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BRANCHING RANDOM TESSELLATIONS WITH INTERACTION:
A THERMODYNAMIC VIEW

BY HANS-OTTO GEORGII, TOMASZ SCHREIBER1 AND CHRISTOPH THÄLE

Ludwig-Maximilians University Munich, Nicolaus Copernicus University Toruń
and Ruhr University Bochum

A branching random tessellation (BRT) is a stochastic process that trans-
forms a coarse initial tessellation of Rd into a finer tessellation by means of
random cell divisions in continuous time. This concept generalises the so-
called STIT tessellations, for which all cells split up independently of each
other. Here, we allow the cells to interact, in that the division rule for each
cell may depend on the structure of the surrounding tessellation. Moreover,
we consider coloured tessellations, for which each cell is marked with an
internal property, called its colour. Under a suitable condition, the cell inter-
action of a BRT can be specified by a measure kernel, the so-called division
kernel, that determines the division rules of all cells and gives rise to a Gibb-
sian characterisation of BRTs. For translation invariant BRTs, we introduce
an “inner” entropy density relative to a STIT tessellation. Together with an
inner energy density for a given “moderate” division kernel, this leads to a
variational principle for BRTs with this prescribed kernel, and further to an
existence result for such BRTs.

1. Introduction. A central object of stochastic geometry and spatial stochas-
tics are tessellations of R

d (with d ≥ 1), that is, locally finite families of
d-dimensional convex polytopes that cover Rd and have pairwise disjoint interiors.
They are used in many practical applications. For example, random tessellations
serve as models for cellular or polycrystalline materials, plant cells or influence
zones, for instance, in the modelling of telecommunication networks or animal
territories; see [19, 29] for an overview.

The standard random tessellations usually considered in the literature are the
Poisson hyperplane tessellations, the Poisson–Voronoi and the Poisson–Delaunay
tessellations; cf. [22] for definitions. These have the property of being facet-to-
facet (or side-to-side in the planar case), which is to say that the intersection of any
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two of its cells is either empty or a common face of both cells. However, there are
numerous applications for which models of this kind are inappropriate, for exam-
ple, network models for telecommunication systems or models for crack structures
in geology. Hence, there is a growing demand for mathematically tractable models
of nonfacet-to-facet tessellations, which may serve as idealised reference mod-
els. Only some years ago, the class of iteration-stable random tessellations (called
STIT tessellations for short) was introduced by Nagel and Weiß in [18]. These tes-
sellations are constructed by means of a temporal random process of cell division,
and thus live in space–time. They have attracted considerable interest because of
its analytical tractability; see, for example, [20, 23–28] or [30].

Our objects of study here generalise the STIT models in two respects. On the
one hand, we consider coloured tessellations, for which each cell is equipped with
an individual colour. For example, the colour of a cell could represent its nutrient
content, its genotype, age, or whatever else might be relevant to describe the state
of a cell. (In a different context, coloured tessellations have been studied by Arak
and Surgailis [1, 2], e.g.) On the other hand, and more importantly, we allow for
an interaction of cells during their division process. That is, our objects of interest
can be viewed in two ways that are equivalent but deal differently with space–time:
either

– as Gibbsian spatial systems of interacting branching processes of coloured
cells, or

– as temporal processes of tessellations in space.

The latter viewpoint can informally be described as follows. At time zero, one
starts with an initial random tessellation of Rd into coloured cells. Each cell lives
for a random time, which is determined by an interactive competition of cells.
Namely, the survival rate of a cell c at any time s > 0 may not only depend on the
cell’s geometry and colour, but in fact on the whole tessellation including its past
evolution. When the lifetime has run out, a hyperplane with coloured half-spaces
is chosen randomly according to some rule that may again depend on the cell’s
geometry, colour and the past evolution of the surrounding tessellation, and is used
to cut c into two polyhedral sub-cells c+ and c−, which inherit their colours from
the respective half-spaces of the cutting hyperplane. The daughter cells c+ and c−
then replace c in the collective division game, which is continued until time 1,
say. The resulting tessellation of Rd at a deterministic time s ∈ [0,1] is denoted
by Ts , and the tessellation-valued stochastic process (Ts)s∈[0,1] is what we call a
branching random tessellation or BRT for short. The rule determining the splitting
of cells is given by a measure kernel, which will be called the associated division
kernel.

In the special case when (i) the distribution of lifetimes is exponential with pa-
rameter proportional to the mean width of the cells, and (ii) the bi-coloured hyper-
planes are chosen at random according to the motion-invariant hyperplane measure
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and some reference measure on the colour space, (Ts)s∈[0,1] is a coloured STIT tes-
sellation of Rd and its distribution is invariant under rigid motions whenever so is
the initial random tessellation. The coloured STIT tessellations play an important
role in the background of our theory, in a way which is conceptually similar to that
of the Poisson point processes in the theory of Gibbsian point processes.

Let us note that the Gibbsian viewpoint, for which the BRTs are considered as
interacting branching processes of coloured cells, parallels the Gibbsian treatment
of interacting particle systems and interacting diffusions developed in [5–7, 10],
for example. Let us also mention that different tessellation models with cell inter-
action, namely Delaunay or Voronoi tessellations of Gibbsian type (which undergo
no time evolution), are studied in [3, 8, 9].

The main results of this paper are the following.

– To begin, we discuss how the intuitive concept of “cell interaction” that governs
a BRT P can be specified by a so-called division kernel �. We show that such
a � can equivalently be used in two different ways: either as the collection of
instantaneous splitting rates of all cells during their joint time evolution, or in
the Gibbsian way, as a means to determine the conditional distribution of the
behaviour of all cells within any bounded window when that of all other cells is
given. A third equivalent use of � involves a Campbell-like formula for the jump
intensity measure of P. We show further that a measure kernel � as above exists
as soon as P satisfies a condition of local absolute continuity (LAC) relative to
a STIT model.

– We then turn to a kind of thermodynamic formalism for BRTs P that are in-
variant under spatial translations. The basic quantity is an inner entropy density
hin(P), which is defined as the limit of a conditional entropy per unit volume
of P relative to a reference STIT model. The adjective “inner” refers to the fact
that only the cells completely inside the respective window are taken into ac-
count, rather than all cells that hit the window. The functional hin will be shown
to share some familiar properties of the entropy densities for the standard mod-
els of statistical mechanics, at least with some natural adaptations.

– Finally, we consider an arbitrary division kernel � that satisfies some mild reg-
ularity conditions, which roughly require that � is not too far from a STIT
kernel; such a � will be called moderate. We introduce an associated inner en-
ergy density uin(P;�) as well as some sort of pressure vin(P;�). The resulting
inner excess free energy density hin(P;�) gives rise to a variational principle,
which states that the minimisers of hin(·;�) are precisely the translation invari-
ant BRTs that admit � as their division kernel. It is further shown that such
minimisers do exist, for any prescribed distribution P of the time-zero tessella-
tion. This proves the existence of a BRT P for any given initial distribution P

and any moderate division kernel � . For general � , such a P is not necessarily
unique.
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The paper is organised as follows: Section 2 introduces the setup and recalls
some necessary facts. Besides tessellations and BRTs, the main concepts are di-
vision kernels and local conditional BRTs of Gibbsian type. This section also
includes some examples of division kernels to which our theory applies. The main
results together with their framework are stated in Section 3. These are Theo-
rems 3.1 and 3.3 on the significance and existence of global division kernels, The-
orems 3.5 and 3.6 on the existence of the inner entropy density and its properties,
and Theorems 3.9 and 3.10 on the variational characterisation and the existence of
invariant BRTs with given moderate division kernels. All proofs are collected in
the final Section 4.

2. Preliminaries.

2.1. Tessellations.

2.1.1. Polytopes and tessellations. Consider the Euclidean space R
d of arbi-

trary dimension d ≥ 1. We shall deal with certain random processes of coloured
tessellations of Rd into (coloured) convex polytopes. Let us specify these terms.
First, a polytope p in R

d is the closed convex hull of a finite set of points and is
always assumed to have nonempty interior; the set of all such polytopes is denoted
by P. Each polytope p ∈ P is equipped with a translation covariant selector m(p),
called its “centre” or “midpoint”, for example, its barycentre, its Steiner point or
its circumcentre. We write r(p) = maxx∈p |x − m(p)| for its radius and ∂p and
int(p) for its topological boundary, respectively, interior.

More generally, we will assume that each polytope is marked with some internal
property, called its colour. So, we fix an arbitrary Polish space �, which we call
the colour space. A coloured polytope, called cell in the sequel, is a pair c = (p,σ )

with p ∈ P and σ ∈ �. Let us denote by sp(c) := p and col(c) := σ , respectively,
the spatial part and the colour of c. The space of cells is thus C := P × �. To
simplify notation, we adopt the general convention that spatial operations on cells
(and also on coloured tessellations defined below), such as intersections with sub-
sets of Rd and translations, solely refer to the spatial part and do not affect their
colours. For example, m(c) := m(sp(c)), r(c) := r(sp(c)), int(c) := int(sp(c)),
c ∩ W := (sp(c) ∩ W, col(c)) for W ⊂ R

d , and c − x := (sp(c) − x, col(c)) when
x ∈ R

d . Finally, vol(c) := vold(sp(c)) is the (d-dimensional) volume of the spatial
part of c. Let us also define the space C0 = {c ∈ C :m(c) = 0} of cells having their
midpoint at the origin.

The cells are the constituents of the coloured tessellations which we introduce
now; for brevity we will omit the adjective “coloured” in the following. (Note that
letting � be a singleton one recovers the uncoloured case usually considered in the
literature; cf. [22, 29].)

DEFINITION 2.1. A (coloured) tessellation T of Rd is a countable subset of C
such that:
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• T is locally finite, in that any bounded subset of Rd only hits a finite number of
cells from T ,

• two distinct cells of T have disjoint interiors, that is, int(c) ∩ int(c′) = ∅ for all
c, c′ ∈ T with c �= c′,

• the cells cover the whole space, which is to say that
⋃

c∈T c = R
d .

The space of all tessellations of Rd will henceforth be denoted by T.

Besides tessellations of Rd , we will also consider tessellations in local windows
W ⊂ R

d , which will generally be chosen to be polytopes, or sometimes also finite
unions of polytopes. So, we write P∪ for the set of all finite, not necessarily con-
nected unions of polytopes, and for W ∈ P∪ we let CW be the set of cells that are
contained in W . We finally write TW for the set of all tessellations of W , that is, of
all finite collections {c1, . . . , cn} of cells with pairwise disjoint interiors and such
that c1 ∪ · · · ∪ cn = W .

2.1.2. Measurability. We need measurable structures on all spaces introduced
above. We start with the space P of polytopes. As the sets in P are compact and
nonempty, the natural metric on P is the usual Hausdorff distance dH ; cf. [22],
Chapter 12.3. Hence, the space P can be equipped with the Borel σ -field B(P)

induced by dH . In fact, B(P) is generated by the sets {p ∈ P :p ∩ B �= ∅} with
B ∈ B(Rd), the Borel σ -field on R

d ; see [22], Chapters 12.2–12.3. The coloured
counterpart C is endowed with the product σ -field B(C) = B(P) ⊗ B(�), where
B(�) is the Borel σ -field on �. The space C0 of centred cells receives the trace
σ -field.

We next need to introduce a suitable σ -field on T. As is usual in point process
theory, we let B(T) be the σ -field generated by the counting variables

NA :T→N∪ {+∞}, T �→ |T ∩ A|, A ∈ B(C),(2.1)

where | · | stands for the cardinality of the argument set, that is, NA counts how
many cells of T belong to A. In view of the structure of B(C), B(T) is also gener-
ated by the random variables

NB,S :T  T �→ ∣∣{c ∈ T : c ∩ B �= ∅, col(c) ∈ S
}∣∣,

with B a bounded Borel set in R
d and S ∈ B(�). Moreover, B(T) is the Borel

σ -field for the vague topology on T, which is generated by the functions

eg :T→ [0,∞), T �→ ∑
c∈T

g(c),

where g ≥ 0 is a continuous function on C with a bounded support in the spatial
coordinate; see [15], Appendix 15.7, or [16], Theorem A2.3.

To deal with local properties of tessellations, we will often restrict a tessellation
to a local window W ∈ P. We thus define the projection to such a W by

πW :T→ TW, T �→ TW := {
c ∩ W : c ∈ T , int(c ∩ W) �= ∅

}
.(2.2)



BRANCHING RANDOM TESSELLATIONS 1897

In the same manner as above, we may introduce a σ -field B(TW) on TW . One can
then easily check that the mapping πW is measurable.

The culminating concept of this subsection is the following.

DEFINITION 2.2. A probability measure P on (T,B(T)) satisfying the first-
moment condition

∫
P(dT )|TW | < ∞ for all windows W ∈ P is called a random

tessellation. The set of all such P is denoted by P(T).

2.2. Branching tessellations.

2.2.1. Cutting cells by hyperplanes. We now turn to the main objects of our
investigation: tessellations which arise from a given initial tessellation by a suc-
cessive splitting of cells into two pieces by means of suitable hyperplanes. Recall
that a hyperplane η with unit normal u ∈ S

d−1+ (upper unit half-sphere) and signed
distance r ∈ R to the origin can be written in the form η = {x ∈ R

d : 〈x,u〉 = r},
where 〈·, ·〉 stands for the usual scalar product. So, the space of hyperplanes can be
identified with S

d−1+ × R. For η as above, we write η+ = {x ∈ R
d : 〈x,u〉 ≥ r}

and η− = {x ∈ R
d : 〈x,u〉 ≤ r} for the associated half-spaces. More generally,

we consider bi-coloured hyperplanes H = (η, σ+, σ−) ∈ H := S
d−1+ × R × �2,

for which each of the half-spaces η± is equipped with a colour σ±. We write
sp(H) := η and col±(H) := σ±, respectively, for the spatial part and the colours
of H and again adopt the convention that spatial operations with bi-coloured hy-
perplanes only refer to the spatial part, for example, c ∩ H := sp(c) ∩ sp(H) or
c ∩ H± := (sp(c) ∩ sp(H)±, col±(H)) for any c ∈ C. Moreover, for such a cell c,
we let

〈c〉 = {
H ∈H :H ∩ int(c) �= ∅

}
(2.3)

be the set of all bi-coloured hyperplanes which hit the interior of (the spatial part
of) c. Each bi-coloured hyperplane H defines a cell division operation � on tes-
sellations. Namely, let T ∈ T, c ∈ T and H ∈ 〈c〉. Then � is defined by

�c,H (T ) := (
T \ {c}) ∪ {

c ∩ H+, c ∩ H−}
(2.4)

with c ∩ H± as above. Branching tessellations are now defined as follows. For
simplicity, the time interval will mostly be the unit interval [0,1].

DEFINITION 2.3. (a) Let W ∈ P∪ be a finite union of polytopes. A branching
tessellation in the window W with bounded time interval I = [a, b) or [a, b] is a
family T = (Ts)s∈I of tessellations in W such that:

• the function s �→ Ts from I to TW is piecewise constant, right-continuous and
has only a finite number of jumps,
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• at each point s of discontinuity (so that Ts �= Ts− := limr↑s Tr ), there exists a
unique cell c ∈ Ts− and a bi-coloured hyperplane H ∈ 〈c〉 such that

Ts = �c,H (Ts−).

Further, Ta is called the initial tessellation. We write BTW for the set of all such
branching tessellations in W .

(b) A family T = (Ts)0≤s≤1 is called a branching tessellation in R
d if for each

window W ∈ P the restricted process TW = πW(T) := (πW (Ts))0≤s≤1 is a branch-
ing tessellation in W . Again, T0 is then called the initial tessellation of T. The set
of all branching tessellations in R

d is denoted by BT.

