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LAZY RANDOM WALKS AND OPTIMAL TRANSPORT
ON GRAPHS

BY CHRISTIAN LÉONARD

Modal-X. Université Paris Ouest

This paper is about the construction of displacement interpolations of
probability distributions on a discrete metric graph. Our approach is based on
the approximation of any optimal transport problem whose cost function is a
distance on a discrete graph by a sequence of entropy minimization problems
under marginal constraints, called Schrödinger problems, which are associ-
ated with random walks. Displacement interpolations are defined as the limit
of the time-marginal flows of the solutions to the Schrödinger problems as the
jump frequencies of the random walks tend down to zero. The main conver-
gence results are based on �-convergence of entropy minimization problems.

As a by-product, we obtain new results about optimal transport on
graphs.

Introduction.

Aim of the paper. Displacement interpolations on R
n were introduced by

McCann (1994) and extended later to a geodesic space (X , d) where they are
defined as constant speed geodesics on the space of all probability measures on
X equipped with the Wasserstein pseudo-distance of order two. They appeared to
be a basic and essential notion of the Lott–Sturm–Villani theory of lower bounded
curvature of geodesic spaces; see Lott and Villani (2009), Sturm (2006a, 2006b),
Villani (2009). Indeed, as discovered by McCann (1994, 1997), Otto and Villani
(2000), Cordero-Erausquin, McCann and Schmuckenschläger (2001), von Renesse
and Sturm (2005) in the Riemannian setting, lower bounded curvature is inti-
mately linked to convexity properties of the relative entropy with respect to the
volume measure along displacement interpolations. It happens that these displace-
ment convexity properties admit natural analogues on a geodesic space.

It is tempting to try to implement a similar approach in a discrete setting. But
little is known in this case since a discrete space fails to be a length space. Indeed,
any regular enough path on a discrete space is piecewise constant with instanta-
neous jumps, so that no speed and a fortiori no constant speed geodesic exist.

This paper is about the construction of displacement interpolations between
probability measures on a discrete metric graph. In this discrete setting, we pro-
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pose natural substitutes for the constant speed geodesics. As a by-product of our
approach, we also obtain new results about optimal transport on graphs.

Although these displacement interpolations are designed for obtaining displace-
ment convexity of the entropy, this topic is not investigated in the present article.

Some notions to be made precise. Let us begin with some terminology and
notation.

The graph (X ,∼). Let X be a countable set of vertices equipped with the sym-
metric relation x ∼ y which means that the vertices x and y are distinct neighbours
and that {x, y} is an undirected edge.

The path space �. The path space � ⊂ X [0,1] on X to be considered in the
present paper is the space of all left-limited, right-continuous, piecewise constant
paths ω = (ωt )0≤t≤1 on X with finitely many jumps such that for all t ∈ (0,1),
ωt− �= ωt implies that ωt− and ωt are neighbours, so that � is respectful of the
graph structure of (X ,∼). See (5.2), (5.3).

Discrete metric graph. The distance d is in accordance with the graph struc-
ture of (X ,∼) since it is required to be intrinsic in the discrete sense. This means
that for all x, y ∈X ,

d(x, y) = inf
{
�(ω);ω ∈ � :ω0 = x,ω1 = y

}
,(0.1)

where

�(ω) := ∑
0<t<1

d(ωt−,ωt ), ω ∈ �(0.2)

is the discrete length of the discontinuous path ω. The epithet discrete in the ex-
pression “discrete metric graph” is important. Indeed, the standard definition of a
(nondiscrete) metric graph allows for continuous mass transfer along edges. In the
present paper, the topology induced by the distance d on the set X of vertices is
discrete and the edges are not part of the state space.

Geodesic path. For each x, y ∈X , let us denote

�xy := {
ω ∈ �;ω0 = x,ω1 = y, �(ω) = d(x, y)

}
(0.3)

the set of all geodesics joining x and y: they achieve the minimum value of (0.1).
Since it will be assumed that the graph is irreducible, only finitely many jumps
occur along any geodesic. This is the main reason why � as defined above is the
relevant path space for our investigation. Remark that when x and y are distinct,
�xy contains infinitely many paths since geodesics are characterized by ordered
sequences of visited states, regardless of the instants of jumps. The cut-locus is
quite large.
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Random walk. We give a specific meaning to the expression “random walk”.
A random walk is any positive measure on the path space �. This is not the custom-
ary usage, but it turns out to be convenient. As a measure, it specifies the behaviour
of a continuous-time random process. This piecewise constant process may not be
Markov. The Markov property of a measure on � is defined at Definition 6.1, in
accordance with the usual notion. More detail about Markov random walks are
given at the Appendix A.

Why random walks have to be considered. To recover some time regularity of
the paths in order to define notions of speed and acceleration without allowing any
mass transfer along edges, one is enforced to do some averaging on ensembles of
discontinuous sample paths. This means that one is obliged to consider expected
values of piecewise constant random paths on X . Therefore, we are going to con-
sider random walks in the wide sense that was described some lines above. So
doing, one lifts the paths from the discrete state space X up to the continuum
P(X ) of all probability measures on X . Instead of searching for geodesic paths
on X , we are going to build geodesics on P(X ).

A problem to be solved. The main trouble in a discrete setting comes from a
serious degeneracy problem. Let us call any random walk which is supported on
the set of geodesic paths on X , a geodesic random walk. We will see below at
Result 0.1 that the interpolations on P(X ) that we are on the way to build are time-
marginal flows of geodesic random walks. Yet we have just seen that the cut-locus
is huge. What geodesic random walk should be selected among these infinitely
many candidates? What should be the random behaviour of the instants of jumps
to specify an interpolation which is well suited for the displacement convexity of
the entropy? This article proposes a solution to this problem.

Approximation by entropy minimizers. The author proposed in Léonard
(2012a) a construction of the McCann displacement interpolations in P(Rn) as
limits of minimizers of some relative entropy under marginal constraints (see the
Schrödinger problem at Section 4). In the present paper, we stay as close as pos-
sible to this strategy. In a discrete metric graph setting, it will lead us to a natural
way of selecting one displacement interpolation among infinitely many candidates,
which is suitable for the displacement convexity of the entropy.

The main idea about this selection procedure lies in the following thought ex-
periment.

The cold gas experiment. Suppose you observe at time t = 0 a large collection
of particles that are distributed with a profile close to the probability measure μ0 ∈
P(X ) on the state space X . As in the thought experiment proposed by Schrödinger
(1931, 1932) or in its close variant described in Villani’s textbook Villani [(2009),
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Lazy gas experiment, page 445], ask them to rearrange into a new profile close to
some μ1 ∈ P(X ) at some later time t = 1.

Suppose that the particles are in contact with a heat bath. Since they are able
to create mutual optimality (Gibbs conditioning principle), they find an optimal
transference plan between the endpoint profiles μ0 and μ1. Now, suppose in addi-
tion that the typical speed of these particles is close to zero: the particles are lazy,
or equivalently the heat bath is pretty cold. As each particle decides to travel at the
lowest possible cost, it chooses an almost geodesic path. Indeed, with a very high
probability each particle is very slow, so that it is typically expected that its final
position is close to its initial one. But it is required by the optimal transference
plan that it must reach a distant final position. Hence, conditionally on the event
that the target μ1 is finally attained, each particle follows an almost geodesic path
with a high probability. At the limit where the heat bath vanishes (zero temper-
ature), each particle follows a geodesic while the whole system performs some
optimal transference plan. This (absolutely) cold gas experiment is called the lazy
gas experiment in Villani (2009) where its dynamics is related to displacement in-
terpolations. For further detail with graphical illustrations, see Léonard (2012c),
Section 6.

With this thought experiment in mind, one can guess that a slowing down pro-
cedure enforces the appearance of individual geodesics.

Notation. Before going on, we need some general notation. We denote by P(Y )

and M+(Y ) the sets of all probability and positive measures on a measurable set Y .
The push-forward of a measure m ∈ M+(Y1) by the measurable mapping f :Y1 →
Y2 is f#m(·) := m(f −1(·)) ∈ M+(Y2).

Let � ⊂ X [0,1] be a set of paths from the time interval [0,1] to the measur-
able state space X (mainly think of � as defined above, but sometimes for pur-
poses of comparison we shall refer to � as a set of continuous paths on a Rie-
mannian manifold X ). The canonical process X = (Xt)0≤t≤1 is defined for all
ω = (ωs)0≤s≤1 ∈ � by Xt(ω) = ωt ∈ X for each 0 ≤ t ≤ 1. The set � is en-
dowed with the σ -field generated by (Xt ; t ∈ [0,1]). For any t ∈ [0,1] and any
Q ∈ M+(�), the push-forward

Qt := (Xt)#Q ∈ M+(X )

of Q by the measurable mapping Xt is the law of the random position Xt at time
t if Q describes the behaviour of the random path. More specifically, Q0, Q1 are
the initial and final time-marginal projections of Q. Also

Q01 := (X0,X1)#Q ∈ M+
(
X 2)

is the joint law of the random endpoint position (X0,X1). The xy-bridge of Q is
the conditional probability measure

Qxy := Q(·|X0 = x,X1 = y) ∈ P(�), x, y ∈X .(0.4)
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As a general result, we have the disintegration formula

Q(·) =
∫
X 2

Qxy(·)Q01(dx dy) ∈ M+(�).

If P is a probability measure on �, we sometimes use the probabilistic convention:
EP (u) := ∫

� udP .

Presentation of the main results. Let us present the main results of the article
in the easy framework of a discrete metric graph (X ,∼, d) equipped with the
standard distance specified by (0.1) and

∀x, y ∈X , d(x, y) = 1 ⇐⇒ x ∼ y.(0.5)

Let us take any Markov random walk R ∈ M+(�) such that jumps are allowed
between any neighbours in both directions. Precise assumptions are stated at Hy-
potheses 2.1. For instance, one may choose the simple random walk; see (A.3) at
the Appendix A for detail.

For any k ≥ 1, the slowed down version of R is the random walk Rk ∈ M+(�)

defined in such a way that, if R is the law of the process (Yt )0≤t≤1, then Rk is the
law of (Yt/k)0≤t≤1.

As a consequence of the large deviation theory, the mathematical translation of
the cold gas experiment is in terms of some entropy minimization problems. We
are going to investigate the limit as k tends to infinity of the following sequence of
dynamical Schrödinger problems:

H
(
P |Rk)/ log k → min; P ∈ P(�) :P0 = μ0,P1 = μ1,(Sk

dyn)

where the relative entropy of a probability measure p with respect to a reference
measure r is defined by

H(p|r) :=
∫

log(dp/dr) dp.

Schrödinger problem and its relations with the cold gas experiment are investigated
in the author’s survey paper Léonard (2014a). Relative entropy is detailed at the
Appendix B.

The Monge–Kantorovich optimal transport problem is defined for any μ0,μ1 ∈
P(X ) by∫

X 2
d(x, y)π(dx dy) → min; π ∈ P

(
X 2)

:π0 = μ0, π1 = μ1,(MK)

where π0 and π1 ∈ P(X ) are the first and second marginals of π . Its dynamical
version is ∫

�
�(ω)P (dω) → min; P ∈ P(�) :P0 = μ0,P1 = μ1,(MKdyn)

where the length � is defined at (0.2). Unlike the affine minimization problems
(MK) and (MKdyn), for each k the minimization problem (Sk

dyn) is strictly convex.
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Hence, it admits a unique solution P̂ k ∈ P(�) while (MKdyn) admits an infinite
convex set of solutions. We shall prove by means of �-convergence that (P̂ k)k≥1
is a convergent sequence whose limit P̂ ∈ P(�) solves (MKdyn). To give a more
precise statement at Result 0.1, let us introduce the auxiliary entropy minimization
problem

H(P |G) → min; P ∈ P(�) :P01 ∈ SMK(μ0,μ1),(S̃dyn)

where the auxiliary reference random walk G is defined by

G := 1� exp
(∫

[0,1]
Jt,Xt (X ) dt

)
R ∈ M+(�)(0.6)

with:

• � := ⋃
x,y∈X �xy the set of all geodesics;

• Jt,x(X ) = ∑
y : y∼x Jt,x(y) where Jt,x(y) is the instantaneous rate of jump of

the random walk R at time t from x to y; see the Appendix A;
• SMK(μ0,μ1) ⊂ P(X 2) the set of all solutions of (MK).

Since (MK) is an affine minimization problem, its convex set SMK(μ0,μ1) of so-
lutions may be infinite.

We are now ready to give the following partial statement of Theorem 2.1.

RESULT 0.1. The limit limk→∞ P̂ k =: P̂ ∈ P(�) exists. It solves (MKdyn)
and is the unique solution of (S̃dyn). Moreover, P̂ (�) = 1, meaning that the sample
paths of P̂ are piecewise constant geodesics.

Last statement follows from the absolute continuity of P̂ with respect to G and
G(� \ �) = 0.

The random walk P̂ minimizes the average length while transporting the mass
distribution μ0 on X onto another mass distribution μ1. It is selected among the
infinitely many [see (1.5) below] solutions of (MKdyn).

DEFINITIONS. We call P̂ a displacement random walk and its time-marginal
flow [μ0,μ1] = (μt )0≤t≤1 := (P̂t )0≤t≤1 ∈ P(X )[0,1] defines a displacement inter-
polation between μ0 and μ1.

This last definition is justified because of several analogies with the standard
displacement interpolations on a geodesic space; see Section 1. The defining iden-
tity μt := P̂t , t ∈ [0,1] means that P̂ is a coupling of the interpolation [μ0,μ1].
Be aware that, unlike the interpolation [μ0,μ1], the random walk P̂ encodes the
information of all the marginal laws of (Xt1, . . . ,Xtk ).

Clearly, these notions depend on both choices of d and R via � and J entering
the expression (0.6) of G and also via (MKdyn). This will be made explicit at
Definitions 1.1.
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Pushing forward (MKdyn) from P(�) onto P(X 2) via the (0,1)-marginal pro-
jection (X0,X1) gives (MK). Similarly, the push-forward of (S̃dyn) is the auxiliary
entropic minimization problem

H(π |G01) → min; π ∈ SMK(μ0,μ1).(S̃)

We shall obtain at Theorem 2.1 the following natural corollary of Result 0.1.

RESULT 0.2. The law P̂01 ∈ P(X 2) of the couple of endpoint positions
(X0,X1) under P̂ is a singled out solution of the Monge–Kantorovich prob-
lem (MK). It is the unique solution of (S̃).

We have selected one solution of (MK).

Optimal transport appears at the limit of the slowing down procedure. Again,
pushing forward (Sk

dyn) from P(�) onto P(X 2) gives

H
(
π |Rk

01
)
/ log k → min; π ∈ P

(
X 2)

:π0 = μ0, π1 = μ1,(Sk)

where Rk
01 ∈ P(X 2) is the joint law of the initial and final positions of Rk .

RESULT 0.3. For each k, the unique solution π̂ k ∈ P(X 2) of (Sk) is the joint
law of the initial and final positions of the random walk P̂ k , that is, π̂ k := P̂ k

01.
Therefore, the slowing down procedure limk→∞ P̂ k = P̂ selects:

1. one solution π̂ := limk→∞ π̂ k = P̂01 ∈ P(X 2) of the static problem (MK)
and

2. one random dynamics encoded in (Gxy;x, y ∈X ).

It is interesting to note that the convergence limk→∞ π̂ k ∈ P(X 2) = π̂ to the
singled out solution π̂ of (MK) is a by-product of its dynamical analogue.

A Benamou–Brenier formula. Although G is not Markov, it will be proved at
Theorem 2.4 that the displacement random walk P̂ is Markov. It follows from the
definition μt := P̂t ,0 ≤ t ≤ 1, (MKdyn) and the Markov property of P̂ that the
Wasserstein distance W1(μ0,μ1) := inf(MK) admits a Benamou–Brenier repre-
sentation. This result is stated at Theorem 3.1. It is in complete analogy with the
standard Benamou–Brenier formula (3.1).

