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ON A PROBLEM OF OPTIMAL TRANSPORT UNDER MARGINAL
MARTINGALE CONSTRAINTS
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Universität Wien and Université de Strasbourg et CNRS

The basic problem of optimal transportation consists in minimizing the
expected costs E[c(X1,X2)] by varying the joint distribution (X1,X2) where
the marginal distributions of the random variables X1 and X2 are fixed.

Inspired by recent applications in mathematical finance and connections
with the peacock problem, we study this problem under the additional condi-
tion that (Xi)i=1,2 is a martingale, that is, E[X2|X1] = X1.

We establish a variational principle for this problem which enables us to
determine optimal martingale transport plans for specific cost functions. In
particular, we identify a martingale coupling that resembles the classic mono-
tone quantile coupling in several respects. In analogy with the celebrated the-
orem of Brenier, the following behavior can be observed: If the initial dis-
tribution is continuous, then this “monotone martingale” is supported by the
graphs of two functions T1, T2 :R →R.

1. Introduction.

1.1. Presentation of the martingale transport problem. We will denote by P
the set of probability measures on R having finite first moments. We are given
measures μ,ν ∈ P , and a (measurable) cost function c :R × R → R which will
be continuous in most of our applications. We assume moreover that c(x, y) ≥
a(x) + b(y) where a (resp., b) is integrable with respect to μ (resp., ν). Hence
if (X,Y ) is a joint law with marginal distributions lawX = μ and lawY = ν,
the expectation of c(X,Y ) ≥ a(X) + b(Y ) is well defined, taking its value in
[E[a(X)] + E[b(Y )],+∞]. We will refer to this technical hypothesis as the suf-
ficient integrability condition. The basic problem of optimal transport consists in
the minimization problem

Minimize E
[
c(X,Y )

]
subject to law(X) = μ, law(Y ) = ν,(1)

where the infimum is taken over all joint distributions. We denote the infimum
in (1) by C(μ,ν). The joint laws on R×R are usually called transport plans after
the classical concrete problem of Monge [22]: How can one transport a heap of
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soil distributed according to μ to a target distribution ν? A transport plan π pre-
scribes that for (x, y) ∈ R2 a quantity of mass π(dx dy) is transported from x to y.
Minimizers of the problem (1) are called optimal transport plans. Note that we will
also use the more probabilistic term coupling for transport plans. Following [28],
we denote the set of all transport plans by �(μ,ν) so that one has the alternative
definition

C(μ,ν) = inf
π∈�(μ,ν)

∫∫
c(x, y)dπ(x, y).

Our main interest lies in a martingale version of the transport problem. That is,
our aim is to minimize E[c(X,Y )] over the set of all martingale transport plans

�M(μ,ν) = {
π ∈ �(μ,ν) :π = law(X,Y ) and E[Y |X] = X

}
.

A transport plan π is equivalently described through its disintegration (πx)x∈R
with respect to the initial distribution μ. The probabilistic interpretation is that
(x,A) �→ πx(A) is the transition kernel of the two-step process (Xi)i=1,2 where
X1 = X and X2 = Y , that is, πx(A) = P(Y ∈ A|X = x). In these terms, π is an
element of �M(μ,ν), if and only if

∫
y dπx(y) = x holds μ-a.s. Hence, in this

paper we study the minimization problem

Minimize Eπ [c] =
∫∫

c(x, y)dπ(x, y) subject to π ∈ �M(μ,ν)(2)

for various costs. Let CM(μ,ν) denote the infimum inf{Eπ [c] :π ∈ �M(μ,ν)}.
Our optimal transport approach permits to distinguish some special couplings of

�M(μ,ν) that are comparable to the monotone (or Hoeffding–Fréchet) coupling
πHF ∈ �(μ,ν). Indeed, we have developed our martingale transport theory paral-
lel to the classical theory and the optimizer of (2) will enjoy canonical properties.
Nevertheless, notable differences occur between the theories. An obvious one is
the fact that �M(μ,ν) can be empty while �(μ,ν) always contains the element
μ ⊗ ν. The existence of a martingale transport plan is actually quite an old topic
that is present (but under different names) at least since the study of Muirhead’s
inequality by Hardy, Littlewood and Pólya [11]. Several articles in different fields
(analysis, combinatorics, potential theory and probability) deal with this question
in different settings, often for marginal distributions in spaces much more general
than the real line (see, e.g., [3, 5, 8, 9, 19, 21, 26, 27]). The interest in finding
an explicit coupling has appeared recently in the peacock problem (see [12] and
the references therein): a peacock is a stochastic process (Xt)t∈I such that there
exists at least one martingale (Mt)t∈I satisfying law(Xt) = law(Mt) for every t .
The problem consists in building as explicitly as possible such a martingale (Mt)

from (Xt). The martingale transport problem is maybe even closer linked to the
theory of model-independent pricing in mathematical finance.3 Indeed, the prob-

3We refer to the recent survey by Hobson [14] for a very readable introduction to this area. Ar-
guably, the most important tool in model-independent finance is the Skorokhod-embedding approach;
an extensive overview is given by Obłój in [23].
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lem (2) has been first studied in this context by Hobson and Neuberger [16] for
the specific cost function c(x, y) = −|y − x|. The link between optimal transport
and model-independent pricing has been made explicit in [2] in a discrete time
framework and by Galichon, Henry-Labordere and Touzi [10] in a continuous time
setup.

We note that several of the basic features of the problem (2) are similar to the
usual optimal transport problem. This appeals, for instance, to the weak compact-
ness of �(μ,ν) and �M(μ,ν). If c is lower semicontinuous, this carries over to
the mapping π �→ Eπ [c] for either space of transport plans. In particular, the infi-
mum is attained. Note also that as in the standard setup the problem has a natural
dual formulation [2]. However, as we already mentioned in the previous paragraph,
while there is always a transport plan which moves μ to ν, the marginal distribu-
tions need to satisfy additional assumptions to guarantee that a martingale trans-
port plan exists: The set �M(μ,ν) is nonempty if and only if μ is smaller than ν in
the convex order (see Definition 2.1). More details are provided in Section 2 along
with a construction of a martingale transport plan between two given marginals.

1.2. Summary on the classical transport problem on R. A cornerstone in the
modern theory of optimal transportation is Brenier’s theorem (or Brenier–Rachev–
Rüschendorf theorem); see [4, 24]. It treats the optimal transport problem in the
particular case c(x, y) = |y − x|2, where | · | denotes the Euclidean norm on Rn.
This is simply problem (1) when μ and ν are interpreted as measures on Rn. Un-
der appropriate regularity conditions on μ, the optimal transport π ∈ �(μ,ν) is
unique and supported by the graph of a function T :Rn → Rn that is the gradi-
ent of some convex function. In particular, the optimal transport is realized by a
mapping. Note that in dimension one the gradient of a convex function is sim-
ply a monotonically increasing function so that the optimal coupling is the usual
monotone coupling. This fact can be directly proved without too many difficulties
(see, e.g., [17]) but nevertheless it is interesting as one of the rare cases where an
optimal transport plan can be so easily understood. Moreover, even without any
assumption on μ, the monotone coupling is the unique optimal transport plan. In
this paper, we will see that similar results are valid in the martingale case, for ex-
ample, the uniqueness of the minimizer or the fact that the optimal coupling is
concentrated on a special set comparable to the graph of a monotone mapping.

We present the classical (nonmartingale) optimal transport problem on the real
line that will serve as a guideline to our paper. The results are given for an arbitrary
strictly convex cost. Any cost of this type activates the same theory, which again
is characteristic of dimension one.

THEOREM 1.1. Let μ,ν be probability measures and c a cost function defined
by c(x, y) = h(y − x), where h :R → R is a strictly convex function. We assume
that c satisfies the sufficient integrability condition with respect to μ and ν and
that C(μ,ν) < ∞. The following statements are equivalent:
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(1) The measure π is optimal.
(2) The transport preserves the order, that is, there is a set � with π(�) = 1

such that whenever (x, y), (x′, y′) ∈ �, if x < x ′ one has also y ≤ y′.

We have the two following corollaries.

COROLLARY 1.2. For given measures μ and ν, if C(μ,ν) is finite then there
exists a unique minimizer to the transport problem (1) and it is the monotone
(Hoeffding–Fréchet) coupling πHF.

One has in fact πHF = (Gμ ⊗ Gν)#λ[0,1] where λ is the Lebesgue measure and
Gμ and Gν are the quantile functions of μ and ν, that is, the nondecreasing and
left-continuous functions obtained from the cumulative distribution functions Fμ

and Fν as a generalized inverse by the formula G(s) = inf{t ∈ R : s ≤ F(t)}.4 This
observation is the reason why the coupling πHF is also known under the alternative
name quantile coupling.

For the following corollary, we recall that a measure μ is said to be continuous
if μ({x}) = 0 for every x ∈ R.

COROLLARY 1.3. Under the assumptions of Corollary 1.2, if μ is continuous
then the optimal transport plan πHF is concentrated on the graph of an increasing
mapping T :R→R. Moreover, T#μ = ν.

It is straightforward to see that T = Gν ◦Fμ. This formula determines T , μ-a.s.

Quadratic costs in the martingale setting. While c(x, y) = (y − x)2 is ar-
guably the most important cost function in the theory of optimal transport, we
stress that it plays a rather different role in the martingale setup. Assume that
law(X) = μ and law(Y ) = ν are linked by a martingale coupling π and posses
second moments. Then

E[XY ] = E
[
E[XY |X]] = E

[
X2],

hence we have the Pythagorean relation∫
(y − x)2 dπ(x, y) = E

[
(Y − X)2] = E

[
Y 2]−E

[
X2].

Thus, the cost associated to π depends only on the marginal distributions, that is,
not on the particular choice of π ∈ �M(μ,ν).

We record the following consequence: Let c be a cost function and assume that

c̃(x, y) = c(x, y) + p · (y − x)2 + q · (y − x)

4Note that the function G may take infinite values at the boundary of its domain [0,1].
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FIG. 1. The forbidden mapping.

for some real constants p and q . Then in problem (2) the minimizers are the same
for the costs c and c̃. In particular, if c(x, y) = h(y − x), we do not expect that
monotonicity or convexity properties of the function h are relevant for the structure
of the optimizer.

1.3. A new coupling: The monotone martingale coupling, main results. In this
section, we will discuss a particular coupling which may be viewed as a martingale
analogue to the monotone (Hoeffding–Fréchet) coupling. Notable similarities are
that it is canonical with respect to the convex order as well as that it is optimal for
a range of different cost functions.

DEFINITION 1.4. A martingale transport plan π on R × R is left-monotone
or simply monotone if there exists a Borel set � ⊆R×R with π(�) = 1 such that
whenever (x, y−), (x, y+), (x′, y′) ∈ � we cannot have (see Figure 1 where this
situation is represented)

x < x′ and y− < y′ < y+.(3)

Respectively, π is said to be right-monotone if there exists � such that if (x, y−),
(x, y+) and (x′, y′) are elements of � then we do not have

x > x′ and y− < y′ < y+.

We will refer to the set � as the monotonicity set of π .

In this paper, we will only state the results for (left-)monotone couplings. The
corresponding results for right-monotone couplings can be deduced easily. We il-
lustrate the forbidden situation (3) in Figure 1. Note that the top line represents the
measure μ while ν is distributed on the bottom line; this convention will also be
used in the subsequent pictures.

The next theorem is proved in Section 5.

THEOREM 1.5. Let μ,ν be probability measures in convex order. Then there
exists a unique (left-)monotone transport plan in �M(μ,ν). We denote this cou-
pling by πlc and call it left-curtain5 coupling.

5This name is explained in some detail before Theorem 4.18.
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FIG. 2. Scheme of the left-curtain πlc coupling between two Gaussian measures.

Of course, one does not expect that a martingale is concentrated on the graph
of a deterministic mapping T ; this holds only in the trivial case when μ = ν and
T (x) ≡ x. Rather we have the following result.

COROLLARY 1.6. Let μ,ν be probability measures in convex order and as-
sume that μ is continuous. Then there exist a Borel set S ⊆ R and two measurable
functions T1, T2 :S →R such that:

(1) πlc is concentrated on the graphs of T1 and T2.
(2) For all x ∈ R, T1(x) ≤ x ≤ T2(x).
(3) For all x < x′ ∈R, T2(x) < T2(x

′) and T1(x
′) /∈]T1(x), T2(x)[.

The following picture (Figure 2) illustrates the coupling πlc in a specific case.
The measures μ and ν are Gaussian distributions having the same mean, the vari-
ance of ν being greater than the variance of μ. There exist two points at which the
density of μ (w.r.t. Lebesgue measure) equals the density of ν. Denote the smaller
of these points by x0. Then we have T1(x) = T2(x) = x for x < x0. For x > x0, the
map T1 is strictly decreasing and T2 is strictly increasing.

The subsequent result states that the transport plan πlc is optimal for a variety
of different cost functions. (See Theorem 6.1 below.)

THEOREM 1.7 (πlc is optimal). Let μ,ν be probability measures in convex
order. Assume that c(x, y) = h(y − x) for some differentiable function h whose
derivative is strictly convex and that c satisfies the sufficient integrability condition.
If CM(μ,ν) < ∞, then πlc is the unique optimizer.
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Natural examples of cost functions to which the result applies are given by
c(x, y) = (y − x)3 and c(x, y) = exp(y − x).

We discuss a further characteristic property of the transport plan πlc. For a real
number t and π ∈ �(μ,ν), consider the measure

νπ
t := projy# π |]−∞,t]×R,

where projy : (a, b) ∈ R2 �→ b ∈ R. Loosely speaking, the mass μ|]−∞,t] is moved
to νπ

t by the transport plan π . It is intuitively clear (and not hard to verify) that a
transport plan π ∈ �(μ,ν) is uniquely determined by the family (νπ

t )t∈R.
Using this notation, the classic monotone transport plan πHF is characterized

by the fact that for each t , the measure ν
πHF
t is as left as possible. More precisely,

for every t the measure ν
πHF
t is minimal with respect to the first-order stochastic

dominance in the family {
νπ
t :π ∈ �(μ,ν)

}
.

We have the following, analogous characterization for the monotone martingale
coupling πlc. This is in fact the way we will formally define πlc in Theorem 4.18.

THEOREM 1.8 (πlc is canonical with respect to the convex order). For every
real number t , the measure ν

πlc
t is minimal with respect to the convex order (i.e.,

second-order stochastic dominance) in the family{
νπ
t :π ∈ �M(μ,ν)

}
.

The next theorem summarizes the properties of πlc.

THEOREM 1.9. Let μ,ν be probability measures in convex order. Let h :R→
R be a differentiable function such that h′ is strictly convex and assume that the
cost function c : (x, y) �→ h(y − x) satisfies the sufficient integrability condition.

We assume moreover CM(μ,ν) < +∞. Let π be a martingale coupling in
�M(μ,ν). The following statements are equivalent:

• The coupling π is monotone.
• The coupling π is optimal.
• The coupling π is the left-curtain coupling πlc: for every (π ′, t) ∈ �M(μ,ν) ×

R, the measure νπ
t is smaller than νπ ′

t in the convex order.

Note that Theorem 1.9 is a consequence of the other results stated above.

1.4. A “variational principle” for the martingale transport problem. An im-
portant basic tool in optimal transport is the notion of c-cyclical monotonicity
(see [29], Chapter 4) which links the optimality of transport plans to properties
of the support of the transport plan. A parallel statement holds true in the present
setup and plays a fundamental role in our considerations. Heuristically, we ex-
pect that if π ∈ �M(μ,ν) is optimal, then it will prescribe optimal movements for
single particles. To make this precise, we use the following notion.
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DEFINITION 1.10. Let α be a measure on R × R with finite first moment in
the second variable. We say that α′, a measure on the same space, is a competitor
of α if α′ has the same marginals as α and for (projx# α)-a.e. x ∈ R∫

y dαx(y) =
∫

y dα′
x(y),

where (αx)x∈R and (α′
x)x∈R are disintegrations of the measures with respect to

projx# α.

We can now formulate a “variational principle” for the martingale transport
problem.

LEMMA 1.11 (Variational lemma). Assume that μ,ν are probability measures
in convex order and that c :R2 → R is a Borel measurable cost function satisfy-
ing the sufficient integrability condition. Assume that π ∈ �M(μ,ν) is an optimal
martingale transport plan which leads to finite costs. Then there exists a Borel set
� with π(�) = 1 such that the following holds:

If α is a measure on R × R with | spt(α)| < ∞ and spt(α) ⊆ �, then we have∫
c dα ≤ ∫

c dα′ for every competitor α′ of α.

Indeed, under the additional assumption that the cost function c is continuous
and bounded we can prove that the condition given in the variational lemma is
not only necessary but also sufficient to guarantee that a measure is optimal; see
Lemma A.2 in Appendix A.

The variational Lemma 1.11 is one of the key ingredients in our investigation of
the monotone martingale transport plan πlc introduced above. Moreover, it turns
out to be very useful if one seeks to derive results on the optimizers for various
specific cost functions. Assuming for simplicity that μ is continuous, Lemma 1.11
allows us to derive the following results:

(1) If c(x, y) = (y − x)4, then card(sptπx) ≤ 3, μ(x)-a.s.
(2) Assume that c(x, y) = h(y − x) for some continuously differentiable func-

tion h and that the derivative h′ intersects every affine function at most in k ∈ N
points. Then card(sptπx) ≤ k, μ(x)-a.s. for the optimizing π . (See Theorem 7.1,
and also Theorem 7.2 for a similar result which appeals to the classical transport
problem.)

(3) If c(x, y) = −|y − x|, then there is a unique optimizer π ∈ �M(μ,ν).
Moreover, card(sptπx) ≤ 2, μ(x)-a.s. (This was first shown in [16]; see Theo-
rem 7.3.)

(4) If c(x, y) = |y − x|, then there is a unique optimizer π ∈ �M(μ,ν). More-
over, card(sptπx) ≤ 3 and card(sptπx \ {x}) ≤ 2, μ(x)-a.s. (see Theorem 7.4).

Having financial applications in mind, the cost functions c(x, y) = |y − x| and
c(x, y) = −|y − x| are particularly relevant, we refer to the work of Hobson and
Neuberger [16].
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1.5. Organization of the paper. We will start with a warm up section (Sec-
tion 2) in which we derive some basic properties and explain a procedure that al-
lows to find a martingale coupling for two given measures in convex order. Then,
in Section 3, we establish the variational Lemma 1.11 which will play a crucial role
throughout the paper. In Section 4, we introduce and study the shadow projection,
which permits us to introduce the left-curtain transport plan πlc. We define it in
Theorem 4.18 through its canonical property with respect to the convex order, we
explain the name “left-curtain” and prove that it is monotone in Theorem 4.21. The
particular properties of the transport plan πlc are established in Sections 5 and 6.
In Section 7, we present results related to other costs and other couplings. Finally,
in the Appendix, we present a converse to the variational Lemma 1.11. We also
provide an alternative derivation of Lemma 1.11 which is longer than argument
presented in Section 3 but has the advantage to be constructive and self-contained.

2. Construction of a martingale transport plan for measures. In this sec-
tion, we extend the martingale optimal transport problem to general finite measures
with finite first moment and we define the convex order on this space. We prove
that there exists a martingale transport plan between two measures in convex order
and give a very short description of the duality theory linked to our optimization
problem.

2.1. Basic notions. Denote by M the set of finite measures on R having finite
first moment. We consider it with the usual topology, that is, we say that a sequence
(νn)n converges weakly in M to an element ν ∈ M if:

(1) (νn)n converges weakly in the usual sense, that is, using continuous
bounded functions as test functions;

(2) the sequence
∫ |x|dνn converges to

∫ |x|dν.

Note that this is the same as adding all functions that grow at most linearly in ±∞
to the set Cb of continuous and bounded test functions.

The reason we are interested in the space M is that we will need to consider also
transport plans between measures μ,ν ∈ M which have (the same) mass k, where
k is possibly different from 1. In direct generalization of the earlier definition, the
set of transport plans �(μ,ν) then consists of all Borel measures π on R × R
satisfying projx# π = μ, projy# π = ν. As a consequence of Prohorov’s theorem,
the set �(μ,ν) is compact; see, for example, [29], Lemma 4.4, for details. If c

is a continuous (or lower semicontinuous) cost function satisfying the sufficient
integrability condition with respect to μ and ν, then the cost functional

π ∈ �(μ,ν) �→
∫

c dπ ∈]−∞,+∞]
is lower semicontinuous w.r.t. the weak topology ([29], Lemma 4.3). It follows
that the infimum in the classic transport problem is attained.
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We proceed analogously in the martingale setup. If μ and ν are not necessarily
probabilities, we define �M(μ,ν) to consist of all transport plans π such that the
disintegration in probability measures (πx)x∈R w.r.t. μ satisfies∫

y dπx(y) = x

for μ-almost every x. Then π ∈ �(μ,ν) is a martingale measure if and only if∫
ρ(x)(y − x)dπ(x, y) = 0(4)

for all bounded measurable functions ρ :R →R. To see whether π is a martingale
measure, it is of course enough to test (4) for a sufficiently rich class of functions,
for example, for all functions of the form ρ = 1]−∞,x], x ∈ R or for all continuous
bounded functions (see [2], Lemma 2.3).

