernel (30) is trace class on L2(R). In the sequel, we shall only need KN to be
locally trace class, that is, trace class on L2(J ) for every compact subset J ⊂ R.
As an important consequence, we can choose q ∈ R with no further restriction. In
fact, let q ∈ (0, λ−1

n ), q ′ ∈ R and J ⊂ R be a compact set. Then the multiplication
operator E :f (x) �→ e(q ′−q)Nxf (x) and its inverse E−1 are trace class on L2(J ).
Write KN = KNE−1E, and use (26) to get

det(I − KN)L2(J ) = det
(
I − EKNE−1)

L2(J ).

The kernel of EKNE−1 is simply obtained by (30) where q has been replaced by q ′,
and our claim follows.

Asymptotic determinantal representation for the law of extremal eigenvalues.
Recall that to prove Tracy–Widom fluctuations for the maximal eigenvalue x̃n of
M̃N , a classical way to proceed is to identify the events {N2/3σN(x̃n − bN) ≤ s} =
{no x̃i’s in (bN + s/(N2/3σN),∞)}, to use the determinantal representation

P
(
N2/3σN(x̃n − bN) ≤ s

) = det(I − KN)L2(bN+s/(N2/3σN),∞)

and to prove the convergence of operator KN to the Airy operator KAi after the
rescaling x �→ bN +x/(N2/3σN) for the trace class topology. This would yield the
desired result since the Fredholm determinant is continuous for that topology.

Since the probabilities of interest P(N2/3σN(x̃φ(N) − bN) ≤ s) and
P(N2/3σN(aN − x̃ϕ(N)) ≤ s) can no longer be expressed as gap probabilities in
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general, we provide below an asymptotic Fredholm determinant representation as
N → ∞ for these.

PROPOSITION 4.4. Consider the setting of Theorem 3, and recall that by con-
vention x̃0 = 0 and x̃n+1 = +∞. Then the following facts hold true:

(a) For every ε > 0 small enough and for every sequence (ηN)N of positive
numbers satisfying limN ηN = +∞,

P
(
ηN(aN − x̃ϕ(N)) ≤ s

) = det(I − KN)L2(aN−ε,aN−s/ηN ) + o(1)(31)

as N → ∞.
(b) For every ε > 0 small enough and for every sequence (ηN)N of positive

numbers satisfying limN ηN = +∞,

P
(
ηN(x̃φ(N) − bN) ≤ s

) = det(I − KN)L2(bN+s/ηN ,bN+ε) + o(1)(32)

as N → ∞.

PROOF. We only prove (b), proof of (a) being similar. Observe that Theo-
rem 2(b) and the convergence bN → b yield together the existence of ε > 0 small
enough such that

P
(
ηN(x̃φ(N) − bN) ≤ s

)
(33)

= P
(
ηN(x̃φ(N) − bN) ≤ s, x̃φ(N)+1 ≥ bN + ε

) + o(1)

as N → ∞. Now, ε being fixed, use the determinantal representation to write

det(I − KN)L2(bN+s/ηN ,bN+ε)
(34)

= P
(
�{� ≤ k ≤ n :bN + s/ηN ≤ x̃k ≤ bN + ε} = 0

)
,

where � = n− min(N,n) + 1. Recall the notational convention in Remark 2.8; we
obtain by splitting along disjoint events

P
(
�{� ≤ k ≤ n :bN + s/ηN ≤ x̃k ≤ bN + ε} = 0

)
= P

(
ηN(x̃φ(N) − bN) ≤ s, x̃φ(N)+1 ≥ bN + ε

)
(35)

+ P(x̃� ≥ bN + ε)

+
n∑

k=�,k �=φ(N)

P(x̃k ≤ bN + s/ηN, x̃k+1 ≥ bN + ε).

Since we have the upper bounds
φ(N)−1∑

k=�

P(x̃k ≤ bN + s/ηN, x̃k+1 ≥ bN + ε) ≤ P(x̃φ(N) ≥ bN + ε),

n∑
k=φ(N)+1

P(x̃k ≤ bN + s/ηN, x̃k+1 ≥ bN + ε) ≤ P(x̃φ(N)+1 ≤ bN + s/ηN),
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we obtain from (34), (35), Theorem 2(b) and the convergence bN → b that

det(I − KN)L2(bN+s/ηN ,bN+ε)
(36)

= P
(
ηN(x̃φ(N) − bN) ≤ s, x̃φ(N)+1 ≥ bN + ε

) + o(1).

Finally, (32) follows by combining (33) and (36). �

Rescaling and splitting the kernel KN . We introduce hereafter the rescaled
kernel K̃N and provide an alternative integral representation with new contours.
The aim is to prepare the forthcoming asymptotic analysis for right regular edges.

Let b be a soft regular right edge. By Proposition 2.12, there exist d > 0 such
that

b = g(d), g′(d) = 0, g′′(d) > 0,(37)

and an associated sequence (dN) such that g
(k)
N (dN) → g(k)(d). Set

bN = gN(dN), δN =
(

2

g′′
N(dN)

)1/3

,(38)

so that we have

g′
N(dN) = 0, lim

N→∞dN = d,

(39)

lim
N→∞bN = b, lim

N→∞ δN =
(

2

g′′(d)

)1/3

.

In particular cN , g′′
N(cN) and σN are positive numbers for every N large enough,

and (σN)N is a bounded sequence.
It follows from the definition of the extremal eigenvalue x̃φ(N) (see Theorem 2

and Proposition 4.4) that for every ε > 0 small enough,

P
(
N2/3δN(x̃φ(N) − bN) ≤ s

)
(40)

= det(I − KN)L2(bN+s/(N2/3δN ),bN+ε) + o(1)

as N → ∞. By a change of variable, we can write

det(I − KN)L2(bN+s/(N2/3δN ),bN+ε)
(41)

= det(I − 1(s,εN2/3δN )K̃N1(s,εN2/3δN ))L2(s,∞),

where the scaled integral operator K̃N has kernel

K̃N(x, y) = 1

N2/3δN

KN

(
bN + x

N2/3δN

,bN + y

N2/3δN

)
(42)

with KN(x, y) introduced in (30). Consider the map

fN(z) = −bN(z − dN) + log(z) − 1

N

n∑
i=1

log(1 − λiz).(43)
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REMARK 4.5. In order to fully define fN , one needs to specify the determi-
nation of the logarithm. This will be done when needed. Notice, however, that
functions RefN , exp(fN) and the derivatives f

(k)
N are always well defined.

By taking q = dN in (30), which is possible according to Remark 4.3, we have

KN(x, y) = N

(2iπ)2

∮
�

dz

∮
�

dw e−Nx(z−dN)+Ny(w−dN)

(44)

× 1

w − z

(
z

w

)N n∏
j=1

(
1 − λjw

1 − λjz

)
,

where we recall that the contour � encloses the λ−1
j ’s whereas the contour �

encloses the origin and is disjoint from �. It then follows from definition (42) of
K̃N that

K̃N(x, y) = N1/3

(2iπ)2δN

×
∮
�

dz

∮
�

dw
1

w − z
(45)

× e−N1/3x((z−dN)/δN )+N1/3y((w−dN)/δN )+NfN(z)−NfN(w).

The key observation here is the identity

f ′
N(z) = gN(z) − gN(dN),(46)

which follows from (13) and (38). As a byproduct, (39) yields that dN is a root of
multiplicity two for f ′

N , and more precisely,

f ′
N(dN) = f ′′(dN) = 0, f

(3)
N (dN) = g′′

N(dN) > 0.(47)

The aim is to perform a saddle point analysis for fN around its critical point dN .
To this end, we deform the contours � and � in a way that they pass near dN .

If dN is smaller than all the λ−1
j ’s, as it is the case in [31] when dealing with the

maximal eigenvalue, then go directly to Section 4.4, set �(1) = �, K(1)
N = K̃N and

disregard every statement related to �(0).
If not, then we proceed in two steps. First, we split � into two disjoint contours,

�(0) and �(1), as shown in Figure 5: the contour �(0) encloses the λ−1
j ’s which are

smaller than dN , while �(1) encloses the λ−1
j ’s which are larger that dN . Notice

that Proposition 2.4(d) applied to the measure νN shows that the set {j,1 ≤ j ≤
n :λ−1

j > dN } is not empty. Therefore, the contour �(1) is always well defined.
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FIG. 5. The new contours �(0) and �(1).

We now introduce for α ∈ {0,1} the kernels

K(α)
N (x, y)

= N1/3

(2iπ)2δN
(48)

×
∮
�(α)

dz

∮
�

dw
1

w − z

× e−N1/3x((z−dN)/δN )+N1/3y((w−dN)/δN )+NfN(z)−NfN(w).

Then it follows from the residue theorem that

K̃N(x, y) = K(0)
N (x, y) + K(1)

N (x, y),(49)

and a similar identity for the associated operators.
In the second step, we modify the contour � in order for it to surround �(0)

while remaining at the left of dN ; cf. Figure 6. This can be done with no harm
for the kernel K(1)

N . As for K(0)
N , this modification for the contours yields a residue

term, coming with the singularity (w − z)−1 of the integrand. The latter residue

FIG. 6. The new contours for the kernel K̃N .
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term equals

N1/3

2iπδN

∮
�(0)

eN1/3((y−x)/δN )(z−dN) dz

and thus identically vanishes since the integrand is analytic.

4.4. Contours deformations and subharmonic functions: The right edge case.
We now provide the existence of deformations for the contours �(0), �(1) and
� which are appropriate for the asymptotic analysis. These new contours will be
referred to as ϒ(0), ϒ(1) and �̃.

PROPOSITION 4.6. For every ρ > 0 small enough, there exists a contour ϒ(0)

independent of N and two contours ϒ(1) = ϒ(1)(N) and �̃ = �̃(N) which satisfy
for every N large enough the following properties:

(1) (a) ϒ(0) encircles the λ−1
j ’s smaller than dN ;

(b) ϒ(1) encircles all the λ−1
j ’s larger than dN ;

(c) �̃ encircles all the λ−1
j ’s smaller than dN and the origin.

(2) (a) ϒ(1) = ϒ∗ ∪ ϒ
(1)
res where

ϒ∗ = {
dN + te±iπ/3 : t ∈ [0, ρ]};

(b) �̃ = �̃∗ ∪ �̃res where

�̃∗ = {
dN − te±iπ/3 : t ∈ [0, ρ]}.

(3) There exists K > 0 independent of N such that:

(a) Re(fN(z) − fN(dN)) ≤ −K for all z ∈ ϒ(0);

(b) Re(fN(z) − fN(dN)) ≤ −K for all z ∈ ϒ
(1)
res ;

(c) Re(fN(w) − fN(dN)) ≥ K for all w ∈ �̃res.

(4) There exists d > 0 independent of N such that

inf
{|z − w| : z ∈ ϒ(0),w ∈ �̃

} ≥ d,

inf
{|z − w| : z ∈ ϒ∗,w ∈ �̃res

} ≥ d,

inf
{|z − w| : z ∈ ϒ(1)

res ,w ∈ �̃∗
} ≥ d,

inf
{|z − w| : z ∈ ϒ(1)

res ,w ∈ �̃res
} ≥ d.

(5) (a) The contours ϒ(1) and �̃ lie in a bounded subset of C independent
of N ;

(b) the lengths of ϒ(1) and �̃ are uniformly bounded in N .
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Note that both the contours ϒ(1) and �̃ pass through the critical point dN .
In order to provide a proof for Proposition 4.6, we first establish a few lemmas.

We recall that B(z,ρ) for z ∈ C, and ρ > 0 stands for the open ball of C with
center z and radius ρ.

Recall that 0 < infN λ−1
n ≤ supN λ−1

1 < ∞ by Assumption 2. By the regularity
assumption, namely lim infN minn

j=1 |d − λ−1
j | > 0, there exists ε > 0 such that

λ−1
j ∈ (0,+∞) \ B(d, ε) for every 1 ≤ j ≤ n and every N large enough. Denote

by K the compact set

K =
([

inf
N

1

λn

, sup
N

1

λ1

] ∖
B(d, ε)

)
∪ {0}.(50)

Notice that by construction {x ∈ R :x−1 ∈ Supp(νN)} ⊂ K for every N large
enough, and also that {x ∈ R :x−1 ∈ Supp(ν)} ⊂ K because of the weak conver-
gence νN → ν.

Recall the definition of fN (43), and introduce its asymptotic counterpart,

f (z) = −b(z − d) + log(z) − γ

∫
log(1 − xz)ν(dx).(51)

Notice that whereas f and fN are defined up to a determination of the complex
logarithm,

Ref (z) = −bRe(z − d) + log |z| − γ

∫
log |1 − xz|ν(dx)(52)

and RefN are well defined. The following properties of Ref and RefN around d

and dN will be of constant use in the sequel.

LEMMA 4.7. Let Assumption 2 hold true, and let K be as in (50). Then:

(a) The function RefN converges locally uniformly to Ref on C\K. Moreover,

lim
N→∞ RefN(dN) = Ref (d).(53)

(b) There exists ρ0 > 0 and � = �(ρ0) > 0 independent of N such that for
every N large enough, B(dN,ρ) ⊂ C \ K for every ρ ∈ (0, ρ0], and whatever the
analytic representation of fN on B(dN,ρ),∣∣fN(z) − fN(dN) − g′′

N(dN)(z − dN)3/6
∣∣ ≤ �|z − dN |4,∣∣Re

(
fN(z) − fN(dN)

) − g′′
N(dN)Re

[
(z − dN)3]

/6
∣∣ ≤ �|z − dN |4

for all z ∈ B(dN,ρ0).
(c) There exists ρ0 > 0 and � = �(ρ0) > 0 such that B(d, ρ0) ⊂ C \ K, and

for all z ∈ B(d, ρ0),∣∣Re
(
f (z) − f (d)

) − g′′(d)Re
[
(z − d)3]

/6
∣∣ ≤ �|z − d|4.



COMPLEX CORRELATED WISHART MATRICES 2297

PROOF. Fix an open ball B of C \ K. By definition of K, one can chose a
determination of the logarithm such that fN is well defined and holomorphic there
for N large enough. Indeed, there exists an analytic determination of the logarithm
on every simply connected domain of C \ {0}. Use the same determination for f ,
which is then also well defined and holomorphic on B . By weak convergence of νN

to ν, fN converges pointwise to f on B . Similar to the proof of Proposition 2.7,
the sequence of holomorphic functions (fN)N is uniformly bounded on B and
thus has compact closure by the Montel theorem, which upgrades the pointwise
convergence fN → f to the uniform one on B . The uniform convergence of RefN

to Ref on B follows since |RefN(z) − Ref (z)| ≤ |fN(z) − f (z)| for all z ∈ B .
Now since dN → d and dN,d ∈ C \ K for all N large enough by the regularity
assumption, (53) follows from the local uniform convergence RefN → Ref on
C \K, and (a) is proved.

It follows from Proposition 2.7 that for ρ0 > 0 small enough and every N large
enough, we have B(dN,ρ0) ⊂ B(d,2ρ0) ⊂C\K. Using the same determination of
the log as previously yields that fN is well defined and holomorphic on B(dN,ρ0).
Since (39) and (46) yield f ′

N(dN) = f ′′
N(dN) = 0, f

(3)
N (dN) = g′′

N(dN) > 0 and

f
(4)
N = g

(3)
N for all N large enough, we can perform a Taylor expansion for fN

around dN in order to get∣∣fN(z) − fN(dN) − g′′
N(dN)(z − dN)3/6

∣∣ ≤ |z − dN |4
24

max
w∈B(d,2ρ0)

∣∣g(3)
N (w)

∣∣
provided that z ∈ B(dN,ρ0). Proposition 2.7 moreover provides that g

(3)
N con-

verges uniformly on B(d,2ρ0) to g(3) which is bounded there. We therefore get the
existence of � = �(ρ0) independent of N for which the first inequality in part (b)
of the proposition is satisfied. The inequality for the real part directly follows, and
part (b) of the proposition is proved, as is part (c) by using similar arguments. �

We now provide a qualitative analysis for the map Ref . First, we study the
behavior of Ref (z) as |z| → ∞. To do so, we introduce the sets

�− = {
z ∈ C : Ref (z) < Ref (d)

}
,

�+ = {
z ∈ C : Ref (z) > Ref (d)

}
,

and prove the following.