Constant speed geodesics. This notion is basic for the Lott–Sturm–Villani the-
ory where the displacement interpolations are constant speed W2-geodesics [W2 is
defined at (3.1) and constant speed geodesics are defined at page 1880]. As a corol-
lary of the Benamou–Brenier formula, we obtain at Theorem 3.2 the following
analogous result.
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RESULT 0.4 (d is the standard graph distance). Any displacement interpola-
tion is a constant speed W1-geodesic.

A discussion about the links between the notions of constant speed geodesics,
minimizing geodesics and displacement interpolations is provided at Section 3.

Dynamics of the displacement random walk. The Markov random walk P̂ dis-
integrates as P̂ (·) = ∫

X 2 Gxy(·)π̂(dx dy) where Gxy is the xy-bridge of G and π̂

is the unique solution of (S̃); see (1.8), (0.4), (0.6) and Result 0.2. Its dynamics is
specified at Theorem 2.4. Let us describe Gxy in a special simple case.

Binomial interpolations. Let X = Z be equipped with its natural graph struc-
ture and let the reference random walk R be a simple walk with jump kernel
Jz = (δz−1 + δz+1)/2, z ∈ Z and some unspecified initial marginal with a full sup-
port. The content of Proposition 3.4 is the following. Let (Nt)0≤t≤1 be a standard
Poisson process, then:

(i) For any x < y ∈ Z, Gxy(·) = Proba(x + N ∈ ·|N1 = d(x, y)).
(ii) For any x > y ∈ Z, Gxy(·) = Proba(y − N ∈ ·|N1 = d(x, y)).

Since for each t ∈ [0,1], the law of Nt conditionally on N1 = d(x, y) is the
binomial distribution B(d(x, y), t), the displacement interpolation [δx, δy] =
(G

xy
t )0≤t≤1 is sometimes called a binomial interpolation; see (3.9).

What happens when d is not the standard distance. The case of a general dis-
tance d is treated in this article. The main difference with the standard distance is
that the slowing down procedure takes d into account explicitly as follows. Let J

be the jump kernel of R. Instead of taking J k = J/k as above, we choose

J k
t,x := ∑

y : y∼x

k−d(x,y)Jt,x(y)δy, t ∈ [0,1], x ∈X .(0.11)

Of course, when d is the standard distance one recovers J k = J/k. The larger is
the distance d(x, y) between two neighbours x and y, the lower is the frequency of
jumps from x to y as k is large. Therefore, having the cold gas experiment in mind,
one sees that the larger d(x, y) is, the more it costs to a lazy particle to jump from
x to y. The no-motion limit k → ∞ simulates the metric structure of the graph.

Alternate notions of interpolations. Several approaches for deriving displace-
ment convexity in a discrete setting have lead to alternate notions of interpolations.

In the special case of the hypercube X = {0,1}n equipped with the Hamming
distance, Ollivier and Villani (2012) introduced the most natural interpolation
(μt )0≤t≤1 between δx and δy which is called midpoint interpolation and is defined
as follows. For any 0 ≤ t ≤ 1, μt is the uniform probability measure on the set of
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all t-midpoints of x and y. Bonciocat and Sturm (2009) introduced h-approximate
midpoint interpolations.

Maas (2011) and Mielke (2011) designed a new distance W on P(X ) which,
unlike the Wasserstein distance W2, allows for regarding evolution equations of
reversible Markov chains on the discrete space X as gradient flows of some en-
tropy on (P(X ),W).

On a graph equipped with the standard graph distance, a binomial interpo-
lation between δx and δy is a mixture of the binomial interpolations along the
geodesic chains x = x0 ∼ x1 ∼ · · · ∼ xd(x,y) = y connecting x and y that have
been constructed above. It has been successfully used to prove displacement
convexity of the entropy by Johnson (2007), Gozlan et al. (2014) and Hillion
(2012, 2014a, 2014b, 2014c). We have seen that binomial interpolations are spe-
cific instances of the displacement interpolations which are built in the present
paper.

Recently, the author Léonard (2012c) studied convexity properties of the rela-
tive entropy along an entropic interpolation, that is, the time-marginal flow of the
minimizer of (Sk=1

dyn ) without slowing down, that is, with k = 1.

Some remarks and open questions about the links between displacement inter-
polations on graphs and previous works. It is natural to seek for relations be-
tween these different notions of interpolations. However, not very much is known
by now.

We have already noticed that binomial interpolations are special instances of
displacement interpolations. It seems also that Hillion’s (2014a) W1,+-interpola-
tions are very close to displacement interpolations. Are they the same?

The distance W on P(X ) which is introduced in Maas (2011) and Mielke (2011)
is a successful object to derive lower curvature results about the dynamics of the
random walk with consequences in terms of the rate of convergence to equilibrium;
see Erbar and Maas (2012). No W-interpolation is built except heat flows which
interpolate between μ0 at time t = 0 and the equilibrium measure at time t = ∞.
They are interpreted as gradient flows on (P(X ),W) of the relative entropy with
respect to the equilibrium measure. It not clear that W is related to some transport
cost built upon a distance on the graph. Nevertheless, W is related to some carré du
champ operator; it is a Riemannian object. This in contrast with the displacement
interpolations of the present article which are related to a Wasserstein distance of
order 1.

The connection between Ollivier’s (2009) coarse curvature and displacement
interpolations on graphs remains to be explored. Although Ollivier’s approach to
graph curvature does not necessitate interpolations (discrete-time Markov chains
are enough), it is defined in terms of optimal transport of order one, a common fea-
ture with displacement interpolations. The power and beauty of Ollivier’s theory
are both its simplicity and wide applicability. One can expect that a more sophisti-
cated approach based on the displacement convexity of the relative entropy should
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bring sharper results than the consequences of Ollivier’s coarse curvature regard-
ing concentration of measure and rate of convergence to equilibrium.

Outline of the paper. Section 1 briefly presents the analogies between usual
displacement interpolations on a Riemannian manifold and displacement interpo-
lations on a graph. The results are stated at Sections 2 and 3. Their proofs are done
in the last Sections 5, 6 and 7.

Section 2 is devoted to the displacement random walks: Theorem 2.1 gives the
�-convergence results: in particular limk→∞ P̂ k = P̂ , and Theorems 2.3 and 2.4
describe the Markov dynamics of P̂ . In Section 3, the results about displace-
ment interpolations are stated. This section also includes the proof of a Benamou–
Brenier type formula at Theorem 3.1 and a discussion about constant speed in-
terpolations and natural substitutes for the geodesics on a graph. Theorem 3.2
is a statement about the conservation of average rate of mass displacement. The
Schrödinger problems are introduced at Section 4 where a set of assumptions for
the existence of their solutions is also discussed. The �-convergence of the se-
quence of slowed down Schrödinger problems to the optimal transport problem
of order one is studied at Section 5. The proofs rely on Girsanov’s formula for
the Radon–Nykodim density dRk/dR. The dynamics of the limit P̂ is worked out
at Section 6; some effort is needed to show that P̂ is Markov. Finally, the con-
servation of the average mass displacement along interpolations is proved at last
Section 7.

Basic information about random walks and relative entropy with respect to an
unbounded measure is provided at the Appendices A and B.

1. Defining displacement interpolations on a graph by analogy. To stress
the analogies between displacement interpolations in discrete and continuous set-
tings, we first recall their main properties on a Riemannian manifold. Then we
briefly introduce the main properties of an object in a discrete setting which will
be defined as a displacement interpolation because of the strong analogies between
its properties and the corresponding properties of the displacement interpolations
in a continuous setting; see Definitions 1.1.

McCann displacement interpolations. On a Riemannian manifold X equipped
with its Riemannian distance d , any displacement interpolation is also an action
minimizing geodesic in the following sense. Let �ac,2 be the space of all abso-
lutely continuous paths ω = (ωt )t∈[0,1] from the time interval [0,1] to X such that∫
[0,1] |ω̇t |2ωt

dt < ∞ where ω̇t is the generalized derivative of ω at time t and let
P(�ac,2) be the corresponding space of probability measures. Let (MK2) be the
quadratic Monge–Kantorovich problem where d in (MK) is replaced by its square
d2. It appears that [μ0,μ1] is the time-marginal flow

μt = P̂t , t ∈ [0,1](1.1)
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of some solution P̂ ∈ P(�ac,2) of the following dynamical version of (MK2):∫
�ac,2

Ckin(ω)P (dω) → min; P ∈ P(�ac,2) :P0 = μ0,P1 = μ1,(1.2)

where the kinetic action Ckin is defined by Ckin(ω) := ∫
[0,1] 1

2 |ω̇t |2ωt
dt ∈ [0,∞],

ω ∈ �ac,2. Suppose for simplicity that any solution π∗ ∈ P(X 2) of (MK2) gives
a zero mass to the cut-locus so that there exists a unique minimizing geodesic
γ xy ∈ �ac,2 joining x and y for π∗-almost every x, y ∈ X . Then any solution
P̂ ∈ P(�ac,2) of (1.2) is in one–one correspondence with a solution π̂ ∈ P(X 2)

of (MK2) via the relation

P̂ (·) =
∫
X 2

δγ xy (·)π̂(dx dy) ∈ P(�ac,2),(1.3)

where δ stands for a Dirac probability measure. With (1.1), we see that the dis-
placement interpolation [μ0,μ1] satisfies

μt =
∫
X 2

δγ
xy
t

(·)π̂(dx dy) ∈ P(X ), t ∈ [0,1].(1.4)

In particular, with μ0 = δx and μ1 = δy , we obtain [δx, δy] = (δγ
xy
t

)t∈[0,1]. This
signifies that the notion of displacement interpolation lifts the notion of action
minimizing geodesic from the manifold X onto P(X ). This lifting from X to P(X )

was used successfully in the Lott–Sturm–Villani theory on geodesic spaces.

Displacement interpolations on a discrete metric graph (X ,∼, d). As before,
we are going to define the displacement interpolation [μ0,μ1] = (μt )t∈[0,1] by
formula (1.1): μt := P̂t ,0 ≤ t ≤ 1, where P̂ ∈ P(�) is some singled out solution
of (MKdyn) which is an order-one analogue of (1.2); see Result 0.1.

Recall that for each distinct x, y ∈X , the set of geodesics �xy contains infinitely
many paths; see (0.3). On the other hand, it is easily seen that for any measurable
kernel (Qxy ∈ P(�);x, y ∈ X ) which is geodesic in the sense that: Qxy(�xy) = 1
for all x, y (such a kernel is called a geodesic kernel) and for any π∗ solution
of (MK),

P ∗(·) :=
∫
X 2

Qxy(·)π∗(dx dy) ∈ P(�)(1.5)

solves (MKdyn). It follows that (MKdyn) admits infinitely many solutions and also
that the static and dynamical Monge–Kantorovich problems have the same optimal
value:

inf(MK) = inf(MKdyn).(1.6)

The (Xt)t∈[0,1]-push forward of the minimizer P ∗ given at (1.5) is

P ∗
t (·) =

∫
X 2

Q
xy
t (·)π∗(dx dy) ∈ P(X ), 0 ≤ t ≤ 1.(1.7)

Remark that (1.5)–(1.7) has the same structure as (1.3)–(1.4).
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The slowing down procedure selects one singled out geodesic kernel (Gxy ∈
P(�);x, y ∈ X ) which does not depend on the specific choice of μ0 and μ1 (see
Theorem 2.1 below) and one singled out solution π̂ ∈ P(X 2) of (MK) such that

P̂ (·) =
∫
X 2

Gxy(·)π̂(dx dy) ∈ P(�)(1.8)

and the displacement interpolation [μ0,μ1] satisfies

μt(·) =
∫
X 2

G
xy
t (·)π̂(dx dy) ∈ P(X ), t ∈ [0,1],(1.9)

where for each x, y ∈X , G
xy
t ∈ P(X ) is the t-marginal of Gxy ∈ P(�xy).

We observe several analogies between the continuous and discrete settings.

• There is an analogy between (1.3)–(1.4) and (1.8)–(1.9):
– The optimal plan π̂ in (1.9) refers to (MK), while in (1.4) it refers to (MK2).
– The geodesic Markov random walk Gxy in (1.9) corresponds to δγ xy in (1.4).

In particular, we see that the deterministic behaviour of δγ xy must be replaced
with a genuinely random walk Gxy .

The geodesic kernel (Gxy ∈ P(�);x, y ∈ X ) encodes some geodesic dynamics
of the discrete metric graph (X ,∼, d).

• While previous item is related to the notion of minimizing geodesic, there is also
an analogy in terms of constant speed geodesics. McCann displacement interpo-
lations are constant speed W2-geodesics, while Result 0.4 states that displace-
ment interpolations on a discrete graph equipped with the standard distance are
constant speed W1-geodesics. See also Proposition 3.3 for a similar result when
the distance is general.

• Similarly, as in the present article, it is shown in Léonard (2012a) by means
of �-convergence technics that McCann displacement interpolations are limits
of solutions to entropic problems analogous to (Sk

dyn) where Rk is the law of a
slowed down diffusion process and the normalization is 1/k instead of 1/ log k.

These strong analogies entitle us to propose the following.

DEFINITIONS 1.1. Let R ∈ M+(�) be a random walk on the discrete metric
graph (X ,∼, d). We call μ = (P̂t )0≤t≤1 the (R, d)-displacement interpolation and
P̂ the (R, d)-displacement random walk between μ0 and μ1 specified by (1.8)
and (1.9).

We denote μ = [μ0,μ1](R,d) or more simply [μ0,μ1]R or [μ0,μ1] when the
context is clear.

2. Main results about displacement random walks. We gather our assump-
tions before stating rigorously our main results about the displacement random
walks.
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The underlying hypotheses. The following set of hypotheses will prevail for
the rest of the paper.

HYPOTHESES 2.1. The vertex set X is countable.

(∼) – (X ,∼) is irreducible: for any x, y ∈ X , there exists a finite chain
x1, x2, . . . , xn in X such that x = x1 ∼ x2 ∼ · · · ∼ xn = y.

– (X ,∼) contains no loop: x ∼ x is forbidden.
– (X ,∼) is locally finite: any vertex x ∈X admits finitely many neighbours

nx := #{y ∈X ;y ∼ x} < ∞ ∀x ∈X .(2.1)

(d) – The distance d is positively lower bounded: for all x �= y ∈X , d(x, y) ≥ 1.
– The distance d is intrinsic: it satisfies (0.1).

(R) The reference path measure R ∈ M+(�) is assumed to be Markov with a
forward jump kernel (Jt,x ∈ M+(X ); t ∈ [0,1], x ∈X ) such that:
– For any x, y ∈X , we have Jt,x(y) > 0, ∀t ∈ [0,1] if and only if x ∼ y.
– J is uniformly bounded, that is,

sup
t∈[0,1],x∈X

Jt,x(X ) < ∞.(2.2)

(Rk) For each k ≥ 1, the slowed down random walk Rk ∈ M+(�) is the Markov
measure with the forward jump kernel (0.11) and the initial measure is Rk

0 =:
m ∈ M+(X ) with mx > 0 for all x ∈X .

(μ) The prescribed probability measures μ0 and μ1 ∈ P(X ) satisfy the following
requirements. There exists some πo ∈ P(X 2) such that πo

0 = μ0, πo
1 = μ1,∫

X 2 ERxy (�)πo(dx dy) < ∞ and H(πo|R01) < ∞.

We give a simple criterion for the Hypothesis (μ) to be verified. Remark
that for the problems (Sk

dyn) and (Sk) to admit solutions, it is necessary that
H(μ0|R0),H(μ1|R1) < ∞.