Hence, the set �M(μ,ν) is compact in the weak topology (see [2], Proposi-
tion 2.4). Precisely as in the usual setup it follows that the value of the minimiza-
tion problem (2) is attained provided that the set �M(μ,ν) is nonempty.

Of course, it is a fundamental question on which conditions martingale transport
plans exist. In the usual optimal transport setup, the problem is simple enough:
the properly renormalized product measure 1

μ(R)
μ ⊗ ν witnesses that �(μ,ν) is

nonempty. As mentioned in the Introduction, the proper notion which guarantees
existence of a martingale transport plan is the convex order. As it plays a crucial
role throughout the paper, we will discuss it in some detail.

2.2. The convex order of measures. Let us start with the definition.

DEFINITION 2.1. Two measures μ and ν are said to be in convex order6 if:

(1) they have finite mass and finite first moments, that is, lie in M,
(2) for convex functions ϕ defined on R,

∫
ϕ dμ ≤ ∫

ϕ dν.

In that case, we will write μ 
C ν.

Note that if μ 
C ν, then one can apply (2) to all affine functions. Using the
particular choices ϕ(x) ≡ 1 and ϕ(x) ≡ −1, one obtains that μ and ν have the
same total mass and considering the functions ϕ(x) ≡ x and ϕ(x) ≡ −x one finds
that μ and ν have the same barycenter.7

It is useful to know that it is sufficient to test hypothesis (2) against suitable
subclasses of the convex functions. For instance, measures μ,ν having the same
finite mass and the same first moments are in convex order if and only if∫

(x − k)+ dμ(x) ≤
∫

(x − k)+ dν(x)

6The convex order is also called Choquet order or second-order stochastic dominance.
7The barycenter or mean of a measure μ is 1

μ(R)

∫
x dμ(x).
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for all real k. This follows from simple approximation arguments (see [13] and also
Section 4.1) using monotone convergence. In particular, it is sufficient to check (2)
for positive convex functions with finite asymptotic slope in −∞ and +∞.

We give some examples of measures in convex order.

EXAMPLE 2.2. If δ is an atom of mass α > 0 at the point x, then δ 
C ν

simply means that ν has mass α and barycenter x.

EXAMPLE 2.3. If μi 
C νi for i = 1, . . . , n then
∑n

i=1 μi 
C

∑n
i=1 νi .

EXAMPLE 2.4. If two measures μ and μ′ have the same barycenter and the
same mass, μ is concentrated on [a, b] and μ′ is concentrated on R\ ]a, b[ then
μ 
C μ′. Indeed it can be proved for convex functions ϕ defined on R that∫

ϕ dμ ≤
∫

ψ dμ =
∫

ψ dμ′ ≤
∫

ϕ dμ′,

where ψ is the linear function satisfying ψ = ϕ in a and b.

EXAMPLE 2.5. If two measures μ and μ′ have the same barycenter and the
same mass, μ−(μ∧μ′) is concentrated on [a, b] and μ′ −(μ∧μ′) is concentrated
on R\ ]a, b[ then we have μ 
C μ′. To see this, apply Example 2.4 to the two
reduced measures and note that adding μ ∧ μ′ preserves the order.

The following result formally states the connection between the convex order
and the existence of martingale transport plans.

THEOREM 2.6. Let μ,ν ∈ M. The condition μ 
C ν is necessary and suffi-
cient for the existence of a martingale transport plan in �M(μ,ν).

It is a simple consequence of Jensen’s inequality that the condition μ 
C ν is
necessary to have �M(μ,ν) �= ∅: if π is a martingale transport plan and ϕ is
convex then∫

ϕ(y)dν(y) =
∫

ϕ(y)dπ(x, y)

=
∫∫

ϕ(y)dπx(y)dμ(x) ≥
∫

ϕ(x)dμ(x).

The fact that the condition is also sufficient is well known and goes back at least to
a paper by Strassen [27]. Nevertheless, we think that it is worthwhile to describe a
procedure which allows to obtain a martingale transport plan. This is what we do
in the next subsection.
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2.3. Construction of a martingale transport. We fix finite measures μ,ν hav-
ing finite first moments and satisfying μ 
C ν; our aim is to show that �M(μ,ν)

is nonempty. The desired result will first be given in the case where μ is concen-
trated on finitely many points. The construction in Proposition 2.7 will rely on the
elementary fact (related to Example 2.3) that π1 ∈ �M(μ1, ν1),π2 ∈ �M(μ2, ν2)

implies that π1 + π2 ∈ �M(μ1 + μ2, ν1 + ν2).

PROPOSITION 2.7. Assume that μ = ∑n
i=1 δi , where each δi is an atomic

measure. If ν satisfies μ 
C ν, then �M(μ,ν) is nonempty.

First, note that by Example 2.2 this proposition is clear if n = 1. The general
case will be established by induction. To perform the inductive step, we need to
understand how to couple a single atom, say δ := δ1, with a properly chosen por-
tion ν′ of ν so that the other atoms (

∑n
i=2 δi ) are smaller than ν − ν′ in convex

order. Assume that δ has mass α and is concentrated on x. Recalling Example 2.2,
we should pick ν′ so that it has mass α and barycenter x. Clearly, it also needs to
satisfy ν′ ≤ ν, where ≤ refers to the usual pointwise order of measures.

As δ is a part of μ and μ 
C ν, we can introduce the measure μ̃ = μ − δ which
has mass t = ν(R) − α. Obviously, we then have δ + μ̃ 
C ν. We are looking
for the measure ν′ among the measures {νs : s ∈ [0, t]} obtained as the restriction
of ν between two quantiles s and s′ = s + α. More precisely, we consider νs =
G#λ[s,s+α] where G : [0, t + α] → R is the quantile function of ν, and λ[s,s′] is the
Lebesgue measure restricted to [s, s′]. In Section 1.2, we have discussed quantile
functions only for probability measures but of course the notion carries over to
measures in M. For completeness, note that ν = G#λ[0,t+α].

The barycenter B(s, ν) of νs depends continuously on the parameter s ∈ [0, t]
and we claim that

B(0, ν) ≤ x, B(t, ν) ≥ x.(5)

This is a consequence of the convex order relation (δ + μ̃) 
C ν applied to the
convex and nonnegative functions u �→ (u − G(α))− and u �→ (u − G(t))+. For
instance,∫

u − G(t)dδ(u) ≤
∫ (

u − G(t)
)
+ dδ(u) ≤

∫ (
u − G(t)

)
+ dν(u)

=
∫

u − G(t)dνt (u).

By the intermediate value theorem, the continuity of s �→ B(s, ν) implies that
there exists some s ∈ [0, t] such that νs has barycenter x. Moreover, if B(s, ν) =
B(s ′, ν), the measures νs and νs′ are equal so that there exists a unique measure
with barycenter x. We denote it by ν′.

This discussion leads us to the following lemma.
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LEMMA 2.8. Let μ be of the form μ = μ̃ + δ, where δ is an atom and assume
that μ 
C ν. Then there exists a unique splitting of the measure ν into two positive
measures ν′ and ν̃ = ν − ν′ in such a way that:

(1) δ ≤ cν′,
(2) ν̃(I ) = 0 where I = ◦

conv(spt(ν′)) is the interior of the smallest interval
containing the support of ν′.

Moreover, the measures μ̃ and ν̃ satisfy μ̃ 
C ν̃.

PROOF. Having already constructed ν′ (and I , i.e., ]G(s),G(s + α)[) in the
paragraph above Lemma 2.8 it remains to show (2): μ̃ is smaller than ν̃ in the
convex order. Let ϕ be a nonnegative convex function which satisfies

lim sup
|x|→+∞

∣∣ϕ(x)/x
∣∣ < +∞.

We will prove that
∫

ϕ dμ̃ ≤ ∫
ϕ dν̃. To this end, we introduce a new function ψ

which equals ϕ on R \ I and is linear on I . The function ψ can be chosen to be
convex and satisfy ψ ≥ ϕ. (Note that this is possible also in the case where I is
unbounded.) The functions ϕ and ψ coincide on the border of I . We have∫

ϕ dμ̃ ≤
∫

ψ dμ̃ =
∫

ψ dμ −
∫

ψ dδ.

But as ψ is linear on I , one has
∫

ψ dδ = ∫
ψ dν′ and because μ 
C ν one has∫

ψ dμ ≤ ∫
ψ dν. It follows that∫

ϕ dμ̃ ≤
∫

ψ dν −
∫

ψ dν′ =
∫

ψ dν̃ =
∫

ϕ dν̃.

The last equality is due to the fact that ν̃ is concentrated on R \ I . We have thus
established our claim that μ̃ 
C ν̃. �

PROOF OF PROPOSITION 2.7. In the first step, we apply Lemma 2.8 to the
measures δ = δ1 and μ̃ = ∑n

i=2 δi to obtain a splitting ν = ν̂1 + ν̃ that satisfies
δ1 
C ν̂1 and μ̃ 
C ν̃. Trivially, �M(δ1, ν̂1) consists of a single element π1.

In the next step, we repeat the procedure with μ̃ and ν̃ in the place of μ,ν and
continue until the nth step where δn can be martingale-transported to the remaining
part of ν because the convex order relation δn 
C (ν − ∑n−1

i=1 ν̂i ) is satisfied in
Example 2.2. Hence, we have obtained recursively a sequence (ν̂i)

n
i=1 such that

δi 
C ν̂i and ν̂1 + · · · + ν̂n = ν. We have constructed n martingale transport plans
π1, . . . , πn where πi is the unique element of �M(δi, ν̂i). Thus, π1 + · · · + πn is
an element of �M(μ,ν). �

To extend Proposition 2.7 to the case of general μ ∈ M, we need the following
simple and straightforward fact that will also be useful in Section 4.
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LEMMA 2.9 (Approximation of a measure in the convex order). Assume
γ ∈ M. There exists a sequence (γ (n))n of finitely supported measures such that
γ (n+1) �C γ (n), the sequence (γ (n))n converges weakly to γ in M and γ (n) 
C γ

holds for every n.

PROOF. To any partition J of R into finitely many intervals, we can associate
some γJ smaller than γ in the convex order. We simply replace γ = ∑

I∈J γ |I by
γJ = ∑

J δI where δI is an atom with the same mass and same barycenter as γ |I .
Note that if J ′ is finer than J (the intervals of J are broken in subintervals) then
γJ 
C γJ ′ . For k,N ∈N, we consider the partition

Jk,N =
(

(2k−1)N⋃
i=−2kN

]
i

2k
,
i + 1

2k

])
∪]N,+∞[∪]−∞,−N ],

and set γk,N = γJk,N
. We have γk,N 
C γk+1,N and γk,N 
C γk,N+1. Write γ (n)

for γn,n. Let f be a continuous function that grows less than linearly in ±∞.
There exist a, b > 0 such that |f (x)| ≤ a|x| + b. Let ε > 0 and N be such that∫
|x|≥N a|x|+b dγ (x) ≤ ε/3. The function f is uniformly continuous on [−N,N].

Thus, there exists ω such that if x, y ∈ [−N,N] and |x − y| ≤ ω we have |f (x) −
f (y)| ≤ ε/3. Let k be such that 1/2k ≤ ω. For n ≥ max{k,N}, we have

∣∣γ (f ) − γ (n)(f )
∣∣ ≤ ∣∣∣∣

∫ N

−N
f dγ −

∫ N

−N
f dγ (n)

∣∣∣∣
+
∣∣∣∣
∫
|x|≥N

f dγ

∣∣∣∣+
∣∣∣∣
∫
|x|≥N

f dγ (n)

∣∣∣∣ ≤ ε

3
+ ε

3
+ ε

3
.

The first two estimates are a consequence of our preparations: To see this, note that∣∣∣∣
∫
|x|≥N

f dγ (n)

∣∣∣∣ ≤
∫
|x|≥N

a|x| + b dγ (n) ≤
∫
|x|≥N

a|x| + b dγ,

where the convexity of x �→ a|x| + b and γ (n)|{|x|≥N} 
C γ |{|x|≥N} are used. �

We are now finally in the position to complete the proof of Theorem 2.6.

PROOF OF SUFFICIENCY IN THEOREM 2.6. Pick a sequence of finitely sup-
ported measures (μn)n≥1 satisfying μn 
C ν such that μn converges to μ weakly.
(By Lemma 2.9, the sequence could be chosen to be increasing in the convex order,
but we do not need this here.) We have already solved the problem of transporting
a discrete distribution. Pick martingale measures (πn)n≥1 which transport μn to ν

for each n. To be able to pass to a limit, we note that the set

� := �M(μ,ν) ∪
∞⋃

n=1

�M(μn, ν)
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is compact. Hence, the sequence (πn)n≥1 has an accumulation point π in � and
of course π is as desired: Its marginals are μ and ν and it is a martingale transport
plan. �

We have thus seen a self-contained proof to Theorem 2.6. Of course, the reader
may object that the martingale established in the course of the proof was in no
sense canonical and that the derivation was not constructive since we have invoked
a compactness argument to prove the existence in the case of a general measure μ.
In Section 4, we will be concerned with a modification of the above ideas which
does not suffer from these shortfalls.

2.4. A dual problem. We mention that the martingale transport problem (2)
admits a dual formulation. In analogy to the dual part of the optimal transport
problem, one may consider

Maximize
∫

ϕ dμ +
∫

ψ dν,

where one maximizes over all functions ϕ ∈ L1(μ),ψ ∈ L1(ν) such that there
exists � ∈ Cb(R) satisfying

c(x, y) ≥ ϕ(x) + ψ(y) + �(x)(y − x)(6)

for all x, y ∈ R. Denote the corresponding supremal value by D. The inequality
D ≤ CM(μ,ν) then follows by integrating (6) against π ∈ �M(μ,ν). In the case
of lower semicontinuous costs c, the duality relation D = CM(μ,ν) is established
in [2], Theorem 1.1. We also note that the dual part of the problem appears nat-
urally in mathematical finance where it has a canonical interpretation in terms of
replication. We refer to [2] for more details on this topic.

Duality results for a continuous time martingale transport problem are obtained
by Galichon, Henry-Labordere, Touzi [10] and Dolinsky and Soner [7].

3. A short proof of the variational lemma. The aim of this section is to es-
tablish the variational lemma, Lemma 1.11. That is, for a given optimal martingale
transport plan π we want to construct a Borel set �, π(�) = 1 such that the fol-
lowing holds: if α is a measure on R×R with | spt(α)| < ∞ and spt(α) ⊆ � then
we have

∫
c dα ≤ ∫

c dα′ for every competitor α′ of α.
As mentioned above, this result can be viewed as a substitute for the character-

ization of optimality through the notion of c-cyclical monotonicity in the classical
setup. Under mild regularity assumptions, it is not too hard to show that a transport
plan π which is optimal for the (usual) transport problem is c-cyclically monotone;
we refer to [29], Theorem 5.10. However, this approach does not translate effort-
lessly to the martingale case. Roughly speaking, the main problem in the present
setup is that the martingale condition makes manipulation of transport plans a rel-
atively delicate issue.
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Instead, we give here a proof of Lemma 1.11 that is based on certain mea-
sure theoretic tools: It requires a general duality theorem of Kellerer ([20],
Lemma 1.8(a), Corollary 2.18), which in turn requires Choquet’s capacability the-
orem [6].8 See the Appendix for an alternative and constructive proof of the vari-
ational lemma.

The crucial ingredient is the following result.

THEOREM 3.1. Let (Z, ζ ) be a Polish probability space and M ⊆ Zn. Then
either of the following holds true:

(1) There exist subsets (Mi)i of Zn such that ζ(proji Mi) = 0 for i = 1, . . . , n

and

M ⊆
n⋃

i=1

Mi.

(2) There exists a measure γ on Zn such that γ (M) > 0 and proji# γ ≤ ζ for
i = 1, . . . , n.

We refer to [1], Proposition 2.1, for a detailed proof of Theorem 3.1 from
Kellerer’s result.

PROOF OF LEMMA 1.11. Fix a number n ∈ N. We want to construct a set �n

for which the optimality property holds for all α satisfying | sptα| ≤ n. This set �n

will satisfy π(�n) = 1. Clearly, � = ⋂
n∈N �n is then as required to establish the

lemma.
For a fixed n ∈ N, define a Borel set M by

M :=
⎧⎨
⎩(xi, yi)

n
i=1 :∃α s.t.

(1) α is a measure on R×R,
(2) sptα ⊆ {

(xi, yi) : i = 1, . . . , n
}
, and

(3) ∃ competitor α′ satisfying
∫

c dα′ <
∫

c dα

⎫⎬
⎭ .

We then apply Theorem 3.1 to the space (Z, ζ ) = (R2, π) and the set M .
If we are in case (1), let N be

⋃n
i=1 proji (Mi) so that π(N) = 0 and M ⊆

(N × Zn−1) ∪ · · · ∪ (Zn−1 × N) = Zn \ (Z \ N)n. We can then simply define
�n := Z \ N = R2 \ N to obtain a set which does not support any nonoptimal α

with | sptα| ≤ n. Moreover, π(�n) = 1 as we want, hence the proof is complete.
It remains to show that case (2) cannot occur. Striving for a contradiction, we

assume that there is a measure γ such that γ (M) > 0 and proji# γ ≤ π for i =
1, . . . , n. Restricting γ to M , we may of course assume that γ (R × R \ M) = 0.
Rescaling γ if necessary, we may also assume that proji# γ ≤ 1

n
π .

8This approach is inspired by [1] where c-cyclical monotonicity is linked to optimality with the
help of Kellerer’s result.
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Consider the measure ω = ∑n
i=1 proji# γ on R2. It is smaller than π and has

positive mass. In particular μω = projx# ω ≤ μ. We will find a competitor ω′ (recall
Definition 1.10) such that ω′ leads to smaller costs than ω, that is,∫

c(x, y)dω′ <
∫

c(x, y)dω.

If such a measure ω′ exists then the measure π − ω + ω′ is a martingale trans-
port plan which leads to smaller costs than π , contradicting the optimality of π .
It remains to explain how ω′ is obtained. For each p = ((x1, y1), . . . , (xn, yn)) ∈
(R × R)n, let αp be the measure which is uniformly distributed on the set
{(x1, y1), . . . , (xn, yn)}. Then

ω =
∫
p∈(R×R)n

αp dγ (p).

For each p ∈ (R×R)n, let α′
p be an optimizer of the problem

Minimize
∫
(x,y)∈R×R

c(x, y)dβ(x, y) β competitor of αp .

We emphasize that α′
p exists and can be taken to depend measurably on p. This

follows, for instance, by calculating α′
p using the simplex algorithm.9

As γ is concentrated on M , for γ -almost all points p the measure α′
p satisfies∫

(x,y)∈R×R
c(x, y)dα′

p(x, y) <

∫
(x,y)∈R×R

c(x, y)dαp(x, y).

(Note that α′
p is in general not concentrated on the same set as αp .) Then ω′ defined

by

ω′ =
∫
p∈(R×R)n

α′
p dγ (p)

satisfies the above conditions as required. For instance, we have∫
R×R

c dω′ =
∫
p∈(R×R)n

∫
(x,y)∈R×R

c(x, y)dα′
p(x, y)dγ (p)

<

∫
p∈(R×R)n

∫
(x,y)∈R×R

c(x, y)dαp(x, y)dγ (p) =
∫
R×R

c dω.

The other properties are checked analogously. �

We note that the just given proof of Lemma 1.11 is likely to extend to more
general setups. In particular, we expect that the result remains valid if martingale

9It is well known that the optimal transport problem for finite spaces falls into the realm of linear
programming; see, for instance, [28], page 23. The same holds true in the martingale case.
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transport plans between higher dimensional spaces and with a finite number of
time steps [i.e., (Xi)

n
i=1 rather then just X1 = X and X2 = Y ] are considered.

Subsequently, Lemma 1.11 will several times be applied in conjunction with
the following technical assertion. Given � ⊆ R2 we will use the notation �x for
{y ∈ R : (x, y) ∈ �}.

LEMMA 3.2. Let k be a positive integer and � ⊆ R2. Assume also that there
are uncountably many a ∈ R satisfying |�a| ≥ k.

