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SECOND-ORDER ASYMPTOTICS FOR THE BLOCK COUNTING
PROCESS IN A CLASS OF REGULARLY VARYING

�-COALESCENTS

BY VLADA LIMIC1 AND ANNA TALARCZYK2

Université Paris-Sud and University of Warsaw

Consider a standard �-coalescent that comes down from infinity. Such
a coalescent starts from a configuration consisting of infinitely many blocks
at time 0, but its number of blocks Nt is a finite random variable at each
positive time t . Berestycki et al. [Ann. Probab. 38 (2010) 207–233] found
the first-order approximation v for the process N at small times. This is
a deterministic function satisfying Nt/vt → 1 as t → 0. The present pa-
per reports on the first progress in the study of the second-order asymp-
totics for N at small times. We show that, if the driving measure � has a
density near zero which behaves as x−β with β ∈ (0,1), then the process
(ε−1/(1+β)(Nεt /vεt − 1))t≥0 converges in law as ε → 0 in the Skorokhod
space to a totally skewed (1 + β)-stable process. Moreover, this process is
a unique solution of a related stochastic differential equation of Ornstein–
Uhlenbeck type, with a completely asymmetric stable Lévy noise.

1. Introduction and main results.

1.1. Background. The �-coalescents were introduced and first studied inde-
pendently by Pitman [17] and Sagitov [18] and were also considered in a contem-
poraneous work of Donnelly and Kurtz [10]. They are useful models of genealog-
ical trees of populations that evolve under the assumption of unbounded variance
in the reproduction (resampling) mechanism. Berestycki et al. [3] derive the first-
order approximation for the number of blocks in a general standard �-coalescent
that comes down from infinity. The present work initiates the study of the second-
order approximation for the same process. We next recall the basic definitions,
mention some of the landmark results and present the motivation for the problem
we resolved in this work. For recent overviews of the literature, we refer the reader
to [4, 5].

Let � be an arbitrary finite measure on [0,1]. We denote by (�t , t ≥ 0) the
associated �-coalescent. This Markov jump process (�t , t ≥ 0) takes values in
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the set of partitions of {1,2, . . .}. Its law is specified by the requirement that, for
any n ∈ N, the restriction �n of � to {1, . . . , n} is a continuous-time Markov
chain with the following transitions: whenever �n has b ∈ [2, n] blocks, any given
k-tuple of blocks coalesces at rate λb,k := ∫

[0,1] rk−2(1 − r)b−k�(dr). The total
mass of � can be scaled to 1. This is convenient for the analysis, and corresponds
to a constant time rescaling of the process. Henceforth, we assume that � is a
probability measure.

The standard �-coalescent starts from the trivial configuration {{i} : i ∈ N}. Let
us denote by N�(t) [or N(t) if clear from the context] the number of blocks of
�(t) at time t . If P(N�(t) < ∞,∀t > 0) = 1, the coalescent is said to come down
from infinity. As part of his thesis work, Schweinsberg [20] derived the following
criterion: the (standard) �-coalescent comes down from infinity (CDI) if and only
if

∞∑
b=2

(
b∑

k=2

(k − 1)

(
b

k

)
λb,k

)−1

< ∞.(1.1)

Let

�∗(q) =
∫ 1

0

(
e−yq − 1 + qy

)�(dy)

y2 .(1.2)

Bertoin and Le Gall [6] obtained an equivalent condition: �-coalescent CDI if and
only if ∫ ∞

a

1

�∗(q)
dq < ∞ for some (and then all) a > 0.(1.3)

Throughout the paper, we will assume (1.3). Let N = (Nt , t ≥ 0) be the block
counting process defined above, so that N(0) = ∞ and P(Nt < ∞) = 1 for all
t > 0. As indicated above, in [3], Theorem 1 it is shown that, solely under (1.3),
there exists a “law of large numbers” approximation for the block counting pro-
cess, more precisely,

lim
t→0+Nt/v

∗
t = 1 almost surely,(1.4)

where v∗ is uniquely determined by
∫ ∞
v∗
t

1
�∗(q)

dq = t , for all t > 0. Any function
satisfying (1.4) is called a speed of coming down from infinity, or a speed of CDI.

Instead of �∗ we choose to work with � : [1,∞) �→R+ defined by

�(q) =
∫ 1

0

(
(1 − y)q − 1 + qy

)�(dy)

y2 .(1.5)

This function is different from � used in [3] (which is now our �∗). Moreover,
our � appeared as �̄ in [2, 13–15] where it was already noted that this function
arises from the model in a more natural way [see also (3.2) and (3.4)], and it may
be more convenient for analysis than �∗. It is not difficult to see that � and �∗
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have the same asymptotic behavior at ∞ (see Lemma 2.1 or [2, 13]), and that
therefore (1.1) and (1.3) are further equivalent to∫ ∞

a

1

�(q)
dq < ∞ for some (and then all) a > 1.(1.6)

Moreover, if we define v :R+ �→R+ by

t =
∫ ∞
vt

1

�(q)
dq,(1.7)

then (see Lemma 2.2) vt ∼ v∗
t as t → 0, and so v is also a speed of CDI for the

corresponding �-coalescent.
From the results of Berestycki et al. [3], it follows that the asymptotic behavior

of the speed vt of CDI for small t depends very strongly on the behavior of the
driving measure � near 0. This is caused by the fact that the behavior of � near 0
is linked to the asymptotics of �(q) as q → ∞ by a result of a tauberian nature.
For example, if for small x,

�(dx) ≈ x−β dx with β ∈ (0,1),(1.8)

then vt ∼ Ct−1/β , for some C ∈ (0,∞), as t → 0 (see Lemma 2.5). Note that (1.8)
is understood in the sense of assumption (A) in Section 1.2.

A natural question is to study the second-order fluctuations of N about its speed
of CDI. In particular, one wishes to understand how close is Nt

vt
to 1 at small times,

and if this proximity can be measured in some regular (and universal) way. In
the present paper, we address this problem by considering the fluctuations in a
functional sense, with time scaled by ε → 0. More precisely, we investigate the
convergence in law of the processes(

r(ε)

(
Nεt

vεt

− 1
)
, t ≥ 0

)
,(1.9)

were r(ε) is an appropriately chosen normalization so that the limit process is
nontrivial.

It turns out that both the normalization r(ε) and the limit process again depend
on the behavior of � near 0. The singularity exponent β of the density of � near
0 decides the rate of convergence of Nt

vt
and, therefore, of Nt

v∗
t

, to 1.

1.2. Main results. We assume that the coalescent does not have a Kingman
part and also that �({1}) = 0, so that the �-coalescent either comes down from
infinity or stays infinite forever (see Pitman [17]). We formalize (1.8) in the fol-
lowing way, making it our main assumption.

ASSUMPTION. �({0}) = �({1}) = 0. Moreover, there exists y0 ≤ 1 such that

�(dy) = g(y) dy, y ∈ [0, y0] and lim
y→0+g(y)yβ = A(A)

for some 0 < β < 1 and 0 < A < ∞.
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REMARK 1.1. (a) Condition β > 0 ensures that the � coalescent satis-
fies (1.6), hence that it comes down from infinity, since it is not difficult to see
that (A) implies that �(q) ∼ Cq1+β as q → ∞ (see also Lemma 2.5 below). Con-
dition β < 1 is clear, since � has to be a finite measure.

(b) Assumption (A) is satisfied by all the Beta-coalescents that come down
from infinity, that is, all the coalescents where � has density of the form g(y) =

1
B(1−β,a)

y−β(1 − y)a−1, for some 0 < β < 1 and a > 0 and the normalizing con-
stant is the appropriately evaluated Beta function.

(c) By Lemma 2.1 in the next section, � is a continuous and strictly increasing
function on [1,∞), strictly positive on (1,∞), and

∫ ∞
1 dq/�(q) ≥ ∫ ∞

1 dq/q(q −
1) = ∞. This, together with CDI, implies that v given by (1.7) is a well defined
strictly decreasing function on (0,∞) and it takes values in (1,∞).

Further properties of v and � can be found in Section 2. Under assumption (A),
we can obtain precise asymptotics of the speed of coming down from infinity v

and the function �; see Lemma 2.5. In particular, as t → 0 we have vt ∼ v∗
t ∼

K1t
−1/β , where

K1 =
(

1 + β

A�(1 − β)

)1/β

,(1.10)

and where � is the Gamma function.

We shall study the asymptotic behavior, as ε → 0, of the process Xε =
(Xε(t))t≥0 defined by

Xε(0) = 0 and Xε(t) = ε−1/(1+β)

(
Nεt

vεt

− 1
)
, t > 0.(1.11)

For each B ∈ B(R) Borel set, let |B| denote its Lebesgue measure. Let M be
an independently scattered (1 + β)-stable random measure on R with skewness
intensity 1. That is, for each B ∈ B(R) such that 0 < |B| < ∞, M(B) is a (1+β)-
stable random variable with characteristic function

exp
{
−|B||z|1+β

(
1 − i(sgn z) tan

π(1 + β)

2

)}
, z ∈R,

M(B1),M(B2), . . . are independent whenever B1,B2, . . . are disjoint sets, and
M is σ -additive a.s. (see Samorodnitsky and Taqqu [19], Definition 3.3.1).

We are now ready to state the main result.

THEOREM 1.2. Assuming (A), the process Xε defined in (1.11) converges in
law in the Skorokhod space D([0,∞)) equipped with J1 topology to a (1 + β)-
stable process Z = (Zt )t≥0 given by

Z(t) = −K

t

∫ t

0
uM(du), t > 0,Z(0) = 0,(1.12)
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where K is the following positive constant:

K =
(
−A

∫ ∞
0

(
e−y − 1 + y

)
y−2−β dy cos

π(1 + β)

2

)1/(1+β)

.(1.13)

The proof of this theorem is given in Section 4.

REMARK 1.3. (a) The integral in (1.12) is understood in the sense of Chap-
ter 3 of [19].

(b) The process Z can be also expressed as

Z(t) = −K

t

∫ t

0
udLu, t > 0,Z(0) = 0,

where L is the (1+β)-stable totally skewed to the right (having no negative jumps)
Lévy process. Moreover, Z solves the following stochastic differential equation of
the Ornstein–Uhlenbeck type:

Z(t) = −
∫ t

0
s−1Z(s) ds − KL(t).(1.14)

(c) It was already mentioned (cf. Remark 1.1) that assumption (A) is satisfied by
Beta-coalescents which come down from infinity. Theorem 1.2 shows that, from
the point of view of behavior of Nt , vt and Nt/vt −1 near 0, any �-coalescent sat-
isfying (A) resembles a corresponding Beta-coalescent (or rather a class of Beta-
coalescents) having driving measure(s) of the form Beta(1−β,a), for some a > 0.