PROPOSITION 2.1. For the Hypothesis 2.1(μ) to be satisfied, it is enough that
in addition to H(μ0|R0),H(μ1|R1) < ∞, there exists a nonnegative function A

on X such that:

(i)
∫
X 2 e−A(x)−A(y)R01(dx dy) < ∞,

(ii)
∫
E R01(dx dy) ≥ ∫

E e−A(x)−A(y)R0(dx)R1(dy), for any E ⊂X 2,

(iii) ERxy (�) ≤ A(x) + A(y), for all x, y ∈X ,

(iv)
∫
X Adμ0,

∫
X Adμ1 < ∞.

As a corollary of the proposition, Hypothesis 2.1(μ) holds when X is finite. The
proof of Proposition 2.1 is done at Section 4.



OPTIMAL TRANSPORT ON GRAPHS 1877

Results about the displacement random walks. We are now ready to state the
main results about the random walks. Their consequences in terms of interpola-
tions will be made precise at next section.

THEOREM 2.1. Hypotheses 2.1 are assumed to hold.

1. For all k ≥ 2, the problems (Sk) and (Sk
dyn) admit, respectively, a unique

solution π̂ k ∈ P(X 2) and P̂ k ∈ P(�).
Moreover, P̂ k is Markov and π̂ k = P̂ k

01.
2. (S̃) has a unique solution π̂ ∈ P(X 2) and limk→∞ π̂ k = π̂ .
By definition of (S̃), π̂ also solves (MK).
3. (S̃dyn) has a unique solution P̂ ∈ P(�) and limk→∞ P̂ k = P̂ .
The random walk P̂ also solves (MKdyn).
4. The random walk P̂ disintegrates as (1.8). This means that it satisfies P̂01 =

π̂ and that P̂ shares its bridges with the geodesic path measure G defined by (0.6):
P̂ xy = Gxy for π̂ -almost every (x, y).

The proof of Theorem 2.1(1) is done at the end of Section 4 and the proof of
Theorem 2.1(2–3–4) is done at the end of Section 5.

As a corollary, we obtain the following result.

THEOREM 2.2. For any x, y ∈ X such that ERxy (�) < ∞, the sequence
(Rk,xy)k≥1 of bridges of (Rk)k≥1 is convergent and limk→∞ Rk,xy = Gxy .

PROOF. Under the marginal constraints μ0 = δx and μ1 = δy , we have for all
k ≥ 2, π̂ k = π̂ = δ(x,y) and P̂ k = Rk,xy by (4.2). It remains to apply Theorem 2.1.

�

We need some additional preliminary material to describe the dynamics of P̂

and of the bridge Gxy . Recall that a directed tree is a directed graph (Z,→)

that contains no circuit (directed loop). We denote z → z′ when the directed edge
(z, z′) ∈Z2 exists and we define the order relation � by: z � z′ if z = z′ or if there
exists a finite path z = z1 → z2 → ·· · → zn = z′.

Unlike the configuration (a) in Figure 1, configuration (b) is not a circuit. Hence,
it may enter a directed tree.

FIG. 1. Circuit and loop.
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We have in mind the directed tree (�xy([0,1]),→). Its set of vertices is
�xy([0,1]) := {γt ∈X ;0 ≤ t ≤ 1, γ ∈ �xy} and z → z′ ∈ �xy([0,1]) if z ∼ z′ ∈X
and there are some γ ∈ �xy and 0 ≤ t < t ′ ≤ 1 such that γt = z and γt ′ = z′.
This tree describes the successive occurrence of the states which are visited by
the geodesics from x to y. It keeps the information of the order of occurrence,
regardless of the instants of jump.

THEOREM 2.3 (The dynamics of Gxy ). Hypotheses 2.1 are assumed to hold:

1. Although G is not Markov in general, for every x, y ∈ X , its bridge Gxy is
Markov.

2. For every x, y ∈X , the jump kernel of the Markov measure Gxy is given by

J
G,y
t,z = ∑

w∈{z→·}y
g

y
t (w)

g
y
t (z)

Jt,z(w)δw, 0 ≤ t < 1, z ∈ �xy([0,1]),
where {z → ·}y := {w ∈ �zy([0,1]); z → w} is the set of all successors of z in the
directed tree (�zy([0,1]),→) and

g
y
t (z) := ER

[
exp

(∫ 1

t
Js,Xs (X ) ds

)
1�(t,z;1,y)

∣∣∣∣Xt = z

]
with

�(t, z;1, y) := {ω ∈ �;ω|[t,1] = γ|[t,1] for some γ ∈ �,ωt = z,ω1 = y},
the set of all geodesics from z to y on the time interval [t,1].

Remark that since Gxy only visits �xy([0,1]), one can put J
G,y
t,z = 0 for any

z /∈ �xy([0,1]). The proof of Theorem 2.3 is given at Section 6.

THEOREM 2.4 (The dynamics of P̂ ). Hypotheses 2.1 are assumed to hold:

1. The limiting random walk P̂ is Markov.
2. The jump kernel of the Markov measure P̂ ∈ P(�) is given by

Ĵt,z(·) =
∫
X

J
G,y
t,z (·)P̂ (X1 ∈ dy|Xt = z).

It is a mixture of the jump kernels JG,y of Gxy , see Theorem 2.3.

The statement of Theorem 2.4(1) is the content of Proposition 6.2 which is
proved at Section 6. The second statement is proved at the end of Section 6.

Gathering Theorems 2.3 and 2.4, one obtains for all t and z such that P̂t (z) > 0,

Ĵt,z(·)

=
∫
X

( ∑
w∈{z→·}y

ER[exp(
∫ 1
t Js,Xs (X ) ds)1�(t,w;1,y)|Xt = w]

ER[exp(
∫ 1
t Js,Xs (X ) ds)1�(t,z;1,y)|Xt = z] Jt,z(w)δw(·)

)
(2.3)

× P̂ (X1 ∈ dy|Xt = z).
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3. Main results about displacement interpolations. A direct consequence
of Theorem 2.4 is the following.

COROLLARY 3.1 (The dynamics of μ). Hypotheses 2.1 are assumed to hold.
The displacement interpolation [μ0,μ1] solves the following evolution equa-

tion: ⎧⎨⎩ ∂tμt (z) = ∑
w

[
μt(w)Ĵt,w(z) − μt(z)Ĵt,z(w)

]
, 0 ≤ t ≤ 1, z ∈X ,

μ0, t = 0.

Benamou–Brenier formula. The identity W1(μ0,μ1) := inf(MK) defines
the Wasserstein distance on P1(X ) := {μ ∈ P(X ) :

∫
X d(xo, y)μ(dy) < ∞} (for

some xo ∈ X ). More generally, on any Polish space (X , d), replacing the
cost function d in (MK) by dp with 1 ≤ p < ∞ gives rise to the Monge–
Kantorovich problem (MKp) of order p and the corresponding Wasserstein dis-
tance defined by Wp(μ0,μ1) := inf(MKp)1/p for any μ0,μ1 in Pp(X ) := {μ ∈
P(X ) :

∫
X dp(xo, y)μ(dy) < ∞}.

In the usual Riemannian setting, it follows from (1.1) and (1.2) that W2(μ0,μ1)

admits the Benamou and Brenier (2000) representation:

W 2
2 (μ0,μ1) = inf

(ν,v)

{∫
[0,1]×X

∣∣vt (x)
∣∣2
xνt (dx) dt

}
,(3.1)

where the infimum is taken over all regular enough (ν, v) such that ν = (νt )0≤t≤1 ∈
P2(X )[0,1], v is a vector field and these quantities are linked by the following cur-
rent equation (in a weak sense) with boundary values:{

∂tν + ∇ · (νv) = 0, t ∈ (0,1),
ν0 = μ0, ν1 = μ1.

We are on the way to state a similar representation in the discrete graph setting.
The following theorem is a consequence of the Markov property of P̂ which was
stated at Theorem 2.4.

THEOREM 3.1 (Benamou–Brenier formula). Suppose that the Hypotheses 2.1
are satisfied.

(1) We have

W1(μ0,μ1) = inf
ν,j

∫
[0,1]

dt

∫
X 2

d(z,w)νjt (dz dw) < ∞,(3.2)

where the infimum is taken over all couples (ν, j) such that:

(i) ν = (νt )t∈[0,1] ∈ P(X )[0,1] is a time-differentiable flow of probability mea-
sures on X ,

(ii) j = (jt,z)t∈[0,1],z∈X ∈ M+(X )[0,1]×X is a measurable jump kernel,
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(iii) ν and j are linked by the current equation⎧⎪⎨⎪⎩
∂tνt (z) +

∫
X

[
νt (z)jt,z(dw) − νt (dw)jt,w(z)

] = 0,

0 < t < 1, z ∈X ,

ν0 = μ0, ν1 = μ1

(3.3)

with
∫
X νt (z)jt,z(dw) < ∞ and

∫
X νt (dw)jt,w(z) < ∞ for all 0 < t < 1,

z ∈X .

(2) The infimum infν,j in (3.2) is attained at (μ, Ĵ ) where μ is the displacement
interpolation and Ĵ is the jump kernel of P̂ . Hence,

W1(μ0,μ1) =
∫
[0,1]

dt

∫
X 2

d(z,w)μĴt (dz dw).

PROOF. With (1.6) and Theorem 2.1(3), we have

W1(μ0,μ1) = inf(MK) = inf(MKdyn) = EP̂ (�).

But, for any Markov random walk P ∈ P(�) on (X ,∼) with jump kernel j and
such that EP (�) < ∞, we have

EP (�) = EP

∫
[0,1]×X

d(Xt , y)jt,Xt (dy) dt

=
∫
[0,1]

dt

∫
X 2

d(z,w)Pt (dz)jt,z(dw).

This proves that W1(μ0,μ1) = inf{EP (�);P Markov on (X ,∼) :P0 = μ0,P1 =
μ1} = EP̂ (�), which is the announced result since νt := Pt solves the Fokker–
Planck equation in (3.3). �

Constant speed geodesics, minimizing geodesics and displacement interpola-
tions. Let us start recalling some basic definitions.

Constant speed geodesics. Recall that a constant speed geodesic between a0
and a1 in the metric space (A,d) is a path (at )0≤t≤1 in A such that for all 0 ≤ s ≤
t ≤ 1, d(as, at ) = (t − s)d(a0, a1). The metric space (A,d) is said to be geodesic
if there exists at least a constant speed geodesic joining any pair of points a and b

in A.
In the special case where X is a Riemannian manifold with its Riemannian dis-

tance d , (P2(X ),W2) is a geodesic space and the McCann displacement interpola-
tions are exactly the constant speed W2-geodesics; see Villani (2009), for instance.
Hence, it is a natural idea to look also for some constant speed Wp-geodesics in
a discrete setting. But, it is argued in Maas [(2011), Remark 2.1] that when X is
discrete, for any p > 1, the only constant speed Wp-geodesics are the constant
paths on Pp(X ). Therefore, only W1-geodesics have to be retained. And indeed,
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the displacement interpolations that are built in this article are constant speed W1-
geodesics.

In the present context:

• a constant speed geodesic refers to a constant speed W1-geodesic in the length
space (P1(X ),W1);

• a minimizing geodesic is any solution of the action minimizing problem
(MKdyn);

• displacement interpolations are defined at Definition 1.1.

Only the knowledge of the distance d is required for defining constant speed
geodesics, while both the distance d and the reference random walk R are required
for defining minimizing geodesics and displacement interpolations. In the standard
Riemannian setting, because of the strict convexity of the action, the minimizing
geodesic is unique and has a constant speed. In the present setting things differ sig-
nificantly. Indeed, the action in (MKdyn) is affine so that there are infinitely many
minimizing geodesics. However, we shall see in Proposition 3.3 that thanks to the
positive 1-homogeneity of the action, any minimizing geodesic can be transformed
via a change of time into a constant speed minimizing geodesic.

Let us explore a little further some connections between the notions of mini-
mizing/constant speed geodesics and displacement interpolations.

The next proposition is another consequence of the Markov property of P̂ .

PROPOSITION 3.1. For all 0 ≤ s ≤ t ≤ 1, let P̂st := (Xs,Xt)#P̂ ∈ P(X 2) be
the joint law of the positions at time s and t under P̂ . Then:

1. P̂st ∈ P(X 2) is an optimal coupling of μs and μt , meaning that P̂st is a
solution of (MK) with μs and μt as prescribed marginal constraints;

2. W1(μs,μt ) = ∫
[s,t] dr

∫
X 2 d(z,w)μĴr(dz dw).

PROOF. Both statements are consequences of:

• the Markov property of P̂ , see Theorem 2.4, which allows for surgery by gluing
the bridges of P̂[s,t] together with the restrictions P̂[0,s] and P̂[t,1], where we
denote P[u,v] := (Xt ;u ≤ t ≤ v)#P ;

• the fact that �st := ∑
s<r<t d(Xr−,Xr) is insensitive to changes of time: that is,

for any strictly increasing mapping θ : [s, t] → [0,1] with θ(s) = 0, θ(t) = 1,
we have �st = �01(Xθ).

A standard ad absurdum reasoning leads to (1). Statement (2) follows from (1),
a change of variables formula based on any absolutely continuous change of time
θ : [s, t] → [0,1] and the general identity

J θ
r = θ̇ (r)Jθ(r) for almost every r ∈ (s, t),(3.4)

where (Ju;u ∈ [0,1]) is any jump kernel and (J θ
r ; r ∈ [s, t]) the jump kernel

resulting from the mapping Xθ . �
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Proposition 3.1(2) entitles us to define the speed of the displacement interpola-
tion μ at time t by

speed(μ)t :=
∫
X 2

d(z,w)μĴt (dz dw), 0 ≤ t ≤ 1,(3.5)

to obtain

W1(μ0,μ1) =
∫
[0,1]

speed(μ)t dt.(3.6)

DEFINITION 3.1 (Change of time). A change of time τ is an absolutely con-
tinuous function τ : [0,1] → [0,1] such that τ(0) = 0, τ(1) = 1 and with a non-
negative generalized derivative 0 ≤ τ̇ ∈ L1([0,1]).

For any change of time τ and any measure Q ∈ M+(�), we denote

Qτ := (Xτ )#Q,

where Xτ(t) := Xτ(t), t ∈ [0,1]. For any flow ν of probability measures and
any jump kernel J , we denote νJt (dx dy) := νt (dx)Jt,x(dy) and νJt (X 2) :=∫
X 2 νt (dx)Jt,x(dy).

For any change of time τ : [0,1] → [0,1], we see with (3.4), (3.6) and the
change of variable formula that

W1
(
μτ

0,μτ
1
) = W1(μ0,μ1).

Hence, there are infinitely many μτ that minimize the action in formula (3.2). This
implies that, for fixed d and R, there are infinitely many minimizing geodesics.

PROPOSITION 3.2. For any change of time τ , the infimum infν,j in (3.2) is
also attained at (μτ , Ĵ τ ) where μτ is the (Rτ , d)-displacement interpolation and
Ĵ τ is the jump kernel of P̂ τ . Moreover, P̂ τ is the displacement random walk asso-
ciated with Rτ , that is, the analogue of P̂ when R is replaced with Rτ and

W1(μ0,μ1) =
∫
[0,1]

dt

∫
X 2

d(z,w)μĴ τ
t (dz dw),

where for almost every t ∈ [0,1], μĴ τ
t := τ̇ (t)μĴτ(t) is the mass displacement

distribution of P̂ τ at time t .

PROOF. We denote P ∗ the (Rτ , d)-displacement random walk. As Xτ is in-
jective, we have H(P |Rk) = H(P τ |Rτ,k) for all P ∈ P(�) and k ≥ 1. This implies
that P ∗ = P̂ τ . Hence, the result follows from Theorem 3.1(2). �

The next result states that among all the displacement interpolations μτ as τ

varies, only one has a constant speed.
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PROPOSITION 3.3. Under the Hypotheses 2.1, there exists a unique change
of time τo such that the (Rτo, d)-displacement interpolation μτo has a constant
speed, that is,

W1
(
μτo

s ,μ
τo
t

) = (t − s)W1(μ0,μ1) ∀0 ≤ s ≤ t ≤ 1.

