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RATE OF CONVERGENCE OF THE NANBU PARTICLE SYSTEM
FOR HARD POTENTIALS AND MAXWELL MOLECULES

BY NICOLAS FOURNIER AND STÉPHANE MISCHLER

Université Pierre et Marie Curie and Université Paris Dauphine

We consider the (numerically motivated) Nanbu stochastic particle sys-
tem associated to the spatially homogeneous Boltzmann equation for true
hard potentials and Maxwell molecules. We establish a rate of propagation of
chaos of the particle system to the unique solution of the Boltzmann equa-
tion. More precisely, we estimate the expectation of the squared Wasserstein
distance with quadratic cost between the empirical measure of the particle
system and the solution to the Boltzmann equation. The rate we obtain is al-
most optimal as a function of the number of particles but is not uniform in
time.

1. Introduction and main results.

1.1. The Boltzmann equation. The Boltzmann equation predicts that in a spa-
tially homogeneous dilute gas, the density f (t, v) of particles with velocity v ∈ R

3

at time t ≥ 0 solves

∂tft (v) = 1

2

∫
R3

dv∗
∫
S2

dσB
(|v − v∗|, θ)[

ft

(
v′)ft

(
v′∗

) − ft (v)ft (v∗)
]
,(1.1)

where the pre-collisional velocities are given by

v′ = v′(v, v∗, σ ) = v + v∗
2

+ |v − v∗|
2

σ,

(1.2)

v′∗ = v′∗(v, v∗, σ ) = v + v∗
2

− |v − v∗|
2

σ,

and θ = θ(v, v∗, σ ) is the deviation angle defined by cos θ = (v−v∗)|v−v∗| · σ . The col-
lision kernel B(|v − v∗|, θ) ≥ 0 depends on the nature of the interactions between
particles. See Cercignani [11], Desvillettes [13], Villani [43] and Alexandre [2]
for physical and mathematical reviews on this equation. Conservation of mass,
momentum and kinetic energy hold at least formally for solutions to (1.1), and we
classically may assume without loss of generality that

∫
R3 f0(v) dv = 1.
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We will assume that the collision kernel is of the form

B
(|v − v∗|, θ)

sin θ = �
(|v − v∗|)β(θ)

(1.3)
with β > 0 on (0, π/2) and β = 0 on [π/2, π].

This last condition β = 0 on (π/2, π] is not a restriction: as noted in the intro-
duction of Alexandre et al. [3], one can always reduce to this case for symmetry
reasons.

When particles behave like hard spheres, it holds that �(z) = z and β ≡ 1.
When particles interact through a repulsive force in 1/rs , with s ∈ (2,∞), one has

�(z) = zγ with γ = s − 5

s − 1
∈ (−3,1) and

β(θ)
0∼ cst θ−1−ν with ν = 2

s − 1
∈ (0,2).

One classically names hard potentials the case when γ ∈ (0,1) [i.e., s > 5 and
ν ∈ (0,1/2)], Maxwell molecules the case when γ = 0 (i.e., s = 5 and ν = 1/2)
and soft potentials the case when γ ∈ (−3,0) [i.e., s ∈ (2,5) and ν ∈ (1/2,2)].
The present paper concerns Maxwell molecules, hard potentials as well as hard
spheres, so that we always assume γ ∈ [0,1].

1.2. Stochastic particle systems. As a step to the rigorous derivation of the
Boltzmann equation, Kac [28] proposed to show the convergence of a stochastic
particle system to the solution to (1.1). Kac’s particle system is a (R3)N -valued
Markov process with infinitesimal generator L̃N defined, for φ : (R3)N 	→R suffi-
ciently regular and v = (v1, . . . , vN) ∈ (R3)N , by

L̃Nφ(v) = 1

2(N − 1)

× ∑
i �=j

∫
S2

[
φ

(
v + (

v′(vi, vj , σ ) − vi

)
ei

+ (
v′∗(vi, vj , σ ) − vj

)
ej

) − φ(v)
]
B

(|vi − vj |, θ)
dσ.

For h ∈ R
3, we note hei = (0, . . . ,0, h,0, . . . ,0) ∈ (R3)N with h at the ith place.

Roughly speaking, the system is constituted of N particles entirely character-
ized by their velocities (v1, . . . , vN), and each couple of particles with velocities
(vi, vj ) are modified, for each σ ∈ S

2, at rate B(|vi − vj |, θ)/(2(N − 1)) and are
then replaced by particles with velocities v′(vi, vj , σ ) and v′∗(vi, vj , σ ).

In the present paper, we will consider a slightly modified and nonsymmetric
particle system introduced by Nanbu [36]. The Nanbu stochastic particle system
corresponds to the generator LN defined, for φ : (R3)N 	→ R sufficiently regular
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and v = (v1, . . . , vN) ∈ (R3)N , by

LNφ(v) = 1

N

∑
i �=j

∫
S2

[
φ

(
v + (

v′(vi, vj , σ ) − vi

)
ei

) − φ(v)
]

(1.4)
× B

(|vi − vj |, θ)
dσ.

This system still describes N particles characterized by their velocities (v1, . . . ,

vN), but now each couple of particles with velocities (vi, vj ) are modified, for each
σ ∈ S

2, at rate B(|vi − vj |, θ)/N and are then replaced by particles with velocities
v′(vi, vj , σ ) and vj . Thus only one particle is modified at each “collision,” but the
rate of collision is multiplied by 2. All in all, the asymptotic behavior, as N → ∞,
should be the same.

1.3. Aims. Our aim is to prove that as N tends to ∞, the Nanbu stochastic
system is asymptotically constituted of independent particles with identical law
governed by the Boltzmann equation, and better, to quantify this convergence.

There are two main motivations for such a study. (i) From a physical point of
view, we want to know how well the Boltzmann equation approximates true par-
ticles. Of course, true particles are subjected to classical (nonrandom) dynamics,
so that studying the Kac (or Nanbu) particle system does not provide any rigor-
ous information on how well the Boltzmann equation approximates true particles.
However, as already mentioned, Kac proposed this problem as an intermediate
step. (ii) From a numerical point of view, we want to know how well the parti-
cle system approximates the Boltzmann equation. It is then important to get rates
of convergence, to know how to choose the number of particles (and the cutoff
parameter) to reach a given accuracy.

The main difficulty lies in the fact that even if the particle system is initially
constituted of independent particles, they do not remain independent for later times
because of interactions. Hence to answer the convergence issue, we have to prove
that particles asymptotically become independent, and at the same time to identify
their common law, we have to prove that the system is chaotic in the sense of
Kac [28].

We are able to prove and quantify the chaotic property for Nanbu’s particle
system. Unfortunately, our study does really not seem to work for Kac’s particle
system. From the physical point of view, Nanbu’s system is less pertinent. How-
ever, we believe that the behaviors of the two systems are very similar, so that our
results should also hold true for Kac’s particle system. From the numerical point of
view, both systems are expected to approximate the solution to (1.1) with an error
of the same order, so that the system under study is as interesting as Kac’s system.

We will also study a cutoff version of Nanbu’s system, where we remove colli-
sions generating small deviations. For technical reasons, we will not use the stan-
dard cutoff procedure where B(z, θ) is replaced by BK(z, θ) = B(z, θ)1{θ>1/K}
for some large K > 0. We will rather use some cutoff of the form BK(z, θ) =
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B(z, θ)1{θ>ϕ(K,z)}, where the positive function ϕ is chosen in such a way that∫
S2 BK(z, θ) dσ does not depend on z. This will simplify the argument in sev-

eral places. This cutoff procedure is motivated by two reasons. From a numerical
point of view, the particle system with generator LN cannot be directly simulated
because each particle collides with infinitely many others on each time interval
(except for hard spheres). Thus we have to introduce a cutoff. From a technical
point of view, we are not able to prove directly our estimates for the particle sys-
tem without cutoff: we have to study first the particle system with cutoff and then
to pass to the limit.

1.4. Assumptions. We assume that the collision kernel is of the form (1.3) with

∃γ ∈ [0,1],∀z ≥ 0, �(z) = zγ ,(1.5)

and either

∀θ ∈ (0, π/2), β(θ) = 1(1.6)

or

c0θ
−1−ν ≤ β(θ) ≤ c1θ

−1−ν

(1.7)
∃ν ∈ (0,1),∃0 < c0 < c1,∀θ ∈ (0, π/2).

This work could probably be extended to ν ∈ (0,2), since the important compu-
tations on which it relies also hold in this case. However, this would introduce
several technical difficulties. Since Maxwell molecules and hard potentials, which
we study, satisfy (1.7) with ν ∈ (0,1), we decided to avoid these technical compli-
cations.

The propagation of exponential moments requires the following additional con-
dition:

β(θ) = b(cos θ) with b nondecreasing, convex and C1 on [0,1).(1.8)

In practice, all these assumptions are satisfied for Maxwell molecules (γ = 0
and ν = 1/2), hard potentials [γ ∈ (0,1) and ν ∈ (1,1/2)] and hard spheres (γ = 1
and β ≡ 1).

1.5. Notation. For θ ∈ (0, π/2) and z ∈ [0,∞) we introduce

H(θ) =
∫ π/2

θ
β(x) dx and G(z) = H−1(z).(1.9)

Under (1.7), H is a continuous decreasing bijection from (0, π/2) into (0,∞),
and its inverse function G : (0,∞) 	→ (0, π/2] is defined by G(H(θ)) = θ , and
H(G(z)) = z. It is immediately checked that under (1.7), there are some constants
0 < c2 < c3 such that

∀z > 0, c2(1 + z)−1/ν ≤ G(z) ≤ c3(1 + z)−1/ν(1.10)
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and, as checked in [20], Lemma 1.1, there is a constant c4 > 0 such that for all
x, y ∈ R+, ∫ ∞

0

(
G(z/x) − G(z/y)

)2
dz ≤ c4

(x − y)2

x + y
.(1.11)

Under (1.6), we have G(z) = (π/2 − z)+ (with the common notation x+ =
max{x,0}), and a direct computation shows that (1.11) also holds true.

1.6. Well-posedness. Let Pk(R
3) be the set of all probability measures f on

R
3 such that

∫
R3 |v|kf (dv) < ∞. We first recall known well-posedness results for

the Boltzmann equation, as well as some properties of solutions we will need.
A precise definition of weak solutions is stated in the next section.

THEOREM 1.1. Assume (1.3), (1.5) and (1.6) or (1.7). Let f0 ∈ P2(R
3).

(i) If γ = 0, there exists a unique weak solution (ft )t≥0 ∈ C([0,∞),P2(R
3))

to (1.1). If f0 ∈ Pp(R3) for some p ≥ 2, then sup[0,∞)

∫
R3 |v|pft (dv) < ∞.

If
∫
R3 f0(v) logf0(v) dv < ∞ or if f0 ∈ P4(R

3) and is not a Dirac mass, then
ft has a density for all t > 0.

(ii) If γ ∈ (0,1], assume additionally (1.8) and that

∃p ∈ (γ,2),

∫
R3

e|v|pf0(dv) < ∞.(1.12)

There is a unique weak solution (ft )t≥0 ∈ C([0,∞),P2(R
3)) to (1.1) such that

∀q ∈ (0,p), sup
[0,∞)

∫
R3

e|v|q ft (dv) < ∞.(1.13)

Under (1.7) and if f0 is not a Dirac mass, then ft has a density for all t > 0.
Under (1.6) and if f0 has a density, then ft has a density for all t > 0.

Concerning well-posedness, see Toscani and Villani [42] for Maxwell molecu-
les, [15, 24] for hard potentials and [5, 16, 29, 30, 35] for hard spheres. The propa-
gation of moments in the Maxwell case in standard; see, for example, Villani [43],
Theorem 1, page 74. The propagation of exponential moments for hard potentials
and hard spheres, initiated by Bobylev [7], is checked in [24, 30]. Finally, the ex-
istence of a density for ft has been proved in [18] [under (1.7) and when f0 is not
a Dirac mass and belongs to P4(R

3)], in [35] [under (1.6) when f0 has a density]
and is very classical by monotonicity of the entropy when f0 has a finite entropy;
see, for example, Arkeryd [4].

We now introduce our particle system with cutoff.

PROPOSITION 1.2. Assume (1.3), (1.5) and (1.6) or (1.7). Let f0 ∈ P2(R
3)

and a number of particles N ≥ 1 be fixed. Let (V i
0 )i=1,...,N be i.i.d. with common

law f0.
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(i) For each cutoff parameter K ∈ [1,∞), there exists a unique (in law)
Markov process (V

i,N,K
t )i=1,...,N,t≥0 with values in (R3)N , starting from

(V i
0 )i=1,...,N and with generator LN,K defined, for all bounded measurable

φ : (R3)N 	→R and any v = (v1, . . . , vN) ∈ R
3, by

LN,Kφ(v) = 1

N

∑
i �=j

∫
S2

[
φ

(
v + (

v′(vi, vj , σ ) − vi

)
ei

) − φ(v)
]

× B
(|vi − vj |, θ)

1{θ≥G(K/|vi−vj |γ )} dσ,

with G defined by (1.9) and, for h ∈ R
3, hei = (0, . . . , h, . . . ,0) ∈ (R3)N with h at

the ith place.
(ii) There exists a unique (in law) Markov process (V

i,N,∞
t )i=1,...,N,t≥0 with

values in (R3)N , starting from (V i
0 )i=1,...,N and with generator LN defined, for

all Lipschitz bounded functions φ : (R3)N 	→ R and any v = (v1, . . . , vN) ∈ R
3,

by (1.4).