The fact that the limit process is (1 + β)-stable can be explained by ob-
serving that for each β ∈ (0,1), one member of the above family [notably the
Beta(1−β,1+β)-coalescent] was obtained from genealogies of populations with
supercritical infinite variance branching both by Sagitov [18] [in his setting, the
branching mechanism has generating function 1 − 1+β

β
(1 − s)+ 1

β
(1 − s)1+β ] and

by Schweinsberg [22] (in his setting, the probability that the individual has k or
more offspring decays like k−(1+β)). It is well known that branching laws of this
type are in the domain of attraction of the (1 + β)-stable law. Moreover, the lim-
its of fluctuations related to infinite variance branching systems of type 1 + β are
usually (1 + β)-stable. (See, e.g., Iscoe [12] Theorem 5.4 and 5.6 and Bojdecki et
al. [9].) Another connection is due to [8], relating Beta(1 − β,1 + β)-coalescents
to continuous state (1 + β)-stable processes. The limit process is naturally totally
skewed to the left, as Nt only has negative jumps, hence so does Xε .

We also wish to mention here a related work of Schweinsberg [23], where fluc-
tuations of the number of blocks of the Bolthausen–Sznitman coalescent were in-
vestigated (see Theorem 1.7 in [23]). This is a different setting from ours, since the
Bolthausen–Sznitman coalescent does not come down from infinity [(1.8) holds
in this case with β = 0]. Schweinsberg investigated appropriately rescaled fluc-
tuations of the number of blocks of the Bolthausen–Sznitman coalescent starting
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from n blocks in the limit as n → ∞. It is interesting to note that the limit in [23]
involves a totally skewed 1-stable process.

Another interesting fact is that the present analysis (in the sense of functional
convergence) has not been carried out even for the case of the Kingman coales-
cent, where � is the Dirac measure at 0. It is known in this case that the law of
t−1/2(Nt/vt − 1) converges to a Gaussian law; see, for example, Aldous [1]. Here,
we assume that �({0}) = 0, so that the coalescent does not have the Kingman part.
We postpone the study of the complementary setting to a future work. We con-
jecture that in the case of the pure Kingman coalescent (i.e., � is the Dirac mass
at 0) the limit process in (1.9) will have a form similar to (1.12), where the inte-
gration with respect to the stable random measure is replaced by integration with
respect to Brownian motion. The Kingman case, although seemingly easier, can-
not be done with our present technique, since here we rely heavily on the Poisson
process construction of � coalescents, which is particularly nice if �({0}) = 0.

Under assumption (A), we have vt ∼ v∗
t ∼ wt = K1t

−1/β (see Lemma 2.5). It
is therefore natural to ask whether one obtains the same results if in (1.11) v is
replaced by v∗ or w. The answer is positive for v∗. For w∗, one has to assume
additional regularity of � near 0.

Define X∗
ε (0) = 0, X

β
ε (0) = 0 and

X∗
ε (t) = ε−1/(1+β)

(
Nεt

v∗
εt

− 1
)
,

(1.15)

Xβ
ε (t) = ε−1/(1+β)

(
(εt)1/β Nεt

K1
− 1

)
, t > 0,

where K1 is the constant given by (1.10). Let �⇒ denote the convergence in law
of processes with respect to the Skorokhod topology.

As a corollary to Theorem 1.2, we obtain the following results.

THEOREM 1.4. Assume (A), and let Z and K be as in Theorem 1.2. Then

(a) X∗
ε �⇒ Z,

(b) if moreover (yβg(y) − A) = O(yα), as y → 0, for some α > β/(1 + β),
then

Xβ
ε �⇒ Z.

The proof is postponed until Section 5.

REMARK 1.5. As a counterpart to part (b) in Section 5.2, we exhibit a family
of counterexamples, for which y �→ yβg(y) is not sufficiently Hölder continuous
at 0, and the above “natural extension” of convergence in Theorem 1.4(b) fails. In
turns out that one does not have to search hard for counterexamples: the first guess
g(y) = y−β + yα−β , where α is such that α < β/(β + 1), already does the trick.
This illustrates a remarkable sensitivity of the second-order approximation for N

with respect to the smoothness of � near 0.
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1.3. Main tools. When �({0}) = 0, one can construct a realization of the cor-
responding �-coalescent from a Poisson point process in the following (now stan-
dard) way. Let

π(·) = ∑
i∈N

δ(Ti,Yi)(·)(1.16)

be a Poisson point process on R+ ×(0,1) with intensity measure dt ⊗ν(dy) where
ν(dy) = y−2�(dy). Each atom (t, y) of π impacts the evolution of � as follows:
for each block of �(t−) a coin is flipped with probability of heads equal to y; all
the blocks corresponding to coins that come up “head” are merged immediately
into one single block, and all the other blocks remain unchanged. In order to make
this construction rigorous, one initially considers the restrictions (�(n)(t), t ≥ 0),
since the measure ν may be infinite (see, e.g., [4, 5]).

Our technique is based on a novel approach, using an explicit representation of
the block counting process in terms of an enriched Poisson random measure πE .
This measure πE is defined on a larger space in such a way that it also includes the
information on (individual block) coloring. One can then write an integral equa-
tion for the number of blocks Nt involving an integral with respect to πE . This
equation turns out to be analytically tractable. In our approach, we rely on the
properties of integrals with respect to Poisson, compensated Poisson and stable
random measures, Laplace transforms of Poisson integrals and of totally skewed
stable random variables, as well as standard tools in the analysis of processes in
the Skorokhod space, for example, the Aldous criterion for tightness. Moreover, a
deterministic lemma from [3], for comparing solutions to two different Cauchy (or
Cauchy-like) problems, turns out to be very useful.

The remainder of the paper is organized as follows. In Section 2, we give some
basic information on the properties of � and v; in Section 3, we develop the in-
tegral equations for N and N/v and study their basic properties. This is done
in a fairly general setting; in Section 4, we give the proof of the main result—
Theorem 1.2; in Section 5, we prove Theorem 1.4 and discuss the problem of
robustness.

Throughout the paper, C,C1,C2, . . . always denote positive constants which
may be different from line to line.

2. Preliminary results. In this section, we collect some of the basic proper-
ties of � and v and their relation to the block counting process N . Unless other-
wise stated, the facts presented in this section do not require (A) and are derived
for general �.

Recall that � and v are defined by (1.5) and (1.7), respectively. Let us also
define

h(q) := �(q)

q
.(2.1)
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For 0 < a ≤ 1, let �a (resp., �∗
a ) be defined by (1.5) [resp., (1.2)] with �(dy)

replaced by �a(dy) = 1[0,a](y)�(dy).
The first lemma concerns the most general setting, up to time-change.

LEMMA 2.1. Let � be an arbitrary probability measure on [0,1] satisfying
�({0}) = �({1}) = 0. Then the function � given by (1.5) is well defined on [1,∞).
In addition,

(i) � is continuous on [1,∞) and strictly positive on (1,∞),
(ii) for any q ≥ 1

�(q) ≤ q(q − 1),(2.2)

0 ≤ �∗(q) − �(q) ≤ q

2
,(2.3)

(iii) for any q ≥ 1 and a ∈ (0,1)

0 ≤ �(q) − �a(q) ≤ q

a
,(2.4)

0 ≤ �∗(q) − �∗
a (q) ≤ q

a
,(2.5)

(iv) and both � and h are strictly increasing on [1,∞) and differentiable on
(1,∞).

Most of these facts are known in the literature but for the benefit of the reader we
will include a short proof. Note that (2.3) implies the equivalence of (1.3) and (1.6).

PROOF OF LEMMA 2.1. We start with some useful representations for � .
Clearly, �(1) = 0 and if q > 1 we have

�(q) = q

∫ 1

0

∫ y

0

(
1 − (1 − r)q−1)

dr
�(dy)

y2(2.6)

= q(q − 1)

∫ 1

0

∫ y

0

∫ r

0
(1 − u)q−2 dudr

�(dy)

y2(2.7)

= q(q − 1)

∫ 1

0

∫ 1

0

∫ r

0
(1 − uy)q−2 dudr�(dy).(2.8)

Representation (2.8) shows that � is finite, continuous on [1,∞), and strictly pos-
itive on (1,∞). Note that if q ≥ 2, then the integrand in (2.8) is smaller than 1 so
�(q) ≤ q(q − 1)/2. The general estimate (2.2) follows from (2.8), the fact that for
0 ≤ u,y ≤ 1 and q ≥ 1 we have (1−uy)q−2 ≤ (1−u)−1 (easy for q = 1, and then
use monotonicity) and finally the identity

∫ 1
0 log(1 − r) dr = −1. The estimates of

type (2.3) were already derived in [3, 13, 15]. The lower bound is a consequence
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of (1.2), (1.5) and the trivial inequality (1 − y)q ≤ e−qy for 0 ≤ y ≤ 1. The upper
bound can obtained, for example, by using (2.6) and its analogue for �∗ that yield

�∗(q) − �(q) = q

∫ 1

0

∫ y

0

(
(1 − r)q−1 − e−qr)dr

�(dy)

y2 ,

and observing that (1 − r)q−1 − e−qr ≤ (1 − r)q−1 − (1 − r)q ≤ r for 0 ≤ r ≤ 1
and q ≥ 1. The bound (2.4) follows easily from (2.6), and (2.5) can be proved
via a similar representation for �∗. For (iv), it clearly suffices to show that h is
increasing and differentiable. This can be easily seen from (2.6). �

From now on, we assume that �({0}) = �({1}) = 0 and that the �-coalescent
comes down from infinity, which is equivalent to any of (1.1), (1.3), (1.6). By
Lemma 2.1, � is a continuous and strictly increasing function on [1,∞), strictly
positive on (1,∞) and

∫ ∞
1 dq/�(q) ≥ ∫ ∞

1 dq/q(q − 1) = ∞. As already men-
tioned in the Introduction, this implies that v is a well defined strictly decreasing
function on (0,∞). Moreover, v has the following properties.

LEMMA 2.2. (i) vt > 1 for all t > 0, limt→0+ vt = ∞ and limt→∞ vt = 1,

(ii) v is differentiable and

v′
t = −�(vt ),(2.9)

(iii) in addition

lim
t→0+

vt

v∗
t

= 1.(2.10)

(iv) Therefore,

lim
t→0+

Nt

vt

= 1 almost surely,(2.11)

(v) and for any p > 0,

lim
t→0+E sup

0<s≤t

∣∣∣∣Ns

vs

− 1
∣∣∣∣
p

= 0.(2.12)

Moreover, for any p > 0 there exists C(p) > 0 such that

E sup
s≥0

(
Ns

vs

)p

≤ C(p).(2.13)

REMARK 2.3. Parts (iv) and (v) of Lemma 2.2 say that Nt

vt
converges to 1

almost surely and in Lp , for any p > 0. This was shown with v∗ in place of v

in [3] Theorems 1 and 2. Moreover, in the same article (2.13) was derived, again
with v∗ in place of v. (Note that [3] Theorem 2 assumes that p ≥ 1, but this can be
easily extended to all p ∈ (0,1) by Jensen’s inequality.) Due to (2.10), one obtains
(iv)–(v) without any additional work. In comparison, Lemma 3.7 stated at the end
of Section 3 is a novel and stronger estimate, important for our analysis.
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We recall next the following elementary estimate that will be used frequently in
the proofs (see [3], Lemma 10 for derivation).

