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A POISSON ALLOCATION OF OPTIMAL TAIL

BY ROLAND MARKÓ1 AND ÁDÁM TIMÁR2

Universität Bonn and Alfréd Rényi Institute of Mathematics

The allocation problem for a d-dimensional Poisson point process is to
find a way to partition the space to parts of equal size, and to assign the
parts to the configuration points in a measurable, “deterministic” (equivari-
ant) way. The goal is to make the diameter R of the part assigned to a config-
uration point have fast decay. We present an algorithm for d ≥ 3 that achieves
an O(exp(−cRd)) tail, which is optimal up to c. This improves the best
previously known allocation rule, the gravitational allocation, which has an
exp(−R1+o(1)) tail. The construction is based on the Ajtai–Komlós–Tusnády
algorithm and uses the Gale–Shapley–Hoffman–Holroyd–Peres stable mar-
riage scheme (as applied to allocation problems).

1. Introduction. Consider the random discrete point set ω in R
d given by the

Poisson point process of intensity 1. We would like to find functions ψω :ω →
L1(Rd) that assign to each point of ω a set of measure 1, and such that ψω is a
measurable, equivariant function of ω. Then we call ω �→ ψω an allocation rule.
See Definition 2 for more details.

We prove the existence of an allocation rule of the following (optimal) tail.

THEOREM 1.1. For d ≥ 3 there exist c, b > 0 and an allocation rule ω �→ ψω

for the Poisson point process such that

P
[
diam

({0} ∪ ψω(0)
)
> R|0 ∈ ω

] ≤ c exp
(−bRd)

.

The proof of Theorem 1.1 is constructive. The allocation rule presented here
is built upon a generalization of the algorithm due to Ajtai, Komlós and Tusnády
[1] and employs a local variant of the stable marriage allocation introduced by
Hoffman, Holroyd and Peres [4], based on the “stable marriage” algorithm of Gale
and Shapley.

Informally, in this allocation problem, we want to divide land between a set of
farmers randomly scattered in space, and in such a way that each farmer knows
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the rule to determine his own land up to a small error, by looking at the locations
of other farmers in a big enough neighborhood. This rule has to be the same for
everybody. We want to find an allocation rule where the maximal distance a farmer
has to walk (fly) between any two points of his land is minimal. That is, we want
the tail

P
[
diam

({0} ∪ ψω(0)
)
> R|0 ∈ ω

]
to decay as fast in R as possible, where ψω(0) denotes the cell of 0 (conditioned
on having a center in 0).

Now we give the precise definitions. In our previous, less formal definition,
we wanted to partition the space and assign pieces to the centers. Here it will be
more convenient to use the indicator functions of these pieces. Let � be the set of
discrete sets of points in R

d . The points of an ω ∈ � are called centers. Let us fix
an ω ∈ �.

DEFINITION 1 (Allocation). An allocation is a function ψω :ω → L1(Rd)

such that:

(1) for every ξ ∈ ω, ψω(ξ) is a function with values from {0,1};
(2) for Lebesgue almost every x ∈ R

d , there is at most one ξ ∈ ω such that
ψω(ξ)(x) = 1;

(3) for every ξ ∈ ω,
∫
Rd ψω(ξ)(x) dx = 1.

Without assumption (3) we call ψω a weak allocation. We say that ψω :ω →
L1(Rd) is a weak fractional allocation if (1′) and (2′), below, hold and a fractional
allocation if (1′), (2′) and (3) hold:

(1′) for every ξ ∈ ω, ψω(ξ) is a function with values from [0,1];
(2′) for Lebesgue almost every x ∈ R

d ,
∑

ξ∈ω ψω(ξ)(x) ≤ 1.

Sometimes it will be natural to think about a (fractional) allocation ψω :ω →
L1(Rd) as a family {ψω(ξ) : ξ ∈ ω} of functions.

DEFINITION 2 (Allocation scheme, allocation rule). Let P be the law of the
Poisson point process of intensity 1 in R

d . An allocation scheme is a mapping ω �→
ψω that is defined for P-almost every ω ∈ �, measurable (i.e., if (S,S,μ) is the
underlying probability space of the Poisson point process, and L1(Rd) is equipped
with the Borel sets induced by the L1-distance, the mapping s �→ (ω(s),ψω(s))

from S → {(ω,φ)|ω ∈ �,φ ∈ [L1(Rd)]ω} is measurable with respect to S), and
such that almost surely ψω is an allocation. If, furthermore, the mapping ω �→ ψω

is translation-equivariant; that is, for any ω ∈ �, ξ ∈ ω and x, y ∈ R
d we have

ψω+x(ξ + x)(y + x) = ψω(ξ)(y),

then we call the allocation scheme an allocation rule. Define weak, fractional and
weak fractional allocation rules (schemes) analogously.
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Some use the term allocation factors of the point process for allocation rules.
We mention that allocation rules satisfy something stronger than (2) from Defini-
tion 1; namely, for Lebesgue almost every x ∈ R

d , there is exactly one ξ ∈ ω such
that ψω(ξ)(x) = 1; see, for example, [7] for a proof of this simple statement.

Denote by 0 the origin in R
d and by λ the Lebesgue measure in R

d . The let-
ters b and c will stand for positive real constants, whose value may change when
employed in different statements. From now on, we always assume that d ≥ 3.

We want to define an allocation rule in such a way that the probability
P[diam(ψω∪{0}(0) ∪ {0}) ≥ R|0 ∈ ω] decays as fast as possible. By translation
invariance we could have taken any other fixed ξ0 ∈ R

d instead of 0, and the tail
would be the same.

Define �′ := {ω ∪ {0} :ω ∈ �} and P′ = [·|0 ∈ ω] as the Palm version of the
probability measure P that defines the Poisson point process (and E′ the corre-
sponding expectation). To facilitate readability we will tend to use the notation
ω′ for elements of �′. It is well known that P′[{ω ∪ {0} :ω ∈ E}] = P[E] for ev-
ery measurable E in �; see, for example, [10] for the proof of this statement and
for other basic facts and definitions about the Palm version of point processes.
Rephrasing the previous paragraph, our goal is to make P′[diam(ψω′(0) ∪ {0}) >

R] have fast decay.
In several papers ([4] and follow-up works) a slightly different problem is the

focus of interest. Suppose we have the allocation rules ω �→ ψω and ω �→ φω.
The rule ω �→ ψω defines a unique center ξ0 = ξ0(ω,ψω) with 0 ∈ ψω(ξ0) almost
surely. Then

P
[
diam

(
φω−ξ0(0) ∪ {0}) > R

] = P′[diam
(
φω′(0) ∪ {0}) > R

]
,(1.1)

where the equation follows from Theorem 13 in [7] (the claim that ξ0 is a so-called
nonrandomized extra head scheme).

The objective in the setup of the cited papers is again to obtain a rule with
optimal tail bound, this time for the random variable |ξ0|. Our setup is stronger
than this one, meaning that for any allocation rule ω �→ ψω the tail probability
P[diam({0} ∪ ψω(0)) > R|0 ∈ ω] is greater than or equal to P[|ξ0(ω,ψω)| > R],
hence any upper bound on the decay of the former (as in Theorem 1.1) implies
an upper bound on the decay of the latter (as in [4]). To see this, set φ = ψ and
apply (1.1), so that we have

P
[|ξ0| > R

] ≤ P
[

max
x∈ψω(ξ0)

|x − ξ0| > R
]
≤ P

[
diam

(
ψω(ξ0) ∪ {ξ0}) > R

]
= P

[
diam

(
ψω−ξ0(0) ∪ {0}) > R

]
(1.2)

= P′[diam
(
ψω′(0) ∪ {0}) > R

]
.