Let us emphasize that the cut-off used for defining the generator LN,K is not
the usual one since it depends not only on the deviation angle θ ∈ (0,2π) but
also of the relative velocity |v − v∗|. It is more convenient in order to perform the
computations we want to do. It might also be convenient for practical simulations.
Indeed, the total rate of collision of the particle system does not depend on the
configuration of the velocities: it always equals 2π(N − 1)K . Hence, the (mean)
simulation cost of the particle system on a time interval [0, T ] is proportional to
(N − 1)KT .

1.7. Wasserstein distance. For g, g̃ ∈P2(R
3), let H(g, g̃) be the set of proba-

bility measures on R
3 ×R

3 with first marginal g and second marginal g̃. We then
set

W2(g, g̃) = inf
{(∫

R3×R3
|v − ṽ|2η(dv, dṽ)

)1/2

;η ∈ H(g, g̃)

}
.

This is the Wasserstein distance with quadratic cost. It is well known that the
inf is reached. We refer to Villani ([44], Chapter 2), for more details on this dis-
tance. A remarkable result, due to Tanaka [40, 41], is that in the case of Maxwell
molecules, t 	→ W2(ft , f̃t ) is nonincreasing for each pair of reasonable solutions
f, f̃ to the Boltzmann equation. The present work is strongly inspired by the ideas
of Tanaka.

1.8. Empirical law of large numbers. For f ∈P2(R
3) and N ≥ 1, we define

εN(f ) := E

[
W2

2

(
f,N−1

N∑
1

δXi

)]

(1.14)
with X1, . . . ,XN independent and f -distributed.
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Since a f -chaotic stochastic particle system is asymptotically constituted of
i.i.d. f -distributed particles, εN(f ) is the best rate (as far as W2

2 is concerned) we
can hope for such a system. We recall now the estimate proved in [21], Theorem 1
(with d = 3 and p = 2) and we also refer to Rachev and Rüschendorf [37], Theo-
rem 10.2.1, [33], Lemma 4.2, Boissard–Le Gouic [8] and Dereich, Scheutzow and
Schottstedt [12] for earlier (but not optimal) versions.

THEOREM 1.3. For all A > 0, all k > 2, all f ∈ Pk(R
3) verifying

∫
R3 |v|k ×

f (dv) ≤ A, all N ≥ 1,

εN(f ) ≤
{

CA,kN
−(k−2)/k, if k ∈ (2,4),

CA,kN
−1/2, if k > 4.

(1.15)

This bound is optimal for general laws. The convergence might be faster for
some regular laws, but this should be quite complicated; see [21], Section 1.2, as
well as the discussion in Barthe and Bordenave [6]. We also refer to [27], Theo-
rem 2.13 (and the remarks which follow) for a general discussion about the rate of
chaoticity for independent and dependent random arrays.

1.9. Main result. Our study concerns both the particle systems with and with-
out cutoff. It is worth noticing that for true Maxwell molecules and hard potentials,
ν ∈ (0,1/2] so that 1 − 2/ν ≤ −3, and the contribution of the cut-off approxima-
tion vanishes rapidly in the limit K → ∞.

THEOREM 1.4. Let B be a collision kernel satisfying (1.3), (1.5) and (1.6)
or (1.7), and let f0 ∈ P2(R

3) not be a Dirac mass. If γ > 0, assume addition-
ally (1.8) and (1.12). Consider the unique weak solution (ft )t≥0 to (1.1) defined
in Theorem 1.1 and, for each N ≥ 1, K ∈ [1,∞], the unique Markov process
(V

i,N,K
t )i=1,...,N,t≥0 defined in Proposition 1.2. Let μ

N,K
t := N−1 ∑N

1 δ
V

i,N,K
t

.

(i) Maxwell molecules. Assume that γ = 0, (1.7) and either
∫
R3 f0(v) ×

logf0(v) dv < ∞ or f0 ∈ P4(R
3). There is a constant C such that for all T ≥ 0,

all N ≥ 1, all K ∈ [1,∞],
sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ C(1 + T )2 sup
[0,T ]

εN(ft ) + CT K1−2/ν.(1.16)

If f0 ∈ Pk(R
3) for some k > 2, we have sup[0,∞)

∫
R3 |v|kft (dv) < ∞, and we can

use Theorem 1.3 to bound sup[0,T ] εN(ft ). In particular if k > 4, then for all T ≥ 0,
all N ≥ 1, all K ∈ [1,∞],

sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ C(1 + T )2N−1/2 + CT K1−2/ν.(1.17)
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(ii) Hard potentials. Assume that γ ∈ (0,1) and (1.7). For all ε ∈ (0,1), all
T ≥ 0, there is a constant Cε,T such that for all N ≥ 1, all K ∈ [1,∞],

sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ Cε,T

(
sup
[0,T ]

εN(ft ) + K1−2/ν
)1−ε

.(1.18)

Consequently, for all ε ∈ (0,1), all T ≥ 0, there is Cε,T such that for all N ≥ 1,
all K ∈ [1,∞],

sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ Cε,T

(
N−1/2 + K1−2/ν)1−ε

.(1.19)

(iii) Hard spheres. Assume finally that γ = 1, (1.6) and that f0 has a density.
For all ε ∈ (0,1), all T ≥ 0, all q ∈ (1,p), there is a constant Cε,q,T such that for
all N ≥ 1, all K ∈ [1,∞),

sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ Cε,q,T

((
sup
[0,T ]

εN(ft )
)1−ε + e−Kq

)
eCε,q,T K.(1.20)

Thus for all ε ∈ (0,1), all T ≥ 0, all q ∈ (1,p), there is Cε,q,T such that for all
N ≥ 1, all K ∈ [1,∞),

sup
[0,T ]

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ Cε,q,T

(
N−1/2+ε + e−Kq )

eCε,q,T K.(1.21)

Concerning the rate of convergence of the simulation algorithm, we have the
following.

REMARK 1.5. Recall that the simulation cost per unit of time is proportional
to (N − 1)K .

(i) For Maxwell molecules and hard potentials the error is (N−1/6 +
K1/2−1/ν)1− (for the distance W2). For a given simulation cost τ , the best choices
are N � τ (4−2ν)/(4−ν) and K � τ ν/(4−ν), which lead to an error in τ−(2−ν)/(8−2ν)+.
For true hard potentials and Maxwell molecules, this is at worst τ−3/14+ and at
best τ−1/4+.

(ii) For hard spheres, make the choice K � (logN)a with a ∈ (1/q,1). Then
eCK � Nε for any ε ∈ (0,1) and e−Kq � N−r for any r > 1. With this choice, we
thus find an error in N−1/4+ε for a simulation cost in N(logN)a . Consequently,
for a given simulation cost τ , we find an error in τ−1/4+.

We excluded the case where f0 is a Dirac mass because we need that ft

has a density and because if f0 = δv0 , then the unique solution to (1.1) is
given by ft = δv0 and the Markov process of Proposition 1.2 is nothing but
V

1,N,K
t = (v0, . . . , v0) (for any value of K ∈ [1,∞]), so that μ

N,K
t = δv0 and thus

W2(ft ,μ
N,K
t ) = 0.
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1.10. Comments. We thus show that the empirical law of the particle system
converges to ft as fast as i.i.d. ft -distributed particles (up to an arbitrary small
loss if γ �= 0). This is thus almost optimal in some sense. However, this is optimal
only as far as W2 is concerned: we would have preferred to work with another
distance and to obtain a rate in N−1/2 as is expected for laws of large numbers.
Here we obtain a rate in N−1/4, since W2 is squared. However, W2 enjoys several
properties that make it quite convenient when studying the Boltzmann equation,
mainly because of the role of the kinetic energy. Another default of this work is
that we obtain a nonuniform (in time) bound. For Maxwell molecules, the bound
is slowly increasing (as T 2) but for hard potentials, it is growing very fast.

Note also that for hard spheres, we are not able to treat the case where K = ∞:
we need to let K and N go to infinity simultaneously, with some constraints. We
believe that this is only a technical problem, but we are not able to solve it. How-
ever, we still obtain a very reasonable rate of convergence (as a function of the
computational cost).

Our proof is based on a coupling argument: we couple the N -particle system
with a family of N i.i.d. Boltzmann processes, in such a way that they remain as
close as possible. We prove an accurate control on the increment of the distance
between the two systems at each collision. This last computation is similar to those
of [20, 24] concerning uniqueness of the solution to (1.1). However, we need to
handle much more precise computations: in [24], when studying the distance be-
tween two solutions to (1.1), both were supposed to have exponential moments.
Such exponential moments are known to propagate for solutions to (1.1) since the
seminal work of Bobylev [7], but for the particle system under study, we are not
even able to prove the finiteness of a moment of order 2 + ε, ε > 0! We thus need
a very precise refinement of the computations of [20, 24].

All these problems do not appear when studying Maxwell molecules. Roughly,
the collision operator is globally Lipschitz continuous for Maxwell molecules and
only locally Lipschitz continuous for hard potentials (which explains why large
velocities have to be controlled by using exponential moments). This is why we
obtain a better result for Maxwell molecules.

Note that for the (physically more relevant) Kac particle system, moments are
known to propagate (uniformly in N ) (see Sznitman [38] and also [33]), which
would simplify greatly the proof at many places. However, we are not able to ex-
hibit a suitable coupling. This is due to the fact that in Kac’s system, each collision
modifies the velocity of two particles. In Nanbu’s system, the Poisson measures
governing two different particles are independent, which is not the case for Kac’s
system (because each time a particle’s velocity is modified, another one has to be
also modified), although the larger the number of particles, the lower the corre-
lation. As a consequence, it is more difficult to couple the N -particle symmetric
Kac system with N independent copies of the Boltzmann process, and we did not
succeed.
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1.11. Known results. Such a chaos result for the Boltzmann equation with
bounded cross section, or for related models, was first established without any rate
by Kac [28] (for the so-called Maxwell molecules, Kac’s model which is roughly a
“toy one-dimensional” Boltzmann equation) and then by McKean [32] and Grün-
baum [26]. For unbounded cross section, the chaos property was proved by Sznit-
man [38] for hard spheres, still without rate.

For Maxwell molecules with Grad’s cutoff, a nice rate of convergence (of order
1/N in total variation distance on the two-marginal) was obtained by McKean [31]
and improved by Graham and Méléard [25]. This was extended by Desvillettes,
Graham and Méléard [14] (see also [22]) to true (without Grad’s cutoff) Maxwell
molecules, but with a rate in N−1eKT + K1−2/ν (with the notation of the present
paper). From a numerical point of view, this leads to a logarithmic convergence as
a function of the computational cost.

More recently, a uniform in time rate of chaos convergence of Kac’s stochastic
particle system to the Boltzmann equation for two unbounded models was estab-
lished in [10, 33] (see also [34]), by taking up again and improving Grünbaum’s
approach. For true Maxwell molecules, uniform in time rate of convergence of
order N−1/(6+δ), for any δ > 0, for a weak distance on the two-marginals was
proved in [33], Theorem 5.1, when the initial condition f0 has a compact support.
This result was improved and made more precise in [10], step 3 of the proof of
Theorem 8, where, still for true Maxwell molecules, uniform in time rate of con-
vergence of order N−1/177, for the same W2 Wasserstein distance as used in (1.16),
was proved for any initial condition f0 satisfying (1.12). Hard spheres have also
been studied in [33], Theorem 6.1: a uniform in time rate of convergence of order
1/(logN)α with α > 0 small, for the W1 distance on the two-marginals has been
proved. When applying the methods of [10, 33, 34] on finite time intervals, the
previous rates cannot really be improved. Finally, let us mention that the present
work follows some of the ideas in [19], which concerns the Kac equation.

To summarize:

• We obtain the first rate of convergence for hard potentials, and this rate is reason-
able. Recall that hard potentials are twice unbounded (the velocity cross section
is unbounded and the angular cross section is nonintegrable), while Maxwell
molecules enjoy a bounded velocity cross section and hard spheres an integrable
angular cross section.

• For hard spheres and Maxwell molecules, we prove a much faster convergence
than [10, 33, 34], but we are restricted to finite time-intervals, and we cannot
study Kac’s system.

Let us finally mention that we use a coupling method, as is widely used since the
famous cours à l’école d’été de Saint-Flour by Sznitman [39] for providing rate of
chaos convergence for the so-called McKean–Vlasov model and that such methods
have been recently adapted to nonglobally Lipschitz coefficients by Bolley, Cañizo
and Carrillo in [9], making use of exponential moments.
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1.12. Plan of the paper. In Section 2, we make precise the notion of weak
solutions, rewrite the collision operators in a suitable form and check a accurate
version of a lemma due to Tanaka [41]. Section 3 is devoted to the cornerstone
estimate on the collision integral. In Section 4 we prove the convergence of the
particle system with cutoff. The cutoff is removed in Section 5.

