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ROBUST DIMENSION FREE ISOPERIMETRY
IN GAUSSIAN SPACE1

BY ELCHANAN MOSSEL AND JOE NEEMAN

University of California, Berkeley

We prove the first robust dimension free isoperimetric result for the stan-
dard Gaussian measure γn and the corresponding boundary measure γ +

n

in R
n. The main result in the theory of Gaussian isoperimetry (proven in

the 1970s by Sudakov and Tsirelson, and independently by Borell) states that
if γn(A) = 1/2 then the surface area of A is bounded by the surface area of a
half-space with the same measure, γ +

n (A) ≤ (2π)−1/2. Our results imply in
particular that if A ⊂ R

n satisfies γn(A) = 1/2 and γ +
n (A) ≤ (2π)−1/2 + δ

then there exists a half-space B ⊂ R
n such that γn(A�B) ≤ Clog−1/2(1/δ)

for an absolute constant C. Since the Gaussian isoperimetric result was estab-
lished, only recently a robust version of the Gaussian isoperimetric result was
obtained by Cianchi et al., who showed that γn(A�B) ≤ C(n)

√
δ for some

function C(n) with no effective bounds. Compared to the results of Cianchi
et al., our results have optimal (i.e., no) dependence on the dimension, but
worse dependence on δ.

1. Introduction. Gaussian isoperimetric theory is an extensive and rich the-
ory. It connects numerous areas of mathematics including probability, geome-
try [21], concentration and high dimensional phenomena [19], rearrangement in-
equalities [6] and more. For an introduction to Gaussian isoperimetry and its many
applications, see Ledoux’s St.-Flour lecture notes [16].

The main result in this area is that half-spaces minimize the surface area among
all sets with a given Gaussian measure. This fact, originally proven by Sudakov
and Tsirelson [26] and independently by Borell [3], now has several other proofs:
Ehrhard [9–11] developed a symmetrization technique, Bakry and Ledoux [1] and
Ledoux [17] used semigroup methods and Bobkov [2] gave a proof based on an
isoperimetric inequality on the discrete cube.

Some of the strongest results in this area deal with extensions of this basic theo-
rem. For example, Borell [5] proved that half-spaces minimize a more global ver-
sion of surface area called Gaussian noise sensitivity. This fact has recently found
applications in areas such as quantitative social choice and theoretical computer
science; see, for example, [14, 22, 24, 25].
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A second direction of extension is characterizing the case of equality or almost
equality. It took about a decade until the equality case was addressed. Erhard [11]
showed that if a sufficiently nice set achieves equality then it is a half-space. It
took 15 more years until the same result was proven for general measurable sets
by Carlen and Kerce [6].

Prior to our work, the harder question of almost equality was only recently ad-
dressed by Cianchi et al. [7] who showed that if the Gaussian boundary of set A is
within δ of the optimal value then there exists a half space B such that the Gaus-
sian measure of the symmetric difference between A and B is at most C(n)

√
δ.

Their result gives no bound on the function C(n). Indeed the techniques of [7] are
not appropriate for deriving any bound on C(n).

Our goal in this paper is to establish a robustness result that is dimension in-
dependent. Not only such result is more elegant, it is much in the spirit of Gaus-
sian isoperimetric theory, where the statement of most results are dimension in-
dependent. In particular, the results of Sudakov and Tsirelson [26] and Borell [3]
are dimension independent: the bound they give on the size of the boundary in
terms of the measure of the set are dimension independent. Similarly, the results
of Borell [5] are stated in a dimension-free way.

1.1. Gaussian isoperimetry. The Gaussian isoperimetric inequality was first
proved by Sudakov and Tsirelson [26], and independently by Borell [3]. It states
that in R

n with the standard Gaussian measure, the isoperimetric sets are half-
spaces. To be more precise, let φ(x) = (2π)−1/2e−x2/2 be the standard Gaussian
density, and define �(x) = ∫ x

−∞ φ(y) dy. Let γn be the standard Gaussian measure
on R

n, and define the boundary measure γ +
n by

γ +
n (A) = sup

{∫
A
(∇ − x) · v(x) dγn :v ∈ S

(
R

n,Rn)
,
∣∣v(x)

∣∣ ≤ 1 for all x

}
,

where S(Rn,Rn) is the set of smooth functions Rn →R
n such that all derivatives

vanish at infinity. (This definition of boundary measure coincides with Minkowski
content and the (n − 1)-dimensional Gaussian-weighted Hausdorff measure for
sufficiently nice sets [6].) Then the Gaussian isoperimetric inequality states that for
every measurable A, φ(�−1(γn(A))) ≤ γ +

n (A). It is not hard to verify that equality
is attained if A is an affine half-space (i.e., a set of the form {x ∈ R

n :x · a ≥ b}).
In the theory, it is common to define the isoperimetric profile I = φ ◦ �−1, so that
the Gaussian isoperimetric inequality reads

I
(
γn(A)

) ≤ γ +
n (A).(1)

1.2. Bobkov’s inequality. Bobkov’s inequality [2] is a functional generaliza-
tion of the Gaussian isoperimetric inequality. The equality case was proved by
Carlen and Kerce [6]. Here and for the rest of this article, we will write “E” for the
integral with respect to γn and ‖ · ‖ for the Euclidean norm on R

n.
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THEOREM 1.1 ([2, 6]). For any smooth function f :Rn → [0,1] of bounded
variation,

I (Ef ) ≤ E

√
I 2(f ) + ‖∇f ‖2.(2)

Equality is attained only if f (x) = �(a · x + b) for some a ∈ R
n, b ∈ R.