The following remark provides a further way of describing the time evolution
of a branching tessellation.

REMARK 2.4. (a) Let T be a branching tessellation in a window W ∈ P∪
with time interval I = [0,1]. (The case of other time intervals is similar.) Keeping
record of all jump times of T together with the associated cells that are divided and
the respective cutting hyperplanes, one arrives at the set

D(T) = {
(s, c,H) ∈ (0,1] ×C×H :Ts− �= Ts,

(2.5)
c ∈ Ts−,H ∈ 〈c〉, Ts = �c,H (Ts−)

}
of all “division events”. There is a one-to-one correspondence between T and the
pair (T0,D(T)), in that T can be recovered from the initial tessellation T0 and
the set D(T) of division events. Indeed, labelling the elements of D(T) with the
indices 1, . . . , n := |D(T)| according to the order of their time coordinates so that
0 =: s0 < s1 < · · · < sn ≤ sn+1 := 1, one has the recursion Ts = T0 for s ∈ [0, s1)

and

Ts = �ci ,Hi
(Tsi−1) for s ∈ [si, si+1), i = 1, . . . , n.

Finally, T1 = Tsn .
This description also gives rise to a convenient way of visualising T as a graph

in [0,1] ×CW ; see Figure 1. The set of vertices is

V (T) = {
(0, c) : c ∈ T0

} ∪ {(
s, c ∩ H±)

: (s, c,H) ∈ D(T)
}
.

Moreover, each (s, c) ∈ V (T) is equipped with a “lifeline” [s, s∗) × {c}, where
s∗ = s′ if (s′, c,H) ∈ D(T) for some s′ > s and H ∈ 〈c〉, and s∗ = 1 otherwise.
If s∗ < 1, this lifeline is augmented by the lines from (s∗, c) to the two children
(s∗, c ∩ H±) of (s, c). If s∗ = 1, the half-open line [s,1) × {c} is replaced by the
closed line [s,1] × {c}. In this way, one obtains a finite forest of binary “fam-
ily” trees in CW that evolve from the cells of T0. So, these cells are the roots,
or ancestors, and the |T0| + |D(T)| leaves form the tessellation T1. This branch-
ing mechanism is strongly reminiscent of the fragmentation processes considered
in [4].
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FIG. 1. Representation of a two-coloured branching tessellation in a finite window with initial
tessellation T0 = {c, c′}. The cells living at a time s constitute a tessellation Ts . At each time si ,
a cell that lives up to this moment is selected and cut in two by a bi-coloured hyperplane Hi , which
impresses its colours onto the cell’s pieces.

(b) Branching tessellations in the whole space Rd admit a similar description in
terms of division events. For each T ∈ BT, we can then define

D(T) = ⋃
V ∈P

⋂
W∈P : W⊃V

D(TW).(2.6)

Conversely, for each W ∈ P one can recover the division events in W from D(T)

via

D(TW) = {
(s, c ∩ W,H) : (s, c,H) ∈ D(T),H ∈ 〈c ∩ W 〉}.

It follows that T is uniquely determined by T0 and D(T), and T can be regarded
as a forest of infinitely many finite binary family trees of coloured cells, the roots
of which correspond to the cells of the initial tessellation T0 of Rd .

Later on, it will be essential for us to keep track of the past of a branching
tessellation. So, instead of considering the evolution T = (Ts)0≤s≤1 in T, we will
consider the process (Ts)0≤s≤1 in BT, which is given by Ts = (Tu)0≤u≤s . Equiva-
lently, Ts can be thought of as being obtained from T by removing from D(T) all
elements with time-coordinate larger than s. In this way, each Ts can be considered
to be an element of BT, which is frozen at time s (and thus remains constant there-
after). The set of all such branching tessellations is denoted by BTs . In particular,
BT1 = BT, and BTu ⊂ BTs when u < s. We write

π s :BT → BTs, T �→ Ts,(2.7)

for the natural projection that removes the division events after time s. As before,
the nonbold Ts stands for the tessellation at time s, whereas a bold Ts stands for
an element of BTs .
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Besides this projection concerning time, we have also the projection to a spatial
window W ∈ P, which is given by

πW :BT → BTW, T �→ TW = (TW,s)0≤s≤1
(2.8)

with TW,s = πW(Ts),

where BTW = πW(BT) and πW is as in (2.2). We also write πW,s = πW ◦ π s ,
TW,s = πW,s(T) and BTW,s = πW,s(BT). So, to obtain TW,s from T one has to
remove from D(T) all division events with a time coordinate exceeding s or a
hyperplane not hitting the cell’s intersection with W .

2.2.2. Branching random tessellations. Our main objects of interest are prob-
ability measures on BT. So, we need to equip BT with a σ -field. We know from
Remark 2.4 that each T ∈ BT is uniquely determined by its initial tessellation T0
together with the set D(T) of division events as given by (2.5) and (2.6). Since
D(T) is a locally finite subset of (0,1] × C × H, one can proceed as usually in
point process theory by defining B = B(BT) as the smallest σ -field for which the
counting variables

NA,B : T �→ |T0 ∩ A| + ∣∣D(T) ∩ B
∣∣(2.9)

with A ∈ B(C) and B ∈ B((0,1]) ⊗ B(C) ⊗ B(H) are measurable; here B((0,1])
denotes the Borel σ -field on (0,1]. By standard theory, (BT,B) is a Borel space.
For any window W ∈ P, we define a σ -field BW = B(BTW) on BTW in the same
way. To simplify notation, we will not distinguish between the σ -field BW on BTW

and its pre-image π−1
W BW on BT, which will be denoted by the same symbol.

Anyway, with these definitions it is clear that both the projection πW in (2.8) and
the time restriction map π• : (s,T) �→ Ts of (2.7) are measurable.

DEFINITION 2.5. A branching random tessellation (BRT) of Rd is a proba-
bility measure P on (BT,B) satisfying the first-moment condition∫

P(dT)|TW,1| < ∞ for all windows W ∈ P.(2.10)

The set of all such BRTs of Rd is denoted by P = P(BT). BRTs within a window
W ∈ P∪ are defined analogously.

For every P ∈ P and any of the projections π∗ in (2.7) and (2.8), we write
P∗ = P ◦ π−1∗ for the image of P under π∗. In particular, each Ps is a BRT. In fact,
one can achieve that Ps depends measurably on s, in that the mapping [0,1] ×
B  (s,A) �→ Ps(A) is a probability kernel, as will be assumed throughout the
following. This can be seen by disintegrating the measure

�P :=
∫ 1

0
ds

∫
P(dT)δ(s,Ts )(2.11)
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on BT := {(s,Ts) : s ∈ [0,1],Ts ∈ BTs}; cf. [15], Appendix 15.3. Later on, we will
also consider the projections π̄W = id ⊗ πW that act on the second coordinate of
BT as in (2.8) and leave the first coordinate untouched, and the projection images
�PW =�P ◦ π̄−1

W , where W ∈ P. We also introduce the notation BTW := π̄W(BT).

2.3. Division kernels. Consider a random element T of BTW for a window
W ∈ P∪. The process (Ts)0≤s≤1 is then automatically Markovian because its
“past” is part of the “present”. In this paper, we will focus on the “nice” case in
which the evolution of this Markov process is described by a rate kernel that spec-
ifies the jump times and transitions of (Ts)0≤s≤1. Since the only transitions are
single-cell divisions by bi-coloured hyperplanes, this means that the rate kernels
take the following form.

DEFINITION 2.6. A division kernel is a measure kernel � from the set{
(s,Ts, c) ∈ BT×C : c ∈ Ts

}
to H such that each �(s,Ts, c, ·) is a finite measure supported on 〈c〉 ⊂ H. If �

is only defined for arguments in BTW ×CW , � is called a division kernel for the
window W ∈ P∪.

In the following, it will be convenient to work also with the cumulative division
kernel

�̂(s,Ts, ·) = ∑
c∈Ts

δc ⊗ �(s,Ts, c, ·)(2.12)

from BT to C×H. Note that, conversely, �(s,Ts, c, ·) = �̂(s,Ts, {c} × ·).
The next remark describes how a division kernel determines the evolution of a

BRT within a bounded window.

REMARK 2.7 (Local BRTs with prescribed division kernels). Let W ∈ P∪ be
a fixed window, �W be a division kernel for W , and

φ̂W (s,Ts) := �̂W

(
s,Ts, Ts × 〈W 〉)

the finite total mass of the cumulative kernel �̂W (s,Ts, ·). We construct a random
element T of BTW as follows:

(I) Pick an initial tessellation T0 ∈ TW according to some probability law PW

on TW , and let s0 = 0 and T0 := T0. Also, let i = 1 and proceed with the following
random recursion over the number i.

(R) Suppose that i ≥ 1 and both a random time si−1 ∈ [0,1] and a BRT
Tsi−1 ∈ BTsi−1 are already realised. Then take a random time si ∈ (si−1,∞] with
“survival” probability

Prob(si > s) = exp
[
−

∫ s

si−1

φ̂W (u ∧ 1,Tsi−1)du

]
(2.13)
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for s > si−1. If si ≤ 1, proceed to define an extension Tsi ∈ BTsi of Tsi−1 as fol-
lows: pick a random cell ci ∈ Tsi−1 and a bi-coloured hyperplane Hi according to
the law

�̂W (si,Tsi−1, ·)/φ̂W (si,Tsi−1).

(Note that the denominator does not vanish for each possible choice of si .) Then
let Ts = Tsi−1 for s ∈ (si−1, si) and Tsi = �ci ,Hi

(Tsi−1), that is,

D(Tsi ) = D(Tsi−1) ∪ {
(si, ci,Hi)

}
.

Next, let i := i + 1 and go to (R). In the case si > 1, let Ts = Tsi−1 for s ∈ (si−1,1],
set n = i − 1, and stop.

One needs to ensure that this algorithm terminates after finitely many steps. It
is not difficult to show that this is the case if

sup
s,Ts ,c

�W

(
s,Ts, c, 〈c〉) =: φ < ∞;(2.14)

see the proof of Lemma 4.3 below. This lemma shows further that the process
(Ts)0≤s≤1 can be characterised as the unique, in general time-inhomogeneous pure
jump (i.e., piecewise constant) Markov process in BTW with initial distribution
PW and generator

L
�W

W,sg(Ts) =
∫
Ts×〈W 〉

�̂W

(
s,Ts,d(c,H)

)[
g
(�s,c,H (Ts)

) − g(Ts)
]

(2.15)

at time s ∈ [0,1]. Here, �s,c,H (Ts) ∈ BTs is the branching tessellation that co-
incides with Ts for times less than s and equals �c,H (Ts) at time s, and g is
any bounded measurable function on BTW . The distribution of T is a BRT PW in
W ∈ P, and this PW is called the BRT in W with division kernel �W and initial
distribution PW .

The main objects of this paper are BRTs on the full space R
d that can be char-

acterised in a similar way as the local BRTs in the remark above. Namely, for any
division kernel � and 0 ≤ s ≤ 1 we define an operator L�

s by

L
�
s g(Ts) =

∫
�̂

(
s,Ts,d(c,H)

)[
g
(�s,c,H (Ts)

) − g(Ts)
]
.(2.16)

Here, �s,c,H is as in the preceding remark, and g is any bounded local function
on BT, where local means that g is BW -measurable for some W ∈ P.

DEFINITION 2.8. For a given division kernel �, we will say that a BRT
P ∈ P evolves according to � if the Markov process T = (Ts)0≤s≤1 in BT

with distribution P satisfies the forward equation with generators L�
s , in that∫ t

0
ds

∫
dPsL

�
s g =

∫
g dPt −

∫
g dP0(2.17)

for all t ∈ [0,1] and all bounded local functions g on BT.
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Obviously, this definition refers to a BRT P as a process evolving in time, by
saying that the Markov process with distribution P evolves just as the local pro-
cesses in Remark 2.7, in that a cell c in environment Ts at time s is split by a
bi-coloured hyperplane H with instantaneous intensity �̂(s,Ts, c,dH)ds. Later
we will study the spatial aspects of P.

2.4. Examples of division kernels. This section contains a few examples of
division kernels; two simulation pictures are shown in Figure 2. The first is (by
now) classical and will be used as a reference model throughout the following.

EXAMPLE 2.9 (STIT tessellations). Let � be a locally finite measure on the
set H of all bi-coloured hyperplanes, which is invariant under all translations. That
is, under the identification of H ∈ H with (u, r, σ+, σ−) ∈ S

d−1+ ×R× �2, � can
be written in the form

�(dH) = λ(du)drμ
(
u,dσ+,dσ−)

.(2.18)

Here, λ is a measure on S
d−1+ , and μ is a probability kernel from S

d−1+ to �2.
(The translation invariance is expressed by the fact that the r-marginal is Lebesgue
measure and μ does not depend on r .) A natural choice is the motion-invariant
measure �iso for which λ is the normalised surface measure λiso on S

d−1+ and
μ(u, ·) = ν ⊗ ν for a reference probability measure ν on �. Then a STIT tessella-
tion with driving measure � is a BRT for the division kernel

�∗(s,Ts, c, ·) := �
(· ∩ 〈c〉).(2.19)

FIG. 2. Simulations of two BRTs with isotropic selection of lines, two colours and the full window
as single initial cell. Left: A STIT tessellation; colours are chosen at random. Right: Colour mutation
and size balancing as in Example 2.10, but without aging. Here, ε = 0.025, β(s) = (1 + s)/2 and a
mixed boundary condition as indicated.
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In the uncoloured case, this model has been introduced by Mecke, Nagel and Weiß
[17, 18]. Since �∗ does not depend on the time s, the random holding times
si − si−1 in Remark 2.7 above are exponentially distributed and can be under-
stood as minima over c ∈ Tsi−1 of independent exponential times with parameter
�(〈c〉), which are associated to the presently existing cells. [In the isotropic case
� = �iso, the parameter �(〈c〉) is precisely the mean width of c.] In other words,
the tessellations evolve according to a continuous-time branching process on CW ,
W ∈ P, in which all cells c behave independently of each other, live for an expo-
nential time with parameter �(〈c〉) and then split into two parts according to the
conditional distribution �(·|〈c〉). In particular, this implies that smaller cells live
stochastically longer.

In view of this independence of the evolution in different cells, it is clear that
for each T0 ∈ T there exists a unique whole-space BRT ��(T0, ·), called STIT
tessellation of Rd , with initial tessellation T0 and driving measure �. In fact, if the
support of λ contains a linear basis of Rd , one can also construct a unique BRT
��,∞ = ��(T ∞

0 , ·) for the degenerate initial tessellations T ∞
0 that consist of the

single “cell” R
d with any colour σ ; see [17], Theorem 1, and [18], Theorem 1.

[By (2.19), ��,∞ does not depend on σ .]
Formally, �� is a probability kernel from T to BT. So, for each P ∈ P(T),

P�� = ∫
P(dT0)�

�(T0, ·) is the unique BRT for � with initial distribution P .
Its projections to arbitrary windows W ∈ P are given by(

P��) ◦ π−1
W = PW��

W(2.20)

for the restricted STIT kernel ��
W(TW,0, ·) from TW to BTW with the restricted

driving measure �(· ∩ 〈W 〉). The abbreviation STIT stands for stability under the
operation of iteration of tessellations. An explanation and further remarkable prop-
erties can be found in [17, 18, 20, 23–28] and [30].

A generalisation of the STIT models, which still keeps the independence of the
division process for distinct cells, are the cell-driven BRTs, which have division
kernels of the form

�(s,Ts, c,dH) = ϕ(c,H)�(dH)(2.21)

with a density function ϕ(c,H) on C × H which vanishes except when H ∈ 〈c〉.
A special case are the shape-driven BRTs investigated in [26]; see also the exam-
ples therein.