2. Preliminaries.

2.1. Rewriting equations. We follow here [22]. For each X ∈ R
3, we introduce

two vectors I (X), J (X) ∈ R
3 such that ( X

|X| ,
I (X)
|X| , J (X)

|X| ) is a direct orthonormal

basis of R3 and, of course, in such a way that I, J are measurable functions. For
X,v, v∗ ∈ R

3, for θ ∈ (0, π/2) and ϕ ∈ [0,2π), we set⎧⎪⎪⎨
⎪⎪⎩

�(X,ϕ) := (cosϕ)I (X) + (sinϕ)J (X),

a(v, v∗, θ, ϕ) := −1 − cos θ

2
(v − v∗) + sin θ

2
�(v − v∗, ϕ),

v′(v, v∗, θ, ϕ) := v + a(v, v∗, θ, ϕ),

(2.1)

which is a suitable parametrization of (1.2): simply write σ ∈ S
2 as σ =

v−v∗|v−v∗| cos θ + I (v−v∗)|v−v∗| sin θ cosϕ + J (v−v∗)|v−v∗| sin θ sinϕ. Let us define, classically,
weak solutions to (1.1).

DEFINITION 2.1. Assume (1.3), (1.5) and (1.6) or (1.7). A family (ft )t≥0

belonging to C([0,∞),P2(R
3)) is called a weak solution to (1.1) if it preserves

momentum and energy, that is,∫
R3

vft (dv) =
∫
R3

vf0(dv) and
∫
R3

|v|2ft (dv) =
∫
R3

|v|2f0(dv)

(2.2)
∀t ≥ 0,

and if for any φ :R3 	→R bounded and Lipschitz-continuous, any t ∈ [0, T ],∫
R3

φ(v)ft (dv)

(2.3)

=
∫
R3

φ(v)f0(dv) +
∫ t

0

∫
R3

∫
R3

Aφ(v, v∗)fs(dv∗)fs(dv) ds,

where

Aφ(v, v∗)
(2.4)

= |v − v∗|γ
∫ π/2

0
β(θ) dθ

∫ 2π

0
dϕ

[
φ

(
v + a(v, v∗, θ, ϕ)

) − φ(v)
]
.



600 N. FOURNIER AND S. MISCHLER

Noting that |a(v, v∗, θ, ϕ)| ≤ Cθ |v − v∗| and that
∫ π/2

0 θβ(θ) dθ , we easily get
|Aφ(v, v∗)| ≤ Cφ|v − v∗|1+γ ≤ Cφ(1 +|v − v∗|2), so that everything makes sense
in (2.3).

We next rewrite the collision operator in a way that makes the velocity-
dependence |v − v∗|γ disappear in the rate. Such a trick was already used in [23]
and [20].

LEMMA 2.2. Assume (1.3), (1.5) and (1.6) or (1.7). Recalling (1.9) and (2.1),
define, for z ∈ (0,∞), ϕ ∈ [0,2π), v, v∗ ∈ R

3 and K ∈ [1,∞),

c(v, v∗, z, ϕ) := a
[
v, v∗,G

(
z/|v − v∗|γ )

, ϕ
]

and
(2.5)

cK(v, v∗, z, ϕ) := c(v, v∗, z, ϕ)1{z≤K}.
For any bounded Lipschitz φ :R3 	→R, any v, v∗ ∈ R

3

Aφ(v, v∗) =
∫ ∞

0
dz

∫ 2π

0
dϕ

(
φ

[
v + c(v, v∗, z, ϕ)

] − φ[v]).(2.6)

For any N ≥ 1, K ∈ [1,∞), v = (v1, . . . , vN) ∈ (R3)N , any bounded measurable
φ : (R3)N 	→R,

LN,Kφ(v) = 1

N

∑
i �=j

∫ ∞
0

dz

∫ 2π

0
dϕ

[
φ

(
v + cK(vi, vj , z, ϕ)ei

) − φ(v)
]
.(2.7)

For any N ≥ 1, any v = (v1, . . . , vN) ∈ (R3)N , any bounded Lipschitz φ : (R3)N 	→
R,

LNφ(v) = 1

N

∑
i �=j

∫ ∞
0

dz

∫ 2π

0
dϕ

[
φ

(
v + c(vi, vj , z, ϕ)ei

) − φ(v)
]
.(2.8)

PROOF. To get (2.6), start from (2.4) and use the substitution θ = G(z/|v −
v∗|γ ) or equivalently H(θ) = z/|v − v∗|γ , which implies |v − v∗|γ β(θ) dθ = dz.
Expressions (2.7) and (2.8) are checked similarly. �

2.2. Accurate version of Tanaka’s trick. As was already noted by Tanaka [41],
it is not possible to choose I in such a way that X 	→ I (X) is continuous. However,
he found a way to overcome this difficulty; see also [22], Lemma 2.6. Here we need
the following accurate version of Tanaka’s trick.

LEMMA 2.3. Recall (2.1). There are some measurable functions ϕ0, ϕ1 :R3 ×
R

3 	→ [0,2π), such that for all X,Y ∈ R
3, all ϕ ∈ [0,2π),

�(X,ϕ) · �(
Y,ϕ + ϕ0(X,Y )

)
= X · Y cos2(

ϕ + ϕ1(X,Y )
) + |X||Y | sin2(

ϕ + ϕ1(X,Y )
)
,∣∣�(X,ϕ) − �

(
Y,ϕ + ϕ0(X,Y )

)∣∣ ≤ |X − Y |.
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PROOF. First observe that the second claim follows from the first one: writing
ϕi = ϕi(X,Y )∣∣�(X,ϕ) − �(Y,ϕ + ϕ0)

∣∣2
= ∣∣�(X,ϕ)

∣∣2 + ∣∣�(Y,ϕ + ϕ0)
∣∣2 − 2�(X,ϕ) · �(Y,ϕ + ϕ0)

= |X|2 + |Y |2 − 2
(
X · Y cos2(ϕ + ϕ1) + |X||Y | sin2(ϕ + ϕ1)

)
≤ |X|2 + |Y |2 − 2X · Y = |X − Y |2.

We next check the first claim. Let thus X and Y be fixed. Observe that �(X,ϕ)

goes (at constant speed) all over the circle CX with radius |X| lying in the plane
orthogonal to X. Let iX ∈ CX and iY ∈ CY such that X,Y, iX, iY belong to the
same plane and iX · iY = X · Y [there are exactly two possible choices for the
couple (iX, iY ) if X and Y are not collinear, infinitely many otherwise]. Consider
ϕX and ϕY such that iX := �(X,ϕX) and iY := �(Y,ϕY ). Define jX := �(X,ϕX +
π/2) and jY := �(Y,ϕY + π/2). Then jX and jX are collinear (because both are
orthogonal to the plane containing X,Y, iX, iY ), satisfy jX ·jY = |jX||jY | = |X||Y |
and iX · jY = iY · jX = 0. Next, observe that �(X,ϕ + ϕX) = iX cosϕ + jX sinϕ

while �(Y,ϕ + ϕY ) = iY cosϕ + jY sinϕ. Consequently, �(X,ϕ + ϕX) · �(Y,ϕ +
ϕY ) = iX · iY cos2 ϕ + jX · jY sin2 ϕ = X ·Y cos2 ϕ +|X||Y | sin2 ϕ. The conclusion
follows: choose ϕ0 := ϕY − ϕX and ϕ1 := −ϕX (all this modulo 2π ). �

3. Main computations of the paper. The following estimate is our central
argument.

LEMMA 3.1. Recall that G was defined in (1.9) and that the deviation func-
tions c and cK were defined in (2.5). For any v, v∗, ṽ, ṽ∗ ∈ R

3, any K ∈ [1,∞),∫ ∞
0

∫ 2π

0

(∣∣v + c(v, v∗, z, ϕ) − ṽ − cK

(
ṽ, ṽ∗, z, ϕ + ϕ0(v − v∗, ṽ − ṽ∗)

)∣∣2
− |v − ṽ|2)

dϕ dz

≤ AK
1 (v, v∗, ṽ, ṽ∗) + AK

2 (v, v∗, ṽ, ṽ∗) + AK
3 (v, v∗, ṽ, ṽ∗),

where, setting �K(x) = π
∫ K

0 (1 − cosG(z/xγ )) dz and �K(x) = π
∫ ∞
K (1 −

cosG(z/xγ )) dz,

AK
1 (v, v∗, ṽ, ṽ∗) = 2|v − v∗||ṽ − ṽ∗|

∫ K

0

[
G

(
z/|v − v∗|γ ) − G

(
z/|ṽ − ṽ∗|γ )]2

dz,

AK
2 (v, v∗, ṽ, ṽ∗) = −[

(v − ṽ) + (v∗ − ṽ∗)
]

× [
(v − v∗)�K

(|v − v∗|) − (ṽ − ṽ∗)�K

(|ṽ − ṽ∗|)],
AK

3 (v, v∗, ṽ, ṽ∗) = (|v − v∗|2 + 2|v − ṽ||v − v∗|)�K

(|v − v∗|).
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PROOF. We need to shorten notation. We write x = |v − v∗|, x̃ = |ṽ − ṽ∗|,
ϕ0 = ϕ0(v − v∗, ṽ − ṽ∗), c = c(v, v∗, z, ϕ), c̃ = c(ṽ, ṽ∗, z, ϕ + ϕ0) and c̃K =
cK(ṽ, ṽ∗, z, ϕ + ϕ0) = c̃1{z≤K}. We start with

�K :=
∫ ∞

0

∫ 2π

0

(|v + c − ṽ − c̃K |2 − |v − ṽ|2)
dϕ dz

=
∫ K

0

∫ 2π

0

(|c|2 + |c̃|2 − 2c · c̃ + 2(v − ṽ) · (c − c̃)
)
dϕ dz

+
∫ ∞
K

∫ 2π

0

(|c|2 + 2(v − ṽ) · c)
dϕ dz.

First, it holds that |c|2 = |−(1 − cosG(z/xγ ))(v − v∗) + (sinG(z/xγ ))�(v −
v∗, ϕ)|2/4 = (1 − cosG(z/xγ ))|v − v∗|2/2. We used that by definition [see (2.1)],
�(v − v∗, ϕ) has the same norm as v − v∗ and is orthogonal to v − v∗ and that
(1 − cos θ)2 + (sin θ)2 = 2 − 2 cos θ . Consequently, we have

∫ K

0

∫ 2π

0
|c|2 dϕ dz = π |v − v∗|2

∫ K

0

(
1 − cosG

(
z/xγ ))

dz

= x2�K(x).

Similarly, we also have
∫ K

0
∫ 2π

0 |c̃|2 dϕ dz = x̃2�K(x̃) and
∫ ∞
K

∫ 2π
0 |c|2 dϕ dz =

x2�K(x).
Next, using that c = −(1 − cosG(z/xγ ))(v − v∗)/2 + (sinG(z/xγ ))�(v −

v∗, ϕ)/2 and that
∫ 2π

0 �(v − v∗, ϕ) dϕ = 0,

∫ K

0

∫ 2π

0
c dϕ dz = −(v − v∗)π

∫ K

0

(
1 − cosG

(
z/xγ ))

dz

= −(v − v∗)�K(x).

In the same way,
∫ K

0
∫ 2π

0 c̃ dϕ dz = −(ṽ − ṽ∗)�K(x̃) and
∫ ∞
K

∫ 2π
0 c dϕ dz = −(v −

v∗)�K(x).
Finally, c · c̃ = [(1− cosG(z/xγ ))(v −v∗)− (sinG(z/xγ ))�(v −v∗, ϕ)] · [(1−

cosG(z/x̃γ ))(ṽ − ṽ∗) − (sinG(z/x̃γ ))�(ṽ − ṽ∗, ϕ + ϕ0)]/4. Since
∫ 2π

0 �(v −
v∗, ϕ) dϕ = ∫ 2π

0 �(ṽ − ṽ∗, ϕ + ϕ0) dϕ = 0, we get

∫ 2π

0
c · c̃ dϕ = π

2

(
1 − cosG

(
z/xγ ))(

1 − cosG
(
z/x̃γ ))

(v − v∗) · (ṽ − ṽ∗)

+ 1

4

(
sinG

(
z/xγ ))(

sinG
(
z/x̃γ ))

×
∫ 2π

0
�(v − v∗, ϕ) · �(ṽ − ṽ∗, ϕ + ϕ0) dϕ.
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Recalling Lemma 2.3 and using that
∫ 2π

0 cos2(ϕ+ϕ1) dϕ = ∫ 2π
0 sin2(ϕ+ϕ1) dϕ =

π , we obtain∫ 2π

0
c · c̃ dϕ = π

2

(
1 − cosG

(
z/xγ ))(

1 − cosG
(
z/x̃γ ))

(v − v∗) · (ṽ − ṽ∗)

+ π

4

(
sinG

(
z/xγ ))(

sinG
(
z/x̃γ ))

× [
(v − v∗) · (ṽ − ṽ∗) + |v − v∗||ṽ − ṽ∗|].