There exist a and b1 < · · · < bk ∈ �a such that for every ε > 0 one may find
a′ > a and b′

1 < · · · < b′
k ∈ �a′ with

max
(∣∣a − a′∣∣, ∣∣b1 − b′

1
∣∣, . . . , ∣∣bk − b′

k

∣∣) < ε.

Moreover, one may also find a′′ < a and b′′
1 < · · · < b′′

k ∈ �a′′ with

max
(∣∣a − a′′∣∣, ∣∣b1 − b′′

1
∣∣, . . . , ∣∣bk − b′′

k

∣∣) < ε.

PROOF. Write A for the set of all a such that |�a| ≥ k and pick for each a ∈
A distinct elements ba

1 , . . . , ba
k ∈ �a . Set �A = {(a, ba

1 , . . . , ba
k ) :a ∈ A}. We call

(a, ba
1 , . . . , ba

k ) ∈ �A a right-accumulation point if for every ε > 0 there exists a′ ∈
]a, a +ε[ such that |ba

i −ba′
i | < ε for every i. We call it right-isolated otherwise. If

p belongs to the set of right-isolated points Ir ⊆ �A, then there exists some εp > 0
such that [{p} + (]0, εp[× ]−εp, εp[k)]∩ �A =∅,

where + refers to the Minkowski sum of sets.
Assume for contradiction that the set Ir is uncountable. Then there exists some

ζ > 0 such that K = {p ∈ Ir : εp > ζ } is uncountable. Given p1,p2 ∈ K , we have
p2 /∈ p1 + ((0, ζ ) × (−ζ, ζ )k). Since p1 and p2 have different first coordinates,
this implies[{p1} + (]0, ζ/2[× ]−ζ/2, ζ/2[k)]∩ [{p2} + (]0, ζ/2[× ]−ζ/2, ζ/2[k)] =∅.

This is a contradiction since there cannot be uncountably many disjoint open sets
in Rk+1.

It follows that all but countably many elements of A are right-accumulation
points. Arguing the same way with left replacing right we obtain the desired con-
clusion. �

4. Existence of a monotone martingale transport plan: The left-curtain
transport plan. A short way to prove that there exists some monotone martin-
gale transport plan would be to take a minimizer of problem (2) for c(x, y) =
h(y − x) where h is chosen appropriately. Then one may apply Lemma 1.11 to
prove that this minimizer is monotone. This kind of argument will be encountered
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in Sections 6 and 7 below. Here, however, we find it useful to give a construc-
tion which yields more insight in the structure of the martingale transport plan. In
particular, it will also allow us to prove the uniqueness of a monotone martingale
transport plan in Section 5 and it will not require any assumptions on μ and ν.

For our argument, we reconsider the construction used in Proposition 2.7 and
decide to transport the atoms δi of μ = ∑

i δi to ν in a particular order, starting with
the left-most atom and continuing to the right. It turns out that one can character-
ize the martingale coupling that we obtain in terms of an extended convex order
and shadow introduced below (see Definition 4.3 and Lemma 4.6). These notions
enable us to adapt the construction directly to the continuous case, thus making the
approximation procedure used in Section 2.3 obsolete.

4.1. Potential functions. An important tool in this section will be the so-called
potential functions. For each μ ∈ M, we define the potential function uμ :R → R
by

uμ(x) =
∫ ∞
−∞

|y − x|dμ(y)

for x ∈ R. Set k = μ(R) and m = 1
k

∫
x dμ.

PROPOSITION 4.1. If μ is in M and k = μ(R),m = 1
k

∫
x dμ, then uμ has

the following properties:

(i) uμ is convex,
(ii) limx→−∞ uμ(x) − k|x − m| = 0 and limx→+∞ uμ(x) − k|x − m| = 0.

Conversely, if f is a function satisfying these properties for some numbers m ∈ R
and k ∈ [0,+∞[, then there exists a unique measure μ ∈ M such that f = uμ.
The measure μ is one-half the second derivative f ′′ in the sense of distributions.

PROOF. See, for instance, the proof of Proposition 2.1 in [13]. �

Let us list some relevant properties of potential functions.

PROPOSITION 4.2. Let μ and ν be in M.

• If μ and ν have the same mass, μ 
C ν is equivalent to uμ ≤ uν .
• We have μ ≤ ν if and only if uμ has smaller curvature than uν . More precisely,

μ ≤ ν if and only if uν − uμ is convex.
• A sequence of measures (μn)n in M with mass k and mean m converges weakly

in M to some μ if and only if (uμn)n converges pointwise to the potential func-
tion of some μ′ ∈ M. In that case, μ = μ′.
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PROOF. For the first property, see [12], Exercise 1.7, for the third [13], Propo-
sition 2.3. The second property is a consequence Proposition 4.1. Namely, 2μ and
2ν are the second derivatives of uμ and uν . �

We will need the following generalization of the convex order.

DEFINITION 4.3 (Extended convex order on M). Let μ and ν be measures
in M. We write μ 
E ν and say that ν is greater than μ in the extended convex
order if for any nonnegative convex function ϕ :R→R we have∫

ϕ dμ ≤
∫

ϕ dν.

The partial order 
C on M is extended by the order 
E in the sense that 
E

keeps the old relations and gives rise to new ones. By definition, if μ 
C ν then
we have μ 
E ν (since nonnegative convex functions are convex). But if μ ≤ ν,
we will also have μ 
E ν (as nonnegative convex functions are nonnegative). Note
that in this second case the two measures may have neither the same mass nor the
same barycenter.

As x �→ 1 is a convex function, a trivial consequence of μ 
E ν is μ(R) ≤ ν(R).
More precisely, let us prove that if the two measures have the same mass, μ 
E

ν is equivalent to μ 
C ν. Indeed if μ 
E ν, for a convex function ϕ :R → R
and any (negative) constant y, the convex function ϕy :x �→ ϕ(x) ∨ y satisfies∫

ϕy dμ ≤ ∫
ϕy dν because

∫
ϕy − y dμ ≤ ∫

ϕy − y dν. Letting y go to −∞ we
obtain

∫
ϕ dμ ≤ ∫

ϕ dν. Hence, μ 
C ν.
In terms of 
C , the extend convex order can be characterized as follows.

PROPOSITION 4.4. Assume that μ 
E ν. Then there exists a measure θ ≤ ν

such that μ 
C θ .

Of course, the converse statement is true as well: If there exists θ such that
μ 
C θ and θ ≤ ν, then we have also μ 
E ν.

PROOF OF PROPOSITION 4.4. Let μ and ν satisfy μ 
E ν. We can assume
that ν is a probability measure and denote by k and m the mass, respectively, the
mean of μ. We define a measure θ ≤ ν as follows. Consider the quantile function
Gν of ν. Recall that λ is the Lebesgue measure on R. For a parameter ζ ∈ [0, k], we
denote by λζ the restriction of λ to [0,1] \ [ζ, ζ + (1 − k)]. This measure has mass
k as well as does θ = (Gν)#λ

ζ . We now pick ζ such that θ has mean m. To see that
this can be done, we will apply the intermediate value theorem in the same fashion
as in the discussion preceding Lemma 2.8: To see that m is indeed an intermediate
value between the means of θ obtained for ζ = 0 and ζ = k, we consider the
nonnegative and convex functions x �→ (x − Gν(1 − k))+ and x �→ (Gν(k) − x)+
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and integrate them against μ and ν in the same way as we did above to obtain the
inequalities in (5). Clearly, the mean of θ depends continuously on ζ , and hence
the intermediate value theorem yields the existence of the desired ζ .

We are now given two measures μ and θ of the same mass and the same mean.
Consider a convex function ϕ. We want to prove that its integral with respect to μ

is smaller than the one with respect to θ . For that, we can assume without loss of
generality ϕ(Gν(ζ )) = ϕ(Gν(ζ + (1 − k))) = 0. Then∫

ϕ dμ(x) ≤
∫

ϕ+(x)dμ(x)

≤
∫

ϕ+(x)dν(x) =
∫

ϕ+(x)dθ(x) =
∫

ϕ(x)dθ(x).

This completes the proof. �

4.2. Maximal and minimal elements. For μ 
E ν, let Fν
μ be the set of mea-

sures η such that μ 
C η and η ≤ ν. Note that the measures in Fν
μ have the same

mass and the same barycenter as μ. In the next lemmas, we consider the partially
ordered set (F ν

μ,
C) and show that it has both a maximal and a minimal element.

LEMMA 4.5. For μ 
E ν, the set Fν
μ has an element which is maximal w.r.t.

the convex order, that is, there exists T ν(μ) such that:

(i) T ν(μ) ≤ ν.
(ii) μ 
C T ν(μ).

(iii) If η is another measure satisfying (i) and (ii) then we have η 
C T ν(μ).

PROOF. Consider the measure θ defined as in the proof of Proposition 4.4
and let η be another measure in Fν

μ . We know that θ is concentrated outside an
open interval I and that it coincides with ν on R \ Ī so that θ |R\Ī ≥ η|R\Ī . Thus,

η − (η ∧ θ) is concentrated on Ī whereas θ − (η ∧ θ) is concentrated on R \ I . It
follows from Example 2.5 that η 
C θ . �

The existence of a minimal element is more involved and will play an important
role subsequently.

LEMMA 4.6 (Shadow embedding). Let μ,ν ∈ M and assume μ 
E ν. Then
there exists a measure Sν(μ), called the shadow of μ in ν, such that:

(i) Sν(μ) ≤ ν.
(ii) μ 
C Sν(μ).

(iii) If η is another measure satisfying (i) and (ii), then we have Sν(μ) 
C η.

As a consequence of (iii), the measure Sν(μ) is uniquely determined. Moreover, it
satisfies the following property:
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(iii′) If η is a measure such that η ≤ ν and μ 
E η, then we have Sν(μ) 
E η.

Note that if μ 
C ν, that is, if μ and ν have the same mass, then the shadow
Sν(μ) is just ν itself because this is the only measure η with mass μ(R) = ν(R)

that satisfies η ≤ ν.

PROOF OF LEMMA 4.6. First observe that (iii′) follows from Proposition 4.4
applied to μ and η.

We write k (resp., m) for the mass (resp., the mean) of μ. The principal strategy
of our proof is to rewrite the problem in terms of potential functions. Set f = uμ

and g = uν .
The task is to find a convex function h (corresponding to uSν(μ)) such that:

(1) h − g is concave, that is, h′′ ≤ g′′ in a weak sense.
(2) f ≤ h and lim|x|→∞ h(x) − k|x − m| = 0.
(3) We have h ≤ h2 for all functions h2 in the set

UF = {
h is convex and satisfies (1) and (2)

} = {h = uη :η ∈ F }.
We note that by Proposition 4.4 there exist functions satisfying conditions (1)
and (2). Hence, the sets F = {η :μ 
C η,η ≤ ν} and UF are not empty. Looking
for a function which also satisfies the third property we define

h̄ = inf
h∈UF

h.(7)

If this function is convex, which we shall show below, it will satisfy the three
required conditions. Conditions (2) and (3) are clear; let us briefly prove (1): Every
function h ∈ UF is “less convex” than g, that is, the function h − g is concave.
Hence, h̄ − g = (infh∈UF

h) − g = infh∈UF
(h − g) is also concave.

The convexity of h̄ will be proved if we can establish that its epigraph E(h̄) is
convex, that is, that every segment of R2 with both ends in E(h̄) is included in this
set. This will be the case if UF is stable under the following operation: take h1, h2
in UF and let hmin be the convex hull of x �→ min(h1(x), h2(x)). More precisely,

hmin(x) = inf
ab≥0,(a,b) �=(0,0)

bh1(x − a) + ah2(x + b)

a + b
.

Since lim|c|→∞(h1 − h2)(x + c) = 0, this infimum is in fact a minimum. Condi-
tion (2) holds for hmin. It remains to prove that hmin − g is concave.

We use a nonusual but clear characterization of concavity: A real function is
concave if and only if it has locally an upper tangent in every point. More precisely,
f is concave if for every x ∈ R, there exists an affine function l with l(x) = f (x)

and l ≥ f in a neighborhood of x. With respect to the definition of hmin, there are
two kinds of real x. A point x such that hmin(x) equals hi(x) for some i ∈ {1,2} is
of the first kind. In this case, the property is true because hi ≥ hmin so that hi −g ≥
hmin − g where the first function is concave. These relations even hold globally. In
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FIG. 3. Shadow of μ = γ1 + γ2 in ν.

the other case, there exist a, b with ab > 0 such that hmin(x) = bh1(x−a)+ah2(x+b)
a+b

.
Without loss of generality, we may assume a > 0 and b > 0. As hmin both is
convex and its graph is below the cord [(x − a,h1(x − a)), (x + b,h2(x + b))]
we can conclude that it is affine on [x − a, x + b]. Hence, hmin − g is concave
in a neighborhood of x. Summing up, the property holds for the two kinds of
real x. Finally, hmin −g is concave and hmin ∈ UF . Hence, h̄ is convex and satisfies
conditions (1)–(3). �

Note that in Lemma 2.8 we have implicitly encountered the shadow in the case
where the starting distribution consists of an atom.

EXAMPLE 4.7 (Shadow of an atom). Let δ be an atom of mass α at a point x.
Assume that δ 
E ν. Then Sν(δ) is the restriction of ν between two quantiles, that
is, it is ν′ = (Gν)#λ[s,s′] where s′ − s = α and the barycenter of ν′ is x. Indeed,
for another measure η ∈ M with δ 
C η and η ≤ ν, applying the observation from
Example 2.5 to ν ′ and η we obtain ν′ 
C η.

4.3. Associativity of shadows. In this section, we will establish the following
associativity property of the shadow.

THEOREM 4.8 (Shadow of a sum). Let γ1, γ2 and ν be elements of M and
assume that μ = γ1 + γ2 
E ν. Then we have γ2 
E ν − Sν(γ1) and

Sν(γ1 + γ2) = Sν(γ1) + Sν−Sν(γ1)(γ2).

In Figure 3, we can see the shadow of μ = γ1 + γ2 in ν for two different ways
of labeling the γi ’s. In both cases, ν1 := Sν(γ1) is simply γ1. On the left part of
the figure Sν−ν1(γ2) is quite intuitive while on the right part it is deduced from the
associativity of the shadow projection. Of course, it has to be Sν(μ) − ν1.

Our proof of Theorem 4.8 will rely on approximations of μ by atomic measures
and we need several auxiliary results. In our argument, we will require a certain
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continuity property of the mapping ν �→ Sν(δ) stated in Lemma 4.10. We will
derive it now with the help of the Kantorovich metric.

PROPOSITION 4.9 (Metric on M). The function W defined on M by

W(ν, ν̂) =
⎧⎪⎨
⎪⎩

+∞, if ν(R) �= ν̂(R),

sup
f

(∫
f dν −

∫
f dν̂

)
, otherwise,(8)

where the supremum is taken over all 1-Lipschitz functions f :R → R is a metric
with values in [0,+∞]. For k > 0, the associated topology on the subspaces of
measure of mass k coincides with the weak topology introduced in Section 2.1.

In the case where ν, ν̂ are probability measures, W(ν, ν̂) is the classical Kan-
torovich metric (also called 1-Wasserstein distance, or transport distance). We state
here two useful relations that are well known (and straightforward) in the case of
probability measures and extended to finite measures through normalization. If
ν(R) = ν̂(R), we have

W(ν, ν̂) = ‖Fν − Fν̂‖1 = ‖Gν − Gν̂‖1,

where Fν , Fν̂ and Gν , Gν̂ are the cumulative distribution functions and the quantile
functions of ν and ν̂, respectively. The norm ‖ · ‖1 refers to the L1-norm for the
Lebesgue measure on R, respectively, [0, ν(R)]. Recall that ν = (Gν)#λ and ν̂ =
(Gν̂)#λ.

Let us now fix some notation in preparation to Lemma 4.10. First, let ν and ν̂

be of mass 1. We also fix a quantity α ≤ 1 and set t = 1 − α. As in the discussion
preceding Lemma 2.8, we consider for s ∈ [0, t] the restriction νs = (Gν)#λ[s,s+α]
of ν between the quantiles s and s + α. We adopt the same convention for ν̂. Note
that the barycenter of νs can be written

B(s, ν) = 1

α

∫
R

x dνs(t) or B(s, ν) = 1

α

∫ α

0
Gν(s + t)dλ(t).(9)

Indeed, the function t ∈ [0, α] �→ Gν(s + t) is simply Gνs and νs = (Gνs )#λ[0,α].
Together with (8) applied to the functions f :x �→ ±x, the first formula for the

barycenter implies ∣∣B(s, ν) − B(s, ν̂)
∣∣ ≤ 1

α
W(νs, ν̂s).

Moreover, we can prove that

W(νr, νs) = α
∣∣B(r, ν) − B(s, ν)

∣∣
without difficulty by using W(νr, νs) = ‖Gνr − Gνs‖1 and the fact that Gνs and
Gνr are equal to the nondecreasing function Gν up to translation. Another simple
property is

W(νs, ν̂s) ≤ W(ν, ν̂).
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Again this can be seen as a consequence of the representation of W by quantile
functions: We have W(νs, ν̂s) = ‖Gνs − Gν̂s

‖1 ≤ ‖Gν − Gν̂‖1.
Let x be an element of R and consider the subset of measures ν ∈ P such that

B(0, ν) ≤ x ≤ B(t, ν). These are exactly the measures such that there exists s ∈ R
satisfying B(s, ν) = x; for such ν the shadow Sν(δ) = νs is well defined.

LEMMA 4.10. Let δ = αδx be an atom of mass α < 1. The map ν �→ Sν(δ) is
continuous on its domain of definition inside the probability measures.

PROOF. Let ν, ν̂ be probability measures in M and assume that Sν(δ), Sν̂(δ)

exist. Let r, s be such that νr = Sν(δ) and ν̂s = Sν̂(δ). Of course, both measures
have the same barycenter. Then

W
(
Sν(δ), Sν̂(δ)

) = W(νr, ν̂s)

≤ W(νr, νs) + W(νs, ν̂s)

= α
∣∣B(r, ν) − B(s, ν)

∣∣+ W(νs, ν̂s)

= α
∣∣B(s, ν̂) − B(s, ν)

∣∣+ W(νs, ν̂s)

≤ W(νs, ν̂s) + W(νs, ν̂s) ≤ 2W(ν, ν̂). �

LEMMA 4.11. Let δ be an atom and assume δ 
E η, where η ≤ ν. Then we
have

η − Sη(δ) ≤ ν − Sν(δ).

PROOF. First note that Sη(δ) ≤ η ≤ ν. Hence, δ 
E ν and Sν(δ) is well de-
fined. As explained in Example 4.7, there exists an interval Q ⊆ [0, ν(R)] such that
Sν(δ) equals Gν#λQ. The same is true for δ, η,Gη and some interval of [0, η(R)]
but we will represent the “quantile coordinates” of Sη(δ) under η in a slightly
different way. Indeed, Sη(δ) is the restriction of η to a real interval plus possibly
some atomic parts of η at the ends of this interval. In any case, it is smaller than
η and ν. Thus, we can parameterize it with a subinterval Q′ of [0, ν(R)] such that
Sη(δ) = (Gν#λQ′) ∧ η. Note that the length of Q′ is greater than the length of Q

which equals the mass of δ. The measures Sν(δ) and Sη(δ) have the same mass
and the same barycenter and both are smaller than ν.

We prove by contradiction that Q ⊆ Q′. By symmetry, it is enough to prove
b′ ≥ b where we denote Q and Q′ by [a, b] and [a′, b′], respectively. If it were
not the case, Sη(δ) would be stochastically strictly smaller than Sν(δ), which is
the right-most measure that stays smaller than quantile b, has the same mass as δ

and is smaller than ν. In particular, the barycenters would be strictly ordered (see
the discussion before Lemma 2.8 for a similar and more detailed argument). This
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is a contradiction since the barycenters coincide by the definition of the shadow.
Finally,

η − Sη(δ) = η − [
(Gν#λQ′) ∧ η

] ≤ ν − Gν#λQ′ ≤ ν − Gν#λQ.