Using standard approximation techniques [6], one can make sense of Theo-
rem 1.1 for functions f that are not smooth. In particular, it is possible to take f to
be the indicator function of a set A; in that case, I (f ) is identically zero and so (2)
becomes

I
(
γn(A)

) ≤ E‖∇1A‖ = γ +
n (A)

whenever A is nice enough. This is just the Gaussian isoperimetric inequality
again. (We will make the above connection rigorous in Section 5.) In this limit-
ing case, the nonsmooth equality cases 1{a·x+b≥0} appear. These are easily seen to
be limits of the equality cases �(a · x + b) in Theorem 1.1.

1.3. Robustness. Our goal in this article is to study the robustness of The-
orem 1.1: suppose that we have a function f which almost achieves equality.
Must there be some a and b for which f is close to a function of the form
x �→ �(a · x + b)? For the case of sets—which is perhaps the most interest-
ing case—this question was previously studied by Cianchi et al. [7], who gave
a dimension-dependent estimate.

THEOREM 1.2 ([7]). If A ⊂ R
n satisfies I (γn(A)) ≥ γ +

n (A) − δ, then there is
a half-space B such that

γn(A�B) ≤ C
(
n,γn(A)

)√
δ,

where C(n, r) is some function of n and r .

Due to use of compactness arguments, there are no effective bounds on the
function C(n, r).

Theorem 1.2 is sharp in its δ-dependence; however, the n-dependence is cer-
tainly not sharp. Indeed, one often finds things in Gaussian space to be indepen-
dent of the dimension. The isoperimetric inequality itself is an example of this
phenomenon, as the Gaussian isoperimetric profile I does not depend on the di-
mension.

Note that the situation is quite different in Euclidean space with the Lebesgue
measure—for which the techniques used in [7] were originally developed—where
the isoperimetric profile x �→ nω

1/n
n x(n−1)/n does depend on n.
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1.4. Our results: Robust and dimension-free. Dimension-free estimates are
satisfying in themselves, but they are also crucial for certain applications. As an
example, consider Borell’s noise stability inequality [5]: take X,Y ∈ R

n jointly
Gaussian with X,Y ∼ N (0, I ) and EXiYj = ρδij . Then Pr(1A(X) �= 1A(Y )) is
minimized, over all sets A with prescribed Gaussian volume, by affine half-spaces.
Ledoux showed [15] that this generalizes the Gaussian isoperimetric inequality,
which is recovered in the limit as ρ → 1. As mentioned above, for applications of
this result it is crucial that is dimension-free.

A robust dimension-free version of Borell’s result would immediately imply a
number of important results. For example, it would show that if a balanced low
influence Boolean function is almost as stable as the majority function, then the
function is close to a weighted majority. Similarly, it would show that if a balanced
low influence function has a Condorcet paradox probability that is almost as small
as that of a majority then it must be close to a weight majority of a subset of the
coordinates. (Both of the statements above follow from the arguments of [24].)

The potential applications above further motivate our main result which is a
dimension-independent stability result for Bobkov’s inequality in Gaussian space.
We note, however, that our dependence on δ is much worse than the one in Theo-
rem 1.2; improving this dependence is therefore a natural open problem.

Our main functional result is the following.

THEOREM 1.3. There exists a universal constant C such that the following
holds. Let f :Rn →R be a smooth function and define

δ = E

√
I 2(f ) + ‖∇f ‖2 − I (Ef ).

There exists a function g of the form g(x) = �(a · x + b) such that

E(f − g)2 ≤ C
1√

log(1/δ)
.

Of course, the most interesting special case of Theorem 1.3 is when f is the
indicator function of some set. Such an f is not smooth, of course, but the same
arguments that reduced Theorem 1.1 to the Gaussian isoperimetric inequation can
be employed here. Thus, we obtain a robustness result for the Gaussian isoperi-
metric inequality.

THEOREM 1.4. There exists an absolute constant C such that the following
holds. For any measurable set A ⊂ R

n, let δ = γ +
n (A)− I (γn(A)). There exists an

affine half-space B such that

γn(A�B) ≤ C
1√

log(1/δ)
.
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1.5. Proof techniques. Our approach builds on the work of Carlen and
Kerce [6] (which extends ideas of Ledoux [15]). Carlen and Kerce [6] write an

integral formula [equation (4) below] which bounds δ(f ) = E

√
I 2(f ) + ‖∇f ‖2 −

I (Ef ) from below.
The “main term” in the integral is the Frobenius norm of the Hessian of ht =

�−1 ◦ (Ptf ), where Pt is Ornstein–Uhlenbeck semigroup. It is easy to verify that
if f is an indicator of a half-space or if f = �(a · x + b) then ht is linear. Our first
step in the proof is to utilize a second-order Poincaré inequality which implies that
if the Frobenius norm of the Hessian of ht is sufficiently small, then ht is close to
a linear function.

The main effort in our approach is devoted to controlling the “secondary terms”
in (4). This main effort is established in a sequence of analytic results using
the smoothness of the semigroup Pt and involving—among other techniques—
concentration of measure and reverse hypercontractivity. Using the approach
above, we show that if δ = δ(f ) is small then there exists some t , not too large,
such that ht is ε(δ)-close to a linear function.

The next step of the proof requires applying P −1
t ◦� to conclude that f is close

to a linear function. There is an obvious obstacle in this approach: P −1
t is not a

bounded operator.
Fortunately, using the smoothness of the original function f , or the fact that we

may assume that the original set A has small boundary, we may deduce a decay
in the Hermite expansion of f (or A). Thus, we show that for the functions under
consideration, P −1

t is “effectively” bounded which allows us to conclude that f is
close to a Gaussian (or A is close to a half space), proving the result.

2. Semigroup proof of Bobkov’s inequality. Our work begins with Ledoux’s
short and elementary proof [15] of (2). The main ingredient of this proof is the
Ornstein–Uhlenbeck semigroup: for t ≥ 0, define the operator Pt :L∞(Rn) →
L∞(Rn) by

(Ptf )(x) =
∫
Rn

f
(
e−t x +

√
1 − e−2t y

)
dγn(y).