But G takes values in (0, π/2), so that, since |v − v∗||ṽ − ṽ∗| ≥ (v − v∗) · (ṽ − ṽ∗),∫ 2π

0
c · c̃ dϕ ≥ π

2

[(
1 − cosG

(
z/xγ ))(

1 − cosG
(
z/x̃γ ))

+ (
sinG

(
z/xγ ))(

sinG
(
z/x̃γ ))]

(v − v∗) · (ṽ − ṽ∗)

= π

2

[(
1 − cosG

(
z/xγ )) + (

1 − cosG
(
z/x̃γ ))]

(v − v∗) · (ṽ − ṽ∗)

− π

2

(
1 − cos

(
G

(
z/xγ ) − G

(
z/x̃γ )))

(v − v∗) · (ṽ − ṽ∗).

Using that π(1 − cos θ) ≤ 2θ2, we thus get∫ K

0

∫ 2π

0
c · c̃ dϕ dz ≥ (v − v∗) · (ṽ − ṽ∗)

�K(x) + �K(x̃)

2

− xx̃

∫ K

0

(
G

(
z/xγ ) − G

(
z/x̃γ ))2

dz.

All in all, we find

�K ≤ x2�K(x) + x̃2�K(x̃) − (v − v∗) · (ṽ − ṽ∗)
[
�K(x) + �K(x̃)

]
+ 2(v − ṽ) · [

(ṽ − ṽ∗)�K(x̃) − (v − v∗)�K(x)
]

+ 2xx̃

∫ K

0

(
G

(
z/xγ ) − G

(
z/x̃γ ))2

dz

+ x2�K(x) − 2(v − ṽ) · (v − v∗)�K(x).

Recalling that x = |v−v∗|, x̃ = |ṽ− ṽ∗|, we realize that the third line is nothing but
AK

1 (v, v∗, ṽ, ṽ∗) while the fourth one is bounded from above by AK
3 (v, v∗, ṽ, ṽ∗).

To conclude, it suffices to note that the sum of the terms on the two first lines
equals

= (v − v∗) · [
(v − v∗) − (ṽ − ṽ∗) − 2(v − ṽ)

]
�K(x)

+ (ṽ − ṽ∗) · [
(ṽ − ṽ∗) − (v − v∗) + 2(v − ṽ)

]
�K(x̃)

= −(v − v∗) · (
(v − ṽ) + (v∗ − ṽ∗)

)
�K(x)

+ (ṽ − ṽ∗) · (
(v − ṽ) + (v∗ − ṽ∗)

)
�K(x̃)

which is AK
2 (v, v∗, ṽ, ṽ∗) as desired. �
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Next, we study each term found in the previous inequality. We start with the
Maxwell case.

LEMMA 3.2. Assume (1.3), (1.5) with γ = 0, (1.7) and adopt the notation of
Lemma 3.1. For all K ∈ [1,∞), all v, v∗, ṽ, ṽ∗ ∈ R

3:

(i) AK
1 (v, v∗, ṽ, ṽ∗) = 0,

(ii) AK
2 (v, v∗, ṽ, ṽ∗) = ζK [−|v − ṽ|2 + |v∗ − ṽ∗|2] where ζK = π

∫ K
0 (1 −

cosG(z)) dz,
(iii) AK

3 (v, v∗, ṽ, ṽ∗) ≤ C(|v|2 + |v∗|2 + |ṽ|2)K1−2/ν .

PROOF. Point (i) is obvious. Point (ii) immediately follows from the fact
that �k(x) = ζK does not depend on x. Point (iii) holds true because �K(x) =
π

∫ ∞
K (1 − cosG(z)) dz ≤ π

∫ ∞
K G2(z) dz ≤ CK1−2/ν by (1.10). �

The case of hard potentials is much more complicated. The following result
gives a possible and useful upper bound on the AK

i functions.

LEMMA 3.3. Assume (1.3), (1.5) with γ ∈ (0,1), (1.7) and adopt the notation
of Lemma 3.1.

(i) For all q > 0, there is Cq > 0 such that for all M ≥ 1, all K ∈ [1,∞), all
v, v∗, ṽ, ṽ∗ ∈ R

3,

AK
1 (v, v∗, ṽ, ṽ∗) ≤ M

(|v − ṽ|2 + |v∗ − ṽ∗|2) + Cqe−Mq/γ

eCq(|v|q+|v∗|q ).

(ii) There is C > 0 such that for all K ∈ [1,∞), all v, v∗, ṽ, ṽ∗ ∈ R
3 and all

z∗ ∈ R
3,

AK
2 (v, v∗, ṽ, ṽ∗) − AK

2 (v, z∗, ṽ, ṽ∗)

≤ C
[|v − ṽ|2 + |v∗ − ṽ∗|2 + |v∗ − z∗|2(

1 + |v| + |v∗| + |z∗|)2γ /(1−γ )]
.

(iii) There is C > 0 such that for all K ∈ [1,∞), all v, v∗, ṽ, ṽ∗ ∈ R
3,

AK
3 (v, v∗, ṽ, ṽ∗) ≤ C

(
1 + |v|4γ /ν+2 + |v∗|4γ /ν+2 + |ṽ|2 + |ṽ∗|2)

K1−2/ν.

This lemma is very technical. The reason is the following. The solution (ft )t≥0
has bounded exponential moments while, on the contrary, the particle system has
only a bounded energy (moment of order 2). If K ∈ [1,∞), the particle system
has all moments finite, which makes all the computations licit, but the moments of
order strictly greater than 2 are not uniformly bounded with respect to K (at least,
we were not able to show it). We will use the previous estimates with v, v∗ (and z∗)
taken from the solution ft and ṽ, ṽ∗ taken in the particle system. Thus, it is very
important that these estimates do not involve powers greater than 2 of ṽ, ṽ∗. For
example, in point (i), only v, v∗ appear in the exponential, and this is crucial.
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PROOF OF LEMMA 3.3. Using (1.11) and that |xγ − yγ | ≤ 2|x − y|/(x1−γ +
y1−γ ), we get

AK
1 (v, v∗, ṽ, ṽ∗) ≤ 2c4|v − v∗||ṽ − ṽ∗|(|v − v∗|γ − |ṽ − ṽ∗|γ )2

|v − v∗|γ + |ṽ − ṽ∗|γ
(3.1)

≤ 8c4
|v − v∗| ∧ |ṽ − ṽ∗|

(|v − v∗| ∨ |ṽ − ṽ∗|)1−γ

(|v − v∗| − |ṽ − ṽ∗|)2
.

Now for any M ≥ 1, this is bounded from above by

M

2

(|v − v∗| − |ṽ − ṽ∗|)2

+ 8c4
(|v − v∗| ∨ |ṽ − ṽ∗|)2+γ 1{8c4(|v−v∗|∧|ṽ−ṽ∗|)/(|v−v∗|∨|ṽ−ṽ∗|)1−γ ≥M/2}

≤ M

2

(|v − ṽ| + |v∗ − ṽ∗|)2 + 8c4

[
16c4

M

(|v − v∗| ∧ |ṽ − ṽ∗|)
](2+γ )/(1−γ )

× 1{(|v−v∗|∧|ṽ−ṽ∗|)/(|v−v∗|∨|ṽ−ṽ∗|)1−γ ≥M/(16c4)}

≤ M
(|v − ṽ|2 + |v∗ − ṽ∗|2) + 8c4

[
16c4

(|v − v∗| ∧ |ṽ − ṽ∗|)](2+γ )/(1−γ )

× 1{(|v−v∗|∧|ṽ−ṽ∗|)γ ≥M/(16c4)}

≤ M
(|v − ṽ|2 + |v∗ − ṽ∗|2) + 8c4

[
16c4

(|v| + |v∗|)](2+γ )/(1−γ )

× 1{(|v|+|v∗|)γ ≥M/(16c4)}.

Fix now q > 0, and observe that

x(2+γ )/(1−γ )1{xγ ≥M/(16c4)} ≤ x(2+γ )/(1−γ )e−Mq/γ

e(16c4)
q/γ xq

≤ Cqe
−Mq/γ

e2(16c4)
q/γ xq

.

Point (i) follows.
Point (ii) is quite delicate. First, there is C such that for all K ∈ [1,∞), all

x, y > 0,

�K(x) ≤ Cxγ and
∣∣�K(x) − �K(y)

∣∣ ≤ C
∣∣xγ − yγ

∣∣.
Indeed, it is enough to prove that for �K(x) = ∫ K

0 (1 − cosG(z/x)) dz, �K(0) = 0

and |�′
K(x)| ≤ C. But �K(x) = x

∫ K/x
0 (1 − cosG(z)) dz ≤ x

∫ ∞
0 G2(z) dz, so that

�K(0) = 0 and |�′
K(x)| ≤ ∫ ∞

0 (1 − cosG(z)) dz + x(K/x2)(1 − cosG(K/x)) ≤∫ ∞
0 G2(z) dz + (K/x)G2(K/x), which is uniformly bounded by (1.10). Conse-

quently, for all X,Y ∈ R
3,∣∣X�K

(|X|) − Y�K

(|Y |)∣∣
≤ C|X − Y |(|X|γ + |Y |γ ) + C

(|X| + |Y |)∣∣|X|γ − |Y |γ ∣∣.
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Using again that |xγ − yγ | ≤ 2|x − y|/(x1−γ + y1−γ ), we easily conclude that∣∣X�K

(|X|) − Y�K

(|Y |)∣∣ ≤ C|X − Y |(|X|γ + |Y |γ )
.(3.2)

Now we write

�K
2 := AK

2 (v, v∗, ṽ, ṽ∗) − AK
2 (v, z∗, ṽ, ṽ∗)

= −[
(v − ṽ) + (v∗ − ṽ∗)

]
× [

(v − v∗)�K

(|v − v∗|) − (ṽ − ṽ∗)�K

(|ṽ − ṽ∗|)]
+ [

(v − ṽ) + (z∗ − ṽ∗)
]

(3.3)
× [

(v − z∗)�K

(|v − z∗|) − (ṽ − ṽ∗)�K

(|ṽ − ṽ∗|)]
= −[

(v − ṽ) + (v∗ − ṽ∗)
]

× [
(v − v∗)�K

(|v − v∗|) − (v − z∗)�K

(|v − z∗|)]
+ (z∗ − v∗) · [

(v − z∗)�K

(|v − z∗|) − (ṽ − ṽ∗)�K

(|ṽ − ṽ∗|)].
By (3.2) and the Young inequality, we deduce that

�K
2 ≤ C

(|v − ṽ| + |v∗ − ṽ∗|)|v∗ − z∗|(|v − v∗|γ + |v − z∗|γ )
+ C|z∗ − v∗|(|v − ṽ| + |z∗ − ṽ∗|)(|v − z∗|γ + |ṽ − ṽ∗|γ )

≤ C
[(|v − ṽ| + |v∗ − ṽ∗|)2 + |v∗ − z∗|2(|v − v∗|γ + |v − z∗|γ )2]

+ C|z∗ − v∗|(|v − ṽ| + |z∗ − v∗| + |v∗ − ṽ∗|)
× (|v − z∗|γ + (|v − ṽ| + |v − v∗| + |v∗ − ṽ∗|)γ )

.

The first term is clearly bounded by C(|v − ṽ|2 +|v∗ − ṽ∗|2 +|v∗ − z∗|2(1 +|v|+
|v∗| + |z∗|)2γ ) which fits the statement, since 2γ ≤ 2γ /(1 − γ ). We next bound
the second term by

C|z∗ − v∗|2(|v − z∗| + |v − v∗|)γ
+ C|z∗ − v∗|2(|v − ṽ| + |v∗ − ṽ∗|)γ
+ C|z∗ − v∗|(|v − ṽ| + |v∗ − ṽ∗|)(|v − z∗| + |v − v∗|)γ
+ C|z∗ − v∗|(|v − ṽ| + |v∗ − ṽ∗|)1+γ

.

Using that x2yγ ≤ x4/(2−γ ) + y2 (for the second line), that xyzγ ≤ (xzγ )2 + y2

(for the third line) and that xy1+γ ≤ x2/(1−γ ) + y2, we obtain the upper-bound

C|z∗ − v∗|2(
1 + |v| + |z∗| + |v∗|)γ

+ C
(|v − ṽ| + |v∗ − ṽ∗|)2 + |z∗ − v∗|4/(2−γ )

+ C
(|v − ṽ| + |v∗ − ṽ∗|)2 + |z∗ − v∗|2(|v − z∗| + |v − v∗|)2γ

+ C
(|v − ṽ| + |v∗ − ṽ∗|)2 + |z∗ − v∗|2/(1−γ ),
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which is bounded by

C
(|v − ṽ|2 + |v∗ − ṽ∗|2)

+ C|z∗ − v∗|2{(
1 + |v| + |z∗| + |v∗|)γ + |z∗ − v∗|4/(2−γ )−2

+ (|v − z∗| + |v − v∗|)2γ + |z∗ − v∗|2/(1−γ )−2}
.

One easily concludes, using that max{γ,4/(2 − γ ) − 2,2γ,2/(1 − γ ) − 2} =
2γ /(1 − γ ).

We finally check point (iii). Using (1.10), we deduce that 1 − cos(G(z/xγ )) ≤
G2(z/xγ ) ≤ C(z/xγ )−2/ν , whence

�K(x) ≤ Cx2γ /ν
∫ ∞
K

z−2/ν dz = Cx2γ /νK1−2/ν.