PROOF. Indeed, this equation is equivalent to

τ̇ (s)ψ
(
τ(s)

) = W1(μ0,μ1) a.e.,(3.7)

where ψ(t) := ∫
X 2 d(z,w)μĴt (dz dw), a.e. Clearly, the assumption that d is uni-

formly lower bounded and (2.3) imply that ψ > 0. Hence, a solution of (3.7) is
given by

τo(s) = �−1
μ0,μ1

(
W1(μ0,μ1)s

)
, s ∈ [0,1],(3.8)

where for all t ∈ [0,1],

0 ≤ �μ0,μ1(t) :=
∫
[0,t]

ψ(r) dr =
∫
[0,t]

dr

∫
X 2

d(z,w)μĴr(dz dw)

≤ W1(μ0,μ1) < ∞.

Let us prove the uniqueness. Remark that, as a continuous strictly monotone func-
tion, τo is bijective. In addition, it is absolutely continuous. Hence, any change of
time τ is equal to τo◦σ for some change of time σ . Now, instead of starting from μ,
let us do a change of time σ on μτo . Defining ψo(u) := ∫

X 2 d(z,w)μĴ
τo
u (dz dw),

a.e. instead of ψ , we arrive similarly at σ̇ (u)ψo(σ (u)) = W1(μ0,μ1), a.e. But,
ψo(u) = W1(μ0,μ1) for all u. Hence, σ̇ = 1, from which the desired result fol-
lows. �

DEFINITION 3.2 (Constant speed displacement interpolation). The time
changed displacement interpolation μτo with τo given at (3.8) is called the con-
stant speed (R, d)-displacement interpolation.

One must be aware that, in general, the change of time τo depends on μ0 and μ1.
Nevertheless, we shall see below at Theorem 3.2 that in the special important case
where the distance d is the standard graph distance specified by (0.5), for any
μ0,μ1, without changing time the displacement interpolation [μ0,μ1] has a con-
stant speed.

Conservation of the average rate of mass displacement. The next result tells
us that along any displacement interpolation [μ0,μ1], the average rate of mass
displacement, as defined below, does not depend on time.
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DEFINITIONS 3.1 (Rate of mass displacement). For any Markov random walk
P ∈ P(�) with jump kernel (jt,x; t ∈ [0,1], x ∈X ), we denote νt = Pt ∈ P(X ) and
call

νjt (dx dy) := νt (dx)jt,x(dy), 0 ≤ t ≤ 1

the distribution of the rate of mass displacement of P at time t .
We also call

νjt

(
X 2) :=

∫
X 2

νt (dx)jt,x(dy), 0 ≤ t ≤ 1

the average rate of mass displacement of P at time t .

THEOREM 3.2 (Conservation of the average rate of mass displacement). Sup-
pose that the Hypotheses 2.1 are satisfied. Let Ĵ be the jump kernel of the displace-
ment random walk P̂ and μ the corresponding displacement interpolation. There
exists some K > 0 such that

μĴt

(
X 2) = K ∀t ∈ [0,1].

In particular, when the distance d is the standard discrete distance specified
by (0.5), the displacement interpolation μ has a constant speed.

Last statement simply relies on the remark that when d = d∼, the speed of μ

coincides with its average rate of mass displacement.
Theorem 3.2 is a restatement of Theorem 7.1 which is proved at Section 7.

COROLLARY 3.2. The constant speed displacement interpolation μτo
defined

at Definition 3.2 has also a constant average rate of mass displacement.

PROOF. Since μτo = [μ0,μ1]Rτo

is the Rτo
-displacement interpolation, one

can apply Theorem 3.2. �

Natural substitutes for the constant speed geodesics on a discrete metric graph.
Let R be given. When specifying μ0 = δx and μ1 = δy , the displacement random
walk P̂ is simply Gxy . Moreover, there exists a unique change of time τxy such
that

μxy := [δx, δy] ◦ τxy = G
xy
τxy

has a constant speed. Its dynamics is given by the current equation⎧⎪⎪⎨⎪⎪⎩
∂tμ

xy
t (z) − τ̇

xy
t

∑
w

[
μ

xy
t (w)J

G,y

τ
xy
t ,w

(z) − μ
xy
t (z)J

G,y

τ
xy
t ,z

(w)
] = 0,

0 ≤ t ≤ 1, z ∈X ,

μ
xy
0 = δx, t = 0.

The constant speed (Rτxy
, d)-displacement interpolation μxy is a natural time-

continuous averaging of the piecewise constant paths t �→ δγ (t) with γ in the set
�xy of all d-geodesics joining x and y. It depends on the choice of the reference
random walk R.
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Special interpolations. We present some easy examples of constant speed in-
terpolations μxy in the simplest and important setting where:

(i) R is the reversible simple random walk;
(ii) d is the standard graph distance.

The jump kernel is described at (A.3): Jx(y) = 1/nx , ∀x ∼ y, and with the initial
“volume measure” given at (A.4): mx = nx , ∀x ∈X .

Let x and y be fixed. We know by Theorem 3.2 that the displacement interpo-
lation μxy = [δx, δy] = (G

xy
t )0≤t≤1 has a constant speed. The dynamics of Gxy is

specified at Theorem 2.3, for any t ∈ [0,1), z ∈ �xy([0,1]) and w ∈ {z → ·}y , by

J
G,y
t,z (w) = 1{z �=y}n−1

z

g
y
t (w)

g
y
t (z)

= 1{z �=y}n−1
z

R(�(t,w;1, y)|Xt = w)

R(�(t, z;1, y)|Xt = z)
.

The complete graph. Let X = {1, . . . , n} with x ∼ y for all x �= y ∈ X . Then,
for all x �= y and all 0 ≤ t < 1, we have J

G,y
t,x (y) = 1/(1 − t) and the probabil-

ity that no jump occurred before time t is Proba(Nλ(t) = 0) where Nλ denotes
a random variable distributed according to Poisson(λ) and λ(t) = ∫ t

0
1

1−s
ds =

− log(1 − t). Therefore, Proba(Nλ(t) = 0) = exp(−λ(t)) = 1 − t and

G
xy
t = (1 − t)δx + tδy = ∑

z∈{x,y}
td(x,z)(1 − t)d(z,y)δz,

for any 0 ≤ t ≤ 1. This law is in one–one correspondence with the Bernoulli law
B(t) which is the specific binomial law B(2, t).

The graph Z. We consider the simple situation where (X ,∼) is the set of
integers Z with its natural graph structure. The reference random walk R is the
simple walk with Jz = (δz−1 + δz+1)/2, z ∈ Z, and the counting measure as its
initial measure. Take x < y ∈ Z. Then, for any 0 ≤ t < 1 and x ≤ z < y, denoting
N1−t a random variable distributed according to the Poisson(1 − t) law and δ =
d(z, y) = y − z, we obtain

J
G,y
t,z (z + 1) = 1

2

Proba(N1−t = d(z + 1, y))(1/2)d(z+1,y)

Proba(N1−t = d(z, y))(1/2)d(z,y)

= 1

2

e1−t2−(δ−1)(1 − t)δ−1/(δ − 1)!
e1−t2−δ(1 − t)δ/δ! = d(z, y)/(1 − t).

This proves the following.

PROPOSITION 3.4. For any x < y, Proba(Gxy ∈ ·) = Proba(x + N ∈ ·|N1 =
d(x, y)) where (Nt )0≤t≤1 is a standard Poisson process.

For any x < y and each 0 < t < 1, the support of G
xy
t is {x, x + 1, . . . , y} and

G
xy
t = ∑

z : x≤z≤y

(
d(x, y)

d(x, z)

)
td(x,z)(1 − t)d(z,y)δz.(3.9)
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The hypercube. Consider the hypercube X = {0,1}n with its natural graph
structure so that the graph distance is the Hamming distance defined by d(x, y) =∑

1≤i≤n 1{xi �=yi} where x = (x1, . . . , xn) and y = (y1, . . . , yn). The reference path
measure R is the simple random walk with the uniform measure as its initial law.
The directed tree that describes the geodesic dynamics between x and y has exactly
d(x, y)! directed chains with length d(x, y) and endpoints x and y. The law of Gxy

is the uniform mixture of the d(x, y)! corresponding Poisson bridges.
In order to describe for any 0 ≤ t ≤ 1, the law G

xy
t , let us encode each interme-

diate state by an ordered sequence in {d, s}d(x,y) where d and s stand, respectively,
for “different” and “same”. With this encoding, (d, . . . ,d) is x since x has d(x, y)

components that are different from y, of course (s, . . . , s) is y and we see that the
support Sxy of G

xy
t consists of 2d(x,y) intermediate states at any time 0 < t < 1.

A short computation shows that for each 0 < t < 1, we have

G
xy
t = ∑

z∈Sxy

td(x,z)(1 − t)d(z,y)δz.

4. The Schrödinger problem. The reversing measure m ∈ M+(X ) of the
simple random walk on an infinite graph is unbounded; see (A.4). Since it is the
analogue of the volume measure of a Riemannian manifold, it is likely that the
relative entropy with respect to m should play an important role when trying to
develop a Lott–Sturm–Villani theory on infinite graphs. Consequently, in this case
the reference path measure R is unbounded.

In order to state the Schrödinger problem, it will be necessary to have in mind
some basic facts about relative entropy with respect to a possibly unbounded ref-
erence measure. They are collected at the Appendix B.

Schrödinger problem. We briefly introduce the main features of the Schrödin-
ger problem. For more detail, see, for instance, the survey paper Léonard (2014a).
The dynamical Schrödinger problem associated with the random walk R ∈ M+(�)

is the following entropic minimization problem

H(P |R) → min; P ∈ P(�) :P0 = μ0,P1 = μ1,(Sdyn)

where μ0,μ1 ∈ P(X ) are prescribed initial and final marginals. As a strictly convex
problem, it admits at most one solution.

Let us particularize the consequences of the additivity formula (B.4) to r = R,
p = P and φ = (X0,X1). We have for all P ∈ P(�)

H(P |R) = H(P01|R01) +
∫
X 2

H
(
P xy |Rxy)

P01(dx dy)(4.1)

which implies that H(P01|R01) ≤ H(P |R) with equality [when H(P |R) < ∞] if
and only if

P xy = Rxy(4.2)
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for P01-almost every (x, y) ∈ X 2, see (B.5). Therefore, P̂ is the (unique) solution
of (Sdyn) if and only if it disintegrates as

P̂ (·) =
∫
X 2

Rxy(·)π̂(dx dy) ∈ P(�),(4.3)

where π̂ ∈ P(X 2) is the (unique) solution of the minimization problem

H(π |R01) → min; π ∈ P
(
X 2)

:π0 = μ0, π1 = μ1,(S)

where π0, π1 ∈ P(X ) are, respectively, the first and second marginals of π ∈
P(X 2). Identity (4.3) means that:

• P̂ shares its bridges with the reference path measure R, that is, (4.2);
• these bridges are mixed according to

π̂ = P̂01,

the unique solution of (S).

The entropic minimization problem (S) is called the (static) Schrödinger problem.
With (4.3), we see that

inf(Sdyn) = inf(S) ∈ (−∞,∞].(4.4)

Proofs of Theorem 2.1(1) and Proposition 2.1. We begin with a key technical
statement.

Girsanov’s formula. We shall take advantage, several times in the remainder of
the article, of the absolute continuity of Rk with respect to R. Girsanov’s formula
gives the expression of the Radon–Nykodim derivative of Rk with respect to R:

Zk := dRk

dR
= exp

(−(logk)� + Uk),(4.5)

where Uk := ∫
[0,1]×X (1 − k−d(Xt ,y))Jt,Xt (dy) dt and � is the length defined

at (0.2).

Proof of Theorem 2.1(1). The uniqueness follows from the strict convexity of
the Schrödinger problem and we have just seen that π̂ = P̂01. The Markov prop-
erty of P̂ which is inherited from the Markov property of R is proved at Léonard
(2014a), Proposition 2.10.

It remains to show the existence. For any P ∈ P(�) and any k ≥ 1, with (4.5),
we see that

H
(
P |Rk) = H(P |R) + log kEP (�) − EP Uk

≤ H(P |R) + log kEP (�)

= H(P01|R01) +
∫
X 2

H
(
P xy |Rxy)

P01(dx dy) + logkEP (�).
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Choosing

P o(·) :=
∫
X 2

Rxy(·)πo(dx dy),(4.6)

we have

H
(
P o|Rk) ≤ H

(
πo|R01

) + logk

∫
X 2

ERxy (�)πo(dx dy).(4.7)

With Hypothesis 2.1-(μ), we obtain inf(Sk
dyn) < ∞ and it follows that (Sk

dyn) and

(Sk) admit a solution; see Léonard (2014a), Lemma 2.4.

Proof of Proposition 2.1. Taking πo = μ0 ⊗ μ1 in (4.7) gives

H
(
P o|Rk) ≤ H(μ0 ⊗ μ1|R01) + log k

∫
X 2

ERxy (�)μ0(dx)μ1(dy).

It is proved at Léonard [(2014a), Proposition 2.5] that assumptions (i), (ii) and
(iv) together with H(μ0|R0),H(μ1|R1) < ∞ imply H(μ0 ⊗μ1|R01) < ∞. As re-
gards the last term, it is clear that (i) and (iii) imply

∫
X 2 ERxy (�)μ0(dx) ×

μ1(dy) < ∞.

5. Lazy random walks converge to displacement random walks. The aim
of this section is to make precise the convergence of (Sk

dyn)k≥2. It is proved at The-

orem 2.1 that the sequence of minimizers of (Sk
dyn)k≥2 has a limit in P(�) which

is singled out among the infinitely solutions of the dynamic Monge–Kantorovich
problem (MKdyn). As a corollary, we describe at Theorem 2.2 the convergence of
the sequence of bridges (Rk,xy)k≥1.

The topological path space �. The countable set X is equipped with its
discrete topology. The set D([0,1],X ) of all left-limited right-continuous paths
on [0,1) and left-continuous at the terminal time t = 1, be equipped with
the Skorokhod topology. Note that, although for any 0 < t < 1, the mapping
Xt :D([0,1],X ) → X is discontinuous, both the endpoint positions X0 and X1

are continuous. This will be used later several times. Let us denote the total num-
ber of jumps, defined on D([0,1],X ), by

N := ∑
0<t<1

1{Xt− �=Xt } ∈N∪ {∞}.(5.1)

We consider �̃ = {ω ∈ D([0,1],X ); ∀t ∈ (0,1),ωt− �= ωt �⇒ ωt− ∼ ωt } the sub-
set of all paths compatible with the graph structure and introduce

� := {N < ∞} ∩ �̃,(5.2)
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the set of all càdlàg paths from [0,1] to X which are compatible with the graph
structure with finitely many jumps. A typical path ω in � is either constant or
writes as

ω = ∑
0≤i≤n−1

xi1[ti ,ti+1) + xn1[tn,1](5.3)

with n ≥ 1, 0 = t0 < t1 < · · · < tn < 1 and x0 ∼ x1 ∼ · · · ∼ xn ∈X .
Our Hypotheses 2.1, and in particular (2.2), imply that the support of each Rk is

included in �. Since, P̂ k is absolutely continuous with respect to Rk , it also lives
on � which appears to be the relevant path space.