In fact, the current setup is strictly stronger: imagine an allocation rule when most
cells consist of ball-like pieces of almost unit volume containing the corresponding
center, and a small extra piece far away from this one. For such an allocation, the
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quantity on the left of (1.1) would decay quickly, while on the right we could have
slow decay.

The relation between the two discussed tail events allows us to phrase a lower
bound on P′[diam(ψω′(0) ∪ {0}) > R] which every allocation rule has to satisfy.
Clearly,

P
[|ξ0| > R

] ≥ P
[
B(0,R) ∩ ω =∅

] = exp
(−λ

(
B(0,R)

)) = exp
(−cRd)

,(1.3)

where B(0,R) is the Euclidean ball around 0 with radius R, and c > 0 is a constant
only depending on the dimension d . Therefore it follows through (1.2) for any
allocation rule ω �→ ψω that

exp
(−cRd) ≤ P′[diam

(
ψω′(0) ∪ {0}) > R

]
,

which explains the claim regarding the optimality of our construction.
The allocation problem was first studied in a finite setup, where finitely many

points are distributed uniformly and independently in a box. Here, of course, the
requirement of equivariance is meaningless. We will present later a variant of the
algorithm by Ajtai, Komlós and Tusnády [1], which was a crucial component of
several later methods for the finite problem. For n uniformly independently dis-
tributed points in a cube of volume n, it was proved [1] that the average diameter
of an allocation cell is log1/2 n for d = 2 and finite for d ≥ 3, and precise rates
of decay were determined subsequently; see [11] for details and the sharpest re-
sults. Interest in the infinite setup originated from the fact that an allocation rule
gives rise to a shift-coupling between a point process and its Palm version; see,
for example, [5, 7]. In [7], Holroyd and Peres studied the problem of how to find
the optimal tail of an allocation rule. In the same paper, they presented a ran-
domized invariant allocation rule of optimal tail decay. (Randomized allocation
rules are defined similarly to allocation rules in Definition 2, but the use of extra
randomness is allowed; i.e., the allocation scheme is not necessarily a determin-
istic function of the point configuration.) Let us mention that several related op-
timization problems are much easier to handle for the randomized variant, such
as in the case of matching schemes of point processes or coin flips. Determinis-
tic constructions have been an area of active research ever since, and allocation
rules that satisfy additional conditions have been subjects of recent analysis (e.g.,
stability [4], connectedness [9]). The best previously known allocation rule for
d ≥ 3 was the gravitational allocation, investigated in [2, 3], where the tail is
P[|ξ0(ω)| > R] = exp(−R1+o(1)). In [7], the assumption d ≥ 3 is necessary for an
exponential tail, where E[|ξ0(ω)|d/2] = ∞ is proved for d = 1,2. The best cur-
rently known upper bounds for the tails in the case of d = 1 and d = 2 were pre-
sented in [6], showing P[|ξ0(ω)| > R] ≤ cR−1/2 and P[|ξ0(ω)| > R] ≤ cR−0.496...,
respectively, and they were achieved by the stable allocation of Hoffman, Holroyd
and Peres [4]. Briefly, the reason for the drastic change of behavior from dimen-
sion 3 is that here the isoperimetric function of Rd becomes larger in magnitude



A POISSON ALLOCATION OF OPTIMAL TAIL 1289

than the deviation of the number of points in a ball. For the existence of optimal
allocations with respect to other quantities (e.g., the average distance of a center
from the points of the cell) and connections to optimal transport, see [8].

1.1. Construction. Let us present the (surprisingly simple) construction for
Theorem 1.1 briefly, before going into the details. First, for any v ∈ R

d we will
define a sequence of weak allocation schemes associated to it. These will not be
equivariant yet. The construction will be based on a straightforward generaliza-
tion of the algorithm of Ajtai, Komlós and Tusnády (AKT algorithm) [1], which
assigns a piece of unit volume to each of n points in a box B , in such a way that
the pieces partition B . Furthermore, if the points are scattered uniformly and inde-
pendently (which is the same as the restriction of the Poisson point process to B ,
conditioned on there being n points in B), then the average diameter of the cells
has asymptotically the same tail behavior as in Theorem 1.1 (if the volume of B

and the number of random points in it are asymptotically the same). We extend the
method to the Poisson point process in R

d by subdividing R
d to the cubes of size

2n in v + 2n
Z

d + [0,2n)d , and applying the AKT algorithm to each of the cubes.
The result is a weak allocation scheme for each n and v, which we call AKTω,v,n,
and denote the cell of ξ ∈ ω under this scheme by f

ω,ξ
v,n . The algorithm for given

n will be called the AKT(v) algorithm run up to stage n. The details of the AKT
algorithm are discussed in Section 2. See also Figure 1.

Having defined for every v ∈ R
d a sequence of weak allocation schemes depen-

dent on v, we next want to remove this dependence and construct a sequence of
weak allocations whose elements are equivariant (i.e., weak allocation rules). We
will see that for every ξ ∈ ω

f ω,ξ
v,n = f ω,ξ

u,n whenever u − v ∈ 2n
Z

d .(1.4)

Now, define

f ω,ξ
n := 1

2nd

∫
[0,2n)d

f ω,ξ
v,n dv,(1.5)

a function from R
d to [0,1]. This is well defined (the integral exists) by Lemma 3.2

below. It is equivariant by (1.4), so it is a fractional weak allocation rule for each
n ∈N. Now we want to get rid of “weakness.” We will prove that with probability 1
all the f

ω,ξ
n have an L1 limit (ξ ∈ ω),

f ω,ξ := lim
n→∞f ω,ξ

n ,(1.6)

and that it is a function of integral 1. From the properties of the AKT construction
(Lemma 2.2 below) we will show that the diameter of the support of this limit
function has the tail that we want. We will conclude that the map η :ω �→ f ω with
f ω : ξ �→ f ω,ξ (ξ ∈ ω ∈ �) defines a fractional allocation rule with the desired tail.
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Finally, we will define an allocation ω �→ ψω with ψω : ξ �→ ψω(ξ) (ξ ∈ ω)
from the above fractional allocation. It will be such that the support of ψω(ξ) is
contained in the support of f ω,ξ . This step (Lemma 3.8) will be based on the fact
that almost every point of Rd is contained in the support of f ω,ξ for only finitely
many ξ .

In the next section we give a summary of the AKT construction, presenting
the generalized version that we are using. Section 3 continues with the sequence
of invariant weak allocations, the limiting fractional allocation and finally, the al-
location rule that satisfies Theorem 1.1. This section ends with some concluding
remarks. In Section 4 we give the necessary bounds for the concentration of the
cell diameter, which come by technical modifications of the similar, usual bounds
for the AKT method.

2. The generalized AKT algorithm, bounds. The AKT method was devel-
oped by Ajtai, Komlós and Tusnády in [1], and it outputs a local allocation (see
definition below) between a finite cube and the i.i.d. uniform random points lying
in it. We require the following notion.