Clearly, P0 is the identity operator and Ptf converges pointwise to Ef as t → ∞.
Consider, therefore, the quantity

E

√
I 2(Ptf ) + ‖∇Ptf ‖2.(3)

When t = 0, this is exactly the right-hand side of (2); as t → ∞, it approaches
the left-hand side of (2) by the dominated convergence theorem and the bounded-
ness of f . To prove (2), Ledoux differentiated (3) with respect to t and showed
that the derivative is nonpositive. Thus, a potentially difficult inequality turns into
a calculus problem.

Actually, Ledoux only explicitly differentiated (3) in the one-dimensional case.
The n-dimensional case of (3) was computed by Carlen and Kerce [6] in their work
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on the equality case. Our robustness result is based on their calculations, which we
will summarize as a lemma.

LEMMA 2.1 ([6]). Let f be a smooth function f :Rn → [0,1]. Define ht =
�−1 ◦ (Ptf ) and

δ(f ) = E

√
I 2(f ) + ‖∇f ‖2 − I (Ef ).

Then

δ(f ) ≥
∫ ∞

0
E

φ(ht )‖H(ht)‖2
F

(1 + ‖∇ht‖2)3/2 dt,(4)

where H(ht) is the Hessian matrix of ht and ‖ · ‖F denotes the Frobenius norm
‖A‖2

F = tr(AT A).

From now on, δ(f ) will be defined as it was in Lemma 2.1. Where f is clear
from the context, we will only write δ.

The equality case in Theorem 1.1 follows fairly easily from Lemma 2.1: if
δ = 0, then H(ht ) must be zero for all t > 0, which implies that ht is a linear
function for all t > 0. A straightforward limiting argument shows that one can
take t to zero, and the result follows.

Our proof of Theorem 1.3 works by finding a lower bound for the right-hand
side of (4). First, we replace the integral over [0,∞) by an integral over [C,C +1],
where C is a large enough constant. For some t ∈ [C,C + 1], we find an affine
function h∗ such that ht is close to h∗. In particular, this means that ft is close to
�◦h∗. This part of the argument will be carried out in Section 3. The second part of
the argument, carried out in Section 4, shows that f must be close to P−t (� ◦ h∗).

3. Approximation for large t . This section is devoted to the proof of Propo-
sition 3.1, which shows that ht can be approximated by an affine function for some
sufficiently large t .

PROPOSITION 3.1. There is a universal constant C > 0 such that for any
measurable f :Rn → [0,1] there exists t ∈ [C,C + 1] such that

E
(
ht (X) −Eht − X ·E∇ht

)2 ≤ C
δ1/4(f )

m(f )5/4 ,

where ht = �−1 ◦ (Ptf ) and m(f ) = (Ef )(1 −Ef ).

NOTE 3.2. In this section and the next, we will not be concerned with the
value of universal constants; hence, the letters C and c will denote universal con-
stants, whose values may change from line to line. We will use C to denote con-
stants that must be sufficiently large, while c denotes constants that must be suffi-
ciently small.
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Notation. From now on, we fix the notation

ft := Ptf, ht := �−1 ◦ ft , kt = e−t /

√
1 − e−2t .

3.1. A second-order Poincaré inequality. In proving the equality cases of
Bobkov’s inequality, Carlen and Kerce used the fact that if ‖H(ht)‖2

F vanishes
then ht must be a linear function. The first step toward Proposition 3.1 is a quanti-
tative version of this observation.

LEMMA 3.3. For any smooth function h :Rn →R,

E
(
h(X) −Eh − X ·E∇h

)2 ≤ E
∥∥H(h)

∥∥2
F .

Since x �→ Eh + x · E∇h is a linear function, Lemma 3.3 implies that if
E‖H(h)‖2

F is small then h is close to linear. This puts us on our way toward the
proof of Proposition 3.1. Indeed, if we could remove the φ(ht )(1 + |∇ht |2)−3/2

term from the right-hand side of (4), we would be done already. The removal of
this nuisance term is the topic of the next section.

PROOF OF LEMMA 3.3. Recall Poincaré’s inequality [18]

Eh2 − (Eh)2 ≤ E‖∇h‖2.(5)

If we apply (5) to the partial derivatives of h, we obtain

E

(
∂h

∂xi

)2

−
(
E

∂h

∂xi

)2

≤ E

(
∂h

∂xi

)2

≤
n∑

j=1

E

(
∂2h

∂xi ∂xj

)2

.

Summing over i yields E‖∇h‖2 − ‖E∇h‖2 ≤ E‖H(h)‖2
F . Combining this

with (5), we have

E(h −Eh − X ·E∇h)2 = Eh2 − (Eh)2 − ‖E∇h‖2 ≤ E
∥∥H(h)

∥∥2
F ,

where the first equality follows because integration by parts implies that
EXh(X) = E∇h; hence, the orthogonal projection of h onto the span of linear
functions is X ·E∇h. �

3.2. First derivative bounds. We have shown how to use the E‖H(ht )‖2
F term

on the right-hand side of (4). In this section, we discuss the (1+‖∇ht‖2)−3/2 term.
A result by Bakry and Ledoux [1] shows that this term may be bounded pointwise
from below.

THEOREM 3.4 ([1]). For any measurable function f :Rn → [0,1] and any
t > 0,

‖∇ft‖ ≤ kt I (ft )



978 E. MOSSEL AND J. NEEMAN

pointwise, where kt = e−t /
√

1 − e−2t and ft = Ptf . Equivalently,

‖∇ht‖ ≤ kt

pointwise, where ht = �−1 ◦ ft .