Here, we used the fact that for three measures α,β, γ satisfying the relations α ≤ γ

and β ≤ γ , the measure γ − α is greater than the positive part of β − α, which is
β − (α ∧ β). �

LEMMA 4.12 (Shadow of one atom and one measure). Consider now δ + γ

where δ is an atom. Assume (δ + γ ) 
E ν. Then we have γ 
E ν − Sν(δ) and

Sν(δ + γ ) = Sν(δ) + Sν−Sν(δ)(γ ).(10)

PROOF. We first prove that γ is smaller than ν′ := ν − Sν(δ) in the ex-
tended order. Note that there exists an interval I such that Sν(δ) is concentrated
on Ī and ν′(I ) = 0. Let ϕ be a nonnegative convex function which satisfies
lim sup|x|→+∞ |ϕ(x)/x| < +∞. We will prove

∫
ϕ dγ ≤ ∫

ϕ dν′. For that, we in-
troduce ψ which equals ϕ on R \ I and is linear on I . We can assume that ψ is
convex and ψ ≥ ϕ (even if I is unbounded). Note that ϕ and ψ coincide on the
border of I . We have∫

ϕ dγ ≤
∫

ψ dγ ≤
∫

ψ dν −
∫

ψ dδ.

But
∫

ψ dδ = ∫
ψ dSν(δ) because ψ is linear on I . Moreover,

∫
ψ dν′ = ∫

ϕ dν′
because ν′ is concentrated on R \ I . It follows that∫

ϕ dγ ≤
∫

ψ dν −
∫

ψ dδ ≤
∫

ϕ dν′.

As in the case of the usual convex order, it is of course sufficient to test against
convex functions of linear growth, hence γ 
E ν′.

It remains to establish (10). It is clear (see, e.g., Example 2.3) that both sides
of the equation are greater than δ + γ in the convex order and ≤ν. Hence, by the
definition of the shadow it follows Sν(δ + γ ) 
C Sν(δ) + Sν−Sν(δ)(γ ). The other
inequality is shown as follows: we will prove that for η �C δ + γ and satisfying
η ≤ ν we have Sν(δ) + Sν−Sν(δ)(γ ) 
C η. In fact, if η �C δ + γ then Sη(δ) ≤ η

and Sη−Sη(δ)(γ ) ≤ η − Sη(δ) so that, since measures in the convex order have the
same mass,

η = Sη(δ) + Sη−Sη(δ)(γ ).

(Note that we have already proved that all terms exist in this decomposition since
�E extends �C .) But it follows from η ≤ ν and η − Sη(δ) ≤ ν − Sν(δ) (proved
in Lemma 4.11) that F

η
γ ⊆ Fν

γ and F
η−Sη(δ)
γ ⊆ F

ν−Sν(δ)
γ so that Sη(δ) �C Sν(δ)

and Sη−Sη(δ)(γ ) �C Sν−Sν(δ)(γ ). As in Example 2.3, the compatibility of sum and
convex order completes the proof. �
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LEMMA 4.13 (Shadow of finitely many atoms). Let (δi)i∈N be a family of
atoms at point xi and of mass αi ∈ [0,+∞[ (where we allow the weight αi to be 0).
For every n ≥ 1, let μn = δ1 + · · · + δn and assume that μn 
E ν. The sequence
(νn)n∈N defined by νn = Sν(μn) satisfies the following recurrence relation:

• ν0 = 0,
• νn = νn−1 + Sν−νn−1(δn) for every n ≥ 1.

PROOF. The lemma is proved by induction. The basis holds with ν1 = Sν(δ1).
Fix n ≥ 1 and assume that the recurrence relation holds until n. Let (μi)i , ν and
(νi)i be as in the statement of the lemma. Denote

∑n+1
i=2 δi by μ′

n and more gener-
ally

∑i+1
i=2 δi by μ′

i . As μn+1 
E ν, we can apply Lemma 4.12 to the decomposition
μn+1 = δ1 + μ′

n. So μ′
n 
E ν − ν1 and

Sν(μn+1) = Sν(δ1) + Sν′(
μ′

n

)
,(11)

where we denoted ν − ν1 by ν′. But because of the inductive hypothesis applied to
μ′

n and ν′, the shadow Sν′
(μ′

n) is ν′
n = ν′

n−1 + Sν′−ν′
n−1(δn+1) where the measures

ν′
i denote the shadows of μ′

i in ν′. Note also that νn = ν1 + ν′
n−1 by Lemma 4.12.

Starting from (11), we now have

νn+1 = ν1 + ν′
n = ν1 + ν′

n−1 + Sν′−ν′
n−1(δn+1) = νn + Sν′−ν′

n−1(δn+1).

But ν′ − ν′
n−1 = (ν1 + ν′) − (ν1 + ν′

n−1) = ν − νn. This completes the proof. �

REMARK 4.14. An important consequence of the lemma above is that νn −νk

is the shadow of μn − μk in ν − Sν(μk). Even though the above construction is of
inductive nature, when permuting the n first atoms, the measure νn = ∑n

i=1 νi −
νi−1 is always the same: it simply equals Sν(μn). The same assertions apply to
Proposition 4.17 below.

PROPOSITION 4.15. Assume that (μn)n is increasing in the convex order and
μn 
C μ 
E ν for every n ∈ N. Then both (μn)n and (Sν(μn))n converge in M.
If we call μ∞, respectively, S∞ the limits, then the measure S∞ is the shadow of
μ∞ in ν.

PROOF. First note that the assumptions imply uμ0 ≤ uμ1 ≤ · · · ≤ uμn and
uμn ≤ uμ. The limit u∞ := limn∈N uμn exists because for every x ∈ R, (uμn(x))n
is increasing and bounded from above. Of course, the limit u∞ is a convex function
and since uμ is an upper bound it has the correct asymptotic behavior. Therefore,
u∞ is a potential function and by Proposition 4.1 it is the potential function of
some μ∞ ∈ M with the same mass and mean as μ and the μn’s.

On the other hand, for n ∈ N we consider the set Fν
μn

of measures ηn satisfying
μn 
C ηn and ηn ≤ ν. (We are using the notation of the proof of Lemma 4.6.) The
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measure Sν(μn) is the smallest element of Fν
μn

with respect to the convex order.
The family Fν

μn
is decreasing in n and it is not difficult to see that Fν

μ ⊆ ∩Fν
μn

so that it is not empty. Hence Sν(μn) is increasing in the convex order and it is
bounded from above by Sν(μ). Exactly for the same reasons as for the sequence
(μn)n, it converges to some S∞ in M. We now have to conclude that Sν(μ∞) =
S∞. We will in fact prove that S∞ 
C Sν(μ∞) and Sν(μ∞) 
C S∞.

For every n, we have μn 
C μ∞ 
C Sν(μ∞) and Sν(μ∞) ≤ ν. Thus,
Sν(μn) 
C Sν(μ∞). By Proposition 4.2, we have S∞ 
C Sν(μ∞). Conversely,
using again Proposition 4.2, the relation μn 
C Sν(μn) yields μ∞ 
C S∞ as n

goes to +∞. But S∞ ≤ ν [the limit of a converging sequence (uν − uSν(μn))n is
convex]. Hence, Sν(μ∞) 
C S∞. �

LEMMA 4.16 (Shadow of one measure and one atom). Consider now γ + δ

where δ is an atom. Assume (γ + δ) 
E ν. Then we have δ 
E Sν(γ + δ) − Sν(γ )

and

Sν(γ + δ) = Sν(γ ) + Sν−Sν(γ )(δ).(12)

PROOF. If γ is the sum of finitely many atoms, the result follows from
Lemma 4.13. Let us consider an approximating sequence (γ (n))n of γ as in
Lemma 2.9. We can write the decomposition of the shadow of γ (n)+δ in ν as in the
statement of the lemma and apply Proposition 4.15 to the sequence (Sν(γ (n)))n.
It follows that the limit exists and equals Sν(γ ). Write ν(n) for Sν(γ (n)) and ν(∞)

for Sν(γ ). For the same reasons as above, the shadows of γ (n) + δ converge to
Sν(γ + δ).

We still have to show that Sν−ν(n)
(δ) converges to Sν−ν(∞)

(δ). We know that
ν(n) converges to ν(∞) in M so ν − ν(n) tends to ν − ν(∞) and all these measures
are bounded by ν. We also know that Sν−ν(n)

(δ) is the restriction of ν − ν(n) to the
(uniquely determined) “quantile interval” with the correct mass and barycenter.
Rescaling masses if necessary, the continuity Lemma 4.10 implies that Sν−ν(n)

(δ)

converges to Sν−ν(∞)
(δ). �

We are now finally in the position to prove the desired associativity property of
the shadow mapping.

PROOF OF THEOREM 4.8. If γ2 is the sum of finitely many atoms, the prop-
erty holds since by Lemma 4.16 it is possible to construct recursively Sν(γ1 + γ2)

using a decomposition with one atom from γ2 and the rest of γ1 + γ2 as the sec-
ond measure. Let us consider a sequence (γ

(n)
2 )n of measures consisting of finitely

many atoms that weakly converge to γ2 and satisfy γ
(n)
2 
C γ2. Moreover, we may

assume that (γ
(n)
2 )n is increasing in the convex order as in Lemma 2.9.
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We can write the decomposition of the shadow of γ1 + γ
(n)
2 in ν as in

the statement of the theorem and apply Proposition 4.15 to the sequence
(Sν−Sν(γ1)(γ

(n)
2 ))n. We obtain that the limit exists and equals Sν−Sν(γ1)(γ2). For

the same reasons, the shadow of γ1 + γ
(n)
2 converges to Sν(γ1 + γ2). This com-

pletes the proof. �

Before we define the left-curtain transport plan, it seems worthwhile to record
the following result.

PROPOSITION 4.17 (Shadow of the sum of finitely many measures). Let (γi)i
be a family of measures (that possibly vanish identically). Let μn = γ1 + · · · + γn.
Assume also that μn 
E ν for every n ≥ 1. The sequence (νn)n∈N defined by νn =
Sν(μn) satisfies the following recurrence relation:

• ν0 = 0,
• νn − νn−1 = Sν−νn−1(γn).

PROOF. The statement is the same as Lemma 4.13 except that we do
not require the measures γi to be atoms. Lemma 4.13 relies on Lemma 4.12
which characterizes the shadow of γ1 + γ2 under the assumption that γ1 is
an atom. Substituting it with Theorem 4.8 the present claim follows verbatim.

�

Let us now formally define the left-curtain coupling πlc that has been discussed
in the Introduction and whose properties will be derived in the sequel. We baptize
it the “left-curtain transport plan” because it projects shadow measures as a curtain
that one closes starting from the left-hand side.

Note that given measures μ ≤ μ′ 
E ν, Theorem 4.8 implies that Sν(μ) ≤
Sν(μ′). This property is essential for the definition of πlc.

THEOREM 4.18 (Definition of πlc). Assume that μ 
C ν. There is a unique
probability measure πlc on R × R which transports μ|]−∞,x] to Sν(μ|]−∞,x]),
that is, satisfies projx#(πlc|]−∞,x]×R) = μ|]−∞,x] and projy#(πlc|]−∞,x]×R) =
Sν(μ|]−∞,x]) for all x ∈ R. Moreover, πlc is a martingale transport plan which
takes μ to ν, that is, πlc ∈ �M(μ,ν).

PROOF. Plainly, the condition given in the statement prescribes the value of

πlc
(]−∞, x] × A

) = Sν(μ|]−∞,x])(A)

for x ∈ R and every Borel set A ⊆ R, thus giving rise to a unique measure on the
product space. Here we use that, by Theorem 4.8, Sν(μ|]−∞,x]) ≤ Sν(μ|]−∞,x′])
whenever x ≤ x′.
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Clearly, the first marginal of πlc equals μ. By construction, the second marginal
satisfies projy# πlc ≤ ν. Since μ and ν have the same mass, this implies projy# πlc = ν

as required.
To establish the martingale property, we show that property (4) holds for any

function ρ = 1]−∞,x′], x′ ∈ R. Indeed, we have∫
(y − x)ρ(x)dπlc(x, y) =

∫
y dSν(μ|]−∞,x′])(y) −

∫
x dμ|]−∞,x′](x)

= 0. �

REMARK 4.19. The family of intervals (]−∞, x])x∈R is totally ordered with
respect to ⊆ and it spans the σ -field of Borel measurable sets. In the proof of
Theorem 4.18, we used these properties to show that there is a unique martingale
transport plan which transports μ|]−∞,x] to Sν(μ|]−∞,x]). This construction can
be applied to more general families of sets: Let I be some index set and (Cι)ι∈I

a family of Borel sets that both is totally ordered with respect to ⊆ and spans the
σ -field of Borel sets. Then a measure π ∈ �M(μ,ν) is defined uniquely by the
relations π(Cι × A) = Sν(μ|Cι)(A) for all indices ι ∈ I and Borel sets A ⊆R.

EXAMPLE 4.20. In the case of a finitely supported measure μ = ∑n
i=1 δi , it

follows that if the ordering is done so that the support of δi is {xi} with x1 ≤
· · · ≤ xn, then the πlc-coupling is πlc = ∑n

i=1 δ̃i ⊗Sν−νi−1(δi) where δ̃i = δi/δi(xi)

are the properly renormalized versions of δi and the measures νi are Sν(μi) with
μi = δ1 + · · · + δi as in Lemma 4.13.

THEOREM 4.21. The martingale πlc is left-monotone in the sense of Defini-
tion 1.4.

PROOF. Note that πlc is simultaneously a minimizer for all cost functions of
the form cs,t (x, y) = 1]−∞,s](x)|y − t |, where s, t are real numbers. Indeed, if π

is an arbitrary martingale transport plan then∫∫
cs,t (x, y)dπ(x, y) =

∫∫
]−∞,s]×R

|y − t |dπ(x, y)

=
∫

|y − t |d
(
projy# π |]−∞,s]×R

)
(y).

Setting νπ
s = projy# π |]−∞,s]×R we have νπ

s ≤ ν and μ|]−∞,s] 
C νπ
s which implies

Sν(μ|]−∞,s]) 
C νπ
s . Therefore,∫
|y − t |dSν(μ|]−∞,s])(y) ≤

∫
|y − t |dνπ

s (y),

where equality holds for all s, t ∈R if (and only if) π = πlc.
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Applying Lemma 1.11 to the costs cs,t for s, t ∈ Q, we obtain a Borel set �s,t

of πlc-measure 1. Set � = ⋂
s,t∈Q �s,t . We claim that a configuration as in (3)

cannot appear in �. Indeed, if (x, y−), (x, y+) and (x′, y′) are in � and satisfy
x < x′ and y− < y′ < y+, they are also in �s,t where (s, t) satisfies s ∈]x, x′[
and t ∈]y′, y+[. Let λ ∈]0,1[ be such that y′ = λy+ + (1 − λ)y−. The measure
α = λδ(x,y+) + (1 − λ)δ(x,y−) + δ(x′,y′) is concentrated on � but the competitor
α′ = λδ(x′,y+) + (1 − λ)δ(x′,y−) + δ(x,y′) leads to a lower global cost. This yields
the desired contradiction. �

5. Uniqueness of the monotone martingale transport. In this section, we
establish that the left-curtain coupling πlc is the unique monotone martingale cou-
pling. Our proof of this result is specific to the present setup. We will also explain
a more classical argument that is often invoked in the optimal transport theory to
establish some uniqueness property. This so-called half sum argument will be used
several times subsequently but requires the initial distribution μ to be continuous.

We start with two preliminary lemmas which are required to derive the main
result of this part, Theorem 5.3.

LEMMA 5.1. If μ 
C ν, then one of the following statements holds true:

• we have μ(]a,+∞[) > 0 and ν(]a,+∞[) > 0 for every a;
• the number a = sup(spt(μ)) is finite and ν(]a,+∞[) > 0;
• the number a = sup(spt(μ)) is finite and ν(]a,+∞[) = 0. Moreover, ν({a}) ≥

μ({a}).
The corresponding result for intervals of the form ]−∞, b[ is true as well.

PROOF. Integrating the convex function x �→ (x − a′)+ for different values
of a′ we obtain sup(spt(μ)) ≤ sup(spt(ν)). Therefore, the first case corresponds
to sup(spt(μ)) = sup(spt(ν)) = +∞, the second to sup(spt(μ)) < sup(spt(ν)) and
the third to sup(spt(μ)) = sup(spt(ν)) < +∞.

Let us prove that in the third case we also have μ({a}) ≤ ν({a}). If μ({a}) =
0 we are done. If μ({a}) > 0, the conditional transport measure πa must be the
static transport because it is a martingale transport plan and sup(spt(ν)) = a. This
completes the proof. �

For u, v ∈R, u < v let gu,v be defined by

gu,v(x) =
{

v − x, if x ∈ [u, v],
0, otherwise.

(13)

LEMMA 5.2. Let σ be a nontrivial signed measure of mass 0 and denote its
Hahn decomposition by σ = σ+ − σ−. There exist a ∈ spt(σ+) and b > a such
that

∫
ga,b(x)dσ(x) > 0.
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PROOF. First, notice that u �→ ∫
gu,u+1(x)dσ(x) does not vanish identically.

Since, by Fubini’s theorem,∫∫
gu,u+1(x)dσ(x)du = 0

there exists u ∈ R such that
∫

gu,u+1(x)dσ(x) > 0. The set spt(σ+ ∩ [u,u + 1[)
cannot be empty, so let a = min(spt(σ+ ∩ [u,u + 1]). It follows that

0 <

∫
gu,u+1 dσ ≤

∫
ga,u+1 dσ. �

THEOREM 5.3 (Uniqueness of the monotone martingale coupling). Let π be
a monotone martingale transport plan and μ = projx# π and ν = projy# π . Then π

is the left-curtain coupling πlc from μ to ν.

PROOF. Let π be left-monotone with monotonicity set � as in Definition 1.4
and let πlc be the left-curtain transport plan between μ and ν. We consider the
target measures νπ

x and ν
πlc
x obtained when transporting the μ-mass of ]−∞, x]

into ν, that is,

νπ
x = projy# π |]−∞,x]×R

and

νπlc
x = Sν(μ|]−∞,x]) = projy# πlc|]−∞,x]×R.

If νπ
x = ν

πlc
x for every x, then π = πlc by the definition of the curtain-coupling in

Theorem 4.18.
Assume for contradiction that there exists some x with νπ

x �= ν
πlc
x . This means in

particular that σx = (ν
πlc
x −νπ

x ) �= 0. The shadow property implies that ν
πlc
x 
C νπ

x .
By Lemma 5.2, we can pick u ∈ spt(σ+

x ) and v > u such that∫
gu,v dσx > 0.

As u ∈ sptσ+
x , σ+

x ≤ ν − νπ
x = projy# π |]x,+∞[×R, and π(�) = 1, there is a se-

quence (x′
n, un)n such that:

• x′
n > x,

• (x′
n, un) ∈ �,

• un → u.

By the monotonicity property of �, for every t ≤ x and n ∈ N, the set �t defined
by {y ∈ R : (t, y) ∈ �} cannot intersect ]−∞, un[ and ]un,+∞[. Hence, for t ≤ x,

�t ∩]−∞, u[=∅ or �t ∩]u,+∞[=∅.(14)

This remark will be important in the sequel of the proof.
We distinguish two cases depending on the respective positions of u and x.
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(1) First case: u < x. Note that we have

νπ
x − νπ

u = projy# π |]u,x]×R

and

νπlc
x − νπlc

u = projy# πlc|]u,x]×R = Sν−ν
πlc
u (μ|]u,x]).

As a consequence of (14) and of the fact that π is a martingale transport plan, π
transports the mass of ]−∞, u] to ]−∞, u] and the mass of ]u,x] to [u,+∞[.
We show below that the same applies to πlc, more precisely that ν

πlc
u 
C νπ

u

and (ν
πlc
x − ν

πlc
u ) 
C (νπ

x − νπ
u ).

• The measure ν
πlc
u is the shadow of μ|]−∞,u] in ν. We have also μ|]−∞,u] 
C

νπ
u and νπ

u ≤ ν so that ν
πlc
u 
C νπ

u . We apply now Lemma 5.1 and obtain that
ν

πlc
u is concentrated on ]−∞, u] and ν

πlc
u ({u}) ≤ νπ

u ({u}).
• We have π |]u,x]×R ∈ �M(μ]u,x], η) where η := projy# π |]u,x]×R = νπ

x − νπ
u

is concentrated on [u,+∞[. More precisely, we have

η ≤ (
ν − νπ

u

)|[u,+∞[ ≤ (
ν − νπlc

u

)|[u,+∞[ ≤ ν − νπlc
u

because ν
πlc
u and νπ

u are concentrated on ]−∞, u] and ν
πlc
u ({u}) ≤ νπ

u ({u})
as we have seen above. Moreover, we have μ|]u,x] 
C η. Hence,

νπlc
x − νπlc

u = Sν−ν
πlc
u (μ]u,x]) 
C η = νπ

x − νπ
u .

Note that gu,v is convex on [u,+∞[ so that
∫

gu,v d(ν
πlc
x − ν

πlc
u ) ≤∫

gu,v d(νπ
x − νπ

u ). Moreover, we have
∫

gu,v dν
πlc
u ≤ ∫

gu,v dνπ
u because

ν
πlc
u ({u}) ≤ νπ

u ({u}). Summing these inequalities, we obtain
∫

gu,v dν
πlc
x ≤∫

gu,v dνπ
x , which is a contradiction to

∫
gu,v dσx > 0.