LEMMA 2.4. Suppose f,g : [a, b] �→ R are càdlàg functions such that

sup
x∈[a,b]

∣∣∣∣f (x) +
∫ x

a
g(u)du

∣∣∣∣ ≤ c(2.14)

for some c < ∞. If in addition f (x)g(x) > 0, x ∈ [a, b] whenever f (x) �= 0, then

sup
x∈[a,b]

∣∣∣∣
∫ x

a
g(u)du

∣∣∣∣ ≤ c and sup
x∈[a,b]

∣∣f (x)
∣∣ ≤ 2c.

PROOF OF LEMMA 2.2. We have �(1) = 0. Moreover, (2.2) shows that∫ ∞
1 dq/�(q) = ∞. Together with the strict positivity of � on (1,∞) and (1.6),

this implies that x → F(x) := ∫ ∞
x dq/�(q) maps (1,∞) bijectively to (0,∞).

Since v is the inverse of F , it is clearly a strictly decreasing function and (i) holds.
Property (ii) is clear by the definition of v and fundamental theorem of calculus.
Provided we show the claim in (iii), (iv) is clearly true due to (1.4). Similarly,

Nt

vt

− 1 = v∗
t

vt

(
Nt

v∗
t

− 1
)

+ v∗
t

vt

− 1,

so (iii) and [3] Theorem 2 together imply (2.12). The estimate in (2.13) follows
easily from (2.12) by the triangle inequality, the (decreasing) monotonicity of N ,
and the fact that vt ∈ (1,∞) for each t > 0.

In the rest of the argument, we prove (iii). This deterministic argument is a sim-
plified version of the stochastic (martingale based) argument for [3], Theorem 1.
We will show a somewhat stronger statement: log vt

v∗
t

= O(t) as t → 0+. In order

to do this, for n ∈ N, n > 1 define the functions v(n) and v∗,(n) by

t =
∫ n

v
(n)
t

1

�(q)
dq and t =

∫ n

v
∗,(n)
t

1

�∗(q)
dq.

By Lemma 2.1, � is strictly positive on (1,∞) and it satisfies
∫ n

1
dq

�(q)
= ∞, hence

v
(n)
t is well defined. Similarly, it is easy to see (and checked in [3]) that �∗ is

strictly positive on (0,∞) and
∫ n

0
dq

�∗(q)
= ∞, so v

∗,(n)
t is also well defined. More-

over, by (1.3) and (1.6) for each t > 0, we have that v
(n)
t ↗ vt and v

∗,(n)
t ↗ v∗

t as
n → ∞. The functions v(n) and v∗,(n) satisfy equations

v
(n)
t = n −

∫ t

0
�

(
v(n)
s

)
ds and v

∗,(n)
t = n −

∫ t

0
�∗(

v∗,(n)
s

)
ds.

Hence, d logv
(n)
t = −�(v

(n)
t )/v

(n)
t dt and d logv

∗,(n)
t = −�∗(v∗,(n)

t )/v
∗,(n)
t dt .

This implies that

log
v

(n)
t

v
∗,(n)
t

+
∫ t

0

[
�(v

(n)
s )

v
(n)
s

− �∗(v∗,(n)
s )

v
∗,(n)
s

]
ds = 0.
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Observe also that if t is sufficiently small, then v∗
t ≥ 2. Hence, there exists a t∗2 > 0

such that for all sufficiently large n we have inft∈[0,t∗2 ] v∗,(n)
t > 1. For such n and

t ≤ t∗2 , one can rewrite the last identity as

log
v

(n)
t

v
∗,(n)
t

+
∫ t

0

[
�(v

(n)
s )

v
(n)
s

− �(v
∗,(n)
s )

v
∗,(n)
s

]
ds

(2.15)

=
∫ t

0

�∗(v∗,(n)
s ) − �(v

∗,(n)
s )

v
∗,(n)
s

ds.

By (2.3), the absolute value of the integral on the right-hand side of this equation is
bounded by t

2 . Moreover, by Lemma 2.1(iv), the function q �→ �(q)/q is strictly

increasing, so we can apply Lemma 2.4 obtaining | log(v
(n)
t /v

∗,(n)
t )| ≤ t . Letting

n → ∞, we get ∣∣∣∣log
vt

v∗
t

∣∣∣∣ ≤ t,(2.16)

thus completing the proof. �

Under assumption (A), it is possible to study the asymptotics of � and v in
much more detail, as given by the following lemma.

LEMMA 2.5. Assume (A). Then

(i)

lim
q→∞

�(q)

q1+β
= lim

q→∞
�∗(q)

q1+β
= A�(1 − β)

β(β + 1)
,(2.17)

(ii)

lim
t→0+ tv

β
t = lim

t→0+ t
(
v∗
t

)β = 1 + β

A�(1 − β)
.(2.18)

Moreover, there exist C1,C2 > 0 such that for all t > 0

C1
(
t−1/β ∨ 1

) ≤ vt ≤ C2
(
t−1/β ∨ 1

)
.(2.19)

(iii) For h defined by (2.1), we have

lim
q→∞q1−βh′(q) = A�(1 − β)

1 + β
,(2.20)

moreover,

sup
q≥1

q1−βh′(q) < ∞.(2.21)
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PROOF. (i) From assumption (A), it follows that there exists 0 < a < 1
2 such

that � has a density g on [0, a] and

A

2
≤ inf

0<y≤a
g(y)yβ ≤ sup

0<y≤a

g(y)yβ ≤ 2A.(2.22)

Due to (2.3)–(2.5), it suffices to prove (2.17) with �∗
a . It is immediate to check that

�∗
a (q) = q2 ∫ 1

0
∫ 1

0
∫ r

0 e−quy dudr�a(dy) [note that this is an analogue of (2.8)].
Hence,

lim
q→∞

�∗
a (q)

q1+β
= lim

q→∞q1−β
∫ 1

0

∫ r

0

∫ a

0
e−qyug(y) dy dudr

= lim
q→∞

∫ 1

0

∫ r

0

∫ auq

0
uβ−1e−yy−βg

(
y

qu

)(
y

qu

)β

dy dudr

= A�(1 − β)

β(1 + β)
,

where the second equality is obtained via the substitution y′ = uqy (then y′ is
renamed y) while the third follows by (A), (2.22) and the dominated convergence
theorem.

(ii) Due to (1.7) and the fact that v diverges to ∞ at 0, we have

lim
t→0

tv
β
t = lim

x→∞xβ
∫ ∞
x

1

�(q)
dq,

and by the l’Hospital rule and (2.17) we obtain that limt→0 tv
β
t = 1+β

A�(1−β)
. The

same is true for v∗. Finally, note that (2.19) follows from (2.18), the (decreasing)
monotonicity of v and the fact that vt > 1 for all t .

(iii) Let a be as in the proof of part (i). By (2.6), we have that

h = ha + h̃a,(2.23)

where

ha(q) =
∫ a

0

∫ y

0

(
1 − (1 − r)q−1)

dr
�(dy)

y2 ,(2.24)

h̃a(q) =
∫ 1

a

∫ y

0

(
1 − (1 − r)q−1)

dr
�(dy)

y2 .(2.25)

Then

h′
a(q) =

∫ a

0

∫ y

0

(− ln(1 − r)
)
(1 − r)q−1 dr

g(y)

y2 dy(2.26)

and

h̃′
a(q) =

∫ 1

a

∫ y

0

(− ln(1 − r)
)
(1 − r)q−1 dr

�(dy)

y2 .(2.27)
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In the above expression for h̃′
a , we substitute r ′ = − ln(1 − r) and use the obvious

estimates to get

h̃′
a(q) ≤ 1

a2

∫ ∞
0

re−rq dr = 1

a2q2 .(2.28)

For h′
a , we first use the substitution r ′ = r

y
and then y′ = y(q − 1)r ′ to obtain

q1−βh′
a(q)

= q1−β

(q − 1)1−β

∫ 1

0

∫ a(q−1)r

0

(− ln(1 − y/(q − 1)))

y/(q − 1)

(
1 − y

q − 1

)q−1

(2.29)

× rβ g(y/(r(q − 1)))(y/(r(q − 1)))β

yβ
dy dr.

Hence, again (A), (2.22) and the dominated convergence theorem yield

lim
q→∞q1−βh′

a(q) = A�(1 − β)

1 + β
.(2.30)

Here, we use the facts that (1 − y
q−1)q−1 ≤ e−y , − ln(1 − z)/z → 1 as z → 0,

and also that supz≤ar<1/2 − ln(1 − z)/z is a finite quantity. Now (2.23), (2.28) and
(2.30) jointly imply (2.20).

The expression (2.29) and the bounds just used in deriving (2.20) also imply
that the function q �→ q1−βh′

a(q) is bounded on [2,∞) and, due to the global con-
tinuity of h′

a , we conclude that the same function is bounded on [1,∞). Together
with (2.28) and (2.23), this proves (2.21). �

3. Integral equations for N . In this section, we give a representation of the
block counting process N of a given �-coalescent in terms of an integral equation
involving the corresponding Poisson random measure. We also write an equation
for the process N divided by the speed of CDI. Some preliminary estimates are
included at the end.

This construction is our starting point to the proof of the main theorem. The
approach presented here is quite general, and we hope it to be of independent
interest.

In this section and the rest of the paper, we again assume that �({0}) =
�({1}) = 0 and that any (and therefore all) of (1.1), (1.3), (1.6) hold.

As discussed in Section 1.3, the �-coalescent can be constructed via a coloring
procedure which is based on a Poisson random measure π on [0,∞) × [0,1], and
an independent assignment of colors to the blocks. Here, we introduce an enriched
Poisson random measure which contains all the information on the coloring. This
is a key ingredient in the first important novelty of our approach—an explicit rep-
resentation of the martingale which drives the block counting process N .
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In order to explain this now, we will need some additional notation. As usual,
let N denote the set of natural numbers (without zero). Let μ be the law of a
sequence of i.i.d. random variables X1,X2, . . . uniformly distributed on [0,1], that
is, μ is a probability measure on [0,1]N, equipped with the product σ -algebra
generated by the cylinder sets of the form B1 ×B2 ×· · ·×Bn ×[0,1]×[0,1]×· · · ,
n ∈ N, Bi ∈ B([0,1]), i ∈ N. The vectors in [0,1]N will be denoted in boldface
x = (x1, x2, . . .) ∈ [0,1]N. We will usually write dx instead of μ(dx).