The next example demonstrates the flexibility of modelling in the present set-
ting: it combines an interaction between the colours of the cells with a geometric
homogenisation mechanism and an aging effect. The last feature takes advantage
of the fact that division kernels may also depend on the past.
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EXAMPLE 2.10 (Contact-induced mutations with size balancing and aging).
Let the colour space be � = {−1,1} and consider a division kernel of the form

�(s,Ts, c,dH) = ϕ(c, η)λiso(du)dr μ
(
s,Ts, c,dσ+)

μ
(
s,Ts, c,dσ−)

,

where H = (η, σ+, σ−) with spatial part η = (u, r) ∈ S
d−1+ × R and colours

σ± ∈ �. A special choice of the geometric pre-factor is

ϕ(c, η) = ε1〈c〉(η) + ε−11〈ε�c〉(η),

for some small ε > 0; here, ε � c = m(c) + ε(c − m(c)) is the ε-retraction of c.
This choice has the effect that the cutting hyperplane will typically pass close to
the midpoint m(c) of c, so that its two daughter cells have comparable size. One
can further choose the colouring rule

μ(s,Ts, c, ·) = δcol(c) + β(as,c,Ts
, sc,Ts )δ− col(c),

where as,c,Ts
= s − min{u ∈ [0, s] : c ∈ Tu} is the age of c at time s,

sc,Ts = ∑
c′∈Ts : col(c′)=− col(c)

vold−1
(
c ∩ c′)/vold−1(∂c)

is the opposite-type surface fraction (measured by the Hausdorff measure of di-
mension d − 1), and β : [0,1]2 → (0,∞) is a suitable positive function. For in-
stance, β can be taken to be decreasing in a so that increasing age reduces the
willingness of splitting and mutating. One can further let β be increasing in s.
Then the larger a cell’s surface fraction is in contact with cells of opposite type,
the more the cell gets “nervous” and hurries to divide, and the more likely it is that
its daughter cells mutate to adapt their type to that of the neighbours.

Our third example may seem somewhat exotic. It will be used in Remark 3.12 to
demonstrate that a BRT on the full space Rd is not necessarily uniquely determined
by its initial distribution and its division kernel.

EXAMPLE 2.11 (Directional infinite-range interaction). This is an uncoloured
model, for which � is a singleton. We further confine ourselves to the planar
case d = 2. Let �hor(dH) = δ(0,1)(du)dr and �vert(dH) = δ(1,0)(du)dr be the
measures on H = S

1+ × R for which all lines are horizontal, respectively, ver-
tical. For any cell c ∈ C let diamhor(c) = maxx,y∈c |x1 − y1| and diamvert(c) =
maxx,y∈c |x2 − y2| be the horizontal and vertical diameters of c, where xi stands
for the ith coordinate of x. Also, let

Chor = {
c ∈ C : diamhor(c) > diamvert(c)

}
be the set of all “horizontal” cells. Finally, writing [n] for the centred square of
area n2, let

ρhor(T ) = lim sup
n→∞

n−2∣∣{c ∈ T ∩Chor :m(c) ∈ [n]}∣∣
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be the upper density of horizontal cells for a tessellation T ∈ T, and define ρvert(T )

analogously. Then let

Thor = {
T ∈ T :ρhor(T ) > ρvert(T )

}
be the set of tessellations with a dominating fraction of horizontal cells, and Tvert =
T \Thor. Consider the division kernel

�(s,Ts, c, ·) = 1Thor(Ts)�hor
(· ∩ 〈c〉) + 1Tvert(Ts)�vert

(· ∩ 〈c〉).(2.22)

Since Thor is invariant under translations and tail-measurable, this � looks at the
actual tessellation “at infinity” in order to decide whether the cutting line should
be horizontal or vertical.

2.5. Gibbsian BRTs. In this section, we introduce a Gibbsian perspective
on BRTs. As is standard in the theory of Gibbs measures, one aims at describing
a macroscopic system by means of its local conditional distributions that describe
the behaviour inside a bounded region when the remaining system is fixed. We
first define such conditional distributions in the context of BRTs. This will allow
us then to introduce Gibbsian BRTs. Let W ∈ P be a fixed window.

2.5.1. Inner and outer projections. Recall from (2.2) and (2.8) that the projec-
tions πW and πW are defined by intersecting the cells with W , and thus wipes off
much information on the cell geometry (such as, e.g., the location of midpoints).
To avoid this, we introduce the “inner” projection

π in
W :T→ T

in
W, T �→ T in

W := {
c ∈ T : c ⊂ int(W)

}
,(2.23)

which removes all cells which are not completely contained in the interior of W .
It takes values in the set Tin

W of all possibly empty, not necessarily connected col-
lections of cells inside W with pairwise disjoint interiors. The counting variables
NA in (2.1) are even defined on T

in
W and generate a σ -field B(Tin

W), for which π in
W

is measurable. As the cells of T in
W are even required to be contained in the interior

of W , T in
W is a measurable function of TW .

In the same way, we define the inner projection

π in
W :BT  T �→ Tin

W = (
T in

W,s

)
0≤s≤1(2.24)

on BT, where T in
W,s = π in

W(Ts). Arguing as in Remark 2.4, one finds that Tin
W

is uniquely determined by T in
W,0, D(Tin

W), and the finite set of all “immigration
events” (s, c) with T in

W,s = T in
W,s− ∪ {c}. Consequently, one can generate a σ -field

on the range BT
in
W of π in

W by means of counting variables similar to those in (2.9),
so that π in

W becomes measurable. Note also that π in
W = π in

W ◦ πW .
Complementary to the above, we also introduce an “outer” projection for W by

πout
W :T  T �→ T out

W := T \ T in
W = {

c ∈ T : c \ int(W) �= ∅
}
,(2.25)
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and a “boundary” projection

π∂
W :T  T �→ π∂

W (TW) = {c ∩ W : c ∈ T , c ∩ ∂W �= ∅}.(2.26)

Likewise, on the level of branching tessellations, we define

πout
W :BT  T �→ Tout

W = (
πout

W (Ts)
)
0≤s≤1,(2.27)

π∂
W :BT  T �→ T∂

W = (
π∂

W (Ts)
)
0≤s≤1 = πout

W (TW).(2.28)

In the forest picture of Figure 1, each Tout
W in the range BT

out
W of πout

W corresponds
to a forest of binary trees from which all cells within W are erased. So, one can
use the counting variables in (2.9) to generate a σ -field on BT

out
W , and πout

W is
then evidently measurable. The same applies to π∂

W . Furthermore, to keep the full
information on the initial tessellation in R

d , respectively, in W , it will also be
convenient to introduce the mappings

π0,out
W : T �→ T0,out

W := (
T in

W,0,Tout
W

)
,(2.29)

π0,∂
W : T �→ T0,∂

W := (
T in

W,0,T∂
W

)
.(2.30)

For each of the projections π∗
W in (2.24), (2.27), (2.28), (2.29) and (2.30), we write

B∗
W = σ(π∗

W) for the σ -field on BT that is generated by this projection. By abuse
of notation, we will use the same symbol B∗

W for the σ -field on the range of π∗
W .

2.5.2. Conditional BRTs. Let T ∈ BT any branching tessellation. Consider the
time-dependent “inner” window

inW

(
s,T∂

W

) := W \ int
(∪{

c : c ∈ T ∂
W,s

}) = ∪{
c : c ∈ T in

W,s

}
,(2.31)

which is possibly empty and not necessarily connected. It is measurable jointly in
both arguments, piecewise constant and right-continuous as a function of s. Let

0 < t1 = t1
(
T∂

W

)
< · · · < tn = tn(T∂

W )

(
T∂

W

)
< 1(2.32)

be the jump times of the path s �→ inW(s,T∂
W ), which depend measurably on T∂

W .
[Note that possibly n(T∂

W ) = 0. For the sake of convenience, we also exclude the
case that there is a jump at time 1, which occurs with probability zero.] At each ti ,
T∂

W creates a new cell ci inside W , namely

ci = ci

(
T∂

W

) := cl
(
inW

(
ti ,T∂

W

) \ inW

(
ti−1,T∂

W

))
,

where t0 = 0. In other words, T∂
W induces a process of immigration of cells into W .

DEFINITION 2.12. Let � be a division kernel and suppose that the following
random process S = (Ss)0≤s≤1 with S ∪ Tout

W := (Ss ∪ T out
W,s)0≤s≤1 ∈ BT is well

defined:
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– Let S[0,t1) = (Ss)0≤s<t1 be the BRT in the window inW(0,T∂
W ) with time interval

[0, t1), initial tessellation S0 = T in
W,0 and division kernel

�in
W

(
s,Ss, c, ·|Tout

W

) := �
(
s,Ss ∪ Tout

W,s, c, ·
)

for c ∈ Ss, s ∈ [0, t1).
– For i = 1, . . . , n and conditional on Sti− let S[ti ,ti+1) = (Ss)ti≤s<ti+1 be the BRT

in the window inW(ti,T∂
W ) = ci ∪ inW(ti−1,T∂

W ) with time interval [ti , ti+1),
initial tessellation Sti = Sti− ∪ {ci} and division kernel

�in
W

(
s,Ss, c, ·|Tout

W

) := �
(
s,Ss ∪ Tout

W,s, c, ·
)

for c ∈ Ss, s ∈ [ti , ti+1). Here tn+1 = 1, and we finally set S1 := S1−.

The distribution of S on BT
in
W will be denoted by G�

W(·|T0,out
W ) and is called the

conditional BRT for � in W with initial tessellation T in
W,0 and boundary condi-

tion Tout
W .

By construction, G�
W is a probability kernel from (BT

0,out
W ,B0,out

W ) to
(BTin

W,Bin
W).

EXAMPLE 2.13 (Conditional STIT tessellations). As in Example 2.9, let � be
a locally finite measure on H and �∗ be the associated division kernel; cf. (2.19).
Then G�

W(·|T0,out
W ) := G�∗

W (·|T0,out
W ) is simply the distribution of⋃
c∈T in

W,0

S(c) ∪
n⋃

i=1

S(i)

for independent random STIT tessellations S(c) and S(i) for �. Here, S(c) evolves
in time [0,1] from the single-cell tessellation S

(c)
0 = {c} of the initial polytope

sp(c), whereas S(i) evolves in time [ti ,1] from the single-cell initial tessellation
S

(i)
ti

= {ci} of the “immigrated” polytope sp(ci) and is extended to the full interval

[0,1] by setting S
(i)
s =∅ for s ∈ [0, ti). Since �∗ does not depend on the surround-

ing tessellation, it follows that the measure G�
W(·|T0,out

W ) depends only on T0,∂
W .

Here is the natural counterpart of the concept of (macroscopic) Gibbs measures
in our setup of branching random tessellations.

DEFINITION 2.14. Let � be any division kernel. A BRT P ∈ P is called a
Gibbsian BRT for � if, for all W ∈ P, G�

W is a regular version of its conditional

probability given B0,out
W . More explicitly, this means that∫
f dP =

∫
P(dT)

∫
G�

W

(
dS|T0,out

W

)
f

(
S ∪ Tout

W

)
for all bounded measurable functions f on BT and all W ∈ P.
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In contrast to Definition 2.8 in which a BRT is considered as a process in time,
the preceding definition emphasises the spatial aspects of a BRT, by saying that �

describes the cell splitting mechanism within an arbitrary local window when the
evolution of all other cells is given.

2.6. Translation invariance. A main focus of this paper is on BRTs that are
invariant under spatial translations. For each x ∈ R

d , the translation ϑx by the
vextor −x acts:

– on cells c ∈ C via ϑx : c �→ c − x := (sp(c) − x, col(c)),
– on bi-coloured hyperplanes H ∈ H via

ϑx :H �→ H − x := (
sp(H) − x, col+(H), col−(H)

)
,

– on tessellations T ∈ T via

ϑx :T �→ T − x := {c − x : c ∈ T },
– on branching tessellations T = (Ts)0≤s≤1 ∈ BT via

ϑx : T �→ T − x := (Ts − x)0≤s≤1.

That is, only the spatial coordinates are shifted, but the colours remain unchanged.
Moreover, by abuse of notation we use the same symbol ϑx for the translation
on each level, and we will also use it for the simultaneous translation of pairs of
objects as above.

DEFINITION 2.15. A BRT P ∈ P is called translation invariant if it is in-
variant under the action of the translation group � = (ϑx)x∈Rd on BT, in that
P ◦ ϑ−1

x = P for all x ∈ R
d . We write P� = P�(BT) for the set of all translation

invariant BRTs that satisfy the first-moment condition (2.10), which by translation
invariance is equivalent to the requirement that the “hitting intensity”

i1(P) :=
∫

P(dT)|T[1],1|(2.33)

is finite. Here, [1] := [−1/2,1/2]d stands for the centred unit cube.

Translation invariance allows to investigate the behaviour of a random tessella-
tion “around a typical cell”, which for convenience is located “around the origin”.
This is formalised by means of Palm calculus as presented in [15], Chapter 12,
and [22], Theorem 4.1.1. Let P ∈ P� be given. Then the Campbell measure of P
on BT×C is defined by

CP =
∫

P(dT)
∑
c∈T1

δ(T,c).(2.34)

It captures the joint distribution of the (terminal) cells and the complete history
of their surrounding tessellation. The Palm calculus now states that there exists a
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finite measure P0 on BT×C0, the so-called Palm measure of P, such that the Palm
formula ∫

dCP(T, c)f
(
m(c), c − m(c),T − m(c)

)
(2.35)

=
∫

dx

∫
dP0(T, c)f (x, c,T)

holds for any nonnegative measurable function f on R
d ×C0 ×T. Its normalised

marginal on C0 is called the typical cell distribution.
Later on, we will often consider the integral over time s of the Campbell mea-

sure and the Palm measure of the projected BRTs Ps , and it will be convenient to
have a shorthand notation for these objects. So, we define the extended Campbell
measure

�CP =
∫ 1

0
ds

∫
Ps(dTs)

∑
c∈Ts

δ(s,Ts ,c)(2.36)

and the extended Palm measure

�P0 =
∫ 1

0
ds

∫
dP0

s (Ts, c)δ(s,Ts ,c).(2.37)

For W ∈ P, we similarly define the extended local Campbell measure

�CPW =
∫ 1

0
ds

∫
PW,s(dTW,s)

∑
c∈TW,s

δ(s,TW,s,c).(2.38)

Also, we will often use the time-integrated version of the Palm formula (2.35),
where the Campbell measure CP and the Palm measure P0 are replaced by their
extended relatives �CP and �P0, respectively. For example, combining the time-
integrated Palm formula with the first-moment condition (2.33) we find that the
total mass of �P0 can be estimated by∥∥�P0∥∥ =

∫
d�P(s,Ts)

∣∣{c ∈ Ts :m(c) ∈ [1]}∣∣ ≤ i1(P) < ∞.(2.39)

We conclude this section with some comments on random, but not branching,
tessellations P ∈ P(T). These can be considered as BRTs by identifying the space
T with BT0. In particular, it is then clear what translation invariance means, and
we can introduce the set P�(T) of all translation invariant random tessellations P

that satisfy the first-moment condition

i0(P ) :=
∫

P(dT )|T[1]| < ∞.(2.40)

Since i0(P ◦ π−1
0 ) ≤ i1(P), the initial distribution of each P ∈ P� satisfies (2.40).
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3. Results. Most of our results use a STIT tessellation as a reference model.
Therefore, we fix throughout a locally finite reference measure � on H which is
invariant under translations. Moreover, we write ��(T0, ·) for the associated STIT
kernel, as introduced ibidem.

3.1. The role of division kernels for BRTs. Definitions 2.8 and 2.14 provide
two ways of describing how a BRT P may depend on a division kernel �, by
considering either the evolution in time or the division of cells in space. Our first
result implies that these two descriptions are equivalent.