DEFINITION 3. Let C be a measurable bounded subset of Rd and ωC a finite,
nonempty subset of C. Call ψ :ωC → L1(C) a local allocation between C and ωC

if:

(1) for every ξ ∈ ωC , ψ(ξ) takes values from {0,1};
(2) for Lebesgue almost every x ∈ C there is exactly one ξ ∈ ωC such that

ψ(ξ)(x) = 1;
(3) for every ξ ∈ ωC ,

∫
C ψ(ξ)(x) dx = 1

|ωC |λ(C).

Fix ω ∈ �, and assume for simplicity that for any two points of ω, their re-
spective coordinates are pairwise different (which has probability 1 if they are
distributed according to the Poisson point process).

We now present the local allocation given by the AKT scheme between the cube
C = v + [0,2N)d and ωC := ω ∩ C, where v ∈ R

d and N ≥ 1. See Figure 1 for an
illustration. We define the method recursively with respect to N .

For N = 0 and |ωC | = k > 0, let us fix some arbitrary way of dividing a unit
cube containing k points into k connected parts with equal measure and assigning
them to the points ξ . (For k = 0, we do not do anything.) For example, separate
the centers by k − 1 hyperplanes orthogonal to the first axis such that the ith hy-
perplane separates i points of ωC from the other k − i, and so that the hyperplane
is at equal distance to the closest points, thus cutting C into k cuboids. Transform
the cuboids by pushing the separating walls (defined by the hyperplanes) in the
direction of the first axis until the volumes of the new cuboids are all equal. Each
of the transformed cuboids contains the image of exactly one ξ ∈ ωC by the trans-
formation; call this image aux(ξ, v,0) and the transformed cuboid C

ω,ξ
v,0 . We call

this stage of the construction the initial stage, and C
ω,ξ
v,0 the initial cell of ξ .
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(a) The initial stage with centers

(b) The two steps of the first stage

(c) The two steps of the second stage

(d) The position of centers and final auxiliary points, the resulting local allocation

FIG. 1. AKT local allocation between v + [0,22)d and the centers in d = 2 (v is the bottom left
corner). Transformations take place inside the highlighted cuboids; the bisector walls touched by the
arrows are moved in the indicated direction. (The length of an arrow may not be proportional to the
length of the shift, for better perspicuity.)
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Suppose that for every nonnegative integer n < N , a local allocation between
C = v + [0,2n)d and ω ∩ C, if nonempty, has been defined for any v ∈ R

d . For a
ξ ∈ ω ∩ (v + [0,2n)d) let C

ω,ξ
v,n be the cell assigned to ξ by this local allocation,

and suppose that an “auxiliary point” aux(ξ, v, n) ∈ C
ω,ξ
v,n is also given for ξ . Let

Auxv,n(C) := {aux(ξ, v, n) : ξ ∈ C ∩ ω}. Define now a local allocation between
C = v + [0,2N)d and ω ∩ C in d steps as follows.

For every ξ ∈ C ∩ ω, let v′ ∈ v + 2N−1{0,1}d be such that ξ ∈ ω ∩ (v +
[0,2N−1)d), and consider the local allocation between v′ + [0,2N−1)d and ω ∩
(v′ + [0,2N−1)d). Then aux(ξ, v′,N − 1) and C

ω,ξ

v′,N−1 are the auxiliary point and
the cell, respectively, for ξ by this local allocation. We will define aux(ξ, v,N) and
C

ω,ξ
v,N in d steps. Let Ĉξ,0 := C

ω,ξ

v′,N−1 and ˆauxξ,0 := aux(ξ, v′,N − 1).
Let Di be the following collection of cuboids. Each element of Di will be a

translation of the cuboid [0,2N−1)d−i × [0,2N)i , and the elements of Di are such
that their disjoint union is C. Formally, Di = {([0,2N−1)d−i × [0,2N)i) + v +
(k1, . . . , kd−i ,0, . . . ,0)2N−1 : (k1, . . . , kd−i ,0, . . . ,0) ∈ {0,1}d}. For i = 1, . . . , d ,
do the following. For each K ∈ Di , consider the hyperplane orthogonal to the
(d − i + 1)th axis that splits K into two congruent parts. Let K1 and K2 be these
two congruent parts. Consider cuboids K ′

1 and K ′
2 that have the following proper-

ties:

(i) they also partition K ;
(ii) K ′

1 ∩ K ′
2 is parallel to K1 ∩ K2 (where X denotes the closure of a set

X ⊂R
d );

(iii)
λ(K ′

1)

λ(K ′
2)

= |K1∩ω|
|K2∩ω| . If |K1 ∩ ω| = 0 (|K2 ∩ ω| = 0), then K ′

1 (K2) is a degen-

erate cuboid.

One can obtain K ′
1 from K1 by an affine transformation. For each ξ ∈ K1 (which

is equivalent to ˆauxξ,i−1 ∈ K1), let the image of Ĉξ,i−1 under this translation be
called Ĉξ,i , and let the image of ˆauxξ,i−1 be ˆauxξ,i . Proceed similarly for K ′

2: it is
the image of K2 by an affine transformation, and for ξ ∈ K2 we define ˆauxξ,i and
Ĉξ,i as the images of ˆauxξ,i−1 and Ĉξ,i−1 under this transformation, respectively.

At the end of the cycle, i = d . Define C
ω,ξ
v,N := Ĉξ,d and aux(ξ, v,N) := ˆauxξ,d .

Let us fix an arbitrary v ∈ R
d . Up to this point we only defined the auxiliary

points and cells (aux(ξ, v,N), C
ω,ξ
v,N ) for any ξ ∈ ω ∩ (v + [0,2N)d). Now we

will extend the definition to all configuration points ξ ∈ ω. Define aux(ξ, v,N)

as the point aux(ξ, v′,N), where v′ is the unique element of v + 2N
Z

d so that
ξ ∈ v′ + [0,2N)d . Similarly, for any v ∈ R

d define C
ω,ξ
v,N as the cell C

ω,ξ

v′,N , where

v′ is the unique element of v + 2N
Z

d so that ξ ∈ v′ + [0,2N)d . We remark that
auxiliary points and corresponding cells can also be defined for noncenters, as their
images by the respective affine transformations of the cells as above. This is the
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point in the construction where the statement of (1.4) becomes evident, as f
ω,ξ
v,n

will be defined as the indicator function of C
ω,ξ
v,n .

For each fixed N , we have defined the algorithm recursively, but we will prefer
to think about it as an algorithm running through N stages, where in the ith stage
C

ω,ξ
v,i and aux(ξ, v, i) are constructed for each ξ ∈ ω. Each stage consists of d

steps, one for each axis.
Next we present the AKT weak allocation scheme in an infinite setup. (This

will not yet be a weak allocation rule because equivariance fails.) Let ω now be
distributed according to the Poisson point process. For each v ∈ R

d and n ≥ 1 we
define AKTω,v,n to be the weak allocation, whose restriction to C (C ∈ v+2n

Z
d +

[0,2n)d with C ∩ω �= ∅) is the local allocation between C and C ∩ω given by the
previous method. We call the algorithm that produces AKTω,v,n AKT(v) run up to
stage n, or simply AKT(v). Note that for any n < n′ and i ≤ n the transformations
taking place in the ith step of the algorithm are the same for AKT(v) run up to
stage n and for AKT(v) run up to stage n′. Hence the latter can be thought of as a
continuation of the former.

For a simpler discussion, condition now on 0 ∈ ω, and take ξ = 0.