Let πE be a Poisson random measure on [0,∞) × [0,1] × [0,1]N with inten-
sity measure ds

�(dy)

y2 dx. Observe that such a random measure can be constructed
using a Poisson random measure π from (1.16) and an independent array of i.i.d.
random variables (Xi

j )i,j∈N, where Xi
j have uniform distribution on [0,1]. Then

πE = ∑
i∈N δ(Ti,Yi ,Xi) is a Poisson random measure with intensity ds

�(dy)

y2 dx.

Moreover, π and πE are coupled by the relation

π(·) = πE(· × [0,1]N)
.(3.1)

We will henceforth assume that (3.1) holds. Then we can construct the � coales-
cent by the following procedure: upon arrival of an atom (t, y,x) of πE , the j th
block present in the configuration at time t− is colored if and only if xj ≤ y. Once
the colors are assigned, in order to form the configuration at time t , merge all the
colored blocks into a single block, and leave the other (uncolored) blocks intact.

Recall that we assume that the coalescent comes down from infinity, so Nr < ∞
a.s. for any r > 0. The procedure described above implies that

Nt = Nr −
∫
(r,t]×[0,1]×[0,1]N

f (Ns−, y,x)πE(ds dy dx)

(3.2)
for all 0 < r < t,

where f is a function which quantifies the decrease in the number of blocks during
a coalescing event:

f (k, y,x) =
(

k∑
j=1

1{xi≤y} − 1

)
∨ 0 =

k∑
j=1

1{xi≤y} − 1 + 1⋂k
j=1{xj>y}.(3.3)

Integration with respect to Poisson random measures is well understood; the reader
is referred, for example, to [16].

Recall (1.5). One can easily see that

�(k) =
∫
[0,1]×[0,1]N

f (k, y,x)
�(dy)

y2 dx.(3.4)

Since � is an increasing function and N a decreasing process, we have∫
(r,t]

�(Ns−) ds ≤ �(Nr)(t − r) ≤ N2
r (t − r),
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where the last inequality is due to (2.2). We know that EN2
r < ∞ [see, e.g., (2.13)]

hence,

E

∫
(r,t]×[0,1]×[0,1]N

f (Ns−, y,x) ds
�(dy)

y2 dx < ∞.

This implies that the integral in (3.2) belongs to L1 (see, e.g., Theorem 8.23
in [16]).

As the first step toward the proof of Theorem 1.2, we have just shown [see (3.2)
and (3.4)] the following.

LEMMA 3.1. For any 0 < r < t ,

Nt = Nr −
∫ t

r
�(Ns) ds −

∫
(r,t]×[0,1]×[0,1]N

f (Ns−, y,x)π̂E(ds dy dx),(3.5)

where π̂E denotes the compensated Poisson random measure

π̂E(ds dy dx) = πE(ds dy dx) − ds
�(dy)

y2 dx.(3.6)

REMARK 3.2. The above representation can be done for N(n), the counting
process of the number of blocks of a �-coalescent starting from n blocks, even if
the �-coalescent does not come down from infinity. Moreover, a similar represen-
tation exists for �-coalescents, and might be useful in similar type of analysis as
done here. For background on this general class of exchangeable coalescents, we
refer the reader to [4, 5, 21].

More importantly, we can write a stochastic integral equation for Nt

vt
. Indeed,

due to (1.7) we have

vt = vr −
∫ t

r
�(vs) ds, 0 < r < t,

thus,

1

vt

= 1

vr

+
∫ t

r

�(vs)

v2
s

ds

and, therefore, (3.2) and a simple application of integration by parts yield

LEMMA 3.3. For any 0 < r < t ,

Nt

vt

= Nr

vr

−
∫ t

r

Ns

vs

(
�(Ns)

Ns

− �(vs)

vs

)
ds

(3.7)

−
∫
(r,t]×[0,1]×[0,1]N

f (Ns−, y,x)

vs

π̂E(ds dy dx),

where π̂E is as in (3.6).
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REMARK 3.4. A predecessor of this result existed in [3, 14], where the pro-
cess of main interest was logN/v∗ instead of N/v. The martingale part was not
written down explicitly and, therefore, could not be used in the precise way that it
will be used here. Note that due to (2.16), these previous analyses of logN/v∗ as
t → 0 apply equivalently to logN/v.

It is natural to continue by investigating the integral with respect to π̂E .

LEMMA 3.5. The process M̃ = (M̃(t))t≥0, where

M̃(t) =
∫
[0,t]×[0,1]×[0,1]N

f (Ns−, y,x)

vs

π̂E(ds dy dx)(3.8)

is a well defined, square integrable martingale with quadratic variation

[M̃](t) =
∫
[0,t]×[0,1]×[0,1]N

(
f (Ns−, y,x)

vs

)2
πE(ds dy dx).(3.9)

Moreover, for any p ∈ (0,2], there exists C(p) > 0, such that for all t > 0

E sup
0≤s≤t

∣∣M̃(s)
∣∣p ≤ C(p)tp/2.(3.10)

PROOF. Let us first notice that f (1, ·, ·) ≡ 0. Fix k ∈ N, k > 0 and y ∈ (0,1)

and let ξk,y be distributed as a binomial random variable Bin(k, y). Then it is easy
to derive [see also [3], Lemma 17(iii) and (2.6)–(2.8)]∫

[0,1]N
f 2(k, y,x) dx = E[ξk,y − 1{ξk,y>0}]2

= E(ξk,y)
2 − 2Eξk,y + P(ξk,y > 0)(3.11)

= k(k − 1)y2 − k(k − 1)

∫ y

0

∫ r

0
(1 − u)k−2 dudr.

Hence,

E

∫ t

0

∫
[0,1]×[0,1]N

(
f (Ns−, y,x)

vs

)2 �(dy)

y2 ds dx

(3.12)

≤ E

∫ t

0

∫ 1

0

Ns−(Ns− − 1)

v2
s

�(dy)ds ≤ Ct,

where the last inequality follows from the second moment estimates in Lem-
ma 2.2(v), and the continuity of v.

Due to the standard properties of integrals with respect to the compensated Pois-
son random measure (see, e.g., Theorem 8.23 in [16]), (3.12) now implies that M̃
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given by (3.8) is a well-defined square integrable martingale with quadratic varia-
tion (3.9). Moreover,

E[M̃](t) =
∫
[0,t]×[0,1]×[0,1]N

E

(
f (Ns−, y,x)

vs

)2

ds
�(dy)

y2 dx.

Hence, (3.10) for p = 2 is a consequence of (3.12) and the Doob inequality. The
assertion for 0 < p < 2 then follows due to Jensen’s inequality. �

The bound (3.10) was already implicit in [3], at least for p = 2, where the in-
finitesimal variance of an analogous martingale (the one driving the equation for
log N·

v∗·
) was carefully estimated, even though that martingale was not as explicitly

expressed there as M̃ is expressed here.

REMARK 3.6. In view of (3.10) for p = 2 (which becomes an equality asymp-
totically as t → 0), the fact that both the rate of convergence in Theorem 1.2 and
the law of the limit process depend on rather fine properties of the driving measure
� may seem surprising. Without paying consideration to the size of jumps of N

at small times, these inequalities (asymptotic equalities) may suggests Gaussian
type limits for appropriately rescaled M̃ (and, therefore, for N/v −1). This indeed
turns out to be the case in the setting of the Kingman coalescent (not treated here,
check [1] for the nonfunctional CLT in this setting). However, one quickly realizes
that under assumption (A) the largest jumps of M̃ (or better, those of M) in [0, εt]
are of order ε1/(1+β). Moreover, if one assumes that �(dy) = A

yβ dy on [0,1] and
denotes by �εt the absolute value of the largest jump of M in [0, εt], then it can be
easily verified that E(�εt )

2 ≥ εC(β,A, t), so the typical bounds on the maximal
jump size, sufficient for the martingale invariance principle to hold [see, e.g., [11]
Chapter 7, Theorem 1.4(b)], are not satisfied here. Indeed, the Gaussian scaling
is not appropriate and, moreover, the limiting process will have jumps. The para-
graph following Remark 1.3(c) gave further intuition regarding the form of the
limit.

Using (3.7) and Lemma 3.5, one can improve on (2.12) as follows.

LEMMA 3.7. If the �-coalescent comes down from infinity then for any p ∈
(0,2] there exists 0 < C(p) < ∞ such that

E sup
s≤t

∣∣∣∣Ns

vs

− 1
∣∣∣∣p ≤ C(p)tp/2.(3.13)

PROOF. Due to Lemma 2.1, we know that for any s > 0, Ns

vs
(�(Ns)

Ns
− �(vs)

vs
)

has the same sign as Ns

vs
− 1, hence by Lemmas 3.1, 3.3, 3.5 [after subtracting 1 on

both sides of (3.7)] and Lemma 2.4 we obtain

sup
r≤s≤t

∣∣∣∣Ns

vs

− 1
∣∣∣∣ ≤ 2

(∣∣∣∣Nr

vr

− 1
∣∣∣∣ + |M̃r | + sup

r≤s≤t
|M̃s |

)
.(3.14)
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Now (3.10) implies

E sup
r≤s≤t

∣∣∣∣Ns

vs

− 1
∣∣∣∣
p

≤ 2 · 3p

(
E

∣∣∣∣Nr

vr

− 1
∣∣∣∣
p

+ E|M̃r |p + C(p)tp/2
)
.

Letting r → 0, and using (2.12) and once again (3.10), we obtain (3.13). �

4. Proof of Theorem 1.2. We start this section by giving the scheme of the
proof, including an informal discussion on why Theorem 1.2 should hold. Our
argument is divided into several lemmas, which are proved separately in the forth-
coming subsections.

The first few steps were carried out in Sections 2 and 3, while assuming only
that the coalescent comes down from infinity. Here, as was already done in the final
part of Section 3, we specialize further to the case when � satisfies assumption (A).
Recall that (A) implies CDI. Throughout this section, we assume (A) without much
further mention.

The following result is a consequence of Lemmas 3.3, 3.5 and 3.7, where as-
sumption (A) makes passing to the limit r ↘ 0 possible in the identity (3.7).

PROPOSITION 4.1. We have
Nt

vt

− 1 = −
∫ t

0

Ns

vs

(
�(Ns)

Ns

− �(vs)

vs

)
ds − M̃t , t ≥ 0,(4.1)

almost surely, where M̃ is defined by (3.8).