Thus

AK
3 (v, v∗, ṽ, ṽ∗) ≤ C

(|v − v∗|2 + |v − v∗||ṽ − ṽ∗|)|v − v∗|2γ /νK1−2/ν,(3.4)

from which we easily conclude, using that |ṽ − ṽ∗||v − v∗|1+2γ /ν ≤ |ṽ − ṽ∗|2 +
|v − v∗|2+4γ /ν . �

We conclude with the hard spheres case.

LEMMA 3.4. Assume (1.3), (1.5) with γ = 1, (1.6) and adopt the notation of
Lemma 3.1.

(i) For all q > 0, there is Cq > 0 such that for all M ≥ 1, all K ∈ [1,∞), all
v, v∗, ṽ, ṽ∗ ∈ R

3,

AK
1 (v, v∗, ṽ, ṽ∗)

≤ M
(|v − ṽ|2 + |v∗ − ṽ∗|2) + CqK

(|ṽ| + |ṽ∗|)e−Mq

eCq(|v|q+|v∗|q ).

(ii) For all q > 0, there is Cq > 0 such that for all M ≥ 1, all K ∈ [1,∞), all
v, v∗, ṽ, ṽ∗ ∈ R

3,

AK
2 (v, v∗, ṽ, ṽ∗) − AK

2 (v, z∗, ṽ, ṽ∗)

≤ M
(|v − ṽ|2 + |v∗ − ṽ∗|2)

+ C|v∗ − z∗|2(
1 + |v| + |v∗| + |z∗|)2

+ Cq

(
1 + |ṽ| + |ṽ∗|)Ke−Mq

eCq(|v|q+|v∗|q+|z∗|q ).

(iii) For all q > 0, there is Cq > 0 such that for all K ∈ [1,∞), all v, v∗, ṽ,

ṽ∗ ∈ R
3,

AK
3 (v, v∗, ṽ, ṽ∗) ≤ Cq

(
1 + |ṽ|)e−Kq

eCq(|v|q+|v∗|q+|z∗|q ).
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PROOF. On the one hand, (1.11) implies

AK
1 (v, v∗, ṽ, ṽ∗) ≤ 2c4|v − v∗||ṽ − ṽ∗|(|v − v∗| − |ṽ − ṽ∗|)2

|v − v∗| + |ṽ − ṽ∗|
≤ 4c4

(|v − v∗| ∧ |ṽ − ṽ∗|)(|v − ṽ|2 + |v∗ − ṽ∗|2)
.

On the other hand, since G takes values in (0, π/2), we obviously have

AK
1 (v, v∗, ṽ, ṽ∗) ≤ π2

2
K|v − v∗||ṽ − ṽ∗|.

Consequently, we may write

AK
1 (v, v∗, ṽ, ṽ∗) ≤ M

(|v − ṽ|2 + |v∗ − ṽ∗|2)
+ π2

2
K|v − v∗||ṽ − ṽ∗|1{4c4(|v−v∗|∧|ṽ−ṽ∗|)≥M}.

Point (i) easily follows, using that |v − v∗|1{4c4(|v−v∗|∧|ṽ−ṽ∗|)≥M} ≤ |v − v∗| ×
1{4c4|v−v∗|≥M} ≤ |v − v∗|e−Mq

e(4c4|v−v∗|)q ≤ Cqe−Mq
e2(4c4|v−v∗|)q ≤ Cqe

−Mq ×
e2q+1(4c4)

q(|v|q+|v∗|q ).
Using all the computations of the proof of Lemma 3.3(ii), except the one that

makes the power 2/(1 − γ ) appear, we see that for �K
2 := AK

2 (v, v∗, ṽ, ṽ∗) −
AK

2 (v, z∗, ṽ, ṽ∗)

�K
2 ≤ C

[|v − ṽ|2 + |v∗ − ṽ∗|2 + |v∗ − z∗|2(
1 + |v| + |v∗| + |z∗|)2

+ |z∗ − v∗|(|v − ṽ|2 + |v∗ − ṽ∗|2)]
≤ C

(
1 + |z∗ − v∗|)(|v − ṽ|2 + |v∗ − ṽ∗|2)

+ C|v∗ − z∗|2(
1 + |v| + |v∗| + |z∗|)2

.

On the other hand, starting from (3.3) and using that φK(x) ≤ πK , we realize that

�K
2 ≤ CK

(
1 + |ṽ| + |ṽ∗|)(1 + |v|2 + |v∗|2 + |z∗|2)

.

Hence we can write, for any M > 1,

�K
2 ≤ M

(|v − ṽ|2 + |v∗ − ṽ∗|2) + C|v∗ − z∗|2(
1 + |v| + |v∗| + |z∗|)2

+ CK
(
1 + |ṽ| + |ṽ∗|)(1 + |v|2 + |v∗|2 + |z∗|2)

1{C(1+|z∗−v∗|)≥M}.

But (1 + |v|2 + |v∗|2 + |z∗|2)1{C(1+|z∗−v∗|)≥M} ≤ (1 + |v| + |v∗| + |z∗|)2 ×
1{C(1+|v|+|v∗|+|z∗|)≥M} ≤ (1 + |v| + |v∗| + |z∗|)2e−Mq

eCq(1+|v|+|v∗|+|z∗|)q ≤
Cqe

−Mq
eCq(|v|q+|v∗|q+|z∗|q ). Point (ii) is checked.

Finally, we observe that �K(x) ≤ π
∫ ∞
K G2(z/x) dz. But here, G(z) = (π/2 −

z)+ whence �K(x) ≤ (π4/24)x1{x≥2K/π} ≤ 5x1{x≥K/2}. Thus for any q > 0,
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�K(x) ≤ 5xe−Kq
e2qxq

, so that

AK
3 (v, v∗, ṽ, ṽ∗) ≤ C

(
1 + |ṽ|)(1 + |v|2 + |v∗|2)

e−Kq |v − v∗|e2q |v−v∗|q

≤ Cq

(
1 + |ṽ|)e−Kq

eCq(|v|q+|v∗|q )

as desired. �

4. Convergence of the particle system with cutoff. To build a suitable cou-
pling between the particle system and the solution to (1.1), we need to introduce
the (stochastic) paths associated to (1.1). To do so, we follow the ideas of Tanaka
[40, 41] and make use of two probability spaces. The main one is an abstract
(�,F,Pr), on which the random objects are defined when nothing is made pre-
cise. But we will also need an auxiliary one, [0,1] endowed with its Borel σ -field
and its Lebesgue measure. In order to avoid confusion, a random variable defined
on this latter probability space will be called an α-random variable, expectation on
[0,1] will be denoted by Eα , etc.

4.1. A SDE for the Boltzmann equation. First, we recall the classical proba-
bilistic interpretation of the Boltzmann equation initiated by Tanaka [40, 41] in the
Maxwell molecules case.

PROPOSITION 4.1. Assume (1.3), (1.5), (1.6) or (1.7), and let f0 ∈ P2(R
3).

If γ ∈ (0,1], assume additionally (1.8) and that f0 satisfies (1.12). Let (ft )t≥0
be the corresponding unique weak solution to (1.1). Consider any f0-distributed
random variable W0 and any independent Poisson measure M(ds, dα, dz, dϕ) on
[0,∞) × [0,1] × [0,∞) × [0,2π) with intensity measure ds dα dzdϕ. Consider
also, for each t ≥ 0, a ft -distributed α-random variable W ∗

t , in such a way that
(t, α) 	→ W ∗

t (α) is measurable. Then there is a unique (càdlàg adapted) strong
solution to

Wt = W0 +
∫ t

0

∫
R3

∫ ∞
0

∫ 2π

0
c
(
Ws−,W ∗

s (α), z, ϕ
)
M(ds, dα, dz, dϕ).(4.1)

Furthermore, Wt is ft -distributed for each t ≥ 0.

We will note (Wt)t≥0 such a Boltzmann process. It can be viewed as the time-
evolution of the velocity of a typical particle in the gas.

PROOF OF PROPOSITION 4.1. The proof is very similar to that of [18], Propo-
sition 5.1 (see also [20], Section 4) and is omitted. In [18], Proposition 5.1, the
same Boltzmann equation is studied, with fewer assumptions on f0 [so that unique-
ness is not known for (1.1)]. But the formulation of the SDE is different (it is
equivalent in law). The same proof as in [18], Proposition 5.1, works here, with
several difficulties avoided due to the facts that f0 has exponential moments and
that uniqueness is known to hold for (1.1). �
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4.2. A SDE for the particle system. Here we write down a Poisson stochas-
tic differential equation corresponding to Nanbu’s particle system, and we prove
Proposition 1.2(i).

PROPOSITION 4.2. Assume (1.3), (1.5), (1.6) or (1.7), and let f0 ∈ P2(R
3),

N ≥ 1 and K ∈ [1,∞). Consider a family (V i
0 )i=1,...,N of i.i.d. f0-distributed ran-

dom variables and an independent family (ON
i (ds, dj, dz, dϕ))i=1,...,N of Pois-

son measures on [0,∞) × {1, . . . ,N} × [0,∞) × [0,2π) with intensity measures
ds(N−1 ∑N

k=1 δk(dj)) dz dϕ. There exists a unique (càdlàg and adapted) strong
solution to

V
i,N,K
t = V i

0 +
∫ t

0

∫
j

∫ ∞
0

∫ 2π

0
cK

(
V

i,N,K
s− ,V

j,N,K
s− , z, ϕ

)
(4.2)

× ON
i (ds, dj, dz, dϕ), i = 1, . . . ,N.

Furthermore, (V
i,N,K
t )i=1,...,N,t≥0 is Markov with generator LN,K . We have

E[|V 1,N,K
t |2] = ∫

R3 |v|2f0(dv), and if
∫
R3 |v|pf0(dv) for some p ≥ 2,

sup[0,T ]E[|V 1,N,K
t |p] ≤ Cp,T ,f0,K .

PROOF. First of all, observe that we actually deal with finite Poisson mea-
sures, since cK vanishes for z ≥ K . Thus, strong existence and uniqueness for
(4.2) is trivial: it suffices to work recursively on the instants of jumps (which
are discrete) of the family (ON

i (ds, dj, dz, dϕ))i=1,...,N . Consequently, VN,K
t =

(V
1,N,K
t , . . . , V

N,N,K
t ) is a Markov process, since it solves a well-posed time-

homogeneous SDE. Its infinitesimal generator is classically defined by (2.7), with
actually a sum over all couples (i, j) ∈ {1, . . . ,N}2, but this changes nothing since
the terms with i = j vanish because cK(v, v, z,ϕ) = 0 for all v ∈ R

3. Next, a
simple computation shows that

E
[∣∣V 1,N,K

t

∣∣2]
= E

[∣∣V 1
0

∣∣2]

+ 1

N

N∑
j=1

∫ t

0

∫ ∞
0

∫ 2π

0
E

(∣∣V 1,N,K
s + cK

(
V 1,N,K

s ,V j,N,K
s , z, ϕ

)∣∣2

− ∣∣V 1,N,K
s

∣∣2)
dϕ dzds

= E
[∣∣V 1

0
∣∣2]

+ N − 1

N

∫ t

0

∫ K

0

∫ 2π

0
E

(∣∣c(
V 1,N,K

s ,V 2,N,K
s , z, ϕ

)∣∣2
+ 2V 1,N,K

s · c(
V 1,N,K

s ,V 2,N,K
s , z, ϕ

))
dϕ dzds
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by exchangeability. But, as seen in the proof of Lemma 3.1,
∫ K

0

∫ 2π

0

(∣∣c(v, v∗, z, ϕ)
∣∣2 + 2v · c(v, v∗, z, ϕ)

)
dϕ dz

= [|v − v∗|2 − 2v · (v − v∗)
]
�K

(|v − v∗|),
whence, using again exchangeability,

E
[∣∣V 1,N,K

t

∣∣2]
= E

[∣∣V 1
0

∣∣2] + N − 1

N

∫ t

0
E

([∣∣V 1,N,K
s − V 2,N,K

s

∣∣2
− 2V 1,N,K

s · (
V 1,N,K

s − V 2,N,K
s

)]
× �K

(∣∣V 1,N,K
s − V 2,N,K

s

∣∣))ds

= E
[∣∣V 1

0
∣∣2] + N − 1

N

∫ t

0
E

([∣∣V 1,N,K
s − V 2,N,K

s

∣∣2
− V 1,N,K

s · (
V 1,N,K

s − V 2,N,K
s

)
− V 2,N,K

s · (
V 2,N,K

s − V 1,N,K
s

)]
× �K

(∣∣V 1,N,K
s − V 2,N,K

s

∣∣))ds.

In this last expression, the integrand is zero, so that, as claimed, E[|V 1,N,K
t |2] =

E[|V 1
0 |2] = ∫

R3 |v|2f0(dv). Recalling finally (2.1) and (2.5), we see that |c(v, v∗,
z, ϕ)| ≤ |v − v∗|. Thus for p ≥ 2,

∫ K

0

∫ 2π

0

(∣∣v + c(v, v∗, z, ϕ)
∣∣p − |v|p)

dϕ dz ≤ CpK
(|v| + |v∗|p)

.