(2) Second case: x ≤ u. The measure π cannot transport mass from ]−∞, x]
to ]u,+∞[. Indeed, because of the martingale property it then would also
transport mass to the set ]−∞, u[, contradicting (14). Thus, νπ

x is concen-
trated on ]−∞, u]. But we have ν

πlc
x 
C νπ

x so that considering Lemma 5.1,∫
gu,v dν

πlc
x ≤ ∫

gu,v dνπ
x holds (even in the third case of this lemma where

a = u). This contradicts
∫

gu,v dνπ
x > 0. �

REMARK 5.4. The two cases in the proof are actually not very different. In
both of them, π |]−∞,x]×R and πlc|]−∞,x]×R (roughly speaking the transport plans
restricted to μ|]−∞,x]) are concentrated on(]−∞, u]× ]−∞, u])∪ (]u,+∞[×[u,+∞[)
and this lies at the core of the argument.
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5.1. Structure of the monotone martingale coupling. It remains to establish
Corollary 1.6 which states that if μ is continuous, then πlc is concentrated on the
graph of two functions. We need the following lemma.

LEMMA 5.5. Assume that � ⊆ R2 is a Borel set such that for each x ∈ R we
have |�x | ≤ 2. Then S = projx(�) is a Borel set and there exist Borel functions
T1, T2 :S →R with T1 ≤ T2 such that

� = graph(T1) ∪ graph(T2).

PROOF. This is a consequence of [18], Theorem 18.11. �

We can now complete the proof.

PROOF OF COROLLARY 1.6. Consider the left-curtain coupling πlc between
measures μ 
C ν, where μ is continuous. As πlc is left-monotone there exists
a Borel monotonicity set � as in Definition 1.4. Note that if μ(A) = 0, the set
� \ (A × R) is still a monotonicity set. This applies in particular to all countable
sets since μ is continuous.

With the notation of Lemma 3.2 let us show that A = {x ∈ R : |�x | ≥ 3} is
countable. If not, we can apply this lemma and obtain x ∈ R with three points
y− < y < y+ in the set �x that can be approximated from the right-hand side.
In particular, there exists (x′, y′) ∈ � with x′ > x and y′ ∈ ]y−, y+[, which is the
forbidden configuration (3). Therefore, A is countable so that we can assume that
|�x | ≤ 2 for every x. Applying Lemma 5.5, we obtain the desired assertion. �

The following lemma permits to obtain uniqueness of the optimal martingale
transport plan, provided that we know that every optimal martingale transport is
concentrated on the graphs of two mappings (see Section 7). We can apply it to the
martingale transport plans when μ is continuous and recover the uniqueness of the
monotone transport plan in this particular case.

LEMMA 5.6. Let μ and ν be in convex order and E a nonempty convex set
of martingale transport plans. Assume that every π ∈ E is concentrated on some
�π ⊆R2 with |�π

x | ≤ 2 for every x ∈R. Then the set E consists of a single point.

PROOF. Let π and π ′ be elements of E . We consider π̄ = π+π ′
2 ∈ E and �π̄ ,

which can be seen as the graph of two functions according to Lemma 5.5. The
measures π and π ′ are also concentrated on �π̄ . For two disintegrations (πx)x∈R
and (π ′

x)x∈R with respect to μ, we know that μ-a.s. πx and π ′
x are probability

measures concentrated on �π̄
x and with the same barycenter, namely x. It follows

that π ′
x = πx , μ-a.s. so that π ′ = π . �
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6. Optimality properties of the monotone martingale transport. In this
section, we prove that πlc is the unique optimal coupling for the martingale op-
timal transport problem (2) associated to two different kinds of cost functions. The
special case c(x, y) = exp(y − x) is in the intersection of these two families of
cost functions.

THEOREM 6.1. Assume that c(x, y) = h(y − x) for some differentiable func-
tion h whose derivative is strictly convex and that c satisfies the sufficient integra-
bility condition. If there exists a finite martingale transport plan, then πlc is the
unique optimizer.

PROOF. We have to show that every finite optimizer π is monotone. Pick a
set � such that π(�) = 1 and � resists improvements by barycenter preserving
reroutings as in Lemma 1.11. Pick (x, y−), (x, y+), (x′, y′) ∈ �. Striving for a
contradiction we assume that they satisfy (3). Let us define a transport α on these
edges and a competitor α′ of it. We pick λ ∈]0,1[ such that λy+ + (1−λ)y− = y′.
The measure α puts mass λ on (x, y+), mass 1 − λ on (x, y−) and mass 1 on
(x′, y′). Our candidate for α′ will assert mass 1−λ on (x′, y−), mass λ on (x′, y+)

and mass 1 on (x, y′). Clearly, α′ is a competitor of α. It leads to smaller costs if
and only if

λc
(
x, y+)+ (1−λ)c

(
x, y−)+c

(
x′, y′) > λc

(
x′, y+)+ (1−λ)c

(
x′, y−)+c

(
x, y′).

A sufficient condition for this is that

d(t) := λc
(
t, y+)+ (1 − λ)c

(
t, y−)− c

(
t, y′)(15)

is strictly decreasing in x. In terms of h, the function d can be written as

d(t) = λh
(
y+ − t

)+ (1 − λ)h
(
y− − t

)− h
(
y′ − t

)
.

To have it decreasing, it is sufficient that

0 > d ′(t)
= −λh′(y+ − t

)− (1 − λ)h′(y− − t
)+ h′(y′ − t

)
= h′(λ(y+ − t

)+ (1 − λ)
(
y− − t

))− [
λh′(y+ − t

)+ (1 − λ)h′(y− − t
)]

.

Finally, it is sufficient to know that h′ is strictly convex which holds by assumption.
�

REMARK 6.2. The left-curtain transport plan is also a solution to the prob-
lem of minimizing the essential supremum of y − x among all martingale trans-
port plans with the same marginals. To see this, note that the function hn :x �→
exp(nx) has a strictly convex derivative for every n > 0 and that 1

n
ln(

∫
exp(n(y −

x))dπ(x, y)) tends to essupπ(y − x) as n → +∞ for every martingale transport
plan π .10

10We thank Fillipo Santambrogio for pointing this out to us.



OPTIMAL MARTINGALE TRANSPORT PROBLEM 77

We mention another class of cost functions for which the monotone martingale
transport plan πlc is optimal.

THEOREM 6.3. Let ψ be a nonnegative strictly convex function and ϕ a non-
negative decreasing function. Consider the cost function c(x, y) = ϕ(x)ψ(y) ≥ 0.
For two finite measures μ and ν in convex order, the left-curtain coupling πlc is
the unique optimal transport.

One could show that optimal martingale couplings are monotone in a very sim-
ilar way as in the proof of Theorem 6.1. We prefer to give an alternative proof
relying on the order properties of the left-curtain coupling.

PROOF OF THEOREM 6.3. Let π be optimal for the problem and assume that∫
c dπ < +∞. We want to prove

∫
c dπlc ≤ ∫

c dπ with equality if and only if
π = πlc. First of all note that for positive measurable functions f∫

f (x)ϕ(x)dμ(x) =
∫ +∞

0

(∫
1]−∞,ϕ−1(t)]f (x)dμ(x)

)
dt,

where ϕ−1(t) means sup{x ∈ R : t ≤ ϕ(x)}. Taking f (x) = ∫
ψ(y)dπx(y), we ob-

tain ∫
c(x, y)dπ(x, y) =

∫ +∞
0

(∫
ψ(y)dνπ |ϕ−1(t)(y)

)
dt,(16)

where νπ
u denotes projy# π |]−∞,u] as in the Introduction or in Section 5. In particu-

lar, ν
πlc
u equals Sν(μ]−∞,u]). Of course the representation (16) remains true if we

replace all occurrences of π by πlc.
The measures ν

πlc
u and νπ

u are in convex order and ψ is strictly convex. Thus,∫
ψ dν

πlc
u ≤ ∫

ψ dνπ
u and equality holds if and only if the two measures coin-

cide. This follows from Strassen’s theorem (Theorem 2.6) and the equality case
in Jensen’s inequality. Finally, it follows from (16) that π is the left-curtain cou-
pling. �

7. Other cost functions—other optimal martingale couplings. In this sec-
tion, we use Lemma 1.11 to derive results that appeal to general cost functions.

7.1. Cost functions of the form c(x, y) = h(y − x).

THEOREM 7.1. Assume that the cost function c(x, y) is given by h(y − x)

for some function h which is twice continuously differentiable. If affine functions
x �→ ax + b meet h′(x) in at most k points and π is an optimal transport plan,
then there exists a disintegration (πx)x∈R such that for any x ∈ R at least one of
the two following statements holds:

μ
({x}) > 0 or card

(
spt(πx)

) ≤ k.



78 M. BEIGLBÖCK AND N. JUILLET

In particular, if μ is continuous then card(spt(πx)) ≤ k is satisfied μ-a.s. for any
disintegration of π .

PROOF. Let π be optimal and � according to Lemma 1.11. If there are only
countably many continuity points of μ such that card(�x) ≥ k + 1, then we can
remove them. Assume for contradiction that there are uncountably many. Consider
the set

�̃ = {
(x, y) ∈ � :μ

({x}) = 0
}

to obtain a ∈ R and b0 < · · · < bk ∈ �a verifying the assertions of Lemma 3.2.
Let a′ ∈ R, λ ∈]0,1[ and set bλ = (1 − λ)b0 + λbk . We will compare

h(bλ − a) + λh
(
bk − a′)+ (1 − λ)h

(
b0 − a′)(17)

and

h
(
bλ − a′)+ λh(bk − a) + (1 − λ)h(b0 − a).(18)

As a′ tends to a, bi − a′ tends to bi − a. Considering a Taylor expansion of h at
bi − a, we find some ε > 0 such that |a − a′| < ε implies∣∣[h(bi − a′)− h(bi − a)

]− h′(bi − a) · (a − a′)∣∣ ≤ ∣∣h′′(bi − a)
∣∣(a − a′)2

for i ∈ {0, λ, k}. Hence, if we subtract (17) from (18) we obtain(
h′(bλ − a) − [

(1 − λ)h′(b0 − a) + λh′(bk − a)
])(

a′ − a
)

(19)

up to an error of[
(1 − λ)

∣∣h′′(b0 − a)
∣∣+ λ

∣∣h′′(bk − a)
∣∣+ ∣∣h′′(bλ − a)

∣∣] · (a − a′)2
.

But h′ is not linear so that (19) is not identically zero. Moreover, according to the
assumption on h′ and the affine functions there is an index i ∈ {1, . . . , k − 1} such
that if bλ = bi and a′ �= a then (19) is not zero. More precisely, as h′′ is continuous
there exists some ε1 < ε such that if |bi − bλ| < ε1 and 0 < |a − a′| < ε1 then
the difference of (17) and (18) is not zero and its sign is determined by the one of
a − a′.

Since a, b0, . . . , bk were chosen according to Lemma 3.2, we may pick a′ and
bλ ∈ �a′ such that (a′, bλ) is sufficiently close to (a, bi) and a′ is on the correct
side of a, making (17) smaller than (18).

Setting

α = λδ(a,bk) + (1 − λ)δ(a,b0) + δ(a′,bλ),

α′ = λδ(a′,bk) + (1 − λ)δ(a′,b0) + δ(a,bλ),

we have thus found a competitor α′ which has lower costs than α, contradicting
the choice of �. �
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7.2. The cost function h(y − x) in the usual setup. It seems worthwhile to
mention that Theorem 7.1 is the martingale variant of a result that belongs to the
theory of the classical problem (1). We mention it below in Theorem 7.2 because
we are not aware that it has been recorded in the literature in this form. In fact for a
family of special costs we can bound the number of parts the mass can split in if it
is transported optimally. Note that this number is not attained for every pair (μ, ν)

(see [25]). The similarity with Theorem 7.1 lies in the fact that we want to count
the number of intersection points of graph(h′) with affine lines in the martingale
case, and with horizontal lines in the classical setup.

THEOREM 7.2. Let k be a positive integer and let h :R → R be a twice con-
tinuously differentiable function such that the cost function c : (x, y) �→ h(y − x)

satisfies the sufficient integrability condition with respect to probability measures
μ and ν. Assume also that C(μ,ν) < +∞.

If the equation h′(x) = b has at most k different solutions for b ∈ R, then there
exists a disintegration (πx)x∈R such that for any x ∈ R at least one of the two
statements

μ
({x}) > 0 or card

(
spt(πx)

) ≤ k

holds. In particular, if μ is continuous then card(spt(πx)) ≤ k is satisfied μ-a.s.
for any disintegration.

7.3. (Counter)examples based on the cost function c(x, y) = (y − x)4. In this
section, we give two counterexamples that distinguish the general behavior from
the one of the curtain transport plan: the optimizer is in general not unique and
it may very well split into more than two parts even if the starting distribution is
continuous (see Corollary 1.6, resp., Theorem 7.1). Throughout this subsection,
we consider the cost function c(x, y) = (y − x)4.

7.3.1. Example of nonuniqueness of the transport. Let μ be uniformly dis-
tributed on {−1;1} and ν uniformly distributed on {−2;0;2}. We denote −1 and 1
by (xi)i=1,2 and −2,0 and 2 by (yj )j=1,2,3. To any matrix A = (ai,j ) of two rows
and three columns satisfying

∑
j ai,j = 1/2 and

∑
i ai,j = 1/3, we associate the

transport plan defined by π({(xi, yj )}) = ai,j . For such a transport plan, the accu-
mulated costs equal∑

i,j

ai,j · |xi − yj |4 = (a1,1 + a1,2 + a2,2 + a2,3) + 34 · (a1,3 + a2,1)

= 1 + 80(a1,3 + a2,1).

The matrices associated to a martingale transport plan are

Aλ =
(

1/4 1/4 0
1/12 1/12 1/3

)
+ λ

(
1/12 −1/6 1/12

−1/12 1/6 −1/12

)
,
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FIG. 4. Graphs and envelope of the functions y �→ F(x, y) for x ∈ [0,1/5].

where λ ∈ [0,1]. Therefore, the martingale transport plan associated to the parame-
ter λ gives rise to total costs of 1+80(λ/12+1/12−λ/12) = 23/3, independently
of λ. We conclude that every martingale transport plan is optimal.

7.3.2. Example of splitting in exactly three points in the continuous case.
Roughly speaking, we have proved in Theorem 7.1 that if μ is continuous, dμ(x)-
mass elements split in at most three points. Indeed, t �→ t4 has derivative t �→ 4t3

which is of degree 3. In this paragraph, we give a numerical example showing
that this upper bound is sharp. The construction is inspired by the dual theory of
the martingale transport problem mentioned in Section 2.4. Briefly, Figure 4 de-
picts a family of curves indexed by x. These curves touch three envelope curves
at three moving points y1, y2 and y3 close to −1,0 and 1. The optimal mar-
tingale transport plan that we construct is supported by the union of the graphs
�i = {(x, yi(x)) ∈ R2 :x ∈]0,1/5[} for i = 1,2,3.

Let ψ :R →R be defined by

ψ(y) = y4 − max
x∈[0,1/2]

{
4x

(
y + x

2

)
(y + 1 − x)(y − 1 − x)

}
.(20)

Hence, for any (x, y) ∈ [0,1/2] ×R

y4 − ψ(y) ≥ 4xy3 − 6x2y2 + a1(x)y + b1(x),

where a1(x) = 4x−4x2 −4x3 and b1(x) = 2x2 −2x4. But y4 = (y−x)4 +4xy3 −
6x2y2 + a2(x)y + b2(x) so that

(y − x)4 ≥ a3(x) + b3(x)y + ψ(y)(21)

for a3 = a1 − a2 and b3 = b1 − b2. Here, (21) is an equality at the point (x0, y0) if
and only ψ(y0) is realized in (20) by x = x0. Integrating (21) against a transport
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plan π , one obtains∫∫
(y − x)4 dπ(x, y) ≥

∫
a3(x)dμ(x) +

∫∫
b3(x)y dπ(x, y) −

∫
ψ(y)dν(y)

and the equality holds if and only if π is concentrated on{
(x, y) ∈ [0,1/2] ×R : (y − x)4 = a3(x) + b3(x)y + ψ(y)

}
.

Moreover, as we are considering a martingale transport plan we have∫∫
(y − x)4 dπ(x, y) ≥

∫
a3(x)dμ(x) +

∫
b3(x)x dμ(x) +

∫
ψ(y)dν(y).

Here, the lower bound on the right-hand side is the same for every martin-
gale transport plan π . It follows that martingale transport plans concentrated on
{(x, y) ∈ [0,1/2] × R : (y − x)4 = a3(x) + b3(x)y + ψ(y)} are optimal with re-
spect to their marginals. We set F(x, y) = 4x(y + x

2 )(y + 1 − x)(y − 1 − x) so
that (20) is ψ(y) = y4 − supx∈[0,1/2] F(x, y). In Figure 4, one can see the graphs
of F(x, ·) for values of x between 0 and 1/5.

We will prove that for y ∈]−1,0[∪ ]1,2[, F(·, y) : [0,1/2] → R has a unique
global maximum in ]0,1/2[. Actually, F(·, y) has main term 2x4. Therefore, it is
sufficient to prove that ∂xF (·, y) is positive for x = 0 and negative for x = 1/2.
Indeed this means that we are analyzing the variation of the polynomial function
F(·, y) of degree 4 on an interval where its variations are different from the asymp-
totic ones. In particular F(·, y) will have a unique maximum on ]0,1/2[. This turns
out to be true. Indeed,

∂xF (x, y) = 4
(
(x + y)

[
(x − y)2 − 1

]+ x(x + 2y)(x − y)
)
,(22)

so that for any parameter y in ]−1,0[∪ ]1,2[, the function ∂xF (·, y) is positive in
x = 0 since it equals y �→ 4(y(y2 − 1)). For x = 1/2, straightforward considera-
tions show that ∂xF (1/2, y) is negative for all y ∈]−∞,2].

We will now show that for a given parameter x ∈]0,1/5[, x is the maximum
of F(·, y) on [0,1/2] for exactly three elements y of ]−1,0[∪ ]1,2[. For this pur-
pose, we consider y �→ ∂xF (x, y). We prove that it vanishes exactly three times on
]−1,0[∪ ]1,2[. For fixed x ∈]0,1/5[, this function is indeed negative in 0 and −1
while it is positive in −1/2. The sign is also different for y = 1 and y = 2 so that
we have found the three zeros of y �→ ∂xF (x, y). But as explained in the previous
step, for y ∈]−1,0[∪ ]1,2[ being a maximum of F(·, y) is exactly the same as
having zero derivate.

Therefore, any x ∈]0,1/5[ gives rise to the maximum of F(·, y) for three differ-
ent y ∈ [−1,0]∪[1,2]. Hence, there are y1, y2, y3 such that ψ(yi) = y4

i −F(x, yi)

for i = 1,2,3. Notice that x is in the convex hull of these points because y1 is close
to −1, y2 is close to 0 and y3 close to 1. Hence, there exists a martingale transport
plan π concentrated on [0,1/5] × ([−1,0] ∪ [1,2]) such that πx is supported on
{y1, y2, y3}(x) with positive μ-probability. Moreover, it follows from the expla-
nations above that this martingale transport plan is optimal. Namely, (20) holds
π -a.s. Hence, we have proved that the bound k = 3 of Theorem 7.1 is sharp in the
case c(x, y) = (y − x)4.
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7.4. The Hobson–Neuberger cost function and its converse. As mentioned in
the Introduction, Hobson and Neuberger [16] study the case c(x, y) = −|y − x|,
motivated by applications in mathematical finance. They identify the minimizer
πHN based on a construction of the maximizers for the dual problem. Here,
some conditions on the underlying measures are necessary; an example in [2],
Proposition 5.2, shows that the dual maximizers need not always exist. Based on
Lemma 1.11 we partly recover their result. Throughout this part, we will only deal
with the case of a continuous starting distribution μ (see Remark 7.6 on this hy-
pothesis).

THEOREM 7.3. Assume that μ and ν are in convex order and that μ is con-
tinuous. There exists a unique optimal martingale transport plan πHN for the cost
function c(x, y) = −|y − x|.

Moreover, there exist two nondecreasing functions T1, T2 :R → R such that
T1(x) ≤ x ≤ T2(x) and πHN is concentrated on the graphs of these functions.