LEMMA 2.1. For P′-almost all ω′ ∈ �′, the sequence of cells {Cω′,0
v,n }n≥1 of 0

resulting from AKTω′,v,n satisfies

lim
n→∞λ

(
Cω′,0

v,n

) = lim
n→∞

∫
Rd

f ω′,0
v,n (x) dx = 1,

where convergence is uniform in v.

LEMMA 2.2. There exist c, b > 0 and an increasing family of events (ER)R>0
such that:

(i) 1 − P′[ER] < c exp(−bRd);
(ii) for every ω′ ∈ ER and v ∈ R

d , the diameter of the cell Cω′,0
v,n ∪ {0} of 0 in

the AKT(v) run up to stage n is at most cR;
(iii) there are constants cn(R) such that the series

∑∞
n=1 cn(R) is summable,

and for every ω′ ∈ ER and v ∈ R
d the bound∥∥f ω′,0

v,n − f
ω′,0
v,n+1

∥∥
1 = λ

(
Cω′,0

v,n 	C
ω′,0
v,n+1

)
< cn(R)

holds for every n.

The proof follows from the usual analysis of the AKT algorithm, with a slight
modification needed because of uniformity in v; for details, see Section 4.

3. The allocation rule. In this section we will provide the necessary details
for the construction that was sketched in Section 1.1 and prove that it is indeed
well defined. Simultaneously we will execute the analysis on the tail behavior of
the diameter of certain cells in order to verify Theorem 1.1. Recall that f

ω,ξ
v,n was
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defined as the indicator function of the cell of ξ resulting from AKT(v) run up to
stage n, where ξ ∈ ω ∈ �.

The next lemma is straightforward from the definitions.

LEMMA 3.1. For P-almost every ω ∈ �, for almost every v ∈ R
d and every

n ≥ 0, the map f ω
v,n :ω → L1(Rd), f ω

v,n(ξ) = f
ω,ξ
v,n is a weak allocation.

Of course, the map ω �→ f ω
v,n in the lemma is far from being equivariant; hence

it does not define a weak allocation rule.

LEMMA 3.2. For P′-almost every ω′ ∈ �′ and fixed n ≥ 1, the map v �→ f ω′,0
v,n

is L1-continuous in v ∈ [0,2n)d , except for possibly v in the union of countably
many hyperplanes.

PROOF. The function f ω′,0
v,n changes continuously in v, except for the case

when a hyperplane H of the form H = v + {(x1, . . . , xj−1, k, xj+1, . . . , xd) :xi ∈
R}, j ∈ {1, . . . , d}, k ∈ {1, . . . ,2n} contains some point of ω′. To see this, let v and
v′ be two points such that each point of ω′ is on the same side of the respective
pairs of hyperplanes above. Recall from Section 2 that the constructed cells do not
vary from the viewpoint of the reference points in this case. More precisely, the
indicator function f ω′,0

v,n is the translate of f
ω′,0
v′,n by v − v′.

The above containment property is equivalent to the condition that v is in⋃
ξ∈ω′∩[−2n,2n)d

⋃d
j=1

⋃2n

k=1 −ξ + {(x1, . . . , xj−1, k, xj+1, . . . , xd) :xi ∈ R
d}. This

is a countable union of sets of measure 0 with probability 1; hence the points of
discontinuity form a set of measure 0. �

Define [as in (1.5)] the averaging function f
ω,ξ
n = 1

2nd

∫
[0,2n)d f

ω,ξ
v,n dv for ω ∈

�, ξ ∈ ω. By the previous lemma, the integral in the definition exists.

PROPOSITION 3.3. For P-almost every ω ∈ �, for every ξ ∈ ω, the L1 limit
f ω,ξ of f

ω,ξ
n exists as n → ∞, it is a function with values in [0,1], it has inte-

gral 1, and satisfies P[diam({ξ} ∪ supp(f ω,ξ )) > R|ξ ∈ ω] ≤ c exp(−bRd) with
some c, b > 0.

PROOF. Since the measure P is equivariant, it is enough to prove the claim for
the Palm version: for P′-almost every ω′ ∈ �′ and with ξ = 0. Recall that ER is a
monotone increasing family of events that exhausts a subset of P′-measure 1 in �′,
and that the function f ω′,0, if exists, does not depend on R. Fix R, let ER be as in
Lemma 2.2 and assume that ω′ ∈ ER .

For an arbitrary m,n ∈ Z
+, m ≤ n, u ∈ 2m{0,1, . . . ,2n−m − 1}d , let

gm,u,ω′
n = gm,u

n := 1

2md

∫
u+[0,2m)d

f ω′,0
v,n dv.



A POISSON ALLOCATION OF OPTIMAL TAIL 1295

In particular, f ω′,0
n = gn,u

n . Then

f ω′,0
n = 1

2(n−m)d

∑
u∈2m{0,1,...,2n−m−1}d

gm,u
n .(3.1)

If u,u′ ∈ 2m · {0,1, . . . ,2n−m − 1}d , then gm,u
m = gm,u′

m because the sequence of
dyadic partitions used in the construction for such a u and u′ is the same up to
stage m, also showing (1.4). We have

∥∥gm,u
n − gm,u

m

∥∥
1 =

∥∥∥∥2−md
∫
u+[0,2m)d

f ω′,0
v,n dv − 2−md

∫
u+[0,2m)d

f ω′,0
v,m dv

∥∥∥∥
1

≤ 2−md
∫
u+[0,2m)d

∥∥f ω′,0
v,n − f ω′,0

v,m

∥∥
1 dv,

and similarly for u′.
By Lemma 2.2(iii), the right-hand side of this inequality is bounded from above

by
∑∞

i=m ci(R).
Hence by the triangle inequality we obtain∥∥gm,u

n − gm,u′
n

∥∥
1 ≤ ∥∥gm,u

n − gm,u
m

∥∥
1 + ∥∥gm,u

m − gm,u′
m

∥∥
1 + ∥∥gm,u′

n − gm,u′
m

∥∥
1

(3.2)

≤ 2
∞∑

i=m

ci(R).

Using (3.1) this implies

∥∥f ω′,0
n − gm,0

n

∥∥
1 ≤ ∑

u∈2m{0,1,...,2n−m−1}d
1

2(n−m)d

∥∥gm,u
n − gm,0

n

∥∥
1

(3.3)

≤ 2
∞∑

i=m

ci(R).

On the other hand, for any m,n ∈ Z
+, m ≤ n,∥∥f ω′,0

n − f ω′,0
m

∥∥
1 ≤ ∥∥f ω′,0

n − gm,0
n

∥∥
1 + ∥∥gm,0

n − f ω′,0
m

∥∥
1

= ∥∥f ω′,0
n − gm,0

n

∥∥
1 + ∥∥gm,0

n − gm,0
m

∥∥
1.

The first term on the right is ≤ 2
∑∞

i=m ci(R) by (3.3), and the second term is
≤ ∑n

i=m ci(R) by Lemma 2.2(iii). We conclude that (f ω′,0
n ) is a Cauchy sequence,

and so there is a limit f ω′,0 in L1. The fact that f ω′,0 takes values in [0,1] fol-
lows directly from the same fact about f ω′,0

n . By Lemma 2.1 it is easy to see that∫
f ω′,0

n → 1, and by Lemma 2.2 the support of each f ω′,0
n is within radius cR

around 0; hence the dominated convergence theorem implies that
∫

f ω′,0 = 1. The
bound on the tail probability of the support is the consequence of Lemma 2.2(i).
The above hold for every R and P′[∪ER] = 1; hence the proposition follows. �
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The next proposition implies the variant of Theorem 1.1 for fractional allocation
rules instead of allocation rules; see Definition 1.