THEOREM 3.1. For each P ∈ P and every cell division kernel �, the follow-
ing statements are equivalent.

(a) P evolves according to � as specified in Definition 2.8.
(b) P is Gibbsian for � in the sense of Definition 2.14.
(c) For all nonnegative measurable functions f on BT×C×H,∫

P(dT)
∑

(s,c,H)∈D(T)

f (s,Ts−, c,H)

=
∫

d�P(s,Ts)

∫
�̂

(
s,Ts,d(c,H)

)
f (s,Ts, c,H).

If the above properties (a) to (c) hold, we will simply say that P admits the di-
vision kernel �, or that � is a division kernel for P. While statements (a) and (b)
elucidate the temporal and spatial roles of �, the equivalent statement (c) provides
a characterisation of the “jump intensity measure” of P in terms of �. In particu-
lar, one finds that the division kernel of the (unconditioned) marginal process in a
local window W is obtained by a natural averaging over the possible environments
outside W . To state this fact, we recall that the extended measure �P and the ex-
tended projections π̄W have been introduced in and after (2.11). Further, we will
need a projection that refers to the cell division procedure. Namely, for W ∈ P we
introduce the projection

π̃W : (c,H) �→ (c ∩ W,H)(3.1)

on C×H, which for each T ∈ T maps the set

π̃−1
W �W := {

(c,H) : c ∈ C,H ∈ 〈c ∩ W 〉}
onto �W := {(c,H) : c ∈CW,H ∈ 〈c〉}.

COROLLARY 3.2. If a BRT P ∈ P admits a cell division kernel �, its projec-
tion PW to a window W ∈ P is a BRT in W for the cumulative division kernel �̂W ,
which is defined as a regular version of the conditional measure

�̂W (s,TW,s,B) := E�P
[
�̂

(·, ·, π̃−1
W B

)|π̄W = (s,TW,s)
]
.

Here, B is any measurable subset of �W .
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Next, we ask for conditions under which a given BRT P ∈ P admits a division
kernel �. (The converse question of whether a BRT for a given division kernel
exists will be addressed in Theorem 3.10.) As we will see, this is the case whenever
P is locally absolutely continuous with respect to the STIT model P�� with initial
distribution P = P ◦ π−1

0 , in that

PW � PW��
W for all W ∈ P;(LAC)

recall that PW��
W = (P��) ◦ π−1

W by (2.20).
We note in passing that (LAC) also implies that the realisations of P almost

surely exhibit a “tame” geometry. Namely, in the planar case, they show exactly
one type of vertices, the so-called T -vertices, at which an endpoint of a line seg-
ment hits an inner point of another line segment (provided this holds already for
the initial tessellation); see [18, 20] and the references cited therein.

THEOREM 3.3. For each P ∈ P satisfying (LAC) there exists a division ker-
nel � for P. Moreover, if P is also invariant under translations, one can achieve
that � is covariant in the sense that

�̂
(
s,Ts, ϑ

−1
x ·) = �̂(s,Ts − x, ·)(3.2)

for all x ∈ R
d and all (s,Ts) ∈ BT.

Stated differently, the preceding theorem says that every P ∈ P satisfying
(LAC) is Gibbsian for some �. This is analogous to similar results in standard
Gibbs theory (cf. [13], Theorem 2.30, or [14], Theorem V.2.2a). We note further
that, by Corollary 3.2, the covariance property (3.2) implies that also the local
division kernels can be chosen to be covariant in the sense that

�̂W

(
s,TW,s,ϑ

−1
x ·) = �̂W−x(s,TW,s − x, ·)(3.3)

for all x ∈ R
d , (s,TW,s) ∈ BTW and W ∈ P.

3.2. The inner entropy density. We now turn to a “thermodynamic” investi-
gation of translation invariant BRTs. Our goal in this subsection is an appropriate
notion of entropy. Recall that the relative entropy, or Kullback–Leibler divergence,
between two probability measures μ and ν on a common measurable space is de-
fined to be H(μ;ν) = ∫

logf dμ if μ � ν with Radon–Nikodym density f , and
+∞ otherwise. It can also be written in the form

H(μ;ν) =
∫

�(f )dν,(3.4)

where � is the nonnegative convex function

� :a �→ 1 − a + a loga.(3.5)
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The formula (3.4) readily shows that H(μ;ν) ≥ 0 with equality precisely when
μ = ν. We can also take it as the definition of relative entropy in the more general
case when μ and ν are finite, not necessarily normalised measures.

Further, if A is a sub-σ -field of the underlying σ -field then the conditional
relative entropy given A is defined as

H(μ;ν|A) =
∫

H
(
μA(·|x);νA(·|x)

)
μ(dx),(3.6)

where μA(·|x) and νA(·|x) are conditional measure kernels given A for μ and ν,
respectively (provided such kernels exist).

In our setup, we take the STIT model for � as our reference measure and in-
troduce an “inner” entropy as follows. Recall the definition (2.30) of π0,∂

W and

its associated σ -field B0,∂
W = σ(π0,∂

W ), and Example 2.13 for the definition of the
kernel G�

W .

DEFINITION 3.4. Let P ∈ P be a BRT and W ∈ P. The inner entropy of P in
W is then defined by

Hin
W(P) := H

(
PW ;PW,0�

�
W |B0,∂

W

) = H
(
PW ;P0,∂

W ⊗ G�
W

)
.(3.7)

(According to physical convention we should add a minus sign, but here we prefer
to ignore this convention.)

So, the attribute “inner” means that this entropy compares the evolution of P
with that of the STIT model only for those cells that are completely contained
in W , while the evolution of all other cells hitting W is ignored. The idea of using
a conditional, “inner” entropy without boundary effects has been exploited before
by Föllmer and Snell [12] in the setup of Gibbs measures on general graphs.

Next, let [n] := [−n/2, n/2]d denote the closed centred cube of volume nd . For
a translation invariant BRT P ∈ P�, one expects that the limiting inner entropy
per unit volume

lim
n→∞n−dHin[n](P)

exists, which is then called the inner entropy density of P (relative to the refer-
ence STIT cutting rule �). Indeed, our result is the following; see (2.37) for the
definition of the extended Palm measure �P0.

THEOREM 3.5. For each P ∈ P�, there exists the possibly infinite limit

hin(P) := lim
n→∞n−dHin[n](P).

If this limit is finite, P admits a translation covariant division kernel �, and

hin(P) = H
(�P0 ⊗ �;�P0 ⊗ �∗)

(3.8)
=

∫
d�P0(s,Ts, c)H

(
�(s,Ts, c, ·);1〈c〉�

)
.
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So, the inner entropy density hin(P) is the conditional relative entropy of its
division kernel � with respect to �∗ when the branching tessellation and its cell
are selected according to the extended Palm measure �P0. In particular, if hin(P)

is finite then the division kernel � of P admits a Radon–Nikodym density with
respect to �∗.

It is natural to expect that the relative entropy density is affine and lower semi-
continuous with compact level sets, at least under some natural caveats. We show
this for a topology that is finer than the common weak topology, but is not metris-
able. Namely, we define the topology τloc of local convergence on P as the coars-
est topology for which the mapping P �→ ∫

f dP is continuous for every bounded
local function f . It is then clear that P� is closed in P . Recalling the defini-
tion (2.33) of the hitting intensity i1(P), we can then state the following.

THEOREM 3.6. The inner entropy density hin is affine and lower semi-
continuous in τloc. Moreover, for any two constants 0 ≤ β,γ < ∞ and every
P ∈ P�(T), the restricted level set

P�,P,β,γ := {
P ∈ P� : P ◦ π−1

0 = P, i1(P) ≤ β,hin(P) ≤ γ
}

is compact and sequentially compact in τloc.

3.3. Variational principle and existence. Here, we change our perspective:
rather than describing a given BRT in terms of its division kernel �, we will now
suppose that a “nice” division kernel � is given in advance. As we will see, � gives
rise to an “inner energy” functional on P�, and further to an associated “inner free
energy”, which in turn leads to a variational principle and an existence proof for
BRTs with division kernel � . Here are the conditions on � we need.

DEFINITION 3.7. Let us call a division kernel � moderate if there exists a
measurable density function ψ on the set{

(s,Ts, c,H) : 0 ≤ s ≤ 1,Ts ∈ BTs, c ∈ Ts,H ∈ 〈c〉}
satisfying

�(s,Ts, c,dH) = ψ(s,Ts, c,H)1〈c〉(H)�(dH)

such that the following holds for all arguments:

(M1) ψ is covariant under translations, in that

ψ(s,Ts, c,H) = ψ(s,Ts − x, c − x,H − x)

for all x ∈ R
d .

(M2) ψ has bounded range, meaning that there exists a constant 0 ≤ r = r� <

∞ such that ψ(s,Ts, c,H) = ψ(s,T′
s, c,H) whenever Tc+Br,s = T′

c+Br,s
. Here,

Br stands for the closed centred ball with radius r .
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(M3) ψ is bounded and bounded away from zero, that is, there exists a constant
κ� < ∞ such that | logψ | ≤ κ� .

(M4) � is approximately STIT for large cells, which is to say that there exists
a constant κ ′

� < ∞ such that∫
〈c〉

�(dH)
∣∣ψ(s,Ts, c,H) − 1

∣∣ ≤ κ ′
�.

[In view of the boundedness assumption (M3), this condition involves only the
cells c for which �(〈c〉) is large.]

To give some understanding of these assumptions, we set up an analogy with
the unbounded spin systems of classical statistical mechanics. A branching tessel-
lation Ts at some time s may be viewed as a collection of (unbounded) “spins”
that consist of cells together with their prospective cutting hyperplanes and are lo-
cated at the sites m(c), c ∈ Ts , of Rd . The interaction energy of a “spin” (c,H)

at time s with its surrounding tessellation Ts is given by − logψ(s,Ts, c,H). As-
sumption (M1) then expresses a natural spatial homogeneity, and (M3) the uniform
boundedness of the local energies. Assumption (M2) stipulates that the range of in-
teraction is bounded—in the units of real space, not in the units of the graph of sites
which is random and difficult to handle. In particular, ψ(s,Ts, c,H) may depend
at least on the evolution of all cells completely inside the r-neighbourhood c + Br

of c (which typically contains most adjacent cells if r is chosen large enough). It
may also depend on the colours of all cells that hit but are not contained in c +Br ;
this is because the colour remains unchanged if a cell is intersected with a region.
Finally, (M4) means that the interacting system is close to the noninteracting ref-
erence system unless the “spins” are suitably confined. This type of assumption is
quite common for interacting systems of unbounded spins; we need it also here,
although it excludes the possibility that � is scale-invariant.

Obviously, the STIT kernel � = �∗ of Example 2.9 is moderate. More gen-
erally, assumptions (M1)–(M3) hold for the cell-driven division kernels in (2.21)
whenever the density ϕ there is uniformly bounded from above and away from
zero; (M4) can be achieved by setting � = �∗ for cells with large radius. In Ex-
ample 2.10, (M1) trivially holds, (M2) holds for each r > 0, and (M3) follows
from the assumptions on β stated there. Example 2.11 violates the bounded-range
property (M2) in the most extreme way conceivable.

A moderate division kernel induces a functional on P� which, in analogy to
the standard Gibbs theory, may be called the (negative) inner energy in W for � ,
and is defined by

U in
W(P;�) =

∫
P(dT)

∑
(s,c,H)∈D(T) : c⊂W

logψ(s,Ts−, c,H);(3.9)

P ∈ P�. (Note that in statistical mechanics the energy always appears negatively
in the exponent; so it should not be surprising that logψ shows up here. But we
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suppress the minus sign.) Likewise, there is a term which comes from a normali-
sation (in our case of the distribution of jump times), and thus may be considered
as an analog of the pressure in statistical mechanics. In the present setup, however,
this quantity is not only a functional of � , but also of the BRTs P ∈ P�, namely,

V in
W(P;�) =

∫
d�P(s,Ts)

∑
c∈Ts : c⊂W

∫
〈c〉

�(dH)
(
ψ(s,Ts, c,H) − 1

)
.(3.10)

THEOREM 3.8. For every moderate division kernel � and every P ∈ P� ad-
mitting a covariant division kernel �, the following finite limits exist and can be
identified:

uin(P;�) := lim
n→∞n−dU in[n](P[n];�) =

∫
logψ d�P0 ⊗ �,

vin(P;�) := lim
n→∞n−dV in[n](P[n];�) =

∫
(ψ − 1)d�P0 ⊗ �∗.

In particular, |uin(P;�)| ≤ κ�i1(P) and |vin(P;�)| ≤ κ ′
�i1(P).

The energy terms above can be combined with the inner entropy density to
define the inner excess free energy density of P for � , namely,

hin(P;�) := hin(P) − uin(P;�) + vin(P;�),(3.11)

where the right-hand side is set equal to +∞ if hin(P) = +∞. In fact, in the finite
case it will turn out that

hin(P;�) =
∫

d�P0(s,Ts, c)H
(
�(s,Ts, c, ·);�(s,Ts, c, ·)),(3.12)

where � is a division kernel for P. The following variational principle for BRTs is
then immediate.

THEOREM 3.9. Let � be any moderate division kernel. A BRT P ∈ P� then
admits � as its division kernel if and only if hin(P;�) = 0.

In particular, this can be used to prove the following result.

THEOREM 3.10. For any moderate division kernel � and every P ∈ P�(T),
there exists a translation invariant BRT P ∈ P� with initial distribution P and
division kernel � .

There is a large variety of initial random tessellations P to which this existence
theorem applies. The most common examples are the Poisson–Voronoi tessella-
tion, the Poisson–Delaunay tessellation, and the Poisson hyperplane tessellation,
which are well known to satisfy the moment condition (2.40). Further examples
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are the Delaunay tessellations that are constructed from tempered Gibbsian point
processes with tile interaction, as studied in [9]. Unfortunately, we cannot allow
a start in a degenerate tessellation with the full space R

d as its only cell (of any
colour), which would be of major interest; cf. the discussion in Example 2.9 on the
STIT measure ��,∞. However and as already indicated above, we can choose the
initial distribution P to be the time-δ distribution of ��,∞ for some small δ > 0.
Up to a time shift, this means that there exists a BRT with degenerate start for
any moderate division kernel � with an initial cutoff of the form ψ(s, ·, ·, ·) = 1
for 0 ≤ s < δ and some small δ. In the special case of shape-driven tessellations
as in (2.21), the existence of a BRT with degenerate initial tessellation has been
proved in [26] under regularity assumptions.

Since hin(·;�) is affine, the last two theorems imply the following.

COROLLARY 3.11. For any moderate division kernel � , the convex set
G�(�) of all translation invariant BRTs admitting � is a face of P�. That is,
the extremal elements of G�(�) are in fact extremal in P�, and thereby ergodic
under translations.

It is clear that for each ergodic P ∈ G�(�) its initial distribution P = P ◦ π−1
0

is also ergodic. The converse holds whenever the correspondence between an ini-
tial distribution P ∈ P�(T) and its associated P ∈ G�(�) is one-to-one. This,
however, does not hold in general, as our concluding remark shows.