LEMMA 4.8. Both �+ and �− have a unique unbounded connected compo-
nent. Moreover, given any α ∈ (0, π/2), there exists R > 0 large enough such that

�R− =
{
z ∈C : |z| > R,−π

2
+ α < arg(z) <

π

2
− α

}
⊂ �−,(54)

�R+ =
{
z ∈C : |z| > R,

π

2
+ α < arg(z) <

3π

2
− α

}
⊂ �+.(55)
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PROOF. Recall expression (52) of Ref (z) which yields that Ref (z) =
−bRe(z − d) + O(log |z|) as |z| → ∞. Since b > 0, it follows that for any fixed
α ∈ (0, π/2), there exists R > 0 large enough such that

�R− ⊂ �−, �R+ ⊂ �+.(56)

Next, we compute for any A ∈ R \ {0},
d

dt
Ref (t + iA) = −b+ t

t2 + A2 + γ

∫
(x−1 − t)

(x−1 − t)2 + A2 ν(dx).

Since b > 0 and Supp(ν) is a compact subset of (0,+∞), there exists A0 > 0
such that for any A satisfying |A| ≥ A0, the map t �→ d

dt
Ref (t + iA) is nega-

tive; namely, t �→ Ref (t + iA) is decreasing. Assume there exists another un-
bounded connected component of �−, different from the one containing �R−.
By (56). This unbounded connected component then lies in C \ (�R− ∪ �R+), and
thus there exists z0 in this component satisfying | Im(z0)| ≥ A0. Since the half line
{Re(z0) + t + i Im(z0) : t ≥ 0} then belongs to �− and eventually hits �R−, we
obtain a contradiction. The same arguments apply to �+. �

Next, we describe the behavior of Ref at the neighborhood of d. Taking ad-
vantage of Lemma 4.7(c), which encodes that Ref (z) − Ref (d) behaves like
Re[(z − d)3] around d, we describe in the following lemma subdomains of �± of
interest.

LEMMA 4.9. There exist η > 0 and θ > 0 small enough such that, if

�k =
{
z ∈ C : 0 < |z − d| < η,

∣∣∣∣arg(z − d) − k
π

3

∣∣∣∣ < θ

}
for −2 ≤ k ≤ 3, then

�2k+1 ⊂ �−, �2k ⊂ �+, k ∈ {−1,0,1}.

The regions �k are shown on Figure 7.

PROOF OF LEMMA 4.9. Recall Lemma 4.7(c), and let η < ρ0 as defined there.
Then ∣∣Ref (z) − Ref (d) − g′′(d)Re

[
(z − d)3]

/6
∣∣ ≤ �(ρ0)|z − d|4

for every z ∈ B(d, η). Notice that Re[(z − d)3] = (−1)k if z = d + eikπ/3 for
consecutive integers k. Since g′′(d) > 0, the lemma follows by choosing η small
enough. �

We denote by �2k+1 the connected component of �− which contains �2k+1.
Similarly, �2k stands for the connected component of �+ which contains �2k . We
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now describe these sets by using the maximum principle for subharmonic func-
tions, in the same spirit as in [29], Section 6.1 (see also [28], Section 2.4.2), al-
though the setting is more involved here; such a use of the maximum principle has
been communicated to us by Steven Delvaux.

Recall that if G is an open subset of C, a function u :G → R ∪ {−∞} is sub-
harmonic if u is upper semicontinuous; that is, {z ∈ G,u(z) < α} is open for every
α ∈ R, and for every closed disk B(z, δ) contained in G, we have the inequality

u(z) ≤ 1

2π

∫ 2π

0
u
(
z + δeiθ )

dθ.

A function u :G →R∪ {+∞} is superharmonic if −u is subharmonic; in particu-
lar, it is lower semicontinuous. Moreover, if u :G →C is subharmonic, it satisfies
a maximum principle: for any bounded domain (i.e., connected open set) U ⊂ C

where u is subharmonic, if for some κ ∈ R it holds that

lim sup
z→ζ,z∈U

u(z) ≤ κ, ζ ∈ ∂U,

then u ≤ κ on U . Similarly, superharmonic functions satisfy a minimum principle.
The use of the maximum principle for subharmonic functions is made possible

here because of the following observation.

LEMMA 4.10. The function Ref is subharmonic on C \ {x ∈ R :x−1 ∈
Supp(ν)} and superharmonic on C \ {0}.

PROOF. It will be enough to establish the result for the map

z �→ log |z| − γ

∫
log |1 − xz|ν(dx)

(57)
= log |z| − γ

∫
log |z − x|τ(dx) − γ

∫
logxν(dx),

where the compactly supported probability measure τ is the image of ν by x �→
x−1. The assumptions on ν imply that logx is ν-integrable. Now, it is a standard
fact from potential theory that given a positive Borel measure η on C with compact
support, the map z �→ ∫

log |z−x|η(dx) is subharmonic on C and harmonic on C\
Supp(η); see, for example, [61], Chapter 0. Consequently, z �→ log |z| is harmonic
on C \ {0} and subharmonic on C, and z �→ γ

∫
log |z − x|τ(dx) is harmonic on

C \ Supp(τ ) and subharmonic on C. The result follows. �

Equipped with Lemma 4.10, we can obtain more information concerning the
connected components of �±.

LEMMA 4.11. The following hold true:

(1) If �∗ is a connected component of �+, then �∗ is open and, if �∗ is moreover
bounded, there exists x ∈ Supp(ν) such that x−1 ∈ �∗.



2300 W. HACHEM, A. HARDY AND J. NAJIM

(2) Let �∗ be a connected component of �− with nonempty interior:

(a) if �∗ is bounded, then 0 ∈ �∗;
(b) if �∗ is bounded, then its interior is connected;
(b) if 0 /∈ �∗, then the interior of �∗ is connected.

PROOF. Let us show (1). We set α = Ref (d). Since Ref (z) → −∞ as
|z| → 0, then 0 /∈ {z ∈ C,Ref > α}. Hence

{z ∈ C : Ref > α} = {
z ∈C \ {0} : Ref > α

}
.

However, since Ref is superharmonic on C \ {0}, {z ∈ C \ {0} : Ref > α} is an
open set on C. As a consequence, all these connected components are open, hence
the desired result. In particular, �∗ is open and ∂�∗ ⊂ ∂�+; hence Ref ≤ Ref (d)

on ∂�∗. If �∗ is moreover bounded, then we have Ref > Ref (d) on the bounded
domain �∗ and Ref ≤ Ref (d) on its boundary. Since subharmonic functions
satisfy a maximum principle, Ref cannot be subharmonic on the whole set �∗,
and (1) follows from Lemma 4.10.

We now turn to (2)(a). We argue by contradiction and assume that �∗ is a
bounded connected component of �− which does not contain the origin. The fact
that �∗ has a nonempty interior implies that at least one of the sets �∗ ∩ {Im(z) >

0} or �∗ ∩ {Im(z) < 0} is nonempty. Consider the set

�
sym∗ = {z ∈ C : z ∈ �∗},

and notice it is also a connected component of �− because of the symmetry
Ref (z) = Ref (z). Without loss of generality, assume that �∗ ∩ {Im(z) > 0} �=∅

(otherwise switch the role of �∗ and �
sym∗ in what follows). Since Ref is subhar-

monic on C\K, �− is open and so are its connected components, in particular �∗,
and then �∗ ∩{Im(z) > 0}. Now Ref being continuous on C\K, by Lemma 4.10,
we have

Ref (z) = Ref (d), z ∈ ∂�∗ \K.(58)

Let us fix ε0 > 0 such that �∗ ∩ {Im(z) ≥ ε0} �= ∅ and pick z0 ∈ �∗ satisfying
Im(z0) ≥ ε0 and Ref (z0) < Ref (d). Our goal is to construct a bounded domain
which contains z0 but not the origin and where Ref > Ref (z0) on its boundary.
Indeed, this would lead to a contradiction via the minimum principle for superhar-
monic functions since Ref is superharmonic on C \ {0} as stated in Lemma 4.10.

First, notice that if dist(�∗,R) > 0, then Ref is harmonic on �∗, Ref =
Ref (d) on ∂�∗ and Ref < Ref (d) on �∗, which is a bounded domain. How-
ever, this contradicts the minimum principle for (super)harmonic functions, and
thus dist(�∗,R) = 0. Because dist(�∗,R) = 0 and �∗ ∩ {Im(z) > 0} is open and
nonempty, for every ε > 0 small enough �∗ ∩ {Im(z) = ε} = U + iε where U is a
nonempty open subset of the real line. Thus we can write

�∗ ∩ {
Im(z) = ε

} = ⋃
j∈J

(
u

(j)
min(ε), u

(j)
max(ε)

) + iε,
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where J is a countable set satisfying Card(J ) ≥ 1, and the u
(j)
min(ε)’s and

u
(j)
min(ε)’s are real numbers such that any open intervals (u

(j1)
min(ε), u

(j1)
max(ε)) and

(u
(j2)
min(ε), u

(j2)
max(ε)) are disjoint whenever j1 �= j2. Notice that by symmetry,

�
sym∗ ∩ {

Im(z) = −ε
} = ⋃

j∈J

(
u

(j)
min(ε), u

(j)
max(ε)

) − iε.

By construction, for every j ∈ J , both u
(j)
min(ε) + iε and u

(j)
max(ε) + iε belong to

∂�∗ \R. In particular, by (58) and the symmetry Ref (z) = Ref (z),

Ref
(
u

(j)
min(ε) ± iε

) = Ref
(
u(j)

max(ε) ± iε
) = Ref (d), j ∈ J.(59)

Since by assumption 0 /∈ �∗ ⊂ �−, there exists δ > 0 such that B(0, δ) ∩ �∗ = ∅

otherwise 0 ∈ ∂�∗, but in this case, the boundary condition Ref (z) = Ref (d)

would be violated near zero as Ref (z) → −∞ for |z| → 0. As �∗ is more-
over bounded by assumption, |u(j)

min(ε)| and |u(j)
max(ε)| stay in a compact subset

of (0,+∞) independent from ε and j ∈ J as ε → 0. As a consequence, we can
choose ε ∈ (0, ε0) small enough so that, for every j ∈ J ,

max
(

ε2

u
(j)
min(ε)

2
,

ε2

u
(j)
max(ε)2

)
< min

(
Ref (d) − Ref (z0),

1

2

)
.(60)

If we moreover consider for any j ∈ J the open rectangle

Rj (ε) = {
u + iv ∈ C :u(j)

min(ε) < u < u(j)
max(ε), |v| < ε

}
,

then we can also assume that ε is small enough so that 0 /∈ Rj (ε) for every j ∈ J .

Let j ∈ J and η ∈ R be such that |η| ≤ ε. Denote by zε = u
(j)
min(ε) + iε and

zη = u
(j)
min(ε) + iη. Since |1 − xzη| ≤ |1 − xzε| for every x ∈ R, it follows that∫

log |1 − xzη|ν(dx) ≤
∫

log |1 − xzε|ν(dx)

and, together with (59), that

Ref (zη) ≥ Ref (zε) + log
∣∣∣∣zη

zε

∣∣∣∣ = Ref (d) + log
∣∣∣∣zη

zε

∣∣∣∣.(61)

Next, we have

log
∣∣∣∣zη

zε

∣∣∣∣ = 1

2
log

(
u

(j)
min(ε)

2 + η2

u
(j)
min(ε)

2 + ε2

)
= 1

2
log

(
1 − ε2 − η2

u
(j)
min(ε)

2 + ε2

)
(62)

≥ 1

2
log

(
1 − ε2

u
(j)
min(ε)

2

)
≥ − ε2

u
(j)
min(ε)

2
,



2302 W. HACHEM, A. HARDY AND J. NAJIM

where for the last inequality we use that log(1 − x) ≥ −2x for any x ∈ [0,1/2].
By combining (60)–(62), we have shown that

Ref
(
u

(j)
min(ε) + iη

)
> Ref (z0), |η| ≤ ε, j ∈ J.(63)

The same line of arguments also shows that

Ref
(
u(j)

max(ε) + iη
)
> Ref (z0), |η| ≤ ε, j ∈ J.(64)

Now, consider the set

�̃∗ = {
z ∈ �∗ : Im(z) ≥ ε

} ∪ {
z ∈ �

sym∗ : Im(z) ≤ −ε
} ∪

(⋃
j∈J

Rj (ε)

)
,

and notice it is a bounded open set containing z0 [since Im(z0) ≥ ε0 > ε], but
which may not be connected, and which does not contain the origin. Let �̃∗(z0)

be the connected component of �̃∗ which contains z0. Since 0 /∈ �̃∗(z0), Ref is
superharmonic on the bounded domain �̃∗(z0). It follows from (58), (63), (64) and
the symmetry Ref (z) = Ref (z) that Ref > Ref (z0) on ∂�̃∗(z0). This yields a
contradiction with the minimum principle for superharmonic functions, and (2)(a)
follows.

We now turn to (2)(b) and again argue by contradiction. Let �∗ be connected
component of �− such that its interior int(�∗) is not connected. Notice that since
Ref is continuous on C \K, we have int(�∗) \K = �∗ \K, and in particular (58)
yields

Ref (z) = Ref (d), z ∈ ∂ int(�∗) \K.

If �∗ is bounded, then by (2)(a) we have 0 ∈ �∗, and moreover, since Ref (z) →
−∞ as z → 0, 0 ∈ int(�∗). Let �′∗ be a connected component of int(�∗) which
does not contain the origin. It is then a bounded domain on which Ref < Ref (d)

and Ref = Ref (d) on ∂�′∗ \ K. By picking z0 ∈ �′∗ ∩ {Im(z) > 0} and by per-
forming the same construction as in the proof of (2)(a), but replacing �∗ by �′∗,
we obtain a bounded domain �̃′∗(z0) containing z0 in its interior, on which Ref

is superharmonic, and such that Ref > Ref (z0) on its boundary. The minimum
principle for superharmonic functions shows that this is impossible, and (2)(b) fol-
lows.

To prove (2)(c), assume now that 0 /∈ �∗, so that �∗ is necessarily unbounded
by (2)(a). By using that int(�∗) \K = �∗ \K where K is a compact set, that �−
has a unique unbounded connected component by Lemma 4.8, and that by assump-
tion int(�∗) is not connected, it follows that at least one connected component of
int(�∗), say �′∗, is bounded. Since by assumption 0 /∈ �′∗, the same argument as
in the proof of (2)(b) yields a contradiction, and (2)(c) is proved. �

Recall that the �k’s are defined in Lemma 4.9, that �−1,�1 and �3 are in �−
and �−2,�0 and �2 are in �+. Recall also that the �k’s are the associated con-
nected components containing the �k’s. We use the previous lemmas to describe
the sets �k’s.
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LEMMA 4.12. The following hold true:

(1) The sets �1 and �−1 are equal, with a connected interior and unbounded.
In particular, for every 0 < α < π/2 there exists R > 0 such that{

z ∈ C : |z| > R,−π

2
+ α < arg(z) <

π

2
− α

}
⊂ �1.(65)

(2) The sets �2 and �−2 are equal, open, connected and unbounded. In par-
ticular there exists R > 0 such that{

z ∈ C : |z| > R,
π

2
+ α < arg(z) <

3π

2
− α

}
⊂ �2.(66)

(3) The interior of �3 is connected, and there exists δ > 0 such that
B(0, δ) ⊂ �3.

PROOF. We first prove (2). Since �2 is by definition a connected subset of �+,
Lemma 4.11(1) yields that it is open. Next, we show by contradiction that �2 is
unbounded. If �2 is bounded, then Lemma 4.11(1) shows there exists x ∈ Supp(ν)

such that x−1 ∈ �2. If x−1 < d (resp., x−1 > d), then it follows from the symmetry
Ref (z) = Ref (z) that �2 completely surrounds �3 (resp., �1); see, for instance,
Figure 7. Moreover, Lemma 4.9 implies that �3 (resp., �1) has nonempty inte-
rior. As a consequence, �3 (resp., �1) is a bounded connected component of �−
which does not contain the origin, and Lemma 4.11(2)(a) shows this is impossible.
The symmetry Ref (z) = Ref (z) moreover provides that �−2 is also unbounded,
and (2) follows from the inclusion (55) and the fact that �+ has a unique un-
bounded connected component; see Lemma 4.8.

FIG. 7. Preparation of the saddle point analysis for a right edge. The dotted path at the right is

ϒ
(1)
res (N0). The dotted path at the left is its counterpart for �̃. The closed contour at the left of d

is ϒ(0).
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We now prove (1). Since �2 is unbounded and symmetric around the real axis,
then �1 does not contain the origin, and it follows from Lemma 4.11(2)(a), (2)(c)
that �1 is unbounded and has a connected interior. Then (1) follows from sym-
metry Ref (z) = Ref (z), the inclusion (54) and the fact that �− has a unique
unbounded connected component; cf. Lemma 4.8.