As X is a discrete space, for each n ∈ N, {N = n} ∩ �̃ is a closed and
open (clopen) set. In particular, � is closed in D([0,1],X ) and it inherits its
(trace) Polish topological structure and the corresponding (trace) Borel σ -field
which is generated by the canonical process (restricted to �). The path space
� = ⊔

n∈N{N = n} ∩ �̃ is partitioned by the disjoint clopen sets {N = n} ∩ �̃.
A small neighbourhood of ω ∈ � consists of paths visiting exactly the same states
as ω in the same order of occurrence and with jump times close to ω’s ones. From
now on, any topological statement on � refers to this topology and the canonical
process (Xt)0≤t≤1 lives on �.

�-convergence. The right notion of convergence for the sequences of min-
imization problems (Sk

dyn)k≥2 and (Sk)k≥2 is the �-convergence which is briefly

over-viewed now. Recall that �- limk→∞ f k = f on the metric space Y if and only
if for any y ∈ Y :

(a) lim infk→∞ f k(yk) ≥ f (y) for any convergent sequence yk → y,
(b) limk→∞ f k(yo

k ) = f (y) for some sequence yo
k → y.

A function f is said to be coercive if for any a ≥ inff , {f ≤ a} is a compact set.
The sequence (f k)k≥1 is said to be equi-coercive if for any real a, there exists

some compact set Ka such that
⋃

k{f k ≤ a} ⊂ Ka .
If in addition to �- limk→∞ f k = f , the sequence (f k)k≥1 is equi-coercive,

then:

• limk→∞ inff k = inff ,
• if inff < ∞, any limit point y∗ of a sequence (y∗

k )k≥1 of approximate minimiz-
ers, that is: f k(y∗

k ) ≤ inff k + εk with εk ≥ 0 and limk→∞ εk = 0, minimizes f ,
that is: f (y∗) = inff .

For more detail about �-convergence, see Dal Maso (1993), for instance.

The convergences of (Sk
dyn)k≥2 and (Sk)k≥2. As (Sk

dyn) and (Sk) are deeply
linked to each other via the relations (4.3) and (4.4), the convergence of the static
problems will follow from the convergence of the dynamic problems (Sk

dyn).
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The convex indicator ιA of any subset A, is defined to be equal to 0 on A and
to ∞ outside A. We denote for each k ≥ 2 [we drop k = 1 not to divide by log(1)

below],

I k(P ) := H
(
P |Rk)/ log k + ι{P : P0=μ0,P1=μ1}, P ∈ P(�),

so that (Sk
dyn) is simply: (I k → min). We also define

I (P ) = EP (�) + ι{P : P0=μ0,P1=μ1}, P ∈ P(�).

Let us rewrite (I → min) as the following dynamical Monge–Kantorovich prob-
lem:

EP (�) → min; P ∈ P(�) :P0 = μ0,P1 = μ1.(MKdyn)

Otherwise stated, the topologies on P(�) and P(X 2) are, respectively, the topolo-
gies of narrow convergence: σ(P(�),Cb(�)) and σ(P(X 2),Cb(X 2)) which are
weakened by the spaces Cb(�) and Cb(X 2) of all numerical continuous and
bounded functions. The �-convergences are related to these topologies.

It is shown below at Lemma 5.3 that �- limk→∞ I k = I , meaning that (MKdyn)
is the limit of (Sk

dyn)k≥2.

LEMMA 5.1. The function I is coercive.

PROOF. As {P :P1 = μ1} is closed, it is enough to show that the function
P �→ EP (�) + ι{P : P0=μ0} is coercive. Since � ≥ 0 is continuous, P �→ EP (�) =
supn≥1 EP (�∧n) is lower semi-continuous. As in addition {P :P0 = μ0} is closed,
the function P �→ EP (�)+ ι{P : P0=μ0} is also lower semi-continuous. It remains to
show that for every a ≥ 0, {P :P0 = μ0,EP (�) ≤ a} is uniformly tight in P(�).

For any n ≥ 1, there is some compact (finite) subset Kn of X such that
μ0(Kn) ≥ 1 − 1/n. We have � ≥ N where N is the number of jumps, see (5.1).
Hence, any P such that P0 = μ0 and EP (�) ≤ a satisfies

P(X0 ∈ Kn,N ≤ n) ≥ 1 − P(X0 /∈ Kn) − P(� > n) ≥ 1 − 1/n − a/n.

As it is assumed that the graph (X ,∼) is locally finite [see (2.1)], {X0 ∈ Kn,N ≤
n} is a compact subset of � [recall that � is compatible with the graph structure,
see (5.2)]. This proves the desired uniform tightness and completes the proof of
the lemma. �

LEMMA 5.2. For any P ∈ P(�), there exists a sequence (Pn)n≥1 in P(�) such
that limn→∞ Pn = P , limn→∞ EPn(�) = EP (�), and H(Pn|R) < ∞ for all n ≥ 1.

A similar result would fail in a diffusion setting with, for instance, � =
C([0,1],R) and R the reversible Wiener measure (with Lebesgue measure as ini-
tial marginal). Here, we are going to take advantage of the countability of the
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discrete space X and of assumption (2.2) which allowed us to introduce at (5.2) a
made-to-measure definition of the path space �. Indeed, this definition is entirely
motivated by Lemma 5.2.

PROOF OF LEMMA 5.2. Let us pick P ∈ P(�).

(a) The set �(�) of all possible values of � is countable; let us enumerate it:
�(�) = {cn;n ≥ 1} and expand P along these values: P = ∑

n P (� = cn)P (·|� =
cn).

(b) Suppose that Q ∈ P(�) is concentrated on the set {� = c}. As {� = c} is
metric separable, there exists a sequence of convex combinations of Dirac masses:
Qn = ∑n

i=1 ainδωin with ωin ∈ {� = c} such that limn→∞ Qn = Q.
(c) Let ω ∈ � be a fixed path. We shall prove below that there is a sequence

(Qω
n )n≥1 in P(�) such that limn→∞ Qω

n = δω and for each n, Qω
n is concentrated

on {� = �(ω)} and H(Qω
n |R) < ∞.

Putting (a), (b) and (c) together, it is not hard to check with the aid of Jensen’s
inequality applied to the convex function H(·|R), that there exists a sequence
(Pn)n≥1 in P(�) such that limn→∞ Pn = P and for each n, EPn(�) = EP (�) and
H(Pn|R) < ∞, which is the desired result.

It remains to prove (c), taking advantage of the specificity of the path space
�. Let ω ∈ � be fixed. It is completely described by its jump times 0 < t1 <

· · · < tk < 1 and the corresponding states (ω0,ωt1, . . . ,ωtk ). One can choose Qω
n ∈

P(�) as a Markov probability measure with initial marginal δω0 and jump kernel
Jω

n = ∑k
i=1 ϕn

i (t) dtδωti
where the nonnegative continuous functions ϕn

i have, for
each fixed n ≥ 1, nonoverlapping compact supports as 1 ≤ i ≤ k varies and are
such that for each 1 ≤ i ≤ k, (ϕi(t) dt)n≥1 is an approximation of δti . Changing
the jump times but keeping the order of (ω0,ωt1, . . . ,ωtk ), does not change the
value �(ω). Therefore, Qω

n is concentrated on {� = �(ω)}. We have H(Qω
n |R) =

EQω
n

∫
[0,1]×X h(

dJω
n (t,Xt )

dJ (t,Xt )
(y))Jt,Xt (dy) dt with h(a) = a loga − a + 1 if a > 0 and

h(0) = 1. One easily sees that H(Qω
n |R) < ∞, using assumption (2.2), the fact

that ω is compatible with the graph structure (by the very definition of �) and
also that Jti ,ωti

(ωti+1) > 0 for all i [since by Hypothesis 2.1(R), Jt,x(y) > 0, for
all t, x ∼ y]. On the other hand, the compactness of the common initial law δω0

and the weak convergence of the jump kernels (Jω
n )n≥1 to

∑k
i=1 δωti

δti which is
the jump kernel of δω implies that limn→∞ Qω

n = δω in P(�). This completes the
proofs of (c) and the lemma. �

LEMMA 5.3. The sequence (I k)k≥2 is equi-coercive and �- limk→∞ I k = I .

PROOF. Let us denote

Hk(P ) := H
(
P |Rk)/ log k, P ∈ P(�).
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We first prove the equi-coercivity of (I k)k≥2. Using (4.5), we obtain

Hk(P ) = EP

[
log(dP/dR) − logZk)

]
/ logk

= EP (�) +
[
H(P |R) − EP

∫ 1

0
Jt,Xt (X ) dt

]/
logk

+ EP

∫
[0,1]×X

k−d(Xt ,y)Jt,Xt (dy) dt/ log k.

Because of assumption (2.2), we have the uniform bounds

0 ≤ EP

∫ 1

0
Jt,Xt (X ) dt,

(5.4)
EP

∫
[0,1]×X

k−d(Xt ,y)Jt,Xt (dy) dt ≤ sup
t,x

Jt,x(X ) < ∞ ∀P ∈ P(�), k ≥ 2.

Hence, we obtain with I − [(− inf(S) ∨ 0) + supt,x Jt,x(X )]/ log 2 ≤ I k for all
k ≥ 2, and Lemma 5.1 that (I k)k≥2 is equi-coercive.

For future use, remark that Hk(P ) < ∞ if and only if

EP (�) < ∞ and H(P |R) < ∞.(5.5)

Now, we prove that �- limk→∞ I k = I . As the constraint set {P ∈ P(�);P0 =
μ0,P1 = μ1} is closed, it is enough to show that

�- lim
k→∞Hk(P ) = EP (�) ∀P ∈ P(�).

Since P �→ EP (�) is lower semi-continuous and H(·|R) ≥ 0, with (5.4), we ob-
tain for any convergent sequence Pk →

k→∞P that lim infk→∞ Hk(Pk) ≥ EP (�).

Lemma 5.2 tells us that from any recovery sequence (Pn)n≥1 for the lower
semi-continuity of P �→ EP (�), that is, such that limn→∞ EPn(�) = EP (�), one
can build a recovery sequence for (Hk)k≥1, that is, limk→∞ Hk(P k) = EP (�).
Namely, take P k = Pn(k) with k �→ n(k) increasing to infinity slowly enough for
limk→∞ H(Pn(k)|R)/ log k = 0. This completes the proof the proposition. �

PROPOSITION 5.1. For any μ0, μ1 ∈ P(X ), we have

lim
k→∞ inf(Sk) = lim

k→∞ inf(Sk
dyn) = inf(MKdyn) = inf(MK) ∈ (−∞,∞].

PROOF. It is a direct corollary of (4.4) and Lemma 5.3. �

The following auxiliary entropic minimization problem will be needed for iden-
tifying the limit of P̂ k as k tends to infinity:

H(P |RJ ) → min; P ∈Mdyn(μ0,μ1),(5.6)
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where Mdyn(μ0,μ1) ⊂ P(�) denotes the set of all minimizers of (MKdyn) and

RJ := exp
(∫ 1

0
Jt,Xt (X ) dt

)
R ∈ M+(�).

Remark that (2.2) ensures the finiteness of the integral in the above exponential.

LEMMA 5.4. (a) For each k ≥ 2, (Sk
dyn) has a unique solution P̂ k .

(b) Mdyn(μ0,μ1) is a nonempty convex compact subset of P(�).
(c) The sequence (P̂ k)k≥2 is convergent and its limit limk→∞ P̂ k = P̂ ∈

Mdyn(μ0,μ1) is the unique minimizer of (5.6).

Under the assumptions of Lemma 5.4, Lemma 5.3 ensures that the limit points
of (P̂ k)k≥2 belong to Mdyn(μ0,μ1). But statement (c) of Lemma 5.4 asserts that
there is indeed a unique limit point.

PROOF OF LEMMA 5.4. This proof relies on Anzellotti and Baldo’s (1993)
�-asymptotic expansion technic. For a clear exposition of this technique, see
Ambrosio and Pratelli (2003), Section 4.

We have seen at (5.5), that I k(P ) < ∞ if and only if EP (�) < ∞, H(P |R) < ∞
and P0 = μ0,P1 = μ1. Therefore, taking P o as in (4.6), we see that I k(P o) < ∞,
for all k ≥ 2. Together with the considerations of the preceding section, this proves
statement (a).

The nonemptiness and convexity parts of statement (b) are immediate. The
compactness is a standard consequence of the lower semi-continuity of H(·|R),
the continuity of P �→ P1 and the coerciveness of P �→ EP (�) + ι{P : P0=μ0}; see
Lemma 5.1.

Let us prove (c). Denote i := inf(MKdyn)< ∞ and consider the subsequent
renormalization of I k :

J k(P ) := log(k)
(
I k(P ) − i

)
, P ∈ P(�).

We have

J k(P ) = ι{P : P0=μ0,P1=μ1} + log(k)
(
EP (�) − i

) + H(P |RJ )

+ EP

∫
[0,1]×X

k−d(Xt ,y)Jt,Xt (dy) dt

and, using the coerciveness of H(·|RJ ) and (5.4), it is easily seen that:

• (J k)k≥2 is equi-coercive;
• �- limk→∞ J k = J with J (P ) = ι{P : P0=μ0,P1=μ1,EP (�)=i} + H(P |RJ ), P ∈

P(�).
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As H(·|RJ ) is strictly convex, so is J and (5.6) admits a unique minimizer P̂

on the convex set Mdyn(μ0,μ1) = {P :P0 = μ0,P1 = μ1,EP (�) = i}. One com-
pletes the proof of the lemma, noticing that argminJ k = argmin I k = {P̂ k}, for
each k ≥ 2. �

For the definition of G at (0.6) to be mathematically consistent, it is necessary
that � is a measurable set.

LEMMA 5.5. For each x, y ∈X , �xy is measurable. So is �.

PROOF. For each x, y ∈ X , denote �x := {X0 = x} and �xy := {X0 =
x,X1 = y}. The set of d-geodesics from x to y is �xy := {ω ∈ �xy;�(ω) =
d(x, y)}. Since � is continuous and it controls the total number of jumps, the
restriction �x = �|�x of � to the closed set �x is coercive. Hence, �xy = {ω ∈
�x;�x = d(x, y)} ∩ {X1 = y} is a compact subset of � (in particular, it is mea-
surable). As a countable union of measurable sets, the set � := ⋃

x,y∈X �xy of all
geodesics, is also measurable. �

LEMMA 5.6. The set Mdyn(μ0,μ1) consists of all P ∈ P(�) concentrated
on �, that is, P(�) = 1, and such that the endpoint marginal P01 ∈ P(X 2)

solves (MK).

PROOF. Any P ∈ P(�) disintegrates as: P(·) = ∫
X 2 P xy(·)P01(dx dy). Thus,

EP (�) = ∫
X 2 EP xy (�)P01(dx dy). As � ≥ d(x, y) on �xy and �xy = {� =

d(x, y)}, we have EP (�) ≥ ∫
X 2 d(x, y)P01(dx dy) with equality if and only if

P xy(�xy) = 1, for P01-almost every (x, y). This means that P(�) = 1, in which
case EP (�) = ∫

X 2 d(x, y)P01(dx dy) and the conclusion about P01 follows imme-
diately. �

Proof of Theorem 2.1(2–3–4). Denote P̂ ∈ P(�) and π̂ ∈ P(X 2) the unique
solutions (if they exist) of (S̃dyn) and (S̃).

We start proving the statements about the dynamical problems (Sk
dyn) and (Sdyn).

Let P o be defined by (4.6). Then our assumptions on μ0 and μ1 are equivalent to:
P o

0 = μ0, P o
1 = μ1, EP o(�) < ∞ and H(P o|R) < ∞, which are the hypotheses of

Lemma 5.4 which tells us that limk→∞ P̂ k = P ∗ with P ∗ the unique solution of

H(P |RJ ) → min; P ∈Mdyn(μ0,μ1).