PROPOSITION 3.4. The map η :ω �→ f ω with f ω :ω → L1(Rd), ξ �→ f ω,ξ is
a fractional allocation rule. It satisfies

P
[
diam

({0} ∪ suppf ω,0)
> R|0 ∈ ω

] ≤ c exp
(−bRd)

for some c and b > 0.

PROOF. By Proposition 3.3 we have that η :ω �→ f ω with f ω :ω → L1(Rd),
ξ �→ f ω′,ξ satisfies (1′) and (3) in the definition of a fractional allocation rule and
similarly for the claim about the support of f ω,0. Measurability and equivariance
are clear from the construction. So it only remains to prove (2′).

By Lemma 3.1, ξ �→ f
ω,ξ
v,n defined on ω is a weak allocation; in particular, (2)

from Definition 1 holds. Hence for almost every x ∈ R
d ,

∑
ξ∈ω

f ω,ξ
n (x) = ∑

ξ∈ω

2−nd

(∫
[0,2n)d

f ω,ξ
v,n dv

)
(x)

= 2−nd
∫
[0,2n)d

∑
ξ∈ω

f ω,ξ
v,n (x) dv ≤ 2−nd

∫
[0,2n)d

1dv = 1,

showing that {f ω,ξ
n : ξ ∈ ω} satisfies (2′).

Finally, this implies
∑

ξ∈ω limn f
ω,ξ
n (x) = limn

∑
ξ∈ω f

ω,ξ
n (x) ≤ 1 (applying

the dominated convergence theorem for every compact subset of Rd ). �

The following theorem is a special case of the Campbell–Mecke formula. We
will use it in the proof of Lemma 3.6.

THEOREM 3.5 [10]. For any integrable f :Rd × � →R
+,

E
[∑
x∈ω

f (x,ω)

]
=

∫
Rd

E
[
f (x,ω)|x ∈ ω

]
dx,

where E is expectation with respect to the Poisson point process of unit intensity.

LEMMA 3.6. P-almost surely for almost every x ∈ R
d , x is contained in

supp(f ω,ξ ) for only finitely many ξ ’s.

PROOF. Let z ∈ Z
d , and denote by Yz the random variable that is the num-

ber of centers ξ of ω such that the intersection of supp(f ω,ξ ) and z + [0,1)d is
nonempty. Then

EYz ≤ E
[∑
ξ∈ω

A(ξ,ω)

]
,
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where A(x,ω) = 1 if x ∈ ω and diam({x} ∪ suppf ω,x) > |x − z| − √
d , and

A(x,ω) = 0 otherwise. Using Proposition 3.4 and Theorem 3.5 we have

EYz ≤
∫
Rd

P
[
diam

({x} ∪ suppf ω,x)
> |x − z| − √

d|x ∈ ω
]
dx

≤
∫
Rd

c exp
(−b

(|x| − √
d
)d)

dx < ∞.

Hence P[Yz = ∞] = 0, and also P[⋃z∈Zd {Yz = ∞}] = 0, which implies the state-
ment. �

A direct consequence is the following:

LEMMA 3.7. For P-almost every ω one can partition R
d to countably many

measurable sets of the form S = ⋂k
i=1 supp(f ω,ξi ) (with some ξ1, . . . , ξk ∈ ω and

k ∈N).

The previous lemma will enable us to define an allocation rule from our frac-
tional allocation rule, in such a way that the cell allocated to a center ξ ∈ ω is
contained in supp(f ω,ξ ). Namely, for each set S as in Lemma 3.7, we will par-
tition S into measurable pieces S1, . . . , Sk such that λ(Si) = ∫

S f ω,ξi (x) dx. We
will do it in a way such that S and the f ω,ξi (i = 1, . . . , k) determine the pieces
Si in some previously fixed (deterministic) way, and such that the pieces change
continuously with S (in terms of Hausdorff distance between sets, say). The cen-
tral issue is to obtain a partition and an association to the centers that is translation
equivariant. A method to do so was suggested to us by Yuval Peres, replacing the
original, less elegant proof for the following lemma:

LEMMA 3.8. Let η :ω �→ f ω be a fractional allocation rule that satisfies
Lemma 3.7. Then there is an allocation rule ψ :ω �→ ψω such that for every ξ ∈ ω

we have supp(ψω(ξ)) ⊂ supp(f ω,ξ ).

PROOF. For each set of the form S = ⋂k
i=1 supp(f ω,ξi ) as in Lemma 3.7,

let α = {ξ1, . . . , ξk} and ci := ∫
S(f ω,ξi )(x) dx, i = 1, . . . , k. So

∑k
i=1 ci is the

Lebesgue measure of S. Apply a version of the site-optimal Gale and Shapley
algorithm (see [4] for a more detailed description) within S to partition it into
S = (S1, . . . , Sk) (up to a remainder set of measure zero) as follows with Si cor-
responding to ξi . First we put all the points of S that are equidistant to any pair
of centers from α into the set W . We note that W has measure zero. Now we will
stage-wise define a series of disjoint subsets of S \ W and auxiliary sets corre-
sponding to the centers in α. Let A1(ξ1), . . . ,A1(ξk) be the intersections of the
Voronoi cells of α with S \ W , and set R0(ξi) = ∅ for all i ∈ [k]. Suppose that
we have already constructed the sets in {Al(ξi),Rl−1(ξi) : i ∈ [k], l ≤ n}. The dis-
joint sets An+1(ξ1), . . . ,An+1(ξk) will be obtained as follows. We define for all
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n and ξi ∈ α the rejection radius rn(ξi) = inf{r ≥ 0 :λ(An(ξi) ∩ B(ξi, r)) ≥ ci},
and the rejection sets Rn(ξi) = An(ξi) \ B(ξi, rn(ξi)). Using this notation we de-
fine An+1(ξi) = (An(ξi) ∩ B(ξi, rn(ξi))) ∪ N(ξi), where x ∈ N(ξi), if and only
if x /∈ ⋃n

j=1 Rj(ξi), x ∈ ⋃k
j=1 Rn(ξj ), and if for any other l ∈ [k], it holds that

x /∈ ⋃n
j=1 Rj(ξl), then |x − ξi | < |x − ξl|.

With the aid of these sets we are able to define S , let Si = ⋃
n≥1

⋂
k≥n(Ak(ξi)∩

B(ξi, rk(ξi))). It is clear that the map ξi �→ Si is equivariant under translations,
that is, for any y ∈ R

d we have ξi + y �→ Si + y when we run the algorithm for
S + y and α + y. It is also true that the Si’s are pairwise disjoint, because the
sets An(ξ1), . . . ,An(ξk) were also pairwise disjoint by definition for all n ≥ 1. It
remains to show that they provide a partition of S \ W up to a set of measure zero.
First note that for each i we have λ(Si) = lim infn→∞ λ(An(ξi) ∩ B(ξi, rn(ξi))) =
lim supn→∞ λ(An(ξi) ∩ B(ξi, rn(ξi))) ≤ ci . If there exists an x /∈ ⋃

i∈[k] Si , then
x ∈ ⋂

i∈[k]
⋃

n≥1 Rn(ξi), which implies that
⋃

n≥1 Rn(ξi) is nonempty for each i ∈
[k], so therefore λ(Si) = ci . It follows that λ(S \ (

⋃
i∈[k] Si)) = 0.