Finally, since �3 is bounded as a byproduct of Lemma 4.12(2), it has a con-
nected interior [Lemma 4.11(2)(b)] and contains the origin [Lemma 4.11(2)(a)].
Moreover, since Ref (z) → −∞ as z → 0, (3) follows. �

We are finally in position to prove Proposition 4.6.

PROOF OF PROPOSITION 4.6. Given any ρ > 0 small enough, it follows from
the convergence of dN to d that for all N0 large enough, the points dN0 + ρeiπ/3

and dN0 + ρe−iπ/3 belong to �1 and �−1, respectively. Thus both points be-
long to �1 by Lemma 4.12(1). As a consequence, we can complete the path
{dN0 + te±iπ/3 : t ∈ [0, ρ]} into a (closed) contour with a path ϒ

(1)
res (N0) lying in the

interior of �1; see Figure 7. Since ϒ
(1)
res (N0) lies in the interior of �1, the conver-

gence dN → d moreover yields that we can perform the same construction for all
N ≥ N0 with ϒ

(1)
res (N) in a closed tubular neighborhood T ⊂ �1 of ϒ

(1)
res (N0). By

Lemma 4.12(1) again, we can moreover choose ϒ
(1)
res (N0) in a way that it has finite

length and only crosses the real axis at a real number lying on the right of K. By
construction, this yields that the set T is compact and that the ϒ

(1)
res (N)’s can be

chosen with a uniformly bounded length as long as N ≥ N0. Since �1 ⊂ �−,
there exists K > 0 such that Ref (z) ≤ Ref (d) − 3K on T . Since moreover
RefN uniformly converges to Ref on T and RefN(dN) → Ref (d), according
to Lemma 4.7(a), we can choose N0 large enough such that RefN ≤ Ref + K on
T and Ref (d) ≤ RefN(dN) + K . This finally yields that Re(fN(z) − fN(dN)) ≤
−K for all z ∈ T and proves the existence of a contour ϒ(1) satisfying the require-
ments of Proposition 4.6, except for point (4). Similarly, the same conclusion for
�̃ follows from the same lines, but by using �2 instead of �1 and Lemma 4.12(2).

As a consequence of Lemma 4.12(3), there exists a contour in the interior of
�3 surrounding {x ∈ K : 0 < x < d} but staying in {z ∈ C : Re z > 0} and which
intersects exactly twice the real axis in R \ K with finite length; see Figure 7.
Using again Lemma 4.7(a), the existence of ϒ(0) with the properties provided in
the statement of Proposition 4.6 follows.

Finally, item (4) of Proposition 4.6 is clearly satisfied by construction since the
sets �− and �+ are disjoint, and the proof of the proposition is therefore complete.

�

4.5. Asymptotic analysis for the right edges and proof of Theorem 3(b). Recall
that K̃N = K(0)

N +K(1)
N . We now analyze the asymptotic behavior of K(0)

N in the next

section and then investigate K(1)
N in Section 4.5.2.
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4.5.1. Asymptotic analysis for K(0)
N . Recall definition (48) of the kernel K(0)

N

and its associated contours �(0) and �; cf. Figure 6. The aim of this section is to
establish the following statement, which asserts that K(0)

N will have no impact on
the asymptotic analysis in the large N limit.

PROPOSITION 4.13. Let Assumptions 1 and 2 hold true. Then for every ε > 0
small enough,

lim
N→∞

∥∥1(s,εN2/3δN )K
(0)
N 1(s,εN2/3δN )

∥∥
2
= 0,(67)

lim
N→∞ Tr

(
1(s,εN2/3δN )K

(0)
N 1(s,εN2/3δN )

) = 0.(68)

Notation. If a contour � is parametrized by γ : I → � for some interval I ⊂ R,
then for every map h :� →C, we set∫

�
h(z)|dz| =

∫
I
h ◦ γ (t)

∣∣γ ′(t)
∣∣ dt

when it does make sense. In particular,
∮

�|dz| is the length of the contour �.

PROOF OF PROPOSITION 4.13. Recall that by definition of K(0)
N (x, y)

[see (48)], we have

K(0)
N (x, y) = N1/3

(2iπ)2δN

×
∮
�(0)

dz

∮
�

dw
1

w − z
(69)

× e−N1/3x(z−dN)/δN+N1/3y(w−dN)/δN+NfN(z)−NfN(w),

where � and �(0) are as in Figure 6. We now deform the contours � and �(0) so
that � = �̃ and �(0) = ϒ(0) where �̃ and ϒ(0) are given by Proposition 4.6. As a
consequence of Proposition 4.6(4), we have the upper bound∣∣K(0)

N (x, y)
∣∣ ≤ N1/3

d(2π)2δN

∮
ϒ(0)

e−N1/3x Re(z−dN)/δN+N Re(fN (z)−fN(dN))|dz|
(70)

×
∮
�̃

eN1/3y Re(w−dN)/δN−N Re(fN (w)−fN(dN))|dw|.
Recall that ϒ(0) does not depend on N . By Proposition 4.6(5)(b), the contour �̃

lies in a compact set. Hence there exists L > 0 independent of N such that |Re(z−
cN)| ≤ L for z ∈ ϒ(0) or z ∈ �̃. Together with Proposition 4.6(3)(a), we obtain that
for all x ≥ s, ∮

ϒ(0)
e−N1/3x Re(z−dN)/δN+N Re(fN (z)−fN(dN))|dz|

(71)
≤ e−NK+(N1/3/δN )(L(x−s)+L|s|)

∮
ϒ(0)

|dz|.
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Similarly, by splitting �̃ into �̃res and �̃∗, we get from Proposition 4.6(3)(c) for
every y ≥ s∮

�̃
eN1/3y Re(w−dN)/δN−N Re(fN (w)−fN(dN))|dw|

≤ eN1/3L(y−s)/δN+N1/3L|s|/δN(72)

×
(
e−NK

∫
�̃res

|dw| +
∫
�̃∗

e−N Re(fN (w)−fN(dN))|dw|
)
.

The definition of �̃∗ and Lemma 4.7(b) then yield∫
�̃∗

e−N Re(fN (w)−fN(dN))|dw| ≤
∫
�̃∗

e−Ng′′
N(dN)Re(w−dN)3+N�|w−dN |4 |dw|

≤
∫
�̃∗

e−Ng′′
N(dN)Re(w−dN)3+Nρ�|w−dN |3 |dw|(73)

= 2
∫ ρ

0
e−Nt3(g′′

N(dN)−ρ�) dt ≤ 2ρ

provided that ρ is chosen small enough so that g′′
N(dN) − ρ� > 0.

By combining (70)–(73), we thus obtained that there exist constants C0,C1 > 0
independent of N such that for every x, y ≥ s and every N large enough,∣∣K(0)

N (x, y)
∣∣ ≤ C0e

−C1N+(N1/3/δN )2L(x+y).(74)

Since by (28),

∥∥1(s,εN2/3δN )K
(0)
N 1(s,εN2/3δN )

∥∥
2
=

(∫ εN2/3δN

s

∫ εN2/3δN

s
K(0)

N (x, y)2 dx dy

)1/2

,

we obtain from (74) the rough estimate∥∥1(s,εN2/3δN )K
(0)
N 1(s,εN2/3δN )

∥∥
2
≤ C0

(
εN2/3δN − s

)
e−N(C1−4εL)

from which (67) follows, provided that we choose ε small enough. Similarly,
by (29)

Tr
(
1(s,εN2/3δN )K

(0)
N 1(s,εN2/3δN )

) =
∫ εN2/3δN

s
K(0)

N (x, x)dx,

and (74) yields the estimate

∣∣Tr
(
1(s,εN2/3δN )K

(0)
N 1(s,εN2/3δN )

)∣∣ ≤
∫ εN2/3δN

s

∣∣K(0)
N (x, x)

∣∣ dx

≤ C0
(
εN2/3σN − s

)
e−N(C1−4εL),

which proves (68) as soon as ε is small enough. Proof of Proposition 4.13 is there-
fore complete. �
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4.5.2. Asymptotic analysis for K(1)
N and proof of Theorem 3(b). We now in-

vestigate the convergence of K(1)
N toward KAi and thereafter complete the proof of

Theorem 3(b).

PROPOSITION 4.14. For every ε > 0 small enough, we have

lim
N→∞

∥∥1(s,εN2/3δN )

(
K(1)

N − KAi
)
1(s,εN2/3δN )

∥∥
2
= 0,(75)

lim
N→∞ Tr

(
1(s,εN2/3δN )

(
K(1)

N − KAi
)
1(s,εN2/3δN )

) = 0.(76)

First, we represent the Airy kernel as a double complex integral. To do so, we
introduce for some δ > 0, which will be specified later, the contours

�∞ = {
dN+δeiπθ : θ ∈ [−π/3, π/3]} ∪ {

dN + te±iπ/3 : t ∈ [δ,∞)
}
,(77)

�∞ = {
dN+δeiπθ : θ ∈ [2π/3,4π/3]} ∪ {

dN − te±iπ/3 : t ∈ [δ,∞)
}
,(78)

and prove the following.

LEMMA 4.15. For every δ > 0 and x, y ∈ R, we have

KAi(x, y) = N1/3

(2iπ)2δN∮
�∞

dz

∮
�∞

dw
1

w − z
e−N1/3(x(z−dN)/δN )+(N/6)g′′

N(dN)(z−dN)3

× eN1/3(y(w−dN)/δN )−(N/6)g′′
N(dN)(w−dN)3

.

PROOF. First, it easily follows from the differential equation satisfied by the
Airy function, namely Ai′′(x) = xAi(x), and an integration by part that

KAi(x, y) =
∫ ∞

0
Ai(x + u)Ai(y + u)du.(79)

The Airy function admits the following complex integral representation (see, e.g.,
[54], page 53)

Ai(x) = − 1

2iπ

∮
�

e−xz+z3/3 dz = 1

2iπ

∮
�′

exw−w3/3 dw,(80)

where � and �′ are disjoint unbounded contours, and � goes from eiπ/3∞ to
e−iπ/3∞ whereas �′ goes from e−2iπ/3∞ to e2iπ/3∞. By plugging (80) into (79)
and by using the Fubini theorem, we obtain

KAi(x, y) = − 1

(2iπ)2

∮
�

dz

∮
�′

dw e−xz+z3/3+yw−w3/3
∫ ∞

0
eu(w−z) du

(81)

= 1

(2iπ)2

∮
�

dz

∮
�′

dw
1

w − z
e−xz+z3/3+yw−w3/3,
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since Re(w − z) < 0 for all z ∈ � and w ∈ �′. Lemma 4.15 then follows after the
changes of variables z �→ N1/3(z−dN)/δN and w �→ N1/3(w−dN)/δN , the mere
definition δ3

N = 2/g′′
N(dN) and an appropriate deformation of the contours. �

We now turn to the proof of Proposition 4.14.

PROOF OF PROPOSITION 4.14. Recall that

K(1)
N (x, y) = N1/3

(2iπ)2δN

×
∮
�(1)

dz

∮
�

dw
1

w − z
(82)

× e−N1/3(x(z−dN)/δN )+N1/3(y(w−dN)/δN )+NfN(z)−NfN(w).

The key step in the analysis is to deform the contours �(1) and � into ϒ(1) and �̃

of Proposition 4.6, but since the later intersect in dN , we need to slightly modify
them.

Let ρ0 be fixed so that Lemma 4.7 holds true, fix ρ ≤ ρ0 and recall the defini-
tions of

ϒ(1) = ϒ∗ ∪ ϒ(1)
res and �̃ = �̃∗ ∪ �̃res(83)

as provided by Proposition 4.6. Since ϒ∗ ∩ �̃∗ = {dN }, we deform them to make
them disjoint. Set

δ = N−1/3,(84)

and from now until the end of the proof, denote (with a slight abuse of notation)

ϒ∗ =
{
dN+δeiθ : θ ∈

[
−π

3
,
π

3

]}
∪ {

dN + te±i(π/3) : t ∈ [δ, ρ]}(85)

:= ϒ∗,1 ∪ ϒ∗,2,(86)

�̃∗ =
{
dN+δeiθ : θ ∈

[
2π

3
,

4π

3

]}
∪ {

dN − te±i(π/3) : t ∈ [δ, ρ]}.(87)

Notice in particular that this deformation provides now the control

min
{|w − z| : z ∈ ϒ∗,w ∈ �̃∗

} ≥ δ.

Now, let �(1) = ϒ(1) and � = �̃. We can also express the Airy contours �∞ and
�∞ as

�∞ = ϒ∗ ∪ �∞
res with �∞

res = {
dN + te±iπ/3 : t ∈ [ρ,∞)

}
,

�∞
res = �̃∗ ∪ �∞

res with �∞
res = {

dN − te±iπ/3 : t ∈ [ρ,∞)
}
.
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It follows from Proposition 4.6(4) and the definition of the contours that there
exists d′ such that for any(

�,�′) ∈ {
(ϒ∗, �̃res),

(
ϒ(1)

res , �̃∗
)
,
(
ϒ(1)

res , �̃res
)
,(

�∗,�∞
res

)
,
(
�∞

res, �̃∗
)
,
(
�∞

res,�
∞
res

)}
,

we have

min
{|w − z| : z ∈ �,w ∈ �′} ≥ d′.

As a consequence, by using (82), (84), Lemma 4.15 and by splitting contours into
their different components, we obtain that∣∣K(1)

N (x, y) − KAi(x, y)
∣∣

(88)

≤ N2/3

(2π)2δN

E0 + N1/3

d′(2π)2δN

(E1 + E2 + E3 + E4 + E5 + E6),

where, setting for convenience

FN(x, z) = e−N1/3(x(z−dN)/δN )+N(fN(z)−fN(dN)),

FAi(x, z) = e−N1/3(x(z−dN)/δN )+(N/6)g′′
N(dN)(z−dN)3

,

GN(y,w) = eN1/3(y(w−dN)/δN )−N(fN(w)−fN(dN)),

GAi(y,w) = eN1/3(y(w−dN)/δN )−(N/6)g′′
N(dN)(w−dN)3

,

we introduce

E0 =
∫
ϒ∗

|dz|
∫
�̃∗

|dw|∣∣FN(x, z)GN(y,w) − FAi(x, z)GAi(y,w)
∣∣,(89)

E1 =
(∫

ϒ∗

∣∣FN(x, z)
∣∣|dz|

)(∫
�̃res

∣∣GN(y,w)
∣∣|dw|

)
,(90)

E2 =
(∫

ϒres

∣∣FN(x, z)
∣∣|dz|

)(∫
�̃∗

∣∣GN(y,w)
∣∣|dw|

)
,(91)

E3 =
(∫

ϒres

∣∣FN(x, z)
∣∣|dz|

)(∫
�̃res

∣∣GN(y,w)
∣∣|dw|

)
,(92)

E4 =
(∫

ϒ∗

∣∣FAi(x, z)
∣∣|dz|

)(∫
�∞

res

∣∣GAi(y,w)
∣∣|dw|

)
,(93)

E5 =
(∫

�∞
res

∣∣FAi(x, z)
∣∣|dz|

)(∫
�̃∗

∣∣GAi(y,w)
∣∣|dw|

)
,(94)

E6 =
(∫

�∞
res

∣∣FAi(x, z)
∣∣|dz|

)(∫
�∞

res

∣∣GAi(y,w)
∣∣|dw|

)
.(95)



2310 W. HACHEM, A. HARDY AND J. NAJIM

Convention. In the rest of the proof, C,C0,C1, . . . stand for positive constants
which are independent on N or x, y, but which may change from one line to an
other.

Step 1: Estimates for E0. We rely on the following elementary inequality:∣∣eu − ev
∣∣ = eRe(v)

∣∣e(u−v) − 1
∣∣

(96)

≤ eRe(v)
∑
k≥1

|u − v|k
k! ≤ |u − v|eRe(v)+|u−v|,

which holds for every u, v ∈C. By combining this inequality for

u = N
(
fN(z) − fN(dN)

) − N
(
fN(w) − fN(dN)

)
,

v = Ng′′
N(dN)

6

{
(z − dN)3 − (w − dN)3}

together with Lemma 4.7(b), we obtain∣∣FN(x, z)GN(y,w) − FAi(x, z)GAi(y,w)
∣∣

≤ �N
(|z − dN |4 + |w − dN |4)

e−N1/3(x Re(z−dN)/δN )+N1/3(y Re(w−dN)/δN )

× e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4−(Ng′′

N(dN)/6)Re(w−dN)3+N�|w−dN |4,

provided that z,w ∈ B(dN,ρ). This yields with (89)

E0 ≤ �

∫
ϒ∗

N |z − dN |4e−N1/3(x Re(z−dN)/δN )

× e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

×
∫
�̃∗

eN1/3(x Re(w−dN)/δN )e−(Ng′′
N(dN)/6)Re(w−dN)3+N�|w−dN |4 |dw|

(97)
+ �

∫
ϒ∗

e−N1/3(x Re(z−dN)/δN )e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

×
∫
�̃∗

N |w − dN |4eN1/3(x Re(w−dN)/δN )

× e−(Ng′′
N(dN)/6)Re(w−dN)3+N�|w−dN |4 |dw|.