Note that the second inequality is equivalent to the first by the chain rule, since
d
dx

�−1(x) = 1
I (x)

. Note also that since I (x) ∼ x
√

2 log(1/x) as x → 0, Theo-
rem 3.4 follows, up to a constant factor, from the reverse log-Sobolev inequal-
ity [18]

‖∇ft‖2

2k2
t ft

≤ Pt(f logf ) − ft logft .(6)

However, the sharp constant in Theorem 3.4 will be useful in Section 4.

3.3. Reverse-hypercontractivity and reverse-Hölder. Recall our current task:
a lower bound on (4) for large t . We have already shown that ‖∇ht‖ must be small
for large t ; our goal for this section is to find a lower bound on Eφ(ht )‖H(ht)‖2

F .

PROPOSITION 3.5. There exists a constant C such that if t ≥ C then

E
(
φ(ht )

∥∥H(ht )
∥∥2
F

) ≥ 1
4

(
I (Ef )

)2(
E

∥∥H(ht)
∥∥
F

)2
.

For this, we will use two inequalities: Borell’s reverse-hypercontractive inequal-
ity and the reverse-Hölder inequality. The reverse-Hölder inequality is classical:
for any p < 1 and any positive functions f and g,

Efg ≥ (
Ef p)1/p(

Egp/(p−1))(p−1)/p
.(7)

The reverse-hypercontractive inequality was proved by Borell [4]: for a positive
function f and any p < 1, t > 0,(

E(Ptf )p
)1/p ≥ (

Ef q)1/q
,(8)

where q = 1 + e−2t (p − 1).

PROOF OF PROPOSITION 3.5. Let gt = ‖H(ht)‖2
F and apply (7) with p = 1

2 :

E
(
φ(ht )

∥∥H(ht)
∥∥2
F

) = E
(
I (ft )gt

) ≥ (
E

(
I (ft )

)−1)−1
(E

√
gt )

2.(9)

Now, I is a concave function, and so I (Ptf ) ≥ Pt/2I (Pt/2f ). Applying (8) with
p = −1 gives(

E
(
I (ft )

)−1)−1 ≥ (
E

(
Pt/2I (ft/2)

)−1)−1 ≥ (
E

(
I (ft/2)

)q)1/q
,(10)

where q = 1 − 2e−t . If t ≥ 2, then q ≥ 1/2. Hence, we can combine (9) with (10)
to obtain

E
(
I (ft )gt

) ≥ (
E

√
I (ft/2)

)2
(E

√
gt )

2.
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It remains to show that

E

√
I (ft/2) ≥ 1

2I (Ef ).(11)

Applying (2) to ft/2, we have

I (Ef ) = I (Eft/2) ≤ EI (ft/2) +E‖∇ft/2‖,(12)

while Theorem 3.4 gives

E‖∇ft/2‖ ≤ kt/2EI (ft/2).

For t sufficiently large, kt/2 ≤ 1 and so E‖∇ft/2‖ ≤ EI (ft/2); by (12), I (Ef ) ≤
2EI (ft/2) for large enough t . Now, I is bounded above by (2π)−1/2 ≤ 1, and so

E

√
I (ft/2) ≥ EI (ft/2) ≥ 1

2I (Ef ), which proves (11) and the proposition. �

3.4. Second-derivative estimates. There is one more ingredient in the proof
of Proposition 3.1: an upper bound on second derivatives of ht . To see why such
a bound is useful, note that Lemma 3.3 gives a lower bound on E‖H(ht )‖2

F , but
Proposition 3.5 contains E‖H(ht )‖F . To combine these two results, we must there-
fore bound the first moment of ‖H(ht )‖F from below in terms of the second mo-
ment. This can be done by Hölder’s inequality, as long as we can bound higher
moments of ‖H(ht)‖F from above. Such a bound is the goal of this section.

The main bound of this section is the following proposition.

PROPOSITION 3.6. There is a constant C such that for all t > C,

(
E

∥∥H(ht)
∥∥3
F

)1/3 ≤
√

log
1

m(f )
,

where m(f ) = Ef (1 −Ef ).

Proposition 3.6 essentially follows by integrating a pointwise bound on
‖H(ht (x))‖F :

LEMMA 3.7. There is a constant C such that for all x ∈ R
n and t > 0,

∥∥H (
ht (x)

)∥∥
F ≤ Ck2

t

√
log

1

ft (x)(1 − ft (x))
,

where kt = e−t /
√

1 − e−2t .

And we will also need to relate the median of ft with its mean.

LEMMA 3.8. If Mt is a median of ft , then

Ef (1 −Ef ) ≤ 2M
(1/(1+kt ))

2

t .
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Before we prove either of these lemmas, we will show how they imply Propo-
sition 3.6.

PROOF OF PROPOSITION 3.6. Let gt = √
log(1/ft ) (where ft = Ptf ); note

that ∇gt = − ∇ft

2ft

√
log(1/ft )

, and so the reverse log-Sobolev inequality (6) implies

that gt is Lipschitz with constant kt/
√

2. Take N to be a median of gt . By Gaussian
concentration for Lipschitz functions,

E|gt − N |p ≤
∫ ∞

0
γn

{|gt − N |p ≥ x
}
dx ≤

∫ ∞
0

e−x2/p/(2k2
t ) dx.

After the change of variables y2 = x2/p

k2
t

, the right-hand side is just pk
p
t E|Y |p−1,

where Y is a standard Gaussian variable. Since E|Y |p−1 ≤ (Cp)p/2, it follows that(
E|gt − N |p)1/p ≤ (

(Cp)p/2+1k
p
t

)1/p ≤ Ckt
√

p.