Consequently, we obtain as previously

E
[∣∣V 1,N,K

t

∣∣p] ≤ E
[∣∣V 1

0
∣∣p] + CpK

N

N∑
j=1

∫ t

0
E

[∣∣V 1,N,K
s

∣∣p + ∣∣V j,N,K
s

∣∣p]
ds

and conclude, using again exchangeability, that E[|V 1,N,K
t |p] ≤ E[|V 1

0 |p]e2CpKt

as desired. �

This allows us to deduce the following:

PROOF OF PROPOSITION 1.2(i). The strong existence and uniqueness for the
SDE (4.2) classically implies the existence and uniqueness of a Markov process
with generator LN,K . �
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4.3. The coupling. Here we explain how we couple our particle system with
a family of i.i.d. Boltzmann processes. For example, we want to couple V

1,N,K
t

with a Boltzmann process W 1
t . The main difficulty is that at each collision, W 1

t is
collided by an independent particle (using W ∗

t ) while V
1,N,K
t is collided by some

V
j,N,K
t . We thus have to choose j in such a way that V

j,N,K
t is as close as possible

to W ∗
t , but j has to remain uniformly chosen.

A technical problem obliges us to introduce the set (R3)N• := {w ∈ (R3)N : wi �=
wj ∀i �= j}.

LEMMA 4.3. Let ft ∈ C([0,∞),P2(R
3)) be such that ft has a density for all

t > 0. Let also N ≥ 1 be fixed. For v = (v1, . . . , vN) ∈ (R3)N , we denote by μN
v :=

N−1 ∑N
1 δvi

the empirical measure associated to v. There exists a measurable map
(t,w,v, α) 	→ (W ∗

t (α),Z∗
t (w, α),V ∗

t (v,w, α)) from (0,∞) × (R3)N• × (R3)N ×
[0,1] into R

3 ×R
3 ×R

3 enjoying the following properties:

(a) for all t ≥ 0, the α-law of W ∗
t is ft ;

(b) for all t ≥ 0, w ∈ (R3)N• , the α-law of Z∗
t (w, ·) is μN

w ;
(c) for all t ≥ 0, w ∈ (R3)N• , v ∈ (R3)N , the α-law of V ∗

t (v,w, ·) is μN
v ;

(d) for all t ≥ 0, w ∈ (R3)N• , v ∈ (R3)N , the α-law of (Z∗
t (w, ·),V ∗

t (v,w, ·)) is
N−1 ∑N

1 δ(wi,vi );

(e) for all t ≥ 0, all w ∈ (R3)N• ,
∫ 1

0 |W ∗
t (α) − Z∗

t (w, α)|2 dα = W2
2 (ft ,μ

N
w ).

PROOF. We first consider, for each t > 0, W ∗
t such that point (a) holds true

and such that (t, α) 	→ W ∗
t (α) is measurable.

Next, we recall that by Brenier’s theorem (see, e.g., Villani [44], Theorem 2.12,
page 66) for each t > 0 and each w ∈ (R3)N , since ft does not charge small sets
(because it has a density by [18]), there exists a unique map Ft,w :R3 	→ R

3 such
that, setting Z∗

t (w, α) := Ft,w(W ∗
t (α)), points (b) and (e) hold true. In other words,

(W ∗
t (·),Z∗

t (w, ·)) is an optimal coupling for ft and μN
w . Furthermore, Fontbona,

Guérin and Méléard [17] have shown that Ft,w(x) is a measurable function of
(t,w, x). Consequently, Z∗

t (w, α) is a measurable function of (t,w, α).
Finally, we define, for any w ∈ (R3)N• and any v ∈ (R3)N , the application

Gw,v : {w1, . . . ,wN } 	→ {v1, . . . , vN } by Gw,v(wi) = vi [here we need that w ∈
(R3)N• ]. We then put V ∗

t (v,w, α) = Gw,v(Z
∗
t (w, α)), which is clearly measurable

(in all its variables). Point (d) follows from (b) and the definition of Gw,v, and
finally (c) follows from (d). �

Here is the coupling we propose.

LEMMA 4.4. Assume (1.3), (1.5), (1.6) or (1.7). Let f0 ∈ P2(R
3). Assume ad-

ditionally (1.8) and (1.12) if γ ∈ (0,1]. Let (ft )t≥0 be the unique weak solution
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to (1.1), and assume that ft has a density for all t > 0; see Theorem 1.1. Con-
sider N ≥ 1 and K ∈ [1,∞) fixed. Let (V i

0 )i=1,...,N be i.i.d. with common law
f0, and let (Mi(ds, dα, dz, dϕ))i=1,...,N be an i.i.d. family of Poisson measures on
[0,∞) × [0,1] × [0,∞) × [0,2π) with intensity measures ds dα dzdϕ, indepen-
dent of (V i

0 )i=1,...,N .

(i) The following SDE’s, for i = 1, . . . ,N , define N independent copies of the
Boltzmann process:

Wi
t = V i

0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
c
(
Wi

s−,W ∗
s (α), z, ϕ

)
Mi(ds, dα, dz, dϕ).

In particular, for each t ≥ 0, (Wi
t )i=1,...,N are i.i.d. with common law ft . Conse-

quently, since ft has a density for all t > 0, (Wi
t )i=1,...,N ∈ (R3)N• a.s.

(ii) Next, we consider the system of SDE’s, for i = 1, . . . ,N ,

V
i,N,K
t = V i

0 +
∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
cK

(
V

i,N,K
s− ,V ∗

s

(
VN,K

s− ,Ws−, α
)
, z, ϕ + ϕi,α,s

)
× Mi(ds, dα, dz, dϕ).

We used the notation VN,K
s− = (V

1,N,K
s− , . . . , V

N,N,K
s− ) ∈ (R3)N , Ws− = (W 1

s−, . . . ,

WN
s−) ∈ (R3)N• , and we have set ϕi,α,s := ϕ0(W

i
s− −W ∗

s (s, α),V
i,N,K
s− −V ∗

s (VN,K
s− ,

Ws−, α)) for simplicity. This system of SDEs has a unique solution, and this solu-
tion is a Markov process with generator LN,K and initial condition (V i

0 )i=1,...,N .

(iii) The family ((W 1
t , V

1,N,K
t )t≥0, . . . , (W

N
t ,V

N,N,K
t )t≥0) is exchangeable.

PROOF. Point (i) is a direct consequence of Proposition 4.1, and point (iii)
follows from the exchangeability of the family (V i

0 ,Mi)i=1,...,N and from unique-
ness (in law). In point (ii), the existence and uniqueness result is also immedi-
ate, since the Poisson measures under consideration are finite (or rather, are fi-
nite when z is restricted to [0,K], which is the case since cK = c1{z≤K}). Finally
(V

1,N,K
t , . . . , V

N,N,K
t )t≥0 is a Markov process with generator LN,K due to the fact

that for all v ∈ (R3)N , all w ∈ (R3)N• , all s > 0, all ϕij ∈ [0,2π), for all bounded
measurable function φ : (R3)N 	→R,

N∑
i=1

∫ 1

0

∫ ∞
0

∫ 2π

0

(
φ

(
v + cK

(
vi,V

∗
s (v,w, α), z, ϕ + ϕij

)
·ei

) − φ(v)
)
dϕ dzdα

=
N∑

i=1

1

N

N∑
j=1

∫ ∞
0

∫ 2π

0

(
φ

(
v + cK(vi, vj , z, ϕ + ϕij )·ei

) − φ(v)
)
dϕ dz

= 1

N

∑
i �=j

∫ ∞
0

∫ 2π

0

(
φ

(
v + cK(vi, vj , z, ϕ)·ei

) − φ(v)
)
dϕ dz,
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which is nothing but LN,Kφ(v); see (2.7). We used Lemma 4.3(c) for the first
equality and the 2π -periodicity of cK (in ϕ) and the fact that cK(vi, vi, z, ϕ) = 0
for the second one. �

4.4. Estimate of the Wasserstein distance. We can now prove our main result
in the case with cutoff. We first study hard potentials.

PROOF OF THEOREM 1.4(ii) WHEN K ∈ [1,∞). We thus assume (1.3), (1.5)
with γ ∈ (0,1) and (1.7). We consider f0 ∈ P2(R

3) satisfying (1.12) for some
p ∈ (γ,2), and fix q ∈ (γ,p) for the rest of the proof. We also assume that f0
is not a Dirac mass, so that ft has a density for all t > 0. We fix N ≥ 1 and
K ∈ [1,∞) and consider the processes introduced in Lemma 4.4.

Step 1. A direct application of the Itô calculus for jump processes shows that

E
[∣∣W 1

t − V
1,N,K
t

∣∣2]
=

∫ t

0

∫ 1

0

∫ ∞
0

∫ 2π

0
E

[∣∣W 1
s − V 1,N,K

s + �1(s, α, z,ϕ)
∣∣2

− ∣∣W 1
s − V 1,N,K

s

∣∣2]
dϕ dzdα ds,

where

�1(s, α, z,ϕ)

= c
(
W 1

s ,W ∗
s (s, α), z, ϕ

) − cK

(
V 1,N,K

s ,V ∗
s

(
VN,K

s ,Ws, α
)
, z, ϕ + ϕi,α,s

)
.

Using Lemma 3.1, we thus obtain

E
[∣∣W 1

t − V
1,N,K
t

∣∣2] ≤
∫ t

0

[
BK

1 (s) + BK
2 (s) + BK

3 (s)
]
ds,

where, for i = 1,2,3,

BK
i (s) :=

∫ 1

0
E

[
AK

i

(
W 1

s ,W ∗
s (α),V 1,N,K

s ,V ∗
s

(
VN,K

s ,Ws, α
))]

dα.

Step 2. Using Lemma 3.3(i), we see that for all M ≥ 1 [recall that q ∈ (γ,p) is
fixed],

BK
1 (s) ≤ M

∫ 1

0
E

[∣∣W 1
s − V 1,N,K

s

∣∣2 + ∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

+ Ce−Mq/γ
∫ 1

0
E

[
exp

(
C

(∣∣W 1
s

∣∣q + ∣∣W ∗
s (α)

∣∣q))]
dα

≤ M

∫ 1

0
E

[∣∣W 1
s − V 1,N,K

s

∣∣2 + ∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

+ Ce−Mq/γ

.
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To get the last inequality, we used that W 1
s and W ∗

s (·) are independent and satisfy
W 1

s ∼ fs and W ∗
s (·) ∼ fs , whence

∫ 1

0
E

[
exp

(
C

(∣∣W 1
s

∣∣q + ∣∣W ∗
s (α)

∣∣q))]
dα =

(∫
R3

eC|w|q fs(dw)

)2

< ∞

by (1.13).
Step 3. Roughly speaking, BK

2 should not be far from zero for reasons of sym-
metry. We claim that BK

2 would be zero if W ∗
s (α) was replaced by Z∗

s (Ws, α).
More precisely, we check here that

B̃K
2 (s) :=

∫ 1

0
E

[
AK

2
(
W 1

s ,Z∗
s (Ws, α),V 1,N,K

s ,V ∗
s

(
VN,K

s ,Ws, α
))]

dα = 0.

By Lemma 4.3(d), we simply have

B̃K
2 (s) = E

[
1

N

N∑
i=1

AK
2

(
W 1

s ,W i
s ,V

1,N,K
s ,V i,N,K

s

)]

= N − 1

N
E

[
AK

2
(
W 1

s ,W 2
s , V 1,N,K

s ,V 2,N,K
s

)]
by exchangeability and since AK

2 (v, v, ṽ, ṽ) = 0. Finally, we write, using again
exchangeability,

B̃K
2 (s) = N − 1

2N
E

[
AK

2
(
W 1

s ,W 2
s , V 1,N,K

s ,V 2,N,K
s

)
+ AK

2
(
W 2

s ,W 1
s , V 2,N,K

s ,V 1,N,K
s

)]
.

This is zero by symmetry of AK
2 : it holds that AK

2 (v, v∗, ṽ, ṽ∗) + AK
2 (ṽ, ṽ∗,

v, v∗) = 0.
Step 4. By step 3, we thus have

BK
2 (s) =

∫ 1

0
E

[
AK

2
(
W 1

s ,W ∗
s (α),V 1,N,K

s ,V ∗
s

(
VN,K

s ,Ws, α
))

− AK
2

(
W 1

s ,Z∗
s (Ws, α),V 1,N,K

s ,V ∗
s

(
VN,K

s ,Ws, α
))]

dα.

Consequently, Lemma 3.3(ii) implies

BK
2 (s) ≤ C

∫ 1

0
E

[∣∣W 1
s − V 1,N,K

s

∣∣2 + ∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2

+ ∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2

× (
1 + ∣∣W 1

s

∣∣ + ∣∣W ∗
s (α)

∣∣ + ∣∣Z∗
s (Ws, α)

∣∣)2γ /(1−γ )]
dα.
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Step 5. Finally, we use Lemma 3.3(iii) to obtain

BK
3 (s) ≤ CK1−2/ν

∫ 1

0
E

[
1 + ∣∣W 1

s

∣∣4γ /ν+2 + ∣∣W ∗
s (α)

∣∣4γ /ν+2

+ ∣∣V 1,N,K
s

∣∣2 + ∣∣V ∗
s

(
VN,K

s ,Ws, α
)∣∣2]

dα.