We first handle the integrals over the contour ϒ∗ = ϒ∗,1 ∪ ϒ∗,2 [see (86)] and
consider separately the two different portions of the contour. First, let z ∈ ϒ∗,1,
and recall that x ≥ s by assumption. Since

δ

2
≤ Re(z − dN) ≤ |z − dN | ≤ δ and δ = 1

N1/3 ,
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we have |z − dN |4 = N−4/3 and the estimates

e−N1/3(x Re(z−dN)/δN ) ≤ e−((x−s)/2δN )+(|s|/δN ),

eNg′′
N(dN)Re(z−dN)3+N�|z−dN |4 ≤ eg′′

N(dN)+(�/N1/3).

This immediately yields∫
ϒ∗,1

N |z − dN |4e−N1/3(x Re(z−dN)/δN )e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

≤ 1

N1/3 e−((x−s)/(2δN ))+(|s|/δN )eg′′
N(dN)+(�/N1/3)

(
2π

3N1/3

)
(98)

≤ C

N2/3 e−(x−s)/(2δN ),

where 2π/3N1/3 accounts for the length of ϒ∗,1. Similarly∫
ϒ∗,1

e−N1/3(x Re(z−dN)/δN )e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

(99)

≤ C

N1/3 e−(x−s)/(2δN ).

Consider now the situation where z ∈ ϒ∗,2. In this case,

Re(z − dN) = t

2
, Re(z − dN)3 = −t3, |z − dN |4 = t4,

with N−1/3 ≤ t ≤ ρ and thus

e−N1/3(x Re(z−dN)/δN ) ≤ e−tN1/3((x−s)/(2δN ))+N1/3((|s|t)/(2δN ))

≤ e−((x−s)/(2δN ))+N1/3((|s|t)/(2δN )),

eNg′′
N(dN)Re(z−dN)3+N�|z−dN |4 ≤ e−N(g′′

N(dN)−ρ�)t3
.

Assuming that we choose ρ small enough so that g′′(d) − ρ� > 0 and recalling
that g′′

N(dN) → g′′(d), this provides for every N large enough the inequalities∫
ϒ∗,2

N |z − dN |4e−N1/3(x Re(z−dN)/δN )e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

≤ 2e−(x−s)/(2δN )
∫ ρ

N−1/3
Nt4eN1/3((|s|t)/(2δN ))−N(g′′

N(dN)−ρ�)t3
dt

(100)

≤ 2

N2/3 e−(x−s)/(2δN )
∫ ∞

1
u4e((|s|u)/(2δN ))−(g′′

N(dN)−ρ�)u3
du

≤ C

N2/3 e−(x−s)/(2δN ).
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Similarly, ∫
ϒ∗,2

e−N1/3(x Re(z−dN)/δN )eN(g′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

(101)

≤ C

N1/3 e−(x−s)/(2δN ).

Gathering (98)–(101), we finally obtain estimates over the whole contour ϒ∗,∫
ϒ∗

N |z − dN |4e−N1/3(x Re(z−dN)/δN )e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

≤ C

N2/3 e−(x−s)/(2δN ),

(102) ∫
ϒ∗

e−N1/3(x Re(z−dN)/δN )e(Ng′′
N(dN)/6)Re(z−dN)3+N�|z−dN |4 |dz|

≤ C

N1/3 e−(x−s)/(2δN ).

The same line of arguments also yields equivalent estimates for the integrals
over �̃∗. Namely,∫

�̃∗
N |w − dN |4eN1/3(y Re(w−dN)/δN )e−(Ng′′

N(dN)/6)Re(w−dN)3+N�|w−dN |4 |dw|

≤ C

N2/3 e−(y−s)/(2δN ),

(103)∫
�̃∗

eN1/3(y Re(w−dN)/δN )e−(Ng′′
N(dN)/6)Re(w−dN)3+N�|w−dN |4 |dw|

≤ C

N1/3 e−(y−s)/(2δN ).

Combining (102)–(103), we have shown that

E0 ≤ C

N
e−(x+y−2s)/(2δN ).(104)

Step 2: Estimates for the remaining Ei ’s. Using the same estimates as in step 1,
we can prove that ∫

ϒ∗

∣∣FN(x, z)
∣∣|dz| ≤ C

N1/3 e−(x−s)/(2δN ),

(105) ∫
ϒ∗

∣∣FAi(x, z)
∣∣|dz| ≤ C

N1/3 e−(x−s)/(2δN ),∫
�̃∗

∣∣GN(y,w)
∣∣|dw| ≤ C

N1/3 e−(y−s)/(2δN ),

(106) ∫
�̃∗

∣∣GAi(y,w)
∣∣|dw| ≤ C

N1/3 e−(y−s)/(2δN ).
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The definitions of the paths and Proposition 4.6 yield that there exists L > 0
independent of N such that∣∣Re(z − cN)

∣∣ ≤ L, z ∈ ϒ∗ ∪ �̃∗ ∪ ϒres ∪ �̃res.

This estimate, together with Proposition 4.6(3)(b), (3)(c) and (5)(c) yields that for
every x, y ≥ s,∫

ϒres

∣∣FN(x, z)
∣∣|dz| ≤ Ce−NK+N1/3L((x−s)/δN )+N1/3(L|s|/δN ),(107) ∫

�̃res

∣∣GN(y,w)
∣∣|dw| ≤ Ce−NK+N1/3L((y−s)/(δN ))+N1/3(L|s|/δN ).(108)

Combining (105)–(108), we readily obtain

E1 + E2 + E3 ≤ Ce−C1N+C2N
1/3((x+y)/δN ).

We now handle ∫
�∞

res

∣∣FAi(x, z)
∣∣|dz| and

∫
�∞

res

∣∣GAi(y,w)
∣∣|dw|.

We have ∫
�∞

res

∣∣FAi(x, z)
∣∣|dz| =

∫
�∞

res

∣∣GAi(y,w)
∣∣|dw|

= 2
∫ ∞
ρ

e−(N1/3xt/(2δN ))−(Ng′′
N(dN)/6)t3

dt

≤ 2
∫ ∞
ρ

e(N1/3|s|t/(2δN ))−(Ng′′
N(dN)/6)t3

dt.

Let now N large enough so that

3
g′′

N(dN)N

6
ρ2 − N1/3|s|

2δN

≥ ρ

(beware that such a condition only depends on s). Then

2
∫ ∞
ρ

e(N1/3|s|t/(2δN ))−(Ng′′
N(dN)/6)t3

dt

≤ 2

ρ

∫ ∞
ρ

(
3
g′′

N(dN)N

6
t2 − N1/3|s|

2δN

)
e(N1/3|s|t/(2δN ))−(Ng′′

N(dN)/6)t3
dt

≤ 2

ρ

[−e(N1/3|s|t/(2δN ))−(Ng′′
N(dN)/6)t3]∞

ρ

= 2

ρ
e(N1/3|s|ρ/(2δN ))−(Ng′′

N(dN)/6)ρ3
,
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and we hence obtain the estimate∫
�∞

res

∣∣FAi(x, z)
∣∣|dz| =

∫
�∞

res

∣∣GAi(y,w)
∣∣|dw| ≤ Ce−C1N.(109)

We can now easily handle E4, E5 and E6 and finally obtain

6∑
k=1

Ek ≤ Ce−C1N+C2N
1/3((x+y)/δN ).(110)

Step 3: Conclusions. By combining (88), (104) and (110), we have shown for
every x, y ≥ s and N large enough that∣∣K(1)

N (x, y) − KAi(x, y)
∣∣ ≤ C

N1/3 e−(x+y−2s)/(2δN ) + C1e
−C2N+C3N

1/3((x+y)/δN ).

As a consequence,∣∣Tr
(
1(s,εN2/3δN )

(
K(1)

N − KAi
)
1(s,εN2/3δN )

)∣∣
≤

∫ εN2/3δN

s

∣∣K(1)
N (x, x) − KAi(x, x)

∣∣ dx

≤ δNC

N1/3 + (
εN2/3δN − s

)
C1e

−N(C2−2εC3),

and (76) follows provided ε is chosen small enough. Similarly,∥∥1(s,εN2/3δN )

(
K(1)

N − KAi
)
1(s,εN2/3δN )

∥∥2

2

=
∫ εN2/3δN

s

∫ εN2/3δN

s

(
K(1)

N (x, y) − KAi(x, y)
)2 dx dy

≤
(

δNC

N1/3

)2

+ (
εN2/3δN − s

)2
C′

1e
−N(C2−2εC3),

where C′
1 > 0 is independent on N . This yields (75) as soon as ε is chosen small

enough and thus completes the proof of Proposition 4.14. �

We are finally in position to prove Theorem 3(b).

PROOF OF THEOREM 3(b). First, we check that the Airy operator KAi is
trace class and Hilbert–Schmidt on L2(s,∞) for every s ∈ R. Indeed, represen-
tation (79) provides the factorization KAi = A2

s of operators on L2(s,∞), where
As is the integral operator having for kernel As(x, y) = Ai(x + y − s). The fast
decay as x → +∞ of the Airy function (see [54], page 394)

Ai(x) ≤ e−(2/3)x3/2

2π1/2x1/4 , x > 0,(111)
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then shows that both As and KAi are Hilbert–Schmidt, and moreover that KAi is
trace class being the product of two Hilbert–Schmidt operators.

Next, by using again upper bound (111), it follows that for every ε > 0,

lim
N→∞‖1(s,εN2/3δN )KAi1(s,εN2/3δN ) − 1(s,∞)KAi1(s,∞)‖2

= 0,

lim
N→∞ Tr(1(s,εN2/3δN )KAi1(s,εN2/3δN )) = Tr(1(s,∞)KAi1(s,∞)).

Together with Proposition 4.14, this yields

lim
N→∞

∥∥1(s,εN2/3δN )K
(1)
N 1(s,εN2/3δN ) − 1(s,∞)KAi1(s,∞)

∥∥
2
= 0,

lim
N→∞ Tr

(
1(s,εN2/3δN )K

(1)
N 1(s,εN2/3δN )

) = Tr(1(s,∞)KAi1(s,∞)),

and, combined moreover with Proposition 4.13 and (49), we obtain

lim
N→∞‖1(s,εN2/3δN )K̃N1(s,εN2/3δN ) − 1(s,∞)KAi1(s,∞)‖2

= 0,(112)

lim
N→∞ Tr(1(s,εN2/3δN )K̃N1(s,εN2/3δN ))

(113)
= Tr(1(s,∞)KAi1(s,∞)),

provided we choose ε small enough. Finally, it follows from (40)–(41), (112)–
(113) and Proposition 4.1 that for every s ∈ R,

lim
N→∞P

(
N2/3δN(x̃φ(N) − bN) ≤ s

) = det(I − KAi)L2(s,∞).

Proof of Theorem 3(b) is therefore complete. �

In the next section, we provide a proof for Theorem 3(a) and thus complete the
proof for Theorem 3. We shall see that we can recover the setting of the proof of
Theorem 3(b); the only task left is to prove the existence of appropriate contours
for the saddle point analysis, which differ from the case of a right edge.

4.6. Asymptotic analysis for the left edges and proof of Theorem 3(a). This
section is devoted to the end of the proof of Theorem 3. We precisely recall the
setting for the analysis of a left regular soft edge a; we state and prove the counter-
parts of Proposition 4.6 (i.e., the existence of appropriate contours for the asymp-
totic analysis), that is, Proposition 4.16 for the case where c > 0 with a = g(c),
and Proposition 4.17 for the case where c < 0. The remainder of the asymptotic
analysis is omitted since we show it is essentially the same than in Section 4.5.

Let a be a left regular soft edge; recall the definitions of g, c, (cN) as provided
by Proposition 2.11, and set

aN = gN(cN), σN =
(
− 2

g′′
N(cN)

)1/3

.(114)
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Recall moreover that

g′
N(cN) = 0, lim

N→∞ cN = c, lim
N→∞aN = a,

(115)

lim
N→∞σN =

(
− 2

g′′(c)

)1/3

.

In particular, for N large enough, −g′′
N(cN) and σN are positive numbers, and cN

and c have the same sign.

4.6.1. Reduction to the right edge setting. The definition of the extremal
eigenvalue x̃ϕ(N) (see Theorem 2) and Proposition 4.4 yield that for every ε > 0
small enough,

P
(
N2/3σN(aN − x̃ϕ(N)) ≤ s

)
(116)

= det(I − KN)L2(aN−ε,aN−s/(N2/3σN)) + o(1)

as N → ∞. We then write

det(I − KN)L2(aN−ε,aN−s/(N1/3σN)) = det(I − 1(s,N2/3εcN )K̃N1(s,N2/3εcN ))L2(s,∞),

where the scaled operator K̃N has for kernel

K̃N(x, y) = − 1

N2/3σN

KN

(
aN − x

N2/3σN

,aN − y

N2/3σN

)
,

and where KN(x, y) was introduced in (44) (with dN replaced by cN ). If we intro-
duce the map

f ∗
N(z) = aN(z − cN) − log(z) + 1

N

n∑
j=1

log(1 − λjz),(117)

which differs from fN defined in (43) by a minus sign and by the fact that bN is
replaced by aN , then we have

K̃N(x, y) = − N1/3

(2iπ)2σN

×
∮
�

dz

∮
�

dw
1

w − z

× eN1/3x(z−cN)/σN−N1/3y(w−cN)/σN−Nf ∗
N(z)+Nf ∗

N(w).

Set moreover K∗
N(x, y) = K̃N(y, x). Then it follows by exchanging z and w in the

last integral that

K∗
N(x, y) = N1/3

(2iπ)2σN

×
∮
�

dz

∮
�

dw
1

w − z
(118)

× e−N1/3x(z−cN)/σN+N1/3y(w−cN)/σN+Nf ∗
N(z)−Nf ∗

N(w).
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Note that, as a consequence of the definition of f ∗
N and (115), we have(

f ∗
N

)′
(cN) = (

f ∗
N

)′′
(cN) = 0,

(
f ∗

N

)(3)
(cN) = −g′′

N(cN) > 0.(119)

Thus, by comparing (118) with (45) and (119) with (47), we recover the setting
of the proof of Theorem 3(b), except that we exchange x and y, the role of � and
� as well, and that we replace fN by f ∗

N . Since the Airy kernel is symmetric [see
(17)], it is enough to show that

lim
N→∞

∥∥1(s,εN2/3σN)

(
K∗

N − KAi
)
1(s,εN2/3σN)

∥∥
2
= 0,(120)

lim
N→∞ Tr

(
1(s,εN2/3σN)

(
K∗

N − KAi
)
1(s,εN2/3σN)

) = 0,(121)

in order to prove (18), as explained in the proof of Theorem 3(b).
In the case of left regular soft edges, the analysis substantially changes whether c

(cf. Proposition 2.11) is positive or not, and we consider separately the two cases
in the sequel.

4.6.2. The case where c is positive. We first consider the case where c > 0,
which is always the case, except if a is the leftmost edge and γ > 1; see Proposi-
tion 2.4. In particular, cN > 0 for all N large enough. We then split � into two dis-
joint contours, �(0) and �(1), in the following way: �(0) encloses the λ−1

j ’s which

are larger that cN , while �(1) encloses the λ−1
j ’s which are smaller that cN . Proposi-

tion 2.4(e), applied to the measure νN , shows that the set {j,1 ≤ j ≤ n :λ−1
j < cN }

is not empty, and thus the contour �(1) is always well defined. If cN is actually
larger than all the λ−1

j ’s, as it is the case when dealing with the smallest eigen-

value when γ < 1, then set �(1) = �, K(1)
N = K∗

N ; any later statement involving
�(0) will be considered empty. Otherwise, �(0) is well defined, and we introduce
for α ∈ {0,1} the kernels

K(α)
N (x, y) = N1/3

(2iπ)2σN

×
∮
�

dz

∮
�(α)

dw
1

w − z

× e−N1/3(z−cN)x/σN+N1/3(w−cN)y/σN+Nf ∗
N(z)−Nf ∗

N(w)

so that K∗
N(x, y) = K(0)

N (x, y) + K(1)
N (x, y). We similarly have for the associated

operators that K∗
N = K(0)

N + K(1)
N . Observe moreover that we can deform � in

K(1)
N (x, y) so that it encloses the origin and �(1) since the residue we pick at z = w

vanishes.
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In order to establish (120) and (121), it is then enough to prove that

lim
N→∞

∥∥1(s,εN2/3σN)K
(0)
N 1(s,εN2/3σN)

∥∥
2
= 0,(122)

lim
N→∞ Tr

(
1(s,εN2/3σN)K

(0)
N 1(s,εN2/3σN)

) = 0(123)

and

lim
N→∞

∥∥1(s,εN2/3σN)

(
K(1)

N − KAi
)
1(s,εN2/3σN)

∥∥
2
= 0,(124)

lim
N→∞ Tr

(
1(s,εN2/3σN)

(
K(1)

N − KAi
)
1(s,εN2/3σN)

) = 0.(125)

The exact same estimates as in the proof of the Propositions 4.13 and 4.14 show
that (122)–(125) hold true, provided we can show the existence of appropriate
contours similar to Proposition 4.6. More precisely, it is enough to establish the
next proposition in order to prove Theorem 3(a), in the case where c > 0.