We also provide the intuitive picture for better understanding. Let each ξi start
growing a ball around itself at linear speed, simultaneously. At time t let each ξi

capture all points of S that its growing ball meets, as long as no other ball has
captured the point at some earlier time. However, when the total measure of points
in S that ξi has captured by time t is equal to ci , stop growing its ball; that is, let
Pi(t

′) be equal to Pi(t) as long as t ′ > t [where Pi(t) is the set of points in S that
have been captured by ξi by time t]. It is clear that by some time t the Lebesgue
measure of Pi(t) is equal to ci for each i. Define this Pi(t) to be the part of the
cell of ξ within S. One can also show that the correspondence between α and S is
stable; see [4] for more details.

Doing this subdivision for each of the countably many S, we get the cell of
ξi assigned to it by our allocation. Measurability and invariance follow from our
method and the assumptions. �

We finish by noting that Proposition 3.4 and Lemma 3.8 imply Theorem 1.1.
If we wanted the cells assigned by our allocation rule to be connected and to

contain the corresponding center, this could be done by growing “tendrils” that
connect the pieces of each cell C of the original allocation, and the center for C.
By taking care to preserve measurability and equivariance, we believe that this can
be done, but we omit the details here.

REMARK 3.9. We have only worked out the allocation rule for the translation-
equivariant case. However, one can make it isometry-equivariant. Besides parame-
ter v that determined a translate of 2n

Z
d in the definition of the function f

ω,ξ
v,n , we

need to introduce a parameter θ ∈ {x ∈ R
d, |x| = 1} to determine a rotation of Zd .

When we integrate through v in the definition of f
ω,ξ
n , we then have to integrate

with respect to θ as well; otherwise every part of the proof extends to this modified
setup automatically.
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REMARK 3.10. An intuitive interpretation of the AKT algorithm comes from
thinking of the centers as gas particles. Then the procedure systematically equates
pressures between neighboring cubes in the dyadic subdivision. For the sake of
analysis it was easier to allow cells around particles to expand in the directions of
the axes, but a more “canonical” version would be obtained without this artifact.
That is, put one particle of gas in each center of the point process, and start grow-
ing cells around them (small balls at the beginning), whose pressures would be
proportional to the volume of the cell and at normal direction to the surface. When
two cells meet, the pressure differences between them would tend to equate, and
in the limit all the cells would have the same volumes. The tail behavior of their
diameters should be as good as that of our fractional allocation rule (and perhaps
better if we take constant factors into account). On an even more speculative note,
we mention that the above procedure looks like a modification of the stable allo-
cation rule: do not fix centers, and let the growing cells “push” each other while
occupying yet unoccupied territories.

QUESTION 3.11. Can one make the above heuristics precise in order to obtain
a canonical allocation rule of optimal tail?

4. Proofs of Lemmas 2.1 and 2.2. The cuboid AKTω,v,n(0) is a result of nd

affine transformations (in n stages), not taking into account in how many steps the
initial cell of 0 is constructed. Hence we can bound the diameter of Cω,0

v,n ∪ {0}
by first bounding | aux(0, v, n)| and then bounding the sum of the lengths of the
edges of Cω,0

v,n (which bounds the diameter of Cω,0
v,n ). In each stage there is at most

1 step along each of the d axes. Also, the sizes of the steps along different axes are
independent as random variables. Therefore, if we wish to obtain an upper bound
on the total movement of a point x during the shifts, steps along different axes can
be treated separately.

The next lemma is standard, and we prove it only for completeness.

LEMMA 4.1. Let X be a random variable with Poisson distribution of mean λ.
If 0 ≤ ρ ≤ 2, then

P
[|X − λ| > λρ

]
< 2 exp

(
−λρ2

4

)
.

PROOF. Note that the moment generating function of X is

M(t) = E
[
exp(tX)

] = exp
(
λ
(
et − 1

))
, t ∈ R.

For one side

P[X − λ > λρ] = P
[
exp(tX) > exp

(
λt (ρ + 1)

)]
<

E[exp(tX)]
exp(λt (ρ + 1))

= exp(λ(et − 1))

exp(λt (ρ + 1))
,
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where t > 0, and we use Markov’s inequality. Now, for 0 < t < 1 we have et <

1 + t + t2, so

P[X − λ > λρ] <
E[exp(tX)]

exp(λt (ρ + 1))
= exp

(
λ
(
t2 + t

) − λt(ρ + 1)
)
.

The last expression is minimized by t = ρ/2, so

P[X − λ > λρ] < exp
(
−ρ2λ

4

)
.

For the other bound,

P[λ − X > λρ] = P
[
exp(−tX) > exp

(−λt(1 − ρ)
)]

<
E[exp(−Xt)]

exp(−λt(1 − ρ))
= exp(λ(e−t − 1))

exp(−λt(1 − ρ))
,

where t > 0, and we use again Markov’s inequality. Now, for 0 < t we have e−t <

1 − t + t2/2, so

P[λ − X > λρ] <
exp(λ(e−t − 1))

exp(−λt(1 − ρ))
= exp

(
λ
(
t2/2 − t

) + λt(1 − ρ)
)
.

The last expression is minimized by t = ρ, so

P[λ − X > λρ] < exp
(
−ρ2λ

2

)
. �

For a measurable subset B ⊂ R
d , let N(B) denote the number of centers of

the Poisson point process in B . Let l(C
ω,ξ
v,n ) ∈ R

d denote the vector, whose ith
coordinate is the length of an edge parallel to the ith axis of the cuboid C

ω,ξ
v,n .

The next lemma summarizes all the needed consequences of the concentration
of the number of centers in a fixed set. Namely, the discrepancy of this number
determines the distribution of how much a center is moved (through its auxiliary
points) and a cuboid deformed during the AKT(v) procedure, and these two give
bounds on the distance of the center from the resulting cell and the diameter of the
cell, respectively.

LEMMA 4.2. There exist c, b > 0 and an increasing family of events (ER)R>0
such that:

(i) 1 − P′[ER] < c exp(−bRd);
(ii) there exist c′

i = c′
i (R) (i ∈ {0,1, . . .}) such that for every ω′ ∈ ER and every

v ∈ R
d , one has | aux(0, v, i) − aux(0, v, i − 1)| ≤ c′

i and
∑∞

i=0 c′
i < cR;

(iii) there exist ei = ei(R) (i ∈ {0,1, . . .}) such that for every ω′ ∈ ER and every
v ∈ R

d , one has |l(Cω′,0
v,i ) − l(C

ω′,0
v,i−1)|∞ < ei and such that

∑∞
i=0 ei < cR.
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PROOF. Our analysis will loosely follow the argument of Talagrand and Yu-
kich [11], although we are able to use less sophisticated methods because the sizes
of the induced displacements occurring in further stages of the AKT algorithm
decay much more rapidly in d ≥ 3 than in d = 2. On the other hand, we have to
achieve uniform bounds with respect to v ∈ R

d .
It is enough to prove the lemma only for R > R0 for some suitably chosen

R0 > 0. Then the lemma will follow for every R > 0, perhaps with different con-
stants.