A similar behavior holds for the cost function c(x, y) = |y − x| built on the
absolute value h :x �→ |x|. We have learned about the structure of the optimizer
for this cost function from D. Hobson and M. Klimmek [15]. Recall that �x =
{y : (x, y) ∈ �} for � ⊆ R2.

THEOREM 7.4. Assume that μ and ν are in convex order and that μ is con-
tinuous. There exists a unique optimal martingale transport plan πabs for the cost
function c(x, y) = |y − x|.

Moreover, there is a set � such that πabs is concentrated on � and |�x | ≤ 3
for every x ∈ R. More precisely, πabs can be decomposed into πstay + πgo where
πstay = (Id⊗ Id)#(μ∧ ν) (this measure is concentrated on the diagonal of R2) and
πgo is concentrated on graph(T1) ∪ graph(T2) where T1, T2 are real functions.

The “combinatorial core” of the proofs to Theorems 7.3 and 7.4 is contained in
the following lengthy but simple lemma.

LEMMA 7.5. Let x, y−, y,+ , y′ ∈ R such that y− < x,y′ < y+. Pick λ such
that λy+ + (1 − λ)y− = y′. For x′ ∈ R we want to compare the quantities

A := λ
∣∣x − y+∣∣+ (1 − λ)

∣∣x − y−∣∣+ ∣∣x′ − y′∣∣,
B := λ

∣∣x′ − y+∣∣+ (1 − λ)
∣∣x′ − y−∣∣+ ∣∣x − y′∣∣.

(1) Assume that y′ < x. Then there exists x0 ∈]y−, y′[ such that (A − B) seen
as a function of x′ exactly vanishes at x0 and x, is strictly positive outside [x0, x]
and strictly negative in ]x0, x[.

x′ −∞ y− x0 y′ x +∞
(A − B)

(
x′) + 0 − 0 + .
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(2) Assume that y′ > x. Then there exists x1 ∈]y′, y+[ such that (A − B) van-
ishes if x′ ∈ {x1, x}, is strictly positive outside [x, x1] and strictly negative in
]x, x1[:

x′ −∞ x y′ x1 y+ +∞
(A − B)

(
x′) + 0 − 0 + .

(3) Assume that y′ = x. Then (A−B) is nonnegative and vanishes exactly in x.

x′ −∞ y− x = y′ y+ +∞
(A − B)

(
x′) + 0 + .

PROOF. Consider the function

f (t) = λ
∣∣t − y+∣∣+ (1 − λ)

∣∣t − y−∣∣− ∣∣t − y′∣∣.
Then A > B is equivalent to f (x) > f (x′) and A = B is equivalent to f (x) =
f (x′).

The behavior of the function f is easy enough to understand. On the intervals
]−∞, y−], [y+,∞[, the function is zero. On the interval [y−, y′] it increases lin-
early from 0 to 2λ(1 − λ)(y+ − y−). On the interval [y′, y+] it decreases linearly
from 2λ(1 − λ)(y+ − y−) to 0.

The above assertions are simple consequences of this behavior. Moreover, it is
easy to calculate x0, x1 explicitly. For instance, in the case y′ < x pick t ∈]0,1[
such that x = y′ + t (y+ − y′). Then x0 = y′ + t (y− − y′). �

PROOF OF THEOREM 7.3. Pick � according to Lemma 1.11 and (x, y−),
(x, y+), (x′, y′) ∈ �, with y− < y′ < y+. Then it cannot happen that

y′ ≤ x′ < x or x < x′ ≤ y′.(23)

Indeed, choosing λ ∈]0,1[ and α, respectively, α′ as in the proof of Theorem 6.1,
we find that an improvement is possible if

−λ
∣∣x − y+∣∣− (1 − λ)

∣∣x − y−∣∣− ∣∣x′ − y′∣∣ > −λ
∣∣x′ − y+∣∣− (1 − λ)

∣∣x′ − y−∣∣
− ∣∣x − y′∣∣.

This inequality holds in the just mentioned cases by Lemma 7.5.
Consider the set A of points a such that �a contains more than two points and

assume by contradiction that this set is uncountable. According to Lemma 3.2,
there is an accumulation effect at some a ∈ A together with b−, b, b+ ∈ �a in
the order b− < b < b+. (Without loss of generality, one may assume b ≤ a.) In
particular, Lemma 3.2 provides (a0, b

−
0 ), (a0, b

+
0 ) ∈ � such that a < a0 < b+

0 and
b−

0 < b. We have settled the first forbidden situation of (23) for (x, y−) = (a0, b
−
0 ),

(x, y+) = (a0, b
+
0 ) and (x′, y′) = (a, b), which provides the desired contradiction.
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Hence, A is countable and μ(A) = 0. It follows that one can assume |�a| ≤ 2 for
every a ∈ R.

We may thus assume that there exist T1 and T2 from projx(�) to R such that
�x = {T1(x), T2(x)} where T1(x) ≤ x ≤ T2(x) for μ-almost every x ∈ projx(�).
It remains to show that T1 and T2 are monotone. Let x, x′ ∈ R with x < x′. We
necessarily have T2(x) ≤ T2(x

′) since the opposite inequality leads to the second
forbidden inequality in (23) taking y− = T1(x), y′ = T2(x

′) and y+ = T2(x). The
monotonicity of T1 is established in the same way.

It remains to show that the optimizer is unique. Due to the linear structure of the
optimization problem the set of solutions is convex. Hence, Lemma 5.6 applies.

�

REMARK 7.6. If μ is not continuous, there may be more than one minimizer.
This is the case, for example, if μ and ν are chosen as in Section 7.3.1. In fact,
if h is an even function then for the cost function c(x, y) = h(y − x) (e.g., x �→
−|y − x|) every martingale transport plan is optimal. Hence, it seems that it is
not directly possible to define the Hobson–Neuberger transport plan for a general
starting distribution μ in an unambiguous way.

PROOF OF THEOREM 7.4. Let π be an optimal martingale transport plan. Pick
� according to Lemma 1.11 and (x, y−), (x, y+), (x′, y′) ∈ �, with y− < y′ < y+.
Then it cannot happen that

x′ < x ≤ y′ or y′ ≤ x < x′ or x′ /∈ [
y−, y+].(24)

Indeed, choosing λ ∈]0,1[, α and α′ as in the proof of Theorem 6.1 above we find
that an improvement of α by α′ is possible if

λ
∣∣x −y+∣∣+ (1−λ)

∣∣x −y−∣∣+ ∣∣x′ −y′∣∣ > λ
∣∣x′ −y+∣∣+ (1−λ)

∣∣x′ −y−∣∣+ ∣∣x −y′∣∣.
Indeed, this inequality holds in the just mentioned cases by Lemma 7.5. Note in
particular that one of the forbidden cases of (24) occurs if x �= x′ and x = y′. This
will be crucial in the following argument which establishes that as much mass as
possible is transported by the identity mapping. (Roughly speaking, the following
is forbidden: Some mass goes from x to y− and y+ while some mass goes from x′
to y′ = x.)

Set π0 = π |�, where � is the diagonal {(x, y) ∈ R2 :x = y} and π̄ = π − π0,
let ρ be the projection of π0 onto the first (or the second) coordinate. As ρ ≤ μ

and ρ ≤ ν, we have ρ ≤ μ ∧ ν. We want to prove that ρ = μ ∧ ν, that is, π0 is
(Id⊗ Id)#(μ ∧ ν). Let us define the reduced measures μ̄ = μ − ρ, ν̄ = ν − ρ and
κ = μ ∧ ν − ρ. Note that π̄ ∈ �M(μ̄, ν̄) and that π̄ is concentrated on �̄ = � \ �.
Hence, we have the following:

• For μ̄-almost every a, there exist b− and b+ such that a ∈]b−, b+[ and
(a, b−), (a, b+) ∈ �̄.
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• For κ-almost every b, there exists some a �= b such that (a, b) ∈ �̄.

As κ ≤ μ̄, we conclude that κ-almost every real number satisfies both of these
conditions. Thus, for κ-almost every x there exist y−, y+ and x′ such that the
points (x, y−), (x, y+) and (x′, x) are included in �̄ and one has x′ �= x and x ∈
]y−, y+[. This coincides with one of the forbidden situations of (24). Hence, κ has
mass 0 and π0 = (Id⊗ Id)#(μ ∧ ν) as claimed above.

Our next goal is to establish that, removing countably many points if neces-
sary, we have |�̄x | ≤ 2 for every x ∈ R. Indeed, if this is not true, then there exist
a, b′, b− and b+ with b− < b < b+ ∈ �̄a to which the assertion of Lemma 3.2 ap-
plies. We know that b < a or a < b; assume without loss of generality that a < b.
But then there exist a′ with b− < a′ < a and b′ with a < b′ < b such that (a′, b′) ∈
�. This contradicts (24) (with x = a, y− = b−, y+ = b+, x′ = a′, y′ = b′).

It remains to establish that there exists at most one optimizer. For optimal trans-
ports π , the static part π0 = π |� equals (Id⊗ Id)#(μ ∧ ν). Hence, the reduced
measure π̄ = π − π0 is a minimizer of the martingale transport problem between
μ̄ = μ − μ ∧ ν and ν̄ = ν − μ ∧ ν. Note that μ̄ ∧ ν̄ = 0 so that the optimal martin-
gale couplings are concentrated on two Borel graphs. We conclude by Lemma 5.6.

�

REMARK 7.7. Exactly as in Remark 7.6, the hypothesis that μ is continuous
is needed to prove uniqueness of the optimizer; πabs is not well defined otherwise.

APPENDIX A: A CONVERSE TO THE VARIATIONAL LEMMA

In this section, we prove that the optimality criterion given in the variational
Lemma 1.11 is not only necessary but also sufficient provided that the cost func-
tion is assumed to be bounded and continuous. We conjecture that these regularity
assumptions can be relaxed. Before we state the variational lemma, let us give a
definition.

DEFINITION A.1. Let c be a cost function with values in R. We say that a
Borel set � is finitely optimal for c if for every measure α on R×R with | spt(α)| <
∞ and spt(α) ⊆ � and every competitor α′ of α we have

∫
c dα ≤ ∫

c dα′.

As c only takes finite values, the integrals exist.

LEMMA A.2 (Variational lemma, part II). Assume that μ,ν ∈ P are in con-
vex order and that c :R2 → R is a continuous bounded cost function. Let π ∈
�M(μ,ν). It there exists a finitely optimal set � such that π(�) = 1, then π is an
optimal martingale transport plan.
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The strategy of our proof will be to establish dual maximizers (see Section 2.4).
Such dual maximizers do not exist in general as follows from [2], Proposition 4.1.
However, the following simple lemma allows us to reduce the martingale transport
problem to “irreducible components.” It turns out that on each of these components
it is possible to construct the desired dual maximizers.11

A.1. Irreducible decompositions. Let us now introduce some of the neces-
sary vocabulary.

DEFINITION A.3. Let μ,ν be elements of M such that μ 
C ν. We say that
(μ, ν) is irreducible if there exists an open interval I (bounded or not) such that
μ(I) and ν(Ī ) have the total mass and uμ < uν on I .

Note that on R \ I we have uμ = uν so that I is exactly {uμ < uν}.

THEOREM A.4 [Decomposition of (μ, ν) into irreducible components]. Let
μ,ν be elements of M such that μ 
C ν. Let (Ik)k be the (in essence unique) se-
quence of disjoint open intervals such that

⋃
k Ik = {uμ < uν} and write F for the

closed set R\⋃k Ik . Set μk = μ|Ik
and define η = μ|F such that μ = (

∑
k μk)+η.

There exists a unique decomposition ν = (
∑

k νk) + υ such that μk 
C νk for
each k and η 
C υ .

For this decomposition η = υ and (μk, νk) is irreducible with {uμk
< uνk

} = Ik .
Moreover, any martingale transport plan π ∈ �M(μ,ν) can be decomposed in the
form

π =
(∑

k

πk

)
+ πF ,(25)

where πk is a martingale transport from μk to νk . This decomposition is unique
and πF = (Id⊗ Id)#η.

Note that the measure η ∧ νk does not necessarily vanish.

PROOF OF THEOREM A.4. To establish the uniqueness part, we need two
auxiliary results.

LEMMA A.5. Assume that μ,ν are elements of P and let π ∈ �M(μ,ν), s ∈
R. The following are equivalent:

(i) π(]−∞, s[× ]−∞, s] ∪ {(s, s)}∪ ]s,∞[×[s,∞[) = 1.

11Roughly speaking, the construction given in [2], Proposition 4.1, uses an infinite number of such
irreducible components. While it is possible to construct optimizers on each component, it turns out
to be impossible to glue them together.
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(ii) uμ(s) = uν(s).

Consequently, as (ii) does not depend on π , if (i) holds for one measure in
�M(μ,ν), then it applies to all elements of �M(μ,ν).

PROOF. This is essentially [2], Lemma 4.2; the only difference is that the for-
mulation in [2] refers to the function u+

μ(x) := ∫
(y − x)+ dμ(y) rather than to uμ.

However, the proof goes through in the same way if (·)+ is replaced by | · |. �

We record the following consequence.

LEMMA A.6. Let I be an open interval such that uμ = uν on the bound-
ary of I . Let μI be μ|I and π be a transport plan of �M(μ,ν). Set also
νI := projy#(π |I×R).

The measure νI is concentrated on Ī and does not actually depend on the par-
ticular choice of π . Moreover, we have uνI

− uμI
= 0 on R \ I and uνI

− uμI
=

uν − uμ on I .

PROOF. Pick π ∈ �M(μ,ν) and apply Lemma A.5 to every s ∈ ∂I . Then

π
(
(I × Ī ) ∪ (R \ I )2) = 1.(26)

Set πI := π |I×R. Relation (26) asserts that no mass of μ is moved from R \ I

to I and that the mass of I is transported into Ī . Thus, μI 
C νI = projy# πI (so
that the two measures have the same integral against linear functions) and νI is
concentrated on Ī . It follows directly from the definition of the potential functions
that uνI

= uμI
on R \ I . Applying similar arguments to μ|J and νJ = projy# π |J×R

for every (closed) connected component J of R \ I and recalling that α �→ uα is
linear, we obtain uμ−μI

= uν−νI
on I . Hence, uνI

− uμI
= uν − uμ holds on this

interval. �

We first prove the existence of some decomposition of ν. We fix some π ∈
�M(μ,ν) and for every k, we define μk and νk as the marginals of πk := π |Ik×R.
Denote by η,υ the marginals of πF := π |F×R. The transport plans πk and πF are
martingale transport plans so that μk 
C νk and η 
C υ .

For the uniqueness part, we take for i = 1,2 a decomposition (νi
k)k, υ

i of ν such
that μk 
C νi

k and η 
C υi . According to Example 2.3, there exists a martingale
transport plan πi that transports every μk on νi

k and η on υi . But the μk’s are con-
centrated on disjoint intervals so that νi

k = projy# πi |Ik×R and υi = projy# πi |F×R.
It follows from Lemma A.6 that projy# π |Ik×R does not depend on the particular
choice of π ∈ �M(μ,ν). Hence, ν1

k = ν2
k for every k and υ1 = ν −∑

k ν1
k = υ2.

Let us now prove the properties listed in the second part of Theorem A.4. We
continue to use the notation of the existence part (π,πk,πF ,μk, νk, η and υ). As
a consequence of Lemma A.6 (applied to μ,ν and Ik), we have the following:
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(i) νk is concentrated on Īk ;
(ii) uνk

− uμk
is 0 on R \ Ik and uν − uμ on Ik .

As the Ik’s are disjoint, we have

u∑
νk

− u∑
μk

= ∑
k

(uνk
− uμk

) =

⎧⎪⎪⎨
⎪⎪⎩

uν − uμ, on
⋃
k

Ik,

0 = uν − uμ, on F = ⋂
k

Īk .

Hence,

uυ = uν − u∑
νk

= uμ − u∑
μk

= uη

on the whole real line. Thus, we have υ = η. The fact that (μk, νk) is irreducible
and {uμk

< uνk
} = Ik follows directly from Definition A.3 and what has been

proved so far. Finally, concerning π , note that π = (
∑

k πk) + πF where πk has
marginals μk and νk . As πF is a martingale transport plan from η to υ = η it is
the identical transport plan (Id⊗ Id)#η. The uniqueness of the decomposition (25)
follows from the fact that the μk’s are concentrated on disjoint intervals. �

As a consequence of Theorem A.4, we have the following straightforward corol-
lary:

COROLLARY A.7 (Reducing the transport problem). Let μ,ν be elements
of M and μ 
C ν,π ∈ �M(μ,ν) with decompositions (μk)k, (νk)k, η, π =
(
∑

k πk) + (Id⊗ Id)#η as in Theorem A.4. Let c be a cost function such that the
martingale transport problem satisfies the sufficient integrability condition and
leads to finite costs. Then the transport π is optimal if and only if every πk is
optimal for the transport problem between μk and νk .

Recall that in Lemma A.2, the main result of this section, one is assuming that
some particular finitely optimal set exists for the cost c. We will need several times
to assume that this set satisfies some additional properties that we introduce in
the next definition. Recall for the sequel that for a set G ⊆ R2 we write Gx =
{y : (x, y) ∈ G} and denote the projections of G by XG and YG, respectively.

DEFINITION A.8. Let I be an open interval. A set G satisfies the regularity
property on I if G ⊆ I × Ī and for every x ∈ I we have Gx = ∅ or Gx = {x} or
x ∈] infGx, supGx[.

A set G satisfies the irreducibility property on I if G ⊆ I × Ī and for every
y ∈ I there exist x ∈ I and y−, y+ ∈ Gx so that y− < y < y+.

Note that if G is irreducible on I , we can apply this property to points y ∈ I

close to the boundary of I . Therefore, we have I = ◦
conv(YG).
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LEMMA A.9. Let μ,ν be elements of P such that (μ, ν) is irreducible with
I = {uμ < uν}. Let c be a cost function. Let moreover G be a finitely optimal set
and π a martingale transport plan with π(G) = 1. Then there exists a Borel set
G′ ⊆ G ∩ (I × Ī ) that is regular and irreducible on I and such that π(G′) = 1.
Moreover, G′ is finitely optimal.

PROOF. Let G and π be as in the statement. Since π is a martingale transport
plan we find that for μ-almost all x ∈ I

x ∈ ◦
conv(Gx) or {x} = Gx.

Erasing a negligible set if necessary, we can assume that the regularity prop-
erty is satisfied on I . Let G′ be the resulting set. Assume by contradiction that
G′ does not satisfy the irreducibility property on I . Hence, there exists y ∈ I

such that for every x ∈ I , the set Gx is included in ]−∞, y] or in [y,+∞[.
By regularity, Gx ⊆]−∞, y] if x ≤ y and Gx ⊆ [y,+∞[ otherwise. Hence,
π(]−∞, y]2 ∪ [y,+∞[2) = 1 so that uμ(y) = uν(y), according to Lemma A.5.
But y ∈ I = {uμ < uν}, which yields a contradiction. Therefore, the set G′ is reg-
ular and irreducible on I . Each subset of G is finitely optimal, hence so is G′.

�

A.2. Existence of dual maximizers ϕ,ψ,� on an irreducible component.
In this paragraph, we aim to prove Proposition A.10. The cost function c, the sets
� ⊆ R2 and I are fixed accordingly throughout Sections A.2 and A.3.

PROPOSITION A.10. Assume that c :R → R is continuous and let � be a
finitely optimal set that is regular and irreducible on some open interval I .

Then there exist upper semicontinuous functions ϕ : I → [−∞,∞[,ψ :J =
conv(Y�) → [−∞,∞[ and a measurable function � : I →R such that

ϕ(x) + ψ(y) + �(x)(y − x) ≤ c(x, y)

for all x ∈ I, y ∈ J , with equality holding whenever (x, y) ∈ �.

We emphasize that the functions appearing in Proposition A.10 can be inter-
preted as a sort of maximizer for the dual problem described in Section 2.4.

Throughout Section A.2, we will work under the assumptions of Proposi-
tion A.10; some preparations will be necessary to establish the result.