PROPOSITION 4.16. For every ρ > 0 small enough, there exists a contour
ϒ(0) independent of N and two contours ϒ(1) = ϒ(1)(N) and �̃ = �̃(N), which
satisfy for every N large enough the following:

(1) (a) ϒ(0) encircles the λ−1
j ’s larger than cN ;

(b) ϒ(1) encircles the λ−1
j ’s smaller than cN ;

(c) �̃ encircles the λ−1
j ’s smaller than cN and the origin.

(2) (a) ϒ(1) = ϒ∗ ∪ ϒ
(1)
res where

ϒ∗ = {
cN − te±iπ/3 : t ∈ [0, ρ]};

(b) �̃ = �̃∗ ∪ �̃res where

�̃∗ = {
cN + te±iπ/3 : t ∈ [0, ρ]}.

(3) There exists K > 0 independent of N such that:

(a) Re(fN(w) − fN(cN)) ≥ K for all w ∈ ϒ(0);
(b) Re(fN(w) − fN(cN)) ≥ K for all w ∈ ϒ

(1)
res ;

(c) Re(fN(z) − fN(cN)) ≤ −K for all z ∈ �̃res.

(4) There exists d > 0 independent of N such that

inf
{|z − w| : z ∈ ϒ(0),w ∈ �̃

} ≥ d,

inf
{|z − w| : z ∈ ϒ∗,w ∈ �̃res

} ≥ d,

inf
{|z − w| : z ∈ ϒ(1)

res ,w ∈ �̃∗
} ≥ d,

inf
{|z − w| : z ∈ ϒ(1)

res ,w ∈ �̃res
} ≥ d.
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FIG. 8. Preparation of the saddle point analysis for a left edge with c > 0. The path ϒ
(1)
res is close

to the inner dotted path at the left of c. The path �̃res is close to the outer dotted path at the left of c.
The contour at the right of c is ϒ(0).

(5) (a) The contours ϒ(1) and �̃ lie in a compact subset of C, independent
of N .

(b) The lengths of ϒ(1) and �̃ are uniformly bounded in N .

Although the proof uses the same type of arguments as in the proof of Propo-
sition 4.6, the analytical setting is not identical. Thus, although we shall provide
fewer details than in the proof of Proposition 4.6, we shall emphasize the required
changes. Figure 8 may help as a visual support for the argument.

PROOF OF PROPOSITION 4.16. The regularity assumption yields ε > 0 such
that λ−1

j ∈ (0,+∞) \ B(c, ε) for every 1 ≤ j ≤ n and every N large enough. We
then introduce the compact set K defined by

K =
([

inf
N

1

λn

, sup
N

1

λ1

] ∖
B(c, ε)

)
∪ {0}(126)

and notice that by construction {x ∈ R :x−1 ∈ Supp(νN)} ⊂ K for every N large
enough, and also that {x ∈ R :x−1 ∈ Supp(ν)} ⊂ K. If we introduce the map

f ∗(z) = a(z − c) − log(z) + γ

∫
log(1 − xz)ν(dx),

then, given any simply connected subset of C \ K, we can choose a determina-
tion of the logarithm such that both the maps f ∗

N and f ∗ are well defined and
holomorphic there for every N large enough. Notice that the definition of Ref ∗
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does not depend on the determination of the logarithm. Moreover, the proof of
Lemma 4.7(a) shows that Ref ∗

N converges locally uniformly on C \ K toward
Ref ∗, and moreover Ref ∗

N(cN) → Ref ∗(c) as N → ∞.
Next, we perform a qualitative analysis for Ref ∗ and introduce the sets

�− = {
z ∈C : Ref ∗(z) < Ref ∗(c)

}
,

�+ = {
z ∈C : Ref ∗(z) > Ref ∗(c)

}
.

Since a > 0, the asymptotic behavior Ref ∗(z) = aRe(z − c) + O(log |z|) as
z → ∞ shows that for every α ∈ (0, π/2) there exisits R > 0 large enough such
that {

z ∈ C : |z| > R,−π

2
+ α < arg(z) <

π

2
− α

}
⊂ �+(127)

and {
z ∈ C : |z| > R,

π

2
+ α < arg(z) <

3π

2
− α

}
⊂ �−.(128)

Notice that the role of �+ and �− has been exchanged compared to the setting of
a right edge. Moreover, the arguments of the proof of Lemma 4.8 show that both
�+ and �− have a unique unbounded connected component.

As for the behavior of Ref ∗ around c, because a = g(c), it follows from the
definition of f ∗ that (f ∗)′(z) = g(c) − g(z). Thus, by Proposition 2.11, we have
(f ∗)′(c) = (f ∗)′′(c) = 0 and (f ∗)(3)(c) = −g′′(c) > 0. As a consequence, the
same proofs as those of Lemmas 4.9 and 4.7(b), (c) show there exist η > 0 and
0 < θ < π/2 small enough such that

�2k+1 ⊂ �−, �2k ⊂ �+, k ∈ {−1,0,1},
where we introduce, as in Section 4.4,

�k =
{
z ∈ C : 0 < |z − c| < η,

∣∣∣∣arg(z − c) − k
π

3

∣∣∣∣ < θ

}
.

Notice that the role of �− and �+ is the same as in the right edge setting. We
then denote by �2k+1, the connected component of �− which contains �2k+1,
and similarly by �2k , the connected component of �+ which contains �2k .

The proof of Lemma 4.10 yields that Ref ∗ is subharmonic in C \ {0} and is
superharmonic in C \ {x ∈ R :x−1 ∈ Supp(ν)}. As a consequence, it follows from
the proof of Lemma 4.11 that we obtain a similar statement as in Lemma 4.11 for
Ref ∗ after having exchanged the role of �+ and �− (to furthermore convince the
reader, notice that Ref ∗(z)−aRe(z− c) = −Ref (z)−bRe(z− d) and that both
the maps z �→ aRe(z − c) and z �→ bRe(z − d) are harmonic). Namely:

(1) If �∗ is a connected component of �−, then �∗ is open, and if �∗ is moreover
bounded, there exists x ∈ Supp(ν) such that x−1 ∈ �∗.
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(2) Let �∗ be a connected component of �+ with nonempty interior:

(a) if �∗ is bounded, then 0 ∈ �∗;
(b) if �∗ is bounded, then its interior is connected;
(c) if 0 /∈ �∗, then the interior of �∗ is connected.

Equipped with the previous observations we are now in position to provide the
counterpart of Lemma 4.12 in the present setting, namely to prove that the follow-
ing statements hold true:

(A) we have �1 = �−1, the interior of �1 is connected, and for every 0 < α <

π/2 there exists R > 0 such that{
z ∈ C : |z| > R,

π

2
+ α < arg(z) <

3π

2
− α

}
⊂ �1;

(B) the interior of �0 is connected, and for every 0 < α < π/2, there exists
R > 0 such that{

z ∈ C : |z| > R,−π

2
+ α < arg(z) <

π

2
− α

}
⊂ �0;

(C) we have �2 = �−2, the interior of �2 is connected, and there exists δ > 0
such that B(0, δ) ⊂ �2.

Let us first prove (A). Since by definition, �1 is a connected component of �−,
its interior is connected by (1). Let us prove by contradiction that �1 is unbounded,
from which (A) will follow by using the symmetry Ref ∗(z) = Ref ∗(z), inclu-
sion (128) and that �− has a unique unbounded connected component. Assume
�1 is bounded. Then (1) yields the existence of x ∈ Supp(ν) such that x−1 ∈ �1. If
x−1 < c (resp., x−1 > c), it then follows from the symmetry Ref ∗(z) = Ref ∗(z)
that �1 surrounds �2 (resp., �0) so that �2∗ (resp., �0) is a bounded connected
component of �+ which does not contain the origin. Notice that by (127), �2
(resp., �0) has a nonempty interior. This yields, with (2)(a), a contradiction, and
our claim follows. Since we just proved that �1 is unbounded, the origin does not
belong to �0. As a consequence, (2)(a) and (2)(c) yield, respectively, that �0 is
unbounded and has a connected interior. Using moreover inclusion (127) and that
�+ has a unique unbounded connected component, (B) follows.

As a byproduct of (A), �2 is bounded. Thus �2 contains the origin by (2)(a) and
has a connected interior by (2)(b). By using the symmetry Ref ∗(z) = Ref ∗(z)
and that Ref ∗(z) → +∞ as z → 0, (C) is proved.

Finally, as a consequence of (A), (B) and (C), the existence of the contour ϒ(0),
respectively, ϒ(1), respectively, �̃, in Proposition 4.16 is proved by choosing ϒ(0)

in the interior of �0 encircling {x ∈ K :x > c} and intersecting the real axis exactly
twice in R \ K with finite length, respectively, by completing {cN − te±iπ/3 : t ∈
[0, ρ]} for ρ small enough and N large enough so that both the points cN − ρeiπ/3

and cN − ρe−iπ/3 lie in �2 into a closed contour with a path lying in the interior
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of �2 but staying in {z ∈ C : Re(z) > 0} and intersecting the real line exactly once
at the left of K with finite length, respectively, by completing {cN + te±iπ/3 : t ∈
[0, ρ]} for ρ small enough and N large enough so that both the points cN + ρeiπ/3

and cN + ρe−iπ/3 belong to �1 into a closed contour with a path lying in the
interior of �1 and crossing the real axis exactly once at the left of the origin with
finite length, and then by using the local uniform convergence of Ref ∗

N → Ref ∗
on C \K; see the proof of Proposition 4.6 for the details. �

4.6.3. The case where c is negative. Here we consider the case where c is
negative, which only happens if we are looking at the leftmost edge a when γ > 1,
and thus cN < 0 for all N large enough. We recall that

K∗
N(x, y) = N1/3

(2iπ)2σN

×
∮
�

dz

∮
�

dw
1

w − z

× e−N1/3x(z−cN)/σN+N1/3y(w−cN)/σN+Nf ∗
N(z)−Nf ∗

N(w).

Note that the λ−1
j ’s are zeros for ef ∗

N , and that 0 is a zero for e−f ∗
N . Thus, since the

residue picked at w = z vanishes, we can deform � and � in a way that � encircles
� and all the λ−1

j ’s, whereas � encircles the origin and possibly some λ−1
j ’s.

It is enough to establish the next proposition in order to obtain (120) and (121)
in the case where c < 0, and thus to complete the proof of Theorem 3(a), since
the same estimates as in the proof of Proposition 4.14 can be used after setting
K(1)

N = K∗
N and �(1) = �. The reader may refer to Figure 9 to better visualize the

results of the next proposition as well as the proof argument.

PROPOSITION 4.17. For every ρ > 0 small enough, there exist contours ϒ =
ϒ(N) and �̃ = �̃(N) which satisfy for every N large enough the following:

(1) (a) ϒ encircles �̃, the origin and all the λ−1
j ’s;

(b) �̃ encircles the origin (and possibly some λ−1
j ’s).

(2) (a) ϒ = ϒ∗ ∪ ϒres where

ϒ∗ = {
cN − te±iπ/3 : t ∈ [0, ρ]};

(b) �̃ = �̃∗ ∪ �̃res where

�̃∗ = {
cN + te±iπ/3 : t ∈ [0, ρ]}.

(3) There exists K > 0 independent of N such that:

(a) Re(fN(w) − fN(cN)) ≥ K for all w ∈ ϒres;
(b) Re(fN(z) − fN(cN)) ≤ −K for all z ∈ �̃res.
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FIG. 9. Preparation of the saddle point analysis for a left edge with c < 0. The path �̃res is close
to the inner dotted path. The path ϒ̃res is close to the outer dotted path. The thick segment represents
the support of the image of ν by the map x �→ x−1.

(4) There exists d > 0 independent of N such that

inf
{|z − w| : z ∈ ϒ∗,w ∈ �̃res

} ≥ d,

inf
{|z − w| : z ∈ ϒres,w ∈ �̃∗

} ≥ d,

inf
{|z − w| : z ∈ ϒres,w ∈ �̃res

} ≥ d.

(5) (a) ϒ and �̃ lie in a bounded subset of C independently of N ;
(b) the lengths of ϒ and �̃ are uniformly bounded in N .

PROOF. We use the notation, definitions and properties used in the proof of
Proposition 4.16, except for K that we define by

K =
[
inf
N

1

λn

, sup
N

1

λ1

]
∪ {0}.

Clearly {x ∈ R :x−1 ∈ Supp(νN)} ⊂ K for every N and moreover {x ∈ R :x−1 ∈
Supp(ν)} ⊂ K. We now prove that the following facts hold true:

(A) we have �1 = �−1, the interior of �1 is connected and there exists x0 ∈
Supp(ν) and δ > 0 such that B(x−1

0 , δ) ⊂ �1;
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(B) we have �2 = �−2, the interior of �2 is connected and for every 0 < α <

π/2, there exists R > 0 such that{
z ∈ C : |z| > R,−π

2
+ α < arg(z) <

π

2
− α

}
⊂ �2.

The proof will mainly use properties (1) and (2)(a)/(b)/(c) from the proof of
Proposition 4.16. Let us show (A). First, �1 has a connected interior by (1). Let
us show by contradiction that �1 is bounded. If �1 is unbounded, then by using
the symmetry Ref ∗(z) = Ref ∗(z), inclusion (128) and the uniqueness of the un-
bounded connected component of �−, it follows that �2 is bounded without con-
taining the origin, which contradicts (2)(a). Thus �1 is bounded and has to contain
some x−1

0 with x0 ∈ Supp(ν) as a consequence of (1). Moreover, since Ref ∗ is up-
per semicontinuous on an open neighborhood of x−1

0 (because it is subharmonic on
C \ {0}), there exists δ > 0 such that B(x−1

0 , δ) ⊂ �1. As a consequence, together
with the symmetry Ref ∗(z) = Ref ∗(z), (A) is proved.

Next, since �1 thus surrounds the origin, then �2 has to be unbounded by (2)(a)
and has a connected interior by (2)(c). Finally, (B) follows from the symmetry
Ref ∗(z) = Ref ∗(z), inclusion (127) and the uniqueness of the unbounded con-
nected component of �+.