REMARK 3.12. Uniqueness and phase transition. It is natural to ask whether
or not the convex set G (P,�) of all BRTs with initial distribution P ∈ P(T) and
division kernel � is a singleton. In general, this is not the case. To provide an
example, let d = 2 and consider the division kernel � defined in equation (2.22)
of Example 2.11. Let Treg = {[1] + i : i ∈ Z

2} be the regular tessellation of R
2

into unit squares and P ∈ P�(T) be given by P = ∫
[1] dx δTreg−x . Further, let

Phor be the STIT tessellation with initial distribution P and driving measure �hor
as introduced in Example 2.11, and define Pvert analogously. It is then clear that
these BRTs live on the spaces Thor, respectively, Tvert for all positive times. As a
consequence, Phor and Pvert are two distinct BRTs which both belong to G�(�)

and have the same initial distribution P .
Although the infinite-range interaction of this example is somewhat artificial,

we learn that uniqueness does not hold automatically. Instead, the phenomenon
of nonuniqueness, or phase transition, which is a central issue of statistical me-
chanics, shows up also in the present setting. In analogy to standard results on
Gibbs measures (cf. [13], Section 8.3), we will show in Proposition 4.17 below that
uniqueness does hold for suitable division kernels of bounded range in one spatial
dimension. Uniqueness is also known in the noninteracting case (2.21) when the
initial tessellation is degenerate and the density ϕ exhibits some regularity prop-
erties [26]. We leave it to the future to find sufficient conditions for uniqueness in



1918 H.-O. GEORGII, T. SCHREIBER AND C. THÄLE

higher dimensions as well as examples of bounded-range division kernels exhibit-
ing phase transition. In fact, Figure 2 (right) suggests that a phase transition might
already occur for the (moderate) model of Example 2.10.

4. Proofs.

4.1. Some properties of local BRTs. Before entering into the proofs of our
results, we will establish some auxiliary properties of local BRTs. First we will
express the local evolution of a BRT in a more explicit form. Throughout this
section, we let W ∈ P∪ be an arbitrary window. For any division kernel �W in W ,
we introduce the abbreviation

φ̂W (a, b;T) =
∫ b

a
φ̂W (s,Ts)ds,(4.1)

where 0 ≤ a < b ≤ 1, T ∈ BTW and φ̂W (s,Ts) = �̂W (s,Ts, Ts × 〈W 〉) is as in
Remark 2.7. For every T0 ∈ TW , we define a measure on BTW by

�
�W

W (T0, ·)

= ∑
n≥0

∫
· · ·

∫
{0≤s1<···<sn≤1}

ds1 · · ·dsn

n∏
i=1

∫
�̂W

(
si,Tsi−1,d(ci,Hi)

)
(4.2)

× exp
[−φ̂W (0,1;T)

]
1{π0(T)=T0,D(T)={(si ,ci ,Hi) : 1≤i≤n}}δT,

where s0 := 0 and the last indicator function simply means that T is the unique
branching tessellation which starts from T0 and is successively defined by the di-
vision events (si, ci,Hi); recall (2.5).

LEMMA 4.1. Let �W be a division kernel and PW ∈ P(BTW) a BRT in W .
Then the following statements are equivalent.

(a) PW admits the division kernel �W .
(b) �

�W

W (T0, ·) is the conditional distribution of PW given π0(T) = T0.
(c) For every nonnegative measurable function f on BTW ×CW × 〈W 〉,∫

PW(dT)
∑

(s,c,H)∈D(T)

f (s,Ts−, c,H)

(4.3)

=
∫ 1

0
ds

∫
PW,s(dTs)

∫
�̂W

(
s,Ts,d(c,H)

)
f (s,Ts, c,H).

(d) PW has the infinitesimal generators L
�W

W,s of (2.15), in that the forward
equation ∫

g dPW,t −
∫

g dPW,0 =
∫ t

0
ds

∫
dPW,s L

�W

W,sg(4.4)

holds for all t ∈ [0,1] and bounded measurable functions g on BTW .
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PROOF. (a) implies (b). Recall the recursion steps from Remark 2.7. For i = 0,
T0 = T0 is chosen according to the distribution PW,0. For each i ≥ 1, conditionally
on the first (i − 1) division events, the ith division event (si, ci,Hi) for a random
tessellation T with division rule �W is chosen according to the distribution

exp
[−φ̂W (si−1, si;T)

]
dsi �̂W

(
si,Tsi−1,d(ci,Hi)

);
here we have used that Ts = Tsi−1 for s ∈ [si−1, si). So, on the event {|D(T)| = n},
the joint distribution of the elements of D(T) is the product of these conditional
measures for i = 1, . . . , n, times the probability that sn is the last division time
before 1, which is exp[−φ̂W (sn,1;T)].

(b) implies (c). Fix any initial tessellation T0. On the set of all T with fixed
number n := |D(T)| ≥ 1 of division events, the measure �

�W

W (T0, ·) has a product
structure. The elements of D(T) can be labeled with i ∈ {1, . . . , n} according to
their temporal order. For each i, we extract the ith term from the product, omit
its index i, and separate the terms concerning the division events before and after
time s = si . That is, we write D(T) = D ′ ∪ {(s, c,H)} ∪ D ′′ and separate the re-
spective conditional measures. By Fubini’s theorem, s can be considered as fixed.
For given s, D ′ has the same distribution as D(Ts), but we still have the condi-
tion that the extracted division event (s, c,H) has rank i in D(T). This condition
disappears by summing over i and n ≥ i. Finally, the division events in D ′′ can be
integrated out because these do not enter into f (s,Ts−, c,H), and an integration
over T0 gives (c).

(c) implies (d). Applying equation (4.3) to the function

f (s,T, c,H) = 1[0,t](s)
[
g
(�s,c,H (Ts)

) − g(Ts)
]
,

we find that for each t ∈ [0,1]∫ t

0
ds

∫
dPW,s L

�W

W,sg

=
∫

PW(dTW)
∑

(s,c,H)∈D(TW ) : s≤t

[
g(TW,s) − g(TW,s−)

]
=

∫
PW(dTW)

[
g(TW,t ) − g(TW,0)

]
=

∫
g dPW,t −

∫
g dPW,0.

(d) implies (a). In principle, this follows from [11] which, however, makes use
of a time-continuity condition on �W . We thus indicate a direct argument. For
brevity, we omit most indices referring to W . Let 0 ≤ s < t ≤ 1 and Pt |Ts

be a reg-
ular version of the conditional probability of PW,t given πW,s = Ts . Using (4.4) for
a function g of the form g = 1A1B with A ∈ BW,s and B ∈ σ(T �→ (TW,u)s<u≤1)

and varying A, one readily finds that

Pt |Ts
(B) − δTs

(B) =
∫ t

s
du

∫
dPu|Ts

L
�
u 1B(4.5)
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for almost all Ts . We now fix Ts and think of each Tu as an element of BTW which
is constant on [u,1]. Also, for T ∈ BTW we let τ(T) be the time of the first jump
of T after time s, which is set equal to ∞ when there is no jump during [s,1].
Setting B = {T ∈ BTW : τ(T) > 1}, we then find from (4.5) that

Pt |Ts
(τ > t) = 1 −

∫ t

s
du φ̂(u,Ts)Pu|Ts

(τ > u)

and, therefore, Pt |Ts
(τ > t) = exp[−φ̂(s, t;Ts)]. In other words, τ has the condi-

tional distribution used in Remark 2.7.
Next, let � ⊂ C×H be measurable and

��(Ts) = {�c,H (Ts) : c ∈ Ts, (c,H) ∈ �
}
.

Consider the set B = {T ∈ BTW :T1 ∈ ��(Ts)} and let τ2(T) the time of the sec-
ond jump of T after s (which again is set equal to ∞ if no second jump exists).
Then 1B(Tu) = 1{τ≤u<τ2,Tτ ∈��(Ts)}(T) for u > s, and (4.5) implies that

Pt |Ts

(
τ ≤ t < τ2, Tτ ∈ ��(Ts)

)
=

∫ t

s
du�̂(u,Ts,�)Pu|Ts

(τ > u)

−
∫
(s,t]×��(Ts)

Pt |Ts

(
(τ,Tτ ) ∈ d(v,Tv)

) ∫ t

v
du φ̂(u,Tv)Pt |Tv

(τ > u).

Using the explicit conditional distribution of τ derived above, we thus find that the
first term on the right-hand side of the above equation is equal to∫ t

s
du�̂(u,Ts,�) exp

[−φ̂(s, u;Ts)
]
,

whereas the second term equals∫
(s,t]×��(Ts)

Pt |Ts

(
(τ,Tτ ) ∈ d(v,Tv)

)
Pt |Tv

(v < τ ≤ t)

= Pt |Ts

(
τ2 ≤ t, Tτ ∈ ��(Ts)

)
.

We thus arrive at the equation

Pt |Ts

(
τ ≤ t, Tτ ∈ ��(Ts)

) =
∫ t

s
du exp

[−φ̂(s, u;Ts)
]
�̂(u,Ts,�),

which assures that (τ,Tτ ) has the correct conditional distribution of Remark 2.7.
�

Note that the joint integrating measure on the right-hand side of (4.3) can be
written in the concise form �PW ⊗ �̂W or, equivalently, �CPW ⊗ �, where �PW =
�P ◦ π̄−1

W , �P is given by (2.11) and �CPW by (2.38). We will switch between both
representations according to convenience.
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COROLLARY 4.2. Let PW,QW ∈ P(BTW) be two BRTs in W . Suppose QW

admits a division kernel �W , and PW � QW . Then there exists a measurable func-
tion ϕW(s,Ts, c,H) ≥ 0 such that the measure kernel

�W(s,Ts, c,dH) := ϕW(s,Ts, c,H)�W(s,Ts, c,dH)

is a division kernel for PW .

PROOF. For brevity, we introduce the measure kernel

DW(T, ·) = ∑
(s,c,H)∈D(T)

δ(s,Ts−,c,H)(4.6)

for T ∈ BTW . The integration on the left-hand side of (4.3) is then with respect to
the measure PW DW . Since PW � QW by assumption, it follows that PW DW �
QW DW with a Radon–Nikodym density f , say. It also follows that �PW � �QW

with a density g. Define

ϕW(s,Ts, c,H) = f (s,Ts, c,H)/g(s,Ts)

if the denominator is positive, and zero otherwise. Then we obtain, using equa-
tion (4.3) for (QW,�W) in place of (PW,�W),

PW DW = f (QW DW) = f (�QW ⊗ �̂) =�PW ⊗ (ϕW�̂W ).

In view of Lemma 4.1, this means that PW admits the division kernel �W :=
ϕW�W . �

Finally, we look at the first-moment condition (2.10).

LEMMA 4.3. Let �W be a division kernel for W , and suppose its total mass
satisfies the uniform bound (2.14). Then∫

�
�W

W (T0,dT)|T1| ≤ eφ|T0|
for all initial tessellations T0 ∈ TW . Moreover, for every ε > 0, one can find a
number τ < ∞ such that∫

�
�W

W (T0,dT)
(|T1| − τ |T0|)+ ≤ ε|T0|

for all T0 ∈ TW .

PROOF. Recall the description of �
�W

W (T0, ·) in Remark 2.7. The algorithm
there implies that, for each i with si ≤ 1, the holding time si − si−1 dominates an
exponential time with parameter |Tsi−1 |φ, independently of the previous recursion
steps. Hence, the process |Ts | is stochastically dominated by the Furry–Yule pro-
cess Zs ∈ N with birth rate φ, namely the pure birth Markov process which starts
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in k = |T0| and jumps from any j ≥ 1 to j + 1 with rate jφ. Equivalently, Zs

can be described as the branching process in which each individual, independently
of all others, lives for an exponential time with parameter φ and then splits into
two offspring. In particular, the descendance trees of each of the k ancestors are
independent, and it is sufficient to look at the number of descendants at time s in
each of these trees. This number is known to have the geometric distribution with
mean eφs . A proof of this can be found, for example, in [21], Examples 6.4, 6.8 or
Exercise 6.11.

As for the second assertion, we conclude from the convexity of the function
a �→ (a − τ)+ that (|T1| − τ |T0|)+ ≤ ∑

c∈T0

(|Tc,1| − τ
)
+.

Here, |Tc,1| is the number of descendants of the initial cell c at time 1,
which is stochastically dominated by the geometric random variable Z1. As
E(Z1 − τ)+ → 0 as τ → ∞, the result follows immediately. �

4.2. Significance and construction of global division kernels. Here, we prove
Theorems 3.1 and 3.3. We begin with the equivalence theorem (Theorem 3.1).
Most work will be necessary for deriving the Gibbs property (b) from state-
ment (c), the characterisation of the jump intensity measure. To this end, we need
to introduce a modification of the outer projection for a given window W ∈ P,
which refers to a larger but bounded window W ′ ∈ P rather than the full space R

d .
Namely, for W ⊂ W ′ ∈ P and any TW ′ ∈ BTW ′ let

TW ′,out
W = ({

c ∈ TW ′,s : c �⊂ int(W)
})

0≤s≤1(4.7)

be the evolution of the cells hitting W ′ \ int(W). In particular, if W ′ = W then
TW,out

W = T∂
W . We also set TW ′,0,out

W = (T in
W,0,TW ′,out

W ) and let BW ′,0,out
W denote the

σ -field on BTW ′ generated by the mapping TW ′ �→ TW ′,0,out
W .

PROOF OF THEOREM 3.1. We establish the circle (a) ⇒ (c) ⇒ (b) ⇒ (a).
(a) implies (c). Let f be a bounded nonnegative measurable function on

BT × C × H, and suppose there is some W ∈ P such that (i) f (s,Ts, c,H) is
BW -measurable as a function of T, and (ii) f (s,Ts, c,H) = 0 unless c ⊂ W and
|D(TW,s)| ≤ K for some K < ∞. Define

g(T) = ∑
(s,c,H)∈D(T)

f (s,Ts−, c,H).

By assumption, g is bounded and local, and g(T0) = 0 for every T. Moreover, if s

is not a jump time of TW,s then

g
(�s,c,H (Ts)

) − g(Ts) = f (s,Ts, c,H)
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and, therefore, L
�
s g(Ts) = ∫

d�̂(s,Ts, ·, ·)f (s,Ts, ·, ·). The forward equation
thus shows that ∫

g dP =
∫ 1

0
ds

∫
dPs L

�
s g =

∫
f d(�P ⊗ �̂),

which is (c) for our particular f . The case of general f now follows by letting
K → ∞ and using a monotone class argument.

(c) implies (b). Fix a window W ∈ P and let Pin
W(·|T0,out

W ) be a regular version

of the conditional distribution of π in
W under the condition π0,out

W = T0,out
W . We need

to show that this probability kernel almost surely coincides with G�
W(·|T0,out

W ). (In
particular, this will imply that the latter is almost surely well defined.) Pick any two
nonnegative measurable functions g(T0,out

W ) and h(s,Tin
W,s, c,H) of the indicated

arguments. We suppose g is local, in that g(T0,out
W ) = g(TW ′,0,out

W ) for some W ′ ∈ P

containing W . Consider the integral∫
P(dT)g

(
T0,out

W

) ∫
Pin

W

(
dS|T0,out

W

) ∑
(s,c,H)∈D(S)

h(s,Ss−, c,H).(4.8)

By the definition of conditional distribution, this is equal to∫
P(dT)g

(
T0,out

W

) ∑
(s,c,H)∈D(Tin

W )

h
(
s,Tin

W,s−, c,H
)
.