Then, by the triangle inequality,(
E|gt |p)1/p ≤ N + Ckt

√
p.(13)

By Lemma 3.7, ‖H(ht)‖F ≤ Ck2
t gt pointwise whenever ft ≤ 1

2 . Thus,(
E

∥∥H(ht)
∥∥p
F 1{ft≤1/2}

)1/p ≤ Ck2
t

(
E|gt |p)1/p ≤ Ck2

t (N + kt
√

p),(14)

where the second inequality follows from (13).
To relate N to Ef , simply note that M = e−N2

is a median for ft ; hence,
Lemma 3.8 implies that N ≤ C(1 + kt )

√
log(1/m(f )), where m(f ) = Ef (1 −

Ef ). Plugging these bounds into (14),

(
E

∥∥H(ht )
∥∥p
F 1{ft≤1/2}

)1/p ≤ Ck2
t

(
(1 + kt )

√
log

1

m(f )
+ kt

√
p

)
.(15)

By the same argument with ft and 1 − ft exchanged, we have

(
E

∥∥H(ht )
∥∥p
F 1{ft≥1/2}

)1/p ≤ Ck2
t

(
(1 + kt )

√
log

1

m(f )
+ kt

√
p

)
.(16)

Combining (15) and (16) with the triangle inequality(
E

∥∥H(ht )
∥∥p
F

)1/p ≤ (
E

∥∥H(ht )
∥∥p
F 1{ft≥1/2}

)1/p + (
E

∥∥H(ht)
∥∥p
F 1{ft≤1/2}

)1/p

≤ Ck2
t

(
(1 + kt )

√
log

1

m(f )
+ kt

√
p

)
.

Setting p = 3 and taking t sufficiently large completes the proof. �

The fact that
√

log(1/ft ) is Lipschitz was noticed by Hino [13], and was also
used recently by Ledoux [20]. This fact, which was important in the preceding
proof, will also be crucial in the proof of Lemma 3.8:
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PROOF OF LEMMA 3.8. Let gt = √
log(1/ft ); take N to be a median of gt

and let M = e−N2
, so that M is a median of ft . For any α < 1,

Pr
(
ft ≥ Mα2) = Pr

(
gt ≤ α

√
log(1/M)

) = Pr(gt ≤ αN).

Recall that gt is 1√
2
kt -Lipschitz. Thus,

Pr
(
ft ≥ Mα2) = Pr(gt ≤ αN) ≤ exp

(
−(1 − α)2N2

k2
t

)
= M(1−α)2/k2

t .

Setting α = 1
1+kt

, we have (1−α)2

k2
t

= α2. Thus, Pr(ft ≥ Mα2
) ≤ Mα2

. Since ft ≤ 1,

Markov’s inequality implies that Eft ≤ 2Mα2
. �

For the rest of the section, we will devote ourselves to proving Lemma 3.7,
which we will do very explicitly. The proof of Lemma 3.7 begins with the formula

∂2ht

∂xi ∂xj

= 1

I (ft (x))

∂2ft

∂xi ∂xj

+ �−1(ft (x))

I 2(ft (x))

∂ft

∂xi

∂ft

∂xj

.(17)

We will bound the two terms on the right-hand side in two different lemmas. But
first, we quote a result on the moments of a order-2 Gaussian chaos. To obtain
Theorem 3.9 from the result stated in [12], simply note that the operator norm is
bounded by the Frobenius norm.

THEOREM 3.9 ([12]). For any matrix A and any 1 ≤ p < ∞, if Y is a stan-
dard Gaussian vector in R

n then(
E

∣∣YT AY − tr(A)
∣∣p)1/p ≤ Cp‖A‖F .

Theorem 3.9 will be used to bound the first term of (17).

LEMMA 3.10. For any matrix A = (aij ),

∑
ij

aij

∂2ft

∂xi ∂xj

≤ Ck2
t ‖A‖F ft log

1

ft

.

PROOF. We write out derivatives of ft as integrals: if i �= j then with the
change of variables y = z−e−t x√

1−e−2t
,

∂2ft

∂xi ∂xj

=
∫
Rn

f (z)
∂2

∂xi ∂xj

φ

(
z − e−t x√
1 − e−2t

)
dz√

1 − e−2t

= k2
t

∫
Rn

f (z)yiyjφ

(
z − e−t x√
1 − e−2t

)
dz√

1 − e−2t

= k2
t

∫
Rn

f
(
e−t x +

√
1 − e−2t y

)
yiyjφ(y) dy,
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while if i = j then a similar computation gives

∂2ft

∂xi ∂xj

= k2
t

∫
Rn

f
(
e−t x +

√
1 − e−2t y

)(
y2
i − 1

)
φ(y) dy.

Applying Hölder’s inequality,

∑
ij

aij

∂2ft

∂xi ∂xj

= k2
t

∫
Rn

f
(
e−t x +

√
1 − e−2t y

)(
yT Ay − tr(A)

)
φ(y) dy

≤ k2
t

(
Ptf

p)1/p(
E

∣∣YT AY − tr(A)
∣∣q)1/q

≤ k2
t f

1/p
t

(
E

∣∣YT AY − tr(A)
∣∣q)1/q

,

where 1
p

+ 1
q

= 1 and Y is distributed as a standard Gaussian variable, and the last
line follows because 0 ≤ f ≤ 1 and so f p ≤ f . By Theorem 3.9,

∑
ij

aij

∂2ft

∂xi ∂xj

≤ Ck2
t qf

1/p
t ‖A‖F .

Choosing 1/p = 1 − 1
log(1/ft )

, we have f
1/p
t = eft and q = log 1

ft
, proving the

claim. �

Putting Lemma 3.10 and Theorem 3.4 together, we arrive at a proof of
Lemma 3.7.

PROOF OF LEMMA 3.7. Note that

∥∥H(ht )
∥∥
F = sup

‖A‖F =1

∑
ij

aij

∂2ht

∂xi ∂xj

.

For any fixed matrix A, with ‖A‖F = 1, (17) implies that

∑
ij

aij

∂2ht

∂xi ∂xj

= 1

I (ft )

∑
ij

aij

∂2ft

∂xi ∂xj

+ �−1(ft )

I 2(ft )
(∇ft )

T A∇ft .