To construct ϒ satisfying the conditions of Proposition 4.17, by (B) we can
complete {cN − te±iπ/3 : t ∈ [0, ρ]}, for N large enough and ρ small enough so
that both the points cN − ρeiπ/3 and cN − ρe−iπ/3 lie in �2, into a closed contour
with a path lying in the interior of �2 and intersecting the real line exactly once
at the right of K with finite length, and then use the local uniform convergence of
Ref ∗

N to Ref ∗ on C \K; see the proof of Proposition 4.6 for the details.
To construct �̃, we need to proceed more carefully since �1 actually crosses K,

and Ref ∗
N may not converge uniformly to Ref ∗ there. For N large enough and ρ

small enough so that the points cN + ρeiπ/3 and cN + ρe−iπ/3 lie in �1, by (A)
we can complete {cN + te±iπ/3 : t ∈ [0, ρ]} into a closed contour with a path �

lying in the interior of �1 and crossing the real axis exactly once at x−1
0 with

finite length. Since B(x−1
0 , δ) ⊂ �1 we can moreover assume that � crosses the

real axis perpendicularly, namely that there exists η1 > 0 small enough such that
the segment {x−1

0 + iη : |η| ≤ η1} is contained in �. Since �1 ⊂ �−, there exists
K > 0 independent on N such that

Ref ∗(z) − Ref ∗(c) ≤ −4K, z ∈ �.(129)

Notice that the map z �→ ∫
log |1−xz|ν(dx) is upper semicontinuous on C since

it is subharmonic; see the proof of Lemma 4.10. As a consequence, if
∫

log |1 −
xx−1

0 |ν(dx) = −∞, then there exists η0 ∈ (0, η1) small enough so that

γ

∫
log

∣∣1 − x
(
x−1

0 + iη0
)∣∣ν(dx)

(130)
≤ −2K − sup

N

(
aN

(
x−1

0 − cN
) − Ref ∗(cN)

) − log(x0).
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If instead
∫

log |1 − x/x0|ν(dx) > −∞, then by upper semicontinuity there exists
η0 ∈ (0, η1) small enough to that

γ

∫
log

∣∣1 − x
(
x−1

0 + iη0
)∣∣ν(dx) ≤ γ

∫
log |1 − x/x0|ν(dx) + K.(131)

Let η0 be defined as above, and consider a compact tubular neighborhood T
of � \ {x−1

0 + iη : |η| < η0} small enough so that T lies in C \ K and Ref ∗ −
Ref ∗(c) ≤ −3K there (the latter is possible since Ref ∗ is upper semicontinuous
on C \ {0}). Notice that by construction the interior of T contains both the points
cN +ρeiπ/3 and cN +ρe−iπ/3 for every N large enough, and the points x−1

0 + iη0

and x−1
0 − iη0 as well. Using the local uniform convergence of Ref ∗

N to Ref ∗ on
C \K and the convergence Ref ∗

N(cN) → Ref (c), we can show as in the proof of
Proposition 4.6 that for every N large enough, we have

Ref ∗
N(z) − Ref ∗

N(cN) ≤ −K

for every z ∈ T . As a consequence, for every N large enough, we can construct
the path �̃res in the following way: it goes from cN + ρe−iπ/3 to x−1

0 + iη0 stay-
ing in T , then follows the segment {x−1

0 + iη : 0 ≤ η ≤ η0}, and is finally com-
pleted by symmetry with respect to the real axis. As for what is happening on
{x−1

0 + iη : |η| < η0}, since a priori Ref ∗
N does not converge uniformly there to-

ward Ref ∗, we need an extra argument to complete the proof of Proposition 4.17.
Namely, we need to show that for every N large enough, uniformly in |η| < η0,

Ref ∗
N

(
x−1

0 + iη
) − Ref ∗

N(cN) ≤ −K.(132)

Let us set for convenience zη = x−1
0 + iη for any |η| ≤ η0. First, since the map

x �→ log |1 − xzη0 | is bounded and continuous on any compact subset of R, the
weak convergence νN → ν and the convergence n/N → γ yield that for any N

large enough,

n

N

∫
log |1 − xzη0 |νN(dx) ≤ γ

∫
log |1 − xzη0 |ν(dx) + K.(133)

If we assume
∫

log |1 − x/x0|ν(dx) = −∞, then for every N large enough,
uniformly in |η| < η0,

Ref ∗
N(zη) − Ref ∗

N(cN)

≤ sup
N

(
aN

(
x−1

0 − cN
) − Ref ∗(cN)

) − log |zη| + n

N

∫
log |1 − xzη|νN(dx)

≤ sup
N

(
aN

(
x−1

0 − cN
) − Ref ∗(cN)

) + log(x0) + n

N

∫
log |1 − xzη0 |νN(dx)

≤ −K,

where for the last inequality we use (133) and (130).
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Now, assume instead that
∫

log |1 − x/x0|ν(dx) > −∞. By using the conver-
gences aN → a, cN → c and Ref ∗

N(cN) → Ref ∗(c), we obtain for every N large
enough (and independently on η)

aN Re(zη − cN) − Ref ∗
N(cN) ≤ aRe(zη − c) − Ref ∗(c) + K.

Combined with inequalities (129), (133) and (131), we obtain that for every N

large enough and uniformly in |η| < η0,

Ref ∗
N(zη) − Ref ∗

N(cN)

≤ K + Ref ∗(zη) − Ref ∗(c)

+ n

N

∫
log |1 − xzη|νN(dx) − γ

∫
log |1 − xzη|ν(dx)

≤ −3K + n

N

∫
log |1 − xzη|νN(dx) − γ

∫
log |1 − xzη|ν(dx)

≤ −3K + n

N

∫
log |1 − xzη0 |νN(dx) − γ

∫
log |1 − x/x0|ν(dx)

≤ −2K + γ

∫
log |1 − xzη0 |ν(dx) − γ

∫
log |1 − x/x0|ν(dx)

≤ −K,

and this completes the proof of Proposition 4.17. �

5. Proof of Theorem 4: Asymptotic independence. Our strategy to prove
Theorem 4 builds on an approach used by Bornemann [21]. Indeed, the asymp-
totic independence for the smallest and largest eigenvalues of an N × N GUE
random matrix is established in [21] by showing that the trace class norm of
the off-diagonal entries of a two-by-two operator valued matrix goes to zero as
N → ∞. Here we obtain that proving the asymptotic joint independence of several
extremal eigenvalues leads to considering a larger operator valued matrix. More-
over, we show that it is actually sufficient to establish that the Hilbert–Schmidt
norms of the off-diagonal entries go to zero as N → ∞, instead of the trace class
norms. The former can be provided by an asymptotic analysis for double complex
integrals as we performed in the previous section.

More generally, our method can be applied to several other determinantal point
processes for which a contour integral representation for the kernel and its asymp-
totic analysis are known, for example, the eigenvalues of an additive perturbation
of a GUE matrix [25].

Conventions. In this section, we fix two finite sets I and J of indices, and real
numbers (si)i∈I and (tj )j∈J as well. Assume that (ai = g(ci ))i∈I are regular left
soft edges and (bj = g(dj ))j∈J are regular right edges. We denote by ci,N and
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dj,N the sequences associated, respectively, with ai and bj as specified by Propo-
sition 2.7(c). We moreover set

ai,N = gN(ci,N ), bj,N = gN(dj,N)

and

σi,N =
(

2

g′′
N(ci,N )

)1/3

, δj,N =
(

2

g′′
N(dj,N )

)1/3

,

where gN has been introduced in (13). Similarly, ϕi(N) [resp., φj (N)] denotes
the sequence associated with ai,N (resp., bj,N ) as in Theorem 2; see also Proposi-
tions 2.11 and 2.12.

Finally, we shall consider that the free parameter q introduced in the statement
of Proposition 4.2 is zero when dealing with the kernel KN(x, y); see Remark 4.3.

Our starting point is the following proposition.

PROPOSITION 5.1. Consider the setting of Theorem 4. Then, for every ε > 0
small enough and for every sequences (ηi,N)N , (χj,N)N of positive numbers grow-
ing with N to infinity, it holds that

P
(
ηi,N(ai,N − xϕi(N)) ≤ si, χj,N(xφj (N) − bj,N ) ≤ tj , i ∈ I, j ∈ J

)
= det(I − KN)L2((

⋃
i∈I Ai)∪(

⋃
j∈J Bj )) + o(1)

as N → ∞, where

Ai =
(
ai,N − ε,ai,N − si

ηi,N

)
, Bj =

(
bj,N + tj

χj,N

,bj,N + ε

)
.

The proof is omitted, being very similar to that of Proposition 4.4. Now, if we
specify ηi,N = N2/3σi,N and χj,N = N2/3δj,N , then Proposition 5.1 reads

P
(
N2/3σi,N(ai,N − xϕi(N)) ≤ si,

N2/3δj,N(xφj (N) − bj,N ) ≤ tj , i ∈ I, j ∈ J
)

(134)

= det(I − KN)L2((
⋃

i∈I Ai)∪(
⋃

j∈J Bj )) + o(1),

where

Ai =
(
ai,N − ε,ai,N − si

N2/3σi,N

)
, Bj =

(
bj,N + tj

N2/3δj,N

,bj,N + ε

)
.

For every i ∈ I and j ∈ J , we introduce the maps

f ∗
i,N (z) = ai,N (z − ci,N ) − log(z) + 1

N

n∑
k=1

log(1 − λkz),(135)

fj,N(z) = −bj,N (z − dj,N) + log(z) − 1

N

n∑
k=1

log(1 − λkz)(136)
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and the multiplication operators E∗
i and Ej acting on L2(Ai) and L2(Bj ), respec-

tively, by

E∗
i h(x) = e

Nf ∗
i,N (ci,N )+Nxci,N h(x), h ∈ L2(Ai),

Ejh(x) = e−Nfj,N (dj,N )+Nxdj,N h(x), h ∈ L2(Bj ).

The next proposition is the key to obtain Theorem 4.

PROPOSITION 5.2. For every ε small enough, the following holds true:

(a) for every (i, j) ∈ J × J such that i �= j , we have

lim
N→∞

∥∥1Bi
EiKNE−1

j 1Bj

∥∥
2
= 0;(137)

(b) for every (i, j) ∈ I × I such that i �= j , we have

lim
N→∞

∥∥1Ai
E∗

i KN

(
E∗

j

)−11Aj

∥∥
2
= 0;(138)

(c) for every (i, j) ∈ I × J , we have

lim
N→∞

∥∥1Ai
E∗

i KNE−1
j 1Bj

∥∥
2
= 0(139)

and

lim
N→∞

∥∥1Bj
Ej KN

(
E∗

i

)−11Aj

∥∥
2
= 0.(140)

Before proving Proposition 5.2, let us show how does it lead to the asymptotic
joint independence of the extremal eigenvalues:

PROOF OF THEOREM 4. Our purpose is to show that for large N , the deter-
minant at the right-hand side of (134) converges to a product of Fredholm deter-
minants involving the Airy kernel. Assume that N is large enough so that all the
Ai ’s and Bj ’s are disjoint sets. Then, as shown in [22] (see also [37], Chapter 6),
the Fredholm determinant det(I − KN)L2((

⋃
i∈I Ai)∪(

⋃
j∈J Bj )) admits the operator

matrix representation

det(I − KN)L2((
⋃

i∈I Ai)∪(
⋃

j∈J Bj ))

(141)
= det

(
I −

[ [
Ki,j

II

]
(i,j)∈I×I

[
Ki,j

IJ

]
(i,j)∈I×J[

Ki,j
J I

]
(i,j)∈J×I

[
Ki,j

JJ

]
(i,j)∈J×J

])
(
⊕

i∈I L2(Ai))⊕(
⊕

j∈J L2(Bj ))

,

where Ki,j
II :L2(Aj ) → L2(Ai) denotes the integral operator

Ki,j
II h(x) =

∫
Aj

KN(x, y)h(y)dy, x ∈ Ai,
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and similarly the operators Ki,j
IJ :L2(Bj ) → L2(Ai), Ki,j

J I :L2(Aj ) → L2(Bi) and

Ki,j
JJ :L2(Bj ) → L2(Bi) are defined by restricting KN on appropriate subspaces of

L2(R). Consider now the diagonal operator

E =
(⊕

i∈I

E∗
i

)
⊕

(⊕
j∈J

Ej

)

acting on (
⊕

i∈I L2(Ai)) ⊕ (
⊕

j∈J L2(Bj )). Since the Ai ’s and Bj ’s are compact
sets and KN is locally trace class, identity (26) then yields

det
(
I −

[ [
Ki,j

II

]
(i,j)∈I×I

[
Ki,j

IJ

]
(i,j)∈I×J[

Ki,j
J I

]
(i,j)∈J×I

[
Ki,j

JJ

]
(i,j)∈J×J

])
(
⊕

i∈I L2(Ai))⊕(
⊕

j∈J L2(Bj ))

= det
(
I − E

[ [
Ki,j

II

]
(i,j)∈I×I

[
Ki,j

IJ

]
(i,j)∈I×J[

Ki,j
J I

]
(i,j)∈J×I

[
Ki,j

JJ

]
(i,j)∈J×J

]
E−1

)
(
⊕

i∈I L2(Ai))⊕(
⊕

j∈J L2(Bj ))

(142)

= det
(
I −

[ [
E∗

i Ki,j
II

(
E∗

j

)−1]
(i,j)∈I×I

[
E∗

i Ki,j
IJ E−1

j

]
(i,j)∈I×J[

EiK
i,j
J I

(
E∗

j

)−1]
(i,j)∈J×I

[
EiK

i,j
JJ E−1

j

]
(i,j)∈J×J

])
(
⊕

i∈I L2(Ai))⊕(
⊕

j∈J L2(Bj ))

= det
(
I −

[ [
1Ai

E∗
i KN

(
E∗

j

)−11Aj

]
(i,j)∈I×I

[
1Ai

E∗
i KN E−1

j 1Bj

]
(i,j)∈I×J[

1Bi
EiKN

(
E∗

j

)−11Aj

]
(i,j)∈J×I

[
1Bi

EiKN E−1
i 1Bj

]
(i,j)∈J×J

])
L2(R)⊕(|I |+|J |)

,

where |I | and |J | stand for the cardinalities of I and J , respectively. By using
definition (27) of det2, it follows from (141) and (142) that

det(I − KN)L2((
⋃

i∈I Ai)∪(
⋃

j∈J Bj ))

= ∏
i∈I

eTr(1Ai
E∗

i KN(E∗
i )

−11Ai
)
∏
j∈J

e
Tr(1Bj

Ej KN E−1
j 1Bj

)

(143)

× det2

(
I −

[ [
1Ai

E∗
i KN

(
E∗

j

)−11Aj

]
(i,j)∈I×I

[
1Ai

E∗
i KN E−1

j 1Bj

]
(i,j)∈I×J[

1Bi
EiKN

(
E∗

j

)−11Aj

]
(i,j)∈J×I

[
1Bi

EiKN E−1
i 1Bj

]
(i,j)∈J×J

])
L2(R)⊕(|I |+|J |)

.

Let us inspect the diagonal elements of the matrix valued operator in the Fredholm
determinant at the right-hand side of the previous identity. In Section 4, we have
precisely shown that for every i ∈ I and j ∈ J ,

lim
N→∞

∥∥1Ai
E∗

i KN

(
E∗

i

)−11Ai
− 1(si ,∞)KAi1(si ,∞)

∥∥
2 = 0,

lim
N→∞

∥∥1Bj
Ej KNE−1

j 1Bj
− 1(tj ,∞)KAi1(tj ,∞)

∥∥
2
= 0

and

lim
N→∞ Tr

(
1Ai

E∗
i KN

(
E∗

i

)−11Ai

) = Tr(1(si ,∞)KAi1(si ,∞)),

lim
N→∞ Tr

(
1Bj

Ej KNE−1
j 1Bj

) = Tr(1(tj ,∞)KAi1(tj ,∞)).
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Proposition 5.2 then yields that the Hilbert–Schmidt norms of the off diagonal
entries of the matrix valued operator in the Fredholm determinant at the right-hand
side of (143) converge to zero. Recalling that det2 is continuous with respect to the
Hilbert–Schmidt norm, we obtain from (143) that

lim
N→∞ det(I − KN)L2((

⋃
i∈I Ai)∪(

⋃
j∈J Bj ))

= ∏
i∈I

eTr(1(si ,∞)KAi1(si ,∞))det2(I − 1(si ,∞)KAi1(si ,∞))L2(R)

× ∏
j∈J

e
Tr(1(tj ,∞)KAi1(tj ,∞))det2(I − 1(tj ,∞)KAi1(tj ,∞))L2(R)

= ∏
i∈I

det(I − KAi)L2(si ,∞)

∏
j∈J

det(I − KAi)L2(tj ,∞),

and Theorem 4 is proved. �

Now we turn to the proof of Proposition 5.2.
To do so, we shall deform the contours � and � in the integral representa-

tion of KN to appropriate contours for the asymptotic analysis, as provided by the
propositions 4.6, 4.16 and 4.17. The problem is that since � and � will be associ-
ated to different critical points cN ’s or dN ’s, the possibility that they intersect holds
true. This raises a problem related to the presence of the factor (w − z)−1 in the
integral representation of KN . This problem can be avoided by using the follow-
ing alternative expression of the kernel KN , that was established in [17]; since the
proof is short, we provide it for the sake of completeness.

LEMMA 5.3. For every x �= y we have

KN(x, y) = N

(2iπ)2(x − y)
(144)

×
∮
�

dz

∮
�

dw e−Nxz+NywCN(z,w)

(
z

w

)N n∏
i=1

(
1 − λiw

1 − λiz

)
,

where

CN(z,w) = 1

zw
− 1

N

n∑
j=1

λ2
j

(1 − λjz)(1 − λjw)
.(145)

PROOF. Starting from (30) with q = 0 and following [17], Section 3.3, we
obtain by integrations by parts

xKN(x, y) = 1

(2iπ)2

∮
�

dz

∮
�

dw e−Nxz+Nyw 1

w − z

(
z

w

)N

×
n∏

i=1

(
1 − λiw

1 − λiz

)(
1

w − z
+ N

z
−

n∑
j=1

λj

1 − λjz

)
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and

yKN(x, y) = 1

(2iπ)2

∮
�

dz

∮
�

dw e−Nxz+Nyw 1

w − z

(
z

w

)N

×
n∏

i=1

(
1 − λiw

1 − λiz

)(
1

w − z
+ N

w
−

n∑
j=1

λj

1 − λjw

)
.