REMARK 4.2. In the general case [without assuming (A)], one can similarly
obtain a weaker identity, where the L2 limit

lim
r→0

∫ t

r

Ns

vs

(
�(Ns)

Ns

− �(vs)

vs

)
ds

exists and replaces the integral from 0 to t in (4.1). At the moment, we do not know
whether s �→ Ns

vs
(�(Ns)

Ns
− �(vs)

vs
) is almost surely Lebesgue integrable on [0, t] in

general.

If X = (X1,X2, . . .), where Xi , i = 1,2, . . . are i.i.d. random variables uni-
formly distributed on [0,1], then due to the form of f [see (3.3)] and the law of
large numbers it is clear that, for each fixed y,

lim
k→∞

f (k, y,X)

k
= y a.s.

Accounting for (2.11) and limt→0 vt = ∞, one would expect that for small t M̃

should be close to a martingale M = (M(t))t≥0 defined by

M(t) =
∫
[0,t]×[0,1]

yπ̂(ds dy),(4.2)
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where π̂ is the compensated Poisson random measure π [see (3.1)], for example,

π̂ (ds dy) = π(ds dy) − ds
�(dy)

y2 .(4.3)

Note that M is a Lévy process with the Lévy measure �(dy)

y2 .
The above heuristic indeed turns out to be true. More precisely, we have the

following estimate of the difference between M̃ and M :

LEMMA 4.3. There exist t0 > 0 and 0 < C < ∞ such that for all 0 < t ≤ t0

E sup
s≤t

(M̃s − Ms)
2 ≤ C

(
t2 ∨ t1/β)

.(4.4)

Concerning the integral on the right-hand side of (4.1), we have

LEMMA 4.4. There exist t0 > 0 and 0 < C < ∞ such that for all 0 < t ≤ t0

E sup
u≤t

∣∣∣∣
∫ u

0

Ns

vs

(
�(Ns)

Ns

− �(vs)

vs

)
ds −

∫ u

0

(
Ns

vs

− 1
)
vsh

′(vs) ds

∣∣∣∣ ≤ Ct,(4.5)

where h is defined by (2.1).

Let us denote by X the process

X(t) = Nt

vt

− 1, t > 0,X(0) = 0.(4.6)

Then

Xε = (
ε−1/(1+β)X(εt), t ≥ 0

)
is the same as the process Xε defined in (1.11).

Digression-heuristics. At this point, it is possible to explain why the limit pro-
cess of Theorem 1.2 is of the form as in (1.12) (the longer rigorous argument is
given below). From (2.18) and (2.20), it is not difficult to see that for s close to
zero we have vsh

′(vs) ∼ 1
s
. Proposition 4.1 and Lemmas 4.3–4.4 then jointly give

X(t) ≈ −
∫ t

0
X(s)

1

s
ds − Mt.

Making a change of variables in the drift part, we would then have

Xε(t) ≈ −
∫ t

0
Xε(s)s

−1 ds − Mε(t),

where

Mε(t) = ε−1/(1+β)M(εt).(4.7)
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By investigating the Laplace transform of Mε , it is not difficult to see that it con-
verges in the sense of finite dimensional distributions to KL, where L is the Lévy
process described in Remark 1.3(b) (this can be verified similarly to Lemma 4.7
below). Then it is natural to suspect that, if the limit Z of Xε exists, it should
satisfy the equation given in (1.14). This is indeed the case for the process Z of
Theorem 1.2.

There are a few delicate points in the above reasoning. We were unable to re-
place vsh

′(vs) directly by 1
s

and still get a sufficiently good estimate (analogous to
that of Lemma 4.4) on the difference between the corresponding integrals. Further-
more, the convergence of Xε has to be proved, and the passage to the limit under
the integral justified.

Our rigorous argument is continued in the following way. Define

Y(t) =
∫
[0,t]

h(vt )

h(vs)
dM(s), t ≥ 0,(4.8)

where as usual h is given by (2.1), and M by (4.2). We will need the following
lemma.

LEMMA 4.5. The process Y is the unique solution of the equation

dY (t) = −Y(t)vth
′(vt ) dt + dM(t), Y (0) = 0.(4.9)

Next, we prove that the process −Y is close to X.

LEMMA 4.6. There exist t0 > 0 and C > 0 such that

E sup
u≤t

∣∣X(u) + Y(u)
∣∣ ≤ C

(
t ∨ t1/(2β)) ∀t ≤ t0.(4.10)

Let Yε denote the following scaled process:

Yε(t) = ε−1/(1+β)Y (εt), t ≥ 0.(4.11)

Since 1 > 1
1+β

and 1
2β

> 1
1+β

for 0 < β < 1, Lemma 4.6 implies that
E supt≤T |Xε(t)+Yε(t)| → 0, for each fixed T > 0. In order to prove Theorem 1.2,
it therefore suffices to show that, as ε → 0, Yε converges in law to −Z [Z is as
defined in (1.12)] with respect to the Skorokhod topology on D([0,∞)), as ε → 0.

Here we proceed in the standard way: we first derive the convergence of finite
dimensional distributions via the Laplace transform, and then prove tightness by
means of Aldous’ tightness criterion. Let Z be given in (1.12).

LEMMA 4.7. As ε → 0, Yε converges to −Z in the sense of finite dimensional
distributions.

LEMMA 4.8. We have that Yε �⇒ −Z as ε → 0.

This final lemma, joint with the discussion following the statement of Lem-
ma 4.6, completes the proof of Theorem 1.2.
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4.1. Proof of Proposition 4.1. Let us subtract 1 on both sides of (3.7) and send
r → 0. We will show that the integral on the right-hand side of (4.1) is well defined,
and that for any t > 0 both the left-hand side and the right-hand side of (3.7) with 1
subtracted converge in L2 to the corresponding random variables in (4.1). This will
imply that for any fixed t > 0, equation (4.1) is satisfied a.s. The processes on both
sides of (4.1) are right continuous, hence they are indistinguishable.

Lemma 3.5 [more precisely, (3.8) and (3.10)] implies that the integral with re-
spect to π̂E converges in L2 to M̃t , while Lemma 2.2 part (v) implies that Nr

vr
− 1

converges to 0 in L2. Therefore, the remaining term on the right-hand side of (3.7)
must also converge in L2. Moreover, it is not hard to see that the integral∫ t

0

Ns

vs

(
�(Ns)

Ns

− �(vs)

vs

)
ds =

∫ t

0

Ns

vs

(
h(Ns) − h(vs)

)
ds

is well defined a.s. as a Lebesgue integral. Indeed, the derivative of h is nonnega-
tive due to Lemma 2.1 part (iv). We will repeatedly use assumption (A) in the rest
of the argument. Observe that (2.23)–(2.27) imply that h′ is decreasing. Hence, if
Ns ≤ vs , then

Ns

vs

∣∣h(Ns) − h(vs)
∣∣ ≤ Nsh

′(Ns)

∣∣∣∣Ns

vs

− 1
∣∣∣∣

≤ C

(
1

s
∨ 1

)∣∣∣∣Ns

vs

− 1
∣∣∣∣,

where the last inequality follows from (2.21), the fact that N
β
s ≤ v

β
s and (2.19).

If Ns > vs , then again by (2.19) and (2.21)

Ns

vs

∣∣h(Ns) − h(vs)
∣∣ ≤ Nsh

′(vs)

∣∣∣∣Ns

vs

− 1
∣∣∣∣

≤ C

(
1

s
∨ 1

)
Ns

vs

∣∣∣∣Ns

vs

− 1
∣∣∣∣.

The Cauchy–Schwarz inequality, Lemma 3.7 and (2.13) now imply that

E

(∫ t

0

Ns

vs

∣∣∣∣�(Ns)

Ns

− �(vs)

vs

∣∣∣∣ds

)
≤ CE

∫ t

0

(
1

s
∨ 1

)(
1 + Ns

vs

)∣∣∣∣Ns

vs

− 1
∣∣∣∣ds

≤ C1

∫ t

0

(
1

s
∨ 1

)√
s ds < ∞.

Letting r → 0 in (3.7), we obtain (4.1).

4.2. Proof of Lemma 4.3. Recalling the forms of M and M̃ [see (4.2)
and (3.8)] as well as (3.1), observe that M̃ − M is a square integrable martingale
with quadratic variation process

[M̃ − M](t) =
∫
[0,t]×[0,1]×[0,1]N

(
f (Ns−, y,x)

vs

− y

)2

πE(ds dy dx).
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Thus, we have

E[M̃ − M](t) ≤ 2EI1(t) + 2EI2(t),

where

I1(t) =
∫
[0,t]×[0,1]×[0,1]N

(
f (Ns−, y,x) − Ns−y

vs

)2

ds
�(dy)

y2 dx(4.12)

and

I2(t) =
∫
[0,t]×[0,1]

(
Ns

vs

− 1
)2

ds�(dy) =
∫ t

0

(
Ns

vs

− 1
)2

ds.(4.13)

By Doob’s inequality, it therefore suffices to show

EIi(t) ≤ C
(
t2 ∨ t1/β)

, i = 1,2.(4.14)

Estimate (4.14) for I2 is immediate by Lemma 3.7. Arguing (4.14) for I1 is a bit
more involved. Let us denote

J (k) =
∫ 1

0

∫
[0,1]N

(
f (k, y,x) − ky

)2
dx

�(dy)

y2 , k ∈N,(4.15)

so that

I1(t) =
∫
[0,t]

J (Ns−)

v2
s

ds.

By (3.3), (3.11) and the following, easy to check identity∫
[0,1]N

f (k, y,x) dx = ky − k

∫ y

0
(1 − r)k−1 dr,

we have

J (k) ≤ 2k2
∫ 1

0

∫ y

0
(1 − r)k−1 · y dr

�(dy)

y2 .

Taking a which satisfies (2.22), and applying 1 − r ≤ e−r we write

J (k) ≤ 2e
(
Ja(k) + J̃a(k)

)
,(4.16)

where

Ja(k) = k2
∫ a

0

∫ y

0
e−kr dr

�(dy)

y
, J̃a(k) = k2

∫ 1

a

∫ y

0
e−kr dr

�(dy)

y
.

By (2.22) and the natural substitutions (r ′ = r/y, followed by y′ = kr ′y, and after-
ward r ′, y′ renamed to r, y, resp.) we have

Ja(k) ≤ Ck1+β
∫ 1

0

∫ akr

0
e−yy−βrβ−1 dy dr ≤ C1k

1+β.
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The term J̃a can be easily bounded as follows:

J̃a(k) ≤ k

a
.