Fix R > R0; R0 will be determined later.
In any given stage the shift of the auxiliary point of 0 in the direction of the ith

axis only depends on the number of auxiliary points in the currently considered
cuboids. Moreover, the length of the shift only depends on the ith coordinates of
the auxiliary points in the cube. Hence the shifts in different directions are inde-
pendent. Therefore it will be enough to bound the shifts along the first axis.

We set r0(R) = �log2 R� − d − 1 for each R > 0. That is, R
2d+1 ≤ 2r0 < R

2d .
We will define the event AR = AR,1 in terms of bounds on the number of cen-

ters in certain cuboids. For each n ≥ r0 consider cuboids that satisfy the follow-
ing three conditions: the cuboid is the translate of [0,2n−1 − 2−n−1) × [0,2n −
2−n) × · · · × [0,2n − 2−n), has a corner in 2−n

Z
d , and either contains 0, or

one of its translates by ±(2n−1 − 2−n−1,0, . . . ,0) does. Let Gn
1 denote the set

of these objects. Similarly, for each n ≥ r0 consider cuboids that satisfy the
following three conditions: the cuboid is the translate of [0,2n−1 + 2−n−1) ×
[0,2n + 2−n) × · · · × [0,2n + 2−n), has a corner in 2−n

Z
d and either it con-

tains 0 or one of its translates by ±(2n−1 + 2−n−1,0, . . . ,0) does. Let Gn
2 de-

note their set. Let us set ρn = ρn(R) = 2−(5n/4)−2dR5/4. For each n ≥ r0 = r0(R)

and Q ∈ Gn
1 ∪ Gn

2 , define the event BQ, that |N(Q \ {0}) − λ(Q)| < λ(Q)ρn. Let
AR = ⋂∞

n=r0

⋂
Q∈Gn

1 ∪Gn
2
BQ. Note that r0(R) and ρn(R) for any fixed n are increas-

ing in R, and therefore (AR)R>0 is an increasing family of events.
It is straightforward from the defining formula, that ρr0 ≥ ρn for any n ≥ r0.

Also,

ρr0 = 2−r0(5/4)−2dR5/4 ≤
(

2d+1

R

)5/4

2−2dR5/4 = 2(5/4)−(3d/4) ≤ 1

2
.(4.1)

Furthermore,

∞∑
n=r0

ρn = ρr0

∞∑
n=r0

ρn

ρr0

≤ 1

2

∞∑
i=0

(
2−5/4)i = 1

2 − 2−1/4 < 1.(4.2)

First, we establish an upper bound on (1−P′[AR]). The distribution of N(Q\ {0})
according to the Palm version of the Poisson point process is Poisson with mean
λ(Q). Thus we can use Lemma 4.1 [noting that ρn ≤ 1

2 for all n ≥ r0 and that
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λ(Q) < 2(n−1)d for Q ∈ Gn
1 ∪ Gn

2 ] and a simple union bound to get

1 − P′[AR] ≤
∞∑

n=r0

∑
Q∈Gn

1 ∪Gn
2

(
1 − P′[BQ])

<

∞∑
n=r0

(∣∣Gn
1

∣∣ + ∣∣Gn
2

∣∣)2 exp
(
−ρ2

n2(n−1)d

4

)
.

Using |Gn
1 | = 3(22n − 1)d and |Gn

1 | = 3(22n + 1)d , we conclude that

1 − P′[AR] <

∞∑
n=r0

2(2n+1)d+4 exp
(−2(n−1)d2−((5n)/2)−4d−2R5/2)

(4.3)

=
∞∑

n=r0

22nd+d+4 exp
(−2n(d−5/2)−5d−2R5/2)

.

Denote the ith term in the sum by ai . Observe that

ar0 < R2d2−2d2+d+4 exp
(−Rd2−d2−(7/2)d+1/2)

,(4.4)

(by R/2d+1 ≤ 2r0 ≤ R/2d ), and that
an+1

an

= 22d exp
(
2n(d−5/2)−5d−2R5/2(

1 − 2(d−5/2)))
≤ 22d exp

(−2(n−r0)(d−5/2)−d2−(7/2)d+1/2Rd(
2(d−5/2) − 1

))
≤ 22d exp

(−Rd2−d2−(7/2)d+1/2(
2(d−5/2) − 1

))
.

Hence there exists a constant c′ > 0 such that for R0 chosen large enough, for
every R > R0,

1 − P′[AR] < exp
(−c′Rd)

.

Now let us assume that n ≥ r0 throughout the following computation. Let W be
an arbitrary translate of [0,2n)d containing 0, with U its left half and V its right.
Then, when conditioned on AR (and on 0 being a center), the following is true:∣∣∣∣N(U) − N(V )

N(U) + N(V )

∣∣∣∣ < 4ρn.(4.5)

We can show this by making an easy observation: there are U ′,V ′ ∈ Gn
1 and

U ′′,V ′′ ∈ Gn
2 , so that U ′ ⊂ U ⊂ U ′′ and V ′ ⊂ V ⊂ V ′′. Note that

N(U) − N(V )

N(U) + N(V )
(4.6)

≤ N(U \ {0}) − N(V \ {0})
N(U \ {0}) + N(V \ {0}) + 1

N(U \ {0}) + N(V \ {0}) .
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On AR we have

N(U \ {0}) − N(V \ {0})
N(U \ {0}) + N(V \ {0})

≤ N(U ′′ \ {0}) − N(V ′ \ {0})
N(U ′ \ {0}) + N(V ′ \ {0})

(4.7)

<
1/2(2n + 2−n)d(1 + ρn) − 1/2(2n − 2−n)d(1 − ρn)

(2n − 2−n)d(1 − ρn)

= 1

2

[
1 + ρn

1 − ρn

(
2n + 2−n

2n − 2−n

)d

− 1
]
,

where the first inequality holds by monotonicity of N(·) and the second by the
definition of AR . To further estimate (4.7), use that

1 + ρn

1 − ρn

= 1 + 2ρn

1 − ρn

≤ 1 + 4ρn,

(recalling ρn ≤ 1
2 for n ≥ r0) and that

(
2n + 2−n

2n − 2−n

)d

=
(

1 + 2

22n − 1

)d

<

(
1 + 1

22n−2

)d

< 1 + 2d 1

22n−2 .

We obtain from the two previous expressions and (4.7) that

N(U \ {0}) − N(V \ {0})
N(U \ {0}) + N(V \ {0}) <

1

2

(
4ρn + 1

22n−2−d
+ 1

22n−2−d
4ρn

)
,(4.8)

which is an upper bound for the first term on the right-hand side of (4.6). The
second term on the right-hand side of (4.6) is (rather roughly) bounded by

1

N(U \ {0}) + N(V \ {0}) <
1

(2n − 2−n)d

1

1 − ρn

<
1

22n
.(4.9)

If R > R0(d) for an R0 chosen suitably large, it follows that ρn = 2−(5n)/4−2dR5/4

is greater than 2−2n+2 for n ≥ r0. Therefore by adding up bounds (4.8) and (4.9),
we show that for R > R0,

N(U) − N(V )

N(U) + N(V )
< 4ρn.

Symmetry of AR in U and V implies∣∣∣∣N(U) − N(V )

N(U) + N(V )

∣∣∣∣ < 4ρn.