This provides

(x − y)KN(x, y)

= N

(2iπ)2

∮
�

dz

∮
�

dw e−Nxz+Nyw

(
z

w

)N

×
n∏

i=1

(
1 − λiw

1 − λiz

)(
1

zw
− 1

N

n∑
j=1

λ2
j

(1 − λjz)(1 − λjw)

)
,

and Lemma 5.3 follows. �

Equipped with Lemma 5.3, we are now in position to prove Proposition 5.2.

PROOF OF PROPOSITION 5.2. Since the sets of indices I and J are finite by
assumption, the regularity condition provides ε > 0 such that λ−1

j ∈ (0,+∞) \ B
for every 1 ≤ j ≤ n and every N large enough, where

B = ⋃
i∈I,j∈J

(
B(ci , ε) ∪ B(dj , ε)

)
.

We then set

K =
([

inf
N

1

λn

, sup
N

1

λ1

] ∖
B

)
∪ {0},

so that {x ∈ R :x−1 ∈ Supp(νN)} ⊂ K for every N large enough and moreover
{x ∈ R :x−1 ∈ Supp(ν)} ⊂ K.

We start by proving (a). To do so, we essentially use the estimates from the
Section 4.5.2. For any (i, j) ∈ J × J such that i �= j , we have∥∥1Bi

EiKNE−1
j 1Bj

∥∥2

2(146)
=

∫
Bi

∫
Bj

(
e−Nfi,N (di,N )+Nxdi,N KN(x, y)eNfj,N (dj,N )−Nydj,N

)2 dx dy.

By using Lemma 5.3 and performing the changes of variables x �→ N2/3δi,N (x −
bi,N ) and y �→ N2/3δj,N(y − bj,N ), we obtain∫

Bi

∫
Bj

(
e−Nfi,N (di,N )+Nxdi,N KN(x, y)eNfj,N (dj,N )−Nydj,N

)2 dx dy

(147)

= 1

δi,Nδj,N

∫ N2/3δi,N ε

ti

∫ N2/3δj,N ε

tj

K̃
(bi ,bj )

N (x, y)2 dx dy,
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where

K̃
(bi ,bj )

N (x, y)

= N1/3

(2iπ)2(bi,N − bj,N + x/(N2/3δi,N ) − y/(N2/3δj,N))
(148)

×
∮
�

dz

∮
�

dw CN(z,w)e−N1/3x((z−di,N )/δi,N )+N(fi,N (z)−fi,N (di,N ))

× eN1/3y((w−dj,N )/δj,N )−N(fj,N (w)−fj,N (dj,N )).

The main point here is that since i �= j , there exists C > 0 independent of N , x

and y such that∣∣∣∣ N1/3

(2iπ)2(bi,N − bj,N + x/(N2/3δi,N ) − y/(N2/3δj,N))

∣∣∣∣ ≤ CN1/3.(149)

Then, as in Sections 4.3 and 4.4, we replace the contour � by ϒ(0) ∪ϒ(1) where the
contours ϒ(0) and ϒ(1) are specified by Proposition 4.6 with dN = di,N . (If ϒ(0)

does not exist, we just deform � to ϒ(1).) Similarly, we deform the contour � and
replace it with the contour �̃ specified by Proposition 4.6 with dN = dj,N . We then
deform the contours ϒ(1) and �̃ around the saddle points similar to Section 4.5.2.
More precisely,

ϒ(1) = ϒ∗ ∪ ϒ(1)
res and �̃ = �̃∗ ∪ �̃res,

where we introduce

ϒ∗ = {
di,N + N−1/3eiπθ : θ ∈ [−π/3, π/3]} ∪ {

di,N + te±iπ/3 : t ∈ [
N−1/3, ρ

]}
,

�̃∗ = {
dj,N + N−1/3eiπθ : θ ∈ [2π/3,4π/3]} ∪ {

dj,N − te±iπ/3 : t ∈ [
N−1/3, ρ

]}
,

with ρ chosen small enough so that Lemma 4.7(b) applies for both fi,N and fj,N .
In addition, Proposition 4.6 provides K > 0 independent of N such that

Re
(
fi,N(z) − fi,N(di,N )

) ≤ −K, z ∈ ϒ(0),(150)

Re
(
fi,N(z) − fi,N(di,N )

) ≤ −K, z ∈ ϒ(1)
res(151)

Re
(
fj,N(w) − fj,N(dj,N )

) ≥ K, w ∈ �̃res.(152)

Note that the contours ϒ(0) and �̃ may now intersect, and the contours ϒ(1) and
�̃ as well, since the contours are associated with different edges. This raises no
problem since CN(z,w) is analytic on C\K. More precisely, since by construction
the contours ϒ(0), ϒ(1) and �̃ lie inside a compact subset of C \K which does not
dependent on N , there exists C′ > 0 independent of N such that∣∣CN(z,w)

∣∣ ≤ C′, z ∈ ϒ(0) ∪ ϒ(1), w ∈ �̃.(153)
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Next, Lemma 4.7(b) yields

Re
(
fi,N(z) − fi,N(di,N )

) ≤ g′′
N(di,N )Re(z − di,N )3/6 + �|z − di,N |4,

z ∈ ϒ∗
Re

(
fj,N(w) − fj,N(dj,N )

) ≥ g′′
N(dj,N)Re(w − dj,N)3/6 − �|w − dj,N |4,

w ∈ �̃∗,
where � > 0 is independent of N . We moreover assume we choose ρ small enough
so that

g′′
N(di,N ) − ρ� > 0, g′′

N(dj,N ) − ρ� > 0,(154)

for all N large enough. Then, by using the same estimates as in Sections 4.5.1
and 4.5.2, we obtain for every x, y ≥ s and N large enough,∫

ϒ(0)
e−N1/3(x Re(z−di,N )/δi,N )+N Re(fi,N (z)−fi,N (di,N ))|dz|

≤ C1e
−C2N+C3N

1/3(x/δi,N ),∫
ϒ(1)

e−N1/3(x Re(z−di,N )/δi,N )+N Re(fi,N (z)−fi,N (di,N ))|dz|

≤ C

N1/3 e−(x−s)/(2δi,N ) + C1e
−C2N+C3N

1/3(x/δi,N ),∫
�̃

eN1/3(y Re(w−dj,N )/δj,N )−N Re(fj,N (w)−fj,N (dj,N ))|dw|

≤ C

N1/3 e−(y−s)/(2δj,N ) + C1e
−C2N+C3N

1/3(y/δj,N ),

for some C,C1,C2,C3 > 0 independent on N and x, y. Combined with (149)
and (153), it follows from (148) that∣∣K̃(bi ,bj )

N (x, y)
∣∣ ≤ C′

N1/3 e−(x−s)/(2δi,N )−(y−s)/(2δj,N )

(155)
+ C′

1e
−C′

2N+C′
3N

1/3((x/δi,N )+(y/δj,N )),

where C′,C′
1,C

′
2,C

′
3 > 0 are independent on N and x, y. Finally, by mimicking

the step 3 of the proof of Proposition 4.14, we obtain

lim
N→∞

∥∥1Bi
EiKNE−1

j 1Bj

∥∥2

2
= 0,

as soon as ε is small enough. We thus have proved (a).
Concerning points (b) and (c), we proceed similarly to point (a) and use

Lemma 5.3 and the changes of variables x �→ N2/3σi,N(ai,N − x) and y �→
N2/3δj,N(y − bj,N ) in order to obtain∥∥1Ai

E∗
i KNE−1

j 1Bj

∥∥2

2
= 1

σi,Nδj,N

∫ N2/3σi,N ε

si

∫ N2/3δj,N ε

tj

K̃
(ai ,bj )

N (x, y)2 dx dy,
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where

K̃
(ai ,bj )

N (x, y)

= N1/3

(2iπ)2(ai,N − bj,N − x/(N2/3σi,N) − y/(N2/3δj,N))
(156)

×
∮
�

dz

∮
�

dw CN(z,w)e
N1/3x(z−ci,N )/σi,N−N(f ∗

i,N (z)−f ∗
i,N (ci,N ))

× eN1/3y(w−dj,N )/δj,N−N(fj,N (w)−fj,N (dj,N )).

If ci > 0, then we replace the contour � by the contour ϒ(0) ∪ ϒ(1) (if ϒ(0) does
not exist, we just deform � into ϒ(1)) specified by Proposition 4.16 with cN = ci,N ,
and otherwise deform � into ϒ as in Proposition 4.17. We moreover deform the
contour � to obtain the contour �̃ specified by Proposition 4.6 with dN = dj,N .
The same arguments as those in the proof of (a) show that

lim
N→∞

∥∥1Ai
E∗

i KNE−1
j 1Bj

∥∥2

2
= 0.

Similarly, we have∥∥1Bi
EiKN

(
E∗

j

)−11Aj

∥∥2

2
= 1

δi,Nσi,N

∫ N2/3δi,N ε

ti

∫ N2/3σj,Nε

sj

K̃
(bi ,aj )

N (x, y)2 dx dy,

and∥∥1Ai
E∗

i KN

(
E∗

j

)−11Aj

∥∥2

2
= 1

σi,Nσj,N

∫ N2/3σi,N ε

si

∫ N2/3σj,N ε

sj

K̃
(ai ,aj )

N (x, y)2 dx dy,

where

K̃
(bi ,aj )

N (x, y)

= N1/3

(2iπ)2(bi,N − aj,N + x/(N2/3δi,N ) + y/(N2/3σj,N))
(157)

×
∮
�

dz

∮
�

dw CN(z,w)e−N1/3x(z−di,N )/δi,N+N(fi,N (z)−fi,N (di,N ))

× e
−N1/3y(w−cj,N )/σj,N+N(f ∗

j,N (w)−f ∗
j,N (cj,N ))

,

and

K̃
(ai ,aj )

N (x, y)

= N1/3

(2iπ)2(ai,N − aj,N − x/(N2/3σi,N) + y/(N2/3σj,N))
(158)

×
∮
�

dz

∮
�

dw CN(z,w)e
N1/3x(z−ci,N )/σi,N−N(f ∗

i,N (z)−f ∗
i,N (ci,N ))

× e
−N1/3y(w−cj,N )/σj,N+N(f ∗

j,N (w)−f ∗
j,N (cj,N ))

.
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For kernel (157), we split the contour � into ϒ(0) and ϒ(1) where these contours
are specified by Proposition 4.6 for dN = di,N . (Again, if ϒ(0) does not exist,
we just deform � into ϒ(1).) We also deform � to obtain the contour �̃ as in
Proposition 4.16 or Proposition 4.17 with cN = cj,N , depending on whether or not
cj > 0. For kernel (158), we similarly split the contour � into ϒ(0) and ϒ(1) and
take these contours as in Proposition 4.16 for cN = ci,N if ci > 0, and deform �

into ϒ as in Proposition 4.17 otherwise. Moreover, � is replaced by �̃ as specified
in Proposition 4.16 or Proposition 4.17 with cN = cj,N depending on whether or
not cj > 0.

The same line of arguments as those in the proof of (a) then shows that (b)
and (c) hold true, except when cj,N < 0. Indeed, in the latter case the contour �̃

coming with Proposition 4.17 does cross by construction the set K at a point x−1
0

where x0 ∈ Supp(ν). Thus we cannot use bound (153) anymore.
To overcome this technical point, having in mind definition (5.3) of CN(z,w),

observe that since by construction ϒ(0) ∪ ϒ(1) or ϒ lies in a compact subset
of C \ K, the map z �→ (1 − zλ�)

−1 is bounded there uniformly in 1 ≤ � ≤ n

and N large enough. Since moreover by construction �̃ lies in C \ {0}, the map
(z,w) �→ (zw)−1 is bounded on the contours uniformly in N large enough. Ob-
serve furthermore that for every 1 ≤ � ≤ n, we have

e
Nf ∗

j,N (w)

1 − λ�w
= e

Nf
∗[�]
j,N (w)

,

where

f
∗[�]
j,N (w) = aj,N(w − cj,N ) − log(w) + 1

N

n∑
k=1
k �=�

log(1 − λkw).(159)

Namely, the pole at w = λ� introduced by CN(z,w) is actually canceled by

e
Nf ∗

j,N (w). Thus items (b) and (c) of the proposition follow provided that the pre-
vious estimates continue to hold, uniformly in 1 ≤ � ≤ n, after the replacement of

e
Nf ∗

j,N by e
Nf

∗[�]
j,N . However, this is not hard to obtain because, as a consequence of

definitions (135) and (159), for every k ∈ N and compact subset B ⊂ C \K, there
exists CB,k > 0 independent of N such that

sup
w∈B

max
1≤�≤n

∣∣(f ∗[�]
j,N

)(k)
(w) − (

f ∗
j,N

)(k)
(w)

∣∣ ≤ CB,k

N
.

The proof of Proposition 5.2 is therefore complete. �

6. Proof of Theorem 5: Fluctuations at the hard edge. In this section, we
provide a proof for Theorem 5.
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Let us fix s > 0 and α ∈ Z. We set n = N +α and define σN as in (23). The rep-
resentation for the gap probabilities of determinantal point processes as Fredholm
determinants yields

P
(
N2σNxmin ≥ s

) = det(I − KN)L2(0,s/(N2σN)),

where

xmin =
{

x1 = x̃α+1, if α ≥ 0,
x1−α = x̃1, if α < 0.

If we introduce the integral operator K̃N acting on L2(0, s) with kernel

K̃N(x, y) = 1

N2σN

KN

(
x

N2σN

,
y

N2σN

)
,(160)

then it follows from a change of variables that

P
(
N2σNxmin ≥ s

) = det(I − K̃N)L2(0,s).(161)

We recall that KBe,α(x, y) has been introduced in (22) and also define the operator
E and E−1 acting on L2(0, s) by Eh(x) = xα/2h(x) and E−1h(x) = x−α/2h(x).
Notice that when α ≥ 0 (resp., α < 0), the operator E (resp., E−1) is well defined
on L2(0, s), but E−1 (resp., E) is not defined on the whole space. Nevertheless, in
the following these operators will always arise pre-multiplied or post-multiplied by
an appropriate operator so that the product is well defined on L2(0, s); see below.

The aim of this section is to prove the following.

PROPOSITION 6.1.

lim
N→∞ sup

(x,y)∈(0,s]×(0,s]
∣∣K̃N(x, y) − EKBe,αE−1(x, y)

∣∣ = 0.

Let us first show how Theorem 5 follows from this proposition.

PROOF OF THEOREM 5. The relation xJ ′
α(x) = αJα(x)−xJα+1(x) (see [32],

Section 7.2.8, equation (54)) provides

KBe,α(x, y) =
√

xJα+1(
√

x)Jα(
√

y) − √
yJα+1(

√
y)Jα(

√
x)

2(x − y)
.(162)

It then follows from [32], Section 7.14.1, equation (9), that

KBe,α(x, y) = 1

4

∫ 1

0
Jα(

√
xu)Jα(

√
yu)du,

and, after the change of variables u �→ u/s, this yields the factorization KBe,α = B2
s

as operators of L2(0, s) where Bs has for kernel Bs(x, y) = Jα(
√

xy/s)/(2
√

s).
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The asymptotic behavior as x → 0

Jα(
√

x) = 1

α!
(√

x

2

)α(
1 + O

(
x2))

, if α ≥ 0,

Jα(
√

x) = (−1)α

|α|!
(√

x

2

)|α|(
1 + O

(
x2))

, if α < 0,

which is provided by the series representation (21) of Jα , then shows that Bs ,
BsE−1 and KBe,αE−1 when α ≥ 0, EBs and EKBe,α when α < 0, and EKBe,αE−1

are well defined and Hilbert–Schmidt operators. Moreover, E and KBe,αE−1 when
α ≥ 0, E−1 and EKBe,α when α < 0, and EKBe,αE−1 are trace class being products
of two Hilbert–Schmidt operators.

Since [0, s] is compact, it follows from Proposition 6.1 that

lim
N→∞

∥∥1(0,s)

(
K̃N − EKBe,αE−1)

1(0,s)

∥∥
2 = 0

and

lim
N→∞ Tr(1(0,s)K̃N1(0,s)) = Tr

(
1(0,s)EKBe,αE−11(0,s)

)
.