Now, the reverse log-Sobolev inequality (6) implies that (∇ft )
T A∇ft ≤ ‖A‖F ×

‖∇ft‖2 ≤ 2k2
t ‖A‖F f 2

t log 1
ft

. This, together with Lemma 3.10 and the fact that
‖A‖F = 1, implies

∑
ij

aij

∂2ht

∂xi ∂xj

≤ Ck2
t

(
ft log(1/ft )

I (ft )
+ �−1(ft )

I 2(ft )
f 2

t log
1

ft

)
.

Since the right-hand side is independent of A, we can take the supremum over
{A :‖A‖F = 1}, giving

∥∥H(ht )
∥∥
F ≤ Ck2

t

(
ft log(1/ft )

I (ft )
+ �−1(ft )

I 2(ft )
f 2

t log
1

ft

)
.(18)



ROBUST DIMENSION FREE GAUSSIAN ISOPERIMETRY 983

Next, we claim that for any 0 < a ≤ 1
2 ,

a
√

log(1/a) ≤ CI (a),(19)

a2
√

log(1/a) ≤ C

∣∣∣∣ I 2(a)

�−1(a)

∣∣∣∣.(20)

Now, (19) follows from the well-known fact (see, e.g., [1]) that I (a) � a
√

log(1/a)

as a → 0 [where the notation f (a) � g(a) means that 0 < lim inf f (a)
g(a)

≤
lim sup f (a)

g(a)
< ∞]. To show (20), set g(a) = − I 2(a)

�−1(a)
; we then compute

g′(a) = 2I (a) + I (a)

(�−1)2(a)
� I (a) � a

√
log

1

a

as a → 0. Since

d

da
a2

√
log

1

a
= a

√
log

1

a
− a

2
√

log(1/a)
� a

√
log

1

a
,

it follows that g(a) � a2√log(1/a), proving (20).
Suppose that ft ≤ 1

2 . Applying (19) and (20) to (18) with a = ft completes the
proof in this case. If ft > 1

2 , we apply the same argument to 1 − ft . �

3.5. Proof of Proposition 3.1. With all of the ingredients laid out, the proof of
Proposition 3.1 follows easily.

PROOF OF PROPOSITION 3.1. Suppose C is a large enough universal constant
so that for all t ≥ C:

• ‖∇ht‖ ≤ 1 (by Theorem 3.4).
• E(φ(ht )‖H(ht)‖2

F ) ≥ 1
4I 2(Ef )(E‖H(ht )‖F )2 (by Proposition 3.5).

• (E‖H(ht )‖3
F )1/3 ≤ √

log(1/(m(f ))) (by Proposition 3.6), where m(f ) =
Ef (1 −Ef ).

By the first two bullet points, for any t ≥ C

E
φ(ht )‖H(ht )‖2

F

(1 + ‖∇ht‖2)3/2 ≥ 2−3/2
E

(
φ(ht )

∥∥H(ht)
∥∥2
F

)
(21)

≥ 2−7/2I 2(Ef )
(
E

∥∥H(ht)
∥∥
F

)2
.

Now, Hölder’s inequality implies that

EX2 = EX1/2X3/2 ≤ (EX)1/2(
EX3)1/2
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for any nonnegative random variable X. Applying this with X = ‖H(ht)‖F , the
third bullet point above implies that

E
(∥∥H(ht)

∥∥2
F

) ≤ (
E

∥∥H(ht)
∥∥
F

)1/2(
E

∥∥H(ht )
∥∥3
F

)1/2

≤ (
E

∥∥H(ht)
∥∥
F

)1/2 log3/4 1

m(f )
.

Plugging this into (21),

E
φ(ht )‖H(ht )‖2

F

(1 + ‖∇ht‖2)3/2 ≥ 2−7/2I 2(Ef )
(
E

(∥∥H(ht)
∥∥2
F

))4 log−3 1

m(f )
.(22)

Now, (22) holds for any t ≥ C. In particular, if we choose t∗ ∈ [C,C + 1] to
minimize E‖H(ht∗)‖2

F , then by Lemma 2.1 and (22),

δ(f ) ≥
∫ ∞

0
E

φ(ht )‖H(ht)‖2
F

(1 + ‖∇ht‖2)3/2 dt

≥
∫ C+1

C
E

φ(ht )‖H(ht)‖2
F

(1 + ‖∇ht‖2)3/2 dt

(23)

≥ 2−7/2
∫ C+1

C
I 2(Ef )

(
E

∥∥H(ht )
∥∥2
F

)4 log−3 1

m(f )
dt

≥ 2−7/2 I 2(Ef )

log3(1/m(f ))

(
E

∥∥H(ht∗)
∥∥2
F

)4
.

Recall that I 2(x) � x2 log(1/x) as x → 0. Hence, as x → 0,

I 2(x)

log3(1/(x(1 − x)))
� x4

log(1/x)
≥ x5.

By replacing x with 1 − x [note that I (x) = I (1 − x)] and repeating the argument,
we see that there is some universal constant c > 0 such that I 2(x) log−3(1/(x(1 −
x))) ≥ c(x(1 − x))5 for all x ∈ [0,1]. Applying this to (23) with x = Ef , we have

δ(f ) ≥ cm(f )5(
E

∥∥H(ht∗)
∥∥2
F

)4
.(24)

Finally, by Lemma 3.3,

E
(
ht∗(X) −Eh∗

t − X ·E∇h∗
t

)2 ≤ E
∥∥H(ht∗)

∥∥2
F ≤ C

δ1/4(f )

(Ef )5/4 ,

where the last inequality follows from (24). �
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4. Approximation for small t . Recall that ft = Ptf and ht = �−1 ◦ ft .
Proposition 3.1 shows that if f achieves almost-equality in (2) then ht—for some
t not too large—can be well approximated by a linear function. Since � is a con-
traction, this implies that ft may be well approximated by a function of the form
�(a · x + b). The goal of this section is to complete the proof of Theorem 1.3
by showing that f itself can be approximated by a function of the same form.
This will be accomplished mainly with spectral techniques, by expanding f in the
Hermite basis.