DEFINITION A.11. Let ψ be a function from a subset of R into R and let G

be a subset of R×R such that ψ is defined on YG = projy(G). The function ψ is
called G-good if the following holds true:

For every x ∈ XG = projx(G), there exists an affine function y �→ ax(y) such
that

ax(y) ≤ −ψ(y) + c(x, y)(27)

for all y ∈ YG with equality holding true if y ∈ Gx = {y ∈ R : (x, y) ∈ G}.
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Note that the function ax is uniquely determined if |Gx | ≥ 2. Clearly, a func-
tion ψ is G-good if and only if there exist functions ϕ, � (defined on some set
containing XG) such that

ϕ(x) + ψ(y) + �(x)(y − x) ≤ c(x, y)

for all x ∈ XG and y ∈ YG with equality being satisfied whenever (x, y) ∈ G.
Subsequently, we will show that in Proposition A.10 there exists a �-good

function ψ . We want to explain already at this stage that for a given �-good
function ψ , suitable functions ϕ and � can be defined rather explicitly in terms
of the function ψ : Fix x ∈ X� . By the regularity property, there exist y−, y+
with y− < x < y+, (x, y−), (x, y+) ∈ � and a unique affine function ax such that
ax(y

−) = −ψ(y−) + c(x, y−) and ax(y
+) = −ψ(y+) + c(x, y+); moreover, ax

lies below the function y �→ −ψ(y) + c(x, y). Writing g(·)∗∗ for the convex hull
of a function y �→ g(y), we find further that ax(y) is also smaller or equal than
(−ψ(·) + c(x, ·))∗∗(y), with equality holding true for all y ∈ [y−, y+]. This im-
plies that ax(y) = ϕ(x) + �(x)(y − x), where

ϕ(x) := (−ψ(·) + c(x, ·))∗∗
(x),(28)

and �(x) denotes the derivative of y �→ (−ψ(·)+ c(x, ·))∗∗(y) at the point y = x.
The first step toward the existence of a �-good function in Proposition A.10 is

the following auxiliary result.

LEMMA A.12. Let G ⊆ � be a finite set. Then there exists a G-good function.

PROOF. As � is regular, there exists a finite set G̃, G ⊆ G̃ ⊆ � such that G̃

is regular. As a consequence of the regularity property, there exists a probability
measure α which has support G̃ and is a martingale transport plan between its
marginals, that is, satisfies α ∈ �M(μ0, ν0) for μ0 := projx# α, ν0 := projy# α. As �

is finitely optimal, every competitor of α leads at least to the same amount of costs
as α, that is, α is an optimal martingale measure. By the duality theorem of linear
programming, there exist functions ϕ,� :X

G̃
→R,ψ :Y

G̃
→R such that

ϕ(x) + ψ(y) + �(x)(y − x) ≤ c(x, y)

for all (x, y) ∈ X
G̃

× Y
G̃

with equality holding for all elements of the set G̃. In
particular, ψ is a G-good function. �

The following technical lemma will give us some control over the variety of
different G-good functions which can exist for a specified set G.

LEMMA A.13. Let G = {(xi, y
−
i ), (xi, y

+
i ) : i = 1,2}, where y−

i < xi < y+
i .

Assume that ]y−
1 , y+

1 [∩ ]y−
2 , y+

2 [ �= ∅. Given bounded intervals K±
1 there ex-

ist bounded intervals K±
2 such that the following holds: If ψ is G-good and

ψ(y±
1 ) ∈ K±

1 , then ψ(y±
2 ) ∈ K±

2 .
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Let G = {(x1, y
−
1 ), (x1, y

+
1 ), (x2, y2)}, where y−

1 < x1 < y+
1 . Assume that y2 ∈

]y−
1 , y+

1 [. Given bounded intervals K±
1 there exists a bounded interval K2 such

that the following holds: if ψ is G-good and ψ(y±
1 ) ∈ K±

1 , then ψ(y2) ∈ K2.

PROOF. We will only prove the first part of the lemma, the second is similar.
Moreover, we will assume that y−

1 < y−
2 < y+

2 < y+
1 . If these numbers are ordered

in a different way, the argument can be adapted easily. Since ψ is G-good, there is
an affine function ax1 such that

ax1

(
y−

1

) = −ψ
(
y−

1

)+ c
(
x1, y

−
1

) ∈ −K−
1 + c

(
x1, y

−
1

)
,(29)

ax1

(
y+

1

) = −ψ
(
y+

1

)+ c
(
x1, y

−
1

) ∈ −K+
1 + c

(
x1, y

+
1

)
,(30)

ax1

(
y−

2

) ≤ −ψ
(
y−

2

)+ c
(
x1, y

−
2

)
,(31)

ax1

(
y+

2

) ≤ −ψ
(
y+

2

)+ c
(
x1, y

+
2

)
.(32)

From (29) and (30), we have a good control over the possible positions of the
affine function ax1 . By (31) and (32), this translates to a lower bounded for the
value of −ψ(y−

2 ) [resp., −ψ(y+
2 )]. More precisely, we obtain that there exists a

real number q which depends on K±
1 , x1, y

±
1 , y±

2 and c [but not on the particular
values of ψ(y±

2 )] such that q ≤ −ψ(y±
2 ).

On the other hand, there exists an affine function ax2 such that

ax2

(
y−

1

) ≤ −ψ
(
y−

1

)+ c
(
x1, y

−
1

) ∈ −K−
1 + c

(
x2, y

−
1

)
,

ax2

(
y+

1

) ≤ −ψ
(
y+

1

)+ c
(
x1, y

−
1

) ∈ −K+
1 + c

(
x2, y

+
1

)
,

ax2

(
y−

2

) = −ψ
(
y−

2

)+ c
(
x2, y

−
2

)
,

ax2

(
y+

2

) = −ψ
(
y+

2

)+ c
(
x2, y

+
2

)
.

This implies the existence of a constant p such that p ≥ −ψ(y±
2 ). Summing up,

we may choose K+
2 = K−

2 = [−p,−q]. �

LEMMA A.14. There exists a �-good function ψ .

PROOF. In Lemma A.12, we have already seen that for every finite set G ⊆ �

there exists a G-good function. The idea of the proof is thus to pass to some sort
of limit of these functions. To do so, we aim to confine (properly chosen) G-good
functions to a compact subset of the space RYG . The existence of this compact set
will be a consequence of Lemma A.13 and Tychonoff’s theorem.

We claim that there exist compact intervals (Ky)y∈Y� such that for any finite set
G ⊆ � there is a G-good function ψ such that ψ(y) ∈ Ky for y ∈ YG.

We give the proof under the assumption that Y� ⊆ I is such that conv(Y�) is
open [such that conv(Y�) = I ], the other cases are similar. The irreducibility and
regularity properties imply that for every y ∈ I there exist (x, y−), (x, y+) ∈ �
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such that y− < y < y+ and y− < x < y+. That is, I is the union of intervals of
the form ]y−, y+[, where (x, y−), (x, y+) ∈ � and y− < x < y+. Using that the
set I can be written as a countable union of compact sets, it is straightforward that
there exist sequences (xk)k∈N, (y−

k )k∈N, (y+
k )k∈N such that the points (xk, y

−
k ) and

(xk, y
+
k ) are in �, we have y−

k < xk < y+
k ,

k⋃
i=0

]
y−
i , y+

i

[∩ ]
y−
k+1, y

+
k+1

[ �=∅, k ∈ N and
⋃
k∈N

]
y−
k , y+

k

[ = I.

Given an arbitrary set G, a G-good function ψ and an affine function a, the func-
tion ψ ′ = ψ − a is again a G-good function. Thus, for all finite G satisfying
(x0, y

−
0 ), (x0, y

+
0 ) ∈ G, there is a G-good function ψ such that ψ(y−

0 ) = ψ(y+
0 ) =

0. Iterating (the first part of) Lemma A.13 for k ∈ N we find the desired intervals
Ky for y ∈ {y−

k , y+
k :k ∈ N}.

For every y ∈ Y� , there exist x ∈ R and k ∈ N such that (x, y) ∈ � and y ∈
(y−

k , y+
k ). Hence, (the second part of) Lemma A.13 yields the existence of the

desired interval Ky for y ∈ Y� \ {y−
k , y+

k :k ∈ N}.
We can view the set K := ∏

y∈Y�
Ky as a subset of the space of all functions

from YG to R. In the topology of pointwise convergence, the set K is compact by
Tychonoff’s theorem.

For every finite G ⊆ �, the set

�G := {ψ ∈ K :ψ is G-good}
is a nonempty closed subset of the set K. Moreover, the family (�G)G has the finite
intersection property. For instance, given finite sets G1,G2 ⊆ � the intersection of
�G1 and �G2 contains �G1∪G2 and is therefore nonempty. By compactness of K,
the intersection ⋂

G⊆�,|G|<∞
�G =: ��

of all these sets is nonempty as well. Obviously, any element ψ ∈ �� is �-good.
�

PROOF OF PROPOSITION A.10. By Lemma A.14, there exists a �-good func-
tion ψ . We have to show that ψ can be replaced by an upper semicontinuous func-
tion and that there exist appropriate functions ϕ and �. We start with the latter
task.

Recall that we write J = conv(Y�) and note that I ⊆ J ⊆ I .
For fixed x ∈ X� , consider the function y �→ gx(y) = −ψ(y)+ c(x, y), y ∈ Y� .

For any x ∈ I , let g∗∗
x :R → [−∞,+∞] be the largest convex function which is

smaller than gx on the set Y� for x ∈ X� and g∗∗
x = +∞ if x ∈ I \X� . For x ∈ X� ,

there exists an affine function which is smaller than gx . Hence, g∗∗
x does not take

the value −∞ in this case.
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Since I = ◦
conv(Y�) the function g∗∗

x is continuous and finitely valued on the
set J for x ∈ X� . As a function on the set R, g∗∗

x may possibly assume the value
+∞. Moreover, if x ∈ I \ X� then g∗∗

x can take the value −∞.
We now define the function H : I ×R→ [−∞,∞] by

H(x,y) := (−ψ(·) + c(x, ·))∗∗
(y)

and emphasize that H takes finite values on X� × J . Thus, the function ϕ : I →
[−∞,∞[, defined by

ϕ(x) := (−ψ(·) + c(x, ·))∗∗
(x) = H(x,x)(33)

takes finite values on the set X� .
To prove that ϕ is upper semicontinuous, consider for n ∈ N the function

Hn(x, y) := ((−ψ(·) ∨ (−n)
)+ c(x, ·))∗∗

(y).

It is straightforward to prove that Hn is continuous on the set I × J . Thus, H =
infn∈N Hn is upper semicontinuous, and hence ϕ is upper semicontinuous as well.

For each x ∈ I , denote by �(x) the right-derivative of the convex function y �→
H(x,y) in the point x if H(x,x) > −∞ and set �(x) = 0 otherwise.

By construction, we then have

ϕ(x) + ψ(y) + �(x)(y − x) ≤ c(x, y),

for all (x, y) ∈ X� ×J . Moreover, as ψ was assumed to be �-good, equality holds
for all (x, y) ∈ �. [See the discussion preceding (28).]

Next, we define a function ψ̃ by

ψ̃(y) = inf
x

c(x, y) − [
ϕ(x) + �(x)(y − x)

]
.

For every x, the function y �→ c(x, y)−[ϕ(x)+�(x)(y −x)] is continuous, hence
ψ̃ is upper semicontinuous. As above, ϕ(x)+ ψ̃(y)+�(x)(y −x) ≤ c(x, y) holds
by construction and since ψ̃(y) is greater or equal to ψ(y) for all y ∈ I we con-
clude that the inequality is indeed an equality on the set �. �

A.3. Integrating the duality relation between ϕ, ψ , � and c on the irre-
ducible components. Section A.2 was a first step in the direction of the proof
of Lemma A.2. Unfortunately, the functions ϕ,ψ constructed in Proposition A.10
are measurable but not necessarily integrable. The following lemma will provide a
remedy for this.

LEMMA A.15. Let χ be a convex or concave function on some (possibly un-
bounded) interval I and assume that μ,ν are in convex order and concentrated
on I . Then∫ [∫

χ(y)dπx(y) − χ(x)

]
dμ(x) =

∫ [∫
χ(y)dπ̃x(y) − χ(x)

]
dμ(x)(34)

for all measures π, π̃ ∈ �M(μ,ν).



94 M. BEIGLBÖCK AND N. JUILLET

PROOF. We will give the proof in the case where I = R and χ convex, the
other cases being similar. Note that, leaving integrability issues aside, the left as
well as the right-hand side of (34) equal

∫
χ dν − ∫

χ dμ and in particular we
expect them to be equal. To give a formal proof, we approximate χ by functions
which grow at most linearly so that all involved integrals do exist.

Denote by χn the smallest convex function which agrees with χ on the interval
[−n,n]. (So χn is affine on the complement of [−n,n].) We have to show that for
each π ∈ �M(μ,ν).∫ [∫

χ(y)dπx(y) − χ(x)︸ ︷︷ ︸
=:f (x)

]
dμ(x) = lim

n

∫ [∫
χn(y)dπx(y) − χn(x)︸ ︷︷ ︸

=:fn(x)

]
dμ(x)

Applying Jensen’s inequality to the functions χ,χn, we see that f,fn ≥ 0 and
applying Jensen’s inequality to the convex function χn − χm, we see that fn ≤ fm

for n ≤ m. Hence, the desired equality follows from the monotone convergence
theorem. �

As a consequence of this lemma, the following definition is unambiguous.

DEFINITION A.16. Assume that ϕ,ψ are measurable functions and that μ,ν

are in convex order. Let χ be a convex12 function such that ϕ0 = ϕ + χ , ψ0 =
ψ − χ are uniformly bounded. Then we set∫

ϕ dμ +
∫

ψ dν :=
∫

ϕ0 dμ +
∫

ψ0 dν +
∫ [∫

χ(y)dπx(y) − χ(x)

]
dμ(x),

where π is some martingale transport plan.

COROLLARY A.17. Assume that we are given measurable functions ϕ,ψ,�

and a convex function χ such that

ϕ(x) + ψ(y) + �(x)(y − x) ≤ c(x, y)(35)

for all x, y ∈ I and such that ϕ and −ψ differ from χ only by some bounded
functions. Then we have ∫

ϕ dμ +
∫

ψ dν ≤
∫

c dπ

for any martingale transport plan π . Furthermore, if equality holds π -a.s. in (35),
then

∫
ϕ dμ + ∫

ψ dν = ∫
c dπ .

We are now finally in the position to establish the main result of this section.

12Of course, the assertion is also true in the case where χ is concave, but we do not need this.
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A.4. Proof of Lemma A.2. We will first give the proof assuming that (μ, ν)

is irreducible on the open interval I (bounded or not). According to Lemma A.9,
we may assume that the finitely optimal set � is included in I × Ī and is regular
and irreducible on I . It follows from Proposition A.10 that there exist upper semi-
continuous functions ϕ,ψ : I →]−∞,∞] and a measurable function � : I → R
such that

ϕ(x) + ψ(y) + �(x)(y − x) ≤ c(x, y)

for all x, y ∈ I , with equality holding for (x, y) in �. Recall that the function ψ

constructed in Proposition A.10 is of the form

inf
x

c(x, y) − [
ϕ(x) + �(x)(y − x)

]
.

This leads us to define the convex function χ : I →R by

χ(y) = sup
x

ϕ(x) + �(x)(y − x).

Since c is assumed to be bounded, it follows that ψ differs from −χ only by a
bounded function (i.e., ψ + χ is bounded). Replacing ϕ by(−ψ(·) + c(x, ·))∗∗

(x),

it follows also that ϕ differs from χ only by a bounded function (i.e., ϕ − χ is
bounded). Thus, Corollary A.17 implies that π is an optimal transport plan.

Consider now the general case and the decomposition π = (
∑

k πk)+ η of The-
orem A.4, (25), where (projx πk,projy πk) =: (μk, νk) is irreducible. But � has
full measure for πk [if not π(�) would be smaller than 1] and it is finitely optimal
for the cost c. According to the first part of the proof, πk is an optimal martingale
transport plan from μk to νk . By Theorem A.7, π is optimal and this completes the
proof of Lemma A.2.

APPENDIX B: A SELF-CONTAINED APPROACH TO THE VARIATIONAL
LEMMA

In this appendix, we provide a self-contained proof of the variational lemma
(Lemma 1.11, established in Section 3). Indeed, we obtain a somewhat stronger
conclusion in Theorem B.4 below. The benefit of this second version is that The-
orem B.4 does not rely on the Choquet’s capacability theorem and that the new
approach provides an explicit set �. A drawback is that we have to assume that the
cost function is continuous. Compared to the approach given in Section 3, another
disadvantage is that the argument does not seem to be adaptable from R × R to
more general product spaces.
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B.1. Preliminaries based on Lebesgue’s density theorem. Our aim is to es-
tablish Corollary B.3 which may be viewed as an avatar of Lemma 3.2, the un-
countable set of points a being replaced by a set A of positive measure. We start
with the well-known Lebesgue density theorem. It asserts that for an integrable
function f on [0,1] we have

lim
ε→0

1

2ε

∫ s+ε

s−ε

∣∣f (s) − f (t)
∣∣dt = 0(36)

for almost every s ∈]0,1[. In sloppy language, almost every point is a “good”
point. Those points will be called regular points of f . In those regular points s, we
also have

lim
n→+∞

1

λ(Mn)

∫
Mn

∣∣f (s) − f (t)
∣∣dt = 0(37)

for every sequence (Mn) of measurable sets satisfying Mn ⊆ [s − εn, s + εn] with
λ(Mn)

εn
bounded from below and εn → 0. Particular admissible choices are Mn =

[s, bn] or ]s, bn] and Mn = [an, s] or [an, s[. As a consequence of (37), we have
that

lim
n→+∞

1

λ(Mn)

∫
Mn

f (t)dt = f (s).(38)

Intervals B =]q, q ′] or ]−∞, q ′] with q, q ′ ∈ Q ∪ {−∞,+∞} will be called
rational semiopen intervals. By Fubini’s theorem, (37) implies the following re-
sult.

LEMMA B.1. Let π be a probability measure on R × R with first marginal
λ[0,1]. Fix a disintegration (πx)x∈[0,1]. There exists a set R ⊆ [0,1], λ(R) = 1
such that for s ∈ R, any rational semiopen interval B and any two sequences
(an)n, (bn)n satisfying an, bn → s as well as an ≤ s < bn or an < s ≤ bn, we have

lim
n→+∞

1

bn − an

∫ bn

an

∣∣πt(B) − πs(B)
∣∣dλ(t) = 0.

We now extend this lemma to the case where the first marginal of π is a general
measure μ, not necessarily equal to λ|[0,1]. Recall from Section 1.2 that Gμ de-
notes the quantile function of μ and Fμ the cumulative distribution function. See
Figure 5 for the graphs of Fμ and Gμ in an example: Here, μ satisfies μ({1}) = 1/3
and is uniform of mass 2/3 on [0,1] ∪ [2,3] (the axis are not scaled in the same
way). Recall that the measure μ can be written as (Gμ)#λ.

The map Gμ is increasing on [0,1], and hence continuous on the complement
of a countable set D, the set of s ∈ [0,1] such that F−1

μ (s) is a nontrivial in-
terval. For such a s ∈ D, the μ-measure of F−1

μ (s) is zero so that μ(Gμ(D)) ≤
μ(F−1

μ (D)) = 0.
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FIG. 5. The quantile and cumulative distribution functions.

Consider a random variable (U,Gμ(U),Y ) on [0,1] × R × R such that the
law of U is λ and the law of (Gμ(U),Y ) is π . Let π̃ be the law of (U,Y ) and
(π̃s)s∈[0,1] a disintegration with respect to λ, that is, π̃s is the conditional law of Y

given the event {U = s}. Apply Lemma B.1 to this disintegration of π̃ to obtain a
set R. Let S ⊆ R be the set Gμ(R \ D) and let us call S the set of regular points.

Note that S has full measure and that it may depend on the disintegration of π̃ .

LEMMA B.2. Let π be a probability measure on R2 with first marginal μ

and (πx)x∈R a disintegration of π . There exists a set S ⊆ R of measure μ(S) = 1
satisfying the following: for any x ∈ S and any rational semiopen interval B the
limit

lim
n→+∞

1

μ(Nn)

∫
Nn

∣∣πt(B) − πx(B)
∣∣dμ(t)

is zero for any sequence Nn = [x − εn, x + εn] with εn ↓ 0.

PROOF. We note that if the statement of the lemma holds for one particular
disintegration of π , then it automatically carries over to any other disintegration.

Therefore, we will consider a disintegration of π which is convenient for the
proof. Let π̃ and S be as in the discussion preceding Lemma B.2 and set for x ∈ R

πx =
⎧⎪⎨
⎪⎩

π̃Fμ(x), if μ
({x}) = 0,

1

μ({x})
∫
G−1

μ ({x})
π̃s ds, if μ

({x}) > 0.
(39)

Let x be a point in S and Nn = [x − εn, x + εn]. To prove that the limit is zero,
we distinguish two cases depending on whether or not x is an atom of μ. The first
case is quite straightforward. In the second case, we will apply Lemma B.1.
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• Assume μ({x}) > 0. As
⋂

n∈N Nn = {x} we have μ(Nn) ↓ μ({x}) as εn → 0.
Hence,

1

μ(Nn)

∫
Nn

∣∣πt(B) − πx(B)
∣∣dμ(t) = 1

μ(Nn)

∫
{x}

∣∣πt(B) − πx(B)
∣∣dμ(t)

+ 1

μ(Nn)

∫
Nn\{x}

∣∣πt(B) − πx(B)
∣∣dμ(t).