Recalling (4.16), we therefore have J (k) ≤ Ck1+β for some C < ∞. Together
with (4.15), (4.12), (2.13) and (2.19), this now implies that (for t0 < 1/2 we use
1 ∨ 1/s = 1/s, ∀s < t0)

EI1(t) = E

∫ t

0
J (Ns−)

1

v2
s

ds ≤ CE

∫ t

0

(
Ns

vs

)1+β

vβ−1
s ds

≤ C1

∫ t

0

(
1

s1/β

)β−1

ds = C2t
1/β,

which proves (4.14) for i = 1, and completes the argument.

4.3. Proof of Lemma 4.4. Let h be defined by (2.1) and let ha and h̃a be as in
(2.24)–(2.25), with 0 < a < 1

2 satisfying (2.22). Using the easy estimate h̃a(q) ≤
a−2 together with (2.13), we have

E

∫ t

0

Ns

vs

∣∣h̃a(Ns) − h̃a(vs)
∣∣ds ≤ Ct.

Moreover, by (2.28), Lemma 3.7 and (2.19) we obtain

E

∫ t

0

∣∣∣∣Ns

vs

− 1
∣∣∣∣vsh̃

′
a(vs) ds ≤ Ct1/β+3/2.

Hence, to prove the lemma, it suffices to show (4.5) with h replaced by ha . Using
the Taylor expansion formula, we write

Ns

vs

(
ha(Ns) − ha(vs)

) = I1(s) + I2(s),(4.17)

where

I1(s) = Ns

vs

Ns − vs

vs

vsh
′
a(vs), I2(s) = Ns

vs

∫ Ns

vs

∫ z

vs

h′′
a(w)dw dz.

We shall prove that I1 is the main term, uniformly close to (N· − v·)h′
a(v·), and

that I2 is a negligible error term. First note that by Lemma 3.7, (2.21) (recall that
h′

a ≤ h′) and (2.19) one can easily see that

E

∣∣∣∣
(

Ns

vs

− 1
)
(Ns − vs)h

′
a(vs)

∣∣∣∣ ≤ CE

(
Ns

vs

− 1
)2

vβ
s = O(1),(4.18)

and, therefore,

E

∫ t

0

∣∣I1(s) − (Ns − vs)h
′
a(vs)

∣∣ds ≤ Ct.(4.19)
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Our approach for I2 is to show a similar bound

∣∣I2(s)
∣∣ ≤ C

(
Ns − vs

vs

)2

vβ
s ,(4.20)

and then again use (4.18) to bound
∫ t

0 |I2(s)|ds. First, note that from differentiating
in (2.26) it follows that h′′

a is negative and increasing (its absolute value is decreas-
ing). Moreover, since a < 1

2 , and since | log(1 − r)| ≤ 2r and (1 − r)q−1 ≤ 2e−rq

for r ≤ 1/2, one can easily derive from (2.22) that
∣∣h′′

a(q)
∣∣ ≤ C

∫ a

0

∫ y

0
r2e−rqy−2−β dr dy = O

(
qβ−2)

.(4.21)

Thus, if 1
2vs ≤ Ns ≤ 2vs , then

∣∣h′′
a(w)

∣∣ ≤
∣∣∣∣h′′

a

(
1

2
vs

)∣∣∣∣ = O
(
vβ−2
s

)
and |I2(s)| = Ns

vs
(Ns − vs)

2O(v
β−2
s ). Since Ns/vs ≤ 2, we conclude that (4.20)

holds in this case.
If vs > 2Ns then note that∫ Ns

vs

∫ z

vs

wβ−2 dw dz =
∫ vs

Ns

∫ vs

z
wβ−2 dw dz

≤ 1

1 − β

∫ vs

Ns

zβ−1 dz

≤ 1

1 − β
(vs − Ns)N

β−1
s .

Hence, by (4.21) and the definition of I2∣∣I2(s)
∣∣ ≤ C

(
vs − Ns

vs

)
Nβ

s .

We also have N
β
s ≤ v

β
s and 1 < 2vs−Ns

vs
, so (4.20) follows.

If 2vs < Ns , then

Ns

vs

∫ Ns

vs

∫ z

vs

wβ−2 dw dz ≤ C
Ns

vs

(Ns − vs)v
β−1
s

≤ C

(
Ns

vs

− 1
)2

vβ
s + C

(
Ns

vs

− 1
)
vβ
s .

Together with (4.21) and the definition of I2(s) this again implies (4.20), since for
2vs < Ns we have 1 < Ns

vs
− 1 < (Ns

vs
− 1)2.

This gives (4.20), and due to the final estimate in (4.18) we get E
∫ t

0 |I2(s)|ds ≤
Ct , which combined with (4.19) yields(4.5) for ha . As already argued, this com-
pletes the proof of the lemma.
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4.4. Proof of Lemma 4.5. Let us first observe that the function u �→ h(vu)

defined in (2.1) is positive on (0,∞) and strictly decreasing, since h is positive and
strictly increasing and v is strictly decreasing (see Lemmas 2.1 and 2.2). Moreover,
by (2.17) and (2.18), we have that

lim
u→0

uh(vu) = 1

β
,(4.22)

so, there exists t0 such that

β

2
u ≤ 1

h(vu)
≤ 2βu, 0 < u ≤ t0.(4.23)

Hence, the process Y from (4.8) is well defined. Moreover,

E
(
Y(t)

)2 = (
h(vt )

)2
∫ t

0

∫ 1

0

(
y

h(vu)

)2 �(dy)

y2 ≤ t,(4.24)

since h(vt ) ≤ h(vu) for u ≤ t .
The function u �→ h(vu) is clearly continuous and of finite variation on any in-

terval [r, t], 0 < r < t . We apply integration by parts, which in this case is simply
fg = ∫

f dg + ∫
g df with f (·) = h(v·) and g(·) = ∫ ·

0
1

h(vs)
dMs (note that the

other terms which normally appear in this formula are equal to 0, due to just men-

tioned continuity and finite variation properties). Using the fact that v′
s

h(vs)
= −vs ,

[cf. (2.1) and (2.9)], we get for 0 < r < t

Yt = Yr −
∫ t

r
Ysvsh

′(vs) ds + Mt − Mr.(4.25)

We now let r → 0 and observe that Mr → 0 a.s. and in L2, since E[M](r) =∫ r
0

∫ 1
0 y2 �(dy)

y2 = r , and Yr → 0 in L2 by (4.24). To deal with the remaining term
in (4.25), we note that by (2.21) and (2.19) we have

0 ≤ vsh
′(vs) ≤ C

(
s−1 ∨ 1

)
.

Hence, by (4.24) and Jensen’s inequality

E

∫ r

0

∣∣Ysvsh
′(vs)

∣∣ds ≤ C

∫ r

0

√
s

(
1

s
∨ 1

)
ds ≤ C

(√
r ∨ r3/2)

,

converges to 0 as r → 0. After sending r → 0 in (4.25), one concludes that Y given
by (4.8) satisfies equation (4.9).

Showing uniqueness is easier. Indeed, if Y1 and Y2 are two solutions of (4.9),
then

Y1(t) − Y2(t) = −
∫ t

0

(
Y1(s) − Y2(s)

)
vsh

′(vs) ds.

Since vsh
′(vs) is positive [see Lemma 2.1(iv)], an application of Lemma 2.4 im-

plies Y1 − Y2 ≡ 0.
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4.5. Proof of Lemma 4.6. Recall (4.6). Due to Proposition 4.1 and Lem-
mas 4.3, 4.4 and 4.5, we obtain

X(t) + Y(t) = −
∫ t

0

(
X(s) + Y(s)

)
vsh

′(vs) ds + R(t),

where R is a process such that for 0 ≤ t ≤ t0

E sup
s≤t

∣∣R(s)
∣∣ ≤ C

(
t ∨ t1/(2β)).

Since vsh
′(vs) is positive, another application of Lemma 2.4 completes the proof.

4.6. Proof of Lemma 4.7. The argument relies on convergence of the Laplace
transform for positive arguments. Fix n ∈ N and zj ≥ 0, tj > 0, j = 1,2, . . . , n

and denote

F(u) =
n∑

j=1

zj

u

tj
1[0,tj ](u).(4.26)

We will show that

lim
ε→0

E exp

{
−

n∑
j=1

zjYε(tj )

}

(4.27)

= exp
{
A

∫ ∞
0

(
e−y − 1 + y

) 1

y2+β
dy

∫ ∞
0

(
F(u)

)1+β
du

}
.

Due to Propositions 3.4.1 and 1.2.12 and (3.4.4) in [19], the right-hand side is
precisely E exp {−∑n

j=1 zj (−Z(tj ))}, where Z is defined in (1.12). On the other
hand, it is well known that since −Z is a (1 + β)-stable process totally skewed
to the right, the convergence of Laplace transforms for all positive zj implies
the convergence in law of (Yε(t1), . . . , Yε(tn)) to (−Z(t1), . . . ,−Z(tn)) (see, e.g.,
[12], proofs of Theorems 5.4 and 5.6). Thus, the lemma will be proved once we
show (4.27).

By (4.8) and (4.11), we have

n∑
j=1

zjYε(tj ) = ε−1/(1+β)
∫ ∞

0

∫ 1

0

(
n∑

j=1

zj1[0,εtj ](u)
h(vεtj )

h(vu)

)
yπ̂(dudy)

= ε−1/(1+β)
∫ ∞

0

∫ 1

0
Fε

(
u

ε

)
yπ̂(dudy),

where

Fε(u) =
n∑

j=1

zj

h(vεtj )

h(vεu)
1[0,tj ](u).(4.28)
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Thus, by the usual properties of a Poisson random measure, we have

E exp

{
−

n∑
j=1

zjYε(tj )

}
= eI (ε),(4.29)

where

I (ε) =
∫ ∞

0

∫ 1

0

(
e−ε−1/(1+β)Fε(u/ε)y − 1 + ε−1/(1+β)Fε

(
u

ε

)
y

)
�(dy)

y2 du.(4.30)

As before, let 0 < a < 1
2 be such that (2.22) holds and write

I (ε) = Ia(ε) + Ĩa(ε),(4.31)

where

Ia(ε) =
∫ ∞

0

∫ a

0
· · · and Ĩa(ε) =

∫ ∞
0

∫ 1

a
· · · ,(4.32)

and the · · · above denotes the expression under the integral in (4.30). Let us initially
consider the term Ĩa . We have

0 ≤ Ĩa(ε) ≤
∫ ∞

0

∫ 1

a
ε−1/(1+β)Fε

(
u

ε

)
�(dy)

y
du

≤ 1

a
ε1−1/(1+β)

∫ ∞
0

Fε(u)du.