We then obtain from Proposition 4.1 that

lim
N→∞ det(I − K̃N)L2(0,s) = det

(
I − EKBe,αE−1)

L2(0,s),

which shows together with (161) and (26) that

lim
N→∞P

(
N2σNxmin ≥ s

) = det(I − KBe,α)L2(0,s).

Finally, det(I − KBe,0)L2(0,s) = e−s has been observed in [34], and the proof of
Theorem 5 is complete. �

We now focus on the proof of Proposition 6.1.

6.1. The Bessel kernel. We first provide a double complex integral formula for
the Bessel kernel.

LEMMA 6.2. With KBe,α(x, y) defined in (22), for every 0 < r < R and
x, y > 0, we have

KBe,α(x, y)

= 1

(2iπ)2

(
y

x

)α/2

(163)

×
∮
|z|=r

dz

z

∮
|w|=R

dw

w

1

z − w

(
z

w

)α

e−(x/z)+(z/4)+(y/w)−(w/4).
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We recall that by convention, all contours of integrations are oriented counter-
clockwise, and thus the notation

∮
|z|=r is unambiguous.

PROOF OF LEMMA 6.2. The Laurent series generating function for the Bessel
functions with integer parameters reads (see [32], 7.2.4 (25))

e(x/2)(z−(1/z)) = ∑
α∈Z

Jα(x)zα, z ∈ C \ {0}.

This yields for every x, r > 0 and α ∈ Z,

Jα(
√

x) = 1

2iπ

∮
|z|=r

z−αe(
√

x/2)(z−(1/z)) dz

z
.

After the changes of variables z �→ 2
√

xz and w �→ 1/(2
√

yw), this provides for
every x, y > 0, 0 < r < R and α ∈ Z,

Jα(
√

x) = 1

2iπ(2
√

x)α

∮
|z|=1/r

z−αexz−(1/(4z)) dz

z
,(164)

Jα(
√

y) = (2
√

y)α

2iπ

∮
|w|=1/R

wαe−yw+(1/(4w)) dw

w
.(165)

By plugging (164) and (165) into (162), we obtain

(x − y)KBe,α(x, y)

= 1

(2iπ)2

(
y

x

)α/2

(166)

×
∮
|z|=1/r

dz

∮
|w|=1/R

dw
wα

zα+1 exz−1/(4z)−yw+1/(4w)

(
1

4zw
− y

)
.

We continue the computation by mean of integrations by parts, as explained to us
by Manuela Girotti while we discussed a similar formula appearing in her work
[36]. Indeed, since −ye−yw = ∂

∂w
e−yw , a first integration by parts provides∮

|z|=1/r
dz

∮
|w|=1/R

dw
wα

zα+1 exz−(1/(4z))−yw+(1/(4w))

(
1

4zw
− y

)

=
∮
|z|=1/r

dz

∮
|w|=1/R

dw
wα

zα+1 exz−(1/(4z))−yw+(1/(4w))

×
(

1

4zw
+ 1

4w2 − α

w

)
(167)

=
∮
|z|=1/r

dz

∮
|w|=1/R

dw
1

z − w

(
w

z

)α

exz−(1/(4z))−yw+(1/(4w))

×
(

1

4w2 − 1

4z2 + α

z
− α

w

)
.
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Next, by observing that(
1

4w2 − 1

4z2

)
e−(1/(4z))+(1/(4w))

= −
(

∂

∂z
+ ∂

∂w

)
e−(1/(4z))+(1/(4w)),

another integration by parts yields∮
|z|=1/r

dz

∮
|w|=1/R

dw
1

z − w

(
w

z

)α

exz−(1/(4z))−yw+(1/(4w))

×
(

1

4w2 − 1

4z2 + α

z
− α

w

)
(168)

= (x − y)

∮
|z|=1/r

dz

∮
|w|=1/R

dw
1

z − w

(
w

z

)α

exz−(1/(4z))−yw+(1/(4w)).

By combining (166)–(168), we obtain

KBe,α(x, y)

= 1

(2iπ)2

(
y

x

)α/2

(169)

×
∮
|z|=1/r

dz

∮
|w|=1/R

dw
1

z − w

(
w

z

)α

exz−(1/(4z))−yw+(1/(4w)),

and the lemma follows after the change of variables z �→ −1/z and w �→ −1/w.
�

COROLLARY 6.3. For every 0 < r < R and x, y > 0, we have

EKBe,αE−1(x, y)

= 1

(2iπ)2

∮
|z|=r

dz

z

∮
|w|=R

dw

w

1

z − w

(
z

w

)α

e−(x/z)+(z/4)+(y/w)−(w/4).

Equipped with Corollary 6.3, we are now in position to establish Proposi-
tion 6.1.

6.2. Asymptotic analysis. We now perform an asymptotic analysis for the ker-
nel K̃N(x, y) as in Section 4. The main idea is that when the leftmost edge is a hard
edge, the associated critical point c should be at infinity. This leads us to study the
integrand of the double integral representation of K̃N(x, y) in a neighborhood of
z = 0 and w = 0 after the changes of variables z �→ 1/z and w �→ 1/w.
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PROOF OF PROPOSITION 6.1. By choosing q = 0 in (30), which is possible
according to Remark 4.3, we obtain with (160)

K̃N(x, y) = 1

(2iπ)2NσN

∮
�

dz

∮
�

dw
1

w − z

(
z

w

)N

e−(zx/(NσN))+((wy)/(NσN))

(170)

×
n∏

j=1

w − λ−1
j

z − λ−1
j

,

where we recall that the contour � encloses the λ−1
j ’s whereas the contour �

encloses the origin and is disjoint from �. We deform � so that it encloses �,
which is possible since the integrand is analytic at the origin as a function of z

and the residue picked at z = w vanishes. Moreover, since the λ−1
j ’s are zeros of

the integrand as a function of w, we can deform � such that it encloses all the
λ−1

j ’s. More precisely, we specify the contours to be � = {z ∈ C : |z| = NσN/r}
and � = {z ∈ C : |z| = NσN/R} with 0 < r < R < lim infN λ1/2. Notice that for
N large enough, � = �(N) and � = �(N) enclose the λj ’s.

Next, we perform the changes of variables z �→ NσN/z and w �→ NσN/w

in (170) in order to get

K̃N(x, y) = 1

(2iπ)2

∮
|z|=r

dz

z

∮
|w|=R

dw

w

1

z − w

(
z

w

)α

e−(x/z)+(y/w)

×
n∏

j=1

(w/(NσN)) − λj

(z/(NσN)) − λj

= 1

(2iπ)2

∮
|z|=r

dz

z

∮
|w|=R

dw

w

1

z − w

(
z

w

)α

e−(x/z)+(y/w)

× e−N(FN(z)−FN(0))+N(FN(w)−FN(0)),

where use the fact that n = N + α, and we introduce the map

FN(z) = 1

N

n∑
j=1

log
(

z

NσN

− λj

)
.

Note that for every N large enough and z ∈ B(0,R + 1), we have |z|/NσN ≤
lim infN λ1/2 − δ for some δ > 0. Thus we can choose a branch of the logarithm
such that FN is well defined and holomorphic on B(0,R +1) for all N sufficiently
large. Moreover, recalling that

σN = 4

N

n∑
j=1

1

λj
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and observing the identity F ′
N(0) = −1/(4N), a Taylor expansion of FN around

zero yields for every z ∈ B(0,R + 1) and for all N large enough,∣∣∣∣FN(z) − FN(0) + z

4N

∣∣∣∣ ≤ 1

2

|z|2
N2σ 2

N

sup
w∈B(0,R+1)

∣∣∣∣∣ 1

N

n∑
j=1

1

((w/(NσN)) − λj )2

∣∣∣∣∣
≤ n

2N3σ 2
Nδ2

(R + 1)2 ≤ �

N2 ,

for some � > 0 independent of N .
Finally, by using Corollary 6.3 and the inequality (96) with

u = −N
(
FN(z) − FN(0)

) + N
(
FN(w) − FN(0)

)
and v = z − w

4
,

we obtain for every 0 < x,y ≤ s,∣∣K̃N(x, y) − EKBe,αE−1(x, y)
∣∣

≤ �rα−1

2π2Rα+1(R − r)N

×
∮
|z|=r

e−x Re(1/z)+Re(z)/4+�/N |dz|
∮
|w|=R

ey Re(1/w)−Re(w)/4+�/N |dw|

≤ C(s)

N

for some C(s) > 0 independent of N and 0 < x,y ≤ s, and Proposition 6.1 fol-
lows. �

The proof of Theorem 5 is therefore complete.

APPENDIX A: PROOF OF PROPOSITION 2.4

The proof of Proposition 2.4 makes use of [63], Theorems 4.3 and 4.4. In words,
[63], Theorem 4.3, says that on any connected component of D, there is at most
one interval on which the function g is decreasing, while [63], Theorem 4.4, says
that on any two disjoint open intervals of D where g is decreasing, the images of
the closures of these intervals by g are disjoint.

PROOF OF PROPOSITION 2.4. Let us prove (a). Assume γ > 1. Since m(z) is
the Cauchy–Stieltjes transform of a probability measure supported by [0,+∞), the
function m(x) decreases from zero as x increases from −∞ to the origin. Hence
its inverse g(x) decreases to −∞ as x increases to zero. Since

xg(x) = 1 + γ

∫
xλ

1 − xλ
ν(dλ),
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the dominated convergence theorem implies that xg(x) → 1−γ < 0 as x → −∞.
It results that g(x) → 0+ as x → −∞, and g(x) reaches a positive maximum on
(−∞,0). By [63], Theorems 4.3 and 4.4, we obtain that the function g(x) exhibits
the behavior described in the statement, and its maximum coincides with a.

To prove (b), recalling the expression of xg(x) and observing that

x2g′(x) = −1 + γ

∫ (
xλ

1 − xλ

)2

ν(dλ),

we deduce that when γ ≤ 1, the function g is negative and decreasing on (−∞,0).
We now show (c). For x > 2/η and λ ∈ Supp(ν), we have |1−xλ| ≥ xη−1 > 1.

Therefore, g(x) → 0 and x2g′(x) → γ − 1 < 0 as x → +∞ by the dominated
convergence theorem. This shows that g(x) has a positive supremum on (1/η,∞),
and it decreases to zero as x → +∞. By [63], Theorems 4.3 and 4.4, we obtain
that the function g(x) exhibits the behavior described in the statement, and its
supremum coincides with a.

Turning to (d), assume that [d,∞) ⊂ D. Then by Proposition 2.3(a) there exists
ε > 0 such that g′(x) < 0 on (d − ε,d) and g′(d) = 0. It is furthermore clear that
g(x) → 0 as x → ∞. Since b = g(d) > 0, we get that there exists an interval in
(c,∞) over which g is decreasing. However, this contradicts [63], Theorem 4.3.

To show (e) we observe that m(x), being the Cauchy–Stieltjes transform of a
probability measure, decreases from d = limx↓b m(x) to 0 as x increases over the
interval (b,∞). Proposition 2.1 shows then that g decreases from +∞ to b as x

increases from zero to d, and that (0,d) ⊂ (0,1/ξ). Theorem 4.3 of [63] shows
that g decreases nowhere on (d,1/ξ). �

APPENDIX B: DEFORMED TRACY–WIDOM FLUCTUATIONS

In this section, we consider a particular case of a nonregular positive edge where
our previous analysis still applies. In this case, the fluctuations of the associated
extremal eigenvalue will be described by the deformed Tracy–Widom law, as in-
troduced in Baik et al. [8], equation (17). Consider the integral operator K(k)

Ai with
kernel

K(k)
Ai (x, y) = 1

(2iπ)2

∮
�

dz

∮
�′

dw
1

w − z

(
w

z

)k

e−xz+(z3/3)+yw−(w3/3),(171)

where the contours � and �′ are the same as in the proof of Lemma 4.15, and the
associated distribution7

Fk(s) = det
(
I − K(k)

Ai

)
L2(s,∞).

If k = 0, we recover the usual Airy kernel (81).

7Notice that definition (171) is consistent with that given in [8], as the product of the operators

associated with [8], equations (120) and (122), has kernel K(k)
Ai (x, y).
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Given a right edge b associated to the limiting spectral distribution μ(γ, ν), we
assume the following structure for νN , which readily implies that b is a nonregular
edge for k ≥ 1:

ASSUMPTION 3 (Population eigenvalues at critical d). Let k be a fixed integer
such that there exist eigenvalues ζ1, . . . , ζk ∈ {λ1, . . . , λn} satisfying ζj

−1 → d as
N → ∞ for every 1 ≤ j ≤ k.

The following statement may deserve a more formal status, but since we only
sketch its proof and do not provide the full details, we simply call it a statement.

STATEMENT. Let Assumptions 1 and 2 hold true, let b be a right edge and
b = g(d) with d ∈ D and assume moreover that Assumption 3 holds true.8 Denote
by

ν̌N = n

n − k

(
νN − 1

n

k∑
j=1

δζj

)
, γN = n − k

N
,

gN(z) = 1

z
+ γN

∫
λ

1 − zλ
ν̌N(dλ),

and let dN and x̃φ(N) be the sequences associated to ν̌N and gN , as provided in
Proposition 2.11. Assume moreover that

lim
N→∞N1/3 k

max
j=1

∣∣ζj
−1 − dN

∣∣ = 0(172)

and that the following weak regularity condition holds true:

lim inf
N→∞ min

j=1,...,n,λj �=ζ1,...,ζk

∣∣d− λ−1
j

∣∣ > 0.(173)

Then, for every s ∈R,

lim
N→∞P

(
N2/3δN(x̃φ(N) − bN) ≤ s

) = det
(
I − K(k)

Ai

)
L2(s,∞),(174)

where bN = gN(dN) and δN = (2/g′′
N(dN))1/3.

OUTLINE OF PROOF FOR THE STATEMENT. Introducing the map

fN(z) = −bN(z − dN) + log(z) − n − k

N

∫
log(1 − xz)ν̌N(dx),

8In case of a positive left edge, one will consider instead the straightforward counterpart of As-
sumption 3.
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which is the counterpart of fN from Section 4. From Proposition 4.4 and a change
of variables, we have as N → ∞,

P
(
N2/3δN(x̃φ(N) − bN) ≤ s

)
= det(I − 1(s,εN2/3δN )K̃N1(s,εN2/3δN ))L2(s,∞) + o(1),

where the integral operator K̃N is associated with the kernel

K̃N(x, y)

= N1/3

(2iπ)2δN

×
∮
�

dz

∮
�

dw
1

w − z
(175)

×
k∏

j=1

(
w − ζj

−1

z − ζj
−1

)

× e−N1/3x((z−dN)/δN )+N1/3y((w−dN)/δN )+NfN(z)−NfN(w).

By following the proof of Lemma 4.7, we can see that RefN similarly converges
locally uniformly toward (52) on an appropriate subset of the complex plane con-
taining d, and this yields the existence of appropriate contours as in Proposition 4.6
by using the same exact proof. Since by assumption the ζj

−1’s stay in an arbitrary
small neighborhood of d for every N large enough, the product over the ζj ’s in the
integrand K̃N(x, y) is bounded away from that neighborhood. As a consequence,
we can show, as in Section 4.5 and in step 2 of the proof of Proposition 4.14, that
with ϒ∗ and �̃∗, respectively, defined in (85) and (87),

K̃N(x, y)

= N1/3

(2iπ)2δN

×
∮
ϒ∗

dz

∮
�̃∗

dw
1

w − z
(176)

×
k∏

j=1

(
w − ζj

−1

z − ζj
−1

)

× e−N1/3x((z−dN)/δN )+N1/3y((w−dN)/δN )+NfN(z)−NfN(w)

up to negligible terms, in the sense that the remaining terms do not contribute in
the large N limit. Moreover, by proceeding similarly as in Lemma 4.15 and step 2
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of the proof of Proposition 4.14, we have that

K(k)
Ai (x, y) = N1/3

(2iπ)2δN

×
∮
ϒ∗

dz

∮
�̃∗

dw
1

w − z

(
w − dN

z − dN

)k

(177)

× exp
{
−N1/3x

(z − dN)

δN

+ Ng′′
N(dN)

(z − dN)3

6

+ N1/3y
(w − dN)

δN

− Ng′′
N(dN)

(w − dN)3

6

}
up to negligible terms. Finally, to conclude we need to estimate the difference
between the right-hand sides of (176) and (177), which is the counterpart of step 1
in the proof of Proposition 4.14; we claim that similar estimates can be performed
with minor modifications, provided that (172) holds true. �
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