In view of the locality assumption on g, the integrand actually only depends
on TW ′ , which is a pure jump process and therefore strongly Markov. Writing
(si, ci,Hi) for the ith division event of TW ′ in temporal order, we can rewrite the
last expression in the form∑

i≥1

∫
PW ′(dTW ′)g

(
TW ′,0,out

W

)
1{si<1,ci⊂W }(TW ′)h

(
si,Tin

W,si−, ci,Hi

)
.(4.9)

Now, both h and the indicator function in the integrand are measurable with respect
to the σ -field BW ′,si of all events A ∈ BW ′ with A∩{si ≤ t} ∈ BW ′,t for all t . By the

strong Markov property, we can therefore replace the function g(TW ′,0,out
W ) by its

conditional expectation g(si,TW ′,si ) relative to BW ′,si . Furthermore, the process

TW ′,0,out
W is itself a Markov jump process. [In fact, it can be considered as the

BRT in W ′ for the division kernel which equals �W ′(s,TW ′, c, ·) if c �⊂ W and is
identically zero otherwise.] This means that

g(si,TW ′,si ) = g
(
si,TW ′,0,out

W,si

) = g(si,TW ′,si−)

when ci ⊂ W . Altogether, we find that the expression (4.9) is equal to∫
P(dT)

∑
(s,c,H)∈D(T) : c⊂W

g(s,TW ′,s−)h
(
s,Tin

W,s−, c,H
)
.
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By statement (c), this in turn coincides with∫ 1

0
ds

∫
Ps(dTs)

∑
c∈Ts : c⊂W

∫
�(s,Ts, c,dH)g(s,TW ′,s)h

(
s,Tin

W,s, c,H
)
,

which by the Markov property is equal to∫ 1

0
ds

∫
P(dT)g

(
T0,out

W

) ∑
c∈T in

W,s

∫
�(s,Ts, c,dH)h

(
s,Tin

W,s, c,H
)
.

Taking conditional expectation with respect to T0,out
W and using the conditional

division kernel �in
W(·|Tout

W ) from Definition 2.12, we can rewrite this as∫
P(dT)g

(
T0,out

W

) ∫ 1

0
ds

∫
Pin

W,s

(
dSs |T0,out

W

)
×

∫
�̂in

W

(
s,Ss, c,dH |Tout

W

)
h(s,Ss, c,H).

Since the underlying spaces are Borel, a comparison of (4.8) with the preceding
expression shows that, for almost all T0,out

W ,

�Pin
W

(·|T0,out
W

) ⊗ �̂in
W

(·|Tout
W

) =
∫

Pin
W

(
dS|T0,out

W

) ∑
(s,c,H)∈D(S)

δ(s,Sin
s−,c,H),

which corresponds to (4.3). Lemma 4.1 therefore implies that Pin
W(·|T0,out

W ) coin-

cides with G�
W(·|T0,out

W ). This completes the proof of the Gibbs property (b).
(b) implies (a). Let g be a bounded function which is BW -measurable for some

W ∈ P. For any n with W ⊂ [n] let

An = {
T ∈ BT : c ∩ W = ∅ for all c ∈ T0 with c ∩ ∂[n] �= ∅

}
.(4.10)

Obviously, An ∈ B∂[n],0. Also, since for each T ∈ T the union of all cells hitting W

is contained in some [n], we have An ↑ BT as n → ∞. Furthermore, if T ∈ An

then the inner window in[n](s,T∂[n]) [defined in (2.31)] contains W for all s. Using
Definition 2.12 and Lemma 4.1, we thus obtain that∫

G�
W

(
dS|T0,out

W

)[
g(St ) − g(S0) −

∫ t

0
dsL

�in
W (·|Tout

W )
s g(Ss)

]
= 0

for all 0 < t ≤ 1 and T ∈ An. Integrating this over
∫
An

P(dT), applying the Gibbs
property (b) and letting n → ∞ we arrive at (a). �

Before turning to the proof of Corollary 3.2 it is worthwhile to introduce a
condensed notation for property (c) of Theorem 3.1. So, we introduce the measure
kernel

D(T, ·) = ∑
(s,c,H)∈D(T)

δ(s,Ts−,c,H)
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from BT to BT × C × H, which catches the behaviour of T at all cell division
events; it is analogous to the kernel DW within a window W , which was defined
at (4.6). Statement (c) of Theorem 3.1 can then be written in the concise form

PD :=
∫

P(dT)D(T, ·) =�P ⊗ �̂.(4.11)

PROOF OF COROLLARY 3.2. Fix some W ∈ P, recall the definitions of π̃W

and �W at (3.1), and note that DW is supported on BTW × �W . Since

D(TW) = {
(s, c ∩ W,H) : (s, c,H) ∈ D(T), (c,H) ∈ π̃−1

W �W

}
,

we have DW(TW,A × B) = D(T, π̄−1
W A × π̃−1

W B) for all T ∈ BT and all events
A ⊂ BTW and B ⊂ �W and, therefore, by (4.11)

PW DW(A × B) = PD
(
π̄−1

W A × π̃−1
W B

) =�P ⊗ �̂
(
π̄−1

W A × π̃−1
W B

)
=

∫
π̄−1

W A
d�P(s,Ts)�̂

(
s,Ts, π̃

−1
W B

)
.

So, if �̂W is defined as in the corollary then PW DW =�PW ⊗ �̂W . Lemma 4.1 thus
shows that PW admits the kernel �W . �

Finally, we turn to the construction of division kernels for BRTs satisfying
(LAC).

PROOF OF THEOREM 3.3. Part 1: Extension of local division kernels. By con-
dition (LAC), Corollary 4.2 implies that for each W ∈ P there exists a cell division
kernel �W in W such that PW is a BRT for �W . (In fact, �W is absolutely con-
tinuous with respect to �∗, but we do not need this here.) So, it merely remains to
construct a global common extension � of these kernels �W .

By Lemma 4.1 and the preceding proof of Corollary 3.2, we know that

�PW ⊗ �̂W = PW DW = PD ◦ (π̄W ⊗ π̃W )−1(4.12)

on BTW × �W . As a consequence, the measures �PW ⊗ �̂W with W ∈ P are con-
sistent in the sense that

(�PW ′ ⊗ �̂W ′) ◦ (π̄W ⊗ π̃W )−1 =�PW ⊗ �̂W on BTW × �W(4.13)

for W ⊂ W ′ ∈ P. To see that these measures admit a common extension, we first
localise to a fixed window V ∈ P. For W ⊃ V , we write �PW ⊗ 1V �̂W for the re-
striction of �PW ⊗ �̂W to the set BTW × π̃−1

V �V . These measures have a finite
total mass that does not depend on W . Indeed, (4.12) and the first-moment condi-
tion (2.10) imply that∥∥�PW ⊗ 1V �̂W

∥∥ =
∫

P(dT)
∣∣{(s, c,H) ∈ D(T) : (c,H) ∈ π̃−1

V �V

}∣∣
(4.14)

≤
∫

P(dT)|TV,1| < ∞.
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Since all spaces under consideration are Borel spaces, we can thus apply an ab-
stract version of the Kolmogorov extension theorem [16], Corollary 6.15, to obtain
a finite measure on BT× π̃−1

V �V , to be denoted by �P ⊗ 1V �̂, which satisfies

(�P ⊗ 1V �̂) ◦ (π̄W ⊗ π̃W )−1 =�PW ⊗ 1V �̂W

for all W ∈ P with W ⊃ V . Since V is arbitrary and⋃
V ∈P

π̃−1
V �V = � := {

(c,H) ∈C×H :H ∈ 〈c〉},
the measures �P ⊗ 1V �̂ can be glued together to a locally finite measure �P ⊗ �̂ on
BT× � satisfying

(�P ⊗ �̂) ◦ (π̄W ⊗ π̃W )−1 =�PW ⊗ �̂W on BTW × �W(4.15)

for all W ∈ P. As we have indicated by the notation, disintegration shows that this
measure is indeed the product of �P with a locally finite measure kernel �̂.

We next need to show that this �̂ is really a (cumulative) division kernel.
By construction, each �̂(s,Ts, ·) is supported on �, which means that each
�(s,Ts, c, ·) is supported on 〈c〉. In fact, considering the set �(Ts) = {(c,H) : c ∈
Ts,H ∈ 〈c〉} and its complement ¬�(Ts), we can write∫

d�P(s,Ts)�̂
(
s,Ts,¬�(Ts)

)
=

∫
d(�P ⊗ �̂)(s,Ts, c,H) lim

W↑Rd

(
1 − 1

π̃−1
W �(TW,s)

(c,H)
)
,

and the last term vanishes by (4.15) and Fatou’s lemma. So, we can conclude that,
for �P-almost all (s,Ts), �̂(s,Ts, ·) is indeed supported on �(Ts), as required.

Finally, combining (4.12) and (4.15) we find that statement (c) of Theorem 3.1
holds for all f of the form

f (s,T, c,H) = 1〈c∩W 〉(H)fW(s,TW,c ∩ W,H)

with some W ∈ P and a measurable function fW . As this can be extended to gen-
eral f by a monotone class argument, it follows that � is a division kernel for P.

Part 2: Averaging over translations. Suppose now that P is invariant under trans-
lations, and let � be a global division kernel for P, which exists by part 1 of the
proof. For x ∈ R

d , let ϑx be the spatial translation by −x, which acts on BT via
ϑx : (s,Ts) �→ (s,Ts −x) and, by hypothesis, leaves �P invariant. As before, we use
the same symbol for the translation ϑx : (c,H) �→ (c−x,H −x) acting on C×H.
For x ∈ R

d let �̂x(s,Ts, ·) := �̂(s,Ts + x,ϑ−1
x ·). We first claim that

�P ⊗ �̂ =�P ⊗ �̂x(4.16)
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for all x. Indeed, let A ∈ B(BT) and B ∈ B(C×H) be arbitrarily given. Then we
can write, using the ϑx -invariance of P in the first step,(�P ⊗ �̂x)

(A × B) = (�P ⊗ �̂)
(
ϑ−1

x A × ϑ−1
x B

)
=

∫
P(dT)

∑
(s,c,H)∈D(T) : (c−x,H−x)∈B

1A(s,Ts−)

=
∫

P(dT)
∑

(s,c,H)∈D(T) : (c,H)∈B

1A(s,Ts−)

= (�P ⊗ �̂)(A × B),

proving (4.16). The second and the fourth step come from Theorem 3.1(c), and in
the third step we observed that D(T) consists of the shifted elements of D(T − x)

and then used again the translation invariance of P. Equation (4.16) shows that
�̂x(·, ·,B) = �̂(·, ·,B) �P-almost surely for each B .

To obtain an everywhere covariant version of �, we pick a countable generator
G of B(C×H) which is stable under intersections. We also let � be the set of all
(s,Ts) ∈ BT which are such that �̂(s,Ts,B) = �̂y(s,Ts,B) for all B ∈ G [and
thus all B ∈ B(C × H)] and the countably many lattice elements y ∈ Z

d . Then
�P(�) = 1 by (4.16). We further define the kernel

�̃(s,Ts, ·) =
{

�̂(s,Ts, ·), if (s,Ts) ∈ �,

�̂∗(s,Ts, ·), otherwise,

where �̂∗ is the cumulative STIT kernel of Example 2.9. It is then clear that �̃ is
a version of �̂ which satisfies �̃y = �̃ for all y ∈ Z

d .
To achieve the covariance under the full translation group, we finally define

�� =
∫
[1]

�̃x dx,

where [1] is the centred unit cube in R
d . Then for each y ∈ R

d , we have

��y =
∫
[1]+y

�̃x dx = ��
because [1] + y can be decomposed into finitely many pieces which are lattice
translations of corresponding pieces of [1]. On the other hand, since

�P ⊗ �� =
∫
[1]

�P ⊗ �̃x dx =
∫
[1]

�P ⊗ �̂x dx =�P ⊗ �̂

by (4.16), �� is also a version of �̂. �

We conclude this subsection with two supplements to the preceding proofs. The
first deals with the consistency properties (4.13), respectively, (4.15), and the sec-
ond with a localised version of the Gibbs property.
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REMARK 4.4 (Consistency of kernel densities). Consider two windows
W,W ′ ∈ P with W ⊂ W ′ and a BRT P ∈ P satisfying PW ′ � PW ′,0��

W ′ . Let
ϕW and ϕW ′ be the �-densities of the division kernels �W and �W ′ of PW and
PW ′ , which exist by Corollary 4.2. The consistency equation (4.13) then means
that

ϕW(s,TW,s, c,H) =
∫

PW ′,s|TW,s
(dTW ′,s)ϕW ′

(
s,TW ′,s, π

−1
W (c,TW ′,s),H

)
for �PW ⊗�∗

W almost all arguments. Here, PW ′,s|TW,s
stands for a regular version of

the conditional distribution of TW ′,s under Ps given TW,s , and c′ = π−1
W (c,TW ′,s)

is the unique element of TW ′,s with c′ ∩ W = c. An analogous statement holds for
W ′ = R

d when P admits a global division kernel with a �-density.

REMARK 4.5 (Conditional BRTs with finite horizon). Fix two windows
W,W ′ ∈ P with W ⊂ W ′ and let PW ′ be a BRT in W ′ for a division kernel �W ′ .
Furthermore, replace R

d by W ′ in Definition 2.12 and use the conditional division
kernel

�in
W(s,Ss, c, ·|TW ′) := �W ′

(
s,Ss ∪ TW ′,out

W,s , c, ·),
to obtain a conditional BRT G

�W ′
W (·|TW ′,0,out

W ) in W ; here we use the notation in-
troduced in and after (4.7). The arguments in the proof of Theorem 3.1, (c) ⇒ (b),

then show that the kernel G
�W ′
W is a regular version of the conditional distribution

of π in
W for PW ′ under the condition BW ′,0,out

W .

4.3. On the inner entropy density. We first recall some standard properties of
relative entropy. A basic fact is the variational formula, which states that

H(μ, ν) = sup
g

[∫
g dμ − log

∫
eg dν

]
,(4.17)

for any two probability measures μ,ν on a common measurable space. Here, the
supremum extends over all bounded measurable functions on this space; see [31],
Theorem 4.1. On the one hand, the variational formula implies the useful estimate∫

g dμ ≤ H(μ, ν) + log
∫

eg dν(4.18)

for any nonnegative measurable g. On the other hand, using Jensen’s inequality
it follows immediately that H(μ, ν) is jointly measure convex in both arguments
simultaneously. Also, it is jointly lower semi-continuous in (μ, ν) in the topology
generated by the integrals of bounded measurable functions. Finally, if μ and ν

are restricted to a sub-σ -field A then relative entropy is increasing in A. Alterna-
tive proofs of these facts can be found in [13], Section 15.1, for example. Since
H(aμ;bν) = aH(μ, ν) + b�(a/b) for a, b > 0 and normalised μ,ν [recall (3.5)],
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the last facts extend directly to the case of finite measures, except that the convexity
then holds in the first argument only.

Now, turning to the proof of Theorem 3.5 we proceed with a series of lemmas.
Let P ∈ P� be arbitrarily given and P = P ◦ π−1

0 its initial distribution. We can
clearly assume that

lim inf
n→∞ n−dHin[n](P) < ∞(4.19)

because otherwise there is nothing to show.

LEMMA 4.6. Condition (4.19) implies condition (LAC).

PROOF. We fix a window W ∈ P and consider the sets An defined in (4.10).
Recall that for T ∈ An the inner window in[n](s,T∂[n]) contains W for all s, so that

G�[n]
(
B|T0,∂

[n]
) = ��

W(TW,0,B)

for all B ∈ BW . Suppose now that Hin[n](P) < ∞ and recall the notation of Defi-

nition 3.4. Writing Pin[n](·|T0,∂
[n] ) for a regular conditional distribution of π in[n] under

the condition π0,∂
[n] = T0,∂

[n] , we then have

Pin[n]
(·|T0,∂

[n]
) � G�[n]

(·|T0,∂
[n]

)
for P-almost all T.

Therefore, if B ∈ BW is such that P��(B) = 0 then ��
W(TW,0,B) = 0 for almost

all T, and thus Pin[n](B|T0,∂
[n] ) = 0 for almost all T ∈ An. Hence,

P(B ∩ An) =
∫
An

P(dT)Pin[n]
(
B|T0,∂

[n]
) = 0.

Letting n → ∞ through the integers n with Hin[n](P) < ∞, we thus obtain that
P(B) = 0. So, we have shown that P � P�� on BW , and the proof is complete.