Let gt (x) = �(Eht + x · E∇ht), so that Proposition 3.1 implies that E(ft −
gt )

2 ≤ Cδ1/4(f )m−5/4(f ). By directly computing Pt applied to the indicator of a
half-space, one may check the following lemma (which also appeared implicitly
in [6]):

LEMMA 4.1. If ‖a‖ ≤ kt , then the function g(x) = �(a ·x +b) is in the range
of Pt . Moreover, if ‖a‖ = kt then P −1

t g is the indicator function of a half-space,
while if ‖a‖ < kt then P −1

t g takes the form �(a′ · x + b′).

Now, Theorem 3.4 implies that ‖E∇ht‖ ≤ kt and so by Lemma 4.1, gt is in the
range of Pt , and P −1

t gt is either the indicator of a half-space or � composed with
a linear function. Let g = P −1

t gt . Then Proposition 3.1 implies that

E
(
Pt(f − g)

)2 = E(ft − gt )
2 ≤ C

δ(f )2

m(f )C
.

In order to prove Theorem 1.3, it suffices to show that E(f − g)2 is small. In
other words, setting h = f − g, we want to bound Eh2 in terms of E(Pth)2. For
a general function h, this is an impossible task. To see why, consider hk(x) =
sgn(sin(kx)). Then Eh2

k = 1 for all k, but for any t > 0, Pthk → 0 as k → ∞.
Hence, E(Pthk)

2 → 0, and so Eh2
k cannot be bounded in terms of E(Pthk)

2.
The key to bounding E(f − g)2 in terms of E(Pt (f − g))2 is to exploit some

extra information that we have on f − g. In particular, we have assumed that f

almost minimizes Bobkov’s functional E
√

I 2(f ) + ‖∇f ‖2. In particular,

E‖∇f ‖ ≤ E

√
I 2(f ) + ‖∇f ‖2 ≤ I (Ef ) + δ(f ).

If we assume that δ(f ) ≤ 1 (if not, then Theorem 1.3 is meaningless anyway),
then E‖∇f ‖ ≤ 2. We will translate this smoothness condition into a condition on
the Hermite spectrum of f , which will allow us to bound E(f − g)2 in terms of
E(Pt (f − g))2.

We should remark that for nonnegative functions h, reverse hypercontractive
inequalities can be used to bound Eh2 in terms of E(Pth)2. The restriction h ≥ 0
prevents the positive and negative parts of h from canceling out under Pt , rendering
examples like hk(x) = sgn sin(kx) impossible. For our application, however, we
must consider functions that take positive and negative values.
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Our main tool in this section is an inequality by Ledoux, which gives a connec-
tion between E‖∇f ‖ and the action of Pt on f .

THEOREM 4.2 ([15]). There is a universal constant C such that for any
smooth function f :Rn → [−1,1] and any t > 0,

Ef (f − Ptf ) ≤ C
√

tE‖∇f ‖.

This inequality (in a sharper form) was originally derived to show the connec-
tion between Borell’s noise sensitivity inequality [5] and the Gaussian isoperi-
metric inequality. We will give another application: Theorem 4.2 implies that for
smooth functions, the Hermite coefficients decay at a certain rate.

4.1. Smoothness and the Hermite expansion. Recall that the Hermite polyno-
mials {Hα :α ∈ {0,1, . . .}n} form an orthogonal basis of (Rn, γn) [27]. Let

Gα = Hα√
EH 2

α

be the corresponding orthonormal basis. We will use the well-known fact that Pt

acts diagonally on this basis:

PtGα = e−|α|tGα.(25)

LEMMA 4.3. Suppose f :Rn → [−1,1] is a smooth function and f =∑
α bαGα . Then for any N ∈ {1,2, . . .},∑

|α|≥N

b2
α ≤ CN−1/2

E‖∇f ‖.

PROOF. By (25) and Theorem 4.2,∑
α

(
1 − e−|α|t )b2

α = Ef (f − Ptf ) ≤ C
√

tE‖∇f ‖.

If |α| ≥ 1/t then e−|α|t ≤ 1/e; hence,

(1 − 1/e)
∑

|α|≥1/t

b2
α ≤ ∑

α

(
1 − e−|α|t )b2

α ≤ C
√

tE‖∇f ‖.

Now set t = 1
N

. �

Since we know how the semigroup Pt acts on the Hermite basis and we know
how the Hermite coefficients of nice functions are distributed, we are in a posi-
tion to bound Ef 2 in terms of E(Ptf )2. Essentially, Lemma 4.3 tells us that the
high coefficients do not contribute much to Ef 2, while (25) implies that the low
coefficients contributing to Ef 2 also contribute to E(Ptf )2.
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LEMMA 4.4. For any smooth h :Rn → [−1,1] and any t ≥ 1,

Eh2 ≤ C
(
1 +E‖∇h‖)√ t

log(1/E(Pth)2)
.

PROOF. Expand h = ∑
α bαGα and let ε = E(Pth)2. Then (25) implies that

ε = E(Pth)2 = ∑
α

e−2t |α|b2
α.

On the other hand, Lemma 4.3 implies that

Eh2 = ∑
α

b2
α

≤ e2t (N−1)
∑

|α|≤N−1

b2
αe−2t |α| + ∑

|α|≥N

b2
α(26)

≤ e2t (N−1)ε + CN−1/2K,

where K = E‖∇h‖.
Now we choose N to optimize (26). Let β = 1

2t
log 1

ε
and set N = �β− 1

4t
logβ�.