Since W 1
s ∼ fs , we deduce from (1.13) that E[|W 1

s |4γ /ν+2] = ∫
R3 |v|4γ /ν+2 ×

fs(dv) ≤ C. By Lemma 4.3(a), W ∗
s (·) ∼ fs , whence

∫ 1
0 |W ∗

s (α)|4γ /ν+2 dα =∫
R3 |v|4γ /ν+2fs(dv) ≤ C. Proposition 4.2 shows that E[|V 1,N,K

s |2] = ∫
R3 |v|2 ×

f0(dv). We next infer from Lemma 4.3(c) that
∫ 1

0 |V ∗
s (VN,K

s ,Ws, α)|2 dα =
N−1 ∑N

1 |V i,N,K
s |2. Consequently, it holds that E[∫ 1

0 |V ∗
s (VN,K

s ,Ws, α)|2 dα] =
E[|V 1,N,K

s |2] = ∫
R3 |v|2f0(dv). As a conclusion,

BK
3 (s) ≤ CK1−2/ν.

Step 6. We set u
N,K
t := E[|W 1

t − V
1,N,K
t |2]. Using the previous steps, we see

that for all M ≥ 1,

u
N,K
t ≤ Cte−Mq/γ + CtK1−2/ν

+ (M + C)

∫ t

0

[
uN,K

s +
∫ 1

0
E

[∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

]
ds

+ C

∫ t

0

∫ 1

0
E

[∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2

× (
1 + ∣∣W 1

s

∣∣ + ∣∣W ∗
s (α)

∣∣ + ∣∣Z∗
s (Ws, α)

∣∣)2γ /(1−γ )]
dα ds.

We now write, using Minkowski’s inequality and Lemma 4.3(d) and (e),[∫ 1

0
E

[∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

]1/2

≤
[∫ 1

0
E

[∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2]

dα

]1/2

+
[∫ 1

0
E

[∣∣Z∗
s (Ws, α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

]1/2

(4.3)

= E
[
W2

2
(
fs,μ

N
Ws

)]1/2 +
[

1

N

N∑
1

E
[∣∣Wi

s − V i,N,K
s

∣∣2]]1/2

= E
[
W2

2
(
fs,μ

N
Ws

)]1/2 + (
uN,K

s

)1/2

by exchangeability. We deduce that∫ 1

0
E

[∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα ≤ 2E
[
W2

2
(
fs,μ

N
Ws

)] + 2uN,K
s .(4.4)
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Next, a simple computation shows that for all ε ∈ (0,1),∫ 1

0
E

[∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2

× (
1 + ∣∣W 1

s

∣∣ + ∣∣W ∗
s (α)

∣∣ + ∣∣Z∗
s (Ws, α)

∣∣)(2γ )/(1−γ )]
dα

≤
∫ 1

0
E

[∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2−ε

× (
1 + ∣∣W 1

s

∣∣ + ∣∣W ∗
s (α)

∣∣ + ∣∣Z∗
s (Ws, α)

∣∣)((2γ )/(1−γ ))+ε]
dα(4.5)

≤
(∫ 1

0
E

[∣∣W ∗
s (α) − Z∗

s (Ws, α)
∣∣2]

dα

)(2−ε)/2

×
(∫ 1

0
E

[(
1 + ∣∣W 1

s

∣∣ + ∣∣W ∗
s (α)

∣∣ + ∣∣Z∗
s (Ws, α)

∣∣)((4γ )/(ε(1−γ )))+2]
dα

)ε/2

≤ Cε

(
E

[
W2

2
(
fs,μ

N
Ws

)])(2−ε)/2
.

For the last inequality, we used Lemma 4.3(e), the fact that by (1.13),

E
[∣∣W 1

s

∣∣((4γ )/(ε(1−γ )))+2] =
∫ 1

0

∣∣W ∗
s (α)

∣∣((4γ )/(ε(1−γ )))+2
dα

=
∫
R3

|v|((4γ )/(ε(1−γ )))+2fs(dv) ≤ Cε

and that, by Lemma 4.3(b),

∫ 1

0
E

[∣∣Z∗
s (Ws, α)

∣∣((4γ )/(ε(1−γ )))+2]
dα = E

[
1

N

N∑
1

∣∣Wi
s

∣∣((4γ )/(ε(1−γ )))+2
]

= E
[∣∣W 1

s

∣∣((4γ )/(ε(1−γ )))+2] ≤ Cε.

We end up with: for all ε ∈ (0,1), all M ≥ 1,

u
N,K
t ≤ Cte−Mq/γ + CtK1−2/ν + 3(M + C)

∫ t

0

[
uN,K

s +E
[
W2

2
(
fs,μ

N
Ws

)]]
ds

+ Cε

∫ t

0

(
E

[
W2

2
(
fs,μ

N
Ws

)])1−ε/2
ds.

Now we observe that E[W2
2 (fs,μ

N
Ws

)] = εN(ft ). Recall (1.14), because

W 1
t , . . . ,WN

t are i.i.d. and ft -distributed. Since εN(ft ) ≤ 2
∫
R3 |v|2ft (dv) =

2
∫
R3 |v|2f0(dv), since M ≥ 1 and K ∈ [1,∞), we get

u
N,K
t ≤ Cε

(
te−Mq/γ + Mtδ

1−ε/2
N,K,t + M

∫ t

0
uN,K

s ds

)
,
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where we have set

δN,K,t := K1−2/ν + sup
[0,t]

εN(fs).

Hence by Grönwall’s lemma,

sup
[0,T ]

u
N,K
t ≤ CεT

(
e−Mq/γ + Mδ

1−ε/2
N,K,T

)
eCεMT ,

this holding for any value of M ≥ 1. We easily conclude that

sup
[0,T ]

u
N,K
t ≤ Cε,T δ1−ε

N,K,T ,

by choosing M = 1 if δN,K,T ≥ 1/e and M = | log δN,K,T |γ /q otherwise, which
gives

sup
[0,T ]

u
N,K
t ≤ Cε

(
T δN,K,T + δ

1−ε/2
N,K,T | log δN,K,T |γ /q)

eCε | log δN,K,T |γ /qT

≤ Cε,T δ1−ε
N,K,T ,

the last inequality following from the fact that γ /q < 1.
Final step. We now recall that μ

N,K
t = μN

VN,K
t

and write

E
[
W2

2
(
μ

N,K
t , ft

)] ≤ 2E
[
W2

2
(
μN

VN,K
t

,μN
Wt

)] + 2E
[
W2

2
(
μN

Wt
, ft

)]
.

But E[W2
2 (μN

VN,K
t

,μN
Wt

)] ≤ E[N−1 ∑N
1 |V i,N,K

t − Wi
t |2] = E[|V 1,N,K

t − W 1
t |2] =

u
N,K
t by exchangeability, and we have already seen that E[W2

2 (μN
Wt

, ft )] =
εN(ft ). Consequently, for all ε ∈ (0,1), all t ∈ [0, T ],

E
[
W2

2
(
μN

t , ft

)] ≤ Cε,T δ1−ε
N,K,T + 2εN(ft ) ≤ Cε,T

(
K1−2/ν + sup

[0,T ]
εN(ft )

)1−ε

and this proves (1.18). Using finally (1.13) and applying Theorem 1.3 (with any
choice of k > 4), (1.19) easily follows. �

We next study the case of Maxwell molecules.

PROOF OF THEOREM 1.4(i) WHEN K ∈ [1,∞). We thus assume (1.3), (1.5)
with γ = 0 and (1.7). We consider f0 ∈ P2(R

3) not being a Dirac mass. We also as-
sume that f0 ∈ P4(R

3) or that
∫
R3 f0(v) logf0(v) dv < ∞, so that ft has a density

for all t > 0. We fix N ≥ 1 and K ∈ [1,∞) and consider the processes introduced
in Lemma 4.4.
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Step 1. Exactly as in the case of hard potentials, we find that

E
[∣∣W 1

t − V
1,N,K
t

∣∣2] ≤
∫ t

0

[
BK

1 (s) + BK
2 (s) + BK

3 (s)
]
ds,

where BK
i (s) := ∫ 1

0 E[AK
i (W 1

s ,W ∗
s (α),V 1,N,K

s ,V ∗
s (VN,K

s ,Ws, α))]dα for i =
1,2,3.

Step 2. By Lemma 3.2(i), we have BK
1 (s) = 0.

Steps 3 and 4. By Lemma 3.2(ii), it holds that for ζK = π
∫ K

0 (1− cosG(z)) dz,

BK
2 (s) = ζK

∫ 1

0
E

[−∣∣W 1
s − V 1,N,K

s

∣∣2 + ∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα.

Step 5. By Lemma 3.2(iii),

BK
3 (s) ≤ CK1−2/ν

∫ 1

0
E

[∣∣W 1
s

∣∣2 + ∣∣W ∗
s (α)

∣∣2 + ∣∣V 1,N,K
s

∣∣2]
dα ≤ CK1−2/ν,

since, as usual, E[|W 1
s |2] = ∫ 1

0 |W ∗
s (α)|2 dα = E[|V 1,N,K

s |2] = ∫
R3 |v|2f0(dv).

Step 6. Setting u
N,K
t := E[|W 1

t − V
1,N,K
t |2], we thus have

u
N,K
t ≤ CK1−2/νt

+ ζK

∫ t

0

(
−uN,K

s +
∫ 1

0
E

[∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

)
ds

≤ CK1−2/νt + ζK

∫ t

0

(
2
√

u
N,K
s

√
E

[
W2

2

(
fs,μ

N
Ws

)] +E
[
W2

2
(
fs,μ

N
Ws

)])
ds

by (4.3). Next we recall that εN(ft ) = E[W2
2 (fs,μ

N
Ws

)], we set εN,T =
sup[0,T ] εN(ft ) and we recall that ζK ≤ ∫ ∞

0 (1 − cosG(z)) dz < ∞. We thus may
write, for all t ∈ [0, T ],

u
N,K
t ≤ C

(
K1−2/ν + εN,T T

)
T + Cε

1/2
N,T

∫ t

0

(
uN,K

s

)1/2
ds =: vN,K

t .

Then we have (v
N,K
t )′ ≤ Cε

1/2
N,T (v

N,K
t )1/2, so that (v

N,K
t )1/2 ≤ (C(K1−2/ν +

εN,T T )T )1/2 + Cε
1/2
N,T t . We conclude that

sup
[0,T ]

u
N,K
t ≤ C

(
K1−2/ν + εN,T T

)
T + CT 2εN,T

≤ CK1−2/νT + C
(
T + T 2)

εN,T .

Final step. Exactly as in the case of hard potentials, for t ∈ [0, T ],
E

[
W2

2
(
μ

N,K
t , ft

)] ≤ 2εN(ft ) + 2u
N,K
t

≤ CK1−2/νT + C(1 + T )2 sup
[0,T ]

εN(ft )
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whence (1.16). If finally f0 ∈ Pk(R
3) for some k > 4, then sup[0,∞)

∫
R3 |v|k ×

ft (dv) < ∞, so that (1.17) follows by application of Theorem 1.3. �

We conclude with hard spheres.

PROOF OF THEOREM 1.4(iii). We thus assume (1.3), (1.5) with γ = 1 and
(1.6). We consider f0 ∈ P2(R

3) satisfying (1.12) for some p ∈ (γ,2) and fix q ∈
(γ,p) for the rest of the proof. We also assume that f0 has a density, so that ft has
a density for all t > 0. We fix N ≥ 1 and K ∈ [1,∞) and consider the processes
introduced in Lemma 4.4.

Step 1. Exactly as in the case of hard potentials, we find that

u
N,K
t := E

[∣∣W 1
t − V

1,N,K
t

∣∣2] ≤
∫ t

0

[
BK

1 (s) + BK
2 (s) + BK

3 (s)
]
ds,

where BK
i (s) := ∫ 1

0 E[AK
i (W 1

s ,W ∗
s (α),V 1,N,K

s ,V ∗
s (VN,K

s ,Ws, α))]dα for i =
1,2,3.

Steps 2, 3, 4, 5, 6. Following the case of hard potentials, using Lemma 3.4 in-
stead of Lemma 3.3, we deduce that for all M > 1,

3∑
1

BK
i (s)

≤ 2M

∫ 1

0
E

[∣∣W 1
s − V 1,N,K

s

∣∣2 + ∣∣W ∗
s (α) − V ∗

s

(
VN,K

s ,Ws, α
)∣∣2]

dα

+ C
(
Ke−Mq + e−Kq ) ∫ 1

0
E

[(
1 + ∣∣V 1,N,K

s

∣∣ + ∣∣V ∗
s

(
VN,K

s ,Ws, α
)∣∣)

× eC(|W 1
s |q+|W ∗

s (α)|q+|Z∗
s (Ws ,α)|q )]dα

+ C

∫ 1

0
E

[∣∣W ∗
s (α) − Z∗

s

(
VN,K

s ,Ws, α
)∣∣2

× (
1 + ∣∣W 1

s

∣∣ + ∣∣W ∗
s (α)

∣∣ + ∣∣Z∗
s

(
VN,K

s ,Ws, α
)∣∣)2]

dα.