Together with

P ∈Mdyn(μ0,μ1) ⇐⇒
{

P01 ∈ SMK(μ0,μ1),

P (�) = 1

(see Lemma 5.6), and the identity

H(P |G) =
{

H(P |RJ ), if P(�) = 1,
∞, otherwise,
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this yields the identity P ∗ = P̂ .
Formula (1.8) with π̂ the unique solution of the strictly convex problem (S̃), fol-

lows from a reasoning similar to the one leading to (4.3) and based on the additive
disintegration formula (4.1).

We prove the statements about the static problems (Sk) and (S) by pushing
forward (Sk

dyn) and (Sdyn) with the mapping (X0,X1) to obtain the measures

π̂ k = P̂ k
01, π̂ = P̂01 and considering (4.1) again.

Some comments about approximating (MK) by means of �-asymptotic expan-
sions. Let us comment a little on the approximation of (MK) by (Sk) as k tends to
infinity. Instead of the discrete set of vertices X , let us first consider the analogue
of (MK) on X =R

k which is related to Monge’s problem:∫
Rk

d
(
x,T (x)

)
μ0(dx) → min; T :Rk →R

k, T#μ0 = μ1,(5.7)

where the transport map T is assumed to be measurable. The Monge–Kantorovich
problem (MK) is a convex relaxation of (5.7) in the sense that π �→ ∫

X 2 d(x, y)×
π(dx dy) is a convex function on the convex subset {π ∈ P(X 2);π0 = μ0, π1 =
μ1} and πT := (Id, T )#μ0 gives

∫
X 2 d(x, y)πT (dx dy) = ∫

X d(x,T (x))μ0(dx).

Many known solutions of (5.7) rely on approximations and variational meth-
ods. Monge’s original problem corresponds to d the standard Euclidean distance.
Sudakov (1979) proposed an efficient, but still incomplete, strategy. The first com-
plete solution was obtained by Evans and Gangbo (1999). It states that when μ0 is
absolutely continuous and μ0,μ1 have finite first moments (plus some restrictions
on μ0,μ1), (5.7) admits a unique solution. Its proof is based on PDE arguments
and an approximation of the “affine” cost d(x, y) = ‖y − x‖ by the “strictly con-
vex” costs dε(x, y) := ‖y − x‖1+ε , with ε > 0 tending to zero, which entails a
convergence of the corresponding Monge–Kantorovich problems. A natural gen-
eralization of Monge’s original problem is obtained by replacing the Euclidean
norm by any norm ‖ · ‖ on R

k . With alternate approaches, but still taking advan-
tage of the approximation dε → d , Caffarelli, Feldman and McCann (2002) and
Ambrosio (2003), Ambrosio and Pratelli (2003), removed Evans and Gangbo’s
(1999) restrictions and extended this existence and uniqueness result to the case
where the norm ‖ · ‖ is assumed to be strictly convex. Later, Ambrosio, Kirchheim
and Pratelli (2004) succeeded in the more difficult case where the norm is crys-
talline. In the general case without any restriction on the norm, the solution has re-
cently been obtained by Champion and De Pascale (2011). Again, both Ambrosio,
Kirchheim and Pratelli (2004) and Champion and De Pascale (2011) rely on vari-
ational methods and �-convergence.

The main �-convergence technic used during the proofs of Ambrosio, Kirch-
heim and Pratelli (2004), Ambrosio and Pratelli (2003), Champion and De Pascale
(2011) is an asymptotic expansion which was introduced by Anzellotti and Baldo
(1993); see also Attouch (1996). In the present paper, we also have made a cru-
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cial use of this technique at Lemma 5.4. Instead of considering the approximation
dε → d , the not convex enough problem (MK) is approximated by the sequence
of strictly convex entropy minimization problems (Sk).

6. Dynamics of the displacement random walk. To give some detail about
the dynamics of the displacement interpolation μ, it is necessary to study the
dynamics of the displacement random walk P̂ . It is shown below that for any
x, y ∈ X , Gxy and P̂ are Markov and we compute their jump kernels at Theo-
rems 2.3 and 2.4. To achieve this goal, we need some preliminary material involv-
ing the reciprocal and Markov properties.

Reciprocal path measure. The reciprocal property extends the notion of
Markov property. For more detail, see Léonard, Rœlly and Zambrini (2014) and
the references therein.

DEFINITIONS 6.1. (a) A measure Q ∈ M+(�) is said to be Markov if for any
0 ≤ t ≤ 1, Q(X[t,1] ∈ ·|X[0,t]) = Q(X[t,1] ∈ ·|Xt).

(b) A measure Q ∈ M+(�) is said to be reciprocal if for any 0 ≤ u ≤ v ≤ 1,
Q(X[u,v] ∈ ·|X[0,u],X[v,1]) = Q(X[u,v] ∈ ·|Xu,Xv).

The following lemma is standard. We state it for the comfort of the reader.

LEMMA 6.1. (a) Any Markov measure is reciprocal (but the converse is false).
(b) Almost every bridge of a reciprocal measure is Markov.

PROOF. See Léonard, Rœlly and Zambrini (2014). �

LEMMA 6.2. Let Q ∈ M+(�) be a reciprocal measure and G ⊂ � a measur-
able subset of � consisting of geodesics. Then the measure Q′ := 1GQ ∈ M+(�)

is still reciprocal.

PROOF. We use the following property of a geodesic: the restriction γ[u,v] of
any geodesic γ ∈ �, is still a geodesic of �[u,v]. Therefore, X ∈ �

X0,X1[0,1] implies

that X[u,v] ∈ �
Xu,Xv[u,v] which implies that

Q(X ∈ G,X[u,v] ∈ A|X[0,u],X[v,1])
= 1{X[0,u]∈G[0,u],X[v,1]∈G[v,1]}Q(X[u,v] ∈ G[u,v] ∩ A|X[0,u],X[v,1])
= 1{X[0,u]∈G[0,u],X[v,1]∈G[v,1]}Q(X[u,v] ∈ G[u,v] ∩ A|Xu,Xv)

for any measurable set A ⊂ �[u,v], where the last equality follows from the recip-
rocal property. Therefore, since X[0,u] ∈ G[0,u] and X[v,1] ∈ G[v,1], Q′, we have

Q′(X[u,v] ∈ A|X[0,u],X[v,1]) = Q(X[u,v] ∈ G[u,v] ∩ A|Xu,Xv)

= Q′(X[u,v] ∈ A|Xu,Xv), Q′

which is the desired result. �
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Basic properties of G. We apply Lemmas 6.1 and 6.2 to G defined at (0.6).

PROPOSITION 6.1. If R is reversible, then G is also reversible.
The measure G is reciprocal (but not Markov in general) and it concentrates on

the set � of all geodesics.

PROOF. If R is reversible, the time-reversal invariances of
∫
[0,1] JXt (X ) dt and

� together with the symmetry of the distance d immediately imply the reversibility
of G.

Let us show that RJ := exp(
∫
[0,1] Jt,Xt (X ) dt)R is Markov by proving that

for each t ∈ [0,1] and all bounded measurable functions a ∈ σ(X[0,t]) and
b ∈ σ(X[t,1]), we have ERJ

(ab|Xt) = ERJ
(a|Xt)ERJ

(b|Xt). Denoting α :=
exp(

∫
[0,t] Js,Xs (X ) ds) ∈ σ(X[0,t]) and β := exp(

∫
[t,1] Js,Xs (X ) ds) ∈ σ(X[t,1]), by

the Markov property of R, we have

ERJ
(ab|Xt) = ER(aαbβ|Xt)

ER(αβ|Xt)
= ER(aα|Xt)

ER(α|Xt)

ER(bβ|Xt)

ER(β|Xt)

= ERJ
(a|Xt)ERJ

(b|Xt),

where last equality is obtained by plugging successively b = 1 and a = 1 in
ERJ

(ab|Xt) = ER(aα|Xt )
ER(α|Xt )

ER(bβ|Xt )
ER(β|Xt )

. This shows that RJ is Markov.
We conclude with Lemma 6.2 that G = 1�RJ is reciprocal. �

Although G is reciprocal, it is not Markov. To see this, remark that the time
reversed of a geodesic is also geodesic. If the geodesic walker only knows that he
stands at z at time t , having forgotten his past history and in particular that his
previous state before jumping was z′, he cannot decide to forbid z′ to be his next
state. Nevertheless, the bridges Gxy are Markov.

COROLLARY 6.1. For every (x, y) ∈X 2, the bridge Gxy is Markov.

PROOF. This follows from Lemma 6.1 and Proposition 6.1, remarking that
under our irreducibility assumption, R01-almost everywhere is equivalent to ev-
erywhere on X 2. �

As Gxy is Markov, it is sufficient to compute its jump kernel to characterize its
dynamics. Recall the definition of the directed tree (�xy([0,1]),→), between the
statements of Theorems 2.1 and 2.3, that describes the successive occurrence of
the states which are visited by the geodesics from x to y, regardless of the instants
of jump.
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Proof of Theorem 2.3. The Markov property is already proved at Corollary 6.1.
Let us begin with some notation. For all 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1, z1, z2, z3 ∈X , we

denote

�(t1, z1; t2, z2)

:= {ω ∈ �;ω|[t1,t2] = γ|[t1,t2] for some γ ∈ �,ωt1 = z1,ωt2 = z2},
�(t1, z1; t2, z2; t3, z3) := �(t1, z1; t3, z3) ∩ {Xt2 = z2}.

In particular, we have �xy = �(0, x;1, y). We also introduce the functions on �:

G(t1, z1; t2, z2) := exp
(∫ t2

t1

Jt,Xt (X ) dt

)
1�(t1,z1;t2,z2),

G(t1, z1; t2, z2; t3, z3) := exp
(∫ t3

t1

Jt,Xt (X ) dt

)
1�(t1,z1;t2,z2;t3,z3).

We see that g
y
t (z) = ER(G(t, z;1, y)|Xt = z).

As a direct consequence of the definition of a geodesic, for all 0 ≤ t1 ≤ t2 ≤
t3 ≤ 1, z1 � z2 � z3 ∈ �xy([0,1]), we have

�(t1, z1; t2, z2; t3, z3) = �(t1, z1; t2, z2) ∩ �(t2, z2; t3, z3)

which implies that

G(t1, z1; t2, z2; t3, z3) = G(t1, z1; t2, z2)G(t2, z2; t3, z3) on �xy.(6.1)

As Gxy is Markov, to derive the infinitesimal generator of its Markov semi-group,
it is enough to compute its forward stochastic derivative

L
G,xy
t u(z) := lim

h↓0
EGxy

[
u(Xt+h) − u(Xt)|Xt = z

]
,

0 ≤ t < 1, z ∈ �xy
([0,1]).

For any 0 ≤ t < 1, z ∈ �xy([0,1]), with (0.6) we see that

Gxy(·|Xt = z) = G(0, x; t, z;1, y)

ER[G(0, x; t, z;1, y)|Xt = z]R(·|Xt = z)

= G(0, x; t, z)G(t, z;1, y)

ER[G(0, x; t, z)|Xt = z]gy
t (z)

R(·|Xt = z),

where last equality follows from (6.1) and the Markov property of R.
We set Ut = u(Xt) for short. For any finitely supported function u and any

0 ≤ t < t + h ≤ 1,

EGxy (Ut+h − Ut |Xt = z)

= ER[(Ut+h − Ut)G(0, x; t, z)G(t, z;1, y)|Xt = z]
ER[G(0, x; t, z)|Xt = z]gy

t (z)
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(6.1)= 1

g
y
t (z)

ER

[
(Ut+h − Ut)1{z≤Xt+h≤y}G(t, z; t + h,Xt+h)

× G(t + h,Xt+h;1, y)|Xt = z
]

= 1

g
y
t (z)

ER

[
(Ut+h − Ut)1{z≤Xt+h≤y}G(t, z; t + h,Xt+h)

× g
y
t+h(Xt+h)|Xt = z

]
,

where the Markov property of R is used at last equality.
When Xt = z and h tends down to 0, we have

(Ut+h − Ut)1{z≤Xt+h≤y}

=

⎧⎪⎪⎨⎪⎪⎩
0, if Xt+h = Xt = z with probability 1 − Jt,z(X )h + o(h),

u(w) − u(z),

if Xt+h = w ← z with probability Jt,z(w)h + o(h),

∗, otherwise with probability o(h),

where ∗ is something bounded by 2 sup |u|, and

G(t, z; t + h,Xt+h)

=
⎧⎨⎩

1 + O(h), if Xt+h = Xt = z with probability 1 − Jt,z(X )h + o(h),
1 + O(h), if Xt+h = w ← z with probability Jt,z(w)h + o(h),
∗, otherwise with probability o(h),

where ∗ is something bounded because of the assumption (2.2). Hence,

h−1EGxy [Ut+h − Ut |Xt = z] = ∑
w : z→w

[
u(w) − u(z)

]gy
t (w)

g
y
t (z)

Jt,z(w) + oh↓0(1)

which shows that LG,xyu(z) = ∑
w : z→w[u(w)−u(z)]g

y
t (w)

g
y
t (z)

Jt,z(w) and completes

the proof of the theorem.

P̂ is Markov. It follows from (1.8), Proposition 6.1 and Léonard, Rœlly and
Zambrini [(2014), Proposition 2.8] that the limiting path measure P̂ is reciprocal.
We can do better, but it requires some effort.

PROPOSITION 6.2. The limiting path measure P̂ is Markov.

PROOF. By Theorem 2.1(1), for each k ≥ 2, P̂ k inherits the Markov property
of R. We show below at Lemma 6.6 that, as k tends to infinity, P̂ k converges in
variation norm to P̂ and we conclude with Lemma 6.3 below that P̂ is Markov.

�

Recall that the total variation norm of the signed bounded measure q on Y is
‖q‖TV := |q|(Y ) = q+(Y ) + q−(Y ) = supf : sup |f |≤1

∫
Y f dq = supA⊂Y (|q(A)| +

|q(Ac)|).
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LEMMA 6.3 (Nagasawa). Let (Pk)k≥1 be a sequence in P(�) of Markov prob-
ability measures which converges in variation norm to P , then P is also Markov.

PROOF. See Nagasawa (1993), Lemma 5.3. �

There are counter-examples of sequences (Pk)k≥1 of Markov measures converg-
ing narrowly to a non-Markov P . The following standard lemmas are preliminary
results for Lemma’s 6.6 proof.

LEMMA 6.4 (Scheffé’s theorem). Let r be a positive measure and pk = zkr ,
k ≥ 1, p = zr be probability measures which are absolutely continuous with re-
spect to r . If limk→∞ zk = z, r , then

‖zr − zkr‖TV =
∫

|z − zk|dr →
k→∞ 0.

PROOF. See Billingsley (1968), Appendix. �

LEMMA 6.5 (Laplace principle). Let r be a positive measure on the measur-
able set Y . For any measurable function F :Y → [−∞,∞] which is not identically
equal to −∞ and any measurable subset Y ′ ⊂ Y such that r(Y ′) < ∞, we have

lim
ε→0

ε log
∫
Y ′

eF/ε dr = r- ess supY ′ F ∈ (−∞,∞].

PROOF. See Dembo and Zeitouni (1998), Section 4.3. �

LEMMA 6.6. We have limk→∞ ‖P̂ k − P̂‖T V = 0.

PROOF. By Lemma 6.4, it is enough to prove that limk→∞ dP̂ k/dR =
dP̂ /dR, R. For any P ∈ P(�) such that P � R, we have

dP

dR
= ∑

x,y∈X
1{X0=x,X1=y}

P01(x, y)

R01(x, y)

dP xy

dRxy
.