Since β > logβ and t ≥ 1, N ≥ β/2 (and in particular, N is a positive integer).
Moreover, N − 1 ≤ β − 1

4t
logβ and so (since e2tβ = 1/ε) e2t (N−1)ε ≤ β−1/2.

Plugging these bounds on N back into (26) yields

Eh2 ≤ β−1/2 + CKβ−1/2 ≤ C(1 + K)

√
t

log(1/ε)
. �

4.2. Proof of Theorem 1.3. Finally, we are ready to prove Theorem 1.3. As
we discussed at the beginning of the section, we may assume that δ = δ(f ) ≤ 1,
which implies that E‖∇f ‖ ≤ 2. We may also assume that m(f ) ≥ log−1/2(1/δ):
if not, then either Ef ≤ log−1/2(1/δ) or (1 − Ef ) ≤ log−1/2(1/δ). In the first
case, f may be approximated well by the zero function, which in turn may be
approximated by functions of the form �(a · x + b). Specifically, for any a ∈ R

n,
�(a · x + b) → 0 as b → −∞ and so

lim
b→−∞E

(
f (X) − �(a · X + b)

)2 = Ef 2 ≤ Ef ≤ 1√
log(1/δ)

.

That is, if Ef ≤ log−1/2(1/δ) then the conclusion of Theorem 1.3 holds triv-
ially. A similar argument (but with the zero function replaced by the constant
function 1) holds when (1 − Ef ) ≤ log−1/2(1/δ). Thus, we may assume that
m(f ) ≥ log−1/2(1/δ).

As in the discussion at the beginning of the section, take (by Proposition 3.1)
t ∈ [C,C + 1] so that

E(ht −Eht − X ·E∇ht)
2 ≤ C

δ1/4(f )

m5/4(f )
.
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Let gt (x) = �(x ·E∇ht +Eht ) and g = P −1
t gt (which exists, recall, by Lemma 4.1

and because ‖E∇ht‖ ≤ kt ).
By Proposition 3.1 and because � is a contraction,

E(gt − ft )
2 ≤ E(ht −Eht − X ·E∇ht)

2 ≤ C
δ(f )1/4

m(f )5/4 ≤ Cδ1/8,

where the last inequality follows from because we have assumed that m(f ) ≥
log−1/2(1/δ). Set h = g − f . Since g is � composed with a linear function,
E‖∇g‖ ≤ φ(0) ≤ 1, and hence E‖∇h‖ ≤ E‖∇g‖ +E‖∇f ‖ ≤ 3. By Lemma 4.4,

E(g − f )2 ≤ C√
log(1/E(gt − ft )2)

≤ C√
log(1/δ)

.

This completes the proof of Theorem 1.3.

5. Robust results for sets. There are two pieces needed to get from Theo-
rem 1.3 to Theorem 1.4. First, we need to interpret Theorem 1.3 in the case that
f is an indicator function (which is necessarily nonsmooth). For this, we simply
apply Theorem 1.3 to Ptf , which is smooth, and take t to zero. Fortunately for us,
most of the work in this step was done in [6].

LEMMA 5.1 ([6]). For any measurable set A,

γ +
n (A) = lim

t→0
E

√
I 2(Pt1A) + ‖∇Pt1A‖2.

The second piece we require is something that will let us pass from a function
�(a · x + b) to an affine half-space. For this piece, we just round �(a · x + b) to
{0,1}.

LEMMA 5.2. Let A be a measurable set and g(x) = �(a ·x +b). There exists
an affine half-space B such that

γn(A�B) ≤ E(1A − g)2.

PROOF. Let B = {x ∈ R
n :a · x + b ≥ 0}. Since 1B is obtained by rounding g

to {0,1}, it follows that |1B − g| ≤ |1A − g| pointwise. Thus,

4γn(A�B) = E(1A − 1B)2 ≤ 2E(1A − g)2 + 2E(1B − g)2 ≤ 4E(1A − g)2. �

PROOF OF THEOREM 1.4. Let f = 1A and write ft = Ptf ; recall that
δ = γ +

n (A) − I (γn(A)). Note that Eft = Ef = γn(A) for all t > 0. Since

E

√
I 2(ft ) + ‖∇ft‖2 → γ +

n (A) by Lemma 5.1,

E

√
I 2(ft ) + ‖∇ft‖2 − I (Eft ) ≤ 2δ
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for all small enough t . Now set ε = log−1/2(1/δ). Since the semigroup Pt is
strongly continuous in L2(γn), we can take t small enough so that E(ft −1A)2 ≤ ε.

Apply Theorem 1.3 to ft : we receive a function g(x) = �(a ·x+b) with E(ft −
g)2 ≤ Cε. By the triangle inequality, E(1A − g)2 ≤ Cε and so Lemma 5.2 gives
us an affine half-space B with γn(A�B) ≤ Cε. �

6. Conclusion.

6.1. Open problems. To conclude, we present two natural open problems:

• Is there a result which strengthens both our result and [7]? For sets A of measure
1/2, such result should give the existence of a half space B with γn(A�B) ≤
Cδ1/2 where C is an absolute constant.

• Could similar results be obtained for other measures? In particular, log-concave
measures? This question was suggested to us independently by Franck Barthe,
Michel Ledoux and Shahar Mendelson. We note that the one-dimensional ana-
logue of [7] was established by [8].

6.2. Subsequent work. Building on techniques that we develop here, we very
recently obtained a robust dimension-free version of Borell’s theorem [23], thereby
establishing the applications that we mentioned earlier in the Introduction. More-
over, in Borell’s theorem, we obtained polynomial rather than logarithmic rates
(although we could not achieve the optimal exponent of 1

2 ). However, our robust
version of Borell’s theorem does not imply Theorem 1.4 even though Borell’s re-
sult implies the isoperimetric inequality as ρ → 1, since we were only able to
obtain the correct dependence on ρ for sets A satisfying γn(A) = 1

2 .
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