Proceeding as in (4.5), we deduce that the last line is bounded, for all ε ∈ (0,1),
by

Cε

(
E

[
W2

2
(
fs,μ

N
Ws

)])(2−ε)/ε
,

and using (4.4), the first term is bounded by

4ME
[
W2

2
(
fs,μ

N
Ws

)] + 6MuN,K
s .

Using finally the Cauchy–Schwarz inequality, that by Lemma 4.3(c) and exchange-

ability, E[∫ 1
0 |V ∗

s (VN,K
s ,Ws, α)|2 dα] = E[N−1 ∑N

1 |V i,N,K
s |2] = E[|V 1,N,K

s |2] =
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∫
R3 |v|2f0(dv) < ∞ and (1.13), we easily bound the second line by C(Ke−Mq +

e−Kq
) [recall that Wi

s ∼ fs , that W ∗
s (·) ∼ fs and that, by Lemma 4.4(b),∫ 1

0 eC|Z∗
s (Ws ,α)|q dα = N−1 ∑N

1 eC|Wi
s |q ].

Recalling that E[W2
2 (fs,μ

N
Ws

)] = εN(fs) and setting εN,t = sup[0,t] εN(fs), we
thus have, for any M > 1, any ε ∈ (0,1),

u
N,K
t ≤ 6M

∫ t

0
uN,K

s ds + Ct
(
Ke−Mq + e−Kq ) + Cεtε

1−ε/2
N,t .

Thus by Grönwall’s lemma,

u
N,K
t ≤ Cεt

(
Ke−Mq + e−Kq + ε

1−ε/2
N,t

)
e6Mt .

Choosing M = 2K and using that Ke−(2K)q ≤ Ce−Kq
, we deduce that

sup
[0,T ]

u
N,K
t ≤ CεT

(
e−Kq + ε

1−ε/2
N,T

)
e12KT

= CεT
(
e−Kq +

(
sup
[0,T ]

εN(fs)
)1−ε/2)

e12KT .

Final step. We conclude as usual, using that E[W2
2 (μ

N,K
t , ft )] ≤ 2εN(ft ) +

2u
N,K
t to obtain (1.20) and then (1.13) and Theorem 1.3 to deduce (1.21). �

5. Extension to the particle system without cutoff. It remains to check that
the particle system without cutoff is well posed and that we can pass to the limit as
K → ∞ in the convergence estimates (1.16)–(1.17)–(1.18)–(1.19). We will need
the following rough computations.

LEMMA 5.1. Assume (1.3), (1.5) and (1.6) or (1.7). Adopt the notation of
Lemma 3.1. There are C > 0, κ > 0 and δ > 0 (depending on γ, ν) such that for
all K ∈ [1,∞), all v, v∗, ṽ, ṽ∗ ∈ R

3,
3∑

i=1

AK
i (v, v∗, ṽ, ṽ∗)

≤ C
(
1 + |v| + |v∗| + |ṽ| + |ṽ∗|)κ(|v − ṽ|2 + |v∗ − ṽ∗|2 + K−δ).

PROOF. Concerning AK
1 , we start from (3.1) (this is valid for all γ ∈ [0,1]),

and we deduce that

AK
1 (v, v∗, ṽ, ṽ∗) ≤ 8c4

(|v − ṽ| ∧ |v∗ − ṽ∗|)γ (|v − ṽ| + |v∗ − ṽ∗|)2

≤ C
(
1 + |v| + |v∗| + |ṽ| + |ṽ∗|)γ (|v − ṽ|2 + |v∗ − ṽ∗|2)

.

We then make use of (3.2) (also valid for all γ ∈ [0,1]) to write

AK
2 (v, v∗, ṽ, ṽ∗) ≤ C

(|v − ṽ| + |v∗ − ṽ∗|)2(|v − v∗|γ + |ṽ − ṽ∗|γ )
≤ C

(
1 + |v| + |v∗| + |ṽ| + |ṽ∗|)γ (|v − ṽ|2 + |v∗ − ṽ∗|2)

.
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For AK
3 , we separate two cases. Under hypothesis (1.7), we immediately deduce

from (3.4) that

AK
3 (v, v∗, ṽ, ṽ∗) ≤ C

(
1 + |v| + |v∗| + |ṽ| + |ṽ∗|)2+2γ /ν

K1−2/ν.

Under hypothesis (1.6), we have seen (when γ = 1, at the end of the proof of
Lemma 3.4) that �K(x) ≤ 5xγ 1{xγ ≥K/2}, whence �K(x) ≤ 10x2γ /K and thus

AK
3 (v, v∗, ṽ, ṽ∗) ≤ C

(|v − v∗| ∨ |ṽ − ṽ∗|)2+2γ
K−1

≤ C
(
1 + |v| + |v∗| + |ṽ| + |ṽ∗|)2+2γ

K−1.

The conclusion follows, choosing κ = 2 + 2γ /ν and δ = 2/ν − 1 under (1.7) and
κ = 2 + 2γ and δ = 1 under (1.6). �

Now we can give the following:

PROOF OF PROPOSITION 1.2(ii). We only sketch the proof, since it is quite
standard. In the whole proof, N ≥ 2 is fixed, as well as f0 ∈ P2(R

3) and a family
of i.i.d. f0-distributed random variables (V

i,N
0 )i=1,...,N .

Step 1. Recall (2.8). Classically, (V
i,N,∞
t )i=1,...,N,t≥0 is a Markov process with

generator LN starting from (V
i,N
0 )i=1,...,N if it solves

V
i,N,∞
t = V i

0 +
∫ t

0

∫
j

∫ ∞
0

∫ 2π

0
c
(
V

i,N,∞
s− ,V

j,N,∞
s− , z, ϕ

)
(5.1)

× ON
i (ds, dj, dz, dϕ), i = 1, . . . ,N

for some i.i.d. Poisson measures ON
i (ds, dj, dz, dϕ)i=1,...,N on [0,∞) × {1, . . . ,

N} × [0,∞) × [0,2π) with intensity measures ds(N−1 ∑N
k=1 δk(dj)) dz dϕ.

Step 2. The existence of a solution (in law) to (5.1) is easily checked, using
martingale problems methods (tightness and consistency), by passing to the limit
in (4.2). The main estimates to be used are that, uniformly in K ∈ [1,∞) (and in
N ≥ 1, but this is not the point here),

E
[∣∣V 1,N,K

t

∣∣2] =
∫
R3

|v|2f0(dv) and E

[
sup
[0,T ]

∣∣V 1,N,K
t

∣∣] ≤ CT

for all T > 0. This second estimate is immediately deduced from the first one
and the fact that

∫ ∞
0

∫ 2π
0 |c(v, v∗, z, ϕ)| ≤ C|v − v∗|1+γ ≤ C(1 + |v| + |v∗|)2. The

tightness is easily checked by using Aldous’s criterion [1].
Step 3. Uniqueness (in law) for (5.1) is more difficult. Consider a (càdlàg and

adapted) solution (V
i,N,∞
t )i=1,...,N,t≥0 to (5.1). For K ∈ [1,∞), consider the so-

lution to

V
i,N,K
t = V i

0 +
∫ t

0

∫
j

∫ ∞
0

∫ 2π

0
cK

(
V

i,N,K
s− ,V

j,N,K
s− , z, ϕ + ϕs,i,j

)
× ON

i (ds, dj, dz, dϕ),
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i = 1, . . . ,N , where ϕs,i,j := ϕ0(V
i,N,∞
s− − V

j,N,∞
s− ,V

i,N,K
s− − V

j,N,K
s− ). Such a

solution obviously exists and is unique, because the involved Poisson measures
are finite [recall that cK(v, v∗, z, ϕ) = 0 for z ≥ K]. Furthermore, this solu-
tion (V

i,N,K
t )i=1,...,N,t≥0 is a Markov process with generator LN,K starting from

(V
i,N
0 )i=1,...,N [because the only difference with (4.2) is the presence of ϕs,i,j

which does not change the law of the particle system; see Lemma 4.4(ii) for a sim-
ilar claim]. Hence Proposition 1.2(i) implies that the law of (V

i,N,K
t )i=1,...,N,t≥0

is uniquely determined.
We next introduce τN,K,A = inf{t ≥ 0 :∃i ∈ {1, . . . ,N}, |V i,N,∞

t | + |V i,N,K
t | ≥

A}. Using, on the one hand, the fact that (V
i,N,∞
t )i=1,...,N,t≥0 is a.s. càdlàg (and

thus locally bounded), and on the other hand, the (uniform in K) estimate estab-
lished in step 2, one easily gets convinced that

∀T > 0, lim
A→∞ sup

K≥1
Pr[τN,K,A ≤ T ] = 0.(5.2)

Next, a simple computation shows that

E
[∣∣V 1,N,∞

t∧τN,K,A
− V

1,N,K
t∧τN,K,A

∣∣2]

≤ 1

N

N∑
j=1

E

[∫ t∧τN,K,A

0

∫ ∞
0

∫ 2π

0

(∣∣V 1,N,∞
s− − V

1,N,K
s−

+ �
1,j,N,K
s− (z, ϕ)

∣∣2
− ∣∣V 1,N,∞

s− − V
1,N,K
s−

∣∣2)
dϕ dz

]
,

where

�
1,j,N,K
s− (z, ϕ)

:= c
(
V

1,N,∞
s− ,V

1,N,∞
s− , z, ϕ

) − cK

(
V

1,N,K
s− ,V

1,N,K
s− , z, ϕ + ϕs,i,j

)
.

Using Lemmas 3.1 and 5.1 and the fact that all the velocities are bounded by A

until τN,K,A, we easily deduce that

E
[∣∣V 1,N,∞

t∧τN,K,A
− V

1,N,K
t∧τN,K,A

∣∣2]

≤ C(1 + A)κ

N

N∑
j=1

E

[∫ t∧τN,K,A

0

(∣∣V 1,N,∞
s − V 1,N,K

s

∣∣2

+ ∣∣V j,N,∞
s − V j,N,K

s

∣∣2 + K−δ)ds

]

≤ CT (1 + A)κK−δ + C(1 + A)κ
∫ t

0
E

[∣∣V 1,N,∞
s∧τN,K,A

− V 1,N,K
s∧τN,K,A

∣∣2]
ds
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by exchangeability. We now use the Grönwall lemma and then deduce that for any
A > 0,

lim
K→∞ sup

[0,T ]
E

[∣∣V 1,N,∞
t∧τN,K,A

− V
1,N,K
t∧τN,K,A

∣∣2] = 0.(5.3)

Gathering (5.2) and (5.3), we easily conclude that for all t ≥ 0, V
1,N,K
t tends in

probability to V
1,N,∞
t as K → ∞. Thus for any finite family 0 ≤ t1 ≤ · · · ≤ tl ,

(V
i,N,K
tj

)i=1,...,N,j=1,...,l goes in probability to (V
i,N,∞
tj

)i=1,...,N,j=1,...,l , of which
the law is thus uniquely determined. This is classically sufficient to characterize
the whole law of the process (V

i,N,∞
t )i=1,...,N,t≥0.

Conclusion. We thus have the existence of a unique Markov process
(V

i,N,∞
t )i=1,...,N,t≥0 with generator LN starting from (V

i,N
0 )i=1,...,N , and it holds

that for each t ≥ 0, each N ≥ 2, (V
i,N,∞
t )i=1,...,N is the limit in law, as K → ∞,

of (V
i,N,K
t )i=1,...,N . �

To conclude, we will need the following lemma.

LEMMA 5.2. Let N ≥ 2 be fixed. Let (Xi,N,K)i=1,...,N be a sequence of
(R3)N -valued random variable going in law, as K → ∞, to some (R3)N -valued
random variable (Xi,N)i=1,...,N . Consider the associated empirical measures
νN,K := N−1 ∑N

i=1 δXi,N,K and νN := N−1 ∑N
i=1 δXi,N . Then for any g ∈ P2(R

3),

E
[
W2

2
(
νN,g

)] ≤ lim inf
K→∞ E

[
W2

2
(
νN,K, g

)]
.

PROOF. First observe that the map (x1, . . . , xN) 	→ W2(N
−1 ∑N

1 δxi
, g) is

continuous on (R3)N . Indeed, it suffices to use the triangular inequality for W2
and the easy estimate

W2
2

(
1

N

N∑
1

δxi
,

1

N

N∑
1

δyi

)
≤ 1

N

N∑
1

|xi − yi |2.

Consequently, W2
2 (νN,K, g) goes in law to W2

2 (νN, g). Thus for any A > 1, we
have

E
[
W2

2
(
νN,g

) ∧ A
] = lim

K→∞E
[
W2

2
(
νN,K, g

) ∧ A
] ≤ lim inf

K→∞ E
[
W2

2
(
νN,K, g

)]
.

It then suffices to let A increase to infinity and to use the monotonic convergence
theorem. �

This allows us to complete the proof of our main results.

PROOF OF THEOREM 1.4(i)–(ii) WHEN K = ∞. Recall that (1.16)–(1.19)
have already been established when K ∈ [1,∞). Since (V

i,N,∞
t )i=1,...,N is the
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limit (in law) of (V
i,N,K
t )i=1,...,N as K → ∞ for each t ≥ 0 and each N ≥ 2

[see the conclusion of the proof of Proposition 1.2(ii)], we can let K → ∞ in
(1.16)–(1.19) using Lemma 5.2. �
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