We also have limk→∞ P̂ k
01(x, y) = P̂01(x, y) and limk→∞ P̂ k,xy = P̂ xy for all

x, y ∈ X . Therefore, it remains to show that for each (x, y) ∈ X , limk→∞ dP̂ xy/

dP̂ k,xy = 1, Rxy . As, P̂ xy = Gxy and P̂ k,xy = Rk,xy , this amounts to prove that

lim
k→∞

dGxy

dRk,xy
= 1, Rxy(6.2)

for all x, y. By Girsanov’s formula (4.5), for any 0 ≤ t ≤ 1,

Rk[t,1](·|Xt) = k−�[t,1] exp
(∫

[t,1]×X

(
1 − k−d(Xs,y))Js,Xs (dy) ds

)
R[t,1](·|Xt),
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where �[t,1] := ∑
t≤s≤1 d(Xs−,Xs). Hence, the jump measure of Rk,xy is given

for any t ∈ [0,1], z,w ∈X by

J
k,xy
t,z (w)

= Rk(X1 = y|Xt = w)

Rk(X1 = y|Xt = z)
k−d(z,w)Jt,z(w)

= ER

[
k−{d(z,w)+�[t,1]} exp

(∫
[t,1]×X

(
1 − k−d(Xs,a))Js,Xs (da) ds

)

× 1(X1=y)

∣∣∣Xt = w

]
Jt,z(w)

/(
ER

[
k−�[t,1] exp

(∫
[t,1]×X

(
1 − k−d(Xs,a))Js,Xs (da) ds

)

× 1(X1=y)

∣∣∣Xt = z

])
.

With Lemma 6.5, we obtain that

lim
k→∞J

k,xy
t,z (w) = ER[exp(

∫ 1
t Js,Xs (X ) ds)1�(t,w;1,y)|Xt = w]

ER[exp(
∫ 1
t Js,Xs (X ) ds)1�(t,z;1,y)|Xt = z] Jt,z(w)

=: JG,y
t,z (w)

meaning, with Theorem 2.3, that the pointwise limit of J k,xy as k tends to infinity
is the jump measure JG,y of Gxy . With Girsanov’s formula, this implies that (6.2)
is true, completing the proof of the lemma. �

REMARK 6.1. Theorem 2.3 and Lemma 6.6 together, give an alternate proof
of the convergence limk→∞ Rk,xy = Gxy stated in Theorem 2.2, with no reference
to an entropy minimization problem.

A comparison with the usual continuous setting. For comparison, it is worth-
while recalling an analogous result in the usual setting of McCann’s displacement
interpolations on X = R

n. The Monge–Mather shortening principle [see Villani
(2009), Chapter 8] tells us that the optimal plan π̂ for the quadratic cost between
μ0 and μ1 is such that two distinct geodesics interpolating between couples of
endpoints in its support supp π̂ do not intersect.

In our graph setting, this would correspond to the nice situation where for any
z and t < 1, P̂ (X1 ∈ ·|Xt = z) reduces to a Dirac measure. But in our discrete
setting, P̂ (·|Xt = z) has sample paths which live on a directed geodesic tree with
top leaves (at time 1) distributed according to a probability measure P̂ (X1 ∈ ·|Xt =
z) which might not reduce to a Dirac mass in the general case.
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This directed tree structure is a consequence of the Markov property of P̂ . It
can also be seen as a consequence of the shortening principle which, in the present
metric cost setting, is an elementary consequence of the triangle inequality.

As a corollary of Proposition 6.2, we obtain the following result.

PROPOSITION 6.3. For all 0 ≤ s ≤ t ≤ 1, P̂st ∈ P(X 2) is an optimal coupling
of μs and μt , meaning that P̂st is a solution of (MK) with μs and μt as prescribed
marginal constraints.

PROOF. It is a consequence of:

1. the Markov property of P̂ , see Proposition 6.2, which allows surgery by
gluing the bridges of P̂[s,t] together with the restrictions P̂[0,s] and P̂[t,1];

2. the fact that �st := ∑
s<r<t d(Xr−,Xr) is insensitive to changes of time: that

is, for any strictly increasing mapping θ : [s, t] → [0,1] with θ(s) = 0, θ(t) = 1,
we have �st = �01(X ◦ θ).

A standard ad absurdum reasoning leads to the announced property. �

Proof of Theorem 2.4(2). Now, let us investigate the dynamics of P̂ in the
general case where it interpolates between marginal constraints μ0 and μ1 which
are not necessarily Dirac measures. Let us denote

p̂(t, z;dy) := P̂ (X1 ∈ dy|Xt = z)

so that the optimal coupling P̂t1 of μt and μ1 disintegrates as P̂t1(dz dy) =
μt(dz)p̂(t, z;dy).

As in Theorem 2.3, we compute a stochastic derivative. A general disintegration
result tells us that

P̂[t,1](·|Xt = z) =
∫
X

P̂[t,1](·|Xt = z,X1 = y)P̂ (X1 ∈ dy|Xt = z)

=
∫
X

G
xo,y
[t,1](·|Xt = z, )p̂(t, z;dy)

since, for μ0-almost any xo,

P̂[t,1](·|Xt = z,X1 = y) = P̂[t,1](·|X0 = xo,Xt = z,X1 = y)

= G
xo,y
[t,1](·|Xt = z),

where we used the Markov property of P̂ at the first equality and the identity
P̂ xo,y = Gxo,y at the second equality. Therefore, for all 0 < t < t + h < 1,

EP̂

([
u(Xt+h) − u(Xt)

]
/h|Xt = z

)
=

∫
X

EGxo,y

([
u(Xt+h) − u(Xt)

]
/h|Xt = z

)
p̂(t, z;dy)
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and letting h tend down to zero, we see that the stochastic derivative of P̂ is given
by

L̂tu(z) =
∫
X

L
G,y
t u(z)p̂(t, z;dy)

which gives the desired expression for the jump kernel Ĵ .
The evolution equation for [μ0,μ1] is the usual forward Fokker–Planck equa-

tion for the time-marginal flow t �→ P̂t of the Markov measure P̂ .

7. Conservation of the average rate of mass displacement. The main re-
sult of this section is Theorem 7.1. It states that the constant average rate of mass
displacement (recall Definitions 3.1) is conserved along the displacement inter-
polation. It is a consequence of the Corollary 7.1 of Proposition 7.1 which also
asserts that some similar quantity is conserved along the time-marginal flow of the
solution of the dynamical Schrödinger problem (Sdyn).

Main results of the section. The main technical result of this section is the
following Proposition 7.1 whose proof is postponed to the next subsection.

PROPOSITION 7.1. Let P ∈ P(�) be a random walk. We denote (νt )t∈[0,1] its
time-marginal flow and (νjt (X 2))0≤t≤1 its average rate of mass displacement. Let
us assume that:

(i) H(P |R) < ∞;
(ii) νjt (X 2) > 0 for all t ∈ [0,1];

(iii) 1 <
∫
[0,1] νjt (X 2)/νJt (X 2) dt ≤ ∞.

Then there exists a change of time τ̂ which minimizes the function τ �→ H(P τ |R)

among all the changes of time τ and verifies

νj τ̂
t

(
X 2) − νJτ̂(t)

(
X 2) = K for almost every t ∈ [0,1],(7.1)

for some constant K > 0. We have denoted by νj τ̂
t (X 2) = ˙̂τ(t)νjτ̂ (t)(X 2) the aver-

age rate of mass displacement of P τ̂ .

Let us admit this proposition for a while and investigate its consequences.

COROLLARY 7.1. Let P̃ be the solution of (Sdyn) and denote ν its time-mar-
ginal flow and J̃ its jump kernel. Suppose that 1 <

∫
[0,1] νJ̃t (X 2)/νJt (X 2) dt ≤

∞. Then there exists some K > 0 such that νJ̃t (X 2) − νJt (X 2) = K, for all t ∈
[0,1].

PROOF. As P̃ solves (Sdyn), we have H(P̃ |R) < ∞ and also νJ̃t (X 2) > 0 for
all t ∈ [0,1]; see Léonard (2014a), Proposition 4.2. Hence, we are allowed to apply
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Proposition 7.1. But as P̃ solves (Sdyn), the only time change τ̃ which minimizes
τ �→ H(P̃ τ |R) is the identity; recall that (Sdyn) admits a unique minimizer. There-
fore, τ̃ (t) = t for all t ∈ [0,1] and (7.1) becomes νJ̃t (X 2) − νJt (X 2) = K , al-
most everywhere. Finally, we can remove this “almost” since this limitation comes
from (7.8) for taking absolutely continuous changes of time into account and in
the present case τ = Id is differentiable everywhere. �

With Corollary 7.1 at hand, we can prove the main result of the section.

THEOREM 7.1. There exists some K > 0 such that μĴt (X 2) = K , for all t ∈
[0,1].

In particular, when the distance d is the standard discrete distance d∼: that is,
for all x, y ∈X , x ∼ y ⇐⇒ d∼(x, y) = 1, then the displacement interpolation μ

has a constant speed.

PROOF. The second statement is a direct consequence of the first one
with (3.5).

Let us prove the first statement. For each k, let P̂ k be the solution of (Sk
dyn). We

denote μk and Ĵ k its time-marginal flow and jump kernel. Let us first show that
for all t ∈ [0,1],

lim
k→∞

∫
[0,t]

μkĴ k
s

(
X 2)

ds =
∫
[0,t]

μĴs

(
X 2)

ds.(7.2)

As
∫
[0,t] μkĴ k

s (X 2) ds = EP̂ kNt where Nt := ∑
0<s<t 1{Xs− �=Xs} is the number of

jumps during [0, t], (7.2) does not directly follow from limk→∞ P̂ k = P̂ (see The-
orem 2.1), because Nt is unbounded. We must strengthen Theorem 2.1 to authorize
the test functions 0 ≤ Nt ≤ N1 := N , 0 ≤ t ≤ 1. To do so, it is enough to show that
Lemma 5.3 can be improved as follows: the sequence (I k)k≥2 is equi-coercive and
�- limk→∞ I k = I in PN(�) := {P ∈ P(�);EP N < ∞} with respect to the topol-
ogy weakened by the functions Cb(�) ∪ {Nt ;0 ≤ t ≤ 1}. For this strengthening to
hold, it is sufficient that (I k)k≥2 is equi-coercive in PN(�). Inspecting the proof of
Lemma 5.3, we see that I k ≥ I + c for all k and some constant c. Consequently,
it remains to show that the function I is coercive in PN(�). But this follows from
the proof of Lemma 5.1, noticing that 0 ≤ Nt ≤ N ≤ �. This completes the proof
of (7.2).

We are going to apply Corollary 7.1 to the solution P̂ k of (Sk
dyn), for any large

enough k ≥ 1. Hence, we have to check that
∫
[0,1] μkĴ k

t (X 2)/μkJ k
t (X 2) dt > 1.

By (2.2) and since it is assumed that d(x, y) ≥ 1 for all distinct x, y ∈X ,

sup
0≤t≤1

μkJ k
t

(
X 2) ≤ J̄ /k,(7.3)
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where J̄ := supt,x Jt,x(X ) < ∞ and with (7.2),

lim
k→∞

∫
[0,1]

μkĴ k
t

(
X 2)

dt =
∫
[0,1]

μĴt

(
X 2)

dt =: K > 0.(7.4)

It follows that
∫
[0,1] μkĴ k

t (X 2)/μkJ k
t (X 2) dt ≥ Kk/(2J̄ ) > 1, for any large

enough k.
Corollary 7.1 tells us that there exists Kk > 0 such that μkĴ k

t (X 2) −
μkJ k

t (X 2) = Kk , for all t ∈ [0,1]. With (7.3) and (7.4), integrating and taking
the limit leads us to

lim
k→∞

∫
[0,t]

μkĴ k
s

(
X 2)

ds = Kt, t ∈ [0,1].

We conclude with (7.2) that
∫
[0,t] μĴs(X 2) ds = Kt for all 0 ≤ t ≤ 1, which is the

announced result. �

Proof of Proposition 7.1. A consequence of Girsanov’s formula [see Léonard
(2012b), Theorem 2.11, for a related result] is

H(P |R) = H(P0|m) +
∫
[0,1]

dt

∫
X 2

ρ∗
(

djt,x

dJt,x

(y)

)
Pt(dx)Jt,x(dy),

where

ρ∗(a) :=
⎧⎨⎩

a loga − a + 1, if a > 0,
1, if a = 0,
∞, if a < 0.

Let us denote

νt (dx) := Pt(dx),

qt (dx dy) := νt (dx)Jt,x(dy),

vt (x, y) := djt,x

dJt,x

(y).

Remark that ν = (νt )0≤t≤1,q = (qt )0≤t≤1 and v = (vt )0≤t≤1 are fixed quantities.
For any positive bounded measure q ∈ Mb,+(X 2) and any measurable function
v :X 2 →R on X 2, we define

L(q, v) :=
∫
X 2

ρ∗(v) dq ∈ [0,∞].
For any change of time τ , we have P τ

0 = P0 and

H
(
P τ |R) = H(P0|m) +

∫
[0,1]

L
(
qτ(t), τ̇ (t)vτ(t)

)
dt.

Therefore, we wish to minimize

τ �→
∫
[0,1]

L
(
qτ(t), τ̇ (t)vτ(t)

)
dt(7.5)
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among all changes of time τ : [0,1] → [0,1]. To achieve this goal, some prelimi-
nary results are necessary. They are stated and proved below at Lemmas 7.1, 7.3
and 7.5. With Lemma 7.1, we see that we are in position to apply Lemma 7.5. We
conclude with (7.5), Lemmas 7.3 and 7.5.

It remains to prove Lemmas 7.1, 7.3 and 7.5.

Statement and proof of Lemma 7.1. We show that the finite entropy condition
H(P |R) < ∞ implies that the average number of jumps under P is finite.

LEMMA 7.1. Let P ∈ P(�) be a random walk. We denote (νjt (X 2))0≤t≤1
its average rate of mass displacement. Let us assume that H(P |R) < ∞. Then∫
[0,1] νjt (X 2) dt < ∞.

PROOF. We see that ∫
[0,1]

νjt

(
X 2)

dt = EP N

with N = ∑
0<t<1 1{Xt− �=Xt } the number of jumps. Let us denote R∗ :=

dP0
dm

(X0)R ∈ P(�) the Markov random walk with initial marginal P0 and forward
jump kernel J . We have H(P |R) = H(P0|m) + H(P |R∗) which implies that
H(P |R∗) < ∞. Taking advantage of the Fenchel inequality ab ≤ a loga + eb−1,
we obtain

EP N = ER∗

(
dP

dR∗
N

)
≤ H(P |R∗) + ER∗e

N .

But our assumption (2.2) implies that N#R∗ is stochastically dominated by the
Poisson law with parameter supt,x Jt,x(X ). Therefore, ER∗e

N < ∞ and we have
proved that

∫
[0,1] νjt (X 2) dt < ∞ when H(P |R) < ∞. �

Statement and proof of Lemma 7.3. To prove Lemma 7.3, we need the prelim-
inary Lemma 7.2 which is stated and proved below. We consider the set

K := {
(q, v);q ∈Mb,+

(
X 2)

,

v :X 2 → [0,∞) measurable: L(q, v) < ∞, q(v > 0) > 0
}
.

For any (q, v) ∈ K, as q is a bounded measure, v belongs to the Orlicz space
L logL(X 2, q) and its corresponding norm |v|q := ‖v‖L logL(X 2,q) is finite. As in
addition q(v > 0) > 0, we have |v|q > 0 and we are allowed to define

Lq,v(α) := L
(
q,αv/|v|q)

, α ∈R, (q, v) ∈K.

Let us fix K ≥ 0 and define βK(q, v) ∈ (0,∞) to be the slope of the affine func-
tion L̃K

q,v :R → R which is tangent to the convex function Lq,v and satisfies
L̃K

q,v(0) = −K : L̃K
q,v(α) = βK(q, v)α − K , α ∈ R. Such a below tangent exists
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FIG. 2. Lq,v and its tangent line L̃K
q,v .

since Lq,v(0) = L(q,0) = q(X 2) > 0. Furthermore, since Lq,v ≥ 0, we also have
βK(q, v) > 0.