Recall (4.28) and note that h(vεt ) ≤ h(vεu) for u ≤ t , as explained in the proof of
Lemma 4.5. Thus, supε>0

∫ ∞
0 Fε(u)du < ∞ and it follows that

lim
ε→0

Ĩa(ε) = 0.(4.33)

In the analysis of Ia(ε), we make a change of variables y = zε1/(1+β) and r = u
ε

(then rename z to be y and r to be u) and use assumption (A) to get

Ia(ε) =
∫ ∞

0

∫ aε−1/(1+β)

0

(
e−Fε(u)y − 1 + Fε(u)y

)
(4.34)

× g(yε1/(1+β))(yε1/(1+β))β

y2+β
dy du.

By (4.22), we have

lim
ε→0

h(vεt )

h(vεu)
= u

t
,

so from (4.28) we see that Fε converges pointwise to F defined in (4.26). More-
over, note that

0 ≤ e−Fε(u)y − 1 + Fε(u)y ≤ F 2
ε (u)y2 ≤

(
n∑

j=1

zj1[0,tj ](u)

)2

y2.
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Hence, by (4.34), (A), (2.22) and the dominated convergence theorem, it follows
that

lim
ε→0

Ia(ε) = A

∫ ∞
0

∫ ∞
0

(
e−F(u)y − 1 + F(u)y

) 1

y2+β
dy du

(4.35)

= A

∫ ∞
0

(
F(u)

)1+β
du

∫ ∞
0

(
e−y − 1 + y

) 1

y2+β
dy,

where we apply the substitution z = F(u)y and then rename z as y. Now (4.29)–
(4.32), (4.33) and (4.35) together imply that (4.27) holds and the proof is complete.

4.7. Proof of Lemma 4.8. First observe that by (4.22) and (4.23) the function
fε defined by fε(0) = 1

β
and fε(t) = εth(vεt ) for t > 0 is continuous for any

ε > 0. Furthermore, as ε → 0, the family (fε)ε>0 converge uniformly on bounded
intervals to a constant function 1

β
. Hence, to prove the lemma, it suffices to show

that the family of processes (Ỹε)ε defined by

Ỹε(t) = t−1β−1ε−1−1/(1+β)
∫ εt

0

1

h(vu)
dMu(4.36)

converges in law in D([0,∞)) to −Z, as ε → 0.
We will split the proof into several steps. In the first step, with the help of Al-

dous’ tightness criterion, we show that the family of processes (tỸε(t))t≥0 con-
verges in law in D([0,∞)) to (−tZ(t))t≥0. From this, we need to infer the con-
vergence Ỹε ⇒ −Z. However, the latter step is not immediate, since the function
t �→ 1

t
cannot be extended to a continuous function on [0,∞). We will overcome

this problem by taking suitable approximations.
Step 1. We prove that the family of processes (Uε)ε>0 defined by

Uε(t) = t Ỹε(t), t ≥ 0, ε > 0,(4.37)

converges to (−tZ(t))t≥0 in law in D([0,∞)). It is clearly enough to show this
convergence when restricted to an arbitrary but fixed sequence εn ↘ 0.

The convergence of finite dimensional distributions follows from (4.22) and
Lemma 4.7. To prove tightness of the family (Uε)ε>0, we will apply the well-
known Aldous criterion (see, e.g., [7] Theorem 16.10). More precisely, we will
prove:

(i) For any M > 0,

lim
r→∞ lim sup

n→∞
P

(
sup

t∈[0,M]
∣∣Uεn(t)

∣∣ ≥ r
)

= 0,(4.38)

(ii) For any ρ,η,M > 0, there exist δ0, n0 such that if δ ≤ δ0, n ≥ n0 and τ is a
stopping time with respect to the filtration generated by Uεn , taking finite number
of values, and such that P(τ ≤ M) = 1, then

P
(∣∣Uεn(τ + δ) − Uεn(τ )

∣∣ ≥ ρ
) ≤ η.(4.39)
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To prove (i) and (ii) above, we will need an estimate on the moments of incre-
ments of Uε . We write

Uε = 1

β

(
U(1)

ε + U(2)
ε

)
,(4.40)

where

U(1)
ε (r) = ε−(2+β)/(1+β)

∫
[0,εr]×[0,ε1/(1+β)]

1

h(vu)
yπ̂(dudy),

U(2)
ε (r) = ε−(2+β)/(1+β)

∫
[0,εr]×(ε1/(1+β),1]

1

h(vu)
yπ̂(dudy).

Note that U
(1)
ε (resp., U

(2)
ε ) is the process which captures the “small” (resp.,

“large”) jumps of Uε .
Using standard properties of integrals with respect to a compensated Poisson

random measure (see, e.g., [16], Theorem 8.23), we have

E
∣∣U(2)

ε (t) − U(2)
ε (s)

∣∣p ≤ Cε−p(2+β)/(1+β)
∫ εt

εs

∫ 1

ε1/(1+β)

yp

(h(vu))p

�(dy)

y2 du.

Let 0 < s < t < T and 1 < p < 1 + β and suppose that ε ≤ a1+β ∧ t0
T

, where a is
as in (2.22) and t0 as in (4.23). By (2.22) and (4.23), we obtain

E
∣∣U(2)

ε (t) − U(2)
ε (s)

∣∣p
≤ Cε−p(2+β)/(1+β)

∫ εt

εs
up

(∫ a

ε1/(1+β)
yp−2−β dy +

∫ 1

a
yp−2�(dy)

)
du(4.41)

≤ C1(p)T p(t − s),

since εp+1 � εp+1ε(p−1−β)/(1+β) = εp(2+β)/(1+β) cancels the power of ε in front
of the integral, and since

∫ 1
a yp−2�(dy) is a constant quantity.

Via similar arguments applied to U(1), we get

E
∣∣U(1)

ε (t) − U(1)
ε (s)

∣∣2 = ε−2(2+β)/(1+β)
∫ εt

εs

∫ ε1/(1+β)

0

1

(h(vu))2 �(dy)du,

and, since 3 + 1−β
1+β

= 2(2+β)
1+β

, again (2.22) and (4.23) yield

E
∣∣U(1)

ε (t) − U(1)
ε (s)

∣∣2 ≤ Cε−2(2+β)/(1+β)
∫ εt

εs

∫ ε1/(1+β)

0

u2

yβ
dy du

(4.42)
≤ C2T

2(t − s).

Now (4.40)–(4.42) and Jensen’s inequality imply that for 0 < s < t < T and 1 <

p < 1 + β , ε ≤ a1+β ∧ t0
T

we have

E
∣∣Uε(t) − Uε(s)

∣∣p ≤ C(p)T p(|t − s|p/2 ∨ |t − s|).(4.43)
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Applying the Doob maximal inequality to the martingale Uε , we conclude

P

(
sup

t∈[0,M]
∣∣Uε(t)

∣∣ > r
)

≤
(

p

p − 1

)p E|Uε(M)|p
rp

.

Hence, (4.43) implies (4.38).
Estimate (4.43) and the Markov property (since τ takes only finitely many val-

ues, we do not need the strong Markov property) of Uε imply that if τ is a stopping
time with respect to the filtration of Uε taking finite number of values and such that
τ ≤ M , then

E
∣∣Uε(τ + δ) − Uε(τ)

∣∣p = EE
(∣∣Uε(τ + δ) − Uε(τ)

∣∣p|FUε
τ

)
≤ C(M + δ)p

(
δ ∨ δp/2)

,

whenever 1 < p < 1 + β and ε ≤ a1+β ∧ t0
M+δ

. This and the Markov inequality
show that condition (ii) [or equivalently, (4.39)] is also satisfied.

As already indicated, using Aldous’ criterion we obtain the tightness of the
family (Uεn)n≥1, which together with the already proved convergence of finite
dimensional distributions implies that (Uεn)n converges in law to (−tZ(t), t ≥ 0)

with respect to the Skorokhod topology on D([0,∞)).
Step 2. For b > 0, define

Z(b)
ε (t) =

(
1

b
1[0,b](t) + 1

t
1(b,∞)(t)

)
Uε(t).(4.44)

Recall that if f :R+ �→R is continuous, then the mapping w �→ f w is continuous
from D([0,∞)) into itself. Hence, the result of step 1 implies that for any b > 0,
as ε → 0, the family of processes (Z

(b)
ε )ε>0 converges in law to the process Z(b)

defined by

Z(b)(t) = t

b
1[0,b](t)Z(t) + 1(b,∞)(t)Z(t), t ≥ 0,

with respect to the Skorokhod topology on D([0,∞)).
Step 3. We will next estimate the supremum norms of the difference between

Ỹε and Z
(b)
ε , and the difference between Z and Z(b), respectively. Fix any 1 < p <

1 + β and suppose that b ≤ t0 ∧ 1 and ε ≤ a1+β , where t0 is as in (4.23) and a as
in (2.22). Denote ‖f ‖∞ = supt∈R+ |f (t)|.

Using (4.36)–(4.37) and (4.44), we have that Ỹε(t) − Z
(b)
ε (t) = Uε(t)(

1
t

−
1
b
)1[0,b](t). Therefore,∥∥Ỹε − Z(b)

ε

∥∥∞ ≤ sup
0≤t≤b

∣∣Ỹε(t)
∣∣ ≤ 2 sup

0≤t≤b

∣∣Yε(t)
∣∣,

where (4.23) was used in the final estimate. Lemmas 4.5 and 2.4 imply

sup
0≤t≤b

∣∣Yε(t)
∣∣ ≤ 2ε−1/(1+β) sup

0≤t≤b

∣∣M(εt)
∣∣.
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Hence, decomposing M similarly as it was done for Uε in step 1 and applying
Doob’s inequality for M , we obtain

E
∥∥Ỹε − Z(b)

ε

∥∥p
∞

(4.45)
≤ C1(p)

(
E

∣∣ε−1/(1+β)M(1)(εb)
∣∣p + E

∣∣ε−1/(1+β)M(2)(εb)
∣∣p)

,

where

M(1)(εb) =
∫ εb

0

∫
[0,εb]×[0,ε1/(1+β)]

yπ̂(dudy),

M(2)(εb) =
∫
[0,εb]×(ε1/(1+β),1]

yπ̂(dudy).

By mimicking the arguments of step 1, we obtain

E
∣∣ε−1/(1+β)M

(1)
εb

∣∣2 ≤ Cε−2/(1+β)
∫ εb

0

∫ ε1/(1+β)

0
y−β dy du = C1(p)b,

and, relying on ε � εε(p−1−β)/(1+β) = εp/(1+β), we also obtain

E
∣∣ε−1/(1+β)M

(2)
εb

∣∣p
≤ C2(p)ε−p/(1+β)

∫ bε

0

(∫ a

ε1/(1+β)
yp−2−β dy +

∫ 1

a
yp−2�(dy)

)
du

≤ C3(p)b.