�

Combining the preceding lemma with Theorem 3.3, we can conclude that P
admits a global division kernel �. Hence, for each window W ∈ P, the condi-
tional distribution of π in

W given B0,∂
W under P, respectively, P�� are equal to the

localised conditional BRTs G�W

W (·|T0,∂
W ), respectively, G�

W(·|T0,∂
W ) introduced in

Remark 4.5, respectively, Example 2.13. It follows that

Hin
W(P) =

∫
P(dT)H

(
G�W

W

(·|T0,∂
W

);G�
W

(·|T0,∂
W

))
.(4.20)

This expression can be specified as follows.
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LEMMA 4.7. Under (4.19), we have for each W ∈ P

Hin
W(P) =

∫
d�PW(s,TW)

∑
c∈T in

W,s

H
(
�W(s,TW,s, c, ·);1〈c〉�

)
.(4.21)

PROOF. By Lemma 4.6 and Corollary 4.2, �W is absolutely continuous with
respect to �; we write ϕW for the associated Radon–Nikodym density. Using the
equivalence of Lemma 4.1(a) and (b) separately for the intervals between the “im-
migration times” (2.32), we obtain the following identity for the Radon–Nikodym
density of G�W

W (·|T0,∂
W ) relative to G�

W(·|T0,∂
W ):

log
dG�W

W (·|T0,∂
W )

dG�
W(·|T0,∂

W )

(
Tin

W

) = [
λ̂in

W

(
0,1;Tin

W

) − φ̂in
W(0,1;TW)

]
(4.22)

+ ∑
(s,c,H)∈D(Tin

W )

logϕW(s,TW,s−, c,H),

where TW ∈ BTW , D(Tin
W) is the associated set of division events with c ⊂ W ,

and similarly to (4.1),

φ̂in
W(0,1;TW) =

∫ 1

0
ds

∑
c∈T in

W,s

�W

(
s,TW,s, c, 〈c〉)

and λ̂in
W(0,1;Tin

W) = ∫ 1
0 ds

∑
c∈T in

W,s
�(〈c〉).

Now, Hin
W(P) is simply the integral of (4.22) over

P0,∂
W

(
dT0,∂

W

)
G�W

W

(
dTin

W |T0,∂
W

) = PW(dTW).

By the equation in Lemma 4.1(c), integration of the last term in (4.22) gives the
contribution∫

d�PW(s,TW,s)
∑

c∈T in
W,s

∫
〈c〉

�W(s,TW,s, c,dH) logϕW(s,TW,s, c,H).

In terms of the measure �CPW ,in which is defined by restricting the sum in (2.38)
to the cells c ∈ T in

W,s , this can be rewritten in the concise form
∫

d�CPW ,in ⊗
�∗ϕW logϕW . Likewise, we have∫

PW(dTW)
[
λ̂in

W

(
0,1;Tin

W

) − φ̂in
W(0,1;TW)

]
=

∫
d�CPW ,in ⊗ �∗[1 − ϕW ].

Consequently, the PW -integral of (4.22) is equal to
∫

d�CPW ,in ⊗ �∗�(ϕW),
and (4.21) follows by recalling (3.4). �
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The final step in the proof of Theorem 3.5 is the following. Let hin(P) be defined
by (3.8). For brevity, we write hin

n (P) = n−dHin[n](P).

LEMMA 4.8. Under (4.19),

lim
n→∞hin

n (P) = sup
n≥1

hin
n (P) = hin(P).

PROOF. We claim first that lim infn→∞ hin
n (P) ≥ hin(P). We pick any 0 < η <

1 and � < ∞ and restrict the sum in (4.21) for W = [n] to the cells of Ts with
midpoint in [nη] and radius at most �. More precisely, we let Ln ⊂ R

d be such that
the set {[η] + x :x ∈ Ln} is a tessellation of the cube [nη]. (Note that |Ln| = nd .)
Also, we take any 0 < ε < 1 − η and let n be so large that η + � < εn. Then we
can write

hin
n (P) ≥ n−d

∑
x∈Ln

hn,η,�(x)

with

hn,η,�(x) :=
∫

d�P(s,Ts)
∑

c∈Ts∩�η,�(x)

H
(
�[n](s,T[n],s , c, ·);1〈c〉�

)
,

where �η,�(x) is the set of all cells c satisfying m(c) ∈ [η] + x and r(c) ≤ �. Now,
whether or not a cell c ∈ T[n],s belongs to �η,�(x) can be decided by looking at the
restriction T[εn]+x,s . So, using Remark 4.4 and Jensen’s inequality together with
the translation invariance of P and the covariance equation (3.3) we find for each
x ∈ Ln,

hn,η,�(x) =
∫

d�P[εn]+x(s,T[εn]+x,s)

× ∑
c∈Ts∩�η,�(x)

∫
P[n],s|T[εn]+x,s

(dT[n],s)

×
∫
〈c〉

�(dH)�
(
ϕ[n](s,T[n],s , c,H)

)
≥

∫
d�P[εn](s,T[εn],s)

∑
c∈Ts∩�η,�

∫
〈c〉

�(dH)�
(
ϕ[εn](s,T[εn],s , c,H)

)
= H

(
1�η,�

�CP ⊗ �|B[εn] ;1�η,�
�CP ⊗ �∗|B[εn]

)
.

In the last expression, B[εn] is identified with the σ -field that is generated by the
projection π̄ [εn] ⊗ id, and �η,� := �η,�(0) is viewed as a set in the product space
BT × C × H. In the limit as n → ∞, Perez’ continuity theorem for relative en-
tropies (cf. [13], Proposition 15.6) implies that the last relative entropy converges
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to

H
(
1�η,�

�CP ⊗ �;1�η,�
�CP ⊗ �∗)

=
∫

d�P(s,Ts)
∑

c∈Ts∩�η,�

H
(
�(s,Ts, c, ·);1〈c〉�

)
.

By the time-integrated version of the Palm formula (2.35) and the shift covariance
of � and �, the last integral is equal to

hη,� := ηd
∫
{r(c)≤�}

d�P0(s,Ts, c)H
(
�(s,Ts, c, ·);1〈c〉�

)
.

Altogether, we find that lim infn→∞ hin
n (P) ≥ hη,�, and the claim follows by letting

η → 1 and � → ∞.
It remains to show that hin

n (P) ≤ hin(P). By (4.19) and the above, hin(P) < ∞.
This implies that the kernel � admits a Radon–Nikodym density relative to �.
Applying Remark 4.4 and Jensen’s inequality as above, we conclude from (4.21)
that

hin
n (P) ≤ n−d

∫
d�P(s,Ts)

∑
c∈Ts : c⊂[n]

H
(
�(s,Ts, c, ·);1〈c〉�

)
.

The condition under the sum above implies that m(c) ∈ [n]. Using again (2.35) in
its time-integrated version, we thus find that the last expression is not larger than
hin(P). The proof is thus complete. �

REMARK 4.9. The inner entropy of a BRT P in a window W ∈ P can be
defined by considering the tessellations not only in W but also in some neighbor-
hood of W . Namely, if � is a division kernel for P and r > 0, one can introduce
the quantity

Hr,in
W (P) =

∫
P(dT)H

(
G

�W+Br

W

(·|TW+Br,0,out
W

);G�
W

(·|T0,∂
W

))
,

which is called the inner entropy of P in W with horizon r . Here, the first of the
conditional BRTs G is as in Remark 4.5. A glance at the preceding proof then
shows that Lemma 4.8 can be extended to yield

lim
n→∞n−dHr,in

[n] (P) = hin(P).

Next, we turn to the proof of Theorem 3.6, which is split into two lemmas.

LEMMA 4.10. The inner entropy density hin is affine.

PROOF. As noticed after (4.18), relative entropy is a jointly convex func-
tion of probability measures. This shows that the inner entropies Hin

W(P) =
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H(PW ;P0,∂
W ⊗ G�

W) are convex in P, and so is their limit hin(P). The proof is
therefore completed by showing that this limit is also concave. So, let P,P′ ∈ P�,
0 < a < 1, P̂ = aP + (1 − a)P′, and assume without loss of generality that
hin(P̂) < ∞. By Lemma 4.8, it follows that hin

n (P̂) < ∞ for all n. In particu-
lar, P̂[n] � P̂0,∂

[n] ⊗ G�[n] with a Radon–Nikodym density gn. The Radon–Nikodym
theorem further implies that P[n] � P̂[n] and P′[n] � P̂[n] with densities fn and
f ′

n, respectively. It is clear that afn + (1 − a)f ′
n = 1 almost surely for P̂[n].

Moreover, it follows that P0,∂
[n] = f 0,∂

n P̂0,∂
[n] for a suitable Radon–Nikodym den-

sity f 0,∂
n . We conclude that P[n] = (fngn/f

0,∂
n )P0,∂

[n] ⊗ G�[n]. Since fn ≤ 1/a and∫
dP[n] logf 0,∂

n = H(P0,∂
[n] ; P̂0,∂

[n] ) ≥ 0, this gives

ndhin
n (P) =

∫
dP[n] log

fngn

f ∂
n

≤
∫

dP[n] loggn + log
1

a
.

Together with the analogous inequality for P′, we finally end up with the estimate

ahin
n (P) + (1 − a)hin

n

(
P′) ≤ n−d

∫
dP̂[n] loggn + o(1) = hin

n (P̂) + o(1).

The result thus follows from Lemma 4.8 by letting n → ∞. �

As for the topological properties of hin, we note first that its lower semi-
continuity is a direct consequence of Lemma 4.8 and the lower semi-continuity
of relative entropy; recall the discussion below (4.18). Since T �→ |T[1],1| is the
supremum of bounded local functions, it is also evident that the hitting intensity
i1(·) is lower semi-continuous. It follows that the restricted level sets P�,P,β,γ

(as introduced in Theorem 3.6) are closed. The following lemma, which can be
viewed as a refinement of Lemma 4.6, will imply that they are in fact compact; as
the intensity bound is not needed here, we put β = ∞.

LEMMA 4.11. The restricted level sets P�,P,∞,γ are locally equi-continuous
in the following sense: for each W ∈ P and 0 ≤ γ < ∞ and every sequence Bk ∈
BW with Bk ↓ ∅ as k → ∞, one has

lim
k→∞ sup

P∈P�,P,∞,γ

P(Bk) = 0.

PROOF. Let W ∈ P and a sequence Bk ∈ BW with Bk ↓ ∅ be given. Pick some
ε > 0 and consider the events An defined in (4.10). Recall that An ↑ BT. Since
An ∈ B∂[n],0, P(An) depends only on the initial distribution of P, which is P for all
P ∈ P�,P,∞,γ . So, there is an n with P(An) ≥ 1 − ε for all P ∈ P�,P,∞,γ .

Next, each P ∈ P�,P,∞,γ admits some division kernel �, and Hin[n](P) ≤ η :=
ndγ by Lemma 4.8. Since

Hin[n](P) =
∫

P(dT)H
(
G

�[n]
[n]

(·|T0,∂
[n]

);G�[n]
(·|T0,∂

[n]
))
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by definition and Remark 4.5, we can conclude that the set

Hn := {
T ∈ BT :H

(
G

�[n]
[n]

(·|T0,∂
[n]

);G�[n]
(·|T0,∂

[n]
)) ≤ η/ε

}
in B0,∂

[n] has measure at least 1 − ε for P. It follows that

P(Bk) ≤ 2ε + P(Bk ∩ An ∩ Hn) = 2ε +
∫
An∩Hn

P(dT)G
�[n]
[n]

(
Bk|T0,∂

[n]
)

because in[n](s,T∂[n]) ⊃ W for all T ∈ An and all s; recall (2.31). The next step is
to use the inequality (4.18). For T ∈ An ∩ Hn, this inequality shows that(

η/ε2)
G

�[n]
[n]

(
Bk|T∂[n]

) ≤ (η/ε) + log
∫

d��
W(TW,0, ·) exp

[(
η/ε2)

1Bk

]
since G�[n](·|T∂[n]) = ��

W(TW,0, ·) on BW when T ∈ An. Inserting this into the pre-
vious inequality, we find

sup
P∈P�,P,∞,γ

P(Bk)

≤ 3ε + (
ε2/η

) ∫
PW(dTW) log

∫
d��

W(TW , ·) exp
[(

η/ε2)
1Bk

]
.

Letting k → ∞, using the dominated convergence theorem, and noting that ε was
chosen arbitrarily, we arrive at the lemma. �

The preceding lemma verifies the conditions of Propositions 4.9 and 4.15
of [13], which imply that P�,P,∞,γ is relatively compact and relatively sequen-
tially compact within the class of all translation invariant BRTs. However, this does
not yet imply that each limit of a net in P�,P,∞,γ also satisfies the first-moment
condition. (This is because hin is the limit of conditional entropies which do not
allow to control the number of cells that hit the boundary. But this number enters
into the hitting intensity i1.) The simplest way to deal with this problem is to add
the bound i1 ≤ β which trivially implies (2.33) also for all limiting BRTs. The
proof of Theorem 3.6 is therefore complete.

4.4. Free energy density, variational principle, existence. Throughout this
section, we fix a moderate division kernel � . Our first item is the existence of
the energy density.

PROOF OF THEOREM 3.8. Let P ∈ P� be a BRT with a covariant division
kernel �. By property (c) of Theorem 3.1, the inner energy of P in a window
W ∈ P can be written in the form

U in
W(P;�)

(4.23)
=

∫
d�P(s,Ts)

∑
c∈Ts : c⊂W

∫
�(s,Ts, c,dH) logψ(s,Ts, c,H).
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Since � and ψ are covariant, the time-integrated version of the Palm for-
mula (2.35) shows that the last term can be written in the form∫

d�P0(s,Ts, c)vol(x : c + x ⊂ W)

∫
�(s,Ts, c,dH) logψ(s,Ts, c,H).

Hence,

n−dU in[n](P;�) = uin(P;�) + δn(P;�)

with∣∣δn(P;�)
∣∣ ≤ κ�

∫
d�P0(s,Ts, c)vol

(
x ∈ [1] : c/n + x �⊂ [1])�(

s,Ts, c, 〈c〉)
by (M3). The volume term above is bounded by 1 and tends to 0 as n → ∞. To
apply the dominated convergence theorem, we thus need to show that the total
mass of �P0 ⊗ � is finite. But the Palm formula and (4.14) show that this mass is at
most i1(P). This completes the proof of the first part of Theorem 3.8 and implies
the bound on |uin(P;�)|.

The proof of the second part is similar: the Palm formula gives

V in
W(P;�)

=
∫

d�P0(s,Ts, c)vol(x : c + x ⊂ W)

∫
〈c〉

�(dH)
(
ψ(s,Ts, c,H) − 1

)
and thus n−dV in[n](P;�) = vin(P;�) + δ′

n(P;�) with a remainder term δ′
n which,

by assumption (M4), is bounded in modulus by κ ′
� times∫

d�P0(s,Ts, c)vol
(
x ∈ [1] : c/n + x �⊂ [1]).

By (2.39) and the dominated convergence theorem, this bound vanishes in the limit
n → ∞. The proof of Theorem 3.8 is therefore complete. �

REMARK 4.12. Exploiting Theorem 3.1(c) and the Palm formula (2.35) in
the same way as in the first part of the preceding proof, one finds that the energy
density can be written in the alternative form

uin(P;�) =
∫

P(dT)
∑

(s,c,H)∈D(T) : m(c)∈[1]
logψ(s,Ts−, c,H),

in which the division kernel of P does not appear. In particular, it follows that
uin(·;�) is affine.

Turning to the proof of the variational principle, Theorem 3.9, we introduce an
inner relative entropy of a BRT P in a window W ∈ P with horizon r = r� relative



1936 H.-O. GEORGII, T. SCHREIBER AND C. THÄLE

to � as follows: if P admits a division kernel � we set, using the notation of
Remark 4.5,

Hr,in
W (P;�)

(4.24)
=

∫
P(dT)H

(
G

�W+Br

W

(·|TW+Br,0,out
W

);G
�W+Br

W

(·|TW+Br,0,out
W

));
otherwise we set Hr,in

W (P;�) = ∞. (Compare this definition with Remark 4.9,
where � = �∗.) By the bounded-range property (M2) of � and Corollary 3.2, the
conditional BRT G

�W+Br

W in (4.24) actually coincides with G�
W . We then have the

following convergence to the quantity hin(P;�) in (3.11).

COROLLARY 4.13. Let � be a moderate division kernel and r = r� its range.
Then

hin(P;�) = lim
n→∞n−dHr,in

[n] (P;�)

for all P ∈ P�. The limit is finite if and only if hin(P) < ∞, and then equa-
tion (3.12) holds.

PROOF. An analog of equation (4.22) gives for each n the identity

Hr,in
[n] (P;�) = Hr,in

[n] (P) − U in[n](P;�) + V in[n](P;�),(4.25)

which is a counterpart to (3.11). Also, the estimates in the proof of Theorem 3.8
show that the second and third term on the right-hand side are bounded in modulus
by a finite constant times nd . The convergence result thus follows directly from
Remark 4.9 and Theorem 3.8 (together with Lemma 4.6 and Theorem 3.3).

Next, suppose that hin(P) < ∞ and let ϕ and ψ be the Radon–Nikodym den-
sities of � and � with respect to �∗. Inserting the explicit expressions for all
quantities, we then obtain

hin(P) − uin(P;�) + vin(P;�)

=
∫

d�P0 ⊗ �∗[−ϕ + ϕ logϕ − ϕ logψ + ψ]

=
∫

d�P0 ⊗ �∗ψ�(ϕ/ψ) =
∫

d�P0 H(�;�),

which is (3.12). �

The variational principle, Theorem 3.9, follows directly from equation (3.12)
and thus from the preceding corollary.

Next we address the existence problem for BRTs with given division kernel, as
stated in Theorem 3.10. We still keep a moderate � fixed and let r = r� be its
range. We also fix an initial distribution P ∈ P�(T). We will construct a BRT
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P with initial distribution π0(P) = P and division kernel � as a cluster point of
some approximating measures Pn,av.

Specifically, for any n we let n̄ = n + r and consider the shifted cubes [n]i =
[n] + n̄i, i ∈ Z

d , which are separated by a grid of corridors of width r . Let
[n]• = ⋃

i∈Zd [n]i be their union. We introduce a BRT Pn for which the cells that
hit the corridors between the boxes [n]i evolve according to �∗ and, conditioned
on this STIT evolution, the cells inside these boxes evolve independently accord-
ing to � . (This is inspired by the familiar construction of independent repetitions
in disjoint blocks, which is often used in large deviation theory; see [13], (15.52),
for example. Using the STIT process in the corridors between the blocks, we avoid
an artificial cutting of cells at the block boundaries.) Formally, we introduce the
projection

π0,out
[n]• : T �→ T0,out

[n]• :=
( ⋃

i∈Zd

T in[n]i ,0,
⋂

i∈Zd

Tout[n]i
)
,

and define

Pn = (
P��)0,out

[n]• ⊗ ⊗
i∈Zd

G�[n]i .(4.26)

More explicitly, Pn is defined by its integrals∫
f dPn =

∫
P��(dT)

∏
i∈Zd

∫
G�[n]i

(
dSi |T0,out

[n]i
)
f

(
T0,out

[n]• ∪ ⋃
i

Si

)
for measurable functions f ≥ 0 on BT. By the bounded-range property (M2), the
conditional BRTs G�[n]i (·|T0,out

[n]i ) depend only on T0,out
[n]• , so that Pn is well defined.

It is easily seen that Pn is a BRT with initial distribution P and division kernel

�n(s,T, c, ·) =
{

�(s,T, c, ·), if c ⊂ [n]i for some i ∈ Z
d ,

�
(〈c〉 ∩ ·), otherwise.

(4.27)

To achieve translation invariance, we introduce the average

Pn,av = n̄−d
∫
[n̄]

dx Pn ◦ ϑ−1
x .(4.28)

The next two lemmas show that the BRTs Pn,av belong to a restricted level set of
the inner entropy density, and thus have a cluster point.

LEMMA 4.14. (a) There exists a constant β < ∞ such that
i1(Pn,av) ≤ β for all n.

(b) For every ε > 0, there exists some τ < ∞ such that∫
Pn,av(dT)|T[1],1|1{|T[1],1|≥τ } ≤ ε for all n.
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PROOF. Let κ = κ� . Since ψ ≤ eκ by (M3), it follows that each kernel �n

also has a �-density ψn satisfying ψn ≤ eκ for all n. With the help of Remark 4.4,
we can further conclude that this bound remains true after localisation to a window
W ∈ P (relative to Pn); that is, the localised kernel �n

W has a �-density ψn
W with

ψn
W ≤ eκ . In particular, if W = [1] + x is a translate of the unit cube, then

�n
W

(
s,TW,s, c, 〈c〉) ≤ eκ�

(〈[1]〉) =: α < ∞(4.29)

for all possible arguments. In view of Lemma 4.3, it follows that∫
Pn(dT)|T[1]+x,1| ≤ β := i0(P )eα,(4.30)

and statement (a) follows by averaging over x.
To prove (b), we still let W = [1]+x and define ε1 = ε/4i0(P ). By Lemma 4.3,

there exists a number τ1 with

sup
n

∫
Pn(dT)

(|TW,1| − τ1|TW,0|)+ ≤ ε1i0(P ) = ε/4.

For any τ2 we then find (by distinguishing whether or not τ1|TW,0| ≤ τ2) that∫
Pn(dT)

(|TW,1| − τ2
)
+ ≤ ε/4 + eα

∫
P(dT )|T[1]|1{|T[1]|>τ2/τ1},

which is at most ε/2 for suitable choice of τ2. Setting τ = 2τ2 and using that

|TW,1| ≤ 2
(|TW,1| − τ2

)
+ on

{|TW,1| ≥ τ
}
,

we then see that ∫
Pn(dT)|T[1]+x,1|1{|T[1]+x,1|≥τ } ≤ ε

for all n. Statement (b) thus follows by taking the average over x ∈ [n̄]. �

LEMMA 4.15. hin(Pn,av;�) → 0 as n → ∞.

PROOF. Fix any n and let Pn and �n be given by (4.26) and (4.27). Consider
the inner relative entropy of Pn,av relative to � in a large cube W = [k] and with
horizon r = r� , as defined in (4.24). In concise notation, (4.24) reads

Hr,in
W (P;�) = H

(
PW+Br ;PW+Br,0,out

W ⊗ G�
W

)
.

As relative entropy is jointly measure convex, we have

Hr,in
W

(
Pn,av;�) ≤ n̄−d

∫
[n̄]

dxHr,in
W+x

(
Pn;�)

.

To estimate this further, we note that Pn has the division kernel �n. A combination
of (4.25), (4.23), (3.10) and an analog of (4.21) thus gives the formula

Hr,in
W+x

(
Pn;�) =

∫
d�Pn(s,Ts)

∑
c∈Ts : c⊂W+x

H
(
�n;�|s,Ts, c

)
,
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where H(�n;�|s,Ts, c) = H(�n(s,Ts, c, ·);�(s,Ts, c, ·)) for brevity. We can
further use that W + x ⊂ [k + n̄] when x ∈ [n̄]. Altogether, we obtain

Hr,in
W

(
Pn,av;�) ≤

∫
d�Pn(s,Ts)

∑
c∈Ts : c⊂[k+n̄]

H
(
�n;�|s,Ts, c

)
.

Next, it is clear from (4.27) that H(�n;�|·, ·, c) = 0 when c ⊂ [n]i for some i.
On the other hand, for any cell c hitting the corridors between the boxes [n]i we
have H(�n;�|·, ·, c) =H(�∗;�|·, ·, c), which is bounded by a constant. Indeed,
the function �(a) defined in (3.5) is bounded by a multiple of |a − 1| as long as
a ≤ eκ� . Assumptions (M3) and (M4) therefore imply that

H
(
�∗;�|·, ·, c) =

∫
〈c〉

�(dH)ψ(·, ·, c,H)�
(
1/ψ(·, ·, c,H)

) ≤ κ̃�

for some constant κ̃� < ∞ and all c hitting the corridors.
Now let k = (� − 1)n̄ for some integer � and L� be such that {[1] + x :x ∈ L�}

is a tessellation of [�n̄] \ [n]•. The preceding estimates then show that

Hr,in
[k]

(
Pn,av;�) ≤ ∑

x∈L�

∫
d�Pn(s,Ts)

∑
c∈Ts : c∩([1]+x) �=∅

H
(
�n;�|s,Ts, c

)
≤ κ̃�

∑
x∈L�

∫
d�Pn(s,Ts)|T[1]+x,1| ≤ κ̃�β|L�|.

The last inequality comes from (4.30). Letting � → ∞ and applying Corol-
lary 4.13, we finally see that

hin(
Pn,av;�) ≤ κ̃�β lim

�→∞
(�n̄)d − �dnd

((� − 1)n̄)d
= κ̃�β

(
1 − (n/n̄)d

)
.

This proves the lemma. �

Combining equation (3.11) with the last lemma and the bounds in Theorem 3.8
and Lemma 4.14(a), one finds that

hin(
Pn,av) ≤ (

κ� + κ ′
�

)
β + 1 =: γ < ∞

when n is large enough. That is, the measures Pn,av eventually belong to the se-
quentially compact level set P�,P,β,γ of Theorem 3.6. This means that a sub-
sequence converges in τloc to some P in this set. We need to show that P has
the division kernel � . In view of Theorem 3.9, this will follow once we have
shown that hin(P;�) = 0. By the last lemma, it is therefore sufficient to verify that
hin(·;�) is lower semi-continuous on the closure of the sequence {Pn,av :n ≥ 1}.
In view of equation (3.11) and Theorem 3.6, this follows from the next lemma,
which completes the proof of Theorem 3.10.
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LEMMA 4.16. The functionals uin(·;�) and vin(·;�) are continuous on the
closure C of the sequence {Pn,av :n ≥ 1}.

PROOF. First, we observe that the estimate in Lemma 4.14(b) holds not only
for all Pn,av, but even for all P ∈ C . This is because the integral there is a
lower semi-continuous function of the integrating measure. We further know from
Lemma 4.6 that each P ∈ C satisfies (LAC). Hence, Theorem 3.8 and Remark 4.12
can be applied.

It follows that uin(P;�) = ∫
udP for the function

u(T) = ∑
(s,c,H)∈D(T) : m(c)∈[1]

logψ(s,Ts−, c,H)

on BT, which in general is neither bounded nor local. We will therefore replace u

by a truncated version

uτ,�(T) = 1{|T[1],1|≤τ }
∑

(s,c,H)∈D(T) : m(c)∈[1],r(c)≤�

logψ(s,Ts−, c,H),

for suitable numbers τ and �; r(c) is again the radius of c. The function uτ,� is
bounded in modulus by κ�τ and also local because of (M2). It differs from u by
at most κ�(δτ + δ�) with the error functions

δτ (T) = 1{|T[1],1|>τ }|T[1],1|, δ�(T) = ∑
(s,c,H)∈D(T) : m(c)∈[1]

1{r(c)>�}.

As noticed at the beginning of this proof, we have supP∈C

∫
δτ dP → 0 as τ → ∞.

On the other hand, the function δ� is not larger than

δ′
�(T) = ∑

c0∈T0 : c0∩[1]�=∅,r(c0)>�

|Tc0∩[1],1|,

and Lemma 4.3 gives the estimate

sup
P∈C

∫
δ′
� dP ≤ eα

∫
P(dT )

∑
c0∈T0 : c0∩[1]�=∅

1{r(c0)>�}

for the constant α in (4.29) because each P ∈ C has initial distribution P . This
bound does not depend on n and tends to 0 as � → ∞ because i0(P ) < ∞. We
have thus shown that the restriction of uin(·;�) to C is the uniform limit of the
functions P �→ ∫

uτ,� dP, which are continuous in τloc.
The analogous result for vin(Pn,av;�) is achieved in a similar way by truncating

the function

v(T) =
∫ 1

0
ds

∑
c∈Ts : m(c)∈[1]

∫
〈c〉

�(dH)
(
ψ(s,Ts, c,H) − 1

)
and using (M4). �
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As the proof of Theorem 3.10 is now complete, we turn to its corollary.

PROOF OF COROLLARY 3.11. Suppose P ∈ G�(�) is not extremal in P�.
Then P = aP1 + (1 − a)P2 for some 0 < a < 1 and two distinct BRTs P1,P2 ∈
P�. By Theorem 3.6, Remark 4.12 and Theorem 3.9, it follows that

0 = hin(P;�) = ahin(
P1;�) + (1 − a)hin(

P2;�)
,

so that P1,P2 both belong to G�(�). Hence, P is not extremal in G�(�). �

Our final observation concerns the uniqueness problem discussed in Re-
mark 3.12. We will exploit the fact that, in one space dimension, we always have
that

∑
c∈TW

�(〈c〉) = �(〈W 〉) when W ∈ P and TW ∈ TW . Consider the following
variants of conditions (M3) and (M4):

(M3′) � is STIT-bounded, in that � ≤ K��∗ for some constant K� < ∞.
(M4′) � is STIT for large cells, in that �(·, ·, c, ·) = �(〈c〉 ∩ ·) whenever

diam(c) ≥ r ′
� for some constant r ′

� < ∞.

PROPOSITION 4.17. Suppose that the space dimension is d = 1. Let P ∈
P(T) and � be a division kernel satisfying (M2), (M3′) and (M4′). Then there
exists at most one BRT for � with initial distribution P .

PROOF. Suppose there exist two distinct BRTs P, P′ for � with the same
initial distribution P . Consider the difference measure Pδ = P − P′ and fix an
interval [k] ∈ P. Let g be B[k]-measurable with |g| ≤ 1. Using property (a) of
Theorem 3.1, we obtain for each 0 < t ≤ 1 the identity∫

g dPδ
t =

∫ t

0
ds

∫
Pδ

s (dTs)L
�
s g(Ts)

with

L
�
s g(Ts) = ∑

c∈Ts : c∩[k]�=∅

∫
〈c∩[k]〉

�(s,Ts, c,dH)
[
g
(�s,c,H (Ts)

) − g(Ts)
]
.

Now, (M2) and (M4′) imply that L�
s g(Ts) depends only on T[k+r],s with r =

2(r� + r ′
�). On the other hand, using (M3′) and the additivity of c �→ �(〈c〉) we

find that∣∣L�
s g(Ts)

∣∣ ≤ 2K�

∑
cTs : c∩[k]�=∅

�
(〈
c ∩ [k]〉) = 2K��

(〈[k]〉) =: αk.

The total variation norm δk(t) := ‖Pδ[k],t‖ thus satisfies the inequality

δk(t) ≤ αk

∫ t

0
δk+r (s)ds(4.31)
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of Gronwall type. (Note that δk is increasing and, therefore, measurable.) Since
δk+nr(s) ≤ 2, we obtain by n-fold iteration

δk(t) ≤ 2αn(k + nr)ntn/n! ≤ 2ek(αter)n
and thus, in the limit as n → ∞, δk(t) = 0 for all t < ε := 1/(αer) and all k.
Inserting this into (4.31) and repeating the estimate, we obtain that δk(t) = 0 for
all t < 2ε and all k. Continuing in this way, we finally find that δk(1) = 0 for all k,
which means that P = P′. �

Acknowledgements. We would like to thank Claudia Redenbach for provid-
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