We denote αK(q, v) > 0 the solution of Lq,v(α) = L̃K
q,v(α), which happens to

be positive and unique (since Lq,v is strictly convex); see Figure 2. Define⎧⎨⎩
λK(q, v) := βK(q, v)|v|q,

aK(q, v) := αK(q, v)/|v]q,

vK(q, v) := aK(q, v)v,

(q, v) ∈K.

The functions λK(q, ·), aK(q, ·) and vK(q, ·) are, respectively, positively homo-
geneous of degree 1, −1 and 0 on the convex cone Kq := {v : (q, v) ∈K}. We also
define

LK(q, v) :=
⎧⎨⎩

λK(q, v) − K, if (q, v) ∈K,
−K, if q(v �= 0) = 0,
+∞, if q(v < 0) > 0.

Remark that LK(q, ·)+K is the largest positively 1-homogeneous function below
the convex function L(q, ·) + K .

LEMMA 7.2. For any K ≥ 0, we have LK ≤ L and for any (q, v) ∈ K the
equality L(q, v) = LK(q, v) is achieved if and only if v = vK(q, v) or equivalently
aK(q, v) = 1.

Furthermore, for any (q, v) ∈ K such that v > 0, q-a.e.,
∫
X 2(vK(q, v)

− 1) dq = K .

PROOF. Since LK(q, v) = L̃K
q,v(|v|q), for any (v, q) ∈ K, the inequality

L̃K
q,v ≤ Lq,v implies that LK ≤ L with equality on K if and only if |v|q = αK(q, v),

that is, v = vK(q, v).
Let us prove last statement. Denoting Hq,v(β) := supα∈R{αβ − Lq,v(α)} ∈ R,

β ∈R, the convex conjugate of Lq,v , we have

Hq,v

(
βK(q, v)

) = K.(7.6)
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Let us define, for any measurable function p :X 2 →R,

H(q,p) :=
∫
X 2

ρ(p)dq =
∫
X 2

(
ep − 1

)
dq ∈ (−∞,∞],

where

ρ(b) := eb − 1, b ∈R

is the convex conjugate of ρ∗. For any real numbers a, b: ab ≤ ρ∗(a) + ρ(b) with
equality if and only if a = eb. Hence, for any (q, v) ∈K and any measurable func-
tion p on X 2 such that

∫
X 2 ep dq < ∞, we have −∞ ≤ 〈p,v〉q := ∫

X 2 pv dq ≤
L(q, v)+H(q,p) < ∞ with equality if and only if v = ep , q-a.e. As v > 0, q-a.e.,
the equality is realized with p = pv := logv, that is,

L(q, v) = 〈
pv, v

〉
q − H

(
q,pv)

.(7.7)

Now, let α := |v|q > 0 be given. For any b ∈ R, αb ≤ Lq,v(α) + Hq,v(b) and the
equality is realized at β = L′

q,v(α) = 〈logv, v/α〉q = 〈pv, v〉q/α. Therefore,

L(q, v) = Lq,v(α) = αβ − Hq,v(β) = 〈
pv, v

〉
q − Hq,v(β).

Comparing with (7.7) leads us to H(q,pv) = Hq,v(β). In particular, with v =
vK(q, v), we see that α = |vK(q, v)|q = αK(q, v) and the corresponding conju-
gate parameter is β = βK(q, v). It follows with (7.6) that H(q, logvK(q, v)) =
H(q,pvK(q,v)) = Hq,v(βK(q, v)) = K , which is the desired result. �

As a consequence of Lemma 7.2, we obtain the following result.

LEMMA 7.3. Suppose that τ̂ is a change of time which solves the differential
equation

τ̇ (t) = aK(qτ(t),vτ(t)), t ∈ [0,1], a.e.(7.8)

for some K ≥ 0. Then τ �→ ∫
[0,1] L(qτ(t), τ̇ (t)vτ(t)) dt attains its minimum value

among all changes of time at τ = τ̂ . Moreover, if for almost all t ∈ [0,1], vt > 0,
then ∫

X 2
(̂vt − 1) dq̂t = K for a.e. t ∈ [0,1],

where we denote q̂t := qτ̂ (t) and v̂t := ˙̂τ(t)vτ̂ (t).

PROOF. As τ̂ solves (7.8), we have aK(̂qt , v̂t ) = 1, for a.e. t ∈ [0,1]. With
Lemma 7.2, this implies that∫

[0,1]
L(q̂t , v̂t ) dt =

∫
[0,1]

LK(̂qt , v̂t ) dt.
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As λK(q, ·) is 1-homogeneous, we see that for any change of time τ ,∫
[0,1]

LK

(
qτ(t), τ̇ (t)vτ(t)

)
dt =

∫
[0,1]

λK

(
qτ(t), τ̇ (t)vτ(t)

)
dt − K

=
∫
[0,1]

λK(qt ,vt ) dt − K =
∫
[0,1]

LK(qt ,vt ) dt

is a quantity which does not depend on τ . Hence, for any change of time τ ,∫
[0,1]

L(q̂t , v̂t ) dt =
∫
[0,1]

LK(̂qt , v̂t ) dt =
∫
[0,1]

LK

(
qτ(t), τ̇ (t)vτ(t)

)
dt

≤
∫
[0,1]

L
(
qτ(t), τ̇ (t)vτ(t)

)
dt,

where the last inequality follows from LK ≤ L; see Lemma 7.2. This proves the
minimal attainment at τ̂ .

The last statement follows from (7.8) ⇐⇒ v̂t = vK(̂qt , v̂t ) and Lemma 7.2.
�

Statement and proof of Lemma 7.5. Now, we prove Lemma 7.5. To do so, we
need the following preliminary Lemma 7.4.

LEMMA 7.4. For each K ≥ 0,

aK(q, v) = K + q(X 2)∫
X 2 v dq

, (q, v) ∈K.

PROOF. Let us pick (q, v) ∈ K and β ∈ R. We have Hq,v(β) = supa∈R{aβ −
Lq,v(a)} and the supremum is attained at α, solution of β = ∫

X 2 ρ∗′(αu)udq =∫
X 2 log(αu)udq where u := v/|v|q . Therefore, Hq,v(β) = αβ − Lq,v(α) =∫
X 2[αu log(αu) − ρ∗(αu)]dq = ∫

X 2(αu − 1) dq . Choosing β = βK(q, v) cor-
responds to αK(q, v) and we obtain with (7.6) that K = Hq,v(βK(q, v)) =
αK(q, v)

∫
X 2 udq − q(X 2). Hence, aK(q, v) = αK(q, v)/|v|q = (K + q(X 2))/∫

X 2 v dq . �

As a consequence of Lemma 7.4, we obtain the following result.

LEMMA 7.5. Let ν and j be such that:

(i)
∫
[0,1] νjt (X 2) dt < ∞;

(ii) νjt (X 2) > 0, for all t ∈ [0,1];
(iii) 1 <

∫
[0,1] νjt (X 2)/νJt (X 2) dt ≤ ∞.

Then there exist a constant K̂ > 0 and a change of time τ̂ such that (7.8) holds:

˙̂τ(t) = aK̂(qτ̂ (t),vτ̂ (t)), t ∈ [0,1],a.e.
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PROOF. Plugging qs := νJs and vs(x, y) := djs,x/dJs,x(y) into aK(qs,vs),
we see that (ii) implies that (qs,vs) ∈K for all 0 ≤ s ≤ 1. Hence, with Lemma 7.4
we obtain that (7.8) writes as

τ̇ (t)ϕK

(
τ(t)

) = 1,

where

ϕK(s) := aK(qs,vs)
−1 = νjs(X 2)

K + νJs(X 2)
, 0 ≤ s ≤ 1.

Let �K(t) := ∫ t
0 ϕK(s) ds ∈ [0,∞]. By assumption (i), for any K > 0, �K(1) <

∞. It follows that �K is absolutely continuous. Assumption (ii) implies that it
is strictly increasing so that one can define τK(t) := �−1

K (t) which solves τ̇ (t) =
aK(qτ(t),vτ(t)) almost everywhere on [0,�K(1)).

It remains to show that there exists some K̂ > 0 such that �K̂(1) = 1. But this is
insured by assumption (iii) which states that �0(1) > 1, since with (i) we see that
K ∈ (0,∞) �→ �K(1) ∈ (0,∞) is a continuous decreasing function from �0(1)

to limK→∞ �K(1) = 0. �

APPENDIX A: MARKOV RANDOM WALK ON A GRAPH

We give some basic information about Markov random walks on a graph.

The jump kernel. A Markov random walk on the graph (X ,∼) is the law Q ∈
M+(�) of a time-continuous Markov process which is specified by its infinitesimal
generator L = (Lt )0≤t<1 acting on any real function u ∈ R

X with a finite support
via the formula

Ltu(x) = ∑
y : y∼x

[
u(y) − u(x)

]
jt,x(y), x ∈X ,0 ≤ t < 1,

where jt,x(y) ≥ 0 is the average frequency of jumps from x to y at time t . As a
convention, we set jt,x(y) = 0 as soon as x and y are not neighbours. The corre-
sponding jump kernel is

jt,x := ∑
y : y∼x

jt,x(y)δy ∈ M+(X ), x ∈X ,0 ≤ t < 1.

The operator L is well defined for any bounded function u ∈R
X provided that

sup
x∈X

jt,x(X ) < ∞,(A.1)

where jt,x(X ) := ∑
y : y∼x jt,x(y) denotes the global jump intensity at x ∈X . The

bound (A.1) ensures that the random walk performs almost surely finitely many
jumps during the unit time interval [0,1]. Therefore, � as defined in this article
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is the relevant path space to be considered. When j is assumed to satisfy (A.1), it
uniquely specifies Q ∈ M+(�) up to its initial law Q0 ∈ M+(X ).

In other words, Q ∈ M+(�) is the unique solution to the martingale problem
on � associated with the generator L defined on the space of finitely supported
functions u on X with the prescribed initial law Q0 ∈ M+(X ). It is a Markov
measure in the sense of Definition 6.1.

In case L does not depend on t , the random walk is said to be time-
homogeneous. In this special case, its dynamics is described as follows. Once at
site x, the walker waits during a random time with exponential law E(jx(X )), and
then decides to jump at y according to the probability jx(X )−1 ∑

y : y∼x jx(y)δy ,
and so on; all these random events being mutually independent.

Some interesting examples of reference reversible Markov random walks R.
One may require that R is reversible. This means that R is invariant with respect
to time reversal, that is, for any subinterval [u, v] ⊂ [0,1],

(X(u+v−t)−;u ≤ t ≤ v)#R = (Xt ;u ≤ t ≤ v)#R.

This implies that R is stationary, that is, there is some m ∈ M+(X ) such that Rt =
m, ∀0 ≤ t ≤ 1. If R is a time-homogeneous Markov random walk, this happens if
and only if the following detailed balance condition

mxJx(y) = myJy(x) ∀x ∼ y ∈X(A.2)

is satisfied. As it is assumed that Jx(y) > 0,∀x ∼ y and the graph is irreducible,
this implies that mx > 0 for all x ∈X .

Simple random walk. An important example of such a walk is the simple ran-
dom walk Ro ∈ P(�) on X . The dynamics of Ro is specified by the jump kernel

J o
x := n−1

x

∑
y : y∼x

δy, x ∈X .(A.3)

The successive waiting times are independent and identically distributed with the
exponential law E(1) and the walker jumps from any site choosing a neighbour
uniformly at random. Solving (A.2), one sees that the corresponding reversing
measures are multiples of

mo := ∑
x∈X

nxδx.(A.4)

Note that mo is unbounded whenever X is an infinite set, since the irreducibility
assumption implies that nx ≥ 1 for all x.

As the simple random walk is analogous to the Brownian motion on a Rieman-
nian manifold, the measure mo plays the role of the volume measure on the graph.

Counting random walk. It corresponds to Jx = ∑
y : y∼x δy, x ∈ X whose re-

versing measure is the counting measure m = ∑
x∈X δx .
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A generic class of m-reversible random walks. Take some measure m =∑
x∈X mxδx on X with mx > 0, ∀x ∈X and consider the jump kernel

Jx := ∑
y : y∼x

s(x, y)√
nxny

√
my

mx

δy, x ∈X ,(A.5)

where s is a symmetric function. Assume that there exists some constant 1 ≤ c <

∞ such that

my/ny ≤ cmx/nx ∀x ∼ y

and some 0 < σ < ∞ such that the symmetric function s satisfies

0 < s(x, y) = s(y, x) ≤ σ ∀x ∼ y ∈X .

Then, J verifies (A.1), so that R is a measure on �. As J clearly verifies (A.2), R

is m-reversible. Moreover, R is equivalent to the simple random walk Ro, that is,
for any measurable A ⊂ �, R(A) > 0 ⇐⇒ Ro(A) > 0.

APPENDIX B: RELATIVE ENTROPY

This section is a short version of Léonard [(2014b), Section 2] which we refer
to for more detail. Let r be some σ -finite positive measure on some space Y . The
relative entropy of the probability measure p with respect to r is loosely defined
by

H(p|r) :=
∫
Y

log(dp/dr) dp ∈ (−∞,∞], p ∈ P(Y )

if p � r and H(p|r) = ∞ otherwise. More precisely, when r is a probability
measure, we have

H(p|r) =
∫
Y

h(dp/dr) dr ∈ [0,∞], p, r ∈ P(Y )

with h(a) = a loga − a + 1 ≥ 0 for all a ≥ 0 [set h(0) = 1]. Hence, the above
definition is meaningful. It follows from the strict convexity of h that H(·|r) is
also strictly convex. In addition, since h(a) = infh = 0 ⇐⇒ a = 1, we also have
for any p ∈ P(Y ),

H(p|r) = infH(·|r) = 0 ⇐⇒ p = r.(B.1)

If r is unbounded, one must restrict the definition of H(·|r) to some subset of
P(Y ) as follows. As r is assumed to be σ -finite, there exists a measurable function
W :Y → [1,∞) such that

zW :=
∫
Y

e−W dr < ∞.(B.2)
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Define the probability measure rW := z−1
W e−Wr so that log(dp/dr) = log(dp/

drW ) − W − log zW . It follows that for any p ∈ P(Y ) satisfying
∫
Y W dp < ∞,

the formula

H(p|r) := H(p|rW ) −
∫
Y

W dp − log zW ∈ (−∞,∞](B.3)

is a meaningful definition of the relative entropy which is coherent in the fol-
lowing sense. If

∫
Y W ′ dp < ∞ for another measurable function W ′ :Y → [0,∞)

such that zW ′ < ∞, then H(p|rW )− ∫
Y W dp − log zW = H(p|rW ′)− ∫

Y W ′ dp −
log zW ′ ∈ (−∞,∞].

Therefore, H(p|r) is well defined for any p ∈ P(Y ) such that
∫
Y W dp < ∞ for

some measurable nonnegative function W verifying (B.2).
It follows from the strict convexity of H(·|rW ) and (B.3) that H(·|r) is also

strictly convex.
Let Y and Z be two Polish spaces equipped with their Borel σ -fields. For any

measurable function φ :Y → Z and any measure q ∈ M+(Y ), we have the disinte-
gration formula

q(dy) =
∫
Z

q(dy|φ = z)φ#q(dz),

where z ∈ Z �→ q(·|φ = z) ∈ P(Y ) is measurable, and the following additivity
property

H(p|r) = H(φ#p|φ#r) +
∫
Z

H
(
p(·|φ = z)|r(·|φ = z)

)
φ#p(dz),(B.4)

is valid for any p ∈ P(Y ) and any σ -finite r ∈ M+(Y ). In particular, as r(·|φ = z)

is a probability measure for each z, with (B.1) we see that

H(φ#p|φ#r) ≤ H(p|r) ∀p ∈ P(Y )

with equality if and only if

p(·|φ = z) = r(·|φ = z) ∀z,φ#p-a.s.(B.5)
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