Together with (4.45) and Jensen’s inequality, for 0 < p < 1 + β , b ≤ t0 ∧ 1 and
ε ≤ a1+β , this implies

E
∥∥Ỹε − Z(b)

ε

∥∥p
∞ ≤ C(p)bp/2,(4.46)

where C(p) is some finite constant, uniform in ε.
For the processes Z(b) and Z, we again have

E
∥∥Z − Z(b)

∥∥∞ ≤ sup
t≤b

∣∣Z(t)
∣∣.

Since Z is a solution of (1.14), we can again apply Lemma 2.4 and Doob’s in-
equality to L, a (1 + β)-stable Lévy process, to derive

E
∥∥Z − Z(b)

∥∥p
∞ ≤ C1(p)E

∣∣L(b)
∣∣p ≤ C2(p)bp/(1+β)(4.47)

for some C2(p) < ∞.
Step 4. Finally, we prove the convergence Ỹε �⇒ −Z as ε → 0. Let d0∞ denote

the Skorokhod metric on D([0,∞)) as defined in [7], page 168. It is clear that
d0∞(f, g) ≤ ‖f − g‖∞ for any two f,g ∈ D([0,∞)).

It suffices to show that, whenever F :D([0,∞)) �→ D([0,∞)) is a given
bounded and uniformly continuous function, we have

lim
ε→0

∣∣EF(Ỹε) − EF(Z)
∣∣ = 0.(4.48)
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By the conclusion of step 2, for any b > 0, we have E|F(Z
(b)
ε ) − EF(Z(b))| →

0. Hence, (4.48) follows by the triangle inequality, the uniform continuity of F ,
estimates (4.46) and (4.47) and the Markov inequality and the above discussion.
The argument based on addition and subtraction of intermediate terms is standard,
and the details are left to the reader.

5. On robustness with respect to the choice of speed.

5.1. Proof of Theorem 1.4. Recall � , �∗ and v defined in (1.5), (1.2)
and (1.7), respectively. Furthermore, recall that v∗ is defined in terms of �∗ as
v is defined in terms of � . Due to (2.16), one can easily see that

sup
t∈[0,T ]

1

ε1/(1+β)

∣∣∣∣ vεt

vεt∗
− 1

∣∣∣∣ = O
(
ε1−1/(β+1)) as ε → 0.

Since

1

ε1/(1+β)

(
Nεt

v∗
εt

− 1
)

= 1

ε1/(1+β)

(
Nεt

vεt

− 1
)

× vεt

v∗
εt

+ 1

ε1/(1+β)

(
vεt

v∗
εt

− 1
)
,(5.1)

one can conclude Theorem 1.4(a) directly from Theorem 1.2 and (2.10).
We now turn to the proof of part (b). Let us denote wt = K1t

−1/β for K1
from (1.10). Observe that an analogue of (5.1), with v∗ replaced by w, implies
that it suffices to show

lim
t→0

t−1/(1+β)

(
vt

wt

− 1
)

= 0.(5.2)

Also note that w is related to �(β)(q) = A�(1−β)
β(1+β)

q1+β via relation

t =
∫
wt

1

�(β)(q)
dq,

the same way that v is related to � [see (1.7)]. Recall that from (2.17) we already
know limq→∞ �(q)/�(β)(q) = 1. We will need a more precise comparison of �

and �(β).
Let a ≤ 1

2 be such that � has a density g on [0, a] satisfying (2.22) and, more-
over, |yβg(y) − A| ≤ Cyα on [0, a]. Such a exists by the assumptions.

Observe that [similarly to derivation of (2.17)]

�(β)(q) = Aq2
∫ 1

0

∫ r

0

∫ ∞
0

e−qyuy−β dy dudr.(5.3)

Therefore, by Lemma 2.1(ii) and (iii), we have

�(q) = �∗
a (q) + O(q) = �(β)(q) + R1(q) − R2(q) + O(q),

(5.4)
q ≥ 1,
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where

R1(q) = q2
∫ 1

0

∫ r

0

∫ a

0
e−qyu(

g(y) − Ay−β)
dy dudr(5.5)

and

R2(q) = q2A

∫ 1

0

∫ r

0

∫ ∞
a

y−βe−qyu dy dudr.(5.6)

Due to the assumptions, we have

∣∣R1(q)
∣∣ ≤ Cq2

∫ 1

0

∫ r

0

∫ a

0
yα−βe−qyu dy dudr.(5.7)

If α < β , then (this is simpler than the proof of Lemma 2.5)

∣∣R1(q)
∣∣ ≤ C�(1 + α − β)q1+β−α

∫ 1

0

∫ r

0
uβ−α−1 dudr = O

(
q1+β−α)

.

If α ≥ β , then by (5.7) we have

∣∣R1(q)
∣∣ ≤ Cq2aα−β

∫ 1

0

∫ a

0
e−qyu dy du

≤ Caα−β

(
q2

∫ 1/q

0
a du + q

∫ 1

1/q

1 − e−qau

u
du

)

≤ Caα−β

(
aq + q

∫ 1

1/q

1

u
du

)
= O

(
q(logq + 1)

)
.

For R2, we have

R2(q) ≤ Aq2
∫ ∞
a

y−β
∫ 1

0
e−qyu dudy ≤ Aq

∫ ∞
a

y−β−1 dy = O(q).(5.8)

Hence, from (5.4), it follows that

�(q) = �(β)(q) + O
(
q1+β−α) + O

(
q(logq + 1)

)
.(5.9)

To prove (5.2), we adapt the technique of Lemma 2.2(iii). In particular, let us
consider v(n) and w(n) defined by

t =
∫ n

v
(n)
t

1

�(q)
dq and t =

∫ n

w
(n)
t

1

�(β)(q)
dq,

and the following analogue of (2.15):

log
w

(n)
t

v
(n)
t

+
∫ t

0

[
�(β)(w

(n)
s )

w
(n)
s

− �(β)(v
(n)
s )

v
(n)
s

]
ds

(5.10)

=
∫ t

0

�(v
(n)
s ) − �(β)(v

(n)
s )

v
(n)
s

ds
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(note that if n ≥ 2 and t is sufficiently small, then w
(n)
s ≥ 1 for s ≤ t). Also, observe

that v
(n)
s ↗ vs , w

(n)
s ↗ ws as n → ∞. Lemma 2.4 implies that for sufficiently

small t ≤ t0 (with t0 uniform in n ≥ 2) we have∣∣∣∣log
w

(n)
t

v
(n)
t

∣∣∣∣ ≤ 2
∫ t

0

|�(v
(n)
s ) − �(β)(v

(n)
s )|

v
(n)
s

ds.

Using (5.9) and v
(n)
s ≤ vs ≤ Cs−1/β for small s [see (2.19)], we obtain

∣∣∣∣log
w

(n)
t

v
(n)
t

∣∣∣∣ ≤ C

(∫ t

0
(vs)

β−α ds +
∫ t

0
log(vs) ds

)
(5.11)

= O
(
tα/β) + O

(
t log

1

t

)
.

Letting n → ∞, we see that the same estimate holds also for | log wt

vt
| = | log vt

wt
|. In

particular, limt→0+ log vt

wt
= 0, and so | vt

wt
−1| ∼ | log wt

vt
| for small t . We conclude

that (5.2) holds since α
β

> 1
1+β

, completing the proof.

5.2. Limitations of robustness. In this section, we provide an instructive coun-
terexample, announced in both the Introduction and Remark 1.5. A careful reader
will note that the just made arguments proving Theorem 1.4 are close to optimal,
in that the power α = β

1+β
should be critical for (5.2). Without making any general

statements to this end, let us fix α ∈ (0,
β

1+β
) and consider � such that

�(dy) = g(y) dy, y ∈ [0,1], where g(y) := y−β(
1 + yα)

, y ∈ (0,1].
We keep the notation of the previous section, setting A = 1 (note that hence �

is not anymore a probability measure but, as mentioned in the second paragraph
of the Introduction, all our results continue to hold with appropriately modified
constants). In particular, v and w are as in (5.2), up to the same positive multiple.
We will show that

t−1/(1+β)

(
wt

vt

− 1
)

is unbounded as t → 0,(5.12)

and that therefore the statement of Theorem 1.4(b) cannot hold in this particular
case.

As in (5.4) and (5.8) (with a = 1
2 ), we have

�(q) − �(β)(q) = R1(q) + O(q), q ≥ 1.

Now R1 can be written explicitly as

R1(q) = q2
∫ 1

0

∫ r

0

∫ 1/2

0
e−qyuyα−β dy dudr.
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Note that R1 is again of the form (1.2) where � is given by �β−α(dy) =
yα−β1[0,1/2](y) dy. By (5.3), (5.6) and (5.8) with β replaced by β − α, we ob-
tain

�(q) − �(β)(q) = �(β−α)(q) + O(q)
(5.13)

= Dq1+β−α + O(q), q ≥ 1,

where D is a positive constant that can be written explicitly.
Recall the expression for �(β) given just after (5.2). It is easy to check that one

can let n → ∞ in (5.10), and obtain

log
wt

vt

+ C

∫ t

0

(
wβ

s − vβ
s

)
ds = D

∫ t

0
vβ−α
s ds + O(t)(5.14)

for all sufficiently small t , where C and D are positive constants (their exact value
is not important for our purposes). As usual, this is done via uniform (in small t

and in n) control of the RHS in (5.10); see (5.11) for a similar argument. By (2.19),
it follows that ∫ t

0
vβ−α
s ds ∼ C1t

α/β.(5.15)

Let us suppose that the function given in (5.12) is bounded near 0. Since α <
β

1+β
, this implies that ∣∣∣∣wt

vt

− 1
∣∣∣∣ = o

(
tα/β)

as t → 0,

hence also ∣∣∣∣log
wt

vt

∣∣∣∣ ∨
∣∣∣∣ vt

wt

− 1
∣∣∣∣ = o

(
tα/β)

as t → 0.(5.16)

By an elementary application of Taylor’s formula, we have

∣∣wβ
s − vβ

s

∣∣ =
∣∣∣∣1 −

(
vs

ws

)β ∣∣∣∣wβ
s ∼ β

∣∣∣∣1 − vs

ws

∣∣∣∣wβ
s as s → 0,

and since w
β
s = K

β
1 s−1, we conclude∫ t

0

∣∣ws
β − vs

β
∣∣ds ≤ CβK

β
1

∫ t

0

1

s

∣∣∣∣1 − vs

ws

∣∣∣∣ds

= CβK
β
1

∫ t

0
o
(
s−1+α/β)

ds = o
(
tα/β)

.

This together with (5.16) is in clear contradiction with (5.15) and (5.14). We con-
clude that the opposite of (5.2) must hold, or equivalently, that there must exist a
positive constant c and a sequence of times (tn)n such that tn → 0 and∣∣∣∣ vtn

wtn

− 1
∣∣∣∣ ≥ c(tn)

α/β,

and joint with α ∈ (0,
β

1+β
), this easily implies (5.12).
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