Having estimated the discrepancy of points in the two halves of cubes, we are
now ready to give upper bounds on the total shift during the AKT procedure. Let
v′ be an arbitrary point in R

d , and let Dn = (aux(0, v′, n))1 − (aux(0, v′, n − 1))1,
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the signed amount by which the auxiliary point of 0 is translated along the first
axis in the nth stage of AKT(v′). By the observation that until the nth stage, every
displacement takes place inside a cube of sidelength 2n, we trivially have∣∣∣∣∣

r0−1∑
n=1

Dn

∣∣∣∣∣ ≤ 2r0−1 <
R

2d+1 <
R

2d
.

For n ≥ r0, Dn = (2n−1 −hn)
N(Un)−N(Vn)
N(Un)+N(Vn)

, where Qn is the element of v′ + 2n
Z+

[0,2n)d containing 0, with Un its left half and Vn its right, and 0 ≤ hn ≤ 2n−1 is the
distance of aux(0, v′, n − 1) to the hyperplane separating Un and Vn. Conditioned
on AR (and 0 being a center) we then have∣∣∣∣∣

∞∑
n=r0

Dn

∣∣∣∣∣ ≤
∞∑

n=r0

∣∣∣∣(2n−1 − hn

)N(Un) − N(Vn)

N(Un) + N(Vn)

∣∣∣∣
<

∞∑
n=r0

2n+1ρn =
∞∑

n=r0

2−n/4−2d+1R5/4

(4.10)

= R5/42−r0/4−2d+1
∞∑

n=0

2−n/4

≤ R2−(7/4)d+5/4 1

1 − 2−1/4 <
R

2d
,(4.11)

since R
2d+1 ≤ 2r0 by the choice of r0. Thus we have that, conditioned on the

event AR and 0 being a center, for every v′ ∈ R
d the total shift of 0 along the

first axis, |(aux(0, v′, n))1|, is at most R
d

for every n ≥ 1 when the AKT(v′) is
run up to stage n. Furthermore, we have seen in (4.10) that on AR the length
|(aux(0, v′, n))1 − (aux(0, v′, n−1))1| is at most b′

n(R) := 2−n/4−2d+1R5/4 when-
ever n ≥ r0(R).

For 1 < i ≤ d one can define the events AR,i similarly to AR,1, to establish tail
bounds of the lengths of the shifts along the ith axis. We define the subevents of
AR,i analogously to the subevents of AR,1, conditioning on the relative deviation
(with respect to the expectation) of the number of configuration points being be-
tween factors (1 − ρn) and (1 + ρn) in certain cuboids, with n depending on the
side length of the cuboid. Thus we arrive at the same failure probability bound as
in (4.11).

Now define

ER :=
d⋂

i=1

AR,i .(4.12)

This event satisfies conditions (i) and (ii) of the lemma: (i) holds by a union bound
on the complement events. On the other hand, (ii) is true by (4.11) summed up for
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each of the d directions (using the triangle inequality), with c′
n(R) = db′

n(R). Fur-
thermore, (ER)R>0 is an increasing family of events, since for each i, the families
(AR,i)R>0 are as well.

Now we turn to the proof of (iii).
It is clear that |l(Cω′,0

v,n )|∞ ≤ 2r0−1 < R
2d+1 for n < r0 because transformations

of the cell only happen inside a cube of sidelength 2r0−1.
For n ≥ r0, ∣∣l(Cω′,0

v,n

)∣∣∞ <
∣∣l(Cω′,0

v,n−1

)∣∣∞(1 + 4ρn)

because, conditioned on ER , in each step of the nth stage, at most one sidelength
can be stretched to at most (1+4ρn) times its current size, using (4.5). This implies
by (4.2) that

∣∣l(Cω′,0
v,n

)∣∣∞ <
∣∣l(Cω′,0

v,r0−1

)∣∣∞
∞∏

i=r0

(1 + 4ρi) ≤ R

2d+1 exp

( ∞∑
i=r0

4ρi

)

<
R

2d+1 exp(4).

On ER , each component of l(C
ω′,0
v,n+1) is between multiplicative factor (1 − 4ρn+1)

and (1 + 4ρn+1) of the respective component of l(Cω′,0
v,n ). This implies with the

previous computation that

∣∣l(Cω′,0
v,n+1

) − l
(
Cω′,0

v,n

)∣∣∞ < 4ρn+1
∣∣l(Cω′,0

v,n+1

)∣∣∞ < 4ρn+1
R

2d+1 exp(4).

The {ρn} series is summable [see (4.2)] and
∑∞

i=r0
ρi

exp(4)

2d−1 R <
exp(4)

2d−1 R, which
proves the claim. �

PROOF OF LEMMA 2.1. What we need to prove is that the measure of the
cell assigned to 0 by AKT(v) run up to stage n tends to 1 with n. This is again
a simple consequence of the fact that the number of Poisson points in a large
cube is concentrated around the volume of the cube and that for any v and n

the weak allocation AKTω′,v,n is the composition of local allocations between
the classes of the dyadic partition and the centers lying in them. The only extra
technicality comes from the fact that we want to prove convergence of the cell
volumes uniformly in v, but this can be checked in the same way as in the proof
of Lemma 4.2, so we only sketch it here. For R > 0, let the events ER be the
same as in that lemma. In particular, for any ω′ ∈ ER and v ∈ R

d we have that
(2n − 2−n)d(1 − ρn(R)) < N(Qn \ {0}) < (2n + 2−n)d(1 + ρn(R)), where Qn is
the element of v+2n

Z
d +[0,2n)d which contains 0. Since Cω′,0

v,n is a cell of a local

allocation between Qn and ω′ ∩Qn, λ(Cω′,0
v,n ) = 2nd

N(Qn)
→ 1 as n → ∞, uniformly

in v. The events ER exhaust a set of measure 1 in �′, so the claim of the lemma
follows. �
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PROOF OF LEMMA 2.2. We take the same events ER as in Lemma 4.2, and
therefore (i) is satisfied. Furthermore, (ER)R>0 is an increasing family.

To show (ii), use the following upper bound together with (ii) and (iii) of
Lemma 4.2:

diam
(
Cω′,0

v,n ∪ {0}) ≤ ∣∣aux(0, v, n)
∣∣
1 + d

∣∣l(Cω′,0
v,n

)∣∣∞.

To verify that (iii) holds, let us fix n ≥ r0(R). Consider the transformations of the
cell of 0 that occur during the steps of the nth stage. There are d steps, and they all
can be treated similarly. Therefore we only consider the step along the first axis.
Let A denote the cell before this step, and B thereafter. We introduce an auxiliary
cell C: if w ∈ R

d is the shift vector of the auxiliary point of 0 in this step, then let
C = A + w. First, on ER we obtain an upper bound on λ(A	C).

λ(A	C) ≤ 2|w|∣∣l(A)
∣∣d−1
∞ ≤ 2c′

n(R)Rd−1,

where we use (ii) and (iii) from Lemma 4.2. Now we bound λ(C	B) using (iii)
from Lemma 4.2:

λ(C	B) ≤ ∣∣l(A)
∣∣d−1
∞

∣∣l(A) − l(B)
∣∣∞ ≤ Rd−1en(R).

If we consider the two series whose summands are the respective right-hand
sides of the two previous highlighted formulas, then both of them are absolutely
summable by Lemma 4.2. We obtain cn(R) := d(Rd−1(2c′

n(R) + en(R))). �
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