The first part of the sum equals 0 and the second part tends to 0 since |πt(B) −
πx(B)| ≤ 2 and [μ(Nn) − μ(x)]/μ(Nn) ↓ 0 as εn → 0.

• Assume μ({x}) = 0. As x ∈ S = Gμ(R \ D) there exists a regular s0 [w.r.t. the
disintegration (π̃s)s ] such that x = Gμ(s0) and Gμ is continuous in s0. As x is
in the interior of Nn, s0 is in the interior of Mn := G−1

μ (Nn). Hence, λ(Mn) =
μ(Nn) is positive.

We can separate the push-forward measure μ = (Gμ)#λ into its atomic and
its continuous part and integrate accordingly, and thus obtain

1

μ(Nn)

∫
Nn

∣∣πt(B) − πx(B)
∣∣dμ(t)

= 1

λ(Mn)

∫
Mn

∣∣πGμ(s)(B) − πx(B)
∣∣dλ(s)(40)

≤ 1

λ(Mn)

∫
Mn

∣∣π̃s(B) − π̃s0(B)
∣∣dλ(s).

Here, we used the following properties: (i) if μ({t}) > 0: Jensen’s inequality
for the integration on {s :Gμ(s) = t}, (ii) if μ({t}) = 0: Gμ(s) = t implies that
Fμ(t) = s or s is a discontinuity point of Gμ, so that Fμ(t) = s almost surely.

But λ(Mn) = μ(Nn) → μ({x}) = 0 as n tends to infinity. Note also that Mn is
an interval because Gμ is nondecreasing. Hence, we can apply Lemma B.1 [with
the point s0, the disintegration (π̃s)s and the sequence Mn] to equation (40).
Summing up, we obtain that the limit equals zero as required. �

We remark that for π ∈ P(R2), if y ∈ spt(πx), it is not always true that (x, y) ∈
spt(π). We have introduced S in order to obtain this conclusion for x ∈ S. More
precisely, we have the following.

COROLLARY B.3. Let S be a set of regular points associated to (πx)x as in
Lemma B.2 and let x ∈ S. Let B1, . . . ,Bk be a family of pairwise disjoint rational
semiopen intervals such that πx(Bj ) > 0 for j = 1, . . . , k.

For every ε > 0, there exists A ⊆ S ∩ [x − ε, x + ε] such that μ(A) > 0 and
πt(Bj ) > 0 for (j, t) ∈ {1, . . . , k} × A.
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PROOF. Let π,x, ε and the sets Bj be given. Let (εn)n be a decreasing se-
quence of positive numbers tending to 0. For every j , we have

lim
n→+∞

1

μ(Nn)

∫
Nn

∣∣πx(Bj ) − πt(Bj )
∣∣dμ(t) = 0,

where Nn is [x − εn, x + εn] or, in the case μ({x}) = 0, one of the intervals ]x, x +
εn], respectively, [x − εn, x[. This implies

μ
({

t ∈ Nn :
∣∣πx(Bk) − πt(Bk)

∣∣ > πx(Bk)/2
}) = o

(
μ(Nn)

)
.

Therefore,

μ
({

t ∈ Nn :∃j ∈ {1, . . . , k}, ∣∣πx(Bk) − πt(Bk)
∣∣ > πx(Bk)/2

}) = o
(
μ(Nn)

)
and

μ
({

t ∈ Nn :∃j ∈ {1, . . . , k}, πt (Bk) = 0
}) = o

(
μ(Nn)

)
.

Hence, for n sufficiently large the set

A = {
t ∈ Nn :∀j ∈ {1, . . . , k}, πt (Bk) > 0

}
has positive measure. For n large enough, we also have εn < ε, which completes
the proof. �

B.2. Construction of a better competitor when � supports a finite nonop-
timal coupling. Let V be the set of signed measures σ on R2 with Hahn decom-
position σ = σ+ − σ− such that the following conditions are satisfied:

• The total mass of σ is 0.
• The marginals projx# σ and projy# σ vanish identically.
• The measure projy#(|σ |) = projy# σ+ + projy# σ− has finite first moment.
• σ has a disintegration (σx)x such that projx# |σ |-a.s., the positive and the negative

parts of σx have the same mean.

If only the three first conditions are satisfied, σ will be an element of V ′.
Here, the letter V is reminiscent to the term variation. Indeed, observe that if α

is a positive measure on R2 such that projy# α has finite first moment and β = α −σ

is a positive measure, then β is a competitor of α in the sense of Definition 1.10.
Conversely, for a pair of competitors (α,β), the measures α − β and β − α are
elements of V . A notable element of V is (δx − δx′) ⊗ (λδy+ + (1 − λ)δy− −
δλy++(1−λ)y−), the kind of measure that we have used repeatedly in Sections 6
and 7. An element of V will be called a variation. A variation σ is positive (resp.,
negative) if

∫
c(x, y)dσ(x, y) > 0 (resp., < 0).

For a cost function satisfying the sufficient integrability condition, it is not dif-
ficult to prove that the following statements are equivalent:

(1) The martingale transport plan α is optimal for the cost c.
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(2) For any σ ∈ V such that σ+ ≤ α, one has
∫

c(x, y)dσ(x, y) ≤ 0.

We can now state the main result of this appendix.

THEOREM B.4. Assume that μ,ν are probability measures in convex order
and that c :R2 → R is a continuous cost function satisfying the sufficient integra-
bility condition. Assume that π ∈ �M(μ,ν) is an optimal martingale transport
plan which leads to finite costs. Let (πx)x be a disintegration of π and S ⊆ R a set
of regular points associated to (πx)x in the sense of Lemma B.2. We set

� = {
(x, y) ∈ R2 :x ∈ S and y ∈ spt(πx)

}
.

If α is a martingale transport plan such that:

• the support spt(α) of α is finite and
• the support spt(α) is included in �,

then the martingale transport plan α is optimal for c between projx# α and projy# α.
Furthermore, if σ is a measure of finite support in V with spt(σ+) ⊆ �, it is a

nonpositive variation.

PROOF. Let α be as in the theorem and assume for contradiction that there
exists a competitor β that leads to smaller costs. We will prove that π cannot
be optimal, thus establishing the desired contradiction. In other words, assume
that there is a variation σ ∈ V with sptσ+ ⊆ sptα and

∫
c(x, y)dσ(x, y) > 0.

We will construct σ̃ ∈ V by applying modifications to σ so that σ̃+ ≤ π and∫
c(x, y)dσ̃ (x, y) > 0. This yields a contradiction since the competitor π − σ̃ is

cheaper than π with respect to the cost function c.
The argument is based on two lemmas and Proposition B.6, whose proof is

postponed to the next subsection. Let us introduce some notation. Assume first that
spt |σ | is included in {x1, . . . , xn}× {y1, . . . , ym} and define for ε > 0 the rectangle
Rij (ε) = [xi − ε, xi + ε] × [yj − ε, yj + ε].

LEMMA B.5. There exists ε > 0 such that the sets Rij (ε) are disjoint and any
measure σ ′ ∈ V satisfying:

• |σ ′| is concentrated on
⋃

i,j Rij (ε) and
• for (i, j) ∈ {1, . . . , n} × {1, . . . ,m}∣∣σ − σ ′∣∣(Rij ) ≤ ε,

is a positive variation.

PROOF. The argument relies on the continuity of c and is straightforward. �

Let us call V(σ, ε) the subset of the measures σ ′ ∈ V such that σ ′ satisfies the
conditions of the above lemma. Elements of V(σ, ε) are positive variations and so
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are the elements of the cone CV(σ, ε) = {wσ ′ ∈ V :w > 0 and σ ′ ∈ V(σ, ε)}. We
want to find a measure σ ′ ∈ V(σ, ε) and v such that wσ ′+ ≤ π . For this purpose,
we will use the fact that σ+ is concentrated on �.

Using the notation of Corollary B.3, let Ai be the set A associated to xi and
consider an arbitrary family of rational semiopen intervals Bk with yj ∈ Bj ⊆
[yj − ε, yj + ε] and πxi

(Bj ) > 0 for each j . Moreover, we take Ai ⊆ S ∩ [xi −
ε, xi + ε] for every i.

PROPOSITION B.6. Let ε > 0. There are sets A1, . . . ,An with μ(Ai) > 0 and
Ai ⊆ [xi − ε, xi + ε] such that for (t1, . . . , tn) ∈ A1 × · · · × An there is a measure
σt1,...,tn ∈ E satisfying the following:

• We have σt1,...,tn ∈ CV(σ, ε).
• The first marginal of |σt1,...,tn | has support {t1, . . . , tn}.
• σ+

t1,...,tn
≤ ∑n

i=1 μ(Ai) × (δti ⊗ πti ).

We postpone the proof of Proposition B.6 to the next subsection.
Note that σt1,...,tn is not the measure σ̃ we are looking for. Nevertheless, it sat-

isfies almost all the conditions. It is in V and even in CV(σ, ε) so that according to
Lemma B.5 it is a positive variation. The only missing condition it that σ+

t1,...,tn
is

not smaller than π . We provide a remedy in the following lemma.

LEMMA B.7 (A variation σ̃ leading to the contradiction). The measure

σ̃ = 1

μ(A1) × · · · × μ(An)

∫∫∫
A1×···×An

σt1,...,tn dμ(t1) ⊗ · · · ⊗ dμ(tn)

is in CV(σ, ε) and satisfies both
∫∫

c(x, y)dσ̃ (x, y) > 0 and σ̃+ ≤ π . Hence, π − σ̃

gives rise to smaller costs than π .

PROOF. As all σt1,...,tn are in CV(σ, ε), they are positive variations. Hence, σ̃

which is an average of these measures in V is also a positive variation. Let us prove
that σ̃+ ≤ π . Observe that σ̃+ is again the average of the positive parts σ+

s1,...,sn
.

By Proposition B.6, this is smaller than

1

μ(A1) × · · · × μ(An)

∫∫∫
A1×···×An

n∑
i=1

μ(Ai)(δti ⊗ πti )dμ(t1) ⊗ · · · ⊗ dμ(tn)

=
n∑

i=1

∫
Ai

(∫∫∫
(δti ⊗ πti )dμ(t1) ⊗ · · · ⊗ d̂μ(ti) ⊗ · · · ⊗ dμ(tn)

μ(A1) × · · · × μ̂(Ai) × · · · × μ(An)

)
dμ(ti)

=
n∑

i=1

∫
Ai

(δti ⊗ πti )dμ(ti) = π |⋃n
i=1 Ai×R.

�

Up to Proposition B.6, we have thus proved Theorem B.4. �
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B.3. Proof of Proposition B.6. Recall the definitions and notation of Theo-
rem B.4 and Proposition B.6. In particular, σ has finite support included in �. It is
also included in some product set {x1, . . . , xn} × {y1, . . . , ym} where we choose
m and n as small as possible. For τ ∈ V , we denote the support of projx#(|τ |)
by X(τ) and the support of projy#(|τ |) by Y(τ) so that {x1, . . . , xn} = X(σ) and
{y1, . . . , ym} = Y(σ). Let d ≤ n · m be the cardinality of spt(σ+) and denote its
elements by p1, . . . , pd .

For measures of finite support, the conditions for being in V can be simplified.
A measure τ is in V if:

(1) for every y ∈ Y(τ), Ly(τ) defined as
∑

x∈X τ(x, y) is zero,
(2) for every x ∈ X(τ), Cx(τ) defined as

∑
y∈Y τ(x, y) is zero,

(3) for every x ∈ X(τ), Mx(τ) defined as
∑

y∈Y τ(x, y) × y is zero.

Moreover, the measure τ is an element of V ′ if the conditions (1) and (2) are
satisfied.

We introduce some further notation. For every τ ∈ V ′ of finite support, we in-
troduce a relation between the points of X(τ). We write x → x′ if there are y, y′
such that y > y′ and τ(x, y), τ (x′, y′) are not zero. If x → x′ and x′ → x we write
x ↔ x′ and will say that x double-touches x′. If τ ∈ V , for any point x ∈ X(τ)

an important consequence of condition (3) is that there exist three distinct points
y, y′, y′′ such that τ(x, y), τ (x, y′) and τ(x, y′′) are not zero. Hence, x ↔ x if
x ∈ X(τ). However the relation ↔ is not transitive. If x ∈ X double-touches both
x′ and x′′, we say that x is a bridge over x′ and x′′. In particular, if x ↔ x′ the
point x is a bridge over x′ and x itself.

Roughly speaking for τ ∈ V ′, the relation x → x′ means that it is possible to
replace τ (in a continuous manner) by a signed measure τ ′ ∈ V ′ such that τ+
and τ ′+ have the same support. Applying this modification τ �→ Mx(τ) increases
while τ �→ Mx′(τ ) decreases (and their sum remains constant). More precisely,
consider y, y′ such that y > y′ and τ(x, y), τ (x′, y′) are both nonzero. Let m be the
measure (δx − δx′)⊗ (δy − δy′). Notice that m is an element of V ′ \V . Considering
τh = τ + h · m and h > 0, we have

Mx

(
τh)− Mx(τ) = h · Mx(m) = h · (y − y′) > 0.

We only consider positive h in order to keep the same support for (τh)+ and τ+. In
particular this prohibits that τ(x, y′) > 0 and τ(x′, y) > 0. For the same reason, we
choose h ∈ [0, h0[ where h0 = max(|τ(x, y)|, |τ(x′, y′)|). Indeed, if τ(x, y) < 0
then the same applies to τh(x, y).

If we want to make Mx and Mx′ vary in the opposite direction, we may consider
the relation x′ → x in place of x → x′. Thus, x ↔ x′ allows to make small varia-
tions of Mx and Mx′ in the one or the other direction. If there is a bridge x′′ ∈ X(τ)

over x and x′, we have exactly the same freedom as if x ↔ x′. The next lemma is
a tool for finding bridges between points when τ ∈ V .
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LEMMA B.8. Let τ be a finitely supported element of V and (x, y) ∈ X(τ) ×
Y(τ) such that τ(x, y) > 0. Let G ⊆ X(τ) be the subset of points x′ such that:

• there exists a bridge over x and x′,
• τ(x′, y) < 0.

Then

τ(x, y) + ∑
x′∈G

τ
(
x′, y

) ≤ 0.

PROOF. Condition (1) implies that if every x′ ∈ X(τ) satisfying τ(x′, y) <

0 is connected with x by a bridge, we are done. Conversely, assume that there
exists x′ ∈ X(τ) such that τ(x′, y) < 0 and there is no bridge between x and x′.
Then for any x0 ∈ X(τ) the measure |τ | restricted to {x0} × R is concentrated on
{x0} × [y,+∞[ or {x0}× ]−∞, y] (if not it would be a bridge between x and x′).
Let X1 � X2 be the partition of X(τ) induced by this remark and τ i the restriction
of τ to Xi ×R for i = 1,2. Without loss of generality, we can assume x ∈ X1. Let
us prove that τ 1 and τ 2 are in V . Actually, they coincide with τ on vertical lines
so that they satisfy conditions (2) and (3). The total mass of τ on the horizontal
lines that are not equal to R× {y} is zero as well. Thus, as τ i(R2) = 0, we obtain
τ i(Xi ×{y}) = 0 for i = 1,2. This yields condition (1) for τ 1 and τ 2. Hence, these
measures are in V .

As τ 1 ∈ V , applying condition (1) we obtain that any x′
1 ∈ X1 such that

τ(x′
1, y) < 0 is connected with x by a bridge. Indeed with condition (2) and

the definition of X1, we know that there are y′ and y′′ in ]y,+∞[ such that
τ(x, y′) �= 0 and τ(x′

1, y
′′) �= 0. Hence, we have x ↔ x′

1. So we can apply the
first remark to τ 1 in place of τ . Indeed, G is the set of points of x1 ∈ X(τ 1) such
that τ(x1, y) = τ 1(x1, y) < 0. �

LEMMA B.9. Let τ be a finitely supported positive variation and consider
spt(τ+) = {p1, . . . , pd} ⊆ R × R. There exists ε > 0 such that if qk ∈ R2 has the
same first coordinate as pk and |pk − qk| < ε for every k ∈ {1, . . . , d}, then there
exists a sequence of positive variations (τk)

d
k=1 such that |τk| has finite support

and τ+
k has support {q1, . . . , qk,pk+1, . . . , pd}.

PROOF. Let ε be a positive real number. Let us denote by X the support of
projx#(|τk|) for some k ∈ {1, . . . , d} (which does not depend on k). We explain how
to build τk from τk−1. Roughly speaking, we are moving pk = (a, b) to a position
qk = (a, b′), where |b′ − b| < ε. Doing this, we have to take care to stay in V . The
conditional measure τk|x can easily be forced to preserve mass zero [condition (2)]
during this operation but there are two difficulties: for each y the conditional mea-
sures τk|y must have mass zero [condition (1)]. The second problem is that for
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each x ∈ X the positive and the negative part of τk|x must have the same mean
[condition (3)].

Let us go into details. We define τk from τk−1 in two steps: the first step is a
vertical translation. Applying Lemma B.8 to pk = (a, b), we obtain a measure m

concentrated on X(τ) × {b} that satisfies the following conditions:

• m(R2) = 0,
• m+ is concentrated on the point pk = (a, b) and m(a, b) = τk−1(a, b),
• m− is concentrated on a set G×{b} such that any x ∈ G is connected with a by

a bridge and m− ≤ τ−
k−1.

Let us denote m by ζ ⊗ δb. We replace τk−1 by τ ′
k−1 = τk−1 + ζ ⊗ (δb′ − δb).

Doing this, we preserve conditions (1) and (2), that is, the measure is still in V ′,
but condition (3) is possibly violated. Recall that ζ has mass zero. It follows that

Ma

(
τ ′
k−1

)+ ∑
x∈G

Mx

(
τ ′
k−1

) = 0.

Using the bridges between a and the elements of G (these bridges are available for
τ ′
k−1 as they were for τk−1 assuming that ε is sufficiently small), we can modify

the measure and make Ma and Mx for x ∈ G equal to 0. Call τk the result of this
procedure. Observe that if the variations are sufficiently small then the points of
positive mass are exactly q1, . . . , qk,pk+1, . . . , pd as we want. As in Lemma B.5,
we also obtain that the variations (σk)

d
k=1 are positive provided that ε > 0 is suffi-

ciently small. �

We can now prove Proposition B.6. Let σ ∈ V of finite support as in the proof
of Theorem B.4. Observe that σ can be written as a sum

d∑
k=1

ζk ⊗ δyk
,

where for k ∈ {1, . . . , d} the signed measure ζk has its positive part concentrated in
one point. Given k, let ωk be a probability measure on R with expectation yk (the
same as δyk

). We consider

d∑
k=1

ζk ⊗ ωk

and easily convince ourselves that this measure is an element of V . We will apply
this transformation not directly to σ but to a measure σd ∈ V(σ, ε), that we build
in the following paragraph.

The proof of the proposition proceeds as follows. Consider the family of points
(r1, . . . , rd) of the support of σ+ and pick ε as in Lemma B.5. For each point
rk = (a, b), we consider a rational semiopen interval Bk � b of diameter smaller
than ε. Using Corollary B.3, we obtain a family (Ai)1≤i≤n and we can assume
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that these sets are included in [xi − ε, xi + ε]. We fix a point (t1, . . . , tn) of
A1 ×· · ·×An. For each k ∈ {1, . . . , d} we can write rk in the form (xi, b). We have
πti (Bk) > 0. Let now pk = (ti, b) and qk = (ti , ỹ) where ỹ = 1

πti
(Bk)

∫
Bk

y dπti (y).

Apply Lemma B.9 to the measure σ0 ∈ V obtained from σ by translating hor-
izontally the mass concentrated on the line {xi} × R: The measure σ |xi

equals
precisely σ0|ti . The other parameters (p1, . . . , pd) and (q1, . . . , qd) have just been
constructed. Applying Lemma B.9, we obtain a measure σd ∈ V(σ, ε) concentrated
on {t1, . . . , tn} × R and sptσ+

d = {q1, . . . , qd}. Next, we perform the transforma-
tion explained above where each ωk has the form 1

πti
(Bk)

πti |Bk
for some (i, k). The

measure σd we obtain is in V(σ, ε) but it may not satisfy the condition σd
+ ≤∑n

i=1 μ(Ai)δti ⊗πti . However, this inequality does hold for wσd
+ ∈ CV(σ, ε) if w

is a sufficiently small